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Preface

The theory of belief functions, also referred to as evidence theory or Dempster–
Shafer theory, is a well-established general framework for reasoning with
uncertainty, with well-understood connections to other frameworks such as prob-
ability, possibility, and imprecise probability theories. First introduced by Arthur
P. Dempster in the context of statistical inference, the theory was later developed
by Glenn Shafer into a general framework for modelling epistemic uncertainty.
These early contributions have been the starting points of many important
developments, including the transferable belief model and the theory of hints.

The series of biennial BELIEF conferences is dedicated to the confronta-
tion of ideas, the reporting of recent achievements, and the presentation of the
wide range of applications of this theory. This conference series started in Brest,
France, in 2010, while the second edition was held in Compiègne, France, in May
2012. The conference series is organized by the Belief Functions and Applications
Society (BFAS).

The Third International Conference on Belief Functions, BELIEF 2014, was
held during September 26–28 at St. Hugh’s College, Oxford, UK. Oxford is a
world-famous university city, home of two major universities, Oxford University
and the younger but very active Brookes University. It is conveniently located 60
miles north-west of London, and enjoys direct coach links with all major London
airports such as Heathrow, Gatwick, Luton, and Stansted.

The aim of the conference was to provide opportunities to exchange ideas and
present new results on the theory of belief functions and related areas such as
random sets, imprecise probability, and possibility theory. Original contributions
were solicited on theoretical aspects (including mathematical foundations, deci-
sion making, combination rules, continuous belief functions, independence and
graphical models, statistical estimation, etc.), as well as on applications to all
areas of computer science, business, and engineering, including data fusion, pat-
tern recognition and machine learning, tracking, data mining, signal and image
processing, computer vision, medical diagnosis, business decision, risk analysis,
climatic change, and many others.

Authors of selected papers from the BELIEF 2014 conference were invited to
submit extended versions of their papers for inclusion in a dedicated special issue
of Elsevier’s International Journal of Approximate Reasoning. We received 56
submissions, of which 47 were accepted (83%). This edited volume is a collection
of all the accepted papers in their final, camera-ready form. There were two
invited talks by major researchers in AI. Nando de Freitas, Professor of Computer
Science at Oxford University, gave a talk on the challenges facing the wider field
of AI in the near future. Thomas Lukasiewicz, also Professor of Computer Science
at Oxford University, spoke about “Uncertainty in the Semantic Web,” outlining
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how uncertainty is dealt with in semantic web applications, and illustrating in
more detail some of his most recent published work.

The Program Committee (PC) consisted of 45 academics with diverse re-
search interests and expertise, ranging from experts in the theory and applica-
tion of belief functions to scientists active in imprecise probabilities and random
sets, mainstream statisticians, computer scientists, and engineers. Papers were
reviewed in blind mode, with each paper assigned to at least three reviewers,
sometimes four or five. While 35 papers were accepted after the first round of
reviews (62%), 14 others underwent a rebuttal stage in which authors were asked
to revise their paper in accordance to the reviews, and prepare an extensive re-
sponse addressing the reviewers’ concerns. The final decision was made by the
program chair, sometimes with the assistance of the reviewers. As a result, 12 ad-
ditional papers were accepted for publication in the proceedings, and the quality
of the manuscripts saw a significant improvement.

We ensured that all papers received a fair and objective evaluation by ex-
perts, with particular attention paid to highlighting strengths and weaknesses of
papers. The 162 submitted reviews were, on average, of a high-quality standard
when compared with other well-established international conferences, providing
a detailed list of suggestions and criticisms that in the end contributed greatly
to the quality of the material published in this volume. The rebuttal stage, in-
troduced for the first time in this edition of BELIEF, was a clear success and we
recommend its adoption for the future editions of the conference as well.

For the first time we introduced a best paper and a best student paper award,
to give recognition to the authors of substantial contributions to the theory
of belief functions. We hope this will be a long-standing practice. We had a
discussion panel on the status and future of the theory of belief functions, which
we believe helped bring our community together and set clear targets for its
future development and further growth.

The Third International Conference on Belief Functions enjoyed the support
of several sponsors, including Onera - The French Aerospace Lab - and Oxford
Brookes University, Faculty of Technology, Design and Environment. Elsevier -
“the leading provider of science information” - provided a 1,000-euro prize to
go to the authors of the best paper, selected by the BFAS board of directors
from a shortlist based on the reviewers’ scores. ISIF, International Society of
Information Fusion, was the main contributor and asked to fund a best stu-
dent paper award, whose lead author received a free student registration for
the FUSION 2015 international conference. We would like to thank Onera’s
Alain Appriou, ISIF’s Anne-Laure Jousselme, Oxford Brookes’ Ray Ogden, and
Thierry Denœux, Editor-in-Chief of IJAR, for their assistance in securing these
sponsorships.

We would like to sincerely thank authors of all submissions – those whose
papers made it into the program and those whose papers did not. We, and the
PC as a whole, were impressed by the quality of submissions contributed from
all around the world, from the USA to France, Tunisia, China, and Thailand,
among others.
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We would like to extend our sincere gratitude to the PC. We were very
fortunate that so many talented people put such an inordinate amount of time
to write reviews and actively participate in discussions for nearly three weeks.
They quickly responded to our requests for extra reviews, opinions, comments,
comparisons, and inputs. We also would like to thank the external reviewers,
some contacted by us directly and some through PC members, who significantly
contributed to the comprehensive evaluation of papers. A list of PC members
and external reviewers appears after this note.

Finally, we would like to thank Arnaud Martin for his help with managing
registration and accounts, HG3 in the person of Nicola Peel for their help with
providing accommodation at discounted rates in a difficult area like Oxford’s,
Anne-Laure Jousselme for her valuable help in building a mailing list of authors
of belief functions papers, and Alfred Hofmann, Anna Kramer, and their col-
leagues at Springer for providing a meticulous service for the timely production
of this volume.

July 2014 Fabio Cuzzolin
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Arnaud Martin Université de Rennes1 / IRISA, France
David Mercier Université d’Artois, France
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α-Junctions of Categorical Mass Functions

John Klein, Mehena Loudahi, Jean-Marc Vannobel, and Olivier Colot

Lille1 University, LAGIS UMR CNRS 8219,
avenue Carl Gauss, cité scientifique, 59650 Villeneuve d’Ascq, France

{john.klein,mehena.loudahi,jean-marc.vannobel,
olivier.colot}@univ-lille1.fr
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Abstract. The set of α-junctions is the set of linear associative and
commutative combination operators for belief functions. Consequently,
the properties of α-junctive rules make them particularly attractive on
a theoretic point of view. However, they are rarely used in practice ex-
cept for the α = 1 case which corresponds to the widely used and well
understood conjunctive and disjunctive rules. The lack of success of α-
junctions when α < 1 is mainly explained by two reasons. First, they
require a greater computation load due to a more complex mathematical
definition. Second, the mass function obtained after combination is hard
to interpret and sometimes counter-intuitive. Pichon and Denœux [4]
brought a significant contribution to circumvent both of these two lim-
itations. In this article, it is intended to pursue these efforts toward a
better understanding of α-junctions. To that end, this study is focused
on the behavior of α-junctions when categorical mass functions are used
as entries of an α-junctive combination rule. It is shown that there ex-
ists a conjunctive and a disjunctive canonical decomposition of the mass
function obtained after combination.

Keywords: evidence theory,Dempster-Shafer theory, combination rules,
α-junctions, categorical mass functions.

1 Introduction

The belief function theory (BFT) is an appealing framework for reasoning under
uncertainty when imperfect data need to be aggregated through an information
fusion process. Indeed, imprecise and uncertain pieces of evidence can be effi-
ciently represented and aggregated as part of the BFT. Combination rules are
well-defined mathematical operators designed for such a purpose.

In [9], Smets introduced a family of combination rules known as α-junctions.
This family is the union of two sub-families: the α-conjunctive rules and the α-
disjunctive rules. These rules possess interesting properties, each of them being
clearly justified in an information fusion context. When the parameter α is set
to 1, two classical rules are retrieved: the conjunctive and disjunctive rules.
However, for other values of α, performing the combination requires an increased
computation time and the results are sometimes hard to interpret.

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014
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Pichon and Denœux [4] alleviated these drawbacks. First, they explained that
combination results are far better understood if α is viewed as a parameter
related to the truthfulness of information sources. In addition, they provided
means to fasten α-junction computations.

Besides, it is known that the BFT restricted to categorical mass functions
equipped with the conjunctive and disjunctive rules boils down to Cantor’s set
theory. In this article, it is intended to analyze the same matter when the con-
junctive and disjunctive rules are replaced with α-junctions for a given α < 1.
Pichon already briefly discussed this matter in [6]. Some additional results or
analyses are given for the direct computation of combined categorical mass func-
tions as well as for other set-functions representing combined evidence (common-
ality, implicability, conjunctive and disjunctive weight functions). In addition, a
conjunctive and a disjunctive canonical decomposition of these mass functions
are also introduced. In section 2 some mathematical notations are given and
some definitions are re-called. Section 3 and 4 present the obtained results for
α-conjunctive and α-disjunctive rules respectively. Section 5 concludes the paper.

2 Belief Function Framework: Notations and Definitions

In this section, mathematical notations for classical belief function concepts are
given. The reader is expected to be familiar with belief function basics and
consequently some definitions are not recalled. More material on belief functions
basics is found for instance in [1]. A greater stress is given to a reminder on
α-junctions.

2.1 Belief Function Basics

Suppose one has collected several bodies of evidence {Evi}Mi=1. For a given body
of evidence Evi, the corresponding mass function representing this piece of
evidence is denoted by mi. Mass functions are set-functions with respect to a
frame of discernment denoted by Ω. The power set 2Ω is the set of all subsets
of Ω and it is the domain of mass functions. For any A ∈ 2Ω, the cardinality
of this set is denoted by |A| and |Ω| = n. The cardinality of 2Ω is denoted by
N = 2n. Mass functions have [0, 1] as codomain and they sum to one. A focal
element of a mass function mi is a set A ⊆ Ω such that mi(A) > 0. A mass
function having only one focal element A is called a categorical mass function
and it is denoted by mA.

Several alternatives for evidence representation are commonly used in the
BFT. The belief and commonality functions beli and qi are respectively the
inverse Möbius and inverse co-Möbius transforms of the mass function mi. The
plausibility function pli is the conjugate of beli and the implicability func-
tion bi is such that ∀X ⊆ Ω, bi(X) = beli(X) + mi(∅). There is a one-to-one
correspondence between a mass function mi and any of these four functions.
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If the reliability of the evidence encoded in a mass function can be evaluated
through a coefficient α ∈ [0, 1], then a so-called discounting operation on m
can be performed. A discounted mass function is denoted by mα and we have :

mα = (1 − α)m+ αmΩ . (1)

α is called the discounting rate. Since mΩ represents a state of ignorance, this
categorical mass function is called the vacuous mass function. Consequently,
setting α = 1 turns a mass function into the neutral element of the conjunctive
rule and its corresponding evidence is discarded from further processing.

Another useful concept is the negationm of a mass function m. The function
m is such that ∀A ⊆ Ω, m(A) = m(A) with A = Ω \A.

2.2 Mass Function Combination Using α-Junctions

In this subsection, a brief presentation of α-junctions is proposed. A thorough
presentation is provided in [4]. Suppose f is a combination operator for mass
functions, i.e., m12 = f(m1,m2) with m12 a mass function depending only on
two initial mass functions m1 and m2. Such an operator is an α-junction if it
possesses the following properties [9]:

– Linearity1: ∀λ ∈ [0, 1] and for any other mass function m we have
f (m,λm1 + (1 − λ)m2) = λf (m,m1) + (1 − λ) f (m,m2),

– Commutativity: f (m1,m2) = f (m2,m1),
– Associativity: f (f (m1,m2) ,m3) = f (m1, f (m2,m3)),
– Neutral element: ∃me | ∀m, f (m,me) = m,
– Anonymity: for any σ extending by set-union on 2Ω a permutation on Ω,
f (m1 ◦ σ,m2 ◦ σ) = m12 ◦ σ,

– Context preservation: pl1 (X) = 0 and pl2 (X) = 0 =⇒ pl12 (X) = 0.

The justifications behind these properties are given in [9]. In the same article,
Smets also proves that the neutral element can be either m∅ or mΩ. Depending
on this, two sub-families arise: the α-disjunctive rules denoted by ∪©α and the α-
conjunctive rules denoted by ∩©α. For the sake of clarity, the following notations
will be used:m1∪α2 = m1 ∪©αm2 andm1∩α2 = m1 ∩©αm2. Pichon and Denœux [4]
provided the following computation formulae: ∀X ⊆ Ω, ∀α ∈ [0, 1]

m1∩α2 (X) =
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)α|C|α|C|, (2)

m1∪α2 (X) =
∑

(A∩B)∪(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)α|C|α|C|, (3)

with α = 1 − α. Note that they also provide faster means to compute the
combined mass function using matrix calculus. It is also noteworthy that, if

1 The operator is linear on the vector space spanned by categorical mass functions
but the output of the operator remains a mass function only in case of convex
combination.
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α = 1, the classical conjunctive and disjunctive rules are retrieved. We denote
these rules by ∩© = ∩©1 and by ∪© = ∪©1.

Concerning the interpretation of α-junctions, Pichon and Denœux [4] state
that for any ω ∈ Ω:

– for α-conjunctions, α is understood as the belief that at least one of the
sources tells the truth, given that the event {ω} is true,

– for α-disjunctions, α is understood as the plausibility that both sources tell
the truth, given that the event {ω} is true.

In [6], Pichon gives further explanations and justifications of this interpretation.
He shows that α-conjunctions are understood as a particular case of a combi-
nation process introduced in [7] where meta-knowledge on the truthfulness of
information sources is formalized.

3 α-Conjunctive Combination of Categorical Mass
Functions

In this section, several results related to the combination of categorical mass
functions using an α-conjunctive rule are given. A straightforward formula for
the computation of α-conjunction of categorical mass functions is evoked in [6].
We state this result in a slightly more formal way:

Proposition 1. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

mA∩αB (X) =

{
α|AΔB|−|X|α|X|−|A∩B| if A ∩B ⊆ X ⊆ AΔB

0 otherwise
, (4)

with Δ the set symmetric difference.

Proof. A sketch of proof is already given in [6]. We provide a few more details
in here. Applying equation (2) with categorical mass functions gives:

mA∩αB (X) =
∑
C⊆Ω

(A∩B)∪(A∩B∩C)=X

α|C|α|C|

Observing that no subset C can satisfy (A ∩ B) ∪ (A ∩ B ∩ C) = X unless
A∩B ⊆ X ⊆ AΔB accounts for the two seperate cases in equation (4) depending
on the condition A ∩B ⊆ X ⊆ AΔB.

Suppose A ∩ B ⊆ X ⊆ AΔB is true. Let C1 = C ∩ (A ∪ B) and C2 =
C ∩ (A ∪B). Since A ∪ B together with A ∪B is a partition of Ω, one has
C1 ∪ C2 = C and C1 ∩ C2 = ∅. Observing that (A ∩ B) ∪ (A ∩ B ∩ C) =
(A ∩ B) ∪ C2 = X =⇒ C2 = X \ (A ∩ B), we deduce that choosing C is
tantamount to choosing C1 which lives in 2A∪B. This gives:
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mA∩αB (X) =
∑

C1⊆A∪B

α|C1∪X\(A∩B)|α|C1∪X\(A∩B)|

= αn−|X|+|A∩B|α|X|−|A∩B| ∑
C1⊆A∪B

(
α/α

)|C1|

= αn−|X|+|A∩B|α|X|−|A∩B| (α/α + 1
)|A∪B|

= α|AΔB|−|X|α|X|−|A∩B|.��
Figure 1 illustrates the variety of potential focal sets of mass function mA∩αB.
First It can be noted that according to proposition 1:

A ∪B = Ω =⇒ mA∩αB = mA∩B.

Fig. 1. Example of focal sets of mass function mA∩αB

When A∪B 
= Ω, proposition 1 also sheds light on the fact that the α-conjunction
of two deterministic sets yields a random set2 [3]. This means that some latent
uncertainty has been unveiled by the combination process and that this uncer-
tainty is not encoded in the initial mass functions. Following the interpretation
of Pichon and Denœux, the uncertainty observed in mA∩αB comes from the un-
certainty on the truthfulness of the sources. This uncertainty is expressed on
another frame of discernment Θ and mA∩αB is the marginal of a broader mass
function on Ω ×Θ.

Let us now introduce some results on the commonality function qA∩αB and a
canonical conjunctive decomposition of mA∩αB.

Proposition 2. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

qA∩αB (X) =

{
α|X\(A∩B)| if X ⊆ AΔB

0 otherwise
. (5)

Proof. By definition of commonality function and using proposition 1, one has:

qA∩αB (X) =
∑
Y⊇X

A∩B⊆Y⊆AΔB

α|AΔB|−|Y |α|Y |−|A∩B|,

=
∑

(A∩B)∪X⊆Y⊆AΔB

α|AΔB|−|Y |α|Y |−|A∩B|.

2 Mass functions can also be viewed as random set distributions.
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Observing that no subset Y can satisfy (A ∩ B) ∪ X ⊆ Y ⊆ AΔB unless X ⊆
AΔB accounts for the two separate cases in equation (5) depending on the
condition X ⊆ AΔB. Now if X ⊆ AΔB, one has:

qA∩αB (X) = α|AΔB|α−|A∩B| ∑
W⊆AΔB\((A∩B)∪X)

(
α/α

)|W∪((A∩B)∪X)|
,

= α|AΔB|α−|A∩B| ∑
W⊆A∪B\X

(
α/α

)|W |+|(A∩B)∪X|
,

= α|AΔB|−|(A∩B)∪X|α−|A∩B|+|(A∩B)∪X| ∑
W⊆A∪B\X

(
α/α

)|W |
,

= α|A∪B|−|X\(A∩B)|α|X\(A∩B)| (α/α + 1
)|A∪B\X|

,

= α|X\(A∩B)|. ��

Proposition 3. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

mA∩αB = mAΔB ∩©
(

∩©
y∈A∪B

mα
AΔB\{y}

)
. (6)

Proof. Proving equation (6) is equivalent to proving that qA∩αB = g with g a
set function such that ∀X ⊆ Ω:

g (X) = qAΔB (X)
∏

y∈A∪B

qAΔB\{y}α (X) .

qα
AΔB\{y} is the commonality function corresponding to mα

AΔB\{y}:

qα
AΔB\{y} (X) =

{
1 if X ⊆ AΔB \ {y}
α otherwise

.

qAΔB is the commonality function corresponding to mAΔB :

qAΔB (X) =

{
1 if X ⊆ AΔB

0 otherwise
.

If X 
⊆ AΔB, then qAΔB (X) = 0 =⇒ g (X) = 0 and consequently, given
proposition 2, qA∩αB and g coincide on these sets.

All other remaining setsX in 2Ω are such thatX ⊆ AΔB. Under this assump-
tion and given the definition of qα

AΔB\{y}, one can thus write g (X) = α|C| with

C =
{
y ∈ A ∪B | X 
⊆ AΔB \ {y}

}
⊂ Ω. It can be proved that C = X \(A∩B)

thereby proving that qA∩αB and g also coincide when X ⊆ AΔB. ��
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Let us first provide a toy example to better grasp the gist of proposition 3:

Example 1. Suppose that Ω = {a, b, c}, A = {a} and B = {a, b}. Consequently,
we have AΔB = {a, c} and A ∪B = {c}. The mass functions before combina-
tion, those involved in the conjunctive decomposition in equation (6) as well as
the output mass function mA∩αB are as follows:

subsets: ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

mA = m{a} 1
mB = m{a,b} 1

mAΔB = m{a,c} 1

mα
AΔB\{c} = mα

{a} α α

mA∩αB α α

Proposition 3 could not have been anticipated by Smets’ work [8] on canonical
decomposition because mA∩αB is dogmatic, i.e. mA∩αB (Ω) = 0. For the same
reason, the decomposition of mA∩αB is not unique in Smet’s sense. Nonetheless,

provided that a restriction from 2Ω to 2AΔB is performed, then uniqueness result

applies. Indeed, the restriction of mA∩αB to 2AΔB is a non-dogmatic mass func-
tion on the frame AΔB and therefore the decomposition is unique. Since there
is no restriction to a greater set than AΔB that remains non-dogmatic, we say
that this decomposition is still canonical by abuse of language. This phenomenon
is also illustrated in example 1 in which mA∩αB happens to be a simple mass

function if defined on 2AΔB.
Following notations and definitions given in [1], we define the conjunctive weight
function of an α-conjunction of two categorical mass functions wA∩αB as follows:

∀X ⊆ Ω, wA∩αB (X) =

⎧⎨⎩0 if X = AΔB,
α if X � AΔB and |X | = |AΔB| − 1,
1 otherwise .

Conjunctive weights are interesting in the sense that they represent the elemen-
tary pieces of evidence that lead to the current state of knowledge. These weights
also induce an information content related partial order for mass functions. They
can also be used to define other combination rules [1,5].

Besides, the proposed conjunctive decomposition allows the following inter-
pretation of α-conjunctions of categorical mass functions: given AΔB, there
are |A ∪B| sources supporting with strength α respectively that any element
y ∈ A ∪B may be discarded and all of these sources are truthful.

4 α-Disjunctive Combination of Categorical Mass
Functions

In this section, the dual results of those of section 3 are given for the combination
of categorical mass functions using an α-disjunctive rule. Proofs are not given
because they are obtained by applying the De Morgan laws [10] to results of
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section 3. The De Morgan laws state that for any mass functions m1 and m2 on
a frame Ω, one has:

m1 ∩©αm2 = m1 ∪©αm2, (7)

m1 ∪©αm2 = m1 ∩©αm2. (8)

Proposition 4. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

mA∪αB (X) =

{
α|X|−|AΔB|α|A∪B|−|X| if AΔB ⊆ X ⊆ A ∪B

0 otherwise
. (9)

Figure 2 illustrates the variety of potential focal sets of mass function mA∪αB.
It can be noted that according to proposition 4:

A ∩B = ∅ =⇒ mA∪αB = mA∪B. (10)

Fig. 2. Example of focal sets of mass function mA∪αB

Proposition 5. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

bA∪αB (X) =

{
α|(A∪B)\X| if AΔB ⊆ X

0 otherwise
. (11)

Proposition 6. Let A and B ⊆ Ω. ∀X ⊆ Ω, one has:

mA∪αB = mAΔB ∪©
(

∪©
y∈A∩B

mα
(AΔB)∪{y}

)
, (12)

with mα
(AΔB)∪{y} denoting a negative simple mass function which is such that

mα
(AΔB)∪{y} = αm∅ + αm(AΔB)∪{y}.

Example 2. (Example 1 continued). Suppose that Ω = {a, b, c}, A = {a} and
B = {a, b}. Consequently, we have AΔB = {b} and A ∩ B = {a}. The mass
functions before combination, those involved in the conjunctive decomposition in
equation (12) as well as the output mass function mA∪αB are as follows:
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subsets: ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

mA = m{a} 1
mB = m{a,b} 1

mAΔB = m{b} 1

mα
AΔB∪{a} = mα

{a,b} α α

mA∪αB α α

The existence of the proposed disjunctive decomposition, like in the conjunctive
case, could not have been anticipated using existing theorems. From section 3,
the conjunctive decomposition of mA∩αB is unique in some sense, therefore the
disjunctive decomposition of mA∪αB is unique to the same regard. We say that
it is canonical by abuse of language. In compliance with [1], we define the dis-
junctive weight function of an α-disjunction of two categorical mass functions
vA∪αB as follows:

∀X ⊆ Ω, vA∪αB (X) =

⎧⎨⎩
0 if X = AΔB,
α if AΔB � X and |X | = |AΔB| + 1,
1 otherwise .

Besides, the proposed disjunctive decomposition allows the following interpre-
tation of α-disjunctions of categorical mass functions: there are |A ∩B| sources
supporting AΔB with strength α and AΔB plus any element y ∈ A ∩ B with
strength α and at least one of these sources is truthful.

Furthermore, it can be noted that any combination of categorical mass func-
tions using an α-junction can be decomposed both conjunctively and disjunc-
tively. Indeed, any mass functionmA∩αB can be decomposed conjunctively using
proposition 3. Now let C = A ∪B ∪ X and D = A ∪B ∪ Y with {X,Y } a par-
tition of A ∩B. We thus have :

C ∩D = A ∪B,

CΔD = A ∩B,

C ∪B = AΔB.

Using propositions 1 and 4, it is immediate that mC∪αD = mA∩αB. By using
proposition 6 onmC∪αD, a disjunctive decomposition ofmA∩αB is also obtained.

5 Conclusion

In this article, α-junctions of categorical mass functions have been investigated.
We provided straightforward equations for the computation of several set func-
tions pertaining to evidence theory in both the conjunctive and disjunctive cases.
In particular, a canonical conjunctive (respectively disjunctive) decomposition of
the α-conjunction (respectively α-disjunction) of categorical mass functions have
been obtained. In this particular situation, an α-conjunction (respectively an α-
disjunction) is thus a series of purely conjunctive (respectively disjunctive) com-
binations. This leads to new complementary interpretations of α-junctions of de-
terministic pieces of information that are compliant with Pichon and Denœux’s
interpretation [4].
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Concerning the generalization of these results for the α-junctions of any mass
functions, it can only be concluded that an α-conjunction (respectively an α-
disjunction) is a convex combination of series of purely conjunctive (respectively
disjunctive) combinations. Pichon and Denœux actually already proposed de-
compositions of α-junctions of any mass functions, but these decompositions are
obtained using a cross product of two frames of discernment. In future works,
we hope to provide results on α-junction decompositions on a single frame.

It would be also interesting to investigate the ties between the conjunctive and
disjunctiveweights obtained in this articlewith theα-conjunctive andα-disjunctive
weights introduced in chap. 7 of [5]. These other weights are defined using signed
belief functions and consequently take their values in (−∞,+∞) \ {0}.

Finally, we also hope to apply α-junctions in information fusion problems
involving partially truthful pieces of evidence. Truthfulness issues in information
fusion arise in the presence of an unreliable or malicious information source.
An unreliable source is accidentally untruthful whereas a malicious source is
purposely untruthful (see [2] for an example of a such an application). α-junctions
are appealing combination tools for the latter case. Indeed, if the value of α can
be inferred using contextual information, an α-junction is likely to efficiently
circumvent erroneous pieces of evidence.
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Abstract. Recently, a dual reinforcement process to contextual dis-
counting was introduced. However, it lacked a clear interpretation. In
this paper, we propose a new perspective on contextual discounting: it
can be seen as successive corrections corresponding to simple contextual
lies. Most interestingly, a similar interpretation is provided for the re-
inforcement process. Two new contextual correction mechanisms, which
are similar yet complementary to the two existing ones, are also intro-
duced.

Keywords: Dempster-Shafer theory, Belief functions, Information cor-
rection, Discounting.

1 Introduction

Information correction has received quite a lot of attention in recent years in
belief function theory (see, e.g., [9,11]). It is an important question that deals
with how an agent should interpret a piece of information received from a source
about a parameter x defined on a finite domain X = {x1, . . . , xK}. Classically,
the agent has some knowledge regarding the reliability of the source and, using
the discounting operation [12], he is able to take into account that knowledge
and to modify, or correct, the initial piece of information accordingly.

Since its inception, the discounting operation has been extended in differ-
ent ways. Notably, Mercier et al. [10,9] consider the case where one has some
knowledge about the reliability of the source, conditionally on different subsets
(contexts) A of X , leading to the so-called contextual discounting operation. One
may also refine the discounting operation in order to take into account knowledge
about the source truthfulness [11]. Of particular interest for the present work
is the dual reinforcement operation to contextual discounting introduced in [9].
Mercier et al. [9] show that this correction mechanism amounts to the negation
[6] of the contextual discounting of the negation of the initial information, but
unfortunately they do not go further in providing a clear interpretation for this
interesting operation.

In this paper, we study further contextual correction mechanisms. We present
(Section 3) a new framework for handling detailed meta-knowledge about source
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truthfulness. Using this framework, we then derive the contextual discounting
operation (Section 4.1) and its dual (Section 4.2), leading to a new perspective on
the former and an interpretation for the latter. We proceed (Section 4.3) with the
introduction of two new contextual correction mechanisms, whose interpretations
are similar yet complementary to the two existing ones. Background material on
belief function theory is first recalled in Section 2.

2 Belief Function Theory: Necessary Notions

In this section, we first recall basic concepts of belief function theory. Then, we
present existing correction mechanisms that are of interest for this paper.

2.1 Basic Concepts

In this paper, we adopt Smets’ Transferable Belief Model (TBM) [14], where the
beliefs held by an agent Ag regarding the actual value taken by x are modeled
using a belief function [12] and represented using an associated mass function.
A mass function (MF) on X is defined as a mapping m : 2X → [0, 1] verifying∑

A⊆X m (A) = 1. Subsets A of X such that m(A) > 0 are called focal sets of
m. A MF having focal sets X and A ⊂ X , with respective masses w and 1 − w,
w ∈ [0, 1], may be denoted by Aw. A MF having focal sets ∅ and A 
= ∅, with
respective masses v and 1 − v, v ∈ [0, 1], may be denoted by Av. The negation
m of a MF m is defined as m(A) = m(A), ∀A ⊆ X , where A denotes the
complement of A [6].

Beliefs can be aggregated using so-called combination rules. In particular,
the conjunctive rule, which is the unnormalized version of Dempster’s rule [5], is
defined as follows. Letm1 andm2 be two MFs, and letm1 ∩©2 be the MF resulting
from their combination by the conjunctive rule denoted by ∩©. We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ X . (1)

Other combination rules of interest for this paper are the disjunctive rule
∪© [6], the exclusive disjunctive rule ∪© and the equivalence rule ∩© [13]. Their
definitions are similar to that of the conjunctive rule: one merely needs to replace
∩ in (1) by, respectively, ∪, ∪ and ∩, where ∪ (exclusive OR) and ∩ (logical
equality) are defined respectively by B∪C =

(
B ∩ C

)
∪
(
B ∩ C

)
and B∩C =

(B ∩ C) ∪ (B ∩ C) for all B,C ⊆ X . The interpretations of these four rules are
discussed in detail in [11].

2.2 Correction Mechanisms

Knowledge about a source reliability is classically taken into account in the
TBM through the discounting operation. Suppose a source S providing a piece
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of information represented by a MF mS . Let β, with β ∈ [0, 1], be Ag’s degree
of belief that the source is reliable. Ag’s belief m on X is then defined by [12]:

m(X ) = β mS(X ) + (1 − β), m(A) = β mS(A), ∀A ⊂ X . (2)

Mercier et al. [9] consider the case where Ag has some knowledge about the
source reliability, conditionally on different subsets A of X . Precisely, let βA, with
βA ∈ [0, 1], be Ag’s degree of belief that the source is reliable in context A ⊆ X
and let A be the set of contexts for which Ag possesses such contextual meta-
knowledge. Ag’s belief m on X is then defined by the following equation known
as contextual discounting that subsumes discounting (recovered for A = {X }):

m = mS ∪©A∈AAβA . (3)

In addition, a dual reinforcement process to contextual discounting, called
contextual reinforcement hereafter, is introduced in [9]. LetmS be a MF provided
by a source S. The contextual reinforcement of mS is the MF m defined by:

m = mS ∩©A∈AA
βA , (4)

with βA ∈ [0, 1], A ∈ A. Mercier et al. [9] show that this correction amounts to
the negation of the contextual discounting of the negation of mS . However, they
do not go further in providing a clear explanation as to what meta-knowledge
on the source this correction of mS corresponds. One of the main results of this
paper is to provide such an interpretation.

3 A Refined Model of Source Truthfulness

In the correction schemes recalled in Section 2.2, the reliability of a source is
assimilated to its relevance as explained in [11]. In [11], Pichon et al. assume that
the reliability of a source involves in addition another dimension: its truthfulness.
Pichon et al. [11] note that there exists various forms of lack of truthfulness for
a source. For instance, for a sensor, it may take the form of a systematic bias.
However, Pichon et al. [11] study only the crudest description of the lack of
truthfulness, where a non truthful source is a source that declares the contrary
of what it knows. According to this definition, from a piece of information of
the form x ∈ B for some B ⊆ X provided by a relevant source S, one must
conclude that x ∈ B or x ∈ B, depending on whether the source S is assumed
to be truthful or not.

In this section, we propose a new and refined model of source truthfulness
that allows the integration of more detailed meta-knowledge about the lack of
truthfulness of an information source.

3.1 Elementary Truthfulness

Assume that a relevant source provides a piece of information on the value taken
by x of the form x ∈ B, for some B ⊆ X . Let us now consider a particular value
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x ∈ X . Either x ∈ B or x 
∈ B, that is, the source may tell that x is possibly the
actual value of x or it may tell that x is not a possibility for the actual value of
x. Furthermore, for each of those two possible declarations by the source about
the value x, one may have some knowledge on whether the source is truthful or
not. For instance, one may believe that the source is truthful when it tells that
x is a possibility – in which case one must conclude that x is possibly the actual
value of x if the source does tell that x is a possibility for x – and that it lies
when it tells that x is not a possibility – in which case one must conclude that x
is possibly the actual value of x if the source does tell that x is not a possibility
for x.

To account for such detailed knowledge about the behavior of the source, let us
introduce two binary variables px and nx, with respective frames Px = {px,¬px}
and Nx = {nx,¬nx}: px (resp. ¬px) corresponds to the state where the source
is truthful (resp. not truthful) when it tells that x is possibly the actual value
for x; nx (resp. ¬nx) corresponds to the state where the source is truthful (resp.
not truthful) when it tells that x is not a possibility for the actual value of x.

Now, we can define a variable tx with associated frame Tx = Px × Nx,
which contains four states tx = (px, nx), ¬tnx = (px,¬nx), ¬tpx = (¬px, nx)
and ¬tx = (¬px,¬nx) allowing us to model the global truthfulness of the source
with respect to the value x: tx corresponds to the case where the source tells
the truth whatever it says about the value x, in short the source is said to be
truthful for x; ¬tnx corresponds to the case of a source that lies only when it
tells that x is not a possibility for x, which will be called a negative liar for x;
¬tpx corresponds to the case of a source that lies only when it says that x is a
possibility for x, which will be called a positive liar for x; ¬tx corresponds to
the case where the source lies whatever it says about the value x, in short the
source is said to be non truthful for x.

There are thus four possible cases:

1. Suppose the source tells x is possibly the actual value of x, i.e., the infor-
mation x ∈ B provided by the source is such that x ∈ B.

(a) If the source is assumed to be truthful (tx) or a negative liar (¬tnx), then
one must conclude that x is possibly the actual value of x;

(b) If the source is assumed to be a positive liar (¬tpx) or non truthful (¬tx),
then one must conclude that x is not a possibility for the actual value of
x;

2. Suppose the source tells x is not a possibility for the actual value of x, i.e.,
x 
∈ B.

(a) If the source is assumed to be in state tx or in state ¬tpx, then one must
conclude that x is not a possibility for the actual value of x;

(b) If the source is assumed to be in state ¬tnx or in state ¬tx, then one must
conclude that x is possibly the actual value of x;
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3.2 Contextual Truthfulness

Let T denote the possible states of S with respect to its truthfulness for all
x ∈ X . By definition, T = ×x∈XTx. T is clearly a big space, however we will be
interested in this paper only by a smaller subspace of T , which we define below.

Let ht1,t2A ∈ T , A ⊆ X , t1, t2 ∈ Tx, denote the state where the source is in
state t1 for all x ∈ A, and in state t2 for all x 
∈ A. For instance, let X =

{x1, x2, x3, x4}, A = {x3, x4}, t1 = ¬tpx and t2 = tx, then ht1,t2A = h
¬tpx,tx
{x3,x4} =(

tx1 , tx2 ,¬tpx3
,¬tpx4

)
, i.e., the source is a positive liar for x3 and x4, and is truthful

for x1 and x2.
Consider now the following question: what must one conclude about x when

the source tells x ∈ B and is assumed to be in some state ht1,t2A ? To answer this
question, one merely needs to look in turn at each x ∈ X and to consider 4 cases
for each of those x ∈ X : 1) x 
∈ B and x 
∈ A; 2) x 
∈ B and x ∈ A; 3) x ∈ B
and x 
∈ A; 4) x ∈ B and x ∈ A. Table 1 lists, for each of the 4 cases and for all
states ht1,t2A , t1, t2 ∈ Tx, whether one should deduce that a given value x ∈ X is
possibly the actual value of x or not – the former is indicated by a 1 and the
latter by a 0 in columns ht1,t2A , t1, t2 ∈ Tx.

Table 1. Interpretations of the source testimony according to its contextual truthful-
ness

x ∈ Bx ∈ A ¬tpx,¬tpx tx,¬tpx¬tpx, tx tx, tx¬tx,¬tpx¬tnx ,¬tpx¬tx, tx¬tnx , tx¬tpx,¬tx tx,¬tx¬tpx,¬tnx tx,¬tnx ¬tx,¬tx¬tnx ,¬tx¬tx,¬tnx ¬tnx ,¬tnx
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

According to Table 1, when the source is assumed to be in, e.g., state h
tx,¬tpx
A ,

i.e., the source is truthful for all x ∈ A and a positive liar for all x ∈ A, then
one should deduce that x ∈ X is a possible value for x iff x ∈ B and x ∈ A, and
therefore, since this holds for all x ∈ X , one should deduce that x ∈ B ∩ A. For

instance, consider state h
tx,¬tpx
{x3,x4} and testimony x ∈ {x1, x3}, then one should

deduce {x1, x3}
⋂

{x3, x4} = {x3}.
Another interesting state is h

¬tnx ,tx
A , i.e., the source is a negative liar for all

x ∈ A and truthful for all x ∈ A, in which case x ∈ X is a possible value for x iff
x ∈ B or x ∈ A, and thus one should conclude that x ∈ B ∪ A. More generally,
as can be seen from Table 1, the couples (t1, t2) ∈ T 2

x yields all possible binary
Boolean connectives.

Of particular interest in this paper are the states h
tx,¬tpx
A and h

¬tnx ,tx
A , which

have already been discussed, and the states htx,¬tx
A (the source is truthful for all

x ∈ A and non truthful for all x ∈ A) and h¬tx,tx
A (the source is non truthful

for all x ∈ A and truthful for all x ∈ A), which yield respectively x ∈ B∩A and
x ∈ B∪A. Accordingly, we will consider in the sequel only the following subspace
H ⊆ T : H =

{
ht1,t2A |A ⊆ X , (t1, t2) ∈ {(tx,¬tpx), (¬tnx , tx), (tx,¬tx), (¬tx, tx)}

}
.
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Following [11], we can encode the above reasoning by a multivalued mapping
ΓB : H → X indicating how to interpret the information x ∈ B in each state
h ∈ H; we have for all A ⊆ X :

ΓB(h
tx,¬tpx
A ) = B ∩A,ΓB(h

¬tnx ,tx
A ) = B ∪A,ΓB(h

tx,¬tx
A ) = B∩A,ΓB(h

¬tx,tx
A ) = B∪A.

If the knowledge about the source state is imprecise and given by H ⊆ H,
then one should deduce the image ΓB(H) :=

⋃
h∈H ΓB(h) of H by ΓB.

3.3 Uncertain Testimony and Meta-knowledge

More generally, both the testimony provided by the source and the knowledge
of Ag about the source truthfulness may be uncertain. Let mS be the uncertain
testimony and mH the uncertain meta-knowledge. In such case, the Behavior-
Based Correction (BBC) procedure introduced by Pichon et al. [11], can be used
to derive Ag knowledge on X . It is represented by the MF m defined by [11]:

m(C) =
∑
H⊆H

mH(H)
∑

B:ΓB(H)=C

mS(B), ∀C ⊆ X . (5)

For convenience, we may denote by fmH(mS) the BBC ofmS according to meta-
knowledge mH, i.e., we have m = fmH(mS) with m defined by (5).

4 Interpretation of Contextual Corrections

In this section, we propose a new perspective on contextual discounting by re-
covering it using the framework introduced in Section 3. Then, using a similar
reasoning, we provide an interpretation for contextual reinforcement. Finally, we
introduce two new contextual correction schemes that are complementary to the
two existing ones.

4.1 Contextual Discounting in Terms of BBCs

Let us consider a particular contextual lie among those introduced in Section 3.2:

the states h
¬tnx ,tx
A , A ⊆ X , corresponding to the assumptions that the source is a

negative liar for all x ∈ A and truthful for all x ∈ A. Among these states, h
¬tnx ,tx
∅

admits a simpler interpretation: it corresponds to assuming that the source is
truthful ∀x ∈ X .

Theorem 1. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∪©A∈AAβA = (◦A∈A fmH
A,∪

)(mS), (6)

where ◦ denotes function composition ( i.e., (g ◦ f)(x) = g(f(x))) and where

mH
A,∪ is defined by mH

A,∪({h
¬tnx ,tx
∅ }) = βA, m

H
A,∪({h

¬tnx ,tx
A }) = 1 − βA, ∀A ∈ A.
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Proof. This theorem can be shown by applying for each A ∈ A, A being finite,
the following property:

fmH
A,∪

(mS) = mS ∪©AβA , ∀A ∈ A, (7)

which is shown as follows.
From (5) and the definition of mH

A,∪, ∀C ⊆ X :

fmH
A,∪

(mS)(C) = βA
∑

B:B=C

mS(B) + (1 − βA)
∑

B:B∪A=C

mS(B) . (8)

Which means:

fmH
A,∪

(mS) = βAmS + (1 − βA)(mS ∪©mA) , (9)

with mA a MF defined by mA(A) = 1.
On the other hand, ∀A ∈ A:

mS ∪©AβA = mS ∪©
{
A �→1 − βA
∅ �→βA

= βAmS + (1 − βA)(mS ∪©mA) . (10)

��
In other words, contextual discounting, which appears on the left side of (6),

corresponds to successive behavior-based corrections – one for each context A ∈
A – where for each context A, we have the following meta-knowledge: with mass
βA the source is truthful for all x ∈ X , and with mass 1 − βA the source is a
negative liar for all x ∈ A and truthful for all x ∈ A.

Successive corrections of an initial piece of information is a process that may be
encountered when considering a chain of sources, where the information provided
by an initial source may be iteratively corrected by the sources down the chain
according to the knowledge each source has on the behavior of the preceding
source. The chain of sources problem is an important and complex one, which
has received different treatments in logic [4], possibility theory [1] and belief
function theory [2,3]: in particular a solution involving successive corrections,
precisely successive discountings, was proposed in [1]. The fact that contextual
discounting may be relevant for this problem had not been remarked yet.

4.2 Contextual Reinforcement in Terms of BBCs

Let us consider another kind of contextual lie: the states h
tx,¬tpx
A , A ⊆ X , cor-

responding to the assumptions that the source is truthful for all x ∈ A and

a positive liar for all x ∈ A. Among these states, h
tx,¬tpx
X has the same simple

interpretation as h
¬tnx ,tx
∅ .

Theorem 2. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (11)

where mH
A,∩ is defined by mH

A,∩({h
tx,¬tpx
X }) = βA, m

H
A,∩({h

tx,¬tpx
A }) = 1 − βA,

∀A ∈ A.
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Proof. The proof is similar to that of Theorem 1. ��

Theorem 2 is important as it constitutes the first known interpretation for
contextual reinforcement. It shows that, similarly to contextual discounting, con-
textual reinforcement (left side of (11)) corresponds to successive behavior-based
corrections – one for each context. The only difference between the two correc-
tion mechanisms is what is assumed with mass 1− βA: with the former that the
source is a negative liar for all x ∈ A and truthful for all x ∈ A, whereas with the
latter that the source is truthful for all x ∈ A and a positive liar for all x ∈ A.

Example 1. Let us consider a series of three agents: agent 1 reports to agent
2, who reports in turn to agent 3. Let mi denote the beliefs of agent i on X =
{x1, x2, x3} and letmH

i , i > 1, denote the meta-knowledge of agent i about agent

i−1. Furthermore, assume that mH
2 ({htx,¬tpx

X }) = 0.6 and mH
2 ({htx,¬tpx

{x1,x2}}) = 0.4,

that is, agent 2 believes with mass 0.6 that agent 1 is truthful for all x ∈ X ,
and with mass 0.4 that agent 1 is truthful for x1 and x2 and a positive liar for
x3. Suppose further that mH

3 ({htx,t¬x

X }) = 0.8 and mH
3 ({htx,t¬x

{x2,x3}}) = 0.2. From

Theorem 2, we have

m2 = m1 ∩©{x1, x2}0.6,
m3 = m2 ∩©{x2, x3}0.8,
m3 = m1 ∩©{x1, x2}0.6 ∩©{x2, x3}0.8.

4.3 Two New Contextual Correction Mechanisms

Contextual discounting and contextual reinforcement are based on corrections
induced by simple pieces of meta-knowledge mH

A,∪ and mH
A,∩ respectively. In

practice, those pieces of meta-knowledge transform a testimony x ∈ B as follows:
they both allocate mass βA to B, and mass 1 − βA to B ∪ A and to B ∩ A,
respectively.

Now, as we have seen in Section 3.2, there exist states ht1,t2A ∈ T that lead to
other binary Boolean connectives than the disjunction and the conjunction. This
suggests a way to extend contextual discounting and contextual reinforcement.
Of particular interest are states htx,¬tx

A (the source is truthful for all x ∈ A and

non truthful for all x ∈ A) and h¬tx,tx
A (the source is non truthful for all x ∈ A and

truthful for all x ∈ A), which yield respectively x ∈ B∩A and x ∈ B∪A. Indeed,
the properties satisfied by connectives ∩ and ∪ allow us to obtain similar relations
as those obtained for contextual discounting and contextual reinforcement:

Theorem 3. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (12)

mS ∪©A∈AAβA = (◦A∈A fmH
A,∪

)(mS), (13)

where mH
A,∩ and mH

A,∪ are defined by mH
A,∩({h

tx,¬tx
X }) = mH

A,∪({h
¬tx,tx
∅ }) = βA,

and mH
A,∩({h

tx,¬tx
A }) = mH

A,∪({h
¬tx,tx
A }) = 1 − βA, ∀A ∈ A.
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Proof. The proof is similar to that of Theorem 1. ��

Eqs. (12) and (13) are the ∩ and ∪ counterparts to Eqs. (6) and (11), which are
based on connectives ∪ and ∩. Hence, if contextual discounting and contextual re-
inforcement are renamed as ∪-contextual correction and ∩-contextual correction,
then Eqs. (12) and (13) may be called ∩-contextual correction and ∪-contextual
correction.Letus also stress that although the∩and∪-contextual correctionmech-
anisms are based on less classical combination rules than contextual discounting
and contextual reinforcement, these two new contextual correction schemes seem
to be as reasonable from the point of view of the meta-knowledge that they cor-
respond to. Actually, their interpretations are even simpler since they rely on the
classical assumptions of truthfulness and non truthfulness, whereas contextual dis-
counting and contextual reinforcement involve negative and positive lies, which
are less conventional. Finally, we note that the computational complexity of the ∩
and ∪-contextual correction mechanisms is similar to that of ∪ and ∩-contextual
correction mechanisms: it merely corresponds to the complexity of applying |A|
combinations by the rules ∩© and ∪©, respectively, where |A| denotes the
cardinality of A.

5 Conclusion

Using a new framework for handling detailed meta-knowledge about source
truthfulness, a new view on contextual discounting and an interpretation for
contextual reinforcement were proposed. In addition, two similar yet comple-
mentary contextual correction mechanisms were introduced.

Future work will be dedicated to the application of contextual correction
mechanisms. Similarly as contextual discounting [7,10], their parameters βA, A ∈
A, could be obtained from a confusion matrix or learnt from training data, and
then they could be used in classification problems. Other potential applications
include those involving chain of sources communicating pieces of information
between themselves, as is the case in vehicular ad-hoc networks [8].
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Abstract. In the paper we investigate the criteria of choosing general-
ized Dempster-Shafer rules for aggregating sources of information pre-
sented by belief functions. The approach is based on measuring various
types of uncertainty in information and we use for this linear impreci-
sion indices. Some results concerning properties of such rules are also
presented.

Keywords: Generalized Dempster-Shafer rules, belief functions, impre-
cision indices.

1 Introduction

In the literature there are many generalizations of Dempster-Shafer (D-S) rule,
see for instance [14]. Many of them [16,10,12] were the answer on the critique of
this combination rule by Zadeh [17]. In this paper we support the idea of Smets
[15], in which the whole family of rules of combination is divided on various types
like conjunctive and disjunctive rules, and the use of them should be chosen in
each application. Many critiques [12,13] of D-S rule is also concerned the case
when sources of information are conflicting (or contradictory) and the measure
of conflict of two sources of information based on D-S rule is not adequate.
There are also works, see for example [1], where you can find argumentation
that the classical D-S rule is not justified in probability theory. In this paper
we investigate the generalized Dempster-Shafer (GD-S) rules that was firstly
introduced by Dubois and Yager [11], where each GD-S rule is defined as follows.
In the D-S theory each source of information can be described by a random set.
If we assume that two sources of information are independent, then we get the
D-S rule by taking the intersection of these two sets. In the GD-S rule the
joint probability distribution of random sets is not known and the choice of
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the rule can be based on the least commitment principle [7], the principle of
the minimum conflict between sources of information [3] and others [8,4]. In
the paper we thoroughly investigate and generalize well-known approaches of
choosing GD-S rules and find probabilistic interpretation of them. We come to
the conclusion that any GD-S rule can be conceived as an approximation from
above of two belief functions by using the partial order on belief functions usually
called specialization. Using this order we propose several approaches to find such
approximations that generalize well-known ones.

2 Evidence Theory and Generalized Dempster-Shafer
Rules

Let X be a finite set and let 2X be the powerset of X . One can say that the body
of evidence is given on 2X if a non-negative set functionm : 2X → [0, 1] is defined

with
∑

A∈2X
m(A) = 1. Through the body of evidence the following functions are

also introduced Bel(B) =
∑

A⊆B

m(A), Pl(B) =
∑

A∩B 	=∅
m(A), which are called

belief function and plausibility function respectively. The function m is usually
called the basic belief assignment (bba). We accept here the transferable belief
model [15], where m(∅) = Bel(∅) shows the degree of contradiction (or conflict)
in the information. If the contradiction in information is equal to zero, then the
corresponding belief function is called normalized. In the next we will use the
following notations and definitions.

1. A set A ∈ 2X is called focal if m(A) > 0.
2. A belief function is called categorical if the body of evidence contains only

one focal element B ∈ 2X . This belief function is denoted η〈B〉 and obviously

η〈B〉(A) =
{
1, B ⊆ A,
0, otherwise.

. Using categorical belief functions, we can express

any belief function by the formula Bel =
∑

B∈2X
m(B)η〈B〉.

3. A belief measure is called a probability measure if m(A) = 0 for |A| > 1.
4. We denote correspondingly by M̄bel and M̄pr the families of all belief func-

tions and probability measures on 2X , and if these families are normalized
we denote them by Mbel and Mpr.

5. For any set functions μ1, μ2 on 2X we write μ1 � μ2 if μ1(A) � μ2(A) for
all A ∈ 2X .

Let us consider the probabilistic interpretation of the transferable belief model
based on random sets. A random set ξ is a random value taking its values in
2X . Any such random value can be defined by probabilities P (ξ = A) being
identified with values m(A) in the theory of evidence. Given two random sets ξ1
and ξ2 with values in 2X . If we assume that these random sets are independent,
then

P (ξ1 = A, ξ2 = B) = P (ξ1 = A)P (ξ2 = B).
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Dempster proposes to aggregate these sources of information by a new random
set ξ defined by

P (ξ = C) =
∑

A∩B=C

P (ξ1 = A, ξ2 = B).

Let us notice that if we assume that the sources of information are independent,
then we get the original D-S rule defined by:

P (ξ = C) =
∑

A∩B=C

P (ξ1 = A)P (ξ2 = B).

If we denote m(C) = P (ξ = C), m1(A) = P (ξ1 = A) and m2(B) = P (ξ2 = B).
Then we get the D-S rule (or conjunctive rule) in usual notations

m(C) =
∑

A∩B=C

m1(A)m2(B) (1)

The value

rDS = m(∅) =
∑

A∩B=∅
m1(A)m2(B),

is called the measure of conflict between two sources of information, described
by functions m1 and m2. Because in the original evidence theory there are con-
sidered normalized belief functions, the D-S rule is used in the form:

m(C) =
1

1 − rDS

∑
A∩B=C

m1(A)m2(B),

where C 
= ∅ and m(∅) = 0. In the following we will use the D-S rule in the
conjunctive form, i.e. based on formula (1). Analogously, the generalized D-S
rule in conjunctive form is represented as

m(C) =
∑

A∩B=C

m(A,B),

where the function m(A,B) obeys the following conditions:⎧⎨⎩
∑

B∈2X
m(A,B) = m1(A),∑

A∈2X
m(A,B) = m2(B).

(2)

In the next we will also use the following representation of D-S rule: let us
assume that Bel1 =

∑
A∈2X

m1(A)η〈A〉 and Bel2 =
∑

B∈2X
m2(B)η〈B〉 are belief

functions, then

Bel =
∑

A,B∈2X

m(A,B)η〈A∩B〉.



24 A.G. Bronevich and I.N. Rozenberg

3 Imprecision Indices

As you see above, in evidence theory we describe uncertainty with the help of set
functions that are called belief measures. The generalization of such a model can
be based on the notion of monotone measure. By definition [6], a set function
μ : 2X → [0, 1] is called a monotone measure if the following conditions hold:
1) μ(∅) = 0, μ(X) = 1 (norming); 2) μ(A) � μ(B) (monotonicity).

Let us notice that probability measures are special kinds of monotone mea-
sures. A monotone measure is a probability measure if it satisfies the additivity
property:

μ(A) + μ(B) = μ(A ∪B) for all A,B ∈ 2X such that A ∩B = ∅.

We can check whether a monotone measure is a belief function using the
Möbius transform [5]:

m(A) =
∑
B⊆A

(−1)|A\B|μ(B),

that should be non-negative for belief functions. Certainly, the formula

μ =
∑

B∈2X

m(B)η〈B〉,

is also valid, but values of m is not non-negative for the general case.
The model of uncertainty based on monotone measures uses set functions

that can be interpreted as lower or upper estimates of probabilities. A monotone
measure μ is called an lower probability if there is a P ∈ Mpr with μ � P . For
the sake of convenience, we will use the following notations: Mmon is the set of
all monotone measures on 2X ; Mlow is the set of all monotone measures on 2X .

In the model of uncertainty based on lower probabilities we can describe un-
certainty also by a convex set of probability measures P(μ) = {P ∈ Mpr|P � μ},
called the credal set. In this model the conflict is associated with probability mea-
sures and non-specificity is caused by the choice of unknown probability measure
from P(μ).

In [2] the notion of imprecision index was proposed that generalizes the gen-
eralized Hartley measure. By definition, a functional ν : Mlow → [0, 1] is an
imprecision index if

1) ν(μ) = 0 for any μ ∈ Mpr;
2) ν(η〈X〉) = 1 (norming condition) ;
3) ν(μ1) � ν(μ2) if μ1 � μ2.
In addition, an imprecision index is called linear if ν(aμ1 + (1 − a)μ2) =

aν(μ1) + (1 − a)ν(μ2) for any a ∈ [0, 1] and μ1, μ2 ∈ Mlow.
The theoretical description of linear imprecision indices can be found in [2].

As examples of linear imprecision indices one can use the following functionals:
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1) νc(μ) =
∑

A∈2X\{∅,X}
c(A)(1 − μ(A) − μ(Ā)), where non-negative coefficients

c(A) should be chosen such that
∑

A∈2X\{∅,X}
c(A) = 1. In particular, if c(A) takes

the same value for all A ∈ 2X\{∅, X}, we get the following index

ν1(μ) =
1

2n − 2

∑
A∈2X\{∅,X}

(1 − μ(A) − μ(Ā)).

2) The generalized Hartley measure: GH(μ) = 1
ln|X|

∑
A∈2X

m(A) ln |A|, where

m is the Möbius transform of μ.
By definition, an imprecision index ν is called strict if ν(μ1) < ν(μ2) for

μ1 > μ2 (μ1 > μ2 means that μ1 � μ2 and μ1 
= μ2).

Remark 1. In the sequel we will apply imprecision indices to measures in
M̄bel. In this case any Bel ∈ M̄bel is represented as

Bel = (1 −m(∅))Bel′ +m(∅)η〈∅〉,

where Bel′ ∈ Mbel is the non-contradictory part of Bel, and η〈∅〉 is its contra-
dictory part. Let us notice that η〈∅〉(A) = 1 for all A ∈ 2X . We assume that
ν(η〈∅〉) = 0, and for any imprecision index

ν(Bel) = (1 −m(∅))ν(Bel′).

4 Generalized Dempster-Shafer Rules and the Partial
Order of Specialization

Given a belief function Bel1 and m1 is its bba. In the next we will consider set
functions Φ : 2X × 2X → [0, 1] with the following property:

∑
B∈2X

Φ(A,B) = 1

for any B ∈ 2X . Then a belief function Bel2 with the bba m2(B) =
∑

A∈2X

Φ(A,B)m1(A) is the linear transform of Bel1 produced by the linear operator
Φ. One can distinguish contraction and expansive linear transforms. A linear
transform Φ is called the contraction transform if Φ(A,B) = 0 for A ⊃ B, and it
is called expansive if Φ(A,B) = 0 for A ⊂ B. We will write Bel1 � Bel2 if Bel2
can be obtained from Bel1 using some contraction transform, or equivalently,
if Bel1 can be obtained from Bel2 using an expansive transform. In evidence
theory such partial order is called specialization [9]. It is easy to show [9] that
Bel1 � Bel2 implies Bel1 � Bel2, but the opposite is not true in general.

Lemma 1. Bel1 � Bel2 iff Bel1 and Bel2 can be represented as Bel1 =
N∑
i=1

aiη〈Ai〉, Bel2 =
N∑
i=1

aiη〈Bi〉,where Ai ⊇ Bi, ai > 0, i = 1, ..., N ,
N∑
i=1

ai = 1.

Let us show that the GD-S rule can be considered as the contraction linear
transform. Let Bel1, Bel2 ∈ Mbel with corresponding bbas m1 and m2. Then the
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GD-S rule is computed with the help of m, satisfying (2), by formula:

Bel =
∑

A,B∈2X

m(A,B)η〈A∩B〉.

Since Bel =
∑

B∈2X
m(A,B)η〈A〉, Bel2 =

∑
A∈2X

m(A,B)η〈B〉 and η〈A∩B〉 � η〈A〉,

η〈A∩B〉 � η〈B〉, with the help of Lemma 1 we find that Bel1 � Bel and Bel2 �
Bel.

5 The Choice of Generalized Dempster-Shafer Rules
Based on Imprecision Indices

It is well-known that the classical D-S rule leads to strange results if it is applied
to conflicting sources of information or to sources that contradict to each other.
For example, if we apply the D-S rule to sources of information that are described
by the same probability measure P on 2X , where X = {x1, ..., xn}. Then we get
the probability measure P ′ with

P ′({xi}) = P 2({xi})/
n∑

k=1

P 2({xk}).

Thus, the analysis of applicability of D-S rule can be based on measuring un-
certainty in the sources of information and the results of its application. For
example, it may be assumed that the D-S rule is applicable if the value rDS is
close to 1. On the other hand, we can use the GD-S rule, in which valuesm(A,B)
are unknown. In this case the results of such rules are characterized by the con-
tradiction in resulting belief measure and by the measure of its non-specificity
or imprecision. Based on the maximum uncertainty principle, we can formulate
the optimization problem of choosing the optimal GD-S rule as follows.

1. The GD-S rule is applicable if the contradiction in the obtained result is
not less than a chosen value r0.

2. Among all applicable rules one can choose the rule with the most imprecise
result.

3. If we get the non-unique solution on the step 2, then we take the rule giving
less contradiction.

Thus, the choice of the optimal GD-S rule is a linear programming problem
if for measuring uncertainty we take linear imprecision indices. In this case the
linear programming problem is formulated as follows.

Find a non-negative function m(A,B), satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

B∈2X
m(A,B) = m1(A), A ∈ 2X ,∑

A∈2X
m(A,B) = m2(B), B ∈ 2X ,∑
A∩B=∅

m(A,B) � r0,
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and giving the maximum of ν(Bel), where ν is a strict imprecision index, and
the belief measure Bel corresponds to bba m(C) =

∑
A∩B=C

m(A,B). If this

optimization problem has a non-unique solution, then we choose m with the
minimal contradiction r =

∑
A∩B=∅

m(A,B).

Theorem 1. The choice of optimal GD-S rule is equivalent to the following
optimization problem.

Find Bel ∈ M̄bel for given Bel1, Bel2 ∈ Mbel such that
1) Bel = arg sup {ν(Bel)|Bel1 � Bel, Bel2 � Bel, Bel(∅) � r0};
2) If we have non-unique solution in 1) then we choose Bel with less Bel(∅).
Remark 2. Let us notice that M̄bel is a partially ordered set w.r.t.�, and The-

orem 1 shows that minimal elements of
{
Bel ∈ M̄bel|Bel1 � Bel, Bel2 � Bel

}
for fixed Bel1, Bel2 ∈ Mbel can be constructed by the GD-S rules.

Remark 3. In [3] Cattaneo proposes to seek for an optimal GD-S rule
among rules with the less contradiction and with the minimum of non-specificity
measured by the generalized Hartley measure.

Example 1. Consider two belief functions Bel1 = 0.5η〈{x1,x2}〉 + 0.5η〈{x1}〉,
Bel2 = 0.5η〈{x1,x2}〉 + 0.5η〈{x2}〉 on 2X , where X = {x1, x2}. Then applying the
classical D-S rule gives the following result:

DS(Bel1, Bel2) = 0.25η〈{x1,x2}〉 + 0.25η〈{x1}〉 + 0.25η〈{x2}〉 + 0.25η〈∅〉.

If we choose a GD-S rule by any strict imprecision index with r0 ∈ [0, 0.5] we
get the following result:

GDS(Bel1, Bel2) = r0η〈{x1,x2}〉 + (0.5 − r0)η〈{x1}〉 + (0.5 − r0)η〈{x2}〉 + r0η〈∅〉

Let us notice that if r0 = 0 then the result of GD-S rule is a probability measure,
taking r0 = 0.25 we get the classical D-S rule and the value r0 = 0.5 implies the
most imprecise result.

6 Conclusion

In this investigation we propose new ways of choosing optimal GD-S rules for
aggregating sources of information based on imprecision indices. These optimal
GD-S rules have desirable properties, in particular, it is possible to extract con-
sonant and non-consonant in bodies of evidence of combining belief functions.
The presented Theorem 1 allows us to make the conclusion that the choice of
the optimal rule should be based on the solution of approximation problem, in
which we approximate from above the maximum of aggregating belief functions.

Many interesting problems remain outside of this article. For instance, it is also
very important to find additional criteria, when GD-S rules are not applicable
or when the application of different GD-S rules can lead to the opposite results.
In this case it is possible to choose a decision based on all possible optimal rules
and this may be a field of future research.
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General Schemes of Combining Rules

and the Quality Characteristics of Combining
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Abstract. Some general schemes and examples of aggregation of two
belief functions into a single belief function are considered in this paper.
We find some sufficient conditions of change of ignorance when evidences
are combined with the help of various rules. It is shown that combining
rules can be regarded as pessimistic or optimistic depending on the sign
of the change of ignorance after applying.

Keywords: combining rules, change of ignorance.

1 Introduction

The study of combining rules of evidence is one of the central directions of
research in the belief function theory. The combining rule can be considered as
an operator which aggregates the information obtained from different sources.
The review of some popular combining rules can be found in [14].

This paper has two purposes. The first purpose is research of general schemes
of combining of evidences. We can consider the combining rule as a special type
of aggregation function [9] ϕ : Bel2(X) → Bel(X), where Bel(X) be a set
of all belief functions on finite set X . The different axioms of aggregation of
information obtained from different sources are considered (see, for example,
[16], [4], [11], [10]). Some general schemes and examples of aggregation of two
belief functions into a single belief function are given in Section 4.

The second purpose is research of quality characteristics of combining. These
characteristics can be divided into a priori characteristics that estimate the qual-
ity of information sources and a posteriori characteristics which estimate the re-
sult of combining. The following characteristics are relevant to the first group: a)
the reliability of sources in discount rule [15]; b) the conflict measure of evidence
[12] in Dempster’s rule, Yage’s rule [17] etc.; c) the degree of independence of
evidence. The amount of change of ignorance after the use of combining rule is
the most important a posteriori characteristic. The amount of ignorance that
contained in evidence can be estimated with the help of imprecision indices [3].
The generalized Hartley measure is an example of such index [6]. Some sufficient
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conditions of change of ignorance when evidences are combined with the help of
various rules are described in Section 5.

We have to take into account not only aggregated evidences but also who
combines this evidence. For example, let we have information from two sources
about prognosticated share price. Let the first source predicted that share price
will be in an interval A1 and the second source predicted share price in an
interval A2. If a pessimist aggregates the information from two sources then he
will predict the share price in the set A1 ∪A2. But if an optimist aggregates the
information then he will predict the share price in the set A1∩A2. In other words,
decision maker applies the different combining rules in depending on the price
of a wrong decision, an own caution and other factors. It is known that some
combining rules (for example, Dubois and Prade’s disjunctive consensus rule
[8]) have a pessimistic character in the sense that amount of ignorance does not
decrease after their applying. The other rules are optimistic because the amount
of ignorance is decreased after their applying. The majority of rules have the
mixed type because their character depends on a posteriori characteristics of
information sources. In Section 6 it is shown that level of optimism or pessimism
in combining rule can be estimated numerically with the help of imprecision
indices.

2 Basic Definitions and Notation

The notion of belief function is the main notion of Dempster-Shafer theory (ev-
idence theory). Let X be a finite universal set, 2X is a set of all subsets of X .
We will consider the belief function (or belief measure) [15] g : 2X → [0, 1].
The value g(A), A ∈ 2X , is interpreted as a degree of confidence that the true
alternative of X belongs to set A. A belief function g is defined with the help
of set function mg(A) called the basic probability assignment (bpa). This func-
tion should satisfy the following conditions [15]: mg : 2X → [0, 1], mg(∅) = 0,∑

A⊆X mg(A) = 1. Then

g(A) =
∑

B: B⊆A

mg(B).

Let the set of all belief measures on 2X be denoted by Bel(X) and the set of all
set functions on 2X be denoted by M(X).

The belief function g ∈ Bel(X) can be represented with the help of so called

categorical belief functions η〈B〉(A) =

{
1, B ⊆ A,

0, B 
⊆ A,
A ⊆ X B 
= ∅. Then g =∑

B∈2X\{∅}mg(B)η〈B〉. The subset A ∈ 2X is called a focal element if mg(A) >

0. Let A(g) be the set of all focal elements related to the belief function g. The
pair F (g) = (A(g),mg) is called a body of evidence. Let F(X) be the set of all
bodies of evidence on X .
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3 Combining Rules

We consider below only a few basic combining rules.
a) Dempster’s rule. This rule was introduced in [5] and generalized in [15]

for combining arbitrary independent evidence. This rule is defined as

mD(A) =
1

1 −K

∑
A1∩A2=A

mg1(A1)mg2(A2), A 
= ∅, mD(∅) = 0, (1)

K = K(g1, g2) =
∑

A1∩A2=∅
mg1(A1)mg2(A2). (2)

The value K(g1, g2) characterizes the amount of conflict in two information
sources which defined with the help of bodies of evidence F (g1) and F (g2). If
K(g1, g2) = 1 then it means that information sources are absolutely conflicting
and Dempster’s rule cannot be applied.

The discount of bpa was introduced by Shafer [15] for accounting of reliability
of information:

mα(A) = (1 − α)m(A), A 
= X, mα(X) = α+ (1 − α)m(X). (3)

The coefficient α ∈ [0, 1] characterizes the degree of reliability of information. If
α = 0 then it means that information source is absolutely reliable. If α = 1 then
it means that information source is absolutely non-reliable. The Dempster’s rule
(2) applies after discounting of bpa of two evidences. This modification often
called the discount rule.

b) Yager’s modified Dempster’s rule. This rule was introduced in [17] and it
is defined as

q(A) =
∑

A1∩A2=A

mg1(A1)mg2(A2), A ∈ 2X , (4)

mY (A) = q(A), A 
= ∅, X, mY (∅) = q(∅) = K, mY (X) = mY (∅)+ q(X). (5)

c) Zhang’s center combination rule. This rule was introduced in [18] and it
is defined as

mZ(A) =
∑

A1∩A2=A

r(A1, A2)mg1(A1)mg2 (A2), A ∈ 2X ,

where r(A1, A2) is a measure of intersection of sets A1 and A2.
d) Dubois and Prade’s disjunctive consensus rule [8]:

mDP (A) =
∑

A1∪A2=A

mg1(A1)mg2(A2), A ∈ 2X . (6)

Any combining rule of two bodies of evidence induces aggregation of two belief
functions which correspond to these bodies.
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4 Combining Rule Both the Aggregation of Evidence

We will consider an operator ϕ : Bel2(X) → Bel(X) that is called the aggrega-
tion of two belief functions g1, g2 ∈ Bel(X) in one belief function g = ϕ(g1, g2) ∈
Bel(X). The vector of bpa (mg(B))B⊆X corresponds bijective (with the help of
Möbius transform) to belief function g ∈ Bel(X) if we define some ordering of
all subsets of the universal set X : g ↔ mg = (mg(B))B⊆X . Therefore there is
an aggregation of bpa mg = Φ(mg1 ,mg2) for any aggregation of belief functions
g = ϕ(g1, g2) and vice versa. We consider some special cases of aggregation of
belief functions.

1. Pointwise Aggregation of Belief Functions. The new value of belief
function g(A) = ϕ(g1(A), g2(A)) is associated with every pair (g1(A), g2(A)) of
belief functions on the same set A ∈ 2X . In this case the aggregation operator ϕ
is a function ϕ : [0, 1]

2 → [0, 1] which must satisfy the special conditions for pre-
serving total monotonicity of resulting set function. These conditions can be for-
mulated in terms of finite differences, defined with the help of the following con-
structions: ifΔx1, ..., Δxs ∈ [0, 1]2 (x+Δx1+...+Δxk ∈ [0, 1]

2
for all k = 1, ..., s)

then Δsϕ(x;Δx1, ..., Δxs) =
s∑

k=0

(−1)
s−k ∑

1≤i1<...<ik≤s

ϕ (x+Δxi1 + ...+Δxik)

(if k = 0 then appropriate summand is equal (−1)sϕ(x)).

Theorem 1. [1], [2]. The function ϕ : [0, 1]
2 → [0, 1] defines the aggregation

operator of belief functions by the rule g(A) = ϕ(g1(A), g2(A)), A ∈ 2X , g1, g2 ∈
Bel(X) iff it satisfies the conditions:

1. ϕ(0) = 0, ϕ(1) = 1;

2. Δkϕ(x;Δx1, ..., Δxk) ≥ 0, k = 1, 2, ... for all x, Δx1, ..., Δxk ∈ [0; 1]
2
, x +

Δx1 + ...+Δxk ∈ [0, 1]
2
.

2. Pointwise Aggregation of BPA. The new bpa mg(A) = Φ(mg1(A),mg2

(A)) is associated with every pair (mg1(A),mg2(A)) of bpa for all A ∈ 2X . Note
that this aggregation was considered in [13] in the case of probability measures
and it was called Strong Stepwise Function Property.

Theorem 2. The continuous function Φ : [0, 1]
2 → [0, 1] defines the aggregation

operator of bpa by the rule mg(A) = Φ(mg1 (A),mg2(A)), A ∈ 2X , g1, g2 ∈
Bel(X) iff it satisfies the condition Φ(s, t) = λs+ (1 − λ)t, λ ∈ [0, 1].

Proof. We prove this result for X = {x1, x2} without loss of generality. Let

S = {x = (xi) :
∑

i xi = 1, xi ∈ [0, 1] ∀i}. Then function Φ : [0, 1]2 → [0, 1]
defines the above operator of aggregation satisfying the condition: if x = (xi),
y = (yi) ∈ S and Φ(xi, yi) = zi, then z = (zi) ∈ S. We have for x = (α, r −
α, 1 − r), y = (p, p, 1 − 2p) ∈ S

Φ(α, p) + Φ(r − α, p) + Φ(1 − r, 1 − 2p) = 1, (7)

where α, r, r − α ∈ [0, 1], p ∈ [0, 12 ]. On the other side the following equality

Φ(r, p) + Φ(1 − r, 1 − p) = 1 (8)
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is true for x = (r, p, 0), y = (1 − r, 1 − p, 0) ∈ S. Then we have from (7) and (8)

Φ(α, p) + Φ(r − α, p) = Φ(r, p) + Φ(1 − r, 1 − p) − Φ(1 − r, 1 − 2p).

If we take p = 0 in last equality then the following equation is true Φ(α, 0) +
Φ(r−α, 0) = Φ(r, 0). If r−α = β then last equality can be rewritten as Φ(α, 0)+
Φ(β, 0) = Φ(α + β, 0). In other words, the function Φ(s, 0) satisfies Cauchy’s
functional equation on [0, 1]. It is known that if a continious function satisfies
Cauchy’s functional equation then it is an additive function: Φ(s, 0) = k1s, s ∈
[0, 1] and k1 ∈ [0, 1] because Φ(s, 0) ∈ [0, 1] for all s ∈ [0, 1]. By analogy Φ(0, t) =
k2t, t ∈ [0, 1], k2 ∈ [0, 1]. Now we get from (7) for r = 1, p = 0

Φ(1, 0) + Φ(0, 1) = k1 + k2 = 1. (9)

If x = (1 − α, 0, α), y = (0, 1 − β, β) ∈ S, α, β ∈ [0, 1] then we have Φ(1 −
α, 0)+Φ(0, 1− β) +Φ(α, β) = 1. Thus Φ(α, β) = 1−Φ(1 −α, 0)−Φ(0, 1− β) =
1 − k1(1 − α) − k2(1 − β) = k1α+ k2β, with account of (9).

This result is a generalization of the corresponding result for probability mea-
sures [13].

3. Bilinear Aggregation of Belief Functions. In this case the aggregation
function ϕ should be linear for each argument so

ϕ(αg1 + (1 − α)g2, g3) = αϕ(g1, g3) + (1 − α)ϕ(g2, g3), α ∈ [0, 1]. (10)

Since we have gi =
∑

B∈2X\{∅}mgi(B)η〈B〉 ∈ Bel(X), i = 1, 2, then every

bilinear function on Bel2(X) has the form

ϕ(g1, g2) =
∑

A,B∈2X\{∅}
mg1(A)mg2 (B)γA,B, (11)

where γA,B = ϕ
(
η〈A〉, η〈B〉

)
is some set function on 2X .

We consider the non-empty set B(X) ⊆ Bel2(X) which satisfies the condition:
if (g1, g2) ∈ B(X) then

(
η〈A〉, η〈B〉

)
∈ B(X) for all A ∈ A(g1), B ∈ A(g2).

Theorem 3. The bilinear set function ϕ : B(X) → M(X) of the form (11) de-
termines the belief function iff γA,B = ϕ

(
η〈A〉, η〈B〉

)
∈ Bel(X) for all

(
η〈A〉, η〈B〉

)
∈ B(X).

The Dubois and Prade’s disjunctive consensus rule and Dempster’s rule (Yager’s
rule) for non conflicting evidences are the examples of bilinear aggregation func-
tions of the form (11).

4. Bilinear Normalized Aggregation of Belief Functions. We consider
the aggregation function of belief measures of the form

ϕ0(g1, g2) =
ϕ(g1, g2)

ϕ(g1, g2)(X)
, (12)

where ϕ(g1, g2) is a bilinear aggregation function which satisfies the condition
(10). We will consider that γA,B(C) ≥ 0 for all A,B,C ∈ 2X\{∅}. It is obvious
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that aggregation function ϕ0 cannot be determined on the whole set Bel2(X).
The function ϕ0 will be determined on the set

Bϕ(X)=
{
(g1, g2)∈Bel2(X)| ∃ Ai ∈A(gi), i = 1, 2 : ϕ

(
η〈A1〉, η〈A2〉

)
(X) 
=0

}
that follows from (11).

Theorem 4. Let ϕ be a bilinear aggregation function which satisfies the con-
dition (10). The function ϕ0 : Bϕ(X) → M(X) of the form (12) determines
the belief function iff γA,B/γA,B(X) ∈ Bel(X), γA,B = ϕ

(
η〈A〉, η〈B〉

)
for all(

η〈A〉, η〈B〉
)

∈ Bϕ(X).

The Dempster’s rule and Zhang’s center combination rule are the examples
of bilinear normalized aggregation functions of the form (12):

5 Change of Ignorance When Evidences Are Combined

Let we have two sources of information, and this information is described by be-
lief functions g1, g2 ∈ Bel(X) respectively. Let some rule ϕ be used for combin-
ing of these belief functions. We will get the new belief function g = ϕ(g1, g2) ∈
Bel(X). The different information characteristics of aggregation of belief func-
tions were studied in a number of works (see [7]). Below we consider only one
aspect associated with change of information uncertainty. The measure of in-
formation uncertainty associated to the each belief function. Then we have a
question about change of this measure after combining of evidence. There are
some approaches for defining uncertainty measures in evidence theory. We will
follow the approach which was considered in [3]. This approach is based on the
notion of imprecision index.

Let we know only that true alternative belongs to the non-empty set B ⊆ X .
This situation can be described with the help of primitive belief measure η〈B〉(A),
A ⊆ X , which gives the lower probability of an event x ∈ A. The degree of
uncertainty of such measure is described by the well-known Hartley’s measure
H(η〈B〉) = log2 |B|. There is the generalization of Hartley’s measure. Let g
be a belief function that can be represented by g =

∑
B∈2X\{∅}mg(B)η〈B〉 ∈

Bel(X). Then the generalized Hartley’s measure is defined by [6] GH (g) =∑
B∈2X\{∅}mg(B)log2 |B|.

Definition 1. [3]. A functional f : Bel(X) → [0, 1] is called an imprecision
index if the following conditions are fulfilled:

1. if g is a probability measure then f(g) = 0;
2. f(g1) ≥ f(g2) for all g1, g2 ∈ Bel(X) where g1 ≤ g2 (i.e. g1(A) ≤ g2(A) for

all A ∈ 2X);
3. f

(
η〈X〉

)
= 1.

We call the imprecision index strict if f(g) = 0 ⇔ g is a probability mea-
sure. The imprecision index f on Bel(X) is called linear (lii) if for any linear
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combination
∑k

j=1 αjgj ∈ Bel(X), αj ∈ R, gj ∈ Bel(X), j = 1, ..., k, we have

f
(∑k

j=1 αjgj

)
=

∑k
j=1 αjf (gj).

Since any linear functional f on Bel(X) is defined uniquely by its values on a
set of primitive measures {η〈B〉}B∈2X\{∅}, then it allows us to define f with the

help of set function μf : 2X → R by the rule μf (B) = f
(
η〈B〉

)
, B ∈ 2X\{∅}.

We set by definition that μf (∅) = 0 for every imprecision index f .

Proposition 1. [3]. A functional f : Bel(X) → [0, 1] is a lii on Bel(X) iff
f(g) =

∑
B∈2X\{∅}mg(B)μf (B), where set function μf satisfies the conditions:

1. μf ({x}) = 0 for all x ∈ X;

2. μf (X) = f
(
η〈X〉

)
= 1;

3.
∑

B:A⊆B (−1)
|B\A|

μf (B) ≤ 0 for all A 
= ∅, X.

Now we are going to give some sufficient conditions for the different rules
under which the amount of ignorance decreases or increases after combining.
The first result is well known [7].

Proposition 2. If g = ϕDP (g1, g2), g1, g2 ∈ Bel(X), where ϕDP is the Dubois
and Prade’s disjunctive consensus rule (6), then inequalities f(g) ≥ f(gi), i =
1, 2 are true for any lii f .

Proposition 3. Let g1, g2 be such belief measures that their conflict measure
K(g1, g2) = 0 and g = ϕα,β(g1, g2), where ϕα,β is a Dempster’s rule (1) af-
ter applied of discount rule (3) to the g1, g2 with coefficients α, β ∈ [0, 1]
correspondingly. If the inequality αβ + (1 − α)βmg1 (X)+ α(1 − β)mg2(X) ≤
(α+ β − αβ)f(gi), is true for lii f then f(g) ≤ f(gi), i = 1, 2.

The last Proposition shows that the amount of ignorance is decreased obvi-
ously after combining of evidence with the help of discount rule if ignorance of
initial evidence were largish.

Proposition 4. Let g1, g2 be such belief measures that their conflict measure
(see formula (2)) K = K(g1, g2) satisfies the condition K +mg1(X)mg2(X) ≤
mgi(X), i = 1, 2, g = ϕY (g1, g2), where ϕY is a Yager’s rule (4)-(5). Then the
inequalities f(g) ≤ f(gi), i = 1, 2 are true for any lii f .

The value mg1(X) characterizes the imprecision of information given by func-
tion g1. Therefore the condition K+mg1(X)mg2(X) ≤ mg1(X) ⇔ K ≤ mg1(X)
(1 − mg2(X)) in Proposition 4 means that the amount of ignorance can be de-
creased with the help of Yager’s rule if the conflict between the evidences is not
very large with respect to amount of ignorance.

Corollary 1. Let g1, g2 be such belief measures that their conflict measure (see
formula (2)) K(g1, g2) = 0, g = ϕ(g1, g2), where ϕ is Dempster’s rule (1). Then
the inequalities f(g) ≤ f(gi), i = 1, 2 are true for any lii f .
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This corollary shows that the imprecision of information is not increased if we
aggregate information from many non-conflict sources with the help of Demp-
ster’s rule (Yager’s rule). If we have conflicting information sources (K > 0) then
resulting evidence can have a larger imprecision than the imprecision of sources
(see [12]). But we can formulate the following sufficient condition of decreasing
of ignorance for Dempster’s rule and conflicting (K > 0) information sources.

Let C be the smallest number satisfying the inequality μf (A1∩A2) ≤ Cμf (A1)
μf (A2) for all Ai ∈ A(gi), i = 1, 2. Note that min

A:μf (A)>0
μf (A) ≤ 1

C . Moreover

C ≥ 1 if belief functions g1, g2 are not probability measures and f is a strict lii.

Proposition 5. Let g1, g2 are such belief measures that their conflict measure
K = K(g1, g2) 
= 1 satisfies the condition K ≤ 1 − Cf(g2) (K ≤ 1 − Cf(g1)),
g = ϕD(g1, g2), where ϕD is a Dempster’s rule (1). Then inequality f(g) ≤ f(g1)
(f(g) ≤ f(g2)) is true for any strict lii f .

6 Pessimistic and Optimistic Combining Rules

Let we have two sources of information, and this information is described by
primitive belief functions η〈A〉 and η〈B〉 respectively, where A,B ∈ 2X\{∅}. The
first source states that true alternative is contained in set A, but second source
states that true alternative is contained in set B.

If we apply the Dubois and Prade’s disjunctive consensus rule for these prim-
itive belief functions then we will get ϕDP (η〈A〉, η〈B〉) = η〈A∪B〉. By other words
we got the statement that a true alternative is contained in set A ∪ B. This
statement can be considered as more pessimistic than an initial statement be-
cause uncertainty does not decreased after combining. For example, if lii of initial
measures was equal to f(η〈A〉) = μf (A) and f(η〈B〉) = μf (B) respectively, then
this index is equal to f(η〈A∪B〉) = μf (A ∪B) ≥ f(η〈A〉) for resulting measure.

If we apply the Dempster’s rule for these primitive belief functions then we will
get ϕD(η〈A〉, η〈B〉) = η〈A∩B〉 for A∩B 
= ∅. We got the statement after combining
that a true alternative is contained in set A∩B. This statement can be considered
to be more optimistic than the initial statement because uncertainty does not
increased after combining: f(η〈A∩B〉) = μf (A ∩B) ≤ f(η〈A〉).

If we apply the discount rule for these two primitive belief functions with
parameters α, β ∈ [0, 1] respectively, then we will get new measures after dis-

counting η
(α)
〈A〉 = (1−α)η〈A〉+αη〈X〉, η

(β)
〈B〉 = (1−β)η〈B〉+βη〈X〉. Let A∩B 
= ∅.

Then the conflict K = 0 and we get resultant measure after application of
Dempster’s rule to new discounting measures:

gα,β = ϕD

(
η
(α)
〈A〉, η

(β)
〈B〉

)
=

(1 − α)(1 − β)η〈A∩B〉 + (1 − α)βη〈A〉 + α(1 − β)η〈B〉 + αβη〈X〉. (13)

We will suppose that the information sources are sufficiently reliable. Then
α, β ≈ 0. In this case we will get the following resulting measure instead of
(13) if we neglect members of second order of α and β



General Schemes of Combining Rules 37

gα,β = ϕD

(
η
(α)
〈A〉, η

(β)
〈B〉

)
= (1 − α− β)η〈A∩B〉 + βη〈A〉 + αη〈B〉.

The linear imprecision index of this measure is equal to f(gα,β) = (1 − α −
β)μf (A ∩B) + βμf (A) + αμf (B). It is easy to see that in this case we can get
different relations between the indices f(gα,β) and f(η〈A〉) = μf (A), f(η〈B〉) =
μf (B) depending on the choice α and β. In particular, we have{

f(gα,β) ≤ f(η〈A〉),
f(gα,β) ≤ f(η〈B〉)

⇔ αΔ(B,A) + βΔ(A,B) ≤ min {Δ(A,B), Δ(B,A)} ,

where Δ(A,B) = μf (A) − μf (A ∩B).
From last estimations we can make the following conclusion. If the degree

of reliability of information sources is large (i.e. α ≈ 0, β ≈ 0) then discount
rule will act as optimistic rule. Otherwise, when the information sources are non
reliable (α and β are large) then discount rule will be act as pessimistic rule.

7 Conclusion

In this paper we consider some general schemes and examples of aggregation
of two belief functions into one belief function. The well-known combining rules
are obtained from these general schemes in particular cases. Furthermore, an
important a posteriori characteristic of quality of combining like a change of
ignorance after the use of combining rule is considered. This value is estimated
in this paper with the help of linear imprecision indices.

Some sufficient conditions of change of ignorance after applying of different
combining rules are found. In particular we show that amount of ignorance do
not decrease after using of Dubois and Prade’s disjunctive consensus rule. In
contrast the amount of ignorance does not increase after using of Dempster’s
rule for two non-conflict evidences.

In this sense these rules can be considered as a pessimistic rule and optimistic
rule correspondingly. At the same time, the discount rule can be the pessimistic
rule or the optimistic rule depending of values of reliability coefficients of infor-
mation sources. The sufficient conditions on reliability coefficients of this rule to
be pessimistic or optimistic were found.
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Abstract. This paper presents an optimal unified combination rule
within the framework of the Dempster-Shafer theory of evidence to com-
bine multiple bodies of evidence. It is optimal in the sense that the result-
ing combined m-function has the least dissimilarity with the individual
m-functions and therefore represents the greatest amount of information
similar to that represented by the original m-functions. Examples are
provided to illustrate the proposed combination rule.

Keywords: Dempster-Shafer theory of evidence, Basic belief assign-
ments, Inagaki’s rule, Distance measure, Total distance, Optimal unified
combination rule.

1 Introduction

Data fusion techniques combine/integrate data from multiple sources (such as
models, sensors, institutes, etc.), to achieve more specific and more accurate
inference than that obtained from individual sources. Belief functions in the
framework of the Dempster-Shafer (DS) theory of evidence have been widely
used to represent the uncertainty in each single source of information. Com-
bining information from different sources to obtain a single belief function by
implementing proper combination rules on multiple belief functions is our objec-
tive. Dempster’s rule of combination evolved from the earlier works of Dempster
in the 1960s [5], [6] as formalized by Shafer [18]. However, it may produce coun-
terintuitive results when its requirements that the sources are independent, fully
reliable, and that the belief functions are correctly constructed are not satisfied.

Numerous alternative combination rules have been proposed over the last
few decades [17], [25], [21], [23], [24], [12], [19], [8], [9], [3], [4], [20]. For example,
Smets’ unnormalized conjunctive rule [21] is based on the open-world assumption
and assigns the conflict to the empty set while Yager’s rule [23], [24] assigns the
conflict to the universal set, which however increases uncertainty; Inagaki [12]
introduces a unified rule – a continuous parametrized class of combination rules
assigning partial conflict to focal elements proportionally, including Dempster’s
rule and Yager’s rule as special cases.

In the present work, we assume all the pre-processing work (estimating the
reliability of sources, discounting the basic belief assignments (BBAs)) has been
done and we propose an optimal unified combination rule to combine the pro-
cessed BBAs. Specifically, we adopt the unified rule due to Inagaki and propose

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 39–48, 2014.
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an optimization problem to determine the values of the parameters (weighting
factors). The chosen values are optimal in the sense that the resulting combined
BBA represents the greatest amount of information similar to that represented
by the individual BBAs.

The paper is organized as follows. The basic concepts of Dempster-Shafer
theory including measures, and combination rules are briefly introduced in Sec-
tion 2. The optimal unified combination rule is proposed in Section 3, where an
optimization problem is constructed for the unified rule and the optimal values
of the parameters are obtained. Finally, we illustrate the proposed combination
rule in a simple example.

2 Background of DS Theory

We recall here the basic notions of Dempster-Shafer theory. Let X be the quan-
tity of interest with the collection of possible values X = {X1, X2, ..., Xn}, where
X is called the universal set or the frame of discernment. Let A, B be any subsets
of X. In Dempster-Shafer theory, there are two important measures: belief (Bel)
and plausibility (Pl).

Bel(A) =
∑
B⊆A

m(B); Pl(A) =
∑

B∩A 	=∅
m(B),

where the m-function, also called the basic belief assignment (BBA), assigns a
number (called mass or belief mass) in [0, 1] to an element in the power set 2X,
which satisfies

m(∅) = 0,
∑
A⊆X

m(A) = 1.

There are different interpretations of these measures [10], [15]. In this work, we
adopt the interpretation due to Shafer [18]: the belief function Bel(A) measures
the strength of evidence supporting the proposition A while the plausibility
function Pl(A) quantifies the maximum possible support from the evidence to
the proposition A.

In DS theory, m-functions are used to encode distinct bodies of evidence and
combination rules are implemented to combine the m-functions. Suppose NS

(NS ≥ 2) distinct bodies of evidence are associated with the NS number of m-
functions: m1 with focal elements A1

i (1 ≤ i ≤ n1), m2 with focal elements A2
j

(1 ≤ j ≤ n2), and so on. The conjunctive sum of m1, m2,..., mNS is defined as

m∩(C) =
∑

A1
i∩A2

j∩...∩A
NS
k

=C

m1(A
1
i )m2(A

2
j )...mNS (A

NS

k ), (1)

m∩(∅) =
∑

A1
i∩A2

j∩...∩A
NS
k =∅

m1(A
1
i )m2(A

2
j )...mNS (A

NS

k ), (2)

where C ⊆ X, C 
= ∅.
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(Dempster’s rule) Dempster’s rule of combination of multiple m-functions is
defined as an orthogonal sum [18]:

m1 ⊕m2...⊕mNS(C) =
m∩(C)

1 −m∩(∅)
, m∩(∅) 
= 1,

m1 ⊕m2...⊕mNS (∅) = 0.

(Yager’s rule) Yager proposes an alternative combination rule (Yager’s rule) with
a quasi-associative operation [23], [24]:

mY ager(C) = m∩(C), C ⊂ X,

mY ager(X) = m∩(X) +m∩(∅); mY ager(∅) = 0.

(Unified rule) Inagaki defines a continuous parametrized class of combination op-
erations (the unified rule) which assigns fractions of m∩(∅) to the focal elements
proportionally [12]:

muni(C) = (1 + βm∩(∅))m∩(C), C ⊂ X, C 
= ∅, C 
= X, (3)

muni(X) = (1 + βm∩(∅))m∩(X) + (1 + βm∩(∅) − β)m∩(∅), (4)

muni(∅) = 0, (5)

with 0 ≤ β ≤ 1
1−m∩(∅)−m∩(X) .

With the unified rule, for any subsets C,D 
= X, ∅, muni(C)/m∩(C) =
muni(D)/m∩(D). The parameter β controls the portion of m∩(∅) reassigned
to the universal set, which directly affects the value of the combined m-function.
For β = 0, the unified rule reduces to Yager’s rule, while for β = 1

1−m∩(∅) , it
becomes Dempster’s rule. However, how to choose the optimal value for β is the
crux of the problem [12].

Note: Inagaki also proposes a more general combination rule without the
constraint muni(C)/m∩(C) = muni(D)/m∩(D), which involves 2|X| − 1 (|X|
is the cardinality of X) unknown parameters (weighting factors). Lefevre et
al. [16] propose an automatic learning of weighting factors by minimizing the
mean square deviation between the pignistic probability and the membership
indicator. However, the approach is not applicable if the required training set
with membership is not available. In addition, the parameters learned from the
training set might not be optimal for the further combinations. In the current
work, the unified rule with a single parameter β is considered and an approach is
proposed to find the optimal value for the parameter. The proposed optimization
problem can be solved analytically, therefore it is not computationally expensive.

3 The Optimal Unified Combination Rule

In this section, we propose an optimization problem to obtain the optimal value
for the unknown parameter β in Inagaki’s unified rule. We name the rule with
the optimal parameter as the optimal unified combination rule.
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Intuitively, the optimal value for β should be chosen in such a manner that the
combinedm-function (representing the fused information) remains similar to the
originalm-functions (representing the original sources of information) as much as
possible, i.e., the combined m-function should represent the greatest amount of
information similar to that represented by the individual m-functions. In other
words, the dissimilarity between the combined m-function and the individual
mis (1 ≤ i ≤ NS , where NS is the number of bodies of evidence) should be
minimized, assuming that the less dissimilarity the two m-functions have, the
greater amount of similar information the two m-functions represent. There are
a number of formulas in the literature to measure the dissimilarity between two
m-functions [13], [22], [2], [7]. In the present work, Jousselme’s distance [13] is
adopted as a measure of dissimilarity. It possesses the desirable properties of
nonnegativity, symmetry, definiteness, and triangle inequality [14].

Definition 1. Let m1 and m2 be two m-functions on the same universal set
X, containing N mutually exclusive and exhaustive hypotheses. The distance
between m1 and m2 is [13]

dJou(m1,m2) =

√
1

2
(m1 − m2)TD(m1 − m2), (6)

where m1 and m2 are the vector forms of the m-functions m1 and m2; D is an
2N × 2N matrix whose elements are

D(A,B) =
|A

⋂
B|

|A
⋃
B| , ∅ 
= A,B ⊆ X;

D(A,B) = 0, A,B = ∅.

For example, with m({θ1}) = 0.6, m({θ2}) = 0.1, m({θ1, θ3}) = 0.3, the vector
form of m is m = [0; 0.6; 0.1; 0; 0; 0.3; 0; 0].

Definition 2. The total distance is defined as the root mean square of Jousselme’s
distances between the combinedm-function and the individualm-functions (m1,m2

... mNS ):

Dis =

√
1

NS

(
dJou(m,m1)

2
+ dJou(m,m2)

2
+ ...+ dJou(m,mNS )

2
)
. (7)

The total distance is an implicit function of the unknown parameter β since
the combined m-function using Inagaki’s unified rule depends on β (i.e., m =
muni(β)). We want to minimize the total distance with respect to β. The total
distance can explicitly be rewritten as the objective function [11]:

J(β) =

(
1

2NS

(
(muni(β) − m1)

TD(muni(β) − m1) + ...

+ (muni(β) − mNS )
TD(muni(β) − mNS)

))1/2

,

(8)
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subject to

0 ≤ β ≤ 1

1 −m∩(∅) −m∩(X)
, (9)

and the optimal value of the parameter β satisfies J(β∗) = minβ J(β).
Note: While the optimal unified combination rule seeks the combined m-

function to represent maximum similar information gleaned from the constituent
m-functions, it does not concern itself with its precision or consistency although
the similarity between/among m-functions is related to consistency. We would
like to explore the proper definitions of precision of a belief function and consis-
tency between different belief functions, and try to develop improved combina-
tion rules with more desirable properties in future.

3.1 Solution of the Minimization Problem

The optimization problem with objective function (8) can be solved analytically
as follows. Rewrite muni(β) (m(β) or m for short) defined as Eqs. (3)-(5) in the
vector form with length 2N :

m(β) =

⎛⎜⎜⎜⎜⎜⎝
0

(1 + β ∗m∩(∅)) ∗ m∩(2)
...

(1 + β ∗m∩(∅)) ∗ m∩(2N − 1)
(1 + β ∗m∩(∅)) ∗m∩(X) + (1 + β ∗m∩(∅) − β) ∗m∩(∅)

⎞⎟⎟⎟⎟⎟⎠ .

where m∩ = [m∩(∅); ...;m∩(X)] is the vector form of the conjunctive sum m∩.
Let β̂ = 1 + β ∗m∩(∅), then m can be written as a linear form of β̂:

m = β̂ ∗ mm∩ +mc, (10)

where mm∩ and mc are constant vectors independent of the unknown parame-
ter β:

mm∩ = [0;m∩(2); . . . ;m∩(2N − 1);m∩(∅) +m∩(X) − 1];

mc = [0; 0; . . . ; 0; 1].

As a result, the objective function (without the square root operator and the

constant factor 1/(2NS)) can be written as a second order polynomial in β̂:

2 ∗NS ∗ (J(β))2 = C1 ∗ (β̂)2 + C2 ∗ β̂ + C3

with the following coefficients:

C1 = NS ∗ mT
m∩Dmm∩,

C2 = −2 ∗ (mT
m∩Dm̂1 +mT

m∩Dm̂2 + ...+mT
m∩Dm̂NS),

C3 = m̂T
1 m̂1 + m̂T

2 m̂2 + ...+ m̂T
NS

m̂NS ,
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where m̂i = mi − mc (i = 1, 2, ..., NS).

The objective function J(β) is minimized when β̂ = −C2/(2C1). Taking into
account the domain of β, β∗ (the optimal choice of β) should be:

β∗ =

⎧⎪⎨⎪⎩
0 if β̂ < 1
β̂−1

m∩(∅) if 1 ≤ β̂ ≤ m∩(∅)
1−m∩(∅)−m∩(X)

1
1−m∩(∅)−m∩(X) if β̂ >

m∩(∅)
1−m∩(∅)−m∩(X)

3.2 Implementation

The commutative and associative properties of the conjunctive sum make it
easy to implement the optimal unified combination rule. We first calculate the
conjunctive sum of the NS m-functions (m1,...,mNS ) using the associativity.
The optimal value of β can then be obtained using the formulas in Section 3.1.
Finally we obtain the combined m-function using Eqs. (3)-(5) with β = β∗.

Data: m1,...,mNS

Result: m
Let m∩ =m1;
Let i = 2;
while i ≤ NS do

Calculate the conjunctive sum between m∩ and mi using Eqs. (1)-(2);
Update m∩ with the conjunctive sum;

end
Calculate C1, C2, C3 from m∩, and obtain the the optimal value β∗;
Get the combined m-function m using Eqs. (3)-(5) with β∗.

4 Illustrative Examples

In this section, the proposed optimal unified combination rule is illustrated with
a few special examples and is then applied to radiotherapy data analysis.

4.1 Special Examples

Example 1. Two m-functions m1 and m2 are constructed on the universal set:
X = {θ1, θ2} to represent two bodies of evidence from two independent sources
respectively:

m1 : m1({θ1}) = 1;m1({θ2}) = 0;m1(X) = 0,

m2 : m2({θ1}) = 0;m2({θ2}) = 1;m2(X) = 0.

The combined m-function obtained from the optimal unified combination rule
is compared to those obtained from Dempster’s rule of combination and Yager’s
rule in Table. 1.
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Table 1. The combined m-functions for Example 1

Belief mass m({θ1}) m({θ2}) m(X)
Dempster’s rule - - -

Yager’s rule 0 0 1

Optimal unified rule 0 0 1

As we have seen in the definition, Dempster’s rule of combination is not appli-
cable here since m∩(∅) = 1. Yager’s rule assigns the whole belief to the universal
set, indicating the full uncertainty. The optimal unified combination rule is ap-
plicable, specifically, it becomes Yager’s rule when m∩(∅) = 1.

Example 2. Two m-functions m1 and m2 are constructed on the universal set:
X = {θ1, θ2, θ3} to represent two bodies of evidence from two independent
sources respectively:

m1 : m1({θ1}) = 0.0;m1({θ2}) = 0.0;m1({θ1, θ2}) = 1.0;m1({θ3}) = 0.0,

m2 : m2({θ1}) = 0.3;m2({θ2}) = 0.2;m2({θ1, θ2}) = 0.3;m2({θ3}) = 0.2.

The combined m-function obtained from the optimal unified combination rule
is compared to those obtained from Dempster’s rule of combination and Yager’s
rule in Table. 2.

Table 2. The combined m-functions for Example 2

Belief mass m({θ1}) m({θ2}) m({θ1, θ2}) m(X) Dis

Dempster’s rule 0.375 0.25 0.375 0 0.2580

Yager’s rule 0.3 0.2 0.3 0.2 0.2466

Optimal unified rule 0.32126 0.21417 0.32126 0.14331 0.2445

In Example 2, Dempster’s rule of combination becomes Dempster’s rule of
conditioning, which considers m1 as fully correct and the proposition {θ1, θ2} as
the truth. Neither Yager’s rule nor the optimal unified combination rule takes
the proposition {θ1, θ2} as truth. The optimal unified combination rule produces
the result which is the most similar to the original two m-functions as expected.

4.2 Radiotherapy Data Analysis

The proposed optimal unified combination rule can be applied to fuse the infor-
mation from three different institutes – Memorial Sloan-Kettering Cancer Center
(MSKCC), Duke University Medical Center (Duke) and MD Anderson Cancer
center (MD Anderson) – regarding radiotherapy dose/volume/outcome data.
Radiation therapy causes normal tissue complications to cancer patients, such
as radiation pneumonitis to patients with lung cancer. Therefore it is important
to estimate the complication risk. Let X = {RP, non-RP} be a universal set
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where RP represents having radiation pneumonitis and non-RP represents not
having radiation pneumonitis. Regarding the incidence of radiation pneumonitis
at a specific mean lung dose (MLD), such as MLD = 20Gy, three bodies of
evidence from MSKCC, Duke and MD Anderson are represented by the three
m-functions [1]:

m1 : m1({RP}) = 0.15;m1({non-RP}) = 0.65;m1(X) = 0.20,

m2 : m2({RP}) = 0.1082;m2({non-RP}) = 0.7882;m2(X) = 0.1036.

m3 : m3({RP}) = 0.23;m3({non-RP}) = 0.61;m3(X) = 0.16.

The belief and plausibility ranges of radiation pneumonitis (i.e., Bel({RP}) −
Pl({RP})) are m1 : 15% − 35%; m2 : 10.82%− 21.18%; m3 : 23% − 39%.

The combinedm-function, the belief and plausibility ranges after combination
using Dempster’s rule, Yager’s rule and the optimal unified combination rule are
shown as in Table 3.

Table 3. The combined m-function, belief and plausibility range and Dis from three
different combination rules)

Combination rules m({RP}) m({non-RP}) Bel({RP})-P l({RP}) Dis

Dempster’s rule 0.0420 0.9525 0.0420 -0.0475 0.2188

Yager’s 0.0256 0.5804 0.0256 -0.4196 0.1372

Optimal unified rule 0.0304 0.6886 0.0304 - 0.3114 0.1139

Dempster’s rule of combination has produced counterintuitive results because
all the belief-plausibility ranges from three institutions are outside the range of
belief and plausibility after combination; the maximum strength of the combined
evidence supporting pneumonitis is even smaller than the strength of each body
of original evidence supporting pneumonitis. It is obviously due to the renor-
malization, which reinforces the proposition (focal element) with larger degree
of belief. Yager’s rule yields relatively better results but the belief-plausibility
ranges are rather wide, which implies increased uncertainty. The reason is that
the belief mass associated with the empty set is added to the belief mass as-
signed to the universal set. Compared to Yagers rule, the optimal unified rule
produces result with smaller belief-plausibility range, indicating thereby less un-
certainty. The comparison of the results from the three different combination
rules regarding the total distance (defined as (7)) indicates that the combined
m-function from the optimal unified rule has the least dissimilarity with the
individual m-functions (m1, m2 and m3) and therefore represents the greatest
amount of information similar to that represented by m1, m2 and m3.

5 Summary and Conclusion

An optimal unified combination rule is proposed to combine multiple bodies
of evidence. To obtain the optimal value for the single parameter in Inagaki’s



An Optimal Unified Combination Rule 47

unified rule, which controls the uncertainty content, we construct an opti-
mization problem. The optimization step satisfies the principle that the com-
bined/aggregated data should contain as much similar information from each
body of evidence as possible. The proposed optimal unified combination rule is
illustrated in examples.
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{philippe.xu,franck.davoine,thierry.denoeux}@hds.utc.fr

https://www.hds.utc.fr/~xuphilip
2 CNRS, LIAMA, Beijing, P. R. China

Abstract. The theory of belief functions has been successfully used in
many classification tasks. It is especially useful when combining multiple
classifiers and when dealing with high uncertainty. Many classification
approaches such as k-nearest neighbors, neural network or decision trees
have been formulated with belief functions. In this paper, we propose
an evidential calibration method that transforms the output of a clas-
sifier into a belief function. The calibration, which is based on logistic
regression, is computed from a likelihood-based belief function. The un-
certainty of the calibration step depends on the number of training sam-
ples and is encoded within a belief function. We apply our method to
the calibration and combination of several SVM classifiers trained with
different amounts of data.

Keywords: Classifier calibration, theory of belief functions, Dempster-
Shafer theory, support vector machines, logistic regression.

1 Introduction

The combination of pattern classifiers is an important issue in machine learning.
In many practical situations, different kinds of classifiers have to be combined. If
the outputs of the classifiers are of the same nature, such as probability measures
or belief functions, they can be combined directly. Evidential versions of several
classification methods such as the k-nearest neighbor rule [2], neural network [3]
or decision trees [11] can be found in the literature. Otherwise, if their outputs
are of different type, they have to be made comparable.

The transformation of the score returned by a classifier into a posterior class
probability is called calibration. Several methods can be found in the litera-
ture [8,13,14]. The quality of the calibration highly depends on the amount of
training data available. The use of belief functions is often more appropriate
when dealing with few training data. It becomes especially critical when the
classifiers to combine are trained with different amounts of training data. In this
paper, we introduce an evidential calibration method that transforms the out-
puts of a binary classifier into belief functions. It is then applied to the calibration
of SVM classifiers.
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The rest of this paper is organized as follows. In Section 2, we present
likelihood-based belief functions for both statistical inference and forecasting.
In particular, the case of a Bernoulli distribution is detailed. Its application to
a logistic regression based calibration method is then introduced in Section 3.
Experimental results on the calibration and combination of SVM classifiers are
then presented in Section 4.

2 Likelihood-Based Belief Function

In this section, we present the formulation of likelihood-based belief functions.
Our presentation follows the work of Denœux [4] for statistical inference and the
work of Kanjanatarakul et al. for its application to forecasting [6].

2.1 Statistical Inference

Let X ∈ X be some observable data and θ ∈ Θ the unknown parameter of
the density function fθ(x) generating the data. Information about θ can be
inferred given the outcome x of a random experiment. Shafer [10] proposed to
build a belief function BelΘx on Θ from the likelihood function. Denœux further
justified this approach in [4]. After observing X = x, the likelihood function
Lx : θ �→ fθ(x) is normalized to yield the following contour function:

plΘx (θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
, ∀θ ∈ Θ, (1)

where sup denotes the supremum operator. The consonant plausibility function
associated to this contour function is

PlΘx (A) = sup
θ∈A

plΘx (θ), ∀A ⊆ Ω. (2)

The focal sets of BelΘx are defined as

Γx(γ) = {θ ∈ Θ | plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (3)

The random set formalism can be used to represent the belief and plausibility
functions on Θ. Given the Lebesgue measure λ on [0, 1] and the multi-valued
mapping Γx : [0, 1] → 2Θ, we have

BelΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ⊆ A})
PlΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ∩ A 
= ∅}) , ∀A ⊆ Θ. (4)

2.2 Forecasting

Suppose that we now have some knowledge about θ after observing some training
data x. The forecasting problem consists in making some predictions about some
random quantity Y ∈ Y whose conditional distribution gx,θ(y) given X = x



Evidential Logistic Regression for Binary SVM Classifier Calibration 51

depends on θ. A belief function on Y can be derived from the sampling model
proposed by Dempster [1]. For some unobserved auxiliary variable Z ∈ Z with
known probability distribution μ independent of θ, we define a function ϕ so
that

Y = ϕ(θ, Z). (5)

A multi-valued mapping Γ ′
x : [0, 1]×Z → 2Y is defined by composing Γx with ϕ

Γ ′
x : [0, 1] × Z → 2Y

(γ, z) �→ ϕ(Γx(γ), z).
(6)

A belief function on Y can then be derived from the product measure λ ⊗ μ on
[0, 1] × Z and the multi-valued mapping Γ ′

x

BelYx(A) = (λ⊗ μ) ({(γ, z) | ϕ (Γx (γ) , z) ⊆ A})
PlYx(A) = (λ⊗ μ) ({(γ, z) | ϕ (Γx (γ) , z) ∩ A 
= ∅}) , ∀A ⊆ Ω. (7)

2.3 Binary Case Example

In the particular case where Y is a random variable with a Bernoulli distribution
B(ω), it can be generated by a function ϕ defined as

Y = ϕ(ω,Z) =

{
1 if Z ≤ ω,
0 otherwise,

(8)

where Z has a uniform distribution on [0, 1]. Assume that the belief function
BelΩx on Ω is induced by a random closed interval Γx(γ) = [U(γ), V (γ)]. In
particular, it is the case if it is the consonant belief function associated to a
unimodal contour function. We get

Γ ′
x(γ, z) = ϕ ([U(γ), V (γ)] , z) =

⎧⎨⎩
1 if Z ≤ U(γ),
0 if Z > V (γ),
{0, 1} otherwise.

(9)

The predictive belief function BelYx can then be computed as

BelYx({1}) = (λ⊗ μ)({(γ, z) | Z ≤ U(γ)}) (10a)

=

∫ 1

0

μ({z | z ≤ U(γ)})f(γ)dγ (10b)

=

∫ 1

0

U(γ)f(γ)dγ = E(U) (10c)

and

BelYx({0}) = (λ ⊗ μ)({(γ, z) | Z > V (γ)}) (11a)

= 1 − (λ ⊗ μ)({(γ, z) | Z ≤ V (γ)}) (11b)

= 1 − E(V ). (11c)
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As U and V take only non-negative values, these quantities have the following
expressions:

BelYx({1}) =

∫ +∞

0

(1 − FU (u))du =

∫ ω̂

0

(1 − plΩx (u))du (12a)

= ω̂ −
∫ ω̂

0

plΩx (u)du (12b)

and

PlYx({1}) = 1 −BelYx ({0}) =

∫ +∞

0

(1 − FV (v))dv (13a)

= ω̂ +

∫ 1

ω̂

plΩx (v)dv, (13b)

where ω̂ is the value maximizing plΩx . In many practical situations, the belief
function BelYx cannot be expressed analytically. However, they can be approx-
imated either by Monte Carlo simulation using Equations (10) and (11) or by
numerically estimating the integrals of Equations (12) and (13).

3 Classifier Calibration

Let us consider a binary classification problem. Let x = {(x1, y1), . . . , (xn, yn)}
be some training data, where xi ∈ R is the score returned by a pre-trained
classifier for the i-th training sample which label is yi ∈ {0, 1}. Given a test
sample of score s ∈ R and unknown label y ∈ {0, 1}, the aim of calibration is to
estimate the posterior class probability P (y = 1|s). Several calibration methods
can be found in the literature. Binning [13], isotonic regression [14] and logistic
regression [8] are the most commonly used ones. Niculescu-Mizil and Caruana [7]
showed that logistic regression is well-adapted for calibrating maximum margin
methods like SVM. Moreover, it is less prone to over-fitting as compared to
binning and isotonic regression, especially when relatively few training data are
available. Thus, logistic regression will be considered in this paper.

3.1 Logistic Regression-Based Calibration

Platt [8] proposed to use a logistic regression approach to transform the scores of
an SVM classifier into posterior class probabilities. He proposed to fit a sigmoid
function

P (y = 1|s) ≈ hs(θ) =
1

1 + exp (a+ bs)
. (14)

The parameter θ = (a, b) ∈ R2 of the sigmoid function is determined by maxi-
mizing the likelihood function on the training data,

Lx(θ) =

n∏
k=1

pyk

k (1 − pk)
1−yk with pk =

1

1 + exp(a+ bxk)
. (15)
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To reduce over-fitting and prevent a from becoming infinite when the training
examples are perfectly separable, Platt proposed to use an out-of-sample data
model by replacing yk and 1 − yk by t+ and t− defined as

t+ =
n+ + 1

n+ + 2
and t− =

1

n− + 2
, (16)

where n+ and n− are respectively the number of positive and negative training
samples. This ensures Lx to have a unique supremum θ̂ = (â, b̂).

3.2 Evidential Extension

After observing the score s of a test sample, its label y ∈ {0, 1} can be seen a
the realisation of a random variable Y with a Bernoulli distribution B(ω), where
ω = hs(θ) ∈ [0, 1]. A belief function BelYx,s can thus be derived from the contour

function plΩx,s as described in Section 2.3. Function plΩx,s can be computed from

PlΘx as

plΩx,s(ω) =

{
0 if ω ∈ {0, 1}

PlΘx
(
h−1
s (ω)

)
otherwise,

(17)

where

h−1
s (ω) =

{
(a, b) ∈ Θ

∣∣∣∣ 1

1 + exp(a+ bs)
= ω

}
(18)

=
{
(a, b) ∈ Θ

∣∣ a = ln
(
ω−1 − 1

)
− bs

}
, (19)

which finally yields

plΩx,s(ω) = sup
b∈R

plΘx
(
ln
(
ω−1 − 1

)
− bs, b

)
, ∀ω ∈ (0, 1). (20)

Figure 1 illustrates the computation of the predictive belief function BelYx,s.

Fig. 1 (a) shows level sets of the contour function plΘx computed from the scores of
an SVM classifier trained on the UCI1 Australian dataset. The value of plΩx,s(ω)

is defined as the maximum value of plΘx along the line a = ln(γ−1 − 1) − bs
represented by the doted lines. It can be approximated by a gradient descent
algorithm. Fig. 1 (b) shows the contour function plΩx,s from which BelYx,s can be
computed using Equations (12) and (13). Fig. 1 (c-d) displays the calibration
results for n = 20 and n = 200, respectively.

4 Experimental Evaluation

Experiments were conducted using three binary classification problems from the
UCI dataset: Adult, Australian and Diabetes. For each dataset, 10 non-linear

1 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Fig. 1. Calibration results on the Australian dataset. (a) Level sets of the contour
function plΘx . (b) Contour function plΩx,s with s = 0.5. The three coloured areas corre-
spond to the predictive mass function mY

x,s. (c) Calibration results with n = 20. (d)
Calibration results with n = 200.

SVM classifiers with RBF kernel were trained using non-overlapping training
sets of different sizes. Three scenarios were considered, as illustrated in Fig. 2.
In the first scenario (a), all 10 classifiers were trained using the same amount
of training data. In the second one (b), one half of the classifiers were trained
with five times more data than the other half. Finally, in (c), one classifier was
trained with 2/3rd of the data, a second one used 1/5th and the eight other ones
shared the rest uniformly. The total amounts of training and testing data are
detailed in Table 1.

The LibSVM2 library was used to train the classifiers. For each experiment,
5-fold cross validation was conducted on the training data to get both the SVM
parameters and the scores for calibration. As each classifier was trained with
different training data, they were assumed to be independent. After calibration,
the classifier outputs were thus combined with Dempster’s rule. The class with

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2. Proportions of data used to train each of the 10 classifier. (a) All classifiers
use 10% of the training data. (b) One half the classifiers use 1/6th of the data and the
other half the rest. (c) One classifier uses 2/3rd of the data, a second one uses 1/5th

and the eight other classifiers use the rest.

Table 1. Classification accuracy for several datasets and different scenarios. The best
results are underlined and those that are not significantly different are in bold.

Adult Australian
#train=600, #test=16,281 #train=300, #test=390

Scenario (a) (b) (c) (a) (b) (c)
Probabilistic 83.24% 82.70% 80.90% 85.13% 85.90% 85.90%
Inv. Pign. 83.32% 82.79% 81.02% 85.13% 85.90% 86.41%
Likelihood 83.29% 83.03% 81.65% 85.13% 86.67% 88.46%

Diabetes
#train=300, #test=468

Scenario (a) (b) (c)
Probabilistic 78.42% 77.14% 53.42%
Inv. Pign. 78.63% 77.14% 54.70%
Likelihood 79.06% 77.35% 68.16%

maximum plausibility was selected for decision. The probabilistic calibration
served as baseline. We compared it the likelihood-based evidential approach and
the inverse pignistic transformation. The classification accuracies on the testing
data are shown in Table 1.

To compare the performances of the different calibration approaches, the sig-
nificance of the results was evaluated from a McNemar test [5] at the 5% level.
The best results were always obtained by the likelihood-based approach except
for Adult (a). In particular, expect for the inverse pignistic transformation on the
Australian dataset, the results were always significantly better for scenario (c).
For the Adult dataset, the likelihood-based calibration always gave significantly
better results than the probabilistic approach. We can see that the likelihood-
based approach is more robust when the training sets have highly unbalanced
sizes.
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5 Conclusion

In this paper, we showed how to extend logistic regression-based calibration
methods using belief functions. Belief functions can better represent the uncer-
tainty of the calibration procedure, especially when very few training data are
available. The method was used to calibrate the scores from SVM classifiers but
it may also be used for other classification algorithms. Evidential formulations
of other calibration methods such as binning [13] and isotonic regression [14] will
be considered in future work. Extension to multi-class problem is also possible
through the use of one-vs-one or one-vs-all binary decompositions. Compari-
son of probabilistic approaches [12] and evidential ones [9] will be considered in
future work.
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Abstract. We adapted the nonparametric evidence-theoretic k-Nearest
Neighbor (k-NN) rule,whichwasoriginally designed formultinomial choice
data, to rank-ordered choice data. The contribution of thismodel is its abil-
ity to extract information fromall theobserved rankings to improve thepre-
diction power for each individual’s primary choice. The evidence-theoretic
k-NN rule for heterogeneous rank-ordered datamethod can be consistently
applied to complete and partial rank-ordered choice data. This model was
used to predict an individual’s source of loan given his or her character-
istics and also identify individual characteristics that help the prediction.
The results show that the prediction from the rank-ordered choice model
outperforms that of the traditionalmultinomial choicemodelwith only one
observed choice.

Keywords: Rank-ordered Choice Data, k-Nearest Neighbor, Belief
Functions, Classifier, Household Debt.

1 Introduction

For the purpose of understanding the objective and the contribution of this
study, let us first clarify the distinction between the traditional multinomial
choice data and the rank-ordered choice data that is of the concern here. Suppose
there are M available objects. In traditional multinomial choice data, there is
only one choice for each individual. In contrast, the rank-ordered choice data
contains more information regarding each individual’s preference as they capture
each individual’s ranking of the objects. If the ranks of all M objects can be
observed, the data are said to be completely rank-ordered. If only L < M ranks
are observed, the data are partially rank-ordered. Moreover, if the number Li of
observed ranks for each individual i is different across i, then the data are called
heterogenous rank-ordered. From these definitions, the rank-ordered choice data
is reduced to the multinomial choice data when Li = 1, for all i.

The main purpose of the model is to predict each individual’s most preferred
choice out of M available alternatives using heterogenous rank-ordered data. In

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 58–67, 2014.
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particular, we modify the Evidence-theoretic k-Nearest Neighbor (k-NN) Rule,
which was originally designed for traditional multinomial choice data [14] to
take advantage of the additional information provided by rank-ordered choice
data. The main idea is that the secondary or other choices also provide valuable
information for the primary choice prediction.

Two main problems can be considered in relation with rank-ordered data. The
first problem is to predict an individual’s choices given information on choice at-
tributes. Suppose we have a new alternative with a set of attributes, this prob-
lem is to predict the chance that this alternative will be chosen. The traditional
methods to tackle this problem in economics are the rank-ordered logit model
and the rank-ordered probit model. These models were later extended into the
rank-ordered mixed logit model [3] [13]. The second problem is to predict an
individual’s choices given information on individual characteristics. Suppose we
have an individual with a set of characteristics, we may wish to predict the al-
ternative that he or she is most likely to choose. There is no logit/probit-based
model designed to solve this problem. The closest methods are those developed
to explain how each individual chooses a bundle of products. As discussed in
Bhat, Srinivasan and Sen (2006) [5], commonly used models are the traditional
multinomial probit/logit models with composite alternatives and the multivari-
ate probit/logit models [2] [4]. Although both models allow each individual to
choose more than one alternative, all the choices are equally weighted. Moreover,
none of these models is appropriate for problems with a large choice set. Since
there is no standard methodology for the second problem, a contribution of this
study is to develop a methodology to fill this gap.

Traditional methods to analyze multiple choice problems in economics are
mostly of the logit/probit types and based on maximum likelihood (ML) method.
In contrast, the k-NN method is intuitively simple and requires fewer assump-
tions. Formally, k-NN is a classification method that can be used to predict
an individual’s choice based on information from the observed choices of the k
neighbors with the closest characteristics. An advantage of the k-NN model being
nonparametric is that it does not require distributional assumptions like the ML
method. Moreover, since the method only uses the k nearest neighbors for predic-
tion, it is robust to outliers. It is also flexible in the sense that it can be applied
consistently for complete, partially and heterogeneous rank-ordered data. With
a set of restrictions, the method boils down to the traditional evidence-theoretic
k-NN rule.

The Application of the evidence-theoretic k-NN rule model relies on the avail-
ability of ranking data. The most obvious applications concern consumer choice
models, in which each customer buys more than one product or one brand. For
the empirical application considered in this study, the model was used to analyze
each individual’s choices of loan sources. The main objective of this exercise is
to predict where each individual borrows from, given his or her characteristics.

This paper is organized as follows. Section 2 recalls the original
evidence-theoretic k-NN rule for multinomial choice data. Section 3 introduces
the evidence-theoretic k-NN rule for heterogeneous rank-ordered data and
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discusses how the method can be applied to completely and partially rank-
ordered data. Section 4 provides an empirical example by applying the method to
predict an individual’s primary source of borrowing. Finally, Section 5 presents
our conclusions and remarks.

2 The Evidence-Theoretic k-NN Rule

The original Evidence-theoretic k-NN Rule is a method to classify each indi-
vidual into M classes based on his attributes [14] [7]. The model can thus be
applied for the multiple choice problem using multinomial choice data. Let the
set of alternatives be Ω = {ω1, ω2, ..., ωM}. For each individual i, we observe
information (x(i), ω(i)), where x(i) is the vector for individual i’s attributes and
ω(i) is the alternative that individual i has chosen. That is, (x(i), ω(i)) constitutes
an evidence for the class membership of x. The mass function for each individual
i is

m(i)(ω(i)) = αφ(d(i))

m(i)(Ω) = 1 − αφ(d(i)),
(1)

where d(i) is the distance between x and x(i), φ is the inverse distance-
normalization function that maps the distance d(i) from [0,+∞) to [0, 1] and
α is a parameter in [0, 1].

Information from each individual is considered as evidence. For independent
and identically distributed (iid) data, we can combine all the pieces of evidence
from k nearest neighbors using Dempster’s rule. The combined mass function
for each choice {ωq} is

m({ωq}) =
1

K
(1 −

∏
i∈Ik,q

(1 − αφ(d(i))))
∏
r 	=q

∏
i∈Ik,r

(1 − αφ(d(i))

m(Ω) =
1

K

M∏
r=1

∏
i∈Ik,r

(1 − αφ(d(i))),

(2)

where Ik,q is the set of the k nearest neighbors that chose alternative q and K
is the normalizing factor.

3 The Evidence-Theoretic k-NN Rule for Heterogeneous
Rank-Ordered Data

Consider a general model for heterogenous rank-ordered choice data with M
available alternatives, Li ≤ M of which are ranked for each individual i. The
objective of this model is to predict the choice of an individual given his or her
T characteristics x. Therefore, we construct a model using the data (ω(i), x(i))
from k individual i whose characteristics x(i) are the closest to x. Each of the
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k individuals ranks Li objects, providing Li pieces of evidence for his or her
preferences through the mass functions. For each individual i, we can observe
the Li most preferred choices ω(i) = {ω(i1), ..., ω(iLi)}, where ω(i1) is the most
preferred choice ω(iLi) is the Lth

i choice. The mass function for individual i can
be defined as

m(i)({ω(i1)}) = α1φ(d
(i))

m(i)({ω(ij)}) =

{
αjφ(d

(i)), if j ≤ Li

0, otherwise

m(i)(Ω) = 1 −
Li∑
j=1

αjφ(d
(i)).

(3)

where d(i) = (x − x(i))′Σ(x − x(i)) is the weighted squared Euclidean distance
between x and x(i) with a T × T diagonal matrix Σ = diag(σ1, . . . , σY ) with

and φ(d(i)) = exp(−γd(i)2) is the inverse distance-normalization function.
The mass function (3) satisfies the basic probability assignment (BPA) prop-

erties, which are m(∅) = 0 and
∑

A∈2Ω m(A) = 1. That is, the mass m(i)({ωq})
captures the proportion of all relevant and available evidence from individual
i that supports the claim that an individual with characteristics x will choose
alternative q. From Equations (3), each mass depends on two factors, which are
1) the distance between x(i) and x and 2) the rank of the alternative.

The parameters to be estimated are θ = {α1, ..., αM , σ1, ..., σT , γ}. Parameters
0 ≤ αj ≤ 1, j = 1, ...,M capture different weights for the mass functions of
objects with different ranks. Since the higher ranked objects should have higher
weights, α1 ≥ α2 ≥ ... ≥ αL. Parameters 0 ≤ σt ≤ 1, t = 1, ..., T capture different
weights for each characteristic of individual i in the vector x(i). A characteristic
that is more important as a determinant of the choice selection should have
a higher weight. Lastly, the parameter γ is a positive scale parameter for the
inverse distance-normalization function.

In the belief function framework, the belief on a claim can be represented as
a belief-plausibility interval. The belief function measures the extent to which
the evidence implies the claim and is defined as Bel(A) =

∑
B∈Am(B). The

plausibility function measures to what extent the evidence does not contradict
the claim; it is defined as Pl(A) =

∑
B∩A 	=φm(B). Here, the belief and plausi-

bility of each alternative q from individual i are Bel(i)({ωq}) = m(i)({ωq}) and
Pl(i)({ωq}) = m(i)({ωq}) +m(i)(Ω), respectively.

The plausibility of each alternative q for individual i can thus be written as

Pl(i)({ωq}) = 1 −
Li∑
j=1

(αjφ(d
(i)))(1−y

(i)
jq ), ∀q = 1, ...,M, (4)

where y
(i)
jq =

{
1 if jth choice of individual i is ωq

0 otherwise
.
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When all observations are independent and identically distributed (iid), all
pieces of evidence from the k nearest neighbors can be combined using Demp-
ster’s rule. Cobb and Shenoy (2006) proposed the plausibility transformation
method to convert Dempster-Shafer belief function models to Bayesian prob-
ability models that are consistent with Dempster’s rule. The plausibility prob-
ability function is the normalized form of the combined plausibility function
Pl({ωq}) [6]. Furthermore, the plausibility of each singleton after combination
by Dempter’s rule is the product of the plausibilities from each piece of evidence.
Therefore, the plausibility probability function is

Pl Pm({ωq}) = K−1Pl({ωq}) = K−1
k∏

i=1

[
1 −

Li∑
j=1

(αjφ(d
(i)))(1−y

(i)
jq )

]
, (5)

where K =
∑M

r=1 Pl({ωr}) is the normalization constant.

Estimation: The vector of parameters θ = {α1, ..., αM , σ1, ..., σT , γ} can be
estimated by minimizing the mean squared error (MSE)1. To compute the MSE,

we estimate Pl P
(i)
M for each observation i given its characteristics x(i). Let t

(i)
q

be a vector representing the observed choice of individual i where the chosen
element q equals to 1 and other elements equal to 0. The MSE is

MSE =
1

NM

N∑
i=1

M∑
q=1

(Pl P (i)
m ({ωq}) − t(i)q )2. (6)

The procedure is repeated for all possible k to find the optimal value of k that
minimizes the MSE. For the prediction rule, the predicted choice of individual i

is the choice with the highest plausibility probability Pl P
(i)
M ({ωq}).

Special Cases: The evidence-theoretic k-NN model for heterogenous rank-
ordered data can be consistently applied to partial and complete rank-ordered
data. In particular, when Li = L < M for all i, the partial rank-ordered model
is recovered. When Li =M for all i, we have the complete rank-ordered model.
Moreover, the model is consistent with the original k-NN model for the tradi-
tional multinomial choice data. That is, when L = 1, we get the traditional
multinomial choice model with only one observed choice.

Variations in Model Specification: The k-NN method for the rank-ordered
choice data can be modified to capture several aspects of heterogeneity in the
data. In particular, each parameter in θ = {α1, ..., αM , σ1, ..., σT , γ} can be modi-
fied to be alternative-specific. For instance, the scale parameter γ can be general-
ized to γq in order to capture the different chance of occurring of each alternative.
The σt can also be generalized to σqt to capture the different contribution of each

1 We used the fmincon procedure in Matlab, with the active set algorithm.
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characteristic t in predicting each alternative q. It should be noted that adding
more parameters allows the model to capture more characteristics of the data.
However, it also causes inefficiency especially for studies with a small number of
observations.

4 Predicting an Individual’s Source of Loan

In this section, we report on the application of the above method to predict an
individual’s primary source of loan given his set of characteristics x.

The data used in this study are the 2010 cross-sectional data from the Panel
Household Socio-Economic Survey (SES) conducted by the National Statistical
Office of Thailand. The dependent variable is the source of loan. In the SES, each
individual was provided with eight choices of loan sources and asked whether he
had borrowed any money in the past year. If the individual had borrowed, the
survey asked for his or her two largest sources of loan in order.

In this study, we performed and compared four types of Evidence-theoretic
k-NN rule models including the multinomial model with equal weights (MEW),
the rank-ordered model with equal weights (REW), the multinomial model with
optimized weights (MOW) and the rank-ordered model with optimized weights
(ROW).

Multinomial models use the information only from the primary choice to esti-
mate the vector of parameters θ. Rank-ordered choice models use the information
from both primary and secondary choices. Formally, multinomial choice models
are rank-ordered models with α2 = 0. The equal weight assumption restricts all
the weight σt = 1, for all t. This restriction implies that all characteristics in x
have an equal contribution to the loan choice prediction. Optimizing the weights
allows the weights to vary across characteristics. Therefore, the prediction us-
ing the optimized weight models relies more on the characteristics with higher
weights. That is, equal weight models are optimized weight models with σt = 1,
for all t. It should be noted each characteristic in x was normalized so that the
weights σt can be compared across t. In addition, in this study, we allowed the
scale parameter γ in the inverse distance-normalization function φ(·) to vary
with each individual’s primary choice. Specifically, γq is the scale parameter for
each individual with ω(i1) = q. The estimated parameters for each of the four
models are reported in Table 1.

In Table 1, consider the models REW and ROW. The parameter α2 
= 0
indicates that including the information from the secondary loan choice helps
the model to predict the primary choice more accurately. Consider the models
MOW and ROW. The parameters σt 
= 1, for all t show that characteristics in
x are not equally important for the loan source prediction. The characteristics
with highest contribution to the prediction accuracy include total saving, college,
total income and urban.

To ensure that the parameters in Table 1 minimize the MSE, it is necessary
to check that the MSE function is smooth and convex with respect to all pa-
rameters. Fig. 1 shows the MSE contour plot for parameters α1 and α2 for the
ROW model.
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Table 1. Comparison of the four models

MEW REW MOW ROW

Alphas - αj

Primary choice 0.12 0.11 0.12 0.11
Secondary choice 0.00 0.03 0.00 0.04

Gammas - γq
Commercial bank 0.01 0.02 0.00 0.00
BAAC 0.00 0.00 0.00 0.00
GHB 0.00 0.00 0.01 0.01
Village Fund 0.04 0.04 0.35 0.67
Co-ops/Credit Union 0.00 0.00 0.01 0.01
Other financial inst. 0.04 0.04 0.25 0.25
Friend/relative 0.03 0.02 0.50 0.54
Other source 0.81 1.00 1.00 1.00

Weights - σt

Age 1.00 1.00 0.01 0.12
Total income 1.00 1.00 0.52 0.43
Total saving 1.00 1.00 1.00 1.00
Female 1.00 1.00 0.01 0.00
Urban 1.00 1.00 0.32 0.22
College 1.00 1.00 0.97 0.86
Employed 1.00 1.00 0.00 0.00
Agricultural household 1.00 1.00 0.21 0.02
House owner 1.00 1.00 0.00 0.00
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Fig. 1. MSE contour plot for parameter α1 and α2 for the ROW model

The optimal number of neighbour k = 37 for all k-NN models. It should be
noted that k was endogenously determined in the model and the number needs
not to be the same across models. However, changes of the MSE with respect to
k have the same pattern across the four models in this study as shown in Fig. 2.

Table 2 compares the performances of the four k-NN models with the multi-
nomial logit (MLogit) model, which is commonly used for choice prediction. The
performance comparison statistics used in this study are the out-sample MSE
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Fig. 2. MSE of the MEW, REW, MOW and ROW models for different values of k

Table 2. 5-fold cross validation results

MLogit MEW REW MOW ROW

MSE 0.0958 0.0918 0.0918 0.0916 0.0916
(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

Classification error 0.6263 0.6168 0.6078 0.6134 0.6048
(0.0232) (0.0232) (0.0232) (0.0232) (0.0232)

McNemar’s χ2 stat 10.26 2.57 2.12 1.30 -
(0.0013) (0.1089) (0.1454) (0.2542)

*For MSE and classification error, standard deviations in parentheses.
**For McNemar’s test, p-values in parentheses.

and classification errors estimated using 5-fold cross validation [11]. The rank-
ordered models have smaller MSE than the multinomial models and the opti-
mized weight models have smaller MSE than the equal weight models. Moreover,
the results also show that models with a smaller MSE also yield a lower clas-
sification error. Using the McNemar’s test [1] to compare all models with the
ROW model, we can see that the ROW model has significantly higher predic-
tion power than the multinomial logit model. However, the McNemar’s test did
not give significant results for other cases. In this dataset, only 20.68% of the
data borrowed from the second source, which can explain why the performance
improvement from using the rank-ordered model was rather small. It can be
expected that more information on the non-primary ranks would increase the
performance improvement.

5 Conclusions

The evidence-theoretic k-NN rank-ordered choice model was shown to outper-
form the traditional multinomial choice model, which shows the benefit of in-
cluding the additional information from each individual’s non-primary choices.
The weight matrix contributes significantly to the prediction accuracy, indicating
that all the characteristics are not equally informative.
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Despite the non-parametric nature of the model, a number of assumptions
were made. It is important to discuss a few alternatives for the model specifi-
cation as it may improve the model performance for different studies. The first
assumption of this model is related to the distance function d(·). The second
assumption is on the confidence measure. This study uses the plausibility prob-
ability function Pl Pm(·). Alternatives are the belief, the plausibility and the
pignistic functions [6]. The last assumption is on the optimization rule. The op-
timization rule used in this study is the mean squared error (MSE) minimization.
Alternative criteria are entropy or the modified MSE as suggested in Denoeux
and Zouhal (2001) [9].

The evidence-theoretic k-NN model has been extended in several aspects,
many of which can be applied to this rank-ordered choice model. An advantage
of using the evidence-theoretic method is that it can be modified to cope with
uncertain and imprecise data in which a set of alternatives is observed for each
rank. For example, if we can only observe that individual i dislikes choice ωq,
then we know that all other available choices are preferred to ωq but we do not
know the ranking of those choices. In this case, the first rank would contain more
than one alternative and the model can take advantage of the evidence theoretic
method more fully.

Moreover, the belief function approach makes it possible to combine pieces
of evidence from several different sources. Therefore, the output from the be-
lief function classifier can conveniently be combined with evidence from other
classifiers or with other information such as expert opinions.
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Abstract. In the data mining field many clustering methods have been
proposed, yet standard versions do not take into account uncertain
databases. This paper deals with a new approach to cluster uncertain
data by using a hierarchical clustering defined within the belief function
framework. The main objective of the belief hierarchical clustering is to
allow an object to belong to one or several clusters. To each belonging,
a degree of belief is associated, and clusters are combined based on the
pignistic properties. Experiments with real uncertain data show that our
proposed method can be considered as a propitious tool.

Keywords: Clustering, Hierarchical clustering, Belief function, Belief
clustering.

1 Introduction

Due to the increase of imperfect data, the process of decision making is becoming
harder. In order to face this, the data analysis is being applied in various fields.

Clustering is mostly used in data mining and aims at grouping a set of similar
objects into clusters. In this context, many clustering algorithms exist and are
categorized into two main families:

The first family involves the partitioning methods based on density such as
k-means algorithm [6] that is widely used thanks to its convergence speed. It par-
titions the data into k clusters represented by their centers. The second family
includes the hierarchical clustering methods such as the top-down and the Hi-
erarchical Ascendant Clustering (HAC) [5]. This latter consists on constructing
clusters recursively by partitioning the objects in a bottom-up way. This process
leads to good result visualizations. Nevertheless, it has a non-linear complexity.

All these standard methods deal with certain and precise data. Thus, in order
to facilitate the decision making, it would be more appropriate to handle uncer-
tain data. Here, we need a soft clustering process that will take into account the
possibility that objects belong to more than one cluster.

In such a case, several methods have been established. Among them, the Fuzzy
C-Means [1] which consists in assigning a membership to each data point cor-
responding to the cluster center, and the weights minimizing the total weighted
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mean-square error. This method constantly converges. Patently, Evidential c-
Means (ECM) [3], [7] is deemed to be a very fateful method. It enhances the
FCM and generates a credal partition from attribute data. This method deals
with the clustering of object data. Accordingly, the belief k-Modes method [4] is
a popular method, which builds K groups characterized by uncertain attribute
values and provides a classification of new instances. Schubert has also found a
clustering algorithm [8] which uses the mass on the empty set to build a classifier.

Our objective in this paper is to develop a belief hierarchical clustering
method, in order to ensure the membership of objects in several clusters, and to
handle the uncertainty in data under the belief function framework.

This remainder is organized as follows: in the next section we review the
ascendant hierarchical clustering, its concepts and its characteristics. In section
3, we recall some of the basic concepts of belief function theory. Our method
is described in section 4 and we evaluate its performance on a real data set in
section 5. Finally, Section 6 is a conclusion for the whole paper.

2 Ascendant Hierarchical Clustering

This method consists on agglomerating the close clusters in order to have finally
one cluster containing all the objects xj (where j = 1, .., N).

Let’s consider PK = {C1, ..., CK} the set of clusters. If K = N , C1 = x1, ...,
CN = xN . Thereafter, throughout all the steps of clustering, we will move from
a partition PK to a partition PK−1. The result generated is described by a hier-
archical clustering tree (dendrogram), where the nodes represent the successive
fusions and the height of the nodes represents the value of the distance between
two objects which gives a concrete meaning to the level of nodes conscripted
as ”indexed hierarchy”. This latter is usually indexed by the values of the dis-
tances (or dissimilarity) for each aggregation step. The indexed hierarchy can
be seen as a set with an ultrametric distance d which satisfies these properties:
i) x = y ⇐⇒ d(x, y) = 0.
ii) d(x, y) = d(y, x).
iii) d(x, y) ≤ d(x, z) + d(y, z), ∀x, y, z ∈ IR.

The algorithm is as follows:

– Initialisation: the initial clusters are the N-singletons. We compute their
dissimilarity matrix.

– Iterate these two steps until the aggregation turns into a single cluster:
• Combine the two most similar (closest) elements (clusters) from the se-
lected groups according to some distance rules.

• Update the matrix distance by replacing the two grouped elements by
the new one and calculate its distance from each of the other classes.

Once all these steps completed, we do not recover a partition of K clusters,
but a partition of K − 1 clusters. Hence, we had to point out the aggregation
criterion (distance rules) between two points and between two clusters. We can
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use the Euclidian distance between N objects x defined in a space IR. Different
distances can be considered between two clusters: we can consider the minimum
as follows:

d(Ci
j , C

i
j′ ) = min

xk∈Ci
j ,xk′∈Ci

j′
d(xk, xk′ ) (1)

with j, j′ = 1, ..., i. The maximum can also be considered, however, the minimum
and maximum distances create compact clusters but sensitive to ”outliers”. The
average can also be used, but the most used method is Ward’s method, using
Huygens formula to compute this:

ΔIinter(Ci
j ,C

i
j′ )

=
mCjmCj′

mCj +mCj′
d2(Ci

j,C
i
j′) (2)

where mCj and mCj′ are numbers of elements of Cj and Cj′ respectively and
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3 Basis on The Theory of Belief Functions

In this Section, we briefly review the main concepts that will be used in our
method that underlies the theory of belief functions [9] as interpreted in the
Transferable Belief Model (TBM) [10]. Let’s suppose that the frame of discern-
ment is Ω = {ω1, ω2, ..., ω3}. Ω is a finite set that reflects a state of partial
knowledge that can be represented by a basis belief assignment defined as:

m : 2Ω → [0, 1]∑
A⊆Ω

m(A) = 1 (4)

The value m(A) is named a basic belief mass (bbm) of A. The subset A ∈ 2Ω is
called focal element if m(A) > 0. One of the important rules in the belief theory
is the conjunctive rule which consists on combining two basic belief assignments
m1 and m2 induced from two distinct and reliable information sources defined
as:

m1 ∩©m2(C) =
∑

A∩B=C

m1(A) ·m2(B), ∀C ⊆ Ω (5)

The Dempster rule is the normalized conjunctive rule:

m1 ⊕m2(C) =
m1 ∩©m2(C)

1 −m1 ∩©m2(∅)
, ∀C ⊆ Ω (6)

In order to ensure the decision making, beliefs are transformed into probability
measures recorded BetP, and defined as follows [10]:

BetP(A) =
∑
B⊆Ω

|A ∩B |
| B |

m(B)

(1 −m(∅)) , ∀A ∈ Ω (7)
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4 Belief Hierarchical Clustering

In order to set down a way to develop a belief hierarchical clustering, we choose
to work on different levels: on one hand, the object level, on the other hand, the
cluster level. At the beginning, forN objects we have, the frame of discernment is
Ω = {x1, ..., xN} and for each object belonging to one cluster, a degree of belief
is assigned. Let PN be the partition of N objects. Hence, we define a mass
function for each object xi, inspired from the k-nearest neighbors [2] method
which is defined as follows:

mΩi

i (xj) = αe−γd2(xi,xj)

mΩi

i (Ωi) = 1 −
∑
mΩi

i (xj)
(8)

where i 
= j, α and γ are two parameters we can optimize [11], d can be con-
sidered as the Euclidean distance, and the frame of discernment is given by
Ωi = {x1, ..., xN} \ {xi}.

In order to move from the partition of N objects to a partition of N − 1
objects we have to find both nearest objects (xi, xj) to form a cluster. Even-
tually, the partition of N − 1 clusters will be given by PN−1 = {(xi, xj), xk}
where k = 1, ..., N\ {i, j}. The nearest objects are found considering the pignis-
tic probability, defined on the frame Ωi, of each object xi, where we proceed the
comparison by pairs, by computing firstly the pignistic for each object, and then
we continue the process using argmax. The nearest objects are chosen using the
maximum of the pignistic values between pairs of objects, and we will compute
the product pair one by one.

(xi, xj) = argmaxxi,xj∈PNBetPΩi

i (xj) ∗ BetP
Ωj

j (xi) (9)

Then, this first couple of objects is a cluster. Now consider that we have a
partition PK of K clusters {C1, . . . , CK}. In order to find the best partition
PK−1 of K−1 clusters, we have to find the best couple of clusters to be merged.
First, if we consider one of the classical distances d (single link, complete link,
average, etc), presented in section 2, between the clusters, we delineate a mass
function, defined within the frame Ωi for each cluster Ci ∈ PK with Ci 
= Cj

by:

mΩi

i (Cj) = αe−γd2(Ci,Cj) (10)

mΩi

i (Ωi) = 1 −
∑

mΩi

i (Cj) (11)

where Ωi = {C1, . . . , CK} \ {Ci}. Then, both clusters to merge are given by:

(Ci, Cj) = argmaxCi,Cj∈PKBetPΩi(Cj) ∗ BetPΩj (Ci) (12)

and the partition PK−1 is made from the new cluster (Ci, Cj) and all the other
clusters of PK . The point by doing so is to prove that if we maximize the
degree of probability we will have the couple of clusters to combine. Of course,
this approach will give exactly the same partitions than the classical ascendant
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hierarchical clustering, but the dendrogram can be built from BetP and the best
partition (i.e. the number of clusters) can be preferred to find. The indexed
hierarchy will be indexed by the sum of BetP which will lead to more precise
and specific results according to the dissimilarity between objects and therefore
will facilitate our process.

Hereafter, we define another way to build the partition PK−1. For each initial
object xi to classify, it exists a cluster of PK such as xi ∈ Ck. We consider the
frame of discernment Ωi = {C1, . . . , CK} \ {Ck}, m, which describes the degree
that the two clusters could be merged, can be noted mΩand we define the mass
function:

mΩi

i (Ckj ) =
∏

xj∈Ckj

αe−γd2(xi,xj) (13)

mΩi

i (Ωi) = 1 −
∑

xj∈Ckj

mΩi

i (Ckj ) (14)

In order to find a mass function for each cluster Ci of PK , we combine all
the mass functions given by all objects of Ci by a combination rule such as
the Dempster rule of combination given by equation (6). Then, to merge both
clusters we use the equation (12) as before. The sum of the pignisitic probabilities
will be the index of the dendrogram, called BetP index.

5 Experimentations

Experiments were first applied on diamond data set composed of twelve objects
as describe in Figure 1.a and analyzed in [7]. The dendrograms for both classical
and Belief Hierarchical Clustering (BHC) are represented by Figures 1.b and 1.c.
The object 12 is well considered as an outlier with both approaches. With the
belief hierarchical clustering, this object is clearly different, thanks to the pig-
nistic probability. For HAC, the distance between object 12 and other objects
is small, however, for BHC, there is a big gap between object 12 and others.
This points out that our method is better for detecting outliers. If the objects
5 and 6 are associated to 1, 2, 3 and 4 with the classical hierarchical clustering,
with BHC these points are more identified as different. This synthetic data set
is special because of the equidistance of the points and there is no uncertainty.

We continue our experiments with a well-known data set, Iris data set, which
is composed of flowers from four types of species of Iris described by sepal length,
sepal width, petal length, and petal width. The data set contains three clusters
known to have a significant overlap.

In order to reduce the complexity and present distinctly the dendrogram, we
first used the k-means method to get initial few clusters for our algorithm. It is
not necessary to apply this method if the number of objects is not high.

Several experiments have been used with several number of clusters. We
present in Figure 2 the obtained dendrograms for 10 and 13 clusters. We no-
tice different combinations between the nearest clusters for both classical and
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a. Diamond data set

b. Hierarchical clustering c. Belief hierarchical clustering

Fig. 1. Clustering results for Diamond data set

belief hierarchical clustering. The best situation for BHC is obtained with the
pignistic equal to 0.5 because it indicates that the data set is composed of three
significant clusters which reflects the real situation. For the classical hierarchical
clustering the results are not so obvious. Indeed, for HAC, it is difficult to decide
for the optimum cluster number because of the use of the euclidean distance and
as seen in Figure 2.c it indistinguishable in terms of the y-value. However, for
BHC, it is more easy to do this due to the use of the pignistic probability.

In order to evaluate the performance of our method, we use some of the most
popular measures: precision, recall and Rand Index (RI). The results for both
BHC and HAC are summarized in Table 1. The first three columns are for BHC,
while the others are for HAC. In fact, we suppose that Fc represents the final
number of clusters and we start with Fc = 2 until Fc = 6. We fixed the value
of kinit at 13. We note that for Fc = 2 the precision is low while the recall is
of high value, and that when we have a high cluster number (Fc = 5 or 6), the
precision will be high but the recall will be relatively low. Thus, we note that for
the same number of final clusters (e.g. Fc = 4), our method is better in terms of
precision, recall and RI.
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a. Kinit = 10 for HAC b. Kinit = 13 for HAC

c. Kinit = 10 for BHC d. Kinit = 13 for BHC

Fig. 2. Clustering results on IRIS data set for both hierarchical (HAC) (Fig. a and b)
and belief hierarchical (BHC) (Fig. c and d) clustering (Kinit is the cluster number by
k-means first).

Table 1. Evaluation results

BHC HAC
Precision Recall RI Precision Recall RI

Fc = 2 0.5951 1.0000 0.7763 0.5951 1.0000 0.7763
Fc = 3 0.8011 0.8438 0.8797 0.6079 0.9282 0.7795
Fc = 4 0.9506 0.8275 0.9291 0.8183 0.7230 0.8561
Fc = 5 0.8523 0.6063 0.8360 0.8523 0.6063 0.8360
Fc = 6 0.9433 0.5524 0.8419 0.8916 0.5818 0.8392

Tests are also performed to a third data base, Congressional Voting Records
Data Set. The results presented in Figure 3 show that the pignistic probability
value increased at each level, having thereby, a more homogeneous partition.
We notice different combinations, between the nearest clusters, that are not the
same within the two methods compared. For example, cluster 9 is associated to
cluster 10 and then to 6 with HAC, but, with BHC it is associated to cluster 4
and then to 10. Although, throughout the BHC dendrograms shown in Figure 3.c
and Figure 3.d, the best situation indicating the optimum number of clusters can
be clearly obtained. This easy way is due to the use of the pignistic probability.
For this data set, we notice that for Fc = 2 and 3, the precision is low while the
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a. Kinit = 10 for HAC b. Kinit = 13 for HAC

c. Kinit = 10 for BHC d. Kinit = 13 for BHC

Fig. 3. Clustering results on Congressional Voting Records Data Set for both hierar-
chical and belief hierarchical clustering

Table 2. Evaluation results for Congressional Voting Records Data Set

BHC HAC
Precision Recall RI Precision Recall RI

Fc = 2 0.3873 0.8177 0.5146 0.5951 1.0000 0.7763
Fc = 3 0.7313 0.8190 0.8415 0.6288 0.8759 0.7892
Fc = 4 0.8701 0.6833 0.8623 0.7887 0.7091 0.8419
Fc = 5 0.8670 0.6103 0.8411 0.7551 0.6729 0.8207
Fc = 6 0.9731 0.6005 0.8632 0.8526 0.6014 0.8347

recall is high. However, with the increasing of our cluster number, we notice that
BHC provides a better results. In fact, for Fc = 3, 4, 5 and 6 the precision and
RI values relative to BHC are higher then the precision and RI values relative
to HAC, which confirmed the efficiency of our approach which is better in terms
of precision and RI.

6 Conclusion

Ultimately, we have introduced a new clustering method using the hierarchical
paradigm in order to implement uncertainty in the belief function framework.
This method puts the emphasis on the fact that one object may belong to several
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clusters. It seeks to merge clusters based on its pignistic probability. Our method
was proved on data sets and the corresponding results have clearly shown its
efficiency. The algorithm complexity has revealed itself as the usual problem
of the belief function theory. Our future work will be devoted to focus on this
peculiar problem.
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Abstract. We address the issue of fitting a logistic regression model to
soft labeled data, when the soft labels take the form of plausibility degrees
for the classes. We propose to use the E2M algorithm to take this partial
information into account. The resulting procedure iterates two steps:
first, expected class memberships are computed using the soft labels
and the current parameter estimates; then, new parameter estimates are
obtained using these expected memberships. Experimental results show
the interest of our approach when the data labels are corrupted with
noise.

Keywords: Statistical inference from incomplete data, Semi-supervised
learning, Partially-supervised learning.

1 Introduction

In this paper, we address the problem of multiclass classification. In particular,
we are interested in learning a parametric model for the posterior probabilities
Pr(ωk|x,w) of the classes ωk ∈ Ω = {ω1, . . . , ωK}. Classically, such a model is
learnt by estimating the parameter w from a training set of labeled instances
{(x1, y1), . . . , (xn, yn)}, where yi indicates the class of the instance xi. The prob-
lem of training a classifier from data with incomplete or partial labels has re-
cently received much attention. In semi-supervised learning [4], some instances
are precisely labeled, and other unlabeled; partially supervised learning [1,8,10]
considers a set of plausible classes for each training instance. More generally, a
soft label may be used to indicate to which extent a training instance may belong
to the classes considered. In [6], a new version of the EM algorithm for uncertain
data, known as the Evidential EM (E2M) algorithm, was successfully applied
to clustering when the uncertainty on both instances and labels is represented
using belief functions.

We consider in this work the logistic model [3], which has been studied in the
semi-supervised [2,7,9] and partially supervised [8,10] settings. Very recently,
the case of probabilistic labels has been addressed using ranking techniques [13]
and self-training [12]. In [11], the problem of learning from fuzzy information
(instances or labels) using generalized loss functions has been addressed. The
approach was applied to logistic regression on a simple classification problem.
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Here, we propose to represent the class information of an instance xi by a
set of plausibility degrees πi1, . . . , πiK over the classes. We interpret πik as the
plausibility that xi ∈ ωk. Obviously, the classical approach to fitting the model
cannot be used any more: now, the class information of an instance is only
known up to these plausibility degrees. Here, we show that the E2M algorithm
mentioned above may be used to fit the model to such partially labeled data.
Essentially, the algorithm iteratively alternates estimating the expected class
memberships of the training instances knowing the plausibilistic labels and a
current fit for the model parameters, and computing a new fit for the model
parameters by maximizing the corresponding expected log-likelihood.

The paper is organized as follows. Section 2 presents basic knowledge about
the classical logistic model and reminds how the model parameters may be de-
termined in the binomial case (K = 2). In Section 3, we describe our approach
for fitting a logistic model to data with plausibilistic labels. Section 4 presents
some experiments realized over classical real datasets, for which the labels have
been corrupted. The results clearly show the interest to take into account the
information of uncertainty of the class labels when it is available. Eventually,
we conclude in Section 5.

2 Logistic Regression from Hard-Labeled Instances

2.1 Model

As mentioned above, assume that we want to compute the posterior probabilities
of the classes ω1, . . . , ωK for a given instance x = (x1, . . . , xp) ∈ X . The logistic
model postulates that the posterior probabilities pk = Pr(ωk|x,w) are obtained
by

pk = Pr(ωk|x,w) =
exp(wk

tx)

1 +
∑K−1

�=1 exp(w�
tx)

, for k = 1, . . . ,K − 1; (1a)

pK = Pr(ωK |x,w) =
1

1 +
∑K−1

�=1 exp(w�
tx)

. (1b)

Note that an intercept may be included in the model. In this case, a constant
term is included in the feature vector: x = (1, x1, . . . , xp).

The parameter vector w = (w1, . . . ,wK−1) is obviously unknown and can be
estimated from a set of labeled training instances T = {(x1, y1), . . . , (xn, yn)},
xi ∈ X , yi ∈ Ω. The maximum likelihood approach is commonly used for this
purpose. Let

Zik =

{
1 if Yi = ωk,
0 otherwise.

(2)

Since the indicator variable Zik follows a Bernoulli distribution B(pik) with pik =
Pr(ωk|xi,w), we may compute the likelihood function of the model parameters
w given the training labels z1, . . . , zn:

L(w; z1, . . . , zn) =

n∏
i=1

K∏
k=1

Pr(Zik = zik) ∝
n∏

i=1

K∏
k=1

pzikik , (3a)
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where zi = (zi1, . . . , ziK) is the vector indicating the class membership of the
training instance xi determined from yi. The log-likelihood function is thus

logL(w) ∝
n∑

i=1

K∑
k=1

zik log pik; (3b)

it has to be maximized jointly with respect to the vectors wk (k = 1, . . . ,K−1).

2.2 Parameter Estimation (Binomial Case)

In the case of two classes, the log-likelihood can be written as:

logL(w; z1, . . . , zn) =

n∑
i=1

[
ziw

txi − log(1 + exp(wtxi))
]
, (4)

where zi = 1 if yi = ω1, and 0 otherwise. Then, w is estimated so as to max-
imize logL. For this purpose, let us compute the vector ∇ logL of first order
derivatives:

∇ logL =
∂ logL(w)

∂w
=

n∑
i=1

xi

(
zi − exp(wtxi)

1 + exp(wtxi)

)
= Xt (z − p) , (5a)

where X is the n × p instance matrix (or n × (p + 1) matrix if an intercept is
used), z = (z1, . . . , zn)

t is the vector of class indicators, and p = (p1, . . . , pn)
t

of probabilities. Note that the Hessian matrix (of second-order derivatives) is
definite negative:

H =
∂2 logL(w)

∂w∂wt
=

n∑
i=1

xi

(
− ∂

∂wt

(
exp(wtxi)

1 + exp(wtxi)

))
= −XtWX, (5b)

whereW is the diagonal matrix with general term wii = pi(1−pi). Thus, setting
∇ logL to zero yields a maximum for the log-likelihood. In spirit, it aims at
updating the parameter vector w so that the posterior probabilities pi become
closer to the labels zi, i = 1, . . . , n.

Unfortunately, Eq. (5a) is non-linear in w, and one has to resort to itera-
tive techniques to find a local maximum for Eq. (4). Classically, ∇ logL and
H are used in the Newton-Raphson maximization procedure. This algorithm
starts from an initial value w(0) of the parameter vector, and iterates then until
convergence:

w(q+1) = w(q)−
(
H(q)

)−1

∇(q) logL = w(q)+
(
XtW (q)X

)−1

Xt(z−p(q)), (5c)

where ∇(q) logL, H(q), p(q) and W (q) are computed at iteration q using the
current fit w(q) of w.
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3 Logistic Regression from Soft-Labeled Instances

In this section, we remind basic material on belief functions, and we show how
they can be used to represent partial knowledge of the class information of an
instance. The ML estimate of w cannot be straightforwardly estimated as before
when such imprecise information is available: therefore, we briefly remind the
principle of the Evidential EM (E2M) algorithm [6], which can be used for this
purpose. Finally, we detail how it may be applied to estimate a multinomial
logistic model.

3.1 Belief Functions

Let Y be a variable of interest, representing for example the actual class of
an instance x. Partial knowledge of Y can be quantified by a mass function
m : 2Ω → [0, 1], such that

∑
A⊆Ω m(A) = 1. Here, 2Ω denotes the power set of

Ω. In the following, we will assume that m is normal: then, m(∅) = 0. Subsets
A ⊆ Ω such that m(A) > 0 are called focal elements of m.

If m has a unique focal element, that is m(A) = 1 for only one A ⊆ Ω, then
it is said to be categorical. Bayesian mass functions are such that m(A) = 0 for
any A such that |A| 
= 1: they are equivalent to a probability distribution over
Ω. If a mass function m is both Bayesian and certain, that is m({ω}) = 1 for
some ω ∈ Ω, then the actual value of Y is precisely known to be ω.

The mass function m is in one-to-one correspondence with its associated plau-
sibility function Pl : 2Ω → [0; 1], defined for all A ⊆ Ω by:

Pl(A) =
∑

B∩A 	=∅
m(B).

The degree Pl(A) can be interpreted as the maximal amount of belief mass that
could be assigned to A if further information justifying such a transfer became
available [15]. Finally, the function pl : Ω → [0; 1] such that pl(ω) = Pl({ω}) is
called the contour function [14] associated with m.

In this article, we are interested in the case where the labeling information
of the instances xi, i = 1, . . . , n is incomplete. More precisely, we assume that
the partial knowledge of each label is represented by a contour function, or
equivalently by a set of degrees of plausibility over the classes. For each instance
xi, we thus have a vector Πi = (πi1, . . . , πiK), where πik is the plausibility
Pl(Zik = 1) that the actual class of xi is ωk, for k = 1, . . . ,K. Note that this
kind of labeling encompasses a broad set of situations:

– precise labeling, whenever πik = 1 for some k and πi� = 0, for all � 
= k;
– when πik = 1 for all ωk ∈ A, the labeling is partial: all the classes in the set
A are equally and totally plausible, the other ones being impossible; note
that if A = Ω, the actual label of xi is unknown.

– Finally, the labeling is probabilistic when the degrees πik are such that∑
k=1,...,K πik = 1.
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3.2 Evidential EM Algorithm

When the likelihood function depends on unknown variables (here, the indicator
variables Zik, i = 1, . . . , n, k = 1, . . . ,K), the log-likelihood function cannot
be directly maximized. The E2M algorithm makes it possible to overcome this
problem when partial information regarding the missing values is available. It
proceeds iteratively with the expected log-likelihood: in a nutshell, it consists in
replacing the unknown variables by their mathematical expectations, computed
using both the available imprecise class labels and a current estimate of the
model parameters w.

The expected log-likelihood is thus maximized by iterating two alternative
steps. At iteration q, the E-step consists in computing the expectation of the
complete log-likelihood with respect to the imprecise information available: here,

Q(w;w(q)) = E[logL(w; z)|w(q), Π ], (6)

with w(q) the current estimate of the parameter vectorw, andΠ = (Π1, . . . , Πn)
the set of imprecise class labels of all the instances. The M-step then requires the
maximization of Q(w;w(q)) with respect to w. The E2M algorithm alternatively
repeats the E- and M- steps until a convergence condition is met. In [6], it is
shown that it converges towards a local maximum of the log-likelihood.

3.3 Model Estimation

E-Step. In our case, the expectation of the log-likelihood defined by Eq. (3b)
writes

Q(w;w(q)) = E[logL(w; z)|w(q), Π ] ∝
n∑

i=1

t
(q)
ik log pik, (7)

where t
(q)
ik = E[Zik|w(q), Πi]. Note that this expression is identical to Eq. (4),

except for the indicator variables zik that are now unknown and thus replaced
by their expectations. As before, each indicator variable Zik follows a Bernoulli

distribution B(pik). Thus, following [6], its expectation t
(q)
ik may be computed as:

t
(q)
ik = E[Zik|w(q), Πi] = Pr(Zik = 1|xi,w

(q), Πi)

=
Pr(Zik = 1|xi,w

(q)) pl(Zik = 1)∑
zi�

Pr(Zi� = zi�|xi,w(q)) pl(zi� = 1)
=

p
(q)
ik πik∑K

�=1 p
(q)
i� πi�

.

Replacing the current estimates p
(q)
ik of the probabilities with their expressions

(Eq. (1a-1b)), we finally obtain:

t
(q)
ik =

πik exp(w
(q)
k

txi)∑K−1
�=1 πi� exp(w

(q)
�

txi) + πiK
, for k = 1, . . . ,K − 1; (8a)

t
(q)
iK =

πiK∑K−1
�=1 πi� exp(w

(q)
�

txi) + πiK
. (8b)
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M-Step. Once these expected class labels have been obtained in the E-step,
the M-step consists in maximizing Eq. (7) with respect to w, in order to obtain
a new estimate w(q+1) of the model parameters. This is trivial once the sim-
ilarity between Eq. (7) and Eq. (3b) has been noticed. Indeed, any procedure
for estimating a logistic model from data with precise labels can be used for
this purpose, by replacing each precise (and now missing) class label zik with its

expected value t
(q)
ik computed in the E-step via Eq. (8a-8b).

3.4 Algorithm, Convergence, and Computational Complexity

Algorithm 1 summarizes our procedure for estimating a multinomial logistic
model from data with imprecise labels. We propose to check for convergence by
comparing the square norm between two successive parameter vectors w(q) and
w(q+1) to some predefinite threshold ε.

Algorithm 1. Fitting a Logistic Model to Soft Labeled Instances

Inputs: training set {(x1,Π1), . . . , (xn,Πn)}, with xi ∈ X , Πi ∈ [0, 1]K , i = 1, . . . , n;
initial parameter vector w(0); threshold ε

repeat
1. E-step: compute the expected class labels t

(q)
ik (i = 1, . . . , n, k = 1, . . . ,K),

using the current parameter vector w(q) = (w
(q)
1 , . . . ,w

(q)
K−1), via Eq. (8a-8b),

2. M-step: compute a new parameter vector w(q+1) by maximizing Eq. (7) with
respect to w, using ay classical procedure for logistic regression.

until the algorithm converges: ‖w(q+1) −w(q)‖2 ≤ ε

Outputs: Maximum likelihood estimate ŵ of the parameter vector, and corresponding
observed log-likelihood logL(ŵ).

The convergence of the EM algorithm is classically based on the relative in-
crease of the expected log-likelihoodQ. However, this function can be very flat in
some regions of the parameter space, leading to erroneously detect convergence.
Thus, we rather propose to check for convergence by comparing the square norm
between two successive model parameters w(q) and w(q+1) to some pre-definite
threshold ε.

We may remark that this estimation strategy requires using an iterative opti-
mization procedure to maximize Q(w;w(q)) at each iteration of the E2M algo-

rithm. Note, however, that two successive estimates of the class labels t
(q)
ik and

t
(q+1)
ik are generally close to each other; thus, this is likely to be the same for
two successive parameter estimates w(q) and w(q+1), particularly after a few it-
erations of the E2M algorithm. Therefore, w(q) is a good choice for the starting
value of the optimization procedure deployed in the M-step at iteration q + 1.
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4 Experiments

In this section, we report results obtained by fitting a logistic model to sev-
eral classical datasets, which are described in Table 1. These datasets may be
downloaded from the UCI Machine Learning Repository at the following URL:
http://archive.ics.uci.edu/ml/.

Table 1. Dataset description

dataset amount of instances number of classes dimension

Ecoli 336 8 7
Glass 214 6 9

Ionosphere 350 2 34
Iris 150 3 4

Optdigits 5620 10 64
Pageblocks 5473 5 10
Satimage 6435 6 36
Segment 2310 7 19
Sonar 208 2 60

Spambase 4601 2 57
Vehicles 4230 4 18
Vowel 528+462 11 10

Waveform 5000 3 21
Yeast 1484 10 8

For each dataset, we repeated the following procedure. First, the constant
features were removed from the data. Then, we randomly selected 66% of the
data for the training set, and kept the remaining ones apart for testing. Note
that the Vowel dataset is already split into training and test sets, which shall
not be mixed together.

We introduced noise in the labels as follows. With probability ρ = 0.2, a
training label yi was replaced by one of the labels in presence, chosen at random
according to a uniform distribution. We thus considered three different label-
ings: one defined by the actual labels z1, . . . , zn, another with the corrupted
labels z̃1, . . . , z̃n, and eventually a soft labeling where the plausibilistic label Πi

associated with an instance xi is defined as follows:

πik =

{
1 if z̃ik = 1,
ρ otherwise.

(9)

Thus, when the degree of noise ρ is known to be zero, a plausibilistic label boils
down to a precise one; on the contrary, if ρ = 1, all the classes are equally and
completely plausible: no information regarding the actual label of the instance
is then available.
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We trained two precise logistic models: one on the training instances with
actual labels, another on those associated with corrupted labels; and we trained
an “imprecise” logistic model on the data with plausibilistic labels using our
method. The remaining test instances were then classified using these three
models. This procedure was repeated 25 times, to provide average error rates
and 95% confidence intervals in order to compare the accuracy of the different
models. The results are provided in Table 2.

Table 2. Average test error rates and associated 95% confidence intervals

dataset actual labels corrupted labels soft labels

Ecoli 0.128 +/- 0.011 0.161 +/- 0.012 0.158 +/- 0.011

Glass 0.374 +/- 0.019 0.422 +/- 0.026 0.432 +/- 0.027

Ionosphere 0.139 +/- 0.010 0.195 +/- 0.017 0.203 +/- 0.019

Iris 0.051 +/- 0.014 0.182 +/- 0.025 0.117 +/- 0.025

Optdigits 0.057 +/- 0.005 0.072 +/- 0.003 0.085 +/- 0.003

Pageblocks 0.039 +/- 0.002 0.057 +/- 0.003 0.039 +/- 0.002

Satimage 0.142 +/- 0.003 0.183 +/- 0.004 0.146 +/- 0.003

Segment 0.057 +/- 0.006 0.158 +/- 0.008 0.057 +/- 0.003

Sonar 0.274 +/- 0.017 0.366 +/- 0.020 0.359 +/- 0.023

Spambase 0.075 +/- 0.003 0.115 +/- 0.005 0.091 +/- 0.004

Vehicles 0.179 +/- 0.003 0.206 +/- 0.004 0.173 +/- 0.003

Vowel 0.513 0.624 +/- 0.012 0.529 +/- 0.015

Waveform 0.131 +/- 0.003 0.148 +/- 0.003 0.137 +/- 0.003

Yeast 0.447 +/- 0.009 0.463 +/- 0.014 0.428 +/- 0.008

These results clearly show the interest of taking into account the label uncer-
tainty. Indeed, over the 14 datasets processed, it improves the accuracy of the
model estimated in 11 cases (significantly in 9 cases), and degrades it in three
cases (significantly in one case, although the difference in accuracy remains rea-
sonable). Surprisingly, fitting a model from soft corrupted labels seems to give
slightly better results than using the actual labels for two datasets (Vehicles and
Yeast). A possible explanation would be the presence of atypical instances in the
original data.

5 Conclusions

In this paper, we presented a method for fitting a logistic model to soft labeled
data. When the class membership are crisp, the logistic model is fit by maximiz-
ing the likelihood with respect to the model parameters. When the membership
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information is available in the form of degrees of plausibility over the classes, we
propose to fit the model by applying the Evidential EM algorithm.

In this case, the model is estimated via an iterative procedure that alter-
nates between two steps. At each iteration, the E-step consists in computing
the expected class memberships of the training instances, given the plausibilistic
labels and the current fit for the model parameters. Then, the M-step consists in
computing a new fit for the model parameters, by maximizing the log-likelihood
obtained with these new estimates of the class memberships. This may be car-
ried out by applying any classical procedure for training a logistic model from
precisely labeled data, the only difference being that the expected memberships
computed in the E-step are used instead of classical crisp labels.

Although a logistic model needs to be estimated at each step of the EM
algorithm (each time the expected memberships are recomputed), two successive
fits for the model parameters are likely to be close to each other. For this reason,
the parameter vector estimated at a given iteration of the E2M algorithm may
be used as a starting value for the optimization procedure deployed in the M-step
of the next one.

We conducted experiments on some classical real datasets. In these experi-
ments, we introduced noise in the training labels. Then, we compared the results
obtained by fitting a logistic model to the data with (precise) actual labels, with
corrupted precise labels, and with corrupted plausibilistic labels designed so as
to model labeling uncertainty. The results obtained clearly show the interest of
taking into account the labeling uncertainty into account.

In further work, we plan to investigate fitting the logistic model when the
feature vectors describing the instances are also uncertain. Note, however, that
the log-likelihood function depends non-linearly on these feature vectors. For
this reason, this will probably require using Monte-Carlo estimation techniques
to compute the conditional expectations in the E-step of the E2M algorithm.
We also plan to compare our procedure to similar approaches, such as the ones
described in [11,13].

Acknowledgements. The author is indebted to Yves Grandvalet for fruitful
discussions about logistic regression from precise and imprecise labels, as well as
for providing the code for precise multiclass logistic regression.
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Abstract. In many application data are imperfect, imprecise or more generally
uncertain. Many classification methods have been presented that can handle data
in some parts of the learning or the inference process, yet seldom in the whole
process. Also, most of the proposed approach still evaluate their results on pre-
cisely known data. However, there are no reason to assume the existence of such
data in applications, hence the need for assessment method working for uncertain
data. We propose such an approach here, and apply it to the pruning of E2M deci-
sion trees. This results in an approach that can handle data uncertainty wherever
it is, be it in input or output variables, in training or in test samples.

Keywords: classification, uncertain data, E2M algorithm, error rate, belief func-
tions, E2M decision trees, pruning.

1 Introduction

Data uncertainty can have many origins: measurements approximations, sensor fail-
ures, subjective expert assessments, etc. Taking into account this uncertainty to learn a
classifier is challenging because of the analytical and computational difficulties to ex-
tend standard statistical learning methodologies to uncertain data. However, in the past
years, several approaches [6,3] have been proposed to learn model from uncertain data.

Once a classifier is built from a learning (uncertain) samples, it is usually evaluated
by a misclassification or error rate which is computed from test samples. This error rate
corresponds to the probability of misclassification and is estimated by the frequency
of misclassified test samples. However, even in methods dealing with uncertain data,
this misclassification rate is usually computed using precise test samples. This can be
explained by the absence of genuine uncertain benchmark datasets, that remain to be
built.

Yet, there is no reason to separate the training and the learning data by making only
the former uncertain. In practice, one should be able to tackle uncertainty in all the
data sets, without distinction. This is the main issue tackled in this paper, in which
we propose a means to evaluate classifiers and models from uncertain test data. The
uncertain data, from now on called evidential data, will be modelled by the means
of belief functions, that offer a flexible framework to model epistemic uncertainty.

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 87–94, 2014.
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We will use the evidential likelihood [3] as a generic tool to learn and to assess proba-
bilistic models from such evidential data.

In addition, we will apply our proposition to the E2M decision trees classification
model [8], which is a decision tree methodology adapted to uncertain learning data
modelled by belief functions. It is learned using the E2M algorithm [3] which is an
extension of the well known EM algorithm to evidential data. Our proposal will be
applied in two different manners: to prune E2M decision trees, and to evaluate the
resulting classifiers. Indeed, pruning requires to evaluate the pruned trees performances,
hence to potentially evaluate them on evidential data in the case of E2M decision trees.

Section 2 introduces the problem of learning under evidential data, and recalls the
evidential likelihood approach, together with the E2M decision tree approach. In Sec-
tion 3 we give the details of the evidential error rate estimations and in Section 4 a E2M
pruning procedure is proposed and some experiments are presented. Apart from solving
the evaluation problem with evidential data, it will also provides us with a classification
technique able to handle uncertain data at all levels, both in training and in test phases.

2 Background

This section briefly reminds required elements to understand the paper. Further details
can be found in complementary papers [3,8]

2.1 Classification under Evidential Data

The goal of a classification technique is to learn a mapping C from J attributes X =
{X1, . . . ,XJ} ∈ Ω1 × ·· · × ΩJ = ΩX to a class Y ∈ ΩY = {C1, . . . ,CK}. Classically, this
is done using a set of n learning precise data (x,y). In this paper, we consider evidential
data, meaning that each datum is modelled by a mass function on ΩX (for the input
uncertainty) and ΩY (for the class uncertainty). Recall that a mass function on a space Ω
is a positive mass m : 2Ω → [0,1] defined on Ω power set such that ∑E⊆Ω ,E 
= /0 m(E) = 1.
The contour function1 pl : Ω → [0,1] induced by it is pl(ω) = ∑ω∈E m(E).

We consider that this classifier C is learned from an evidential learning set of n
samples

(mx
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y
�) =

⎛⎜⎝mx
1,�
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n,�

my
1,�
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n,�

⎞⎟⎠
and is evaluated using an evidential test sample of n′ samples

(mx
t ,m

y
t ) =
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1,t
...

my
n′,t

⎞⎟⎠ .

While data are assumed to be evidential, we want to learn a probabilistic paramet-
ric classifier with parameters θ providing for an (evidential) entry mx a probability
Pθ (Y |mx), the decided class then corresponding to C (mx) = argmaxCi∈ΩY Pθ (Ci|mx).

1No other notions will be needed in this paper.
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2.2 Evidential Likelihood and E2M Algorithm

In standard probability theory, the likelihood L(θ ;w) of a parameter θ given a sample w
corresponds to the probability Pθ (W =w) of observing this sample given that parameter.
Maximising this likelihood provides good estimators of the parameter value. Denoeux
[3] has extended this concept to evidential data.

When w ∈ A is imprecisely observed, then an imprecise likelihood corresponding to
the probability to pick a sample inside A in the population can be computed as

L(θ ;A) = ∑
w∈A

L(θ ;w) = Pθ (W ∈ A)

If our knowledge about w is not only imprecise but also uncertain and modelled by a
mass function mw having A1, . . . ,Az as focal elements, the evidential likelihood of the
parameter becomes

L(θ ;mw) =
z

∑
i=1

mw(Ai)L(θ ;Ai). (1)

In general, finding the (global) value θ maximizing Eq. (1) is difficult, as the func-
tion is non-convex and complex. However, the E2M algorithm provides a means to
obtain a local maximum of (1). It is an iterative algorithm very similar to the EM al-
gorithm [2], the main difference is the measure used to compute expectations at the
E step. In order to take into account both the available knowledge (represented by
mw) and the model aleatory uncertainty, the E step uses the conjunctive combination
P(. | θ ,mw) := Pθ ∩©mw, which is a probability measure, to compute the expectation.
Algorithm 1 summarizes the E2M algorithm.

Algorithm 1. Estimation with the E2M algorithm

Input: θ (0),γ
Output: final θ

1 r = 1;
2 repeat
3 E-step: Q(θ ,θ (r)) = E[log(L(θ ;W )) | θ (r),mW ] ;

4 M-step: θ (r+1) = argmax
θ∈Θ

Q(θ ,θ (r)) ;

5 r = r+1;

6 until L(θ (r);mw)−L(θ (r−1);mw)

L(θ (r−1);mw)
< γ ;

7 θ = θ (r);

2.3 E2M Decision Trees

Decision trees or more precisely classification trees are famous classifiers that provide
interpretable outputs [1]. They recursively partition the space ΩX into leaves that con-
tains probabilities over the classes ΩY .
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The purity of a leaf th (defining a subset of ΩX ) is usually evaluated by some im-
purity measure such as Shanon entropy i(th) = −∑K

k=1 αk
h log(αk

h) where αk
h = P(Y =

Ck | th). The purity gain obtained by splitting th into tL and tR is computed as δ i =
i(th)− πLi(tL)− πRi(tR) where πL = P(tL | th) and πR = P(tR | th) are the probabilities of
being in each children leaves. In usual approaches the leaves probabilities πh and the
class probabilities inside leaves αk

h are estimated by frequencies of learning samples in
leaves and of their different class labels inside the leaves:

π̃h =
n(th)

n
α̃k

h =
nk(th)
n(th)

where n is the number of learning samples, n(th) is the number of learning sample in
the leaf th and nk(th) is the number of learning samples of class Ck inside the leaf th.

E2M decision trees [8] are an extension of classical decision trees to evidential data.
The main idea is to see the tree as a mixture (the leaves weights πh) of multinomial
distributions (the class probabilities αk

h ), and to learn this probabilistic model using
the E2M. We proposed to estimate the probabilities of leaves and of class in leaves by
maximising their likelihood in regard to the uncertain learning sample (mx

�,m
y
�). We

have:

{π̂h, α̂k
h}h,k = θ̂ = argmax

θ∈Θ
L(θ ;(mx

� ,m
y
�))

Within decision trees techniques, pruning is a classical way to avoid over-fitting and
that are usually based on a compromise between interpretability and accuracy [1,4].
Most of them consider possible sub-trees of the initial learned tree, and pick one satis-
fying an evaluation criteria always based (at least partially) on classification accuracy.
Yet, evidential data do not allow a straightforward computation of accuracy, hence a
need of new evaluation techniques to be able to prune.

3 Uncertain Classifiers Evaluation with the E2M Algorithm:
Evidential Error Rates Estimation

While techniques introduced in the previous sections allow to learn from evidential
data (see also [5]), the problem of evaluating classifiers with an evidential test data
set (mx

t ,m
y
t ) remains. This section proposes a solution also exploiting the evidential

likelihood and E2M algorithm.
Let E ∈ {0,1} be an aleatory Bernoulli variable representing the misclassification

of C , equal to 1 in case of misclassification, 0 in case of good classification. We have
E ∼ Ber(ε) where ε is the misclassification rate, i.e., P(Y 
= C (x)|x).

With precise data, ε , whose estimation ε̃ is the frequency of misclassified examples
in the learning test and corresponds to maximising its likelihood L(θ ;e = {e1, . . . ,en′ })
with ei = 0 if C (xi,t) 
= yi,t , 1 otherwise. We therefore get ε̃ = n1/n′ where n1 is and the
number of 1 in e.
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In practice, when one has evidential data, the E2M model still provides a unique
prediction C (mx

i,t), which has to be compared to an evidential output my
i,t . In practice,

each my
i,t can be mapped to a mass function me

i over {0,1} such that

me
i ({0}) = my

i,t(C (mx
i,t)) (2)

me
i ({1}) = ∑

E⊆Ωy,C (mx
i,t ) 
∈E

my
i,t(E) (3)

me
i ({0,1}) = ∑

E⊆Ωy,C (mx
i,t )∈E,|E|>1

my
i,t(E) (4)

Given this sample, the evidential accuracy can be computed as follows:

L(ε;me) =
n

∏
i=1

[(1 − ε)pli(0)+ ε pli(1)] (5)

Q(ε; ε̂(q)) = nlog(1 − ε)+ log(
ε

1 − ε
)

n

∑
i=1

ξ (q)
i (6)

ε̂(r+1) = argmax
ε∈[0,1]

Q(ε; ε̂(q)) =
1
N

N

∑
i=1

ξ (q)
i (7)

where

ξ (q)
i = E[Ei | ε̂(q);me

i ] =
ε̂(q)pli(1)

(1 − ε̂(q))pli(0)+ ε̂(q)pli(1)

with pli(0) = Pl({ei = 0}) = me
i ({0}) + me

i ({1,0}) and pli(1) = Pl({ei = 1}) =
me

i ({1})+me
i ({1,0})

ε̂ = 0.4 ε̂ = 0.6

Fig. 1. Variations of the evidential error rate ε̂ with the uncertainty level γ when ε̃ = 0.4 and 0.6

As an illustration, Figure 1 represents the variation of the evidential error rate in
function of me

i ({0,1}) = γ for n′ = 100 samples, and where the proportion of samples
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where me
i ({1}) = 1 − γ versus samples where me

i ({0}) = 1 − γ is given by the precise
error rates ε̂ 0.4 and 0.6. Interestingly we can see that the estimation, by privileging
the most present observation, tends to accentuate either the quality of accurate models
(ε̂ < 0.5) or the unreliability of inaccurate ones. We can therefore expect this evidential
accuracy to provide reliable choices.

4 Application: Pruning of E2M Decision Trees

This section illustrates the evidential error rate to the pruning of E2M decision trees.
Considering the sequence of sub-trees induced by successive splits, we simply pick the
one that obtains the smallest evidential error rate on a pruning sample (different from
the initial learning sample). Indeed, our goal is not to define optimal pruning criterion,
but simply to illustrate the use of evidential error rates.

Our experiments concern five precise benchmark datasets (coming from UCI) in
which we artificially injected uncertainty. For each observation wi (attribute and class)
of the precise datasets, a noise level γi was uniformly sampled in [0,1]. A number u
was then uniformly sampled on [0,1], if u< γi then the (noised) value wi is replaced by
another value w∗

i drawn uniformly from ΩW (either attribute or class spaces), otherwise
w∗

i = wi. Obtained evidential data are m(w∗
i ) = 1 − γi and m(ΩW ) = γi.

We learnt simultaneously standard CART decision trees and E2M ones and com-
pared their error rates. For each test we learnt the trees on one third of the datasets,
pruned them on another third and test them on the left third by computing standard er-
ror rates and evidential ones. All computations are achieved on noised data (considering
crisp replacements for CART and evidential ones for E2M) The stopping criteria were
composed of a maximum of 10 leaves and a relative minimum purity gain of 5%.

Table 1. Comparison of CART and E2M decision trees efficiency before and after pruning

data set
classical error rate evidential error rate

naive
CART E2M

naive
CART E2M

unpruned pruned unpruned pruned unpruned pruned unpruned pruned
iris 0.67 0.60 0.60 0.57 0.58 0.79 0.65 0.66 0.59 0.60

balance scale 0.60 0.60 0.60 0.58 0.58 0.63 0.62 0.62 0.51 0.51
wine 0.65 0.61 0.62 0.60 0.60 0.75 0.64 0.67 0.64 0.64
glass 0.68 0.69 0.68 0.68 0.67 0.74 0.73 0.73 0.67 0.67
e.coli 0.72 0.73 0.72 0.74 0.73 0.75 0.74 0.74 0.71 0.70

Table 1 summarizes the means of error rates obtained for 100 tests for each dataset.
For each methodology the error rate are compared before the learning (the naive error
rate is obtained by predicting systematicaly the class the most frequent in the learning
sample), once the trees are learnt but before pruning and after pruning. The high error
rates are due to noise both in the learning and in the testing phases.
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Both evidential and classical error rates are slightly smaller for E2M trees than for
CART ones. If this is not surprising for the evidential error rate after pruning (as it
is the minimized criterion), the other better scores confirm the interest of using evi-
dential approaches. The pruning strategy also increases accuracy for the balance and
glass datasets, despite the small size of the learnt trees. E2M trees appear to be natu-
rally smaller than CART ones but can still be pruned thank to the evidential error rates
computations.

Table 2. Comparison of CART and E2M decision trees sizes before and after pruning

data set
CART E2M

before pruning after pruning before pruning after pruning
# failures # leaves # failures # leaves # failures # leaves # failures # leaves

iris 3 9.57 13 4.57 0 4.36 6 3.39
balance scale 99 1.01 99 1.01 0 7.01 0 5.21

wine 0 10 15 4.79 0 4.05 10 3.06
glass 52 5.26 70 2.08 0 6.92 14 4.46
e.coli 52 5.26 70 2.08 0 6.92 14 4.46

Table 2 compares the size of the CART and E2M trees before and after pruning. A
learning failure occurs when the noised dataset does not enable any first split in regards
to the stopping criteria. CART trees appears to be bigger than E2M ones before and after
pruning. We can interpret this as an impact of the data uncertainty on the complexity
of the learnt model. In deed, it is not necessary to have a complex model with partially
unreliable data.

5 Conclusions

We have introduced a way, through the notion of evidential likelihood, to evaluate clas-
sifier in presence of uncertain (evidential) data. Such a technique appears as essential
and necessary if we want to fully tackle the problem of uncertain data, as assuming un-
certain learning data and certain test data (at least in the output), if valid on benchmark
data sets, seems unrealistic in practical applications. We have also tested our approach
on the E2M decision trees, and doing so have proposed, to our knowledge, the first
method that is able to handle data uncertainty in attributes and classes, both in learning
and testing.

As perspective, it would be interesting to compare our study to other approaches,
both from a theoretical and practical standpoint. For example, we could compare our-
selves to the strategy consisting of transforming evidential data into probabilistic one
through the pignistic transform [7].
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Abstract. DS/AHP is a technique for multi-criteria decision making (MCDM), 
based on the Dempster-Shafer Theory of evidence (DST) and the Analytic  
Hierarchy Process (AHP).  Since its introduction it has been developed and ap-
plied by a number of authors, as well as form the foundation for other DST re-
lated MCDM techniques.  This paper reviews the evolution and impact of 
DS/AHP, culminating in a critical perspective, over relevant criteria, namely i) 
Ease of understanding, ii) A champion, iii) Software development and iv) Its 
pertinent development, for its position in the area of MCDM.  The critical 
perspective will include the impacting role DST has had in the evolution of 
DS/AHP. The lessons learnt, or not learnt, will be of interest to any reader un-
dertaking research with strong influence from DST-based methodologies. 

Keywords: AHP, Dempster-Shafer Theory, DS/AHP, Reflections. 

1 Introduction 

This paper considers the DS/AHP technique for multi-criteria decision making 
(MCDM) [1, 6].  The rudiments of DS/AHP are based on the Dempster-Shafer 
theory (DST) of evidence ([9, 23] - DS part of name) and the Analytic Hierarchy 
Process ([22] - AHP part of name).  The remit of DS/AHP is the preference ranking 
of decision alternatives (DAs) based over a number of different criteria.  From its 
introduction it has been technically developed [2, 3, 4, 5, 7] and applied in real world 
problems [17, 27, 28], as well as contributed to the definition of derivative techniques 
[10, 11, 13, 14]. 

This paper attempts to put into perspective the evolution of the DS/AHP technique, 
including emphasis on the impact of using DST in its methodology.  In the relative 
short time since its introduction, academic researching/publishing has changed, with 
other issues beyond just the concomitant publications (associated with the introduc-
tion and development of a novel analysis technique) required to be considered.  For 
example, one of these issues is research impact, how the research being undertaken 
has had impact in a wider context.  With this in mind, thoughts on how the evolution 
of DS/AHP has progressed, from one of its main developers, may resonate similar 
thoughts with academics using DST in the introduction and development of other 
novel analysis techniques. 
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A critical perspective will develop on the evolution of DS/AHP, rounding on four 
pertinent criteria to consider, namely, i) Ease of understanding, ii) A champion, iii) 
Software development and iv) Its pertinent development.  For the reader, interested 
in DST, lessons may be learnt from what to keep in perspective when undertaking 
technique based research with DST. 

2 The DS/AHP 

In this section we briefly describe the DS/AHP technique for MCDM, through an 
example problem (only basic features of DS/AHP are shown - for a full description 
see [1, 6] and later references).  The example concerns the ability of a decision maker 
(DM) to preference rank eight decision alternatives (DAs), A, B, C, D, E, F, G and H 
(making up the frame of discernment Θ), considered over three criteria, c1, c2 and c3.  
The intended goal of the DM is to identify ‘Best DA(s)’, where DA(s) denotes that 
more than one DA may be wanted to be identified as best. 

With the intention of employing DS/AHP, the DM makes judgements on the prefe-
rence of identified groups of DAs over the different criteria (preferences relative to 
Θ), see Fig. 1. 

 

Fig. 1. Preference judgements made on ‘Best DAs’ MCDM problem 

In Fig. 1, three, two and two groups of DAs have been identified for preference on 
the criteria, c1, c2 and c3, respectively.  Each identified group of DAs have a respec-
tive scale value assigned to them, here, a ‘2 to 6’ scale was adopted, with inference on 
the identified group of DAs relative to Θ ranging from moderately preferred (2) to 
extremely preferred (6), see [2].  Also shown in Fig. 1 are the criterion importance 
values (CIVs) for the different criteria, c1: p1 = 0.1, c2: p2 = 0.3 and c3: p3 = 0.6 (found 
through a weight assignment approach - see [4] for example).  From Fig. 1, for the c2 
criterion, the associated comparison matrix is of the form: 


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which gives the respective mass values and focal elements (using general CIV p2), 
forming a criterion BOE (body of evidence - made up of the mass values  
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[1]), defined m2(·), in this case given as: 
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These general expressions for the mass values in the criterion BOE m2(·), and the 
other criterion BOEs m1(·) and m3(·) associated with the c1 and c3 criteria, are graphi-
cally illustrated in Fig. 2. 

     
Fig. 2. Mass value graphs of the criterion BOEs, m1(⋅), m2(⋅) and m3(⋅) 

In Fig. 2, the effect of a CIV (pi value), on the formulisation of mass values in the 
criterion BOEs is clearly exposited (as pi → 0 the majority of the exact belief is as-
signed to local ignorance (mi(Θ) → 1) and as pi → 1 more exact belief is assigned to 
the identified groups of DAs).  Also shown for each criterion are the specific mass 
values (associated with focal elements) based on their respective CIVs of; p1 = 0.1, p2 
= 0.3 and p3 = 0.6. For the case of the c2 criterion, the criterion BOE m2(·) is of the 
form (with p1 = 0.3):  

m2({C, F}) = 0.219, m2({E, H}) = 0.438 and m2(Θ) = 0.343. 

Similar results can be found for the other two criteria (m1(·) for c1 and m3(·) for c3).  
Dempster’s combination rule can then be used to combine the evidence from the 
individual criterion BOEs, resulting in the final BOE, defined m(·), and is of the form: 

m({C}) =  0.177, m({D}) = 0.031, m({E}) = 0.098, m({F}) = 0.071,   
m({G}) = 0.044, m({A, G}) =  0.021, m({C, F}) = 0.068, m({C, G}) = 0.192, 
m({E, F}) = 0.077, m({E, H}) = 0.115, m({B, C, F}) =  0.016, m(Θ) = 0.091. 

This final BOE contains all the evidence from the judgements made by a DM over 
the three criteria. How this evidence is used to identify the most preferred DA or 
groups of DAs (Best DA(s)) is dependent on how the presence of ignorance is ac-
commodated for.  For example, from this final BOE, most preferred groups of DAs 

can be evaluated, based on the Belief (Bel(si) = 
⊆ ij ss

jsm )(  for all si ⊆ Θ) and Plausi-

bility (Pls(si) = 
∅≠∩ ij ss

jsm )(  for all si ⊆ Θ) functions, see Table 1. 
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Table 1. Groups of DAs of with largest belief and plausibility values 

Size Belief - Bel(·) Plausibility - Pls(·) 
1 {C}, 0.177 {C}, 0.543 
2 {C, G}, 0.413 {C, E}, 0.833 
3 {C, F, G}, 0.517 {C, E, F}, 0.903 
4 {C, E, F, G}, 0.726 {C, E, F, G}, 0.969 

 
In Table 1, each row identifies the group of DAs, of a certain size, with the largest 

belief and plausibility values from all other possible groups of DAs of that size.  To 
demonstrate, for a group of DAs of size two, the groups, {C, G} and {C, E}, respec-
tively, were identified as most preferred, based on the belief and plausibility values, 
respectively. 

3 The Development and Application of DS/AHP 

Beyond the introductory research on DS/AHP, presented in [1, 6], around the year 
2000, its early development followed similar developments/issues considered across 
other MCDM techniques, in particular the AHP, understandably.  The impact of the 
employed preference scale values used and their effect on the results from the em-
ployment of DS/AHP was considered in [2], which also looked at possible bounds on 
the level of ignorance from preference judgements made.  There was early effort to 
present DS/AHP in a software tool, as in [7], which enabled a relatively simple user-
friendly utilization of an early version of DS/AHP.  [3] incorporated more existing 
DST formulation, notably involving the non-specificity measure to describe the 
judgements made and results found using DS/AHP. 

Two further developments considered DS/AHP within the group decision making 
environment, importantly showing the DS/AHP can be used in a multi-level hierarchy 
in MCDM.  [4] considered group decision making, using DS/AHP when there is non-
equal importance of the decision makers in the group – using a discount rate formula-
tion developed in DST.  [5] considered inter-group alliances and majority rule in 
group decision making using DS/AHP, using a DST based distance measure to itera-
tively aggregate the judgements from different members of the decision making 
group. 

Developments away from the original author(s) work on DS/AHP, commenced in 
2004 (we believe).  [19] developed the DS/AHP approach to handle three types of 
ambiguous evaluations, termed, missing, interval-valued, and ambiguous lottery 
evaluations, then applying it to a real estate investment problem.  They further sug-
gest future research could conduct psychological experiments to refine and validate 
models, as well as considering DS/AHP in a fuzzy environment.  [20] also developed 
DS/AHP in creating preference relations of groups of DAs based on their belief  
intervals, suggesting DS/AHP may not satisfy the transitive property. [21] considered 
the sensitivity of DS/AHP when using different combination rules (and adding DAs 
beyond the original DAs included). 

[24] furthered the DS/AHP method to collect and aggregate the preferences of  
multiple DMs, and how this information can then be encoded as weight interval  
constraints in stochastic multi-criteria acceptability analysis.  It should be noted, as 
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suggested in [25], that the main excellent idea underlying the DS/AHP method is in 
the applying of DST to the AHP, moreover [1, 6] proposing to compare groups of 
DAs by means of their comparisons with the set of all DAs.  [29] examined DS/AHP 
in a majority rule group decision making context (similar investigation to that in [5]).  
[26] extended DS/AHP, for when there are several hierarchical levels of criteria, they 
also reduced the computation procedure for the processing and aggregating the in-
complete information about criteria and DAs down to solving a finite set of linear 
programming problems. [15] utilised DS/AHP when comparing results from different 
combination axioms. 

[10] considered DS/AHP in the context of Dezert-Smarandache theory, formulat-
ing DSmT/AHP, which included the use of the PCR5 combination rule.  In [13], 
developing DS/AHP, with derivative named technique Belief AHP, took the ability to 
group DAs together to the criteria level of an MCDM problem, allowing preference 
judgements to be made also on groups of criteria.  Calling it TIN-DS/AHP, [17] de-
veloped DS/AHP using the notion of Three-point Interval Number, suggesting it is 
more inclusive of the complexity of decision problem and fuzziness of human 
thought. 

In terms of applications, [4] applied DS/AHP in a textbook selection problem, us-
ing judgements from fellow academics.  Incorporating with TOPSIS, [16] applied 
DS/AHP in deciding on emergency alternatives.  The problem of fire extinguishing 
systems evaluation was considered using DS/AHP in [17].  [27] applied the DS/AHP 
for decision-making in urban power system planning (they suggest DS/AHP com-
pared with AHP is clear, more tangible, convenient and easy to calculate). [28] ap-
plied DS/AHP to enable uncertainty information fusion for flood risk assessment.  In 
a financial context, and part of a bigger research problem, [12] employed DS/AHP to 
determine the relative importance weights of supply chain performance measures.  
DS/AHP was applied in [18] to identify attacker type in a game-theoretic approach for 
preventing threats in intelligent surveillance systems. 

It is worthy to note [8] included DS/AHP in their description of the five existing 
techniques employing evidence theory (DST) in MCDM, suggesting it needed to be 
tested on large complex problems. 

4 DS/AHP Lessons to Be Learnt? 

This section offers insights into the evolution of DS/AHP.  In a general context, it 
offers evidence of how a technique, heavily based on DST, can find its place amongst 
other techniques, each potentially offering the same opportunities for analysis, in this 
case in the area of MCDM.  A number of subsections will elaborate on some of the 
key issues I believe have impacted on its evolution (or not). 

4.1 Ease of Understanding 

The DS/AHP technique, while advocating a clearer or more simplistic approach to 
MCDM than AHP (as suggested in [20]), or offering a more practical MCDM tech-
nique, did have an issue of ease of understanding.  During its introduction, while 
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what it could do sounded all very positive, how it actually did it was not as easy to 
exposit, because of the use of DST possibly, and its own newness. 

For the DST literate, I surmise, there was not a problem with understanding the 
technical rudiments of the technique, whether it made sense in the realm of MCDM 
was perhaps less assured.  However, perhaps where the problem lay was in the 
MCDM relevant researchers and their ability, or perhaps desire, to work through the 
various relevant technical issues of DST, including bodies of evidence, mass values 
and combining evidence etc. 

In the early years of its evolution, being an academic in a business school, the early 
authors’ platforms for talking about DS/AHP were mostly through MCDM seminar 
tracks in Management or Operations Research conferences, where much of the time in 
seminar presentations was taken up expositing small examples of how DST worked, 
before then going onto the technique specifically.  Clearly, this early exposition 
meant one cohort of ‘potentially interested’ researchers got to experience the DS/AHP 
technique, perhaps a number of them got more benefit from seeing DST in action, 
possibly for the first time, both initially through small general examples as well as 
through DS/AHP.  However, the DST based academics were never really brought on 
board in the early years of its introduction, and importantly its development.   

This pertinently brings me on to the next issue, namely the championing of the 
DS/AHP technique. 

4.2 A Champion 

From the first introduction of the DS/AHP technique its early evolution was steered 
by one researcher, a champion so to speak, myself I have to admit, as a person who 
had helped teach Dempster-Shafer theory in my home university I was keen to use it 
in some research field.  Having an initial ‘loose’ interest in MCDM I endeavored to 
see how DST could be employed in some way in MCDM. 

Considering AHP from the start, it took a while, but it was possible to construct a 
development on AHP which was based on DST, and importantly, could bring some 
advantages over the original AHP (see literature).  From the early concomitant re-
search, and spurred on by the success of the first publications [1, 6], in regard to 
DS/AHP I considered its technical development.  This followed two directions, 
firstly, what did AHP have that could be mimicked with DS/AHP, but also what did 
DST have that could be positively brought into the DS/AHP, bringing further advan-
tages over the original AHP.  

While this sounds all very positive, with other commitments and interests the time 
spent on DS/AHP may not have been enough for its potential to be fully brought out.  
Further, there were never other full-on champions of the DS/AHP technique, instead 
the early work on it has been piecemeal by other academics, possibly as part of their 
PhDs etc.  Over the years, the notion of a champion has never been full-on, only 
‘now and again’ exposited at conferences.  Whether a champion may still materialize 
we shall wait and see, of a champion of a later derivative of the technique may be 
what happens. 
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4.3 Software Development 

One issue relating to the DS/AHP has been the availability of pertinent software that 
can undertake the relevant MCDM analysis.  In [7], some rudimentary software was 
created, through a summer-employment-scheme of an undergraduate computer 
science student (one of the co-authors in [7]).  The creation of this software was not 
with the emphasis of getting software out there to be used by other potential users 
(back then there wasn’t the motivation to push this), instead, it was more of an aca-
demic exercise in seeing what could be done in terms of how software could bring out 
the characteristics of DS/AHP, and in-particular the novel features DST brings with it, 
as well as checking on its usability, if my memory serves me right (in the potential 
real world). 

This I perceive was a missed opportunity in the evolution of DS/AHP, with even 
rudimentary software ‘freely’ available to potential users; it would have itself contri-
buted to the championing of the technique.  By the nature of the nascence of 
DS/AHP, it would have been tested in many different applications, with its usability, 
as well as technical efficiencies/inefficiencies brought to the fore.  Moreover, it 
would have been tested by individuals who may not have had the full working know-
ledge of the technique (a form of robustness checking).  It is a shame that I do not 
have a running version of this software created early in the evolution of DS/AHP.  
With other academics working on DS/AHP, I am not aware of freely available 
DS/AHP software, something that would be of great benefit to its evolution. 

Today’s increasingly technical world is far different from what was even back in 
the 2000s, perhaps a smart-phone/ipad app based software approach may be the way 
forward, something to seriously think about, need to find the time though. 

4.4 Its Pertinent Development 

Evidenced from section 3, DS/AHP has been developed from its original introduction 
(in [6]), both from work by the original author of the technique, but also from  
academics taking independent perspectives on its pertinence/development.  It is un-
derstandable that any technique, from its initial introduction, will quite possibly be 
developed in someway, improving its ability to undertake what it is intended for, as 
well as accessorizing it with the characteristics necessary for other domains it can 
potentially operate successfully in. 

The point here is that how this succession of developments happens is itself a cru-
cial series of moments in the future impact of a technique.  That is, especially in the 
case of academics who work on a technique like DS/AHP, who didn’t originally in-
troduce it, they want to put their stamp on it, very often in the form of assigning a 
derivative name to the resultant development, in this case for example DSmT-AHP 
([23]), Belief AHP ([26, 27]) and TIN-DS/AHP ([24]).  There is nothing wrong in 
doing this, but for the technique in question, or the general methodology underlying 
the technique, its future impact is fractured into many bits, depending on how many 
derivative names of derivative versions of the technique have been advocated in the 
research papers produced.   
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It may well be that the future impact of DS/AHP will not be ultimately consid-
ered/defined under its original name (which only came into being in the second publi-
cation on the technique in [1] it has to be said), but under a derivative name, which 
may have appropriately developed the technique to a successful level of usability, as 
well as possibly being successful in the other three points outlined in this section of 
the paper (its championing etc.). Perhaps the accompanying question here is when it is 
appropriate and advantageous to all concerned to simply add-on developments to a 
known technique or to attribute a derivative name to the development of the  
technique. A question that stems from this section, perhaps itself one to consider care-
fully is, how important, and impacting, is the actual name of a technique to its future 
impact (survivability) in a problem area. 

5 Conclusions 

This paper has pondered the evolution of the DS/AHP technique for MCDM.  Hav-
ing written the document in the order it is presented, perhaps the first conclusion I 
have is to not know, or ask the question, on what is success/failure in terms of the 
evolution/impact of an MCDM based or other technique (based on DST or otherwise).  
As the early champion of the technique, including being a co-author and single author 
of the early research publications on DS/AHP, this paper has made me look back and 
wonder if it has become, or is it where, I hoped it would be.  I suppose not, but as 
mentioned earlier, what is the timeframe to make such judgments in the evolu-
tion/impact of a technique. 

How to nurture the DS/AHP technique as a viable/popular technique for MCDM is 
perhaps what we would all like to know.  For any technique, especially using DST in 
line with this conference, are there shackles of tech-ignorance of the DST methodolo-
gy that shackles any DST-based technique.  Further, are the rudiments of DST them-
selves still evolving, and so there maintains uncertainty in what are the best technical 
rudiments to employ in DS/AHP? 

It may well be that DS/AHP will be known, or its contribution at least, may be that 
a future technique, with evolved name, will find the optimum position as a popular 
and versatile technique in the area of MCDM.  My final words in this paper are that I 
may just be missing something on what to do with DS/AHP, I may also be missing 
the time to put into its championing (or it may not be good enough as a technique for 
MCDM in its current evolution – who knows). 
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1 Université Tunis El Manar, LIPAH, Faculty of Sciences of Tunis, Tunisia
{ahmed.samet,sadok.benyahia}@fst.rnu.tn

2 Univ. Lille Nord de France UArtois, EA 3926 LGI2A, F-62400, Béthune, France
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Abstract. In this paper, we tackle the problem of data representation
in several types of databases. A detailed survey of the different support
measures in the major existing databases is described. The reminder of
the paper aims to prove the importance of using evidential databases
in case of handling imperfect information. The evidential database gen-
eralizes several ones by the use of specific Basic Belief Assignments. In
addition, we show that the precise support, initially introduced on evi-
dential database, generalizes several support measures.

Keywords: Evidential database, Binary database, Probabilistic
database, Fuzzy database, Support.

1 Introduction

Data mining is a technique that uses a variety of data analysis tools to discover,
hidden but interesting patterns and relationships in data that may be used to
make valid predictions. Thanks to its simple formulas, it associates performance
and quality in its retrieved results. For this reason, it is used in various fields
and attracted interest in different applications [9].

The first studies on data mining relies on a data model under which trans-
actions captured doubtless facts about the items that are contained in each
transaction. These binary databases have only two scenarios : 1 if an element
exists, 0 otherwise. However, in many applications, the existence of an item in a
transaction is better captured by likelihood measures. The obvious limits of the
binary databases in handling such types of data led the data mining community
to adopt imprecise frameworks in order to mine more pertinent knowledge.

In this paper, we present a non exhaustive review of existing data mining
databases. The characteristics of binary, probabilistic, fuzzy and evidential data-
bases are detailed. The support measures in the databases are presented. The aim
of this paper is to demonstrate the pivotal role of the evidential database, which
relies on the evidence theory [5,12], in representing imprecision and uncertainty.
The importance of using an evidential database rather than the other ones is
justified. Indeed, we prove that the precise support measure [10] in evidential
databases is a generalization of that of the classical ones.
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The remainder of the paper is organized as follows: in section 2, the key basic
settings of the evidential database are recalled. In section 3, the binary database
is studied and its relationship with the evidential database is highlighted. In
section 4, probabilistic databases are scrutinized and the correlation between the
precise support and the probabilistic support is highlighted. Section 5 stresses
on the snugness connection between fuzzy databases with the evidential ones.
Finally, we conclude and we describe issues for future work.

2 Evidential Database and Precise Support

In this section, we detail the main concepts of evidential databases as well as as
the notion of precise support.

2.1 Evidential Database Concept

Introduced by Lee [8], the evidential database was aimed at modelling imperfect
information. This type of database is supposed to handle imprecise and uncertain
data. An evidential database is a triplet EDB = (AEDB,O, REDB). AEDB is a
set of attributes and O is a set of d transactions (i.e., lines). Each column Ai

(1 ≤ i ≤ n) has a domain θAi of discrete values. REDB expresses the relation
between the jth line (i.e., transaction Tj) and the ith column (i.e., attribute Ai)
by a normalized BBA as follows:

mij : 2
θAi → [0, 1] with

⎧⎨⎩mij(∅) = 0∑
ω⊆θAi

mij(ω) = 1. (1)

Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B

T1 m(A1) = 0.7 m(B1) = 0.4
m(θA) = 0.3 m(B2) = 0.2

m(θB) = 0.4
T2 m(A2) = 0.3 m(B1) = 1

m(θA) = 0.7

Table 1 illustrates an example of an evidential database. An item corresponds
to a focal element. An itemset corresponds to a conjunction of focal elements
having different domains. The inclusion operator is defined in [3] such that for
two itemsets X and Y , we have:

X ⊆ Y ⇐⇒ ∀xi ∈ X, xi ⊆ yi.
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where xi and yi are the i
th element of X and Y . For the same evidential itemsets

X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xi and zi ⊆ yi.

An evidential associative rule R is a causal relationship between two itemsets
that can be written in the following form R : X → Y such that X ∩ Y = ∅.

Example 1. In Table 1, A1 is an item and θA × B1 is an itemset such that
A1 ⊂ θA ×B1 and A1 ∩ θA ×B1 = A1. A1 → B1 is an evidential associative rule.

In the following subsection, we consider the precise support and confidence mea-
sures.

2.2 Support and Confidence in Evidential Database

Several definitions for the support’s estimation have been proposed for the evi-
dential itemsets such as [3,6]. Those definitions assess the support based on the
belief function Bel(). The based belief support is constructed from the Cartesian
product applied to the evidential database. Interested readers may refer to [6].
The support is computed as follows:

SupportEDB(X) = BelEDB(X) (2)

such that:

Bel : 2θ → [0, 1] (3)

Bel(A) =
∑

∅	=B⊆A

m(B). (4)

In a previous work [10], we introduced a new metric for support estimation.
The latter has been shown to provide more accuracy and to overcome several
drawbacks of using the belief function. This measure is called Precise support
Pr and it is defined by:

Pr : 2θi → [0, 1] (5)

Pr(xi) =
∑
x⊆θi

|xi ∩ x|
|x| ×mij(x) ∀xi ∈ 2θi. (6)

The evidential support of an itemset X =
∏

i∈[1...n]

xi in the transaction Tj (i.e.,

PrTj ) is then equal to:

PrTj (X) =
∏

xi∈θi,i∈[1...n]

Pr(xi). (7)

Thus, the evidential support SupportEDB of the itemset X becomes:

SupportEDB(X) =
1

d

d∑
j=1

PrTj (X). (8)
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Additionally, in [11], we introduced a new measure of confidence for evidential
associative rules that we called the precise confidence measure. Let us assume an
evidential association rule such as R : Ra → Rc, where Rc and Ra respectively,
denote the conclusion and the antecedent (premise) part of the rule R. The
precise confidence measure can be written as follows:

Confidence(R : Ra → Rc) =

d∑
j=1

PrTj (Ra) × PrTj (Rc)

d∑
j=1

PrTj (Ra)

. (9)

In the following sections, we highlight the relationships between evidential
databases and the main other ones. The link between existing measures and
the evidential precise one is also demonstrated.

3 Binary Data Mining

The first database variants studied from a data mining view are the binary ones.
A binary database can be represented by a triplet BDB = (A,O, RBDB). A
represents the set of n binary attributes (i.e., columns). RBDB is the relation
that reflects the existence of an item in a transaction by only the values 0 and
1. RBDB(Ai, Tj) = 1 means that the item Ai exists in the transaction Tj and
RBDB(Ai, Tj) is set equal to 0 otherwise.

Since the inception of the Apriori algorithm [2], several other approaches
have been introduced to reduce the computational complexity of mining these
”frequent” binary itemsets. The support of an item Ai in a transaction Tj is
defined as follows:

SupportTj (Ai) = RBDB(Ai, Tj). (10)

The support of an item Ai in those binary databases is still computed with
the same manner:

Support(Ai) =

d∑
j=1

RBDB(Ai, Tj) = count(Ai). (11)

The same goes for an itemset A∪B (or A×B if we keep the product notation):

Support(A×B) = count(A ∪B). (12)

Thus, the support is computed by counting the number of transactions having
both A and B. From the support, the confidence measure of a rule R : Ra → Rc

is computed as follows:

confidence(R : Ra → Rc) =
count(Ra ∪Rc)

count(Ra)
. (13)
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A binary database can be constructed by redefining the REDB as a precise BBA.
Indeed, each item Ai ∈ A can be redefined as an evidential item having the
following frame of discernment θAi = {∃, 
 ∃}. ∃ and 
 ∃ denote respectively the
existence and absence of the attribute Ai in the considered transaction. Such a
BBA can be written as follows:{

mij({∃}) = RBDB(Ai, Tj)

mij({
 ∃}) = 1 −RBDB(Ai, Tj)
(14)

where mij is equivalent to a certain BBA. In that case, the support measure
proposed in [10] is equivalent to the binary support equation defined in Equation
(10). To demonstrate that equivalence, let us consider a binary database D and
the evidential database EDB constructed as in the described procedure. Suppose
that RBDB(Ai, Tj) = 1 such that Ai ∈ A, then the corresponding evidential
attribute is an Ai ∈ AEDB with θAi = {∃, 
 ∃}:

PrTj (∃) =
|∃ ∩ ∃|

|∃| mij({∃}) + | 
 ∃ ∩ ∃|
| 
 ∃| mij({
 ∃}) = mij({∃}) = RBDB(Ai, Tj).

(15)
From this point, we deduce that the evidential precise support is a generalization
of the binary one. The same goes for the precise confidence given in Equation
(9) that generalizes binary confidence since they both rely on the same support
fraction.

Example 2. In this example, Table 2 shows how to create an evidential database
from a binary one.

Table 2. The evidential transformation of BDB (Table (a)) to EDB (Table (b))

A B C

T1 X X
T2 X X
T3 X X

(a)

A B C

T1 m11({∃}) = 0 m21({∃}) = 1 m31({∃}) = 1
m11({	 ∃}) = 1 m21({	 ∃}) = 0 m31({	 ∃}) = 0

T2 m12({∃}) = 1 m22({∃}) = 1 m32({∃}) = 0
m12({	 ∃}) = 0 m22({	 ∃}) = 0 m32({	 ∃}) = 1

T3 m13({∃}) = 0 m23({∃}) = 1 m33({∃}) = 1
m13({	 ∃}) = 1 m23({	 ∃}) = 0 m33({	 ∃}) = 0

(b)

The equivalency of the support measure is shown for the itemset B × C.

The support of the itemset B × C from the transactions of Table 2.a is
Support(B × C) = 2

3 . In the evidential database, it is computed as follows:

SupportEDB(B × C) = 1
3

3∑
j=1

PrTj (A) × PrTj (B)

SupportEDB(B × C) = 1
3 (m21({∃}) ×m31({∃}) +m22({∃}) ×m32({∃})+

m23({∃}) ×m33({∃})) = 2
3
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Thus, the support retrieved from the binary database is the same as the precise
support computed from the evidential database.

In the following section, we review the basics of the probabilistic support. A
transformation method from a probabilitic database to evidential one is intro-
duced. The equivalency between the probabilistic support and the precise one is
studied.

4 Probabilistic Data Mining

Probabilistic data mining [1] was introduced to represent imperfect information
thanks to the probability support. It can be represented by a triplet PDB =
(APDB,O, RPDB). The degree of existence of the item Ai in the transaction Tj
is measured through the probability function p(Ai, Tj) ∈ [0, 1]. The support of
an itemset X ∈ APDB in such type of database is defined as follows [4]:

p(X,Tj) =
∏
i∈X

p(i, Tj). (16)

Thus, the support of an itemset X in a database is the sum of its expected
probability in the transaction:

SupportPDB(X) =

d∑
j=1

p(X,Tj). (17)

An equivalent evidential database can be constructed through using Bayesian
BBA1. The BBA can be modeled on a two-member-based frame of discernment
θi = {∃, 
 ∃} where ∃ indicates that Ai belongs to the considered transaction,
whereas 
 ∃ performs the opposite. Such a BBA can be constructed as follows:{

mij({∃}) = p(i, Tj)

mij({
 ∃}) = 1 − p(i, Tj).
(18)

With this construction, the probabilistic support defined in Equation (17) is
equivalent to the proposed precise support. Indeed, the assertion can be verified
i.e.:

PrTj (∃) =
|∃ ∩ ∃|

|∃| mij({∃}) + | 
 ∃ ∩ ∃|

 ∃ mij({
 ∃}) = mij({∃}) = p(i, Tj). (19)

As is the case for a binary database, the Evidential Data mining Algorithm
(EDMA) generalizes the probabilistic version of Apriori: i.e., U-Apriori [4].

Example 3. Table 3 shows how to create an evidential database from a proba-
bilistic one.

1 A BBA is called Bayesian only if all its focal sets are singletons.
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Table 3. The evidential transformation of PDB (Table (a)) to EDB (Table (b))

A B C

T1 0.0 0.7 0.8
T2 0.9 0.7 0.1
T3 0 0.8 0.7

(a)

A B C

T1 m11({∃}) = 0 m21({∃}) = 0.7 m31({∃}) = 0.8
m11({	 ∃}) = 1 m21({	 ∃}) = 0.3 m31({	 ∃}) = 0.2

T2 m12({∃}) = 0.9 m22({∃}) = 0.7 m32({∃}) = 0.1
m12({	 ∃}) = 0.1 m22({	 ∃}) = 0.3 m32({	 ∃}) = 0.9

T3 m13({∃}) = 0 m23({∃}) = 0.8 m33({∃}) = 0.7
m13({	 ∃}) = 1 m23({	 ∃}) = 0.2 m33({	 ∃}) = 0.3

(b)

The equivalency of the support measure is shown for the itemset B × C.
The support of the itemset B × C from the transactions of the Table 3.a is

Support(B ×C) = (0.7×0.8)+(0.7×0.1)+(0.8×0.7)
3 = 0.4. In the evidential database,

it is computed as follows:

SupportEDB(B × C) = 1
3

3∑
j=1

PrTj (A) × PrTj (B)

SupportEDB(B × C) = 1
3 (m21({∃}) ×m31({∃}) +m22({∃}) ×m32({∃})+

m23({∃}) ×m33({∃})) = 1.2
3 = 0.4

Thus, the support retrieved from the probabilistic database is the same as the
precise support computed from the evidential database.

In the following section, we review the basics of fuzzy data mining and we
study its relation with the evidential one.

5 Fuzzy Data Mining

Let us assume the triplet FDB = (AFDB,O, RFDB) that denotes a fuzzy
database. RFDB denotes the fuzzy relationship between an item and a trans-
action expressed through a membership function. The membership function
μTj (i) = α (α ∈ [0, 1]) rates the degree of membership of the considered item to
the transaction Tj . The support computation in such databases is done by the
use of the count() function in the following manner [7]:

count(i) =

d∑
j=1

μTj (i). (20)

The support of item i in the fuzzy database is found as follows:

Support(i) =
count(i)

d
. (21)

Thus, for an itemset X of size q such that xi ∈ X and i ∈ [1, q], the support
becomes:

support(X) =

d∑
j=1

min{μTj(xi), i = 1 . . . q}

d
. (22)



112 A. Samet, É. Lefèvre, and S.B. Yahia

The numerator of the support could be seen as the Gödel t-norm (minimum
t-norm).

Assuming a fuzzy database is available, it is possible to construct an evidential
database. In addition, the precise support sustains fuzzy support in its formula-
tion. Indeed, as can be seen in Equation (8), the precise support is also equal to
the sum of the transactional support divided by the database size.

In the following, we show how to obtain analogous evidential support of the
fuzzy support. Assuming an attribute Ai ∈ AEDB having a frame of discernment
θAi such that ω1 ⊂ · · · ⊂ ωn ⊆ θAi , the corresponding BBA for a fuzzy relation
RFDB(ω1, Tj) = μTj (ω1) is constructed in this form:⎧⎨⎩mij(ω1) = μTj (ω1)∑

m(∪kωk) = 1 − μTj (ω1).
(23)

We can obviously remark that:

T (μ(Ai), μ(Aj)) = min(Bel(Ai), Bel(Aj)) (24)

where T is a minimum t-norm. Thus, the fuzzy support can be retrieved in an
evidential database as follows:

SupportFDB(X) =

∑
Tj∈O

min{Bel(xi), xi ∈ X}

d
. (25)

Interestingly enough, an equivalent to fuzzy database support in evidential
database does exists.

Example 4. Table 4 shows how to create an evidential database from a fuzzy
one.

Table 4. The evidential transformation of FDB (Table (a)) to EDB (Table (b))
A B

ω1 ω2 ω1 ω2

T1 0.3 0.7 0.1 0.8
T2 0.5 0.2 0.3 0.8
T3 0.8 0.1 1.0 0.2

(a)

A B
ω1 ω2 ω1 ω2

T1 m11(ω1) = 0.3 m21(ω2) = 0.7 m31(ω1) = 0.1 m41(ω2) = 0.8
m11(Ω) = 0.7 m21(Ω) = 0.3 m31(Ω) = 0.9 m41(Ω) = 0.2

T2 m12(ω1) = 0.5 m22(ω2) = 0.2 m32(ω1) = 0.3 m42(ω2) = 0.8
m12(Ω) = 0.5 m22(Ω) = 0.8 m32(Ω) = 0.7 m42(Ω) = 0.2

T3 m11(ω1) = 0.8 m21(ω2) = 0.1 m31(ω1) = 1.0 m41(ω2) = 0.2
m11(Ω) = 0.2 m21(Ω) = 0.9 m31(Ω) = 0 m41(Ω) = 0.8

(b)
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The equivalency of the support measure is shown for the itemset B ×C. The
support of the itemset Aω1 ×Bω2 from the Table 4.a is Support(Aω1 ×Bω2) =
0.3+0.5+0.2

3 = 1.0. In the evidential database, Table 4.b, it is computed as follows:

SupportEDB(Aω1 ×Bω2) =
1
3

3∑
j=1

min(Bel(Aω1), Bel(Aω2))

SupportEDB(Aω1 ×Bω2) =
1
3 (BelT1(Aω1) +BelT2(Aω1) +BelT2(Bω2))

SupportEDB(Aω1 ×Bω2) = 1.0

Despite the fact that the precise support is not equivalent to the fuzzy support,
it is still possible to recover the same value with the use of the Equation (25).

6 Conclusion

In this paper, we detailed the data mining measures such as the support and the
confidence on the several databases such as binary, probabilistic, fuzzy databases.
We have proven the generalization relation between precise measures in eviden-
tial databases and measures used in other databases. In future works, we aim to
study the evidential transformation of other imperfect databases such as fuzzy-
possibilistic database [13].
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114 A. Samet, É. Lefèvre, and S.B. Yahia

10. Samet, A., Lefevre, E., Ben Yahia, S.: Mining frequent itemsets in evidential
database. In: Proceedings of the Fifth International Conference on Knowledge and
Systems Engeneering, Hanoi, Vietnam, pp. 377–388 (2013)
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Abstract. Nowadays, social networks became essential in information
exchange between individuals. Indeed, as users of these networks, we
can send messages to other people according to the links connecting us.
Moreover, given the large volume of exchanged messages, detecting the
true nature of the received message becomes a challenge. For this pur-
pose, it is interesting to consider this new tendency with reasoning under
uncertainty by using the theory of belief functions. In this paper, we tried
to model a social network as being a network of fusion of information
and determine the true nature of the received message in a well-defined
node by proposing a new model: the belief social network.

Keywords: Social Networks, Belief Network, Information Fusion, Belief
functions.

1 Introduction

Social networks appeared long before the birth of Internet. A social network can
be defined as a group of persons or organizations connected between them by
relations and social exchanges which they maintain. However, with the evolution
of connection rates and collaborative technologies which are continuously chang-
ing, Internet provides access to new networks that are wider, and more playful
social but also less easily recognizable.

Furthermore, an important volume of incomplete and imperfect information
are spreading on the network. Therefore, the management of the uncertainty
is fundamental in several domains, especially in social networks. In fact, belief
functions theory allows, not only the representation of the partial knowledge, but
also the fusion of information. In the case of social networks, this theory allows
to attribute mass functions to the nodes which represent, for example, persons,
associations, companies and places as well as links that can be friendly, family
and professional and on messages that can be of type for example: personal
commercial, personal not commercial, impersonal commercial and impersonal
not commercial. Therefore, we will have a global view on exchanges made on the
network and this will lead us to make a better decision.

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 115–123, 2014.
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In addition, by using uncertainty, we can better monitor the behaviour of the
social network. Thus, extending the work on the real plane, we can predict such
a terrorist act or assess the quality of a product or follow a buzz. . .

In this context, previous works have focused on models and methods devoted
to the analysis of social network data [12] [2] while others have interested in
information fusion in order to have a global information about the network [13].

The aim of this paper is to propose a new model, a belief social network which
is a network supplied by the masses. In fact, we attribute a mass function to the
nodes, edges and messages.

This paper is structured as follows. In section 2, we briefly recall some concepts
related to the theory of belief functions. We propose in section 3 our model: the
belief social network. In section 4, we present the fusion of the masses on belief
social network. Finally, section 5 is devoted to illustrate the belief social network
and section 6 concludes the paper.

2 Basic Concepts of Belief Function

In this section, we will remind the basic concepts of the theory of belief func-
tions used to instrument our model, the belief social network. Let Ω be a fi-
nite and exhaustive set whose elements are mutually exclusive, Ω is called a
frame of discernment. A mass function is a mapping m : 2Ω → [0, 1] such that∑
X∈2Ω

m(X) = 1 and m(∅) = 0. The mass m(X) expresses the amount of belief

that is allocated to the subset X . In order to deal with the case of the open
world where decisions are not exhaustive, Smets [10] proposed the conjunctive
combination rule. This rule assumes that all sources are reliable and consistent.
Considering two mass functions m1 and m2 for all A ∈ 2Ω, this rule is defined
by:

m ∩©(A) =
∑

B∩C=A

m1(B) ∗m2(C) (1)

We will also consider the normalized conjunctive rule, the Dempster rule,
given for two mass functions m1 and m2 for all x ∈ 2Ω by:

m⊕(A) =
m ∩©(A)

1 −m ∩©(∅) (2)

The coarsening corresponds to a grouping together the events of a frame of
discernment Θ to another frame compatible but which is more larger Ω [10,11].
Let Ω and Θ be two finite sets. The refinement allows the obtaining of one frame
of discernment Ω from the set Θ by splitting some or all of its events [8].

In order to make a decision, we try to select the most likely hypothesis which
may be difficult to realize directly with the basics of the theory of belief functions
where mass functions are given not only to singletons but also to subsets of
hypothesis. Some solutions exist to ensure the decision making within the theory
of belief functions. The best known is the pignistic probability proposed by the
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Transferable Belief Model (TBM). Other criteria exists like the maximum of
credibility and the maximum of plausibility [1].

The TBM is based on two level mental models: The “credal level” where beliefs
are entertained and represented by belief function and the “pignistic level” where
beliefs are used to make decision and represented by probability functions called
the pignistic probabilities. When a decision must be made, beliefs held at the
credal level induce a probability measure at the pignistic measure denoted BetP
[9]. The link between these two functions is achieved by:

BetP(A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

1 −m(∅) , ∀A ⊆ Θ (3)

To focus on the type of relationship between two different frames of discern-
ment, we may use the multi-valued mapping introduced by Hyun Lee [5]:

mΓ (Bj) =
∑

Γ (ei)=Bj

m(ei) (4)

with ei ∈ Ω and Bj ⊆ Θ. Therefore the function Γ is defined as follow Γ : Ω →
2Θ.

The vacuous extension, being a particular case of multi-valued mapping has
the objective to transfer the basic belief assignment of a frame of discernment Ω
towards the Cartesian product of frames of discernment Ω × Θ. The operation
of vacuous extension, noted ↑, is defined by:

mΩ↑Ω×Θ(B) =

{
mΩ(A) if B = A×Θ
0 otherwise

(5)

The marginalization allows, from a basic belief assignment defined on a space
produced to find the basic belief assignment on one of the frames of discernment
of the produced space. This operation, noted ↓ is defined by:

mΩ×Θ↓Ω(A) =
∑

B⊆Ω×Θ

mΩ×Θ(B) ∀A ⊆ Ω (6)

where A is the result of the projection of B on Ω.

3 Belief Social Network

Several works have focused on the representation of networks with graphs. A
classical graph is represented by G = {V ;E} with: V a set of nodes and E a set
of edges. This representation does not take into account the uncertainty of the
nodes and edges.
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In fact, graphical models combine the graph theory with any theory dealing
with uncertainty like probability [6], [3] or possibility or theory of belief functions
to provide a general framework for an intuitive and a clear graphical represen-
tation of real-world problems [4]. The propagation of messages in networks has
been modelled using the theory of belief functions combined with other theories
such as hidden Markov chains [7].

In this context, we introduce our model: the belief social network which has
the role of representing a social network using the theory of belief functions.
Indeed, we will associate to each node, link and message an a priori mass and
observe the interaction in the network to determine the mass of the message
obtained in a well-defined node. To do this, we consider an evidential graph
G = {V b;Eb} with: V b a set of nodes and Eb a set of edges. We attribute to
every node i of V b a mass mΩN

i defined on the frame of discernment ΩN of the

nodes. Moreover, we attribute also to every edge (i, j) of Eb a mass mΩL

ij defined
on the frame of discernment ΩL of the edges. Therefore, we have:

V b = {Vi,mΩN

i } (7)

and
Eb = {(V b

i , V
b
j ),m

ΩL

ij } (8)

This evidential graph structure is given by Fig 1. In social network, we can
have for example the frame of the nodes given by the classes Person, Company,
Association and Place. The frame of discernment of the edges can be Friendly,
Professional or Family. Moreover we note: ΩN = {ωn1 , . . . , ωnN } and ΩL =
{ωl1 , . . . , ωnL}.

In social network, many messages can transit in the network. They can be
categorized as commercial, personal, and so on.The class of the message is also
full of uncertainty. Therefore to each message, we add a mass function in the
considered frame of discernment ΩMess = {ωM1 , . . . , ωMk

}.

Fig. 1. Evidential graph structure for social network

4 Fusion of Masses on Belief Social Network

In social network, we can receive the same information from different users. But,
can we have the confidence to this information? Moreover, the information can
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be contradictory. We propose here to take into account the structure of belief
social network presented in the previous section to analyse the messages received
by one node.

In order to integrate the belief on the nodes and on the edges, we first make
a vacuous extension on ΩN ×ΩL for each mass for the nodes of V b and on each
mass for the edge of Eb. Therefore, we obtain on each node V b

i a mass: mΩN×ΩL

i

and on each edge Eij = (V b
i , V

b
j ) between the nodes V b

i and V b
j a mass:mΩN×ΩL

ij .

If we consider a coming message from the node V b
i to the node V b

j through the

edge Eij , the belief of the network mΩN×ΩL

R is given by the mass function on
the node Vi and the edge Eij :

mΩN×ΩL

R = mΩN↑ΩN×ΩL

Vi
⊕mΩL↑ΩN×ΩL

Eij
(9)

Here, the index R denotes the resulted belief network from the nodes and the
link between them regardless of the message.

We use the multi-valued operation to combine mass functions on different
frames of discernment. In fact, a multi-valued mapping Γ describes a mapping
function:

Γ : ΩN ×ΩL → ΩMess (10)

We can calculate these equations by using the formula (4):

Γ : mΩMess

Γ (Bj) =
∑

Γ (ei)=Bj

mΩN×ΩL(ei) (11)

with ei ∈ ΩN ×ΩL and Bj ⊆ ΩMess. From the function Γ , we can combine the

mass given by the network mΩMess

Γ and the mass of the message to obtain the
mass of the message considering the network:

mΩMess

R = mΩMess ∩©mΩMess

Γ (12)

Now, if we consider n messages coming from n different nodes V b
i1
, . . . , V b

in
to

the same node V b
j . We can merge the obtained results from the equation (12)

for the n nodes. The goal is to obtain a more precise information on an event
describe by the n messages. We then take into account the local network mΩMess

Ri

of the node V b
j . A local network is defined as a branch of the global network

composed of many nodes linked to a same node, the connecting links and the
received messages. For example, we can have two nodes which send two messages
simultaneously to a third node. We obtain the mass of the global networkmΩMess

GR
:

mΩMess

GR
= mΩMess

R1
∩©mΩMess

R2
∩© . . . ∩©mΩMess

Rn
(13)

Then, we will be able to take a decision on the nature of the resulting message
with the pignistic probability using equation (3).
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5 Illustrations

In this section, we will present various experiments conducted to validate our
model. We consider three frames of discernment of the nodes, the links and the
messages:
ΩN = {Person,Company,Association, P lace}, ΩL = {Friendly, Family, P rof.},
(Prof. for professional), ΩMess = {PC, PNC, IC, INC}, with PC for Personal
Commercial, PNC for Personal Not Commercial, IC for Impersonal Commer-
cial and INC for Impersonal Not Commercial. We used the passage function Γ
given in Table 1 which allows.

Table 1. Definition of the function Γ given the correspondences between ΩN × ΩL

and ΩMess

Γ Person Association Company Place

Friendly PNC PNC ∪ INC PC ∪ IC INC ∪ IC
Family PNC ∪ INC PNC ∪ INC PC ∪ IC INC ∪ IC

Professional PNC ∪ IC IC IC IC

For the purposes of our model, we will evaluate three cases. For the first one,
we consider a mass function associated to:

– a node with: mΩN (Person) = 0.75 and mΩN (ΩN ) = 0.25
– a link with: mΩL(Friendly) = 0.75 and mΩL(ΩL) = 0.25
– a message with: mΩMess

1 (PNC) = 0.6 and mΩMess
1 (ΩMess) = 0.4

Following our proposed procedure, first, we calculate the vacuous extension of
mΩN and mΩL on ΩN ×ΩL and we combine both mass functions. We obtain:

mΩN×ΩL

R ({Person, Friendly}) = 0.5625

mΩN×ΩL

R ({Person, Friendly}, {Person, Family}, {Person, Prof.}) = 0.1875

mΩN×ΩL

R ({Person, Friendly}, {Association, Friendly},
{Company, Friendly}, {Place, Friendly}) = 0.1875

mΩN×ΩL

R (ΩN ×ΩL) = 0.0625

(14)

Then, we use the Γ function to calculate the passage from ΩN ×ΩL to ΩMess.
We obtain:

mΩMess

Γ (PNC) = 0.5625

mΩMess

Γ (ΩMess) = 0.4375
(15)

Then, we make the conjunctive combination of mΩMess

Γ and mΩ
Mess:

mΩMess

R (PNC) = 0.8250

mΩMess

R (ΩMess) = 0.1750
(16)
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Finally, to make a decision, we calculate the pignistic probability:

BetP (PC) = 0.0438
BetP (IC) = 0.0438
BetP (PNC) = 0.8687
BetP (INC) = 0.0438

(17)

If we consider the results, we note that the pignistic probability on Personal
Not Commercial is 0.8687. This pignistic probability was equal to 0.7 before
considered the network. Hence, we show that considering the network we can
reinforce our belief for a given message.

In the second case, we consider the same network, with the same masses mΩN

and mΩL , but we consider a mass function associated to a message with:

mΩMess
2 (PC) = 0.6 and mΩMess

2 (ΩMess) = 0.4

In this case the mass is on the Personal Commercial instead of Personal Not
Commercial. As the network is the same we obtain the same mass mΩN×ΩL

R

given by equation (14) as before and also using the Γ function the same mass
given by the equation (15).

However the result of the conjunctive combination mΩMess

Γ and mΩMess is now:

mΩMess

R (∅) = 0.3375

mΩMess

R (PC) = 0.2625

mΩMess

R (PNC) = 0.2250

mΩMess

R (ΩMess) = 0.1750

(18)

In this case there is a conflict between the information of the network and the
message, therefore a mass come out the empty set. The pignistic probability
gives:

BetP (PC) = 0.4623
BetP (IC) = 0.0660
BetP (PNC) = 0.4057
BetP (INC) = 0.0660

(19)

We note that in the first example, the highest pignistic probability is associ-
ated with the Personal Not Commercial message that had the larger mass func-
tion at the beginning. While in the second example, we find ourselves faced with
almost equal probability of Personal Not Commercial and Personal Commercial
types where the need for a second decision on the type of message received.

Now we consider the fusion of the two examples cited above that come on the
same node. We obtain the results given in Table 2. We note that by combining
the two examples, we get the message Personal Not Commercial that has the
highest pignistic probability.

Working on real data, we can assign the mass functions to the nodes, edges
and messages by evaluating certain parameters, for example, the type of contacts
that are related to the profile in question as well as the type of publications
produced (case of facebook).
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Table 2. Fusion of the two examples: the mass function and the pignistic probability

Focal Mass

∅ 0.5541

PNC 0.3694

PC 0.0459

ΩMess 0.0306

Message BetP

PC 0.1202

IC 0.0172

PNC 0.8455

INC 0.0172

6 Conclusion

In this work we presented in the first section a general introduction in which we
reviewed the notion of social networks and the interest of the proposed method
to respond to the expectations for reasoning under uncertainty. In the second
section, we briefly introduced the basic concepts used in the theory of belief
functions. Then we focused on the introduction of our model and the different
notation used. Indeed, we treated step by step development of the construction
of the graph. Finally, we detailed the process of merging the information flowing
through the network. We also showed how the process is carried out of the
fusion and explained how we can make a decision on the nature of the messages
received by using the pignistic probability. In fact, in many cases, we can take
a new decision on the nature of the message received by a well-defined node.
This idea was explained in the second example in the illustration part. In future
work, we aim to represent the update of the elements composing the network as
well as to scale.
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Abstract. In this paper, different methods using belief functions are
proposed to share and manage information about local and spatial events
on the road in V2V communications. In order to take into account mes-
sages ageing, a reinforcement mechanism considering that events dis-
appear over the time is compared to the discounting mechanism. Two
strategies for messages management are also emphasized: a first one
where each message is stored and sent when possible and a second one
where only fused messages are considered. Presented work shows how
results can be upgraded when considering the world update, especially
for dynamic events. Finally, an influence mechanism is introduced for
traffic jam events to smooth and improve results when vehicles receive
information about only some parts of the road.

Keywords: Vehicular Ad-hoc Network (VANET), events on the road,
imperfect information exchange, belief functions, information fusion.

1 Introduction

The car is currently by far the most used transportation mean. Many stud-
ies have been conducted in order to improve car safety and increase comfort
standard using Vehicular Ad-Hoc Networks VANET [1,2], which are wireless
networks formed of highly dynamic nodes capable of being organized without
infrastructure. Present work concerns Vehicle to Vehicle (V2V) communication
where vehicles do not use any centralized access point to build their own infor-
mation assembly. Environment is very proactive. Vehicles receive a large amount
of information which is most of the time uncertain.

Different methods [3,5,4,6] have been introduced in previous works to share
and manage local events such as accidents in V2V communication using the
theory of belief functions [7,8] which constitutes a rich and flexible framework
for representing and manipulating imprecise and uncertain information. This
paper completes the work on local events presented in [6], by introducing new
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methods based on the notion of update [9], fixing the ageing coefficient and
finalizing experiments. Concerning spatial events such as traffic jam, different
methods have been proposed in [10,3,11]. We clarify in this paper first ideas
given in [11], and develop and experiment a method for handling traffic jams.

2 Credal Methods for Handling Accident Events

2.1 Methods Descriptions

Vehicles exchange information about events on the road. Each created message
M gives information about one event, it is represented as a 5-tuple (S, t, d, �,m) :

– S is the source which has perceived the event;
– t is the type of the event;
– d indicates the date when the source S has created the message to inform

about the event presence;
– � is the location of the event;
– m is a mass function (MF) held by the source S and expressed on the frame
Ω = {∃, 
 ∃} where: ∃ stands for the event which is of type M.t, is present at
time M.d at location M.�; and 
 ∃ stands for the event which is of type M.t,
is not present at time M.d at location M.�.

An example of a message sent and then transferred is illustrated in Figure 1.

Vehicle v1 Vehicle v2 Vehicle v3

sent

(v1, t, d, 
,m)

transferred

(v1, t, d, 
,m)

Fig. 1. Example of a message sent and transferred

In order to represent and manage information about events, traffic lanes are
divided into small rectangular areas named cells. Their length depends on the
event type. An event e is a couple (t, c) where t represents the event type and c
is the cell where the event is located.

Obsolete messages in databases are deleted using a threshold, denoted Delt
depending on the type t of the event: each messageM such that Δ(now,M.d) >
Delt with Δ a distance measure, is suppressed. In order to fix Delt for the
event type ”accident”, the proposed solution assumes that we have learned from
a historical knowledge of accidents in a city that the duration of accidents D
follows a normal distribution D ∼ N (μ, σ2). Threshold Delt is chosen such that
P (D ≤ Delt) = 99%, i.e. Delt = μ+ u.99 ∗ σ.

Descriptions of the six proposed methods using belief functions and a simple
one are then given below. Methods are summarized in Table 1. Note that method
no1 to method no4 have been introduced in [6].
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Table 1. Methods summary dealing with local events

Method Kept messages Update? Ageing Combination

1 original no discounting conjunctive
2 original no reinforcement conjunctive

3 fusion only no discounting conjunctive / cautious
4 fusion only no reinforcement conjunctive / cautious

5 original yes discounting conjunctive
6 original yes reinforcement conjunctive

7 last message only (yes/no) yes no no

Method no1 – Keep Original Messages, Discount. Each vehicle has an
internal database regrouping created and received messages, where all messages
Me,i concerning the same event e are grouped into the same table Me. All mes-
sages are kept in vehicle database and considered in fusion process.

In order to consider the messages ageing, the discounting operation [7, page
252] is used. It is defined by:

αm = (1 − α) m+ αmΩ , (1)

where α ∈ [0, 1] is called the discount rate; coefficient β = (1−α) represents the
degree of reliability regarding the information provided.

Each message Me,i is discounted with a rate αe,i =
Δ(now,Me,i.d)

Delt
, with this

operation, over time αe,iMe,i.m tends to the total ignorance mΩ.
For each event in vehicle database, discounted MFs are then combined using

the conjunctive rule of combination [8].
Finally, the pignistic probability [8] regarding the event presence is computed

for each event.
In this method, the fusion result is not communicated to neighboring vehicles.

Method no2 – Keep Original Messages, Reinforce. This method differs
from the first method only by the ageing mechanism. The reinforcement mech-
anism [12] is used, it is defined by:

νm = (1 − ν)m+ ν mA , (2)

where ν ∈ [0, 1] is the reinforcement rate, mA is a categorical MF, and A is the
element expected by the agent when the MF m is totally reinforced.

In this method, each messageMe,i is reinforced with a rate νe,i =
Δ(now,Me,i.d)

Delt
,

over time νe,iMe,i.m tends to m 	∃ meaning that event e has disappeared.

Method no3 – Keep Only Fusion Result, Discount. Only the fusion results
are kept in databases and exchanged between vehicles in this method.

A received messageMr concerning an event e already identified is fused with
message Me such that the new MF of Me is obtained as follows:
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– First the MF of the message having the oldest date among Me and Mr is

discounted to take into consideration its aging (rate equal to |Δ(Mr.d,Me.d)|
Delt

).
– Then ifMr.S∩Me.S = ∅, the new MFMe.m is obtained from the conjunctive

combination of the corrected MF (among Me.m and Mr.m) and the non-
corrected MF, otherwise the cautious rule [13] is used.

– The new set of sources Me.S is equal to Me.S ∪Mr.S.
– The date of Me becomes the most recent date among Me.d and Mr.d.
– To give an overview of the situation to the driver, for each event e, the

MF Me.m is discounted with a rate αe = Δ(now,Me.d)
Delt

, and the pignistic
probability is computed.

If the event e is not already identified in the vehicle database, message Me is
created with the attributes ofMr:Me.S = {Mr.S},Me.t =Mr.t,Me.d =Mr.d,
Me.� =Mr.� and Me.m =Mr.m.

The Algorithm 1 is used for the management of a received message.

Algorithm 1. Methods no3 and no4: management of a received message not
already considered in vehicle database.

Require: A received message Mr.
Require: Cellt(
) returns the cell number for the type t on which 
 is located.
Ensure: Message Mr processing, when Mr is not already considered in vehicle
database.
begin
if ∃Me ∈ M t.q. Mr.t =Me.t and CellMe.t(Me.
) = CellMr.t(Mr.
) then

{Mr corresponds to an event e already identified in M .}
if Mr.d > Me.d then

Me.m ←
|Δ(Me.d,Mr.d)|

DelMe.t Me.m
Me.d ← Mr.d

end if
if Me.d > Mr.d then

Mr.m ←
|Δ(Me.d,Mr.d)|

DelMr.t Mr.m
end if
if Me.S ∩Mr.S = ∅ then

{The sources are independant.}
Me.m ← Me.m ∩©Mr.m

else
{The sources are not independent.}
Me.m ← Me.m ∧©Mr.m

end if
Me.S ← Me.S ∪Mr.S
Me.
 ← Me.
 ∪Mr.


else
{A new event is detected.}
Create a new event e, and add Mr in the table Me.

end if
end
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Note that the main difference between this method and the method proposed
by Cherfaoui et al. in [3] is that in the latter, only one source is kept for each
event, which does not allow to decide finely of the dependence between messages
before fusing them.

Method no4 – Keep Only Fusion Result, Reinforce. This method is a
variant of the third method. The difference is the using of the reinforcement
mechanism instead of the discounting mechanism, over time MF tends to m 	∃.

Method no5 – Keep Original Messages, Consider World Update, Dis-
count. This method differs from the first method by considering the world
update [9]. When a received message contradicts (in term of pignistic proba-
bilities) the acquired knowledge in the vehicle database, the latter is updated
instead of being rectified if the date of the received message is greater than the
last update considered in the vehicle database. Messages before an update are
considered as no more relevant and are suppressed. This suppression is processed
before the fusion of messages, it is defined by Algorithm 2.

Algorithm 2. Methods no5 and no6: suppression of messages which dates are
earlier than the last world update.

Require: Event (t, c) with t the type of the event and c the cell where the event is
located.

Ensure: Suppression of messages to consider world update for the event (t, c).
begin
{Get the date of the earlier message informing that the event (t, c) is present.}
d∃ ← maximum(M(t,c),i.d) where M(t,c),i.m({∃}) > 0.
{Get the date of the earlier message informing that the event (t, c) is not present.}
d �∃ ← maximum(M(t,c),i.d) where M(t,c),i.m({	 ∃}) > 0.
Suppress all messages M(t,c),i having a date M(t,c),i.d ≤ minimum(d∃, d �∃).
end

Method no6 – Keep Original Messages, Consider World Update, Re-
inforce. This method differs from the previous method only by the use of the
reinforcement mechanism instead of the discounting mechanism.

Method no7 – Keep Only the Last Message yes/no. Messages inform if
”yes” or ”no” an event is present (confidence degree is equal to 100%), and only
the last message is considered, it is given as a result to the driver. The aim is to
compare the proposed methods using belief functions to this simple method in
Section 2.2.
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2.2 Experiments

Performance rates of models are measured for each type t of event and for each
vehicle v by the adequacy to the reality of the information given to the driver.
Formally, at each time step τ , the set equal to the union of the events present
in the vehicle database and the existing events in the reality is considered and
denoted by Ev,τ

t , and performance rates are computed for each type t of event
and for each vehicle v by:

Perfv,τ
t = 1 −

∑
e∈Ev,τ

t
(BetP v,τ

e ({∃}) −Rτ
e )

2

| Eτ,v
t | , (3)

where: Rτ
e = 1 if event e is present at time τ , 0 otherwise; | Ev,τ

t | is the
cardinality of Ev,τ

t ; BetP v,τ
e ({∃}) is the pignistic probability in vehicle v at time

τ concerning the presence of the event e (if no message concerns event e in vehicle
v database, Betpv,τe ({∃}) = 0).

The experiments are realized using a developed MatlabTM simulator [6]. The
sampling period Δτ = 4 seconds, this means that vehicles exchange their
databases and messages are processed every 4 seconds. The range of wireless
communication is 200 meters.

Created messages have all the same confidence degree: m({∃}) = 0.6 or
m({
 ∃}) = 0.6.

Accident duration follows a normal distribution D ∼ N (1800, 3002), the dele-
tion threshold is then obtained Delt = 2498 seconds. Scenario is tested with
different values of accident duration obtained from this normal distribution.

In this scenario, an accident occurs at the beginning of each simulation, and
20 different durations are tested.

Only 5 vehicles are present. One vehicle denoted by v receives from distinct
sources four messages just after their creation, the first and second messages
confirm the accident at 30% and 70% of its duration after its beginning, and
the other messages deny the accident at 30% and 50% of its duration after its
disappearance. The adequacy to the reality (the average over all the simulation)
of vehicle v is illustrated in Figure 2 for each launch (20 durations) and each
method. These tests are repeated 9 new times. The mean of the average and the
mean of the standard deviation of the adequacy to the reality are presented for
each method in Table 2.

These tests show that the used reinforcement mechanism is more in line with
the accident disappearance than the discounting operation. In addition, the dis-
counting mechanism does not manage correctly messages denying the event, in-
deed after the disappearance of an event, discount result tends to the ignorance,
which means that the probability of the event presence increases over time while
it should remain as low as possible. Before receiving the first message denying
the accident, methods no5 and no6 give respectively the same result as methods
no1 and no2. When the vehicle receives messages denying the accident, methods
no5 and no6 stop considering old messages confirming the presence of the event.
This allows to increase the performance when using the discounting mechanism;
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Fig. 2. Accident scenario: the average of the adequacy to the reality for each simulation

Table 2. Accident scenario: means of the average and the standard deviation of the
adequacy to the reality

All the simulation Before accident After accident
disappearance disappearance

Method no1 0.771984(0.00997779) 0.666177(0.00224502) 0.82572(0.01586986)
Method no2 0.855809(0.00522433) 0.61829(0.0184514) 0.975492(0.01473972)
Method no3 0.757644(0.01202747) 0.665513(0.00221531) 0.804534(0.01895642)
Method no4 0.850178(0.00439378) 0.618887(0.0165816) 0.96674(0.01362776)
Method no5 0.783468(0.00600582) 0.666177(0.00224502) 0.842962(0.00966614)
Method no6 0.853815(0.00439366) 0.61829(0.0184514) 0.9725(0.01366174)
Method no7 0.796106(0.000916845) 0.696715(0.001044568) 0.846654(0.001000312)

but it is not the case when using the reinforcement mechanism, because at this
moment, the result of the old messages reinforced is closer to m 	∃ than the result
of the new message denying the accident. Simple method no7 gives good results
in this scenario for two reasons: created messages have a confidence equal to
100% and tell the reality; and messages denying the accident are received. Note
that this method has bad results after the disappearance of the accident until
receiving a first message denying the accident. Methods where only the fusion
result is kept in vehicle database do not allow managing finely the obsolescence
of messages before their combination. For this reason, they give a worse result
than the other methods using belief functions.
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3 A Credal Method for Handling Traffic Jam Events

3.1 Method Description

Traffic jam is a very dynamic event, for this reason it is important to update
information in vehicle database when receiving more recent information contra-
dicting the acquired knowledge in vehicle database. The first step of the proposed
method for handling traffic jam events is the same as the methods no5 and no6
proposed for accident events, but in this method no ageing mechanism is em-
ployed. The threshold Delt is used only to delete obsolete messages, it can be
fixed according to a maximal value known from a historic knowledge (4 hours
for example).

In order to predict the overall road situation when the vehicle database con-
tains information about only some parts of the road, a secondary mechanism
called influence mechanism is proposed to smooth and improve the overview of
the situation given to driver. The result of this mechanism is not communicated
to other vehicles. Traffic jam (TJ) is an extensive event evolving in the reverse
direction of roads, and disappearing in the same direction of the traffic. The
influence mechanism can be explained in the following manner:

– Let βt be the influence rate.

– For each event (TJ, c) result obtained from the first step of the method:

• If it informs that the cell c is occupied by a traffic jam, generate influences
on following cells (Figure 3(a)) by discounting with a rate equal to 1−βt,
and stop this operation when arriving to a slowing down event like an
accident (known in vehicle database) or a roundabout.

• If it informs that the cell c is not occupied by a traffic jam, generate
influences on previous cells (Figure 3(b)).

TJ

m1

Slowing down event

Accident,
RoundaboutVehicle base

αm1
αm1

Traffic direction

(a) Case of a MF m1 in favour of traffic jam (BetP1({∃}) > .5).

Slowing down event

Accident,
RoundaboutVehicle base

No TJ

m2
αm2

αm2

Traffic direction

(b) Case of a MF m2 in favour of no traffic jam (BetP2({	 ∃}) > .5).

Fig. 3. Illustrations of influences computations in the method dealing with traffic jams
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For each cell, results of the first step and obtained influences are combined
using the conjunctive rule of combination, and the pignistic probability is then
computed.

In previous work [10,3], the spatiality of events are managed by considering
the distance between the observed point and the points where information telling
about the event presence is available. These methods do not take into consid-
eration how traffic jam evolve and disappear according to the roads and their
traffic direction.

3.2 Experiments

The scenario described in Figure 4 has been developed. A traffic jam appears
progressively on a road, and disappears a few minutes later. A message is cre-
ated to confirm the traffic jam, and another one is created to deny it after its
disappearance.

TJ TJ TJ TJ TJ

Reality (d0)

TJ

m1Vehicle base (d1 > d0)

Reality (d2 > d1)

TJ

m1

Roundabout

Vehicle base (d3 > d2)

No TJ

m2

Traffic direction

T
im

e

Fig. 4. Scenario: a traffic jam appears on the road and disappears a few minutes later

The proposed method is tested with and without applying the influence mech-
anism: β = 0.8 (which means that ”the method know that a traffic jam is present,
but it is not absolutely sure) and β = 0 respectively. The obtained mean of the
adequacy to the reality for all vehicles present in the map (the map is 1.2km x
1.2km, so the traffic jam interests all vehicles) is equal to 0.6389 when apply-
ing the influence mechanism, and 0.2442 without the influence mechanism. This
experiment shows the interest of the influence mechanism.

This scenario is also tested where vehicles create and receive messages con-
cerning the traffic jam on all cells (confirm or deny). The proposed method for
handling traffic jam event is compared to the second method for handling ac-
cident event. The obtained mean of the adequacy to the reality is respectively
0.9285 and 0.7452. This experiment shows the interest of considering world up-
date, cells are considered not occupied once a first method denying the event is
received (or created).
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4 Conclusion and Future Work

In this paper, methods are proposed to exchange and manage information about
accident and traffic jam events on the road in V2V communications using belief
functions. Different strategies are compared concerning messages ageing; influ-
ences mechanisms and information considered and kept in internal databases.

Future work must consider irregular areas, other types of spatial events such
as flog blanket, and links between different types of event. The used simulator
is a research tool; a more realistic one has to be used in future work.
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Abstract. The purpose of this study is to provide an accessibility mea-
sure of webpages, in order to draw disabled users to the pages that have
been designed to be accessible to them. Our approach is based on the
theory of belief functions, using data which are supplied by reports pro-
duced by automatic web content assessors that test the validity of criteria
defined by the WCAG 2.0 guidelines proposed by the World Wide Web
Consortium (W3C) organization. These tools detect errors with gradual
degrees of certainty and their results do not always converge. For these
reasons, to fuse information coming from the reports, we choose to use
an information fusion framework which can take into account the un-
certainty and imprecision of information as well as divergences between
sources. Our accessibility indicator covers four categories of deficiencies.
To validate the theoretical approach in this context, we propose an eval-
uation completed on a corpus of 100 most visited French news websites,
and 2 evaluation tools. The results obtained illustrate the interest of our
accessibility indicator.

Keywords: Belief functions, Web accessibility, Human factors,
Measurement, Document analysis.

1 Introduction

The Web constitutes today an essential source of information and communica-
tion. While users have a growing interest in terms of social, cultural and economic
value, and in spite of legislations and recommendations of the W3C community
for making websites more accessible, its accessibility remains hardly efficient for
some disabled or ageing users. Actually, making websites accessible and usable
by disabled people is a challenge [8] that society needs to overcome [1].

To measure the accessibility of a webpage, several accessibility metrics have
been developed [16]. Evaluations are based on the failure to comply with the
recommendations of standards, using automatic evaluation tools. They often give
a final value, continuous or discrete, to represent content accessibility. However,
the fact remains that tests on accessibility criteria are far from being trivial [2].
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Evaluation reports of automatic assessors contain errors considered as certain,
but also warnings or potential problems which are uncertain. Moreover there are
differences between assessor evaluations, even for errors considered as certain.

This work provides a new measure of accessibility and an information fusion
framework to fuse information coming from the reports of automatic assessors
allowing search engines to re-rank their results according to an accessibility level,
as some users would like [10]. This accessibility indicator considers several cate-
gories of deficiencies. Our approach is based on the theory of the belief functions
adapted to take into account the defects of accessibility given by several auto-
matic assessors seen as information sources, the uncertainty of their results, as
well as the possible conflicts between the sources.

In the sections 2 and 3 we will give a description of accessibility tools based
on a recent standard and of data provided in their reports. In the 4th section, we
will describe the principles of our indicator and develop how we implement the
belief functions. In the 5th part, we will present an experiment before concluding.

2 Defect Detection of Webpage Accessibility

Various accessibility standards propose recommendations for improving accessi-
bility of webpages. The Web Content Accessibility Guidelines (WCAG 2.0) [3]
proposed by the W3C normalization organization, constitutes an international
reference in the field. These guidelines cover a wide range of disabilities (visual,
auditory, physical, speech, cognitive, etc.) and several layers of guidance are
provided:

– 4 overall principles: perception, operability, understandability & robustness;
– testable success criteria: for each guideline, testable success criteria are pro-

vided. Every criterion is associated to one of the 3 defined conformance levels
(A, AA and AAA), each representing a requirement of accessibility for users.

Several automatic accessibility assessors, based on various accessibility stan-
dards, have been developed [5] for IT professionals. Their limits depend on the
automatic tests. Because it is at present not possible to test some criteria about
the quality of some pages, some assessor results are given with ambiguity. Con-
sequently, the existing automatic assessors look for the criteria which are not
met and give the defects according to 3 levels of validity: the number of errors,
which are estimated certain, the number of likely problems (warnings) whose re-
ality is not guaranteed and the number of potential problems (also called generic
or non testable) which leads to a complete uncertainty on the tested criterion
accessibility.

Finally, even though the results obtained by different assessors match for some
tested common criteria, results can differ, even for errors considered as certain.

3 Proposed Accessibility Indicator

After a request, the indicator has to supply information describing to users
the accessibility level of each webpage proposed by a search engine. Presented
simultaneously with these pages, the indicators’ information cover two aspects:
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– the accessibility for categories of deficiencies: as previously proposed for ac-
cessibility estimation [6] we use 4 major categories: visual, hearing, motor
and cognitive deficiencies, as defined by [15]. They are called “deficiency
frames”;

– the level of accessibility for each deficiency frame.

Collecting results from several assessors has allowed us to benefit from each of
their performance. In addition, it strengthens accessibility evaluation for simi-
lar results and manages conflicts in case of disagreements. Automatic assessors
check a set of criteria which correspond to many deficiencies. As our accessibility
evaluation varies for every deficiency frame, our method consists in selecting the
relevant criteria for each deficiency frame and then balancing each criterion to
consider the difficulties met by users in case of failure. This weighting is based on
the criterion conformance level (A, AA, AAA), which corresponds to decreasing
priorities (A: most important, etc.). The errors and problems detected for ev-
ery criterion of the accessibility standard affect the accessibility indicator of the
Web content tested according to the deficiency frame the criterion belongs to,
its weighting within the frame, the number of occurrences when it is analyzed
as a defect in the webpage and the defect’s degree of certainty (error, likely or
potential problem).

4 Defect Detection and Accessibility Evaluation

After collecting webpage Uniform Resource Locators (URLp) selected by a search
engine from a request, these addresses are supplied to the accessibility assessors
and successively for each page, we detect accessibility defects, then estimate ac-
cessibility level by deficiency frame for each assessor, before fusing the data by
deficiency frame and taking the decision for every deficiency frame [7].

4.1 Assessor Evaluations of Selected Pages

Each URLp is submitted to the accessibility evaluation tests by each assessor i
that tests all the criteria k of the WCAG 2.0 standard, and the following data
are collected by a filter that extracts the required data for each deficiency frame:

– Ne
k,i : errors observed for a criterion k by an assessor i ;

– N c
k,i : correct checkpoints for a criterion k by an assessor i ;

– T e
k,i : tests that can induce errors for a criterion k by an assessor i ;

– N l
k,i : likely problems detected for a criterion k by an assessor i ;

– T l
k,i : tests that can induce likely problems for a criterion k by an assessor i ;

– Np
k,i : potential problems suspected for a criterion k by an assessor i ;

– T p
k,i : tests that can induce potential problems for a criterion k by an assessor

i ;
– Ti : total tests by an assessor i, with:

Ti =
∑
k

(Ne
k,i +N l

k,i +Np
k,i +N c

k,i) (1)
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4.2 Accessibility Indicator Level of the Pages

To model initial information including uncertainties, the reliability of the asses-
sors seen as information sources and their possible conflicts, we use the theory
of belief functions [4] [13]. Our objective is to define if a webpage is accessible
(Ac) or not accessible (Ac) and to supply an indication by deficiency frame.
Consequently, these questions can be handled independently for every deficiency
frame Ωh = {Ac,Ac}. We can consider every power set 2Ωh = {∅, Ac,Ac,Ω}.

The estimation of the accessibility Ac for a deficiency frame h and a source i
(assessor) is estimated from the number of correct tests for each of the criteria
k occurring in this frame, and from their conformance level represented by αk:

E(Ac)h,i =

∑
k

(N c
k,i ∗ αk)

Ti
(2)

The estimation of the non accessibilityAc for a deficiency frame h and a source
i is estimated from the number of errors for each of the criteria k occurring in this
frame, and from the αk coefficient. A weakening βe

i coefficient is also introduced
to model the degree of certainty of the error:

E(Ac)h,i =

∑
k

(Ne
k,i ∗ αk ∗ βe

i )

T e
k,i

(3)

The estimation of the ignorance Ωh for a deficiency frame h and a source i is
estimated from the number of likely and potential problem for each of the criteria
k occurring in this frame, and from the αk coefficient. The weakening coefficients
βl
i or β

p
i are also used to model the degree of certainty of the problem:

E(Ωh,i =

∑
k

(N l
k,i ∗ αk ∗ βl

i +Np
k,i ∗ αk ∗ βp

i )∑
k

(T l
k,i + T p

k,i)
(4)

The mass functions of the subsets of 2Ωh are computed from the estimations:

m(Ac)h,i =
E(Ac)h,i

E(Ac)h,i + E(Ac)h,i + E(Ω)h,i
(5)

m(Ac)h,i =
E(Ac)h,i

E(Ac)h,i + E(Ac)h,i + E(Ω)h,i
(6)

m(Ω)h,i =
E(Ω)h,i

E(Ac)h,i + E(Ac)h,i + E(Ω)h,i
(7)
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In addition, the source reliability can be modeled [11] with a δi coefficient,
which constitutes a benefit when some assessors are more efficient than others:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mδi(Ac)h,i = δi ∗m(Ac)h,i

mδi(Ac)h,i = δi ∗m(Ac)h,i

mδi(Ω)h,i = 1 − δi ∗ (1 − m(Ω)h,i)

(8)

4.3 Merging Assessor Results and Decision-Making

Once the masses for each assessor have been obtained, a fusion of the results
is conducted by deficiency frame, using the conjunctive rule [14], to combine
them and give information in the form of a mass function. These rule properties,
which strengthen common results and manage conflicts between sources, are
particularly relevant in this context, to deal with divergences between assessor
evaluations. To calculate the final decision Dh(URLp) for a page by deficiency
frame, we use the pignistic probability [14].

There are several ways of presenting the accessibility indicator to users. To vi-
sualize the deficiency frames, existing specific pictograms are effective. To present
the accessibility level we discretize the decision into 5 levels (very good, good,
moderate, bad or very bad accessibility) using thresholds and visualized it by an
”arrow”:

– if Dh < S1, the Web content accessibility is very bad (↓),
– if S1 < Dh < S2, the Web content accessibility is bad (↘),

– if S2 < Dh < S3, the Web content accessibility is moderate (→),

– if S3 < Dh < S4, the Web content accessibility is good (↗),

– if S4 < Dh, the Web content accessibility is very good (↑).

5 Experiments

To validate our approach, we present here the results obtained on a set of 100
news Websites, among the most visited ones, all referenced by the OJD1 orga-
nization which provides certification and publication of attendance figures for
websites. We test their homepages, following a study [12] concluding that their
usability is predictive of the whole site. We chose two open source assessors
AChecker, (source 1) [9], and TAW (source 2) from which we extract automati-
cally the accessibility test results. Weight and threshold values given in Table 1
were previously empirically defined from Webpages2 assumed to be accessible.

The results of these sources are summarized in Fig. 1 for the 3 levels of cer-
tainty defects. The box plots present how their defects are distributed: minimum

1 OJD: http://www.ojd.com/Chiffres/Le-Numerique/Sites-Web/Sites-Web-GP
2 Sites labeled byAccessiweb: http://www.accessiweb.org/index.php/galerie.html

http://www.ojd.com/Chiffres/Le-Numerique/Sites-Web/Sites-Web-GP
http://www.accessiweb.org/index.php/galerie.html
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Table 1. Constant values for our accessibility metric

Weightings
α1 ; α2 ;α3 A, AA, AAA conformance levels 1 ; 0.8 ; 0.6
βe
i ; β

l
i ;β

p
i Certainty levels of errors or problems 1 ; 0.5 ; 1

δ1 ; δ2 ;α3 AChecker and TAW reliabilities (sources) 1 ; 1

Thresholds S1; S2; S3; S4 Accessibility indicator levels 0.6; 0.7; 0.8; 0.9

and maximum (whiskers), 1st (bottom box plot) and 3rd quartiles (top box plot)
and average (horizontal line). We observe similarities between the assessors’ re-
sults for the errors detected as certain, but also huge differences for the likely
(warnings) and potential (non testable) problems. The number of likely prob-
lems is almost null for AChecker and the potential one remains always the same
for TAW.

Fig. 1. Results of automatic assessors

The detected defects are taken into account in our accessibility indicator re-
sults presented in Fig. 2. The mass function values of accessibility m(Ac) for
the 2 sources, TAW and AChecker, and the fusion result are visualized for 3
deficiency frames among the 4, and globally for all deficiencies.

Firstly, we can see that m(Ac) is not evenly distributed between the 2 sources:
their distributions of errors are comparable even if there is a larger range for
AChecker; however the mass function of accessibility is smaller for AChecker
compared to TAW. This is due to the more numerous potential problems (non
testable criteria) detected by the AChecker assessor, increasing substantially the
denominator in the computation of m(Ac) (Eq. 5). By the way, the values of
E(Ω) and consequently of m(Ω), are more important, as the βp

i weight for po-
tential problems is 2 times higher than βl

i for the likely problems (warnings).
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Fig. 2. Accessibility indicator results

We can also notice that the fusion result obtained by the conjunctive rule
strengthens the mass functions of the 2 assessors.

In this corpus, visual and cognitive deficiencies have a higher impact on con-
tent accessibility than the motor ones. This is logical for news websites, as their
homepages include a large number of images. By the way, the motor indicator
is less impacted, in particular by the lack of alternatives for images, useful for
visual and cognitive deficiencies. Finally, we observe a similarity between the
visual and global indicators, as around 80% of all the checkpoints concern visual
deficiencies and also because these controls are properly taken into account by
assessors.

Table 2. Examples of detailed accessibility results by deficiency frame

Web content (URLp)
Decision

Visual Motor Cognitive Global

LeParisien.fr 0.972 ↑ 0.989 ↑ 0.974 ↑ 0.971 ↑
Famili.fr 0.769 → 0.924 ↑ 0.838 ↗ 0.766 ↗
Arte.tv 0.701 → 0.718 → 0.717 → 0.686 ↘
LePoint.fr 0.630 ↘ 0.725 → 0.673 ↘ 0.627 ↘

In Table 2 are presented detailed results for several sites with significant indi-
cator result differences. For examples, LePoint.fr and Arte.tv, respectively 19th

and 33th most consulted websites in France, obtain only 0.627 and 0.686 for the
global result, whereas LeParisien.fr, ranked 12th, reaches 0.971.

For Family.fr we observe differences between the deficiencies, nevertheless
focus on accessibility generally benefits all deficiencies on the whole corpus.
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6 Conclusion

We present an indicator estimating webpage accessibility levels for distinct cat-
egories of deficiencies, in order to supply easily understandable accessibility in-
formation to users on pages proposed by a search engine. Our method based on
belief function theory fuses results from several automatic assessors and consid-
ers their uncertainties. An accurate modelization of the assessor characteristics
and of the impact of defect guideline criteria on accessibility is proposed. An ex-
periment performed on a set of 100 news websites validates the method, which
benefits from each of the assessor performances on specific criterion tests. Our
future research will focus on the implementation of a user’s personal weighting
to balance the importance of criteria.
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Abstract. Public inquiry plays an essential role in the planning process of 
transport investment and improvement projects. It helps to ensure that decisions 
are made to achieve project’s goals and meet public needs. In public inquiries 
of transport planning process, policy-makers engage in dialogue in which the 
reasonableness and beliefs in their judgments are often questioned. Different 
stakeholders reason and provide evidence in support of their preferences, but 
these opinions are normally conflicting and ambiguous. This ambiguity is 
usually expressed as a “I don’t know” opinion, but ignored in the analyses. This 
paper proposes a belief reasoning model as a goal-oriented decision-making 
method for finding a transport alternative that best achieves the project’s goals. 
The proposed method is applied to evaluate a real-world public transport 
alternatives analysis. The proposed method provides a means for the planners 
and citizens to present their own logic and justifications during the public 
inquiry process. 

Keywords: transport planning, decision-making, public participation, belief 
reasoning, evidence theory, uncertainty. 

1 Introduction 

Planning of highway, rail, and public transport projects is a multidisciplinary process 
governed by laws and policies in many countries, which asks for the consideration of 
a comprehensive set of factors and inclusion of stakeholder inputs and feedbacks. 
This makes transport planning and decision-making processes complex and requires 
negotiations among stakeholders. Often transport planning cannot advance because 
there is a lack of agreement about goal achievement, predicted outcomes, and 
expected performances of the project. 

This study considers the planning of transport investment and improvement 
projects as a reasoning-building process to advance a desirable course of actions. A 
series of actions which achieve goals give details of chained relations in a reasoning 
structure. The study approaches public transport decisions as decisions under 
                                                           
*  Corresponding author.  
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uncertainty of which transport analysts and planners have incomplete knowledge or 
lack of information [6]. A new approach for goal-oriented transport planning 
deliberations is proposed that models decision systems in a logical manner and 
employs available even if uncertain knowledge and inconsistent opinions in 
supporting decision-making. 

2 Issues of Current Transport Planning Process 

In a comprehensive transport planning and decision-making practices, multi-criteria 
decision-making approaches have been commonly used for evaluating transport 
alternatives. The decision tree structure and deterministic values are often favored by 
planners and analysts because of its visualization of the decision structure and the 
simplicity of mathematical operation used in the analyses.   

These traditional transport project evaluation approaches lack transparency, and 
clearly reasoned justifications for preferring a specific transport alternative, in the 
presence of complicated chains of reasoning and uncertainty of information. In 
reality, transport analysts and planners develop implicit reasoning chains when 
evaluating transport alternatives; but, that reasoning is unstructured and 
undocumented [10]. This causes difficulties in knowing and understanding the real 
reasons for complex decisions because there are no measures for inconsistency, 
conflicts, omissions and achievement of goals. Therefore, in practice, current 
evaluation and planning approaches are not sufficient for communicating decisions 
because the decision variables and criteria are not supported in a fact-based manner. 

This paper views evaluation of transport alternatives as a complex reasoning 
process, which consists of various elements of both transportation and non-
transportation nature and involves diverse groups of stakeholders and conflicting 
opinions and incomplete information. 

3 Belief Reasoning Method 

3.1 Structure of Belief Reasoning 

This study uses ‘belief reasoning’ method, and applies a reasoning mapping structure 
[5, 8, 11] and a propagation of belief values in evidence theory [1, 2, 3, 7] for 
reasoning process.  

A reasoning map shown in Fig. 1 is constructed for evaluating the alternatives. It 
consists of boxes connected with links, which present the chain of reasoning of a 
collection of propositions and describe the presumed cause-and-effect relationships 
among them. For evaluating transport alternatives, the reasoning map connects the set 
of transport system characteristics (Di) to the project’s goals (Gi). The relationships 
between the two are described by a series of performances and impacts (Ci). The 
reasoning map is useful in decision analysis because it is easy to explain and is 
applicable in brainstorming and discussions, and for clarifying relationships, issues 
and uncertainties. 
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• The trustworthiness of the reasoning process is evaluated based on the measures of 
uncertainty, non-specificity, and discord associated with available information.  

• The critical reasoning chains that significantly influence the outcome are 
determined based on the sensitivity analysis.  

Belief Propagation. Using the belief inference process, the belief values (m) as 
shown in Fig. 1 are propagated from the input (Xi) to the consequences/outcomes (Yj) 
as expressed in Eq.(1) and the process is repeated all the way to the individual goals 
(Gi).  Once the belief value for achieving the individual goals, m(Gi), are calculated, 
Belief measure (Bel) and Plausibility (Pl) measure can be calculated by Eqs.(2) and 
(3), which indicate the conservative and optimistic measures of achieving the goals. 
These two measures are derived from the distributions of belief values (m). Bel(Gi) is 
measured by summing all the consistent evidence pointing to goal Gi. Pl(Gi) is the 
weight of non-conflicting evidence toward goal Gi, obtained by summing the non-
conflicting belief values for outcome Gi.  

 m(Yj) = Xi⊆X m(Xi)× m(Yj|Xi) (1) 

 Bel(Gi) =  Gk|Gk⊆Gi m(Gk) (2) 

 PI(Gi) = Gk|Gk∩Gi≠∅ m(Gk) (3) 

Uncertainty Propagation. This step is to measure the trustworthiness of reasoning 
process. Uncertainty is the lack of knowledge (or ambiguity of information used). 
Measuring uncertainty of information and knowledge helps identify information 
needs in the reasoning chains and promotes discourse in the decision-making process. 
In this step, the amount of information-based uncertainty in a reasoning chain is 
quantified using the non-specificity and discord measures in evidence theory as 
shown in Eqs.(4) and (5). Non-specificity, N(m(X)), refers to uncertainty due to 
imprecise knowledge about X.  N(m(X)) increases when the belief value of “I don’t 
know” increases and the belief values on the specific states decreases. The discord 
measure, D(m(X)), refers to uncertainty due to conflicting opinions about X. D(m(X)) 
increases when the belief values of two or more states are the same [7]. They measure 
the quality of information given to the transport analysts.  

 N(m(X)) = Xi⊆X {m(Xi)× log2|Xi|}  (4) 

 D(m(X)) = Xi⊆X {m(Xi)× log2(Xj⊆X [m(Xj)×|Xi∩Xj|/|Xj|])} (5) 

where Xi is the set of outcome associated with each box in a reasoning map, |Xi| is 
the size of subset X, and log2|Xi| is the bit of information needed to find the solution 
for the binary problem.  

Identification of Critical Reasoning Chains. This step is to identify the strong and 
weak reasoning chains, which is necessary to gauge validity of reasoning. This helps  
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determine which characteristics of alternatives affect the decision most, and provide 
information on how to improve the alternatives in order to improve goal achievement.  
Given the belief distributions attached to each attribute in a reasoning map, one can 
determine whether a reasoning chain is more influential than the other chains. To 
identify the critical chain in the reasoning map involves finding the variable that most 
influence the degree of goal achievement. This sensitivity analysis is done by 
comparing the degree of goal achievement when a particular variable is removed from 
the reasoning map.  The larger the difference of the degrees of goal achievement 
between ‘with and without’ a particular variable, the more that variable affects goal 
achievement. The determination of critical reasoning chains is conducted backward 
(from the goal node to the decision nodes) by comparing the importance measures 
among its preceding nodes and selecting that preceding node, which has the highest 
difference. 

4 Application to Transport Planning 

The proposed method was applied in Alternatives Analysis in a case study of an 
evolving public transport investment project in Virginia, USA. The Streetcar 
alternative is evaluated and compared to the Bus Rapid Transit alternative with 
respect to five goals of the project––mobility, economic development, livability and 
sustainability, multimodal transport system, and safety [9].  

The reasoning map represents opinions of planners from transit and regional 
planning entities and allows “I don’t know” opinion; ideally citizen views would also 
be collected. The reasoning map was first drawn up by ten transport experts. The 
belief values, which represent the confidence of opinions associated with each causal 
link, were assigned next. The mechanism for propagating the belief values along the 
chains was applied, and the degree of belief for achieving the goals was obtained. 
Finally, a measure of uncertainty associated with each variable and goal was 
calculated to assess the quality of information and the reasons for the preferred 
alternative.  

The study presents the model results as follows. First, the reasoning map 
configuration is shown. Second, the degrees of goal achievement and their uncertainty 
measures are discussed. Finally, the critical reasons supporting the goals are 
determined.  

4.1 Reasoning Maps for Goal Achievement 

The reasoning map that was developed is composed of 91 variables (22 decision 
variables, 2 exogenous variables, 62 consequences/outcomes, and 5 goals). For each 
variable, two possible states of outcomes exist: “Agree” and “Disagree.” The “I don’t 
know” state is added for non-specific opinion.  
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Fig. 2 is an example of the reasoning map for the goal of “Economic 
Development”. The reasoning maps for the other goals are not shown. The boxes on  
the left column present the decision variables of the transit technology, and the box on 
the right column shows the goal chosen for illustration purpose. The intermediate 
boxes which connect the decision variables and goals are a series of interrelated 
consequences and performances. In the analyses, some variables in one map may be 
connected to the reasoning maps for the other four goals.  
 

 

Fig. 2. Reasoning map for achieving “economic development” goal 

4.2 Degrees of Goal Achievement and Uncertainty Measures 

Two transit mode alternatives are compared: Streetcar and Bus Rapid Transit (BRT). 
The belief values that the Streetcar achieves the goals of the project relative to the 
BRT alternative are evaluated.  

Table 1 presents the degrees of goal achievement and their associated uncertainty 
measures of the Streetcar alternative relative to the BRT alternative. There is 
agreement among the planners that the Streetcar alternative supports most of the goals 
of the corridor project at high degrees of achievement: 0.803-0.953 for “Mobility,” 
0.911-0.982 for “Economic development,” 0.949-0.999 for “Livability and 
Sustainability.” The exception is for “Multi-modal Transport System,” for which the 
agreement is low (0.149-0.352). Achieving “Safe Environment” is about the same (no 
difference between two alternatives). The lower values of the degrees of achievement 
of individual goals represents the conservative values (Bel) and the upper values 
represent the optimistic values (Pl), the sum of belief values attached to “Agree” and 
“IDK.”  

 
 



 Belief Reasoning Model for Mapping Public Participation in Transport Planning 149 

 

Table 1. Belief and uncertainty measures of goal achievement (Streetcar vs. BRT) 

Goals Degrees of goal achievement Uncertainty measures 

Agree Disagree IDK N(m) D(m) Totalc 

Mobility 0.803 0.047 0.150 0.150 0.293 0.443 

Economic development 0.911 0.018 0.071 0.071 0.148 0.219 

Livability and sustainability 0.949 0.001 0.050 0.050 0.041 0.091 

Multi-modal transport 0.149 0.648a 0.203 0.203 0.567 0.770 

Safe environment 0.012 0.961b 0.027 0.027 0.099 0.126 
a It is not believed that Streetcar would support multi-modal transport compared to 

the BRT.  
b It is not believed that Streetcar would provide safer environment than BRT.  
c The maximum uncertainty of opinions associated with individual goal is log2(2) = 

1.000 as there are two possible outcomes: “Agree” and “Disagree.”  
 
The high degree of consensus among the planners was not shared by the affected 

interest along the project corridor. In the public meetings there was a distinct division: 
the older people favored the BRT while the younger favored the Streetcar. There were 
some young renters in the meeting for whom Streetcar and TOD meant “transit 
oriented displacement”—and not transit-oriented development—and economic 
development in the corridor would require low income residents to move further out 
from the city to a more affordable rent location.  

5 Discussion 

The proposed approach has practical value in two respects. First, it quantitatively 
measures the degree that the selected alternative achieves individual goals. This 
enables the affected interest to understand and assess the strength not only of the 
reasoning process, but also of the planning process and the alternatives considered. 
Because it incorporates the notion of “I don’t know” in the calculation of the ‘truth’, 
both the conservative and optimistic views of the degree of goal achievement are 
obtained.  

The reasoning map, the associated belief values of each variable and 
interrelationship help identify the critical links that would make the most important 
contributions to the degree of goal achievement. Once the critical nodes and links are 
identified, the planners can pinpoint the relationships which should be studied more to 
improve the strength of the reasoning process. 

5.1 Effects of “I Don’t Know” Opinions 

Fig. 3 shows the effects of the “I don’t know” opinion on the achievement of 
individual goals measured by Belief (Bel) and Plausibility (Pl) measures. The 
sensitivity of “I don’t know” opinion is tested by increasing the belief value of “I 
don’t know,” m(IDK), for all input variables from 0 to 1 with an increment of 0.1, and 



150 N. Kronprasert and A.

 

proportionally decreasing th
very certain about their op
(Pl) measures are equal. W
and Pl measures increases
certain. The Pl value incre
(“if you don’t know, then e
one (“if you don’t know, th
between the two measur
achievement.  

 

Fig. 3. Effects of ignorance

5.2 Critical Reasons 

A sensitivity analysis was p
the support of the Streetcar
highly support the belief 
influenced the most the ach
there be much uncertainty 
chain would indicate wh
knowledge and to reduce th

In Fig. 2, showing the 
higher economic developm
fixed rail infrastructure is 
become a corridor landmar
investment and would enco

6 Conclusions 

The principal advantages of
are: (i) potential to model 
evaluation of transport alte
may be incomplete, uninfo
actors; (iii) capability to
knowledge to focus debate

P. Talvitie 

he belief values of other outcomes. When the “Experts” 
pinions, m(IDK)=0, then the Belief (Bel) and Plausibi

When “I don’t know” increases the difference between 
 rapidly. The Bel value decreases since evidence is l

eases because it represents “optimism” about the outco
everything is possible”). The Bel measure is a conservat
hen it is unlikely that the possible happens”). The differe
es indicates the degree of non-specificity about g

 

e (I don’t know) on belief and plausibility of goal achievement

performed to identify the critical link(s) that most influe
r alternative. The critical chains contain the variables t
of achieving a goal. The critical reasoning chain t

hievement of goals is highlighted in red in Fig. 2. Sho
in achieving a goal by a particular alternative; the crit

here more resources should be employed to incre
he uncertainty or ambiguity.  
“Economic Development” goal, Streetcar would enha

ment than BRT as shown in Table 1. It is believed tha
a permanent and long-term transit investment. It wo

rk and community resource. It would bring more priv
ourage more economic activities along the corridor. 

f the belief reasoning method in transport planning proc
the planners’ and stakeholders’ reasoning process in 

ernatives; (ii) flexibility to handle different opinions wh
ormed or informed, or conflicting elicited from multi

o measure uncertainty associated with information 
es and improve analyses; and (iv) documented paper t

 are 
ility 
Bel 
less 
ome 
tive 

ence 
goal 

 

t 

ence 
that 
that 

ould 
tical 
ease 

ance 
at a 
ould 
vate 

cess 
the 

hich 
iple 

or 
trail 



 Belief Reasoning Model for Mapping Public Participation in Transport Planning 151 

 

and record about the reasoning process leading to the recommendation for the 
selection of an alternative. All of these are useful for before-and-after studies and 
analyses of anticipated or predicted outcomes and will improve the scientific 
knowledge-base on how decisions are reasoned. The proposed approach clarifies 
transport decision-making processes where multiple experts or actors are involved, 
and knowledge of individual experts is fragmented and possibly conflicting.  

There are two possible drawbacks of the proposed approach in transport planning. 
First, the reasoning map can be manipulated by the analysts/planners. This 
manipulation is mitigated by the greater transparency of the process than in the 
traditional approaches in which the analysts/planners’ reasoning is not revealed in a 
reasoning map. It may be an advantage to the planners to know the stakeholders’ 
evaluations and have opportunity to understand their concerns and reasoning patterns. 
It is also possible to customize the map to reflect different stakeholders’ reasoning 
paths. This is an important issue. The advantage of the reasoning map and process is 
the possibility to conduct plan development and plan evaluation in parallel. The 
planner can legitimately use the reasoning map in planning for several purposes: 
study the proposed plans weak links; tailor the plan fit the stakeholders’ priorities; to 
develop complementary policies and so on. 

Second, the mechanism to calculate the degree of goal achievement is susceptible 
to ‘group think’. This indeed may have been the case in the case study project. The 
underlying concept of the proposed mechanism leads to believing the stronger 
opinions and suspecting the weaker opinions. The stronger opinions dominate the 
calculations. This seems to be true in any decision-making process. Therefore, for the 
method to be constructive, it is important that “strong beliefs” are close to the “truth” 
or at least frank. The other side of this issue is that opinions of the stakeholders need 
not be combined and the strong voice need not necessarily dominate, but even the 
weak voice can be heard. 

It is desirable in applying the belief reasoning model during public inquiry process 
that several groups of stakeholders, possibly representing different views and values, 
are involved. The success of the proposed approach depends on the agreement on the 
reasoning maps and the integrity of knowledge used on assigning belief values on 
those maps. During the public inquiry process, the reasoning map should be reviewed 
by several stakeholder groups for reasonableness, comprehensiveness, clarity, and 
economy (parsimony) for clarity of the evaluation. The experts and participating 
citizens should speak out honestly and genuinely about their judgments and openly 
admit their understanding and degree of uncertainty in their opinions.  

The belief reasoning method developed in the paper assists transport planners to 
evaluate alternatives, to reason about them, and to measure the validity of reasoning 
in the evaluation. The decision model was created using the reasoning map structure 
and the evaluation was developed using the evidence theory.  

The following two observations are important in the context of this application. 
Detailed information about characteristics of the alternatives was available and 
professionally worked through by experts before their interviews and in drawing up 
the reasoning map. Significant consequences, which contribute to the goals of the 
project, were discussed and anticipated. They are reflected in the reasoning map and 
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show the underlying thinking of the consulted experts. It is likely that in a real-world 
application a smaller reasoning map would evolve over time and would not only be 
justified for planning purposes, but would also clarify the decision situation.  

The credibility of the proposed approach does not, however, depend only on the 
assignment of beliefs on the various elements of the plans. Although the experts and 
the participating citizens should be honest about their degrees of “I don’t know,” there 
is value just drawing up the reasoning maps of the plans and discuss and clarify the 
relationships among the plan elements. The method bears similarity to Forrester’s 
systems dynamics [3], but it is not restricted to models and regressions from past data 
and behavior.  
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Abstract. The separable support function is a subclass of belief func-
tion, and it plays an important role in evidence theory. Although many
properties of separable support function have been analyzed, the prob-
lem that how to judge whether a belief function is separable has not
been solved. Through the canonical decomposition, any belief function
could be decomposed into a set of generalized simple support functions.
A judgment could be made from the decomposition result by checking
all the weights, being a little cumbersome. Thus an alternative is pro-
vided. Some notes are made on the canonical decomposition, based on
which two sufficient conditions to judge a separable support function
are established. It is shown that whether a belief function is separable
or not is not only decided by the relations between focal elements, but
also influenced by the mass distributions among focal elements. Using
the proposed conditions, one could directly make a judgment in certain
cases from the basic probability assignment.

Keywords: Evidence thoery, Canonical decomposition, Separability,
Simple support function.

1 Introduction

Evidence theory, being able to distinguish disbelief from loss of belief, is an
efficient tool to model and process uncertain and imprecise data and is more
frequently used in the field of information fusion for decision making. It was first
proposed by Dempster[1], and later extended by Shafer [7] to a systematic theo-
rem. In his monograph, Shafer defined the separable support function as a simple
support function or the orthogonal sum of two or more simple support functions.
It was studied further that some properties and concepts were established based
on this function, such as the weight of internal conflict and impingement func-
tion. Though the definition for separability was given, no criterion has been put
forward to judge which belief function is separable.

By generalizing the concept of simple support function, Smets [8] defined the
general simple support function and put forward the canonical decomposition,
which can decompose any belief function into a set of general simple support
functions. From the definition of separable support function, a belief function is
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separable if all generalized simple support functions generated by the canonical
decomposition have weights less than 1. But this means that a belief function
should be decomposed so as to make a judgment. This may be a little cumber-
some, especially when the frame of discernment is large.

In this paper, we try to find some criteria to help judge a separable support
function directly from its basic probability assignment (BPA). To do this, the
canonical decomposition is further analyzed. Some simple properties are sum-
marized for it, and then some sufficient conditions are provided based on these
properties to judge whether a belief function is separable in certain cases. These
conditions facilitate the judgment of a separable support function, especially in
the case where the frame is large while the focal elements are not that many.
It is also shown that both the relations between focal elements and the mass
distributions among them can influence the separability of a belief function. An
illustrative example intuitively shows the proposed properties.

The organization of the rest paper is as follows. In section 2, some necessary
preliminaries about the canonical decomposition are introduced. In section 3,
several properties are concluded and proved for the canonical decomposition.
Based on these properties, sufficient conditions to judge whether a belief function
is separable are put forth in section 4. Then in section 5, a simple example is used
to illustrate the results more intuitively, and a conclusion is drawn in section 6.

2 Preliminaries

Let Θ, a finite set of N mutually exclusive and exhaustive hypotheses, be the
frame of discernment. Over this frame, a basic probability assignment (BPA) m
is defined as a mapping from 2Θ to [0, 1] verifying

∑
A⊆Θm(A) = 1. Subsets A

of Θ such thatm(A) > 0 are called focal elements ofm. A BPA is said to be non-
dogmatic if m(Θ) > 0, and normal if m(∅) = 0. In this paper, only the normal
belief function is considered. The commonality function Q could be calculated
from m through the Mobius transform: Q(A) =

∑
A⊂B⊂Θm(B), A ⊂ Θ.

Suppose m is the basic probability assignment corresponding to belief function
Bel. If there exists a subset A of Θ such that m has the following expression:

m(B) =

⎧⎨⎩w B = Θ
1 − w B = A
0 otherwise

where w ∈ [0, 1], then Bel is called a simple support function (SSF) focused
on A, and can be denoted as Aw for simplicity. A belief function is said to
be separable if it is a SSF or it is the conjunctive combination of some SSFs.
By extending the weight w to [0,∞), Smets [8] defined the generalized simple
support function (GSSF), and those GSSF with w ∈ (1,∞) are called inverse
simple support functions (ISSF).

The canonical decomposition proposed by Smets is defined as follows: for
any non-dogmatic belief function Bel over Θ, there exists a unique set of GSSF
defined over Θ such that
Bel = ⊕

A⊂Θ
AwA , wA ∈ [0,∞) for ∀A ∈ Θ, and
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wA =
∏

X:A⊂X⊂Θ
Q(X)

(−1)|X|−|A|+1

. (1)

Here ⊕ stands for the normalized conjunctive rule, i.e., the Dempster’s rule
of combination. From the definition of separability, a belief function is separable
if wA < 1 for all subsets A ⊂ Θ.This decomposition could also be extended to
dogmatic belief functions by assigning a positive small value ε to m(Θ).

3 Some Properties of the Canonical Decomposition

The canonical decomposition can decompose a belief function into a set of GSSF,
thus providing an alternative to some problems, such as evidence conflict [4,6],
evidence combination [2,3] and evidence clustering [5]. In this section, this tech-
nique itself is studied further. Some properties are summarized and proved for
special cases.

Property 1. Suppose Bel is a non-dogmatic belief function over Θ, and m, Q are
its corresponding BPA and commonality function, respectively. Suppose Bel has
n+1 focal elements denoted by A1, · · · , An, and Θ. For all 1 ≤ i ≤ n, if Ai 
⊂ Aj

for all j 
= i, then wA < 1.

Proof. Since Ai is not contained in any other focal elements, we have
Q(Ai) =

∑
B⊃Ai

m(B) = m(Ai) +m(Θ), and
Q(B) = m(Θ) for all B ⊃ Ai .

Suppose |Ai| = Ni, |Θ| = N , by the canonical decomposition,

wAi =
∏

X:Ai⊂X⊂ΘQ(X)
(−1)|X|−|Ai|+1

= m(Θ)

(
N−Ni

1

)
m(Θ)

(
N−Ni

3

)
···

Q(Ai)m(Θ)

(
N−Ni

2

)
m(Θ)

(
N−Ni

4

)
···

= 1
Q(Ai)

m(Θ)

(
N−Ni

1

)
−
(
N−Ni

2

)
+
(
N−Ni

3

)
−
(
N−Ni

4

)
+−···

By the binomial theorem,

(1 − 1)N−Ni =

(
N − Ni

0

)
−

(
N − Ni

1

)
+

(
N − Ni

2

)
− + · · · + (−1)N−Ni

(
N − Ni

N − Ni

)
= 0,

when N −Ni is a positive integer. Thus(
N − Ni

1

)
+

(
N − Ni

2

)
−

(
N − Ni

3

)
+

(
N − Ni

4

)
− + · · · =

(
N − Ni

0

)
= 1,

wAi =
m(Θ)
Q(Ai)

= m(Θ)
m(Θ)+m(Ai)

< 1. (2) ��

This property reflects that each focal element that not contained in other focal
elements will correspond to a SSF if decomposed by the canonical decomposition.
Then if the focal elements of a belief function do not contain each other, whether
is it separable? This cannot be answered by property 1 since weights of those
subsets that are not focal elements are unknown. The following property will
solve this problem.

Property 2. Suppose Bel is a non-dogmatic belief function over Θ, and m, Q are
its corresponding BPA and commonality function, respectively. And suppose
Bel has n + 1 focal elements denoted by A1, · · · , An, and Θ. If m(B) = 0, and
B 
= Ai ∩ Aj for all 1 ≤ i, j ≤ n, then wA < 1 .
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Proof. (i) If B 
⊂ Ai for all 1 ≤ i ≤ n, then by setting m(B) = 0 in Eq. (2) one
has wB = 1 .

(ii) If B ⊂ Ai, then If B 
⊂ Aj for all 1 ≤ j ≤ n, j 
= i, otherwise B = Ai ∩Aj .
Thus Q(B) = m(Ai) +m(Θ) , and for all C ⊃ B , one has

Q(C) =

{
Q(B) C ⊂ Ai,
m(Θ) C 	⊂ Ai, C ⊂ Θ.

By the canonical decomposition,
wB =

∏
X:B⊂X⊂Θ Q(X)(−1)|X|−|B|+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
C:|C|=|B|+1,
B⊂C⊂Ai

Q(C)
∏

C:|C|=|B|+1,
B⊂C⊂Θ,C �⊂Ai

Q(C)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
C:|C|=|B|+3,
B⊂C⊂Ai

Q(C)
∏

C:|C|=|B|+3,
B⊂C⊂Θ,C �⊂Ai

Q(C)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
···

Q(B)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
C:|C|=|B|+2,
B⊂C⊂Ai

Q(C)
∏

C:|C|=|B|+2,
B⊂C⊂Θ,C �⊂Ai

Q(C)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
C:|C|=|B|+4,
B⊂C⊂Ai

Q(C)
∏

C:|C|=|B|+4,
B⊂C⊂Θ,C �⊂Ai

Q(C)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
···

=

⎛
⎜⎜⎜⎜⎝Q(B)

⎛
⎜⎜⎝
|Ai|−|B|

1

⎞
⎟⎟⎠
m(Θ)

⎛
⎜⎜⎝
|Θ|−|Ai |

1

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝Q(B)

⎛
⎜⎜⎝
|Ai|−|B|

3

⎞
⎟⎟⎠
m(Θ)

⎛
⎜⎜⎝
|Θ|−|B|

3

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
|Ai|−|B|

3

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎟⎠···

Q(B)

⎛
⎜⎜⎜⎜⎝Q(B)

⎛
⎜⎜⎝
|Ai|−|B|

2

⎞
⎟⎟⎠
m(Θ)

⎛
⎜⎜⎝
|Θ|−|B|

2

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
|Ai|−|B|

2

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝Q(B)

⎛
⎜⎜⎝
|Ai|−|B|

4

⎞
⎟⎟⎠
m(Θ)

⎛
⎜⎜⎝
|Θ|−|B|

4

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
|Ai|−|B|

4

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎟⎠···

= 1
Q(B)

Q(B)

⎛
⎝ |Ai|−|B|

1

⎞
⎠−

⎛
⎝ |Ai|−|B|

2

⎞
⎠+−···

m(Θ)

⎛
⎝ |Θ|−|Ai |

1

⎞
⎠−

⎡
⎣
⎛
⎝ |Θ|−|B|

2

⎞
⎠−

⎛
⎝ |Ai|−|B|

2

⎞
⎠
⎤
⎦+−···

Again by the binomial theorem, one has
( |Ai| − |B|

1

)
−

( |Ai| − |B|
2

)
+ − · · · =

( |Ai| − |B|
0

)
= 1, and

(
|Θ| − |Ai|

1

)
−

[(
|Θ| − |B|

2

)
−

(
|Ai| − |B|

2

)]
+

[(
|Θ| − |B|

3

)
−

(
|Ai| − |B|

3

)]
− + · · ·

=

(
|Θ| − |Ai|

1

)
−

[(
|Θ| − |B|

2

)
−

(
|Θ| − |B|

3

)
+ − · · ·

]
+

[(
|Ai| − |B|

2

)
−

(
|Ai| − |B|

3

)
+ − · · ·

]

=

(
|Θ| − |Ai|

1

)
−

[
−

(
|Θ| − |B|

0

)
+

(
|Θ| − |B|

1

)]
+

[
−

(
|Ai| − |B|

0

)
+

(
|Ai| − |B|

1

)]

= (|Θ| − |Ai|) − (−1 + |Θ| − |B|) + (−1 + |Ai| − |B|)
= 0.

Hence,
wB = 1

Q(B)Q(B)1m(Θ)0 = 1. ��

This property means that only focal elements and their intersections could be
foci of non-vacuous GSSF using the canonical decomposition.
Property 1 says that the weight of any focal element not contained in others is
less than 1. In fact, this constraint could be further relaxed.

Property 3. Suppose Bel is a non-dogmatic belief function over Θ, and m, Q are
its corresponding BPA and commonality function, respectively. And suppose
Bel has n+ 1 focal elements denoted by A1, · · · , An, and Θ. If Ak 
= Ai ∩Aj for
1 ≤ i, j 
= k ≤ n, then wAk

< 1.

Proof. (i) If Ak 
⊂ Ai small for all 1 ≤ i 
= k ≤ n, then it follows from property
1 that wAk

< 1.
(ii) If Ak ⊂ Ai, then Ak 
⊂ Ai for all 1 ≤ j ≤ n, j 
= i, k, otherwise Ak =

Ai ∩ Aj .
Thus Q(Ak) = m(Ak) +m(Ai) +m(Θ), Q(Θ) = m(Θ) , and

Q(C) = m(Ai) +m(Θ) for every C ⊂ Ai, C 	= Ak, Θ.

Then similar to the proof of property 2, we have

wB = 1
Q(Ak)

Q(C)1m(Θ)0 = m(Ai)+m(Θ)
m(Ak)+m(Ai)+m(Θ) < 1. ��
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This indicates that a focal element will correspond to a SSF if it is not con-
tained by two or more other focal elements. However, the inverse usually does
not hold. We cannot say a belief function separable or not by its focal elements
separately, while neglecting the mass distribution among them.

4 When is a Belief Function Separable?

It is not an easy task to judge whether a belief function is separable or not in
a general case. For several special cases, some sufficient conditions are put forth
to make such a judgment in this section.

Theorem 1. Suppose Bel is a non-dogmatic belief function over Θ, and it has
n + 1 focal elements denoted by A1, · · · , An, and Θ. If these focal elements can
be divided into two classes: A1, · · · , Ak, Ak+1, · · · , An, such that

(1) Ai ∩ Aj = ∅, for all 1 ≤ i ≤ k, 1 ≤ j(
= i) ≤ n;
(2) Ak+1 ⊂ Ak+2 ⊂ · · · ⊂ An.

Then Bel is a separable support function.

Proof. It follows from property 3 that wAi < 1, i = 1, · · ·n. Since Ai ∩ Aj = Ai

for all k + 1 ≤ i, j ≤ n, it follows from property 2 that wB = 1 for all other
subsets B of Θ that are not focal elements. Thus Bel is separable. ��

As special cases, the following corollaries follow immediately from this theo-
rem.

Corollary 1. Suppose Bel is a non-dogmatic belief function over Θ. If the in-
tersection of any two focal elements (except the frame) is empty, then Bel is
separable.

Corollary 1.1. All non-dogmatic belief functions with |Θ| = 2 are separable.

Corollary 1.2. All Bayesian alike belief functions, i.e., those only assign posi-
tive mass to elements of Θ and Θ itself, are separable.

Corollary 2. All non-dogmatic consonant belief functions are separable support
functions.

It should be noted that the same statement as Corollary 2 has been made and
proved in another way in [2].

Since this is a sufficient condition to judge a separable support function, a
belief function may still be separable if the condition is not satisfied. The follow-
ing theorem could be seen as a supplement that it can detect a non-separable
support function in some cases. If we cannot directly judge a belief function as
separable, then we could check whether it is non-separable.

Theorem 2. Suppose Bel is a non-dogmatic belief function over θ, and m, Q
are its corresponding BPA and commonality function, respectively. And suppose
Bel has n + 1 focal elements denoted by A1, · · · , An, and Θ. If there exists Ai

and Aj such that Ai ∩ Aj = B,and m(B) = 0, B 
⊂ Ak, for k 
= i, j, then Bel is
not separable.
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Proof. From the given conditions, the commonality function Q satisfies:
Q(B) = m(Ai) +m(Aj) +m(Θ) , and

Q(C) = m(Ai) +m(Θ), C ⊂ Ai, C 	⊂ Aj

Q(D) = m(Aj) +m(Θ), D ⊂ Aj , D 	⊂ Ai

Q(E) = m(Θ), E 	⊂ Ai, Aj , E ⊂ Θ

⎫⎬⎭ (3)

Then similar to the proof of property 2, the subsets that contain B could be
divided into three classes according to Eq. (3). And one has

wB = Q(C)Q(D)
Q(B)Q(E) =

(m(Ai)+m(Θ))(m(Aj)+m(Θ))
(m(Ai)+m(Aj)+m(Θ))m(Θ)

=
(m(Ai)+m(Aj)+m(Θ))m(Θ)+m(Ai)m(Aj)

(m(Ai)+m(Aj)+m(Θ))m(Θ) > 1.

Thus Bel is not a separable support function.

Note that this theorem can be further extended to the case where subset B is
the intersection of more than two focal elements, while none of them is contained
in more than one other focal element. Besides, from the expression of wB in the
proof, the case where m(B) > 0, i.e., B is also a focal element, could also be
discussed according to its relative value. However, this discussion would be very
complex in some cases and the result is hard to generalize. This theorem could
also be explained from another point of view. From the given conditions and
property 1, one has wAi < 1 and wAj < 1. Then the combination of these two
SSF would assign a positive mass to subset B according to the Dempsters rule.
However, B is not a focal element of Bel, which means that the mass assigned
to B is zero. This positive mass could not be removed through combing any SSF
other by an ISSF focused on B. Thus the weight of B should be bigger than 1.

5 Example

Using the theorems proposed in the above section, some belief functions can
be classified into the separable class and some can be rule out of this class.
However, both of them are sufficient conditions that there still exists a case
where a judgment cannot be made through these two theorems. A conclusion
for a general case is rather complex since both the relations of focal elements
and mass distributions among them contribute to the separability of a belief
function. A simple example is illustrated in the following to show the results
intuitively.

Example 1. Let Bel be a belief function over Θ = {θ1, θ2, θ3} with BPA defined
as

m(θ1) = a,m({θ1, θ2}) = b,m({θ1, θ3}) = c,m(Θ) = 1− a− b− c,

where a, b, c ≥ 0, a+ b+ c < 1.
From the proposed properties, only {θ1}, {θ1, θ2}and{θ1, θ3} may have weights

not equal to one, and they are expressed using a, b, c as follows:

w{θ1} = (1−a−c)(1−a−b)
1−a−b−c , w{θ1,θ2} = 1−a−b−c

1−a−c , w{θ1,θ3} = 1−a−b−c
1−a−b .

The commonality function and decomposition results corresponding to differ-
ent values of a, b, c are listed in Table 1.
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Table 1. Decompositions of belief function in example 1

Focal m Q w(0.4, 0, 0.4) w(0,0.4,0.4) w(0.2,0.4,0.4) w(0.4,0.2,0.2)

∅ 0 1 1 1 1 1
θ1 a 1 3/5 9/5 6/5 4/5
θ2 0 1− a− c 1 1 1 1
θ3 0 1− a− b 1 1 1 1

θ1, θ2 b 1− a− c 1 1/3 1/2 1/2
θ1, θ3 c 1− a− b 1/3 1/3 1/3 1/2
θ2, θ3 0 1− a− b− c 1 1 1 1
Θ 1− a− b− c 1− a− b− c

By property 2, the weights of {θ2}, {θ3}, {θ2, θ3} will be 1, not matter a, b and
c take what values. This could be seen in Tab. 1 that they are equal to 1 in all
four cases.

By property 1, {θ1, θ2} will be the focus of a SSF if b > 0, which could be
seen in the last three cases in Tab. 1. Similarly, {θ1, θ3} will be the focus of a
SSF if c > 0 as shown in all four cases.

By property 3, if a > 0 and one of b and c is equal to zero, then the weight of
{θ1} will be less than 1. This is shown in the 4th column in Tab. 1.

By theorem 1, if a > 0 and one of b and c is equal to zero, then Bel is a
constant belief function, thus is separable. This could be seen from column 4
that no weight is bigger than 1.

By theorem 2, if a = 0 and b > 0, c > 0, then Bel is not a separable support
function. The 5th column in Tab. 1 shows this case.
Comparing the results of above two cases, one can find that the relations be-
tween focal elements contribute to the separability of a belief function.

As to the case where none of a, b and c is equal to zero, neither of the two
theorem works. One still does not know whether Bel is separable or not di-
rectly from the BPA. The last two columns in Tab. 1 list two such cases where
the first one is not separable while the second is separable. This shows that the
mass distributions among focal elements also influence the separability of a belief
function.

6 Conclusion

Separable support function is an important subclass of belief function. Although
much work has been done on its properties, no method has been given to judge
whether a belief function is separable or not. The canonical decomposition pro-
vides such an alternative by checking the weights of the generated GSSF. But
this method is rather cumbersome, especially when the frame is large. Thus
two sufficient conditions are proposed in this paper to judge a separable sup-
port function directly from its basic probability assignment. They are still based
on the canonical decomposition, while some of its properties are used rather



160 X. Ke, L. Ma, and Y. Wang

than checking weights of GSSF. These properties are summarized and proved
for some special cases, leading the proposed conditions to be sufficient only. It
is also shown that a sufficient and necessary condition for a general case may be
too complex since both focal elements and mass distributions among them con-
tribute to the separability of a belief function. A simple example with variants
explains all these properties and conditions intuitively.
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Abstract. Set operations are one of the most difficult tasks in imple-
menting belief functions for knowledge based systems. The problem be-
comes intractable because the number of subsets increases exponentially
as the frame size increases. In this paper, I propose representing a sub-
set as an integer, and reduce set operations to bitwise operations. I show
the superiority of such a representation and demonstrate how, despite its
simplicity, the technique has a profound implication in reducing the com-
plexity of belief function computations and makes it possible to organize
and store belief functions using relational databases for large projects.

1 A Relational Representation

Let Θ = {θ1, θ2, ..., θn} denote the frame of discernment. Relational representa-
tion starts with representing a subset A ⊂ Θ as a binary number A = a1a2...an
such that

ai =

{
0
1
θi /∈ A
θi ∈ A

for i = 1, 2, ..., n. It is easy to see that all subsets of Θ are in one-to-one corre-
spondence to all the n-bits binary numbers if we fix the order of the elements
in Θ. For example, let Θ = {H,T }. Then we have the following correspon-
dence: empty set φ ⇐⇒ 00, A = {H} ⇐⇒ 10, B = {T } ⇐⇒ 01, and the
whole set Θ ⇐⇒ 11. To avoid using extra notations, we will use the same
symbol for a subset and its corresponding binary number. For example, let
Θ = {rainy, sunny, cloudy}. Then A = {rainy, cloudy} is equivalently repre-
sented as a binary number A = 101.

Note that the trick of binary representation is not new. For example, Smets [7]
used it to re-express the formulas in the transferable belief model using matrices.
Haenni and Lehmann [2] discussed its implications on combination and marginal-
ization of multivariate belief functions. The correspondence between subsets and
binary numbers, however, lies not only at the format but also the operations and
relations. Bitwise operations include AND (&), OR (|), and complement ( ∼),
which respectively correspond to set intersection, union, and complement. Sup-
pose A = anan−1...a1 and B = bnbn−1...b1. The bitwise operations are defined
as follows:

– Bitwise AND (&): A&B = cncn−1...c1 such that ci = 1 iff aibi = 1, for
i = 1, 2, ..., n. This corresponds to A∩B; θi ∈ A∩B if and only if aibi = 1.
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– Bitwise OR (|): A|B = cncn−1...c1 such that ci = 1 iff ai + bi ≥ 1, for
i = 1, 2, ..., n. This corresponds to A ∪ B; θi ∈ A ∪ B if and only if ai = 1
(θi ∈ A) or bi = 1 (θi ∈ B), i.e., ai + bi ≥ 1.

– Bitwise Complement ( ∼): ∼ A = cncn−1...c1 such that ci = 1 iff ai = 0,
for i = 1, 2, ..., n. This corresponds to ¬A; θi ∈ ¬A if and only if ai = 0 (θi
/∈ A).

In terms of these bitwise operations, set difference can be also expressed as
composite bitwise operations as follows: A−B = A&(˜B). Set relations such as
containment correspond to bitwise comparisons as follows:

– Bitwise Comparison (& and '): A & B if and only if ai ≥ bi for all i. A ' B
if and only if ai ≥ bi for all i and ai > bi for some i.

Then, usual set containment relations can be equivalently expressed as bitwise
comparisons. A ⊃ B (A ⊇ B) is equivalent to A ' B (A & B).

It is known that a binary number is a native representation of any data in
the computer. Binary numbers and decimal integers have deeper relationships.
First, they are one-to-one correspondent. Second, the conversion between binary
numbers and decimal integers is implicit in modern operating systems; an integer
is internally stored in memory and operated in processors as a binary number.
Third, native bitwise operations apply equivalently to integers in modern pro-
gramming languages such as C, C++, C#, and Java. For example, given any two
integers A and B, applying &,|, or ˜operation will implicitly treat the operands
as binary, but applying +, −, ×, and ÷ will treat them as decimals.

Taking advantage of these relationships, I further represent subsets as integers.
This is the second step toward the relational representation of belief functions.
It is easy to see that, if the frame of discernment is fixed and ordered, sub-
sets, binary numbers, and integers are all equivalent; from one we can come up
with a unique other. For example, let the frame Θ = {rainy, sunny, cloudy}.
Then A = {rainy, cloudy} corresponds to binary number 101 or integer 5.
Similarly, integer 7 corresponds to binary number 111, which represents sub-
set Θ = {rainy, sunny, cloudy}. Therefore, in the future, we can use integers,
binary numbers, and subset interchangeably.

One caveat with the relational representation is the bitwise comparisons.
Clearly, A & B (A ' B) is not equivalent to A ≥ B (A > B). For example, as
integers 6 is greater than 5 but as binary numbers it is not true that 110 ' 101
by bitwise comparisons. In fact, it is easy to prove the following lemmas:

Lemma 1. For any integers A and B, if A & B (A ' B), then A ≥ B (A > B).
However, the converse is not true.

Lemma 2. For any integers A and B, A = B for binary comparison iff A = B
for decimal comparison.
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Bitwise comparison is not a native relation defined in programming languages.
However, it can be defined or programmed easily using bitwise Bitwise AND (&):
It may be also programmed using bitwise shifts as follows.

– Bitwise Shifts (( and )): For any binary number A and integer k, A ( k
(left shift) is a binary number by adding k zeros to the end of A. Conversely,
A ) k (right-shift) is a binary number by removing k ending digits of A.
Treated as integers, A ( k = A× 2k and A ) k = A ÷ 2k, here division is
an integer one.

Using bitwise right shifts, we can then define bitwise comparison & using one
line code in C or other modern programming languages as follows. Operation '
can be similarly defined.

bool operator &(int A, int B){return (((A & 01)
>= (B & 01)) ? (A) 1) & (B)1) : false); }

With bitwise operations and comparisons, the basic constructs of the
Dempster-Shafer theory may be re-expressed into functions of integers. For ex-
ample, we may state that a function of integers Bel(A) is a belief function if
and only if there is another function m(A) of integers such that m(0) = 0,
m(A) ≥ 0 for any integer A,

∑
A�0m(A) = 1, and Bel(A) =

∑
0<B�Am(B).

We could still call an integer a focal element if m(A) > 0. Similarly, plausibility
and commonality functions can be equivalently expressed as follows:

Pl(A) =
∑

A&B 	=0

m(B), Q(A) =
∑

0	=B�A

m(B). (1)

Given two independent belief functions symbolized as m1 and m2. Then their
combination in terms of Dempster’s rule is expressed as follows:

(m1 ⊗m2)(C) =

∑
A&B=C m1(A)m2(B)∑
A&B 	=0m1(A)m2(B)

. (2)

The counterpart, according to the transferable belief model [6], is the disjunc-
tive combination that replace A&B with A|B as follows:

(m1 ⊕m2)(C) =
∑

A|B=C

m1(A)m2(B). (3)

Due to Lemmas 1 and 2, bitwise comparison = is identical to decimal com-
parison = but bitwise comparisons & and ' is not simply decimal comparisons
≥ and > .
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2 Combination as Vector Multiplications

Using the relational representation, each belief function is expressed as a map
between two vectors: one vector of integers for focal elements and the other vector
of real numbers for mass values. For any mass function m, let I be its vector of
integer focal elements and M be the vector of corresponding mass values. Then
we may represent m = (I,M). Combining two mass functions is essentially the
multiplication of these vectors: the first between the integer vectors using bitwise
& and the second between mass value vectors using regular algorithmic product.
Let us define the two products formally:

Definition 1. Given two mass functions m1 = (I1,M1)and m2 = (I2,M2).
Assume Ik = (ik1, ik2, ..., iklk) and Mk = (mk1,mk2, ...,mklk) for k = 1, 2. Then
m1 ×m2 = (I1&I2,M1 ×M2),

I1&I2 = (i11&i21, ...i11&i2l2,..., i1l1&i21, ...i1l1&i2l2), (4)

M1 ×M2 = (m11m21, ...m11m2l2,...,m1l1m21, ...m1l1m2l2). (5)

Note that, by transposing I1 andM1, the above vector multiplications may be
expressed as standard matrix multiplications except that the results are l1 × l2
matrices instead of vectors.

Example 1. Assume m1 and m2 are two mass functions with focal elements ex-
pressed as integers: m1(2) = 0.3, m1(7) = 0.7, m2(4) = 0.1, m2(5) = 0.6, and
m2(6) = 0.3. Alternatively,m1= ((2,7),(0.3,0.7)) andm2= ((4,5,6),(0.1,0.6,0.3)).
Then m1 × m2= ((2,7)&(4,5,6),(0.3,0.7) × (0.1,0.6,0.3)) with (2,7)&(4,5,6) =
(2&4,2&5,2&6,7&4,7&5,7&6)= (0,0,2,4,5,6) and (0.3,0.7)× (0.1,0.6,0.3)= (0.03,
0.18, 0.09, 0.07, 0.42, 0.21).

m1 × m2, as defined and illustrated above, is a denormalized mass function
of m1 ⊕ m2, i.e., the sum of masses do not add up to one. To be normalized,
first, the cell values in the second vector are summed up for each integer in the
first matrix. For example, values 0.03 and 0.18 in Example 1 corresponding to
integer 0 will add up to 0.21. Second, the sum for each integer is divided by a
number that is one minus the sum corresponding to 0, e.g.,1 - 0.21. After the
normalization, the result is the combined mass function. In general, let N denote
the normalization operation. Then we have:

m1 ⊕m2 = N(m1 ×m2). (6)

For any mass function m, let N−(m) denote a denormalized m in a general
manner: 1) it includes a list of arbitrary non-negative real numbers m(1)(0),

m(2)(0), ..., m(l0)(0) such that 0 ≤
j=l0∑
j=1

m(j)(0) < 1; and 2) each focal integer i

corresponds to non-negative real number m(1)(i), m(2)(i), ...,m(li)(i) such that
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m(i) =

k=li∑
k=1

m(k)(i)

1 −
k=l0∑
k=1

m(k)(0)

. (7)

This equation leads to the following statement:

Lemma 3. The sum of all denormalized mass values for each belief function is
one: ∑

{
k=li∑
k=1

m(k)(i) | i = 0 or i is focal integer} = 1. (8)

There are many ways to denormalize a mass function. I.e., N− is not unique.
However, they are all equivalent; they all recover the same normalized mass
function. Thus, we have

Lemma 4. For any mass function m and its denormalized version N−(m),

m = N(N−(m)). (9)

The equivalence lies not only in the form but also in behavior. It is easy
to see that one can use N−(m) instead of m to derive belief, plausibility, and
commonality functions. For example, belief function Bel(A) may be derived as

Bel(A) =

∑
0<B�AN

−(m)(B)

1 −
∑

B=0N
−(m)(B)

. (10)

Similarly, for any two mass functions m1 and m2, their combination can be also
equivalently performed by multiplying their denormalized forms as shown in the
following lemma:

Lemma 5. For any two mass functions m1 and m2,

m1 ⊕m2 = N [N−(m1) ×N−(m2)]. (11)

Theorem 1. Let m1, m2, ..., mk be a series of mass functions. Then

m1 ⊕m2 ⊕ ...⊕mk = N(m1 ×m2 × ...×mk). (12)

This theorem has two important implications. First, for combination, a de-
normalized mass function is an equivalent representation of a mass function for
the purpose of combination. Second, combination may be carried out as vector
multiplications and the normalization operation is not needed for intermediate
products. Normalization is probably never needed unless one needs to interpret
a product.

Bayesian probabilities has traditionally enjoyed the blind multiplications of
probability tables. The combination of belief functions can do the same; the
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beauty arises naturally from the relational representation. Note that, by using
set operations, one may also employ the tabular form to carry out Dempster’s
rule as done in Kong [4]. However, the tabular form is for illustration or manual
computation only. It is difficult, if not impossible, to implement it in automatic
reasoning systems without introducing more complicated data structures and
expansive text or symbolic manipulations.

3 Implementation Costs

The standard approach to implementing combination is to use list structures
for both focal elements and mass values. Cycling through the lists, we intersect
each pair of focal elements and multiply the corresponding mass values. Then
we handle the mass product in three cases. If the intersection is empty, add the
product into a value for conflicts. Otherwise, add the intersection and the product
to the new lists for the combination or update the existing lists if the intersection
already exists. The following shows the pseudo code of such an implementation
using relational representations assuming m1 = (I1,M1), m2 = (I2,M2), and
m1 ⊕m2 = (I,M) :

initialize lists I1,M1, I2,M2;
declare two empty lists I and M ;
float v, m0 := 0;
int k;
boolean isIn := false;
for (int i = 0; i < |I1|; i++) {

for (int j = 0; j < |I2|; j ++) {
k := I1[i]&I2[j];
v :=M1[i]M2[j];
if (k == 0) m0 += v;
else {

for (int l = 0; l < |I|; l ++){
if (k == I[l]) {

isIn := true;
M [l]+ = v;
break;

}
}
if (isIn == false) {

insert k to I;
insert v to M ;

}
}

}
}
for (int l = 0; l < |I|; l ++) M [l] := M [l]/(1 −m0);
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Without using the relational representation, the implementation is similar
but becomes more complex in two aspects. First, I1, I2, and I will be the list
of subsets rather than integers. Second, it takes more operations to perform
set intersections and comparisons. The following theorem compares the costs of
implementation via the list structure with and without the relational represen-
tation.

Theorem 2. Assume the cardinality of the frame of discernment is n. Then,
the ratio of the cost of combination using the relational representation to that
with subset representation is between the lower bound 1/n2 and the upper bound
7/(3n2+4). Also, as the number of focal elements increases, the ratio approaches
to the lower bound.

Note that the upper bound of the cost ratio is obtained by assuming there
is only one focal element in both m1 and m2, i.e., they are vacuous. The more
reasonable upper bound should be the following, obtained by setting |I1||I2| = 4,
i.e., m1 and m2 both have at least two focal elements,

Cr−list

Cs−list
≤ 10

6n2 + 4
. (13)

The following table shows the bounds of the cost ratio for a few sample frame
sizes. As it shows, relational representation saves the cost of combination in the
range between 56.25% and 99.90% assuming the frame sizes range from 2 to 32.

Cr−list/Cs−list

n lower bound practical upper bound upper bound
2 25.0% 35.71% 43.75%
3 11.11% 17.24% 22.58%
4 6.25% 10.00% 13.46%
32 0.10% 0.16% 0.22%

The list structure is flexible and expressive, and it is necessary when using sub-
sets representing focal elements. However, a list is not efficient for lookups; the
lookup performance depends on the size of the list and it may take |I1||I2| time
to decide if a new intersection is already in the list I. With the relational repre-
sentation, lists may be replaced by dictionaries (or equivalently hash tables). A
dictionary stores each item as a key-value pair and the key’s hash value is used
to look up the item in constant time O(1). Thus, each mass function m = (I,M)
(or similarly a belief, plausibility, commonality function) may be stored in one
dictionary with each focal integer and mass value to form a key-value pair.

The combination of two mass functions can be then reduced to the combina-
tion of two dictionary structures, which produces a new dictionary for the result
of combination. Thus, Dempster’s rule may be implemented as a program mod-
ule that takes in two dictionaries, and output a new dictionary as the combined
mass function as follows:
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Dictionary<int, float> Combination(Dictionary<int, float> m1, Dictionary<int,

float> m2){
Dictionary<int, float> m = new Dictionary<int, float>();

float v, m0 := 0;

int k;

foreach (KeyValuePair p1 in m1) {
foreach (KeyValuePair p2 in m2) {

k = p1.key & p2.key;

v = p1.value * p2.value;

if (k ==0) m0 += v;

else {
float v0;

if (m.TryGetValue(k, out v0)) m[k] = v0 + v;

else m.Add(k, v);

}
}
foreach (KeyValuePair p in m) p.value = p.value/(1 −m0);

return m;

}

Note that in the above algorithm, TryGetValue checks if dictionarym contains
k and gets the corresponding value if it does, thus reducing two lookups into one.
Assume m1 and m2 have |I1| and |I2| focal elements. The combination involves
|I1||I2| iterations. At each step, it does one bitwise AND and one addition. Then
it does one integer comparison to check if k = 0, in which case, adds v to m0.
In the case of k 
= 0, it takes constant c or O(1) operations to compute the hash
value of k to see if m contains k and does one addition if it does. Otherwise,
it inserts (k, v) into m. The latter also involves computing the hash value of k
but may be avoided by modifying TryGetValue so that it can output the hash
value of k. Finally, it involves |I1||I2| divisions; it loops through each key-value
pair one at a time and there is no lookup or hash value computation. Therefore,
the cost of combination using dictionaries is Cr−hash = |I1||I2|(5 + c), here c is
a constant, independent of |I1| and |I2|. Thus, we have

Theorem 3. Assume m1 and m2 have |I1| and |I2| focal elements. Then the
ratio of the cost of implementing combination via dictionaries (or has tables) to
that via list structures is

Cr−hash

Cr−list
=

c+ 5

|I1||I2| + 6
. (14)

Theorem 4. Assume ml has |Il| focal elements (l = 1, 2, ..., L). Using
hash tables or dictionaries, the cost of computing m1 ⊕ m2 ⊕ ... ⊕ mL is
O(1)|I1||I2|...|IL−1||IL|.

The cost of a dictionary lookup is determined by hash computation and mem-
ory access. While memory access cost due to collisions may be reduced by using
more sophisticated hash functions, the hash computation cost will increase [5].
For example, some hashing may take up to 64 clock cycles and the fastest one
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for integer hashing takes 11 bitwise operations, additions, and multiplications. In
fact, the dictionary structure has a clear advantage over the list for combination
when |I1||I2| is large. Informal benchmark tests show that the lookup time in
a dictionary is about 690 ms constant, whereas in a list it is linearly increasing
with |I1||I2| as empirically described as 67|I1||I2|+450 ms. The lookup times are
about the same when |I1||I2| = 3 but the difference increases as |I1||I2| increases;
for example, when, |I1||I2| = 12, the lookup time in a list almost doubles that
in a dictionary. Thus, using hash tables or dictionaries, the cost of computing
m1 ⊕m2 is Cr−hash = |I1||I2|O(1).

There is a still another data structure that is less flexible but more efficient
than both list and dictionary structures. In terms of lookup costs, a lookup in an
array is about eight times faster than a dictionary lookup. An informal bench-
mark test involving 1000 values shows that a lookup in an array takes 367 ms
whereas it takes 2419 ms in a dictionary with integer keys. The difference par-
tially attributes to their different costs of computing memory addresses; an array
involves just two machine cycles of memory location computation (base pointer
+ offset * size) followed by a pointer dereference whereas a hash table computes
the hash value of a key, taking 11-64 machine cycles. The flipside of the array
structure, however, is resizing; it is expansive to adjust the size of an array if it
is not initialized correctly in the first place. This is why the array structure may
not be used for combining belief functions; the machine cannot determine the
number of focal elements or the size of the array before it actually performs the
combination.

Besides mass functions, other similar constructs such as belief, plausibility,
and commonality functions can be also coded in dictionary structures. Therefore,
all the operations involving belief functions may be implemented as program
modules that take in one dictionary structure and produce a new dictionary. For
example, the following is the pseudo code for computing a belief function from
a mass function for all focal elements:

Dictionary<int,decimal> MassToBel(Dictionary<int,decimal>m) {
Dictionary<int, decimal> belief = new Dictionary<int, decimal>();
decimal beliefValue;
foreach (DictionaryEntry x in m) {

beliefValue = 0;
foreach (DictionaryEntry y in m) {

if (x.key&y.key) beliefValue += y.value;
}
belief.add(x.key, beliefValue);

}
return belief;

}

This code is to compute the belief function values for all focal elements. It
can be simplified if we were to compute the belief for a specific proposition
or integer since we do not need to cycle through all the focal elements in m.
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Computing plausibility and commonality functions can be similarly implemented
by changing the test of x.key & y.key in the above code into x.key&y.key 
= 0
and x.key * y.key respectively.

4 Conclusion

This paper shows that, by using integers to represent subsets or focal elements,
we can represent a belief function as a simple relation between integers and
decimal mass values. The relational representation leverages modern operating
systems’s native binary representations and bitwise operations, improving the
computational efficiency. It also allows more efficient algorithms to implement
combinations. As I showed, using list structures, the relational representation
allows up to 99.9% computation cost reduction compared to the usual subset
representation. By using hash table structures, the relational representation can
be further improved to the cost of |I1||I2|O(1), where |I1| and |I2| are respectively
the number of focal elements of the two belief functions to be combined. This is
a huge reduction compared to the costs of using lists, which is |I1||I2|(|I1||I2|+6)
for the relational representation and |I1||I2|(|I1||I2|n2 +2n2 +4), where n is the
frame size, if focal elements are represented as subsets. The efficiency becomes
even more obvious when computing belief functions in the power set in problems
such as Möbius Transformation [3,8] or combining non-independent pieces of
evidence using the cautious rule [1]. In addition, the relational representation
allows us to use the classic relational database as knowledge bases to organize
and store belief functions.
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Abstract. This paper investigates the problem of preference modeling
under the belief function framework. In this work, we introduce a new
model that is able to generate quantitative information from qualita-
tive assessments. Therefore, we suggest to represent the decision maker
preferences in different levels where the indifference, strict preference,
weak preference and incompleteness relations are considered. Introduc-
ing the weak preference relation separates the preference area from the
indifference one by inserting an intermediate zone.

1 Introduction

Modeling the decision maker preferences is not an easy task because he usually
prefers to express his opinions qualitatively, based on knowledge and experience
that he provides in response to a given question rather than direct quantitative
information. Therefore, preferences need to be implemented in an assessment,
which reflects as accurate as possible the human mind.

In other words, solving a problem dealing with expert preferences is usually
characterized by a high degree of uncertainty. Besides, in some cases, the decision
maker may be unable to express his opinions due to his lack of knowledge. He
is then forced to provide incomplete or even erroneous information. Obviously,
rejecting this difficulty in eliciting the expert preference is not a good practice.

To tackle the problem, a numerical representation under the belief function
framework is introduced. Our main aim is to propose numerical values that rep-
resent the portion of belief expressed by the decision maker. Some researchers
have already dealt with this problem and generate associated quantitative belief
functions like [1] [13]. However, these approaches introduced only two fundamen-
tal preference relations called indifference and strict preferences.

One can overcome these difficulties as follows: we propose a new model in-
cluding the weak preference relation, that separates the preference area from
the indifference area by inserting an intermediate zone called weak-preference
area [9]. A possible interpretation is an hesitation between strict preference and
indifference.

Formally, consider two discrimination threshold functions: the indifference
threshold ε, and the preference threshold γ. So, including the weak preference
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relation allows for more flexibility and nuance to the decision maker while ex-
pressing his preferences.

This leads to define crisp binary relations called strict preference (P , '),
indifference (I, ∼), and weak preference (Q, &).

The originality of our model is to allow the expert to easily express his pref-
erences and to provide a convenience framework for constructing quantitative
belief functions from qualitative assessments by using different preference rela-
tions.

In this paper, section 2 and 3 describe an overview of the basic concepts of re-
spectively the belief function theory and the qualitative belief function methods.
Then, in the main body of the paper, we present our new contribution namely
the preference modeling in the belief function framework. Finally, our method
will be illustrated by an example.

2 Belief Function Theory

In this section, we briefly review the main concepts underlying the belief function
theory as interpreted by the Transferable Belief Model (TBM). The latter is a
useful model to represent quantified belief functions. Details can be found in [10]
[12] [11].

2.1 Basic Concepts

The TBM is a model to represent quantified belief functions [12]. Let Θ be the
frame of discernment representing a finite set of elementary hypotheses related
to a problem domain. We denote by 2Θ the set of all the subsets of Θ [10].

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by the so-called basic belief assignment (bba),
denoted by m [10]: ∑

A⊆Θ

m(A) = 1. (1)

The value m(A), named a basic belief mass (bbm), represents the portion of
belief committed exactly to the event A. The events having positive bbm’s are
called focal elements. Let F(m) ⊆ 2Θ be the set of focal elements of the bba m.

Associated with m is the belief function is defined for A ⊆ Θ and A 
= ∅ as:

bel(A) =
∑

∅	=B⊆A

m(B) and bel(∅) = 0. (2)

The degree of belief bel(A) given to a subset A of the frame Θ is defined as
the sum of all the basic belief masses given to subsets that support A without
supporting its negation.
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2.2 Decision Making

The TBM considers that holding beliefs and making decision are distinct pro-
cesses. Hence, it proposes a two level model:

– The credal level where beliefs are entertained and represented by belief func-
tions.

– The pignistic level where beliefs are used to make decisions and represented
by probability functions called the pignistic probabilities, denoted BetP [11]:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1 −m(∅)) , ∀A ∈ Θ. (3)

2.3 Uncertainty Measures

In the case of the belief function framework, different uncertainty measures (UM)
have been defined, such as [5] [6]:

H(m) =
∑

A∈F(m)

m(A) log2(
|A|
m(A)

). (4)

The measure H is aimed at assessing the total uncertainty arising in a body of
evidence due to both randomness (ignorance and inconsistency) and nonspeci-
ficity associated with a bba.

The measureH attains its global maximum when the bba distributes both ran-
domness andnonspecificityuniformlyover the largestpossible set of focal elements.

3 Constructing Belief Functions from Qualitative
Preferences

The problem of eliciting qualitatively expert opinions and generating basic belief
assignments have been addressed by many researchers [1] [2] [3] [13].

In this section, we present Ben Yaghlane et al.’s method [1]. This approach is
chosen since it handles the issue of inconsistency in the pair-wise comparisons.

So giving two alternatives, an expert can usually express which of the propo-
sitions is more likely to be true, thus they used two binary preference relations:
the preference and the indifference relations.

The objective of this method is then to convert these preferences into con-
straints of an optimization problem whose resolution, according to some un-
certainty measures (UM) (nonspecificity measures, conflict measures, composite
measures), allows the generation of the least informative or the most uncertain
belief functions defined as follows [1]:

a ' b ⇔ bel(a) − bel(b) ≥ ε (5)

a ∼ b ⇔ |bel(a) − bel(b)| ≤ ε. (6)
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ε is considered to be the smallest gap that the expert may discern between the
degrees of belief in two propositions a and b. Note that ε is a constant specified
by the expert before beginning the optimization process.

Ben Yaghlane et al. proposed a method that requires that propositions are
represented in terms of focal elements, and they assume that Θ (where Θ is the
frame of discernment) should always be considered as a potential focal element.
Then, a mono-objective technique was used to solve a constrained optimization
problem.

The preference assessment is transformed into constraint according to the
following relation:

bel(a) − bel(b) ≥ ε ∀(a, b) for which a ' b

Then, the indifference assessment is transformed into constraint according to
this relation:

bel(a) − bel(b) ≥ −ε and bel(a) − bel(b) ≤ ε ∀(a, b) for which a ∼ b

Consequently, we obtain the following constrained optimization model:

MaxmUM(m)
s.t.

bel(a) − bel(b) ≥ ε ∀(a, b) for which a ' b
bel(a) − bel(b) ≥ −ε ∀(a, b) for which a ∼ b
bel(a) − bel(b) ≤ ε ∀(a, b) for which a ∼ b∑

a∈F(m)

m(a) = 1,m(a) ≥ 0, xzssss∀a ⊆ Θ;m(∅) = 0

(7)

Furthermore, the proposed method addresses the problem of inconsistency. In
fact, if the preference relations are consistent, then the optimization problem is
feasible. Otherwise no solutions will be found. Thus, the expert may be guided
to reformulate his preferences.

In the following section, we propose a method that deals with Ben Yaghlane
et al. approach. Our model introduces new preference relations.

4 The Preference Modeling in the Belief Function
Framework

We present now one way of introducing the qualitative belief approach to model
and process preference information. It leads to a model which can be seen as an
extension of the crisp model obtained by replacing pseudo-orders (I: indifference;
Q: weak preference; P : preference) by belief informations.

Let us detail the typical features of these belief preference structures and their
interpretations as significant quantitative information.
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4.1 Preference Articulation

Let A be a set of alternatives, where a and b are two alternatives. Besides, crisp
binary relations are based on two basic relations called strict preference P and
indifference I [8]. They are defined as follows:

1. a is preferred to b ((a, b) ∈ P ) iff (a ' b) ∧ ¬(b ' a)
2. a is indifferent to b ((a, b) ∈ I) iff (a ' b) ∧ (b ' a)

However, by using our model, we want to response to the question “The
alternative a is at least as good as the alternative b?”. We can have then the
following answers:

– Either yes or no. The decision maker responses to the previous question by
“yes” or “no”.

– I don’t know: The decision maker can also express his ignorance.
– Answers including the intensity of preference: for example, “a has strongly

- weakly, moderately - preferred to b”.

For these reasons, a richer model other than standard binary relation is a
crucial step. We will assume that the comparison of a and b gives a choice
between two other possible cases:

– a is weakly preferred to b ((a, b) ∈ Q) iff (a & b), means that the decision
maker thinks that a is at least as good as b;

– the relation between a and b is unknown;

From this relation &, we can derive two other important relations on A:

1. Strict preference relation, ', defined by:

a ' b ⇔ a & b and not (b & a)

2. Strict Indifference relation, ∼, defined by:

a ∼ b ⇔ a & b and b & a

Under the previous approach [1], in general, when comparing two alternatives
a and b, the expert uses two binary relations the preference and indifference
relations. Not matter of how large the difference is.

In real-life problems, however, a small positive difference of scores is not al-
ways a justification for a preference. A classical attitude is to assess discrimina-
tion thresholds to distinguish between significant and not significant differences
of scores. Therefore, the indifference threshold ε was introduced [1]. If the per-
formances of two alternatives differ by less than ε, then there is an indifference
relation (see Equation (6)) and not a preference relation.

However, this model presents some drawbacks [4]. Suppose two alternatives a
and b are such that:

bel(a) − bel(b) = ε− μ

2
(8)

where μ is a positive quantity very small compared to ε.



176 A. Ennaceur, Z. Elouedi, and É. Lefevre

If a slightly superior score (μ) was attached to a, we would obtain:

bel(a) − bel(b) = ε+
μ

2
(9)

transforming the previous indifference (a I b) into strict preference (a P b).
We may overcome these difficulties by separating the preference and the in-

difference relations by inserting an intermediate zone called weak preference
relation [7]. A possible interpretation is an hesitation between strict preference
and indifference.

Formally, one may consider a strict preference threshold γ to distinguish be-
tween strict preference and weak preference. This strict preference threshold is
a value such as if the performances of a and b differ by at least γ, then we are
in a situation when one alternative is strongly preferred to the other. This is
illustrated as follows:

a ' b ⇔ bel(a) − bel(b) ≥ γ (10)

a & b ⇔ 0 ≤ bel(a) − bel(b) ≤ γ. (11)

However, when comparing two alternatives, we might want to use both the
indifference and the strict preference thresholds, where γ ≥ ε:

a ' b ⇔ bel(a) − bel(b) ≥ γ (12)

a & b ⇔ ε ≤ bel(a) − bel(b) ≤ γ (13)

a ∼ b ⇔ |bel(a) − bel(b)| ≤ ε. (14)

Nevertheless, there exist different ways for choosing the preference and indif-
ference threshold. For instance, Roy et al. [7] believe that the fixing of thresholds
involves not only the estimation of error in a physical sense, but also a signif-
icant subjective input by the decision-maker himself. They assume that these
two thresholds can be constant values or can take the linear form. Besides, in
other works [7], γ and ε are derived from mathematical equations.

In this work, we assume that the thresholds γ and ε can be constant values.
We interpret the indifference threshold as the minimum margin of uncertainty
associated with a given alternative, and the preference threshold as the maximum
margin of error associated with the alternative in question.

4.2 Computational Procedure

Now and after modeling the different preference relation, we propose to use the
same model as Ben Yaghlane et al. method [1]. We transform these preferences
relations into constraints as presented in section 3.2. We get:
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MaxmUM(m)
s.t.

bel(a) − bel(b) ≥ γ ∀(a, b) for which a ' b
bel(a) − bel(b) ≤ γ ∀(a, b) for which a & b
bel(a) − bel(b) ≥ ε ∀(a, b) for which a & b
bel(a) − bel(b) ≤ ε ∀(a, b) for which a ∼ b
bel(a) − bel(b) ≥ −ε ∀(a, b) for which a ∼ b∑
a∈F(m)

m(a) = 1;m(a) ≥ 0; ∀a ⊆ Θ;m(∅) = 0.

(15)

Where the first constraint of the model is derived from the preference relation.
The second and third constraints model the weak preference relation. The fourth
and fifth constraints correspond to the indifference relation.
ε and γ are constants specified by the expert before beginning the optimization

process.
The choice of thresholds intimately affects whether a particular binary rela-

tionship holds. While the choice of appropriate thresholds is not easy, in most
realistic decision making situations there are good reasons for choosing non-zero
values for ε and γ.

Figure 1 summarizes the obtained transformation. These thresholds define
five different intervals in the domain of preference of two alternatives.

bel(b)0 bel(a)− γ bel(a)− ε bel(a) + ε bel(a) + γ 1

a � b

Strict

preference

area

a � b

Weak

preference

area

a ∼ b

b ∼ a

Indifference

area

b � a

Weak

preference

area

b � a

Strict

preference

area

Fig. 1. Belief relations built from thresholds and crisp scores

5 Illustrative Example

Let us consider a problem of eliciting the weight of the candidate alternatives.
The problem involves five alternatives:

Θ = {a, b, c, d, e}.

The focal elements are:

F1 = {a}, F2 = {a, b, c}, F3 = {b, d}, F4 = {e}, F5 = {a, e}.

Next, the expert opinions should be elicitated. For this purpose, an interview
with the expert is realized in order to model his preferences. Consequently, he
has validated the following relations:

F2 ' F1 , F1 & F3 , F4 ∼ F1, F5 ' F1 , F5 ' F4,
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Now and after eliciting his preferences, the next step is to transform the
obtained relations into optimization problem according to our proposed method.

We assume that ε = 0.01, γ = 0.02 and the uncertainty measures is H since
it has a unique maximum as defined in Equation (4).

The following step is then to transform the obtained relations into constraints.
We obtain:

1. F2 ' F1 ⇔ bel(F2) − bel(F1) ≥ 0.02
2. F1 & F3 ⇔ bel(F1) − bel(F3) ≤ 0.02
3. F1 & F3 ⇔ bel(F1) − bel(F3) ≥ 0.01
4. F4 ∼ F1 ⇔ bel(F4) − bel(F1) ≤ 0.01
5. F4 ∼ F1 ⇔ bel(F4) − bel(F1) ≥ −0.01
6. F5 ' F1 ⇔ bel(F5) − bel(F1) ≥ 0.02
7. F5 ' F4 ⇔ bel(F5) − bel(F4) ≥ 0.02

Then, we obtain the following optimization problem example:

MaxmH(m) = m(F1) ∗ log2(1/m(F1)) +m(F2) ∗ log2(3/m(F2))
+m(F3) ∗ log2(2/m(F3)) +m(F4) ∗ log2(1/m(F4))
+m(F5) ∗ log2(2/m(F5)) +m(Θ) ∗ log2(5/m(Θ));

s.t.
bel(F2) − bel(F1) ≥ 0.02
bel(F1) − bel(F3) ≤ 0.02
bel(F1) − bel(F3) ≥ 0.01
bel(F4) − bel(F1) ≤ 0.01
bel(F4) − bel(F1) ≥ −0.01
bel(F5) − bel(F1) ≥ 0.02
bel(F5) − bel(F4) ≥ 0.02∑

Fi∈F(m)

m(Fi) = 1,m(Fi) ≥ 0, ∀Fi ⊆ Θ;m(∅) = 0,

(16)

Finally, the obtained results are representing in Table 1.

Table 1. The obtained bba using the presented model

Criteria {a} {a, b, c} {e} {b, d} {a, e} Θ

m 0.092 0.203 0.082 0.082 0.203 0.338

bel 0.092 0.295 0.082 0.082 0.377 1

Table 1 gives the results of all ordered couples on the basis of their preference
relation. Besides, we show that a new subset Θ is introduced that express the
part of ignorance.

Indeed, using our model the expert expresses his assessments freely. By ap-
plying our presented solution, it is easy to see that our method aggregates all
the elicited data.
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Here, in the present example, the expert expressed his assessments only in
some pairs of alternatives. Thus, a quantitative information is constructed from
these incomplete and even uncertain preference relations.

We are then able to represent all the expert knowledge and to transform this
information into quantitative data. We have obtained encouraging results since
we have the same ranking of alternatives as expressed by the expert.

6 Conclusion

This paper is concerned with preference models including four relations: strict
preference (P), weak preference (Q), indifference (I) and incompleteness (J).

The purpose was to establish conditions allowing to represent these four rela-
tions by numerical functions and thresholds under the belief function framework.
Under this perspective, the paper proposes a new method based on Ben Yaghlane
et al. approach and takes into account distinct levels of preferences.

As a future work, we will apply our method in multi-criteria decision making
field, which can be interesting in eliciting expert judgments. Our proposed model
will be applied through real application: Catering selection problem.
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Abstract. In this paper the relationship between Bayes’ rule and the Evidential 
Reasoning (ER) rule is explored. The ER rule has been uncovered recently for 
inference with multiple pieces of uncertain evidence profiled as a belief distri-
bution and takes Dempster’s rule in the evidence theory as a special case. After 
a brief introduction to the ER rule the conditions under which Bayes’ rule be-
comes a special case of the ER rule are established. The main findings include 
that the normalisation of likelihoods in Bayesian paradigm results in the degrees 
of belief in the ER paradigm. This leads to ER-based probabilistic (likelihood) 
inference with evidence profiled in the same format of belief distribution. Nu-
merical examples are examined to demonstrate the findings and their potential 
applications in probabilistic inference. It is also demonstrated that the findings 
enable the generalisation of Bayesian inference to evidential reasoning with in-
accurate probability information with weight and reliability.  

Keywords: Evidential reasoning, Belief distribution, Bayesian inference, Prob-
abilistic reasoning, Likelihood inference, Decision making. 

1 Introduction 

The evidential reasoning (ER) rule has been established recently for conjunctive com-
bination of independent evidence with weights and reliabilities [16]. It constitutes a 
general conjunctive probabilistic reasoning process and reveals that the combined 
degree of joint support for a proposition from two pieces of independent evidence 
constitutes two parts in general: the bounded sum of their individual support and the 
orthogonal sum of their collective support. The ER rule is based on the orthogonal 
sum operation and as such inherits the basic properties of being associative and com-
mutative, which means that it can be used to combine multiple pieces of evidence in 
any order without changing the final results. It also satisfies common sense synthesis 
axioms that any rational probabilistic reasoning process should follow. 

The ER rule takes the original ER algorithm [12, 13, 14, 15] as a special case  
when the reliability of evidence is equal to its weight and the weights of all pieces of 
evidence are normalised. It is proven that Dempster’s rule in the theory of evidence 
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[2, 3, 7, 9] is also a special case of the ER rule when each piece of evidence is fully 
reliable. The ER rule enhances Dempster’s rule for combining pieces of fully reliable 
evidence that are highly or completely conflicting through a new reliability perturba-
tion analysis, thus resolving the non-definition and counter intuitive problems associ-
ated with Dempster’s rule [5, 6, 17].  

In the ER rule, a frame of discernment is composed of a set of hypotheses that are 
mutually exclusive and collectively exhaustive as in the theory of evidence [7]. It is 
assumed that basic probabilities can be assigned to not only singleton hypotheses but 
also to any of their subsets, thereby allowing a piece of evidence to be profiled by a 
belief distribution (BD) defined on the power set of the frame of discernment. BD is 
regarded as the most natural and flexible generalisation of conventional probability 
distribution in the sense that the former allows inexact reasoning at whatever level of 
abstraction [4] and on the other hand reduces to the latter precisely if basic probabili-
ties are assigned to singleton hypotheses only.  

Bayesian inference is regarded as a classical and rigorous probabilistic reasoning 
process. Much attention has been paid to generalise Bayesian inference. Dempster’s 
pioneer work [2, 3] is among the most prominent, in which Dempster asserted that the 
ordinary likelihood function based on a sample from a general multinomial population 
is proportional to the upper probability of the hypothesis. Shafer [7, 8] and Smets [11] 
proposed belief functions to show that the application of Dempster’s rule on these 
belief functions can approximate Bayesian inference in general when sample size is 
very large [8] but only lead to the same result as Bayes’ rule for a rather special case 
with a single frequency distribution, which however is rare in practice if any. Aickin 
[1] proposed to construct credibility functions and modify Dempster’s rule to make 
likelihood inference very nearly a special case of the Dempster–Shafer theory, which 
leads to computations that are quite different from those of Smets. In Aickin’s ap-
proach, a credibility function is generated by dividing all likelihoods with the maxi-
mum likelihood for each sample, which is consistent with Demspter’s aforementioned 
assertion but is not meant to show that Dempster’s rule can be reduced to Bayes’ rule 
for equivalent likelihood inference from sample data.  

Our research is rooted in Dempster’s original work on multivalued mapping from 
sample space to hypothesis space. In this paper, we intend to show the novel results 
generated from our new research that the ER rule, which takes Dempster’s rule as a 
special case when all observations are fully reliable, is the same as Bayes’ rule in 
likelihood inference if likelihoods are normalised for mapping observations from 
sample space to hypothesis space. In this way, any evidence generated from observa-
tions can be equivalently profiled in the same format as belief distribution for consis-
tent knowledge representation and inference, whilst in Bayesian inference evidence is 
represented in different formats of prior probability and likelihood. The generalisation 
of Bayesian inference to evidential reasoning is also investigated in the context of 
information acquisition from ambiguous observations and inaccurate diagnoses.  
Numerical examples are examined to show how evidential reasoning can be con-
ducted to implement and generalise Bayesian inference in situations where data are 
not accurate. It is also shown how important evidence reliability can be in inference. 

 



182 J.-B. Yang and D.-L. Xu 

 

The rest of the paper is organised as follows. In Section 2, the concepts and  
properties of the ER rule are briefly introduced. In Section 3, the conditions under 
which the ER rule reduces to Bayes’ rule are established. Section 4 presents a study 
on generalising Bayesian inference to evidential reasoning. Two numerical examples 
are examined. The paper is concluded in Section 5.  

2 Brief Introduction to the ER Rule 

In this section, the ER rule established recently [16] is briefly introduced. Suppose 
},,{ 1 NhhΘ =  is a set of mutually exclusive and collectively exhaustive hypotheses. 

Θ  is referred to as a frame of discernment. The power set of Θ  consists of N2  sub-

sets of Θ , denoted by Θ2  or )(ΘΡ , as follows 

}},,,{, },,{,},,{},{,},{,{2)( 111211 ΘhhhhhhhhΘΡ NNN

Θ
−∅==             (1) 

In the framework of the ER rule, a piece of evidence je  is represented as a random 

set and profiled by a belief distribution (BD) as follows 

( ){ }1 , , , ,, =⊆∀=  ⊆Θ jjj pΘpe
θ θθ θθ                                    (2) 

where ( )jp , , θθ  is an element of evidence je , representing that the evidence points to 

proposition θ , which can be any subset of Θ  or any element of )(ΘΡ  except for the 

empty set, to the degree of jp ,θ , referred to as probability or degree of belief in gen-

eral. ( )jp , , θθ  is referred to as a focal element of je  if 0, >jpθ .  

Associated with evidence je  is a reliability, denoted by jr , which represents the 

ability of the information source, where je  is generated, to provide correct assess-

ment or solution for a given problem (Smarandache et al., 2010). The reliability of a 
piece of evidence is the inherent property of the evidence, and in the ER framework 
measures the degree of support for or opposition against a proposition given that the 
evidence points to the proposition. In other words, the unreliability of a piece of evi-
dence sets a bound within which another piece of evidence can play a role in support 
for and opposition against different propositions.  

On the other hand, evidence je  can also be associated with a weight, denoted by 

jw . The weight of a piece of evidence shares the same definition as that of its reliabil-

ity. The former is not different from the latter if all pieces of evidence are measured in 
the same joint space. When different pieces of evidence are acquired from different 
sources and measured in different ways, however, the weight of evidence can be used 
to reflect its relative importance in comparison with other evidence and determined 
according to who uses the evidence. This means that weight jw  can be subjective and 

different from reliability jr  in situations where different pieces of evidence are gener-

ated from different sources and measured in different ways.  
To combine a piece of evidence with other evidence, it is necessary to take into ac-

count the above three elements of the evidence: its belief distribution, reliability and 
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weight. In the ER rule, this is achieved by defining a so-called weighted belief distri-
bution with reliability as follows 

( ) ( ){ }jΘPjj mΘPΘmm ),(,
~ ),( ; ,~ , ⊆∀= θθ θ                                   (3) 

where jm ,
~

θ  measures the degree of support for θ  from je  with both the weight and 

reliability of je  taken into account, defined as follows 

( )







=−
∅≠⊆

∅=
=

)(1

,

0
~

,

,,,

ΘPrc

Θmcm

jjrw

jjrwj

θ
θθ

θ

θθ                                  (4) 

where jjj pwm ,, θθ = . ( )jjjrw rwc −+= 11,  is a normalisation factor, which is uniquely 

determined to satisfy 1~~
),(, =+ ⊆ jΘPΘ j mm

θ θ  given that 1, = ⊆Θ jp
θ θ . Note that there 

would be jw = jr  or jjj prm ,, θθ =  if all pieces of evidence are measured in a joint 

space, or jp ,θ  for each piece of evidence is given by the same probability function. 

Compared with Shafer’s discounting method, the critical difference is that in the ER 
rule, the degree of residual support (after discounting) is earmarked to the power set 
for redistribution instead of assigning it specifically to the frame of discernment. 

If two pieces of evidence 0e  and 1e  are independent in that the information that 0e  

carries does not depend on whether 1e  is known or not and vice versa, the combined 

degree of belief to which 0e  and 1e  jointly support proposition θ , denoted by )2(,epθ , 

is then generated by the orthogonal sum of their weighted belief distributions with 
reliability (i.e. 0m  and 1m ), given as follows 







∅≠⊆
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=
 ⊆
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θ

θ
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ˆ

ˆ
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ΘD eD

e
e  

[ ] 
=∩

+−+−=
θ

θθθ
CB

CBe mmmrmrm 1,0,1,00,1)2(, )1()1(ˆ  Θ⊆∀θ               (5) 

The recursive formulae of the ER rule are also given to combine multiple pieces of 
evidence in any order.  

It is proven that Dempster’s rule is a special case of the above ER rule when each 
piece of evidence je  in question is assumed to be fully reliable, or jr =1 for all j.  

3 Equivalence between the ER Rule and Bayes’ Rule 

This section is aimed to provide the exact conditions under which a special case of the 
ER rule, the same as Dempster’s rule, reduces to Bayes’ rule.  

Let 0e  stand for old evidence that is profiled with the prior probabilities of the hy-

potheses in the frame of discernment },,{ 1 NhhΘ = , or  

( ){ } =
===

N

i iii pNiphe
1 000 1 ,,1, , ,                                          (6) 
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where 0ip  is the probability to which evidence 0e  points to hypothesis ih , or 

)( 00 ehpp ii = . 

Let ijc  stand for the likelihood to which the jth test result ( je ) is expected to occur 

given that the ith hypothesis ( ih ) is true and evidence 0e  is known, or 

),( 0ehepc ijij = , with 1
1

= =

L

j ijc  for Ni ,,1= , as shown in Table 1. Given that a 

test result 1e  is observed as new evidence, Bayes’ rule can be used to generate poste-

rior probability that both 0e  and 1e  support hypothesis ih  as follows 

( ) ( ) ( )
( ) ( ) =

= N

n nn

ii

i

ehpehep

ehpehep
eehp

1 001

001

01

,

,
,                                          (7) 

Table 1. Likelihoods 

Hypothesis 
Test result 

1e   je   Le  

1h  
11c   jc1   Lc1  

            
ih  

1ic   ijc   iLc  

            
Nh  

1Nc   Njc   NLc  
 

While Bayes’ rule is rigorous, the combination of old evidence 0e  with new evi-

dence 1e  in Equation (7) is not symmetrical [7], in the sense that the old evidence is 

profiled as a probability distribution over the set of hypotheses ih  for Ni ,,1= , 

whilst the new evidence is characterised by likelihoods over the set of test results je   

( Lj ,,1= ) for a given hypothesis. This asymmetry underpins Bayesian inference as 

a process of updating knowledge once new evidence becomes available. However, 
this can cause confusion if multiple pieces of evidence are not particularly classified 
as old and new and need to be combined in any order. Nevertheless, it is desirable that 
both old and new evidence is represented in the same format for combination. 

Let ijp  stand for the degree of belief that test result je  points to hypothesis ih , 

with 1
1

= =

N

i ijp  for Lj ,,1= . Test result je  can then be profiled over the set of 

hypotheses symmetrically in the same way as for evidence 0e  as follows 

 ( ){ } =
===

N

i ijijij pNiphe
1

1 ,,1, , ,   Lj ,,1=                      (8) 

ijp  can be generated from likelihood ijc . The following results establish the equiva-

lence conditions under which Bayes’ rule is a special case of the ER rule with 1=jr  

for all j, which constitutes a symmetrical evidence combination process. 
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Theorem 1. If all tests to generate likelihoods in Table 1 are conducted independent-
ly, the relationship between likelihood ijc  and degree of belief ijp  is given by 

 =
=

N

n njijij ccp
1

 for Ni ,,1=  and Lj ,,1=                    (9) 

Let )2(,ehi
p  stand for the combined degree of belief to which both 0e  and je  sup-

port hypothesis ih . We then have the following result. 

Corollary 1. Under the same conditions as for Theorem 1, if probability is assigned 
only to singleton hypothesis, each piece of evidence is fully reliable and the degrees 
of belief are given by Equations (9), the ER rule reduces to Bayes’ rule, or 

( )0)2(, ,eehpp jiehi
=                                              (10) 

The numerical example below is used to demonstrate how the above results could 
be applied to symmetrical Bayesian inference via equivalent evidential reasoning. 

Example 1. Suppose independent tests and diagnoses for a sample of 10000 persons 
in a population are shown in Table 2. We are interested to find the probability to 
which a person from the population already has AIDS if the person has his first HIV 
test that is positive. 

Table 2.  Experimental Data 

Sample Data 
Test Result 

Total Diagno-
sis 

HIV Positive ( 1e

) 
HIV Negative ( 2e )

Hypotheses
AIDS ( 1h ) 95 5 100 

No AIDS ( 2h ) 990 8910 9900 

Total Test 1085 8915 10000 
 

 
What needs to be identified is the degree of belief, denoted by )2(,1 ehp , to which 1h  

is supported by both pieces of evidence: the prior AIDS distribution of the population 
as revealed by the experiment ( 0e ) and a positive HIV test result ( 1e ). From Equation 

(9), the prior probabilities ( )0110 ehpp =  and ( )0220 ehpp = , and likelihoods 11c  and 

21c  for the two pieces of evidence 0e  and 1e  can be generated from the experimental 

data given in Table 2 as follows 

( ) 01.0
10000

100
0110 === ehpp , ( ) 99.0

10000

9900
0220 === ehpp ; 

( ) 95.0
100

95
, 01111 === ehepc , ( ) 1.0

9900

990
, 02121 === ehepc  

9048.0
05.1

95.0

1.095.0

95.0

2111

11
11 ==

+
=

+
=

cc

c
p , 0952.0

05.1

1.0

2111

21
21 ==

+
=

cc

c
p
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Equation (5) with 110 == rr  can then be used to calculate )2(,1 ehp  as follows 

0876.0
99.00952.001.09048.0

01.09048.0

20211011

1011
)2(,1

=
×+×

×=
+

=
pppp

pp
p eh  

From the conventional Bayesian analysis, the same result can be generated as follows 

( ) ( ) ( )
( ) ( ) ( ) ( ) 0876.0

99.01.001.095.0

01.095.0

,,

,
,

0202101011

01011

011 =
×+×

×=
+

=
ehpehepehpehep

ehpehep
eehp  

4 Generalisation of Bayesian Inference to Evidential Reasoning 

Bayesian inference as shown in the previous section is rigorous but requires accurate 
prior probabilities and likelihoods in the sense that each test must lead to exactly one 
of the L test results and each test result must be diagnosed to belong to exactly one of 
the N hypotheses. Such accuracy is desirable and should always be pursued. However, 
ambiguous test results and inaccurate diagnoses are common in real experiments. This 
section is aimed to investigate how the above “accurate” and “rigorous” Bayesian 
inference can be generalised for rigorous reasoning with evidence generated from 
ambiguous tests and inaccurate diagnoses.  

Let θ  stand for a proposition representing a set of diagnoses, jc ,θ  for the genera-

lised likelihood to which the jth test result ( je ) is expected to occur given proposition 

θ , with 1
1 , = =

L

j jcθ  for any },,{ 1 NhhΘ =⊆θ , and jp ,θ  for the belief degree to 

which the jth test result points to proposition θ , with 1, = ⊆Θ jp
θ θ  for any Lj ,,1= . 

Belief degree jp ,θ  can be generated from generalised likelihood jc ,θ  as follows. 

Corollary 2. Suppose the same conditions as for Theorem 1 are held. If all tests for 
generating generalised likelihood jc ,θ  are conducted independently, the relationship 

between jc ,θ  and jp ,θ  is given by: 

 ⊆
=

ΘA jAjj ccp ,,, θθ  for Θ⊆θ  and Lj ,,1=                   (11) 

 
Example 2. Suppose there are imprecise experimental data for a population, as shown 
in Table 3. It is also assumed that the experimental data can represent the prior AIDS 
distribution of the population with a 95% level of reliability and an AIDS diagnosis 
from a HIV test can be regarded to be 98% reliable. What is the probability to which a 
person from the population already has AIDS if the person’s first HIV test turns out to 
be positive, given that the person’s HIV test result and the experimental data are re-
garded to be of equal importance in the inference? 
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Table 3. Experimental Data under Uncertainty 

Diagnosis 
HIV test result Total diag-

nosis Positive 1e Negative 2e  Unknown e 

AIDS 1h  95 5 0 100 

No AIDS 2h  980 8860 10 9850 

Unknown { }21,hhΘ = 5 7 38 50 

Total test 1080 8872 48 10000 
 
The belief degrees for the evidence of the prior AIDS distribution ( 0e ) for the pop-

ulation are given by 01.010000/10010 ==p , 985.010000/985020 ==p , =0Θp  

005.010000/50 = , as shown in Table 3. 
The generalised likelihood 1θc  and belief degree 1θp  for the evidence of positive 

HIV test result ( 1e ) are calculated in Table 3 by 95.0100/9511 ==c , 9850/98021 =c  

0995.0= , 1.050/51 ==Θc , and then 

8264.0
1495.1

95.0

12111

11
11 ==

++
=

Θccc

c
p , 0866.0

1495.1

0995.0
21 ==p , 087.0

1495.1

1.0
1 ==Θp . 

The reliabilities and weights of 0e  and 1e  are given by 0r =0.95, 1r =0.98 and 

5.010 == ww . Note that the weights are normalized here with 110 =+ ww  for illustra-

tion purpose. In general, such normalisation is not always required. The degrees of 
individual support for θ  from 0e  and 1e  are calculated by 

005.001.05.01000,1
=×== pwmh , 4925.02000,2

== pwmh , 0025.0000 == ΘΘ pwm ; 

4132.0826.05.01111,1
=×== pwmh , 0433.02111,2

== pwmh , 0435.0111 == ΘΘ pwm  

Equation (5) can then be used to combine 0e  and 1e  to count their joint support by 

( ) ( ) 0241.011ˆ
1,010,1,0,1,00,1)2(, 1111111

=+++−+−= hΘΘhhhhheh mmmmmmmrmrm  

( ) ( ) 0549.011ˆ
1,010,1,0,1,00,1)2(, 2222222

=+++−+−= hΘΘhhhhheh mmmmmmmrmrm  

         
( ) ( ) 0023.011ˆ

101001)2(, =+−+−= ΘΘΘΘeΘ mmmrmrm  

The belief degrees to which 0e  and 1e  both support θ  are finally generated by 

2964.0
0813.0

0241.0

0023.00549.00241.0

0241.0
ˆˆˆ

ˆ

)2(,)2(,)2(,

)2(,

)2(,

21

1

1
==

++
=

++
=

eΘeheh

eh

eh mmm

m
p  

    
6753.0

0813.0

0549.0
)2(,2

==ehp , and 0283.0
0813.0

0023.0
)2(, ==eΘp  

The ambiguity and inaccuracy in the experiment are retained by )2(,eΘp  in the 

above final results. As such, the probability to which the person has AIDS is not pre-
cise but between 0.2964 and 0.3247 ( )2(,1 ehp + )2(,eΘp ). The probability to which the 

person does not have AIDS is between 0.6753 and 0.7036 ( )2(,2 ehp + )2(,eΘp ).  

It should be noted that the reliability of evidence plays an important role in infe-
rence and should be estimated with care and rigor. For instance, if both pieces of  
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evidence are assumed to be fully reliable in Example 2, or 0r = 1r =1, it can be shown 

that there will be 0716.0)2(,1
=ehp , =)2(,2 ehp 0.926 and 0024.0)2(, =eΘp , meaning a 

much smaller probability (0.0716 to 0.0740) of having AIDS with much smaller am-
biguity (0.0024). Such results are quite different from the results generated above for 

0r =0.95 and 1r =0.98, but justifiable as evidence 0e  is against the first hypothesis 

“AIDS” much more than evidence 1e  against the second hypothesis “No AIDS”. 

5 Concluding Remarks 

In this paper, the recently established evidential reasoning (ER) rule was briefly intro-
duced. The relationship between Bayes’ rule and the ER rule was then investigated 
and their equivalence conditions were provided. This study shows that Bayesian in-
ference can be conducted in a symmetrical process in the ER paradigm where each 
piece of evidence is profiled in the same format of belief distribution. This on one 
hand facilitates the combination of evidence in any order for Bayesian inference. On 
the other hand, experimental data can be used to acquire evidence. In this study, 
Bayesian inference was generalised to take into account ambiguous test results and 
inaccurate diagnoses in experiment. This can help conduct inference in a realistic yet 
rigorous manner without having to make unnecessary assumptions about inaccurate or 
missing data. The two examples demonstrated the implementation processes of 
Bayesian inference in the ER paradigm. Finally, it is important to note that the reli-
ability of evidence plays an important role in inference and needs to be estimated 
using domain specific knowledge with care and rigor.  
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Abstract. In multi-criteria decision making the decision maker need to assign
weights to criteria for evaluation of alternatives, but decision makers usually find
it difficult to assign precise weights to several criteria. On the other hand, decision
makers may readily provide a number of preferences regarding the relative
importance between two disjoint subsets of criteria. We extend a procedure by L.
V. Utkin for ranking alternatives based on decision makers’ preferences. With
this new method we may evaluate and rank partial sequences of preferences
between two subsets of criteria. To achieve this ranking it is necessary to model
the information value of an incomplete sequence of preferences and compare this
with the belief-plausibility of that sequence in order to find the partial ranking of
preferences with maximum utility.

Key words: belief function, Dempster-Shafer theory, preferences, multi-criteria
decision making, pairwise comparison, ranking.

1 Introduction

In multi-criteria decision making (MCDM) decision makers needs to evaluate and rank
different alternatives using several criteria (e.g., measures of effectiveness; MOEs). To
be able to rank the alternatives they usually seek a weighting of these criteria, but
weights may be unavailable and decision makers may find it impossible to assign
precise weights to all criteria. An initial step can be to filter all alternatives under
consideration by Pareto filtering [6, 16]. This will eliminate all alternatives that can
never be selected regardless of which weight assignment is adopted for the criteria. This
will reduce the problem size, but the same problem with assigning weights remains.
However, it is often possible for decision makers to express an order of importance
between all different criteria, or at least to express a preference between two different
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subsets of all criteria.
In this paper we develop an extension to a procedure by Utkin [20] for ranking

alternatives based on multiple decision makers’ preferences in MCDM. We let a group
of decision makers express any number of preferences regarding the relative
importance between any two disjoint subsets of criteria. We derive a method for finding
a partial preference order of all measures of effectiveness. This method will accept any
preference expression about the MOEs from multiple decision makers. For example,
expressions such as “measure of effectiveness MOEi is more important than measure of
effectiveness MOEj”; MOEi MOEj, or expressions regarding two different subsets of
all measures such as “measures MOEi and MOEj are more important than measures
MOEk and MOEl”; {MOEi, MOEj} {MOEk, MOEl}. As we extend the preference
assignment approach developed by Utkin we combine it with a preference ranking
approach by Schubert [12] to derive a partial ranking of all MOEs. When the best
sequence of preferences (of measures of effectiveness) is found we can weight all
alternatives and select the best alternative with the highest value. This alternative can
be further analysed to explain the cause of success [14].

Another approach is provided by Masson and Denœux [11] that extends a
methodology by Tritchler and Lockwood [19]. In [19] simple support functions
regarding each singleton pair of preferences  are assigned on individual frames 
by experts. After all assignments are extended to a common frame of discernment and
combined the most plausible linear ordering of all preference is found. In [11] a linear
programming approach is proposed to solve the problem in an efficient way. The
methodology is further extended to some partial rankings of preferences where a
hierarchical clustering approach selects which partial orders of preferences are
evaluated based on plausibility. The final choice of preferred partial order is left to the
user.

In Sec. 2 we assign basic belief masses based on all decision makers’ pairwise
preferences of any two subsets of all measures of effectiveness. In Sec. 3 we calculate
a decision maker’s belief and plausibility in partial sequences of preferences. In Sec. 4
we derive the information value of a partial sequence of preferences. Based on the
results of the previous two sections we calculate the utility of each partial sequence of
preferences as a product of two functions corresponding, on the one hand, to belief and
plausibility in the proposition and, on the other hand, the information value of the
proposition (Sec. 4). Finally, conclusions are drawn (Sec. 5).

2 Assignment of Decision Makers’ Preferences

We will keep track of all preferences expressed by all decision makers. This includes
both preferences about the order of importance among single measures and among
subsets of measures. For each expression we count the number of decision makers
giving the same preferences and sum-up the total number of assigned preferences by all
decision makers

, (1)

mΘi j Θi j

cAB MOEi{ }i A∈( MOEj{ }j B∈ )
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where , i.e., A and B are subsets of and index set I of indices
corresponding to the set of all MOEs. Any number of these cAB may be equal to zero
due to a lack of assigned preferences regarding some subsets of MOEs.

The preferences assigned between two subsets of measures can be simplified to a set
of preferences among single pairs of measures [20]. We have,

. (2)

From the counts of assigned preferences (1) we derive a basic belief assignment
within belief function theory [3, 4, 17]. In this setting of our problem representation, the
frame of discernment (i.e., the set of all possible preference rankings) is

. (3)

However, only a subset of  corresponding to chains of preferences will be under
investigation in this approach (see (8) in Sec. 3).

We have the following basic belief assignment, using (1),

(4)

where N is the total sum of all counts

. (5)

While it is possible to change the representation in (4) and (5) using (2), it is not
possible to divide the basic belief mass among the different preferences in

as we have no information on how to divide it among the
different preferences. Instead the entire mass must remain on the whole set. 

3 A Decision Maker’s Belief in Preferences

From the basic belief assignments (4) we may calculate belief and plausibility for any
element of the frame of discernment.

While it is possible to calculate belief and plausibility in each single measures of
performance such as,

(6)

where  (as was done in [15]) we will instead calculate belief and
plausibility in incomplete rankings of all measures. Utkin [20] considered complete
rankings B of all measure as an alternative approach to calculating belief and
plausibility in (6) where plausibility was calculated for a sequence of preferences

, (7)

containing all preferences once. Here belief in any complete sequence is zero as we only
have basic belief assignments in sets of preference relations (4) that are all proper

∅ A B i{ }i 1=
MOEi{ }i⊆,≠ I=

MOEi{ }i A∈ MOEj{ }j B∈ MOEi{= MOEj }i A∈ j B∈,

Θ 2 MOEi{=  MOEj }i j I∈,

Θ

mAB MOEi{( MOEj }i A∈ j B∈, ) 1
N----cAB MOEi{(= MOEj }i A∈ j B∈, )

N cAB MOEi{(
AB

= MOEj }i A∈ j B∈, )

MOEi{ MOEj }i A∈ j B∈,

MOEj{ } MOEi{ }i I∈ j∀,

MOEj{ } 1=

Bi1in
MOEi1

({= MOEi2
) MOEi2

(∩ MOEi3
) … MOEin 1–

(∩ ∩ MOEin
) }
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supersets to (7) even in the case when the supported set in (4) is a singleton set, as (7)
is a sequence of intersections (not unions).

We will derive an extension of (7) where we allow any sequence that is an
intersection of subsets of all preference relations, including but not limited to singleton
sets,

, (8)

where  is a subset of all measures  such that the intersection
 and .

Using the representation of (8) we have focal elements  for many (but not
necessarily all) indices ij, ik, and may calculate belief and plausibility in . We get
beliefs,

, (9)

(10)

where belief in any nonsingleton preferences is always zero (as mentioned above), and
may in addition calculate plausibility in any partial sequence of preference as

(11)

where the sum is taken over all focal elements , , , that are
included in .

Given the calculated belief and plausibility we may compare all partial sequences of
preferences . If the belief intervals of two different sequences of partial preferences
are not overlapping then clearly the higher believed sequence is more preferred.

When an interval  is fully included in an interval
 it is not immediately clear which is the preferred partial sequence

of preferences;  or . We can interpolate with a parameter  in each
belief-plausibility interval in order to find the preferred partial sequence of preferences
[12]. However, we have no information regarding the value of ρ, and any assumption
about ρ will be unwarranted.

Instead we may calculate the point ρjklm where the two partial sequences of
preferences  and  are equally preferred. When

(12)

we have

. (13)

If ρjklm < 0.5 then  is more preferred than . The requirement that we must
have ρjklm < 0.5 is equivalent to having the mid-point in the belief-plausibility interval
of  is higher than that of .

This implies that we can obtain an exact order of all partial sequence of preferences
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(of measures of performance) using a standard sorting algorithm based on the belief-
plausibility interval mid-points for each sequence.

It is obvious from the representation of  (8) that there is of partial sequence of
preferences with sequence length 1 (n = 2)

(14)

where | | = 1,  and , i.e.,  and 
are exclusive and exhaustive.

When

(15)

we have

. (16)

This makes it necessary to put a value on the information content of  that is
valued against the belief and plausibility of the partial sequence of preferences (of
measures of effectiveness; MOEs), otherwise we will always prefer a fully nonspecific
proposition with belief of 1 but with no information value (i.e., a vacuous belief
function).

4 A Decision Maker’s Value of Preferences

The value to a decision maker of a partial sequence of preferences  (8) is obviously
less than that of a complete sequence of preferences  (7). As the sequence of
preference is intended to be used for weight assignment for the different MOEs, where
the weights assigned abide by the preference order, it is not possible to say which
weight should be higher of  and  if they belong to the same subset, e.g., if

, (17)

where

(18)

we can only state that we must have  when weighing the preferences
in MCDM, but we cannot say anything regarding the relative values of w1 and w2.

Finding the best partial sequence of preferences (of measures of effectiveness)
becomes a balance between finding sequences with high belief-plausibility and high
information value [13]. A measure that calculates a type of information value is the
aggregated uncertainty (AU). The functional AU was independently discovered by
several authors about the same time [2, 7, 10]. In general, AU is defined as

(19)
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where  is the set of all probability distributions such that  for all
.

Abellán et al. [1] suggested that AU could be disaggregated in separate measures of
nonspecificity and scattering that generalize Hartley information [8] and Shannon
entropy [18], respectively, for any mass function, i.e., . Dubois
and Prade [5] defined such a measure of nonspecificity as

(20)

where  is the set of focal elements.
The problem studied in this paper is a special case. We have a partial sequence of

preferences where each set of preferences  in the sequence corresponds to a
mass function with one, usually nonspecific, focal element A with mass 1 and
cardinality greater or equal than 1. Thus, with m(A) = 1 we have no scattering of
information (i.e., GS(m) = 0) and AU specializes to I(m) where the nonspecificity (20)
simplifies further to the traditional Hartley function [8]

, (21)

as m(A) = 1, for each set of preferences in the sequence of .
Using the problem representation of  (8) the joint Hartley information of an

entire sequence of multiple preference relations is formulated as

, (22)

where the first equality use the definition of the Hartley function for multiple variables,
the second equality use the fact that subsets of measures can be simplified to a set of
preferences among single measures (2) [20].

Furthermore, we have

(23)

where the upper limit is reached when the number of preference subsets in the sequence
is , and the number of preference relations in each subset

 (ignoring that n, ).
Note, that the best information value for the decision maker is when  is

minimized, i.e., when the sequence of preference is as specific as possible with one
preference relation per subset (7). The only reason to prefer a partial sequence of
preferences before a complete sequence is if its belief-plausibility is higher.
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5 The Decision Maker’s Choice of Preference Order

The utility U for a decision maker of knowing a sequence of preferences  is a trade-
off between finding a sequence of preferences that on the on hand maximize the belief
and plausibility, and on the other hand maximize the value of the information itself for
the decision maker.

A function that tries to achieve both task simultaneously by calculating the utility of
 is the product of the belief-plausibility midpoint, i.e., ρ = ½ (13), with a function

of the Hartley function of .
We define

, (24)

where both terms on the right hand side of the equality belong to [0, 1]. Thus, the utility
 and will serve as the basis for comparing different alternative partial

sequences of preferences (of measures of performance; MOEs).
All partial sequences of preferences  are evaluated based on their utility

. The partial sequence with highest utility is considered the best sequence and
is the partial preference order that will be used in MCDM. Although (24) is exponential
in the number of MOEs, the number of measures in the MCDM is usually not very large
which makes this a calculation with low computational cost. In a previous paper [15]
we developed a method for assigning weights by a Monte Carlo approach to the set of
all MOEs for multiple criteria evaluation. When we have a partial sequence of
preferences, e.g.,

, (25)

where

(26)

we may assign any weight to the MOEs that abide by the constraints
 where wi is the weight of MOEi and there is no constraint

between w2 and w3.
Other authors have considered different approaches to weight assignment. Huang et

al. [9] consider the assignment of weights to criteria based on the consistency and
similarity of the opinions from decision makers regarding these criteria. In addition it is
also possible to let the decision makers themselves be weighted. Yue [21] suggest using
the decision makers’ experience regarding the topic under consideration as a basis for
assigning weights. A third approach, is to let each decision maker use a weighting of his
own as an expression of the importance placed on a pairwise comparison of two disjoint
subsets of MOEs.
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6 Conclusions

We show that it is possible to extend Utkin’s methodology for complete ranking of all
single preferences between different alternatives [20] in MCDM, to a new methodology
that evaluates all partial rankings of all subsets of these measures. Both methods use the
same pairwise comparisons of preference subsets assigned by experts. While Utkin’s
method use only plausibility for a complete ranking (of singletons), we show that this
is not possible when extending the solution to incomplete ranking (of all possible
subsets). Instead, it is necessary to calculate the utility by modelling the information
value of an incomplete ranking and compare this, in a trade-off, against the belief-
plausibility of the same incomplete ranking of all possible subsets of preferences (of
measures of effectiveness; MOEs). Only then can we find the best partial ranking of
preferences that combine high belief-plausibility with high information value to
maximize utility for the decision maker.
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Abstract. Mathematical Theory of Evidence (MTE), also known as
Belief Theory, exploits belief and plausibility measures and operates on
belief assignments and belief structures. The theory also offers combina-
tion mechanisms in order to increase the informative context of the initial
evidence. The evidence is meant as a collection of facts and knowledge.
In navigation, facts are position indications delivered by various aids,
and also results of observations such as taking bearings, distances or
horizontal angles. Those facts are random variables governed by various
distributions. Nautical knowledge embraces features of such distributions
as well as discrepancies in their estimations. Awareness of systematic er-
rors is also a part of a seafarer’s knowledge. Whichever the conditions
MTE combination scheme is expected to enable position fixing of the
ship.

Keywords: nautical evidence, belief assignments, position fixing, nor-
malization.

1 Introduction

This paper is focused on the practicality and functionality Dempster-Shafer con-
cepts [3], [13] of evidence representation and reasoning and the possibility of ap-
plication of belief theory in geodetic positioning and navigational position fixing.
Many authors point to numerous applications involving the Bayesian approach
while examples employing other concepts are rather scarce. It is said that there
are only a few practical problems solved with theory of Evidence [2]. Meaning-
ful applications are related to risk analyses [15], expert system inference engine
implementation [14] or satellite services demand forecast [11]. It should noted
that maritime application of the theory was successful while solving multi-target
detection problem [1].

It is the navigator who has to handle a set of random points delivered by
various navigational aids from which he is supposed to indicate a point as being
the position of his ship. Dispersions of points are governed by two dimensional
approximate distributions. The fixed position is located somewhere in vicinity of
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indications at hand. It is very similar, in case of measured distances, bearings or
horizontal angles. The ship’s position is located within the area of crossings of
appropriate isolines1 that intersect inside the confined area. The area of the true
position is spanned over isolines’ crossing points provided the available evidence
features random errors and might be outside the area once systematic deflection
prevail. It is supposed that the navigator is able to resolve all dilemmas thanks
to his knowledge, experience and also intuition.

Practical navigation is based upon probability theory. The basis is enough
to define distributions of random variables that are assumed to be of mea-
sured value. It also enables a priori evaluation of fixes taken according to cer-
tain schemata since accuracy is calculated with formulas designated for selected
schedules of observations taking into account the constellation of landmarks and
approximate measurements error [10].

Expectations regarding flexibility of the upgraded models are greater. Items
that should affect fixed position should also include the kind of distributions of
measurements taken with a particular navigational aid and discrepancies in the
parameters of such distributions. It is popular to state that the mean error of a
bearing taken with radar is interval valued within the range of [±1, ±2.5o]. The
presented evaluation of the mean error appears as a fuzzy figure and as such,
fuzziness should be accepted and taken into account during computations. Sub-
jective assessment, also in form of linguistic terms, of each observation should
be accepted and processed. Empirical distributions are also supposed to be in-
cluded into calculations. The most important thing is the embedded ability for
objective evaluation of the obtained fix along with measures indicating the prob-
ability of its locations within the surrounding area [7]. Meeting the above stated
expectations is impossible with traditional formal apparatus. Its ability is almost
exhausted in the considered applications. Research and published works devoted
to a new platforms and modern environments put attention on Evidence Theory
that delivers a wide range of new opportunities.

The theory extended for possibilistic platform creates new opportunities for
modelling uncertainty [17]. In the presented applications doubtfulness is due to
erroneous observations. It is widely known that random and systematic errors
are included in measurements.

2 Nautical Evidence Encoding

In nautical applications evidence refers to collection of indications and measure-
ments also known as observations and knowledge regarding these observations.
Available data are assumed to be random variables governed by known distribu-
tions. It is widely accepted that the distributions are empirical that are usually

1 In navigation an isoline is a function related to measurement also referred to as an
observation. Graph of an isoline projected to the plane (chart) is a set of points of
equal bearings, distances or another measurement. Isoline of a distance to a landmark
is a circle with the centre in the landmark position. Isoline of a bearing to an object
is a straight line that passes through the object position.
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approximated by the Gaussian ones. Therefore confidence intervals in the vicin-
ity of the given data may be established and probability of a true measurement
being located there easily calculated.

Belief assignments embrace relations between evidence and hypothesis items.
It tells how a piece of evidence with reference set {oij} supports each of the
hypothesis points {xk}. Relations between evidence and hypothesis frames take
the form of Eq. 1.

m(ei) = {(μi1(xk), m(μi1)), ..., (μin(xk), m(μin))
m(μi1) = f(ei → μi1(xk))

(1)

Hereafter function f(ei → μi1(xk)) that defines mass assigned to each vector
μij(xk), is assumed known for each referential item (element of the set {oij})
linked to i-th measurement or indication [8], [9]. Values returned by this function
are obtained based on statistical investigations of observations sets of test values
regarding particular source of nautical data. Function that returns membership
grades μij(xk) for each of k -th hypothesis elements, takes the form of Eq. 2. It
can be read that location grades are degrees of inclusion of hypothesis points
within evidence frame. In the formula C = 1 for binary approach, C ∈ [0, 1]
when using fuzzy membership. Sets embrace grades expressing possibilities of
consecutive hypothesis items being located within the sets related to each piece
of evidence.

μij(xk) =

{
C if xk ∈ oij
0 otherwise

(2)

Fig. 1. Graphic interpretation of binary nautical evidence representations
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Fig. 2. Graphic interpretation of fuzzy nautical evidence representations

Figure 1 shows scheme of areas around indication delivered by a navigational
aid. Crisp valued limits of confidence intervals are presented. In nautical science
crisp valued standard deviations of measurements are considered inadequate.
In recent navigation book [10] indication mean error is described as imprecise
interval value usually as: [±σ–,±σ+]. Thus appropriate limits are interval valued
as presented at Fig. 2. It should be also noticed that presented areas are circular
what can be observed under assumption of the same distributions for both axis.

Each set has an assigned credibility mass also considered as a degree of belief.
It expresses support for given hypothesis space items embedded within particular
piece of evidence. Therefore, evidence mapping consists of (location set – mass
of its confidence from particular piece of evidence point of view) pairs.

mi = {mij} ∪ {min} =

{
(j+1) ·σ∫
j ·σ

Pi(x) dx · (1 −min)

}
∪ {min}

where:
j = (−3, −2 ,−1 , 0, 1, 2)

(3)

Belief mass is considered as a probability that the true indicated value falls
within given credibility interval and can be calculated with Formula 3. The
expression splits the whole set of masses related to i-th evidence into two com-
ponents. One embraces cumulated probabilities attributed to selected confidence
intervals. Another one is a level of doubtfulness assigned to given piece of evi-
dence.

Seafarers know that mean error of particular aid is, for example, inside the
range of [±1,±1.5] cables. It means fuzzy value with core of [-1, 1] cables and
support of [-1.5, 1.5] cables [5], [6].
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Fig. 3. Modelling imprecise measurements data invokes probabilistic and possibilistic
approaches

Figure 3 shows dashed line that is membership function that returns pos-
sibility of certain point inclusion into [-σ–,+σ+] range. Mean error estimates
standard deviation (square root of a variance) of the distribution. Figure 3 also
shows interval valued limits of confidence intervals related to two distribution
functions. In confidence range a measurement falls with certain probability. It is
assumed that confidence intervals are symmetrically placed around the mean.

Table 1. Binary (left) and fuzzy (right) representations of evidence related to naviga-
tional aid indication

binary fuzzy
{x1 x2 x3} {x1 x2 x3} m

μ11(xk) { 0 0 1 } { 0 0 0.91 } m11=0.615
μ12(xk) { 0 1 0 } { 0 0.85 0.09 } m12=0.245
μ13(xk) { 1 0 0 } { 0.90 0.15 0 } m13=0.036
μ14(xk) { 0 0 0 } { 0.10 0 0 } m14=0.004
μ1n(xk) { 1 1 1 } { 1 1 1 } m1u=0.100

Table 1 presents two belief assignments that are representations of evidence
related to the example navigational aid indication. At the left side there are
binary locations for hypothesis space embracing three points and shown in Fig. 1.
Selected circular confidence areas have crisp limits. At the right side the table
embraces fuzzy location vectors. Fuzziness is due to uncertainty in evaluation
of random errors distribution parameters. Selected circular areas have interval
valued limits. In fuzzy approach evidence representation consists of pairs: fuzzy
vectors representing uncertain locations of a set of points within sets related to
each piece of evidence – degrees of confidence assigned to these vectors.

Empirical type of random variables distribution is encountered very often in
navigation. They are usually converted to Gaussian ones although it so happens
that conversions are not theoretically justified. Thus empirical distribution direct
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inclusion into evidence representation seems natural and necessary. In this case,
confidence intervals are substituted by histogram bins and cumulative proba-
bilities are replaced by relative frequencies of observations falling within the
bin. Since available histograms differ, calculated frequencies are rather ranges
of values than single figures. Thus belief assignments upgraded with empirical
distributions are interval valued.

2.1 Evidence Related to Nautical Observations

Result of a nautical observation (taking distance for example) delivers imprecise
value. The measurement contains random error as well as systematic deflection
very often. In practical navigation results of observations are converted to their
isolines, functions that are measurement projections on a chart. Terrestrial or
celestial navigation involves dealing with isolines and their gradients. Hereto
confidence intervals are to be established along gradient directions. The most
frequently used are isolines of bearings, distances and horizontal angles. Crisp
valued standard deviation of a measurement is substituted by imprecise interval
valued written usually as: [±σ−

i ,±σ+
i ]. Being interested in an isoline deflection

one considers [±m−
i ,±m+

i ]. Random mean error of a distance measured with
radar variable range marker is a function of the obtained value and are said to
be within the interval of [±1,±1.5] percent of the measurement. Taken distance
of 10 Nm is random variable with mean error inside the range of [±1,±1.5]
cables. The concept of exploiting evidence, that is meant as encoded facts and
knowledge, in supporting decisions in navigation is based on measurement dis-
tribution. Introduced confidence intervals define the probabilities of true isolines
being located within appropriate strips established along gradient directions.

3 Position Fixing

Practical navigation exploits graphical and analytical methods, its scientific
background is based upon probability theory. The basis is enough to enable
a priori evaluation of fixes taken according to certain schemata since accuracy is
calculated with formulas designated for selected schedules of observations taking
into account the constellation of landmarks and random valued measurements.

In MTE structures combination is carried out [4]. During association all pairs
of location vectors are associated and product of involved masses is assigned
to the result set. Obtained assignment is supposed to increase informative con-
text of the initial structures. Combination of structures embracing measurements
data is assumed to result in position fixing. The goal can be achieved provided
association of sets enables selection of common points located within intersec-
tion of introduced ranges. Adequate selection can be done with T-norm opera-
tions2 [12] used during association. The simplest T-norm results in smaller values

2 T-norms are used as fuzzy logics conjunction operators, they are a generalization
of the two-valued logical conjunction. Hereto T-norms are used to calculate the
intersection of fuzzy sets.
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Fig. 4. Position fixing based on three observations

being taken from consecutive pairs of elements in associating vectors. This op-
eration is used in implemented software dealing with fuzzy reasoning in nautical
science. In the presented applications, the association of two location vectors
with T-norm select hypothesis frame points situated within a common area. A
null result vector means that there are no points within intersection and might
indicate poor quality evidence.

Figure 4 illustrates three fragments of isolines intended for position fixing.
Contours of imprecise confidence internals limits are marked for each observa-
tion. The figure shows intersection of three fragments of isolines related to three
randomly distorted measurements. Presented situation is typical for position fix-
ing. The illustration also include exploded insertion showing single cell confined
by imprecise limits of considered strips. There are two points: A and B that are
potential true locations of the ship. Let us assume that both points location de-
gree within shown area are equal to one. For each of them plausibility and belief
measures are to be calculated. Formulae that enable calculation of plausibility
and belief measures were derived in publication [4], [8]. To calculate belief value
one has to find minimum among complemented location grades for each element
within considered set. Therefore belief for the two points, that they represent
fixed position, is zeroed. One can conclude that multiple point presence within
intersections of ranges causes that belief for each of points is close to zero. It
should be noted that hypothesis frame points are to be arranged with respect to
isolines mean errors or width of considered strips. Plausibility support measure
does not feature the same disadvantage. Therefore it was proposed as primary
factor deciding on fixed position selection.

Grid (mesh) is usually used to define hypothesis frame during iterative calcu-
lations. The repetitive search for the fixed position explores decreasing the area
in order to achieve required accuracy. In each loop, for a given search area, new
belief assignments are created, normalized and combined. In the final stage, the
search area should be small enough to guarantee a satisfying quality of the so-
lution. The quality of the solution depends on the size of the mesh. It should be
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noted that the quality is also determined by other, widely known factors. Let us
mention number and quality of observations as well as constellation of observed
landmarks.

Scheme of position fixing with intersected isolines is very much the same
as this for indications association. Fixed position is somewhere inside isolines
intersection area provided absence of fixed error. In case of systematic distortion
location of the fix should be found in different way. The way to handle systematic
errors will be published shortly. Both cases involving position indications and
isolines are exploited in navigation. With MTE they can be mixed up and readily
considered jointly.

The traditional way of position fixing takes advantage of available measure-
ments, their approximate random distributions and diversification of observa-
tions once the analytical approach is used. The main disadvantage of the concept
is the lack of a built-in universal method of the fix a posteriori evaluation. Tra-
ditional meaning of the fix accuracy is related to a regular area around the fixed
position. Within the area the true position of the ship is located with certain
degree of credibility. It is assumed that the area is of circular or elliptical shape
within which the fix is located with the same probability.

In the suggested approach, distribution of probabilities of the fix being located
within explored area is embedded into processing scheme. Therefore, accuracy
evaluation can be made a posteriori and is to be perceived as a cohesive area
within which probability (plausibility) of the fix location is higher than the re-
quired threshold value.

4 Notes on Normalization

Position fixing can be achieved provided the association of sets enables the selec-
tion of common points located within intersection of introduced ranges. Adequate
selection can be done with T-norm operations [12] used during association. Thus
result of association may be empty or sub-normal. Therefore, a certain amount
of mass is assigned to null set which means the conflicting situation that can
also be referred to as an inconsistency. In position fixing inconsistency means
the absence of a hypothesis space point within intersection area. This might
indicate poor quality of considered set of measurements as well as scarce, con-
sequently wrongly distributed, hypothesis points. Thus it is important to record
all conflicting cases and evaluate its final uncorrupted value.

A pseudo belief structure is said to be a belief assignment that does not fulfil
a certain set of conditions. Normality of the assignment is achieved via normal-
ization. The main reason for this transformation is to avoid belief being greater
than plausibility measure. These measures are meant as limits of interval valued
probability expressing support for the given hypothesis item. Belief is the lower
boundary of the interval, plausibility is meant as the higher limit. Unfortunately
contradictory results can be obtained based on pseudo belief structures [16].

It is supposed that evidence representations should be normalized at the ini-
tial and intermediate stages of processing in order to avoid contradictory results.
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The most popular normalization procedures feature serious disadvantages. The
Yager method disables detection of inconsistency cases. In the Dempster concept,
all masses assigned to non-empty sets are increased by a factor that is a function
of the total inconsistency mass. It leads to the unacceptable proposition that ”the
higher inconsistencymass the greater probability assigned tonon-empty sets”or re-
ferring to position fixing, ”the poorer quality data, the higher credibility attributed
to the fix”. Therefore the author’s proposal of conversion has been submitted.

The main advantage of the approach is the ability to maintain unchanged
value of the plausibility measure, the primary factor deciding on selection of
the final solution. It also assures that belief and plausibility measures remain in
proper relation, the first is not greater than the second one. The transformation
was discussed in details in recent paper delivered by the author [7].

5 Summary

Fuzzy approach is used to include knowledge into a mathematical model. It
is a tool that enable human observers to transform their observations into an
adequate model. In nautical science observers usually use linguistic terms and
imprecise data in order to describe and explain their activity. Information on
measurement accuracy appears as a fuzzy figures, discrepancies in distributions
parameters evaluation are interval valued.

Dealing with uncertain and imprecise evidence is a challenge in nautical science
and practice. Formal descriptions of problems encountered in navigation involve
models that accept imprecise, erroneous and therefore uncertain values. The con-
cept should be followed regarding position fixing and its accuracy evaluation. It is
the navigator who has to handle a set of random points delivered by various navi-
gational aids or distorted data that are output of observations. Based on available
evidence he is supposed to indicate a point as being the position of his ship.

Models that include uncertainty can be created with MTE. The theory can
be perceived as an extension of the Bayesian concept. It also offers combina-
tion mechanism, enabling the enrichment of informative context of the initial
evidence. Despite its broad ability, the theory still remains unpopular in the
presented scope of interest.

Measurement and indication data, along with nautical knowledge, can be en-
coded into belief functions. Both knowledge and data are considered as evidence
that is exploited in navigation. Belief functions in nautical applications represent
evidence and are subject to combination in order to increase their informative
context. Evidence representations and results of their combinations could include
inconsistencies wherever T-norm operations are involved. Inconsistency must be
removed to avoid conflicting final results.

Presented approach creates an opportunity to revise the fix quality evaluation.
Traditional meaning of the fix accuracy is related to an area around the fixed
position. Within the area the true position of the ship is located with a certain
degree of credibility. It is often assumed that the area is of circular or ellipti-
cal shape. Formulas enabling calculation of its radius were derived for typical
schemes followed while making a fix.
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10. Jurdziński, M.: Principles of Marine Navigation. WAM, Gdynia (2008) (in Polish)
11. McBurney, P., Parsons, S.: Using Belief Functions to Forecast Demand for Mobile

Satellite Services. In: Srivastava, R.P., Mock, T. (eds.) Belief Functions in Busi-
ness Decisions, pp. 281–315. Physica-Verlag, Heidelberg. Springer-Verlag Company
(2002)

12. Rutkowski, L.: Methods and Techniques of the Artificial Intelligence. PWN, War-
saw (2009) (in Polish)

13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

14. Srivastava, R.P., Dutta, S.K., Johns, R.: An Expert System Approach to Audit
Planning and Evaluation in the Belief-Function Framework. International Jour-
nal of Intelligent Systems in Accounting, Finance and Management 5(3), 165–183
(1996)

15. Sun, L., Srivastava, R.P., Mock, T.: An Information Systems Security Risk As-
sessment Model under Dempster-Shafer Theory of Belief Functions. Journal of
Management Information Systems 22(4), 109–142 (2006)

16. Yager, R.: On the Normalization of Fuzzy Belief Structures. International Journal
of Approximate Reasoning 14, 127–153 (1996)

17. Yen, J.: Generalizing the Dempster–Shafer Theory to Fuzzy Sets. IEEE Transac-
tions on Systems, Man and Cybernetics 20(3), 559–570 (1990)



Application of Belief Functions Theory

to Non Destructive Testing of Industrial Pieces

Ahmad Osman1, Valerie Kaftandjian2, and Ulf Hassler1

1 Fraunhofer Development Center X-ray Technologies EZRT, Flugplatzstrasse 75,
90768 Fuerth, Germany

{ahmad.osman,ulf.hassler}@iis.fraunhofer.de
2 National Institute of Applied Sciences INSA- Lyon,

Laboratory of Vibrations and Acoustics (LVA), University of Lyon, Bat. St. Exupery,
25 Avenue Capelle, 69621 Villeurbanne, France

valerie.kaftandjian@insa-lyon.fr

Abstract. In this contribution we present a classification method based
on the evidence theory where a comparison between modeling with and
without conflict is presented as well as a comparison between the orthog-
onal and cautious fusion rules. The classification rules are compared to
the state of the art support vector machine classifier on an industrial
ultrasonic dataset.

Keywords: Evidence theory, non-destructive testing, defects classifica-
tion.

1 Introduction: Context of the Study

In the field on Non Destructive Testing (NDT) of industrial pieces such as cast-
ings, welds, or composites, the general aim is to detect defects as small as possi-
ble, while preventing the detection of false alarms due to noise or artefacts. Over
the last several years, we have started to develop a classifier based on Dempster-
Shafer (DS) theory in which features measured on the segmented objects (such
as contrast, area, etc· · · ) are considered as information sources and fused. The
feature values are translated into mass values thanks to a mass assignment pro-
cedure based on a learning approach. The frame of discernment consists of two
single hypotheses (true defect H1 and false defect H2) and the compound one
thus corresponds to ignorance (H3=H1∪H2). In our initial work, the data fusion
approach was used in the aim to improve the detection of weld defects in [1], and
in castings inspection [2]. The obtained results proved to be precise and reliable
decisions were obtained. However, the supervision of the expert was necessary to
assign the confidence levels (or mass values). Then, a new mass value attribution
procedure was developed, without expert supervision. The method, introduced
in [3], allows converting from the space of feature values to the mass values space.
This method is divided into two processes: learning and validation process. A
choice was made to avoid conflict between sources by assigning masses only toH1

and H3. By that way, the Dempster rule of combination can be applied without
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the risk to increase the fused mass when conflict appears. Several applications
cases in NDT have been tested with success [4], [5]. In the present paper, we
compare this “no conflict ”approach with another possible choice, where only
H1 and H2 are considered (Bayesian masses). In this case, the Dempster rule
without normalization is preferred, and conflict is computed. A specific decision
rule is developed involving a conflict threshold. As the features are considered as
sources of information, their independence needs to be discussed. For this pur-
pose we use the cautious rule to fuse the sources and compare its output with
the output of the orthogonal rule. Moreover, the orthogonal rule is used not only
to fuse all sources together, but also pairwise, and we have introduced a specific
procedure to select best sources in terms of performances. Thus, when a pair of
feature is selected, their independence is checked a posteriori. Finally, support
vector machine classifier was selected as a gold standard to compare our results
with a state of the art method.

2 Principle of the DS Classifier

2.1 Mass Assignment Learning Phase

After segmentation and feature extraction on the segmented objects, the spatial
repartition of features values is divided into regions of confidence. To build these
regions, the global histogram of class A (true defects TD) and class B (false
defects FD) is used, on a learning database, i.e. a set of objects of known class
(classification by an expert). Firstly, this histogram is divided into a set I of
intervals. For each interval denoted i ∈ I, the percentage of TD (instances of the
class A) present in this region is calculated using the following equation:

PA,B =
hA(i)

hA(i) + hB(i)
(1)

Where hA(i) and hB(i) represent respectively the number of instances of A and
B inside i.

Secondly, subsequent intervals are merged to form a region of confidence.
In this step, a constraint is imposed on the degree of variation of PA,B(i)

between two adjacent regions with a fixed threshold denoted DV . If ,PA,B =
|PA,B(i + 1) − PA,B(i)| < DV , then the interval i is merged with the interval
i + 1, and they form a region of confidence. Figure 1 shows the regions found
after merging in the example histogram.

The influence of this threshold DV (called Derivation Variation) on the system
performance and stability was studied [6] and a value of DV = 0.2 was selected.
At the end of this step, some obtained regions contain a number of points too
small to be considered as significant. Therefore a second constraint on the num-
ber of points existing in each region is imposed: a region should contain at least
a certain percentage of points denoted Perc, which we specify. Let M be the
region which contains the biggest number of points NM inside it, and the min-
imal number of points to be respected inside each region is: Nc = Perc · NM .
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The influence of Perc on the systems performance was also studied in [6] and a
value of Perc = 0.1 was selected. Once the regions are built, mass attribution
is done with two possible choices, either using only the H1 and the ignorance
hypothesis (in this case no conflict is possible), or using Bayesian masses (table
1). In both cases, the mass assigned to the “true defect ”hypothesis H1 is di-
rectly the proportion of TD in the region of confidence Ri. Masses obtained on
the H1 hypothesis are illustrated in figure 1 for the three regions of the example
histogram.

Fig. 1. Illustration of the regions of confidence after merging of intervals in the his-
togram. In this example, three regions are found for which the mass on H1 is indicated.

Table 1. Mass functions assignment

Without conflict With possible conflict

m(H1) = PA,B(Ri)
m(H2) = 0 m(H2) = 1−m(H1)
m(H3) = 1−m(H1) m(H3) = 0

Finally, the last stage of the mass value assignment is to ensure a continuous
transition between the regions of confidence. One fuzzy set is defined for each
region with a classical trapezoidal shape membership function. The slope of
the membership function is chosen to be proportional to the difference between
the mass values of the two adjacent regions. Let fk be a source of information
used to classify an object in class A or B according to its feature x and R1,
R2, · · · Rs, be the set of regions of confidence. k = 1 · · ·Q is the number of
features considered as information sources. Each object has a set of degrees
of membership μRi , i = 1 · · · s to each region Ri with

∑s
i=1 μRi(x) = 1. The
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final mass m(H1) attributed by a source fk to the object from its feature x
is calculated by weighting the mass values of each region Ri by its degree of
membership μRi :

m(object ∈ H1) = m(x/fk) =

s∑
i=1

μRi(x) ·m(Ri) (2)

The three fuzzy sets obtained for the example histogram and the correspond-
ing final mass function is illustrated in figure 2.

Fig. 2. For each region of confidence, a fuzzy set is defined with a corresponding
trapezoidal membership function (blue line). The final mass function is computed from
equation (2) (red dotted line). The histogram of figure 1 is used in this example.

2.2 Fusion of Features Learning Phase

After the estimation of regions of confidence and their corresponding mass values
assignment, the fusion process takes place. Each feature being considered as
a source of information, mass values are combined using different rules. The
normalised Dempster orthogonal rule is used to fuse features pairwise, three
or all features together (equation 3). Dempster’s rule [7] is defined as follows:
considering Q mass distributions m1 · · ·mQ from different information sources
B1, B2 · · ·BQ, the Dempster’s rule of combination results in a new distribution,
m = m1 ⊕ m2 ⊕ · · ·mQ, which carries the joint information provided by the
sources:

m(Ai) =

∑
B1∩B2···BQ=Ai

m1(B1)m2(B2) · · ·mQ(BQ)

1 −K
(3)

where
K =

∑
B1∩B2···BQ=Φ

m1(B1)m2(B2) · · ·mQ(BQ) (4)
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K is a measure of conflict between the sources and is introduced in equation 4
as a normalization factor. As it can be deduced, the largerK, the more conflicting
are the sources and the less sense makes their combination. As a consequence some
authors, Smets in particular [8], require the use of the Dempsters combination rule
without normalization. Thus, in our case, we must distinguish the two cases, with
andwithout conflict.When themasses aredistributedonH1 andH3, no conflict can
occur, and theDempsters rule is perfectly adapted.On the contrary,whenBayesian
masses are defined, the conflict is computed and kept for the decision step, and the
non-normalized orthogonal sum is preferred. In addition to the Dempster rule, the
cautious rule [9] is used to fuse all sources together.

2.3 Decision Rule at the Learning Stage

Here, the two cases with and without conflict must be distinguished.

Without Conflict: to classify an object using the information source fk thresh-
old Sm is applied on its mass value (H1) . The object is classified as a defect
if m(H1) ≥ Sm, or unknown (defect or not) if m(H1) < Sm. Several thresholds
Sm are tested at the learning phase from 0.6 to 0.9, and best values are selected
using defined performance criterion in paragraph 2.3.

With Conflict: in this case, to classify an object using the information source
fk two thresholds are considered. If the conflict K is above a threshold TK (cho-
sen at 0.6), then it is considered that the decision is not reliable, and the object
is classified as “unknown ”. If the conflict K is under the conflict threshold
TK , then the object is classified as a defect if m(H1) > m(H2), or false defect
elsewise.

Selection of “successful” Sources Learning Stage. First of all, some met-
rics should be defined to characterize the classification performance of a source.
Let P be the total of positives (true defects), N be the to-tal of negatives (false
defects), TP be the total number of positives correctly classified, TN be the to-
tal number of negatives correctly classified, FN be the total number of positives
incorrectly classified and FP be the total number of negatives incorrectly classi-
fied. Two performance metrics are defined to select best combination of features
as:

– True Defects classification rate:

PTD =
TP

P

– False Defects classification rate1:

PFD =
TN

N
1 In the case without conflict, the PFD is computed as the total number of objects
classified as unknown divided by the total number of negatives, whereas when the
conflict is considered, PFD is equal to the total number of objects correctly classified
as false defects divided by the total number of negatives.
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The user indicates which are the PTD and PFD required rates to consider a
source as “successful” (90% are the default values). Only those sources will then
be considered for the validation phase. All single features, all combination of two
features and the combination of the whole set of features are considered at this
stage. The “successful”set is then composed of all combinations which are above
the required performance. It is worth noting that the number of combination
of pairwise features can be high, but the whole process being automatic, this
selection is very powerful. This selection procedure is our warranty that only
useful and informative sources are used afterwards in the classifier (independence
of the selected sources is checked a posteriori). Thus, this selection of successful
sources is a very important part of the learning stage.

2.4 Validation Phase

Validation is done on a test database of manually classified objects and the
following steps take place:

– Selected features extraction.
– Translation from feature values to mass values using the regions of confidence

obtained during the learning phase.
– Mass values fusion using only the “successful” selected features.
– Decision rule using the threshold value Sm selected as the best one for these

features during learning (case without conflict) or using the decision rule
with conflict.

– Performances on the validation database are then compared to the learning
database.

3 Experimental Results with and without Conflict

For this contribution, we dispose of a 3D ultrasound datasets composed of 419
binary objects (blobs or potential defects) manually classified by an expert as
true or false defects. For automatic classification purpose, a total number of 35
geo-metrical and intensity based features are measured on each blob (or object).
These features represent the input sources of information for the classifiers to
automatically classify the entry blob as a TD or FD.
For the learning and testing processes, the complete dataset is divided into:

– Learning dataset: 212 potential defects consisting of 164 FDs and 48 TDs.
– Testing dataset: 207 potential defects consisting of 164 FDs and 43 TDs.

3.1 Comparison of the with and without Conflict Approaches

The learning phase took at first place for the DS based classifier with and with-
out conflict. At a preliminary comparison stage, the two different approaches
were evaluated based on the number of successful sources. We remind that a
successful source is a source whose performance metrics are higher that a given
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threshold.. As demonstrated in table 2, while the threshold rates vary between
0.9 and 0.6, the number of successful sources increased correspondently for both
ap-proaches. This is normal because it is more easy to respect the required
perfor-mance rates when the rate is lower. The important fact to mention is
that the DS classifier without conflict allowed obtaining a clearly higher number
of successful sources for each required PTD and PFD. This can be interpreted as
follows: in the case without conflict, the hesitation between sources is modelled
as an ignorance via the H3 mass. This ignorance can add some information when
it is fused with another source whose part of belief completes the information.
In the case with conflict, the hesitation is shared between the two hypothesis
H1 and H2, so that only completely redundant sources can become successful
(i.e. can see their masses increasing after fusion). Complementary sources will
appear as conflicting.

Table 2. Comparison of the number of successful sources (learning phase) given by
the approaches with and without conflict for different PTD and PFD rates

DV = 0, Perc = 0.1 Without conflict (Sm = 0.9) With conflict (TK = 0.6)

Number of sucessful sources (PTD, PFD ≥ 0.9) 14 0
Number of sucessful sources (PTD, PFD ≥ 0.8) 90 14
Number of sucessful sources (PTD, PFD ≥ 0.7) 198 88
Number of sucessful sources (PTD, PFD ≥ 0.6) 282 161

For a more precise comparison, ten combinations of two independent features
were selected to investigate their performances with and without conflict. These
combinations were considered to classify the blobs of the testing dataset. The
graph in figure 3 presents the combinations performances on the testing dataset.
As it can be noticed, the consideration of conflict resulted in a clear reduction
of the PTD rates for all combinations on the testing dataset. As for the PFD
rates, the two approaches with and without conflict give approximately the same
results. The fact that the two populations do not have the same behavior is nor-
mal. In the first modelling approach, the emphasis is put of the true defects
(hypothesis H1). When a lot of false defects are present in a region of the his-
togram, the ignorance is preferred to the hypothesis H2, because it means that
it is still possible that a true defect is there. By that way, after fusion, the H1
mass is expected to increase and true defects are classified if their mass on H1 is
high, otherwise they are considered as unknown (i.e. ignorance), and the PFD
rate is computed using this number of unknown objects. In the second case,
the two populations are considered equally, and their masses after fusion can
increase only if the fused features are in agreement. Defects are then classified
in TD and FD (giving respectively the PTD and PFD rates), or unknown if the
sources are in conflict (this number is considered apart). The fact that the two
PFD rates are the same with the two approaches means that we have as many
objects whose ignorance is high or whose mass on H2 is high after fusion. The
fact that PTD is higher without conflict means that a certain number of objects
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had a part of ignorance with one source and a part of belief with another source,
which gives a higher mass on H1 after fusion, while the same case gives a conflict
with Bayesian masses. Another important aspect is the reliability of the sources
which can be assessed by regarding the frequency of occurrence of conflicts for
each combination. As previously mentioned, in the case of a conflict, the object
is classified as unknown. Among the considered 10 combinations, the smallest
number of unknown objects occurred for the combination number 5, with 10
occurrences (total of objects is 212) in the learning phase and 13 occurrences
(total is 207) in the testing phase. This source can be considered as more reliable
with respect to the number of conflicts than the other 9 combinations (having
between 16 and 38 unknown objects).

Fig. 3. Testing phase: Performances in terms of PTD and PFD rates of the randomly
selected 10 combinations of independent features in conflict and without conflict cases

As output of this study, it is clear the classification approach without conflict
gives better classification rates than the approach with conflict and Bayesian
masses.

3.2 Comparison of the Fusion Rules

Next we compare all the considered classifiers: the DS orthogonal without conflict
fusion rule (DSF), the Cautious rule and the SVM classifier. The results are
presented in table 3. As it can be seen, SVM performs better when the two
classification rates PTD and PFD are considered equally, but the best PTD rate
is obtained with the DSF classifier using only a combination of two independent
features (elongation of the blob in the transverse plane Exy and its contrast
CSMax) instead of 35 features for SVM. The cautious rule performs also perfectly
with a PTD rate of 1, but gives the lowest PFD rate.
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Table 3. Performances of the considered classifiers on the learning and testing datasets

Learning phase Testing phase

Combination rule PTD PFD PTD PFD

SVM Classifier - - 0.98 0.97
DSF(Exy, CSMax) 0.96 0.98 1 0.93
Cautious rule (Sm = 0.9) 0.98 0.98 1 0.79

4 Conclusion

The choice to give a mass value to the hypothesis true defects H1 and igno-
rance H3 without permitting a source to give mass to false defects hypothesis
H2 allowed not only to avoid conflicts but also to maximize the true defects
classification rates as it was proven in this study. The reason is that, without
conflict, the mass value attributed to the hypothesis H1 is higher than in the
case with conflict resulting in a better separation of the distribution of the mass
values of the class of true defects from the other(s) class(es), thus the output is
a higher classification rate of true defects. An important part of the whole pro-
cedure is the selection of successful sources on the basis of their performances on
the learning database: it appeared that several combinations of two features were
successful, and their independence was checked a posteriori. For this reason, the
orthogonal rule has high performances. The fact that the cautious rule applied
on the whole set of features performed less well than the orthogonal rule comes
from the fact that in our case, the cautious rule is equivalent to the maximal
value of the masses, which means that finally only one feature is used. The SVM
performed globally better than the other classifiers however the highest PTD
rate was given by the DSF non normalized orthogonal fusion rule. In the field
of non-destructive testing, this is an important result because in most industrial
cases, PTD rate is considered with more importance than PFD rate. Although
the results shown here come from one application case (ultrasonic 3D testing
of composites), the same method was tested with success on 2D and 3D X-ray
testing [3], [4].
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Abstract. We consider an inference method for prediction based on
belief functions in quantile regression with an asymmetric Laplace dis-
tribution. Specifically, we apply this method to the capital asset pric-
ing model to estimate the beta coefficient and measure volatility under
various market conditions at given levels of quantile. Likelihood-based
belief functions are calculated from historical data of the securities in
the S&P500 market. The results give us evidence on the systematic risk,
in the form of a consonant belief function specified from the asymmetric
Laplace distribution likelihood function given recorded data. Finally, we
use the method to forecast the return of an individual stock.
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tions, Quantile regression.

1 Introduction

The Capital Asset Pricing Model (CAPM) is one of the most useful models
in investment. In this model, asset returns are usually assumed to be jointly
normally distributed random variables. However, this is not always the case.
The CAPM assumes that the variance of returns adequately measures risk. This
may be true if returns are normally distributed. In this paper, we propose to
use quantile regression with an asymmetric Laplace distribution (ALD), coupled
with an inference method based on belief functions, to estimate the parameters
of the model and predict stock returns.

Quantile regression can characterize the entire conditional distribution of the
outcome variable and is more robust to outliers and misspecification of the
error distribution. It can also handle heteroscedasticity, as shown by Koenger.
For the application of quantile regression to the CAPM, the reader is referred
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to, e.g., [1]. It was found that the market price of beta risk is significant in both
tails of the conditional distribution of returns.

We present a likelihood-based approach to the estimation of regression quan-
tiles based on the asymmetric Laplace distribution. In [8], this distribution is
used to model the distribution of currency exchange rates and is shown to cap-
ture the peakedness, leptokurticity (Fat tails) and skewness inherent in such
data. Similarly, it is shown in [6] that the Laplace distribution has a geometric
stability to represent the weekly and monthly distributions of stock returns and
also models the high peak, fat tails and skewness of the returns.

Here, we use the Dempster-Shafer theory of belief functions introduced by
Dempster [3] and Shafer [7]. In this approach, a piece of evidence is modeled by
a belief function, which can be viewed as the distribution of a random set. This
method is applied to estimation using the likelihood-based approach introduced
in [7] and recently justified in [4], and to prediction using the method introduced
in [5]. The main contribution of this paper is thus to propose an alternative
method for drawing inferences about conditional quantiles via a likelihood-based
belief function approach.

The remainder of the paper is organized as follows. Section 2 provides the
background on quantile regression with asymmetric Laplace distribution and
Section 3 introduces the prediction machinery using belief functions. Section 4
discusses the empirical solutions to the forecasting problem. The last section
summarizes the paper.

2 Quantile Regression with an Asymmetric Laplace
Distribution

Let Y be a response variable and X a vector of explanatory variables. In linear
quantile regression, the conditional α-quantile qα(Y |X) of Y given X is assumed
to be linearly related to X through the equation qα(Y |X) = X ′βα, where βα
is a vector of unknown parameters and X

′
is the transpose of X . Denoting the

error by εα, we can write the quantile regression model as

Y = X ′βα + εα. (1)

We have

qα(Y |X) = qα[(X
′βα + εα)|X ] = qα(X

′βα + εα|X) = X ′βα + qα(εα|X), (2)

since given X , X ′βα is a constant. Thus, qα(εα|X) = 0, which is the counterpart
of the standard condition E(ε|X) = 0 in the mean linear regression model. If εα

is independent of X, the α-quantile of the noise εα is zero, that is,

∫ 0

−∞
dFεα(u) =

α. For qα(Y |X) = X ′βα, we see that βα minimize E[ρα(Y −X ′β)] over β, where
ρα(·) is the so-called check (or loss) function defined by

ρα(u) = u(α− 1(u<0)), (3)
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with 1(u<0) denoting the usual indicator function. Thus, given i.i.d (Xi, Yi), a
plausible estimator of βα is

β̂α = argmin
1

n
{

n∑
i=1

ρα(Yi −X ′
iβ)}. (4)

This estimator is called the Least Absolute Deviation (LAD) estimator.
Suppose that the error term εα has an ALD with mean 0 and standard devi-

ation σα:

fσα(εα) =
α(1 − α)

σα
exp

{
−ρα

(
εα
σα

)}
. (5)

Then, minimizing the absolute deviation is equivalent to maximizing the likeli-
hood and the LAD estimator of βα is a maximum likelihood estimator (MLE).
The likelihood function for βα, σα after observing the data
D = (X1, Y1), . . . , (Xn, Yn) is

LD(βα, σα) =
αn(1 − α)n

σn
α

exp

{
−

n∑
i=1

ρα

(
Yi −X ′

iβα
σ

)}
. (6)

3 Statistical Inference and Prediction Using Belief
Functions

3.1 Likelihood-Based Belief Functions

Suppose we observe a realization x of the random vector X with probability
density function (pdf) pθ(x), where θ ∈ Θ is an unknown parameter. In this
paper, we use the method proposed by Shafer [7], which can be derived from
the Likelihood Principle (LP) and the Least Commitment Principle (LCP) [4].
According to the LP, all the information about Θ is represented by the likelihood
function defined by Lx(θ) = pθ(x) for all θ ∈ Θ. In statistics, the likelihood ratio
has the meaning of a “relative plausibility”, which can be written as:

plx(θ1)

plx(θ2)
=
Lx(θ1)

Lx(θ2)
, (7)

for all (θ1, θ2) ∈ Θ2 or, equivalently, plx(θ) = cLx(θ), for all θ ∈ Θ and some
positive constant c. The LCP then implies that the highest possible value should
be given to constant c [4], which leads us to equating the contour function plx
with the relative likelihood:

plx(θ) =
Lx(θ)

supθ∈ΘLx(θ)
. (8)

The information about θ is represented by the consonant belief function BelΘx
with contour function plx, i.e., with corresponding plausibility function
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PlΘx (A) = supθ∈A plx(θ), for all A ⊆ Θ. The focal sets of BelΘx are the lev-
els sets of plx defined as follows:

Γx(ω) = {θ ∈ Θ|plx(θ) ≥ ω}, (9)

for θ ∈ [0, 1]. These sets are also called plausibility regions. The consonant belief
function BelΘx is equivalent to the random set induced by the Lebesgue measure
λ on [0,1] and the multi-valued mapping Γx from [0, 1] → 2Θ (see, [5]). We
remark that the MLE of θ is the value of θ with highest plausibility.

3.2 Prediction Using Belief Functions

Let X be a random variable with parametric density function fθ(x) for θ ∈ Θ
and assume that we have observed X = x. Given the belief function BelΘx about
θ, we can predict the future value of a random variable Y whose pdf gθ(y) also
depends on θ. In the approach introduced in [5], Y is written as a function of the
parameter θ and an unobserved auxiliary variable u ∈ U with known probability
measure μ not depending on θ:

Y = ϕ(θ, u). (10)

Using Equations (9) and (10), we can compose the multi-valued mapping Γx

from [0, 1] → 2Θ with ϕ to get a new multi-valued mapping Γ ′
x from [0, 1] × U

to 2Y defined as

Γ ′
x : [0, 1] × U → 2Y

(ω, u) → ϕ(Γx(ω), u).

We can then define the predictive belief (BelYx ) and plausibility (PlYx ) functions
on Y as

BelYx (A) = (λ⊗ μ)({(ω, u) ∈ [0, 1]|ϕ(Γx(ω, u) ⊆ A}). (11a)

PlYx (A) = (λ⊗ μ)({(ω, u) ∈ [0, 1]|ϕ(Γx(ω, u) ∩ A 
= ∅}), (11b)

for all A ⊆ Y.

4 Application to Stock Market Prediction

4.1 Model

The CAPM measures the sensitivity of the expected excess return on security
to expected market risk premium. The equation of CAPM is a linear function
of the security market line:

E(RA) −RF = β0 + β1E(RM −RF ), (12)

where E(RA) is the expected return of the asset, RM is the expected market
portfolio return, RF is the risk free rate, β0 is the intercept and β1 is the equity
beta, representing market risk. Suppose we have observed the historical returns
of stock RA = (ra1, · · · , ran) and returns from market RM = (rm1, · · · , rmn).
The errors will be assumed to be iid with density function (5). The likelihood
function is given by (6).
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4.2 Experimental Results

The data contain the weekly log returns of the integrated oil and gas company,
Chesapeake Energy (CHK), during 2010-2013. The ML estimates of the param-
eters are shown in Table 1 for different values of α.

Table 1. Parameter estimation results. Standard errors are given in parentheses.

Stock Name Parameters α = 0.40 α = 0.50 α = 0.60

CHK β0 -0.011 (0.002) -0.004 (0.003) 0.005 (0.000)
β1 1.379 (0.163) 1.442 (0.005) 1.304 (0.017)
σ 0.002 (0.001) 0.016 (0.001) 0.016 (0.010)

We used a nonlinear optimization algorithm to maximize the likelihood (6)
with respect to θ = (β(0,α), β(1,α), σα). The plausibility function on θ is then
defined by the relative likelihood (8) and the marginal contour function on a
specific parameter is obtained by take the supremum with respect to the others
parameters, e.g.,

plRA(β(0,α)) = sup
β(1,α),σ

plRA(β(0,α)). (13)

Figure 1 displays two-dimensional marginal contour functions and Figure 2 shows
the marginal contour functions for parameters β0, β1 and σ. The 0.15 threshold
corresponds to an approximate 95% confidence interval and gives us an interval
of plausible values of each of the three parameters.
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To predict the expected return of the asset ra,n+1 for a new market portfolio
return rm,n+1, we compute the minimum and maximum of ra,n+1 given rm,n+1

at fixed α by
ra,n+1 = β0,α + β1,αrm,n+1 + σαF

−1
εα (u), (14)

under the constraint plRA(βi,α, σα) > ω, where F−1
εα is the inverse cumulative

distribution function (cdf) of the asymmetric Laplace distribution ALD(α, 0, 1)
and u, ω are independent random variables with the same uniform distribution
U([0, 1]). Given (14), we randomize independently N pairs of the random number
(ωi, ui), i = 1, 2, · · · , N resulting in N intervals [rLa (ωi, ui), r

U
a (ωi, ui)]. For any

A ⊆ R, the stock returns Belrai(A) and Plrai(A) can be estimated by equation
(11). The estimated lower and upper expectations of ra,n+1 are then:

R
L

A =

N∑
i=1

rLa (ωi, ui)

N
(15a)

R
U

A =

N∑
i=1

rUa (ωi, ui)

N
. (15b)
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Figures 3 displays the lower and upper cdfs BelRA((−∞, RA]) and
PlRA((−∞, RA]) at given rm = 0.05. This function give us the summary of
the predictive belief function BelRA . Figure 4 shows the upper and lower predic-
tive quantiles of the stock returns (see [5]), defined by the inequalities pl(RA �
qLα′) = α′ and pl(RA � qUα′) = α′. As shown in [5], the following inequalities
hold:

Bel(qLα′ � RA � qU1−α′) � 1 − 2α′. (16)
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Lower-upper expectations and quantiles are other representations of prediction
uncertainty, taking into account both parameter estimation uncertainty and ran-
domness. For these data, the very narrow gap between the lower and upper cdfs
shows that estimation uncertainty is small as compared to random uncertainty.
In practice, these results can be used to increase the performance of the invest-
ment portfolio.

5 Conclusions

In this paper, we studied the method of quantile CAPM with ALD for stocks in
S&P500 in the belief function framework. We used the Dempster-Shafer theory
of belief functions to model the uncertainty referring to the statistical prediction
based on historical data and a financial model. This method consists of two
steps. First, a consonant belief function representing the uncertainty on the
parameter vector θ is defined from the normalized likelihood function given the
past data. The return of individual stock RA is then expressed as ϕ(θ, u), where
u is a stochastic variable with known distribution and the beliefs on θ and u
are transferred through ϕ, resulting in a belief function on RA. This approach
has been adapted to the prediction of stock returns. A possible extension of
this work is to consider uncertainty on the independent variable rm, which can
also be expressed as a belief function and combined with other uncertainties to
compute a belief function on RA. This issue will be addressed in future work.

Acknowledgments. The authors thank Prof. Dr. Hung T. Nguyen for his
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and random sets.
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Abstract. This paper presents an object recognition approach based on
belief function inference and information gain maximization. A common
problem for probabilistic object recognition models is that the parame-
ters of the probability distributions cannot be accurately estimated using
the available training data due to high dimensionality. We therefore use
belief functions in order to make the reliability of the evidence provided
by the training data an explicit part of the recognition model. In con-
trast to typical classification approaches, we consider recognition as a
sequential information-gathering process where a system with dynamic
beliefs actively seeks to acquire new evidence. This acquisition process is
based on the principle of maximum expected information gain and en-
ables the system to perform optimal actions for reducing uncertainty as
quickly as possible. We evaluate our system on a standard object recog-
nition dataset where we investigate the effect of the amount of training
data on classification performance by comparing different methods for
constructing belief functions from data.

Keywords: belief functions, object recognition, information gain.

1 Introduction

Object recognition is an inherently uncertain problem because of ambiguous
relations between features and classes, which is why probabilistic classification
approaches are very popular [4]. However, oftentimes the training set is too small
in comparison to the number of model parameters, which is why the underlying
probability distributions cannot be accurately estimated and overfitting occurs.
In this case, belief functions can be used in order to make the lack of evidence
caused by limited amounts of training data explicit, which helps to reduce the
problem of overfitting.

In this paper, a recognition system is presented which combines bottom-up
processing of sensory information with top-down reasoning based on information
gain maximization. Note that some of the results shown in this paper were
originally presented in [9]. The system is inspired by the one proposed in [10],
which has been applied to problems ranging from self-localization [19] to scene
categorization [11]. Here, the focus is on object recognition where the system
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successively collects features over time by actively extracting information from
different parts of an image. Belief functions are used for fusing the collected
evidence while taking into account the amount of available training data for
each class. The action selection process follows an information-theoretic approach
where the system, at each point in time, executes the action with the highest
expected information gain with respect to the current belief distribution over
possible object classes.

An important characteristic of the proposed system is that actions are not
simply means for acquiring sensory evidence because, in conjunction with sensory
information, they also provide evidence and are therefore an explicit part of the
representation. This is motivated by results from perceptual psychology and
neurobiology which indicate that the separation of sensory and motor signals in
biological systems is not strict and that motor information plays not only an
important but a constituting role for perception [6]. For this reason, the system
learns the joint distribution over sensory and motor information for representing
object classes.

The remainder of this paper is structured as follows: The recognition system
with the evidential inference and the information gain strategy are presented in
the next section along with different methods for constructing belief functions
from limited amounts of training data. In Sect. 3, the system is applied to an
object recognition problem where the different belief construction methods are
compared empirically. The paper concludes with a discussion of the presented
system in Sect. 4.

2 Recognition System

The proposed system is based on a continuous cycle of retrieving the “most infor-
mative” feature from an image and using this feature to update the current belief
distribution. This distribution is successively updated by the combined evidence
of extracted sensory information and the corresponding motor information based
on a previously-learned sensorimotor model. At each point in time, the system
determines an optimal next action by maximizing the expected information gain
with respect to the current belief distribution using the sensorimotor model in
order to predict the effect of actions. The action with the highest expected in-
formation gain is then executed which leads to the collection of a new piece of
sensory evidence, after which the cycle starts over. A schematic overview of this
process is shown in Fig. 1.

Let X ⊆ Θx be the evidential variable representing the class and let Θx =
{x1, x2, . . .} be the corresponding finite frame of discernment where each xi rep-
resents an object class. Furthermore, let z1:t = z1, . . . , zt denote the sequence
of sensory features collected up to time t and let u1:t denote the sequence of
performed actions. Each tuple (zk, uk) forms a sensorimotor feature. The cor-
responding frames of discernment zk ∈ Θz and uk ∈ Θu are finite and time-
invariant. Sensorimotor features are assumed to be conditionally independent
given the class, which resembles a Naive Bayes model. The basis for recognition
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Fig. 1. Schematic overview of the recognition process. The continuous evidence selec-
tion and update cycle is indicated by the thick arrows. Here, sensory information from
the image is actively selected based on the current belief (computed by the inference
module) and the information gain strategy. The newly collected evidence is then used
to update the current belief which, in turn, leads to another information-gathering
action.

is thus the computation of the class belief distribution mΘx [z1:t, u1:t] given all
collected evidence.

2.1 Inference

Inference is based on a generative classification scheme where the generalized
Bayesian theorem [12] is used to compute the posterior class distribution from
the class-conditional distributions over the sensorimotor features [13]. Because
of the assumption of conditional independence of sensorimotor features, the final
belief distribution can be decomposed into a series of distributions (each induced
by a single sensorimotor feature) using Dempster’s rule of combination. The
update can then be performed recursively over time where the belief at time
t− 1 is used to compute the belief at time t.

mΘx [z1:t, u1:t] = mΘx [z1:t−1, u1:t−1] ⊕mΘx [zt, ut] (1)

The class prior mΘx at t = 0 is assumed to be vacuous here, although this
is not a necessary assumption. The belief mΘx [zt, ut] induced by sensorimotor
feature (zt, ut) can be computed from the likelihoods plΘz×Θu [x](zt, ut) using
the generalized Bayesian theorem.

mΘx [zt, ut](X) = η
∏
x∈X

plΘz×Θu [x](zt, ut)
∏
x∈X

(1 − plΘz×Θu [x](zt, ut)) (2)

Here, η represents a normalization constant. By assuming that the a priori belief
for ut is vacuous, each likelihood can be expressed as a marginal distribution
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plΘz [x, ut](zt) over zt. These likelihoods form the basis for inference and different
methods for constructing them from data are described in Sect. 2.3.

In practice, solving the above equations exactly is infeasible because the
frames of discernment are too large. This is why the importance-sampling-based
Monte-Carlo algorithm presented in [8] is applied for updating the belief dis-
tribution. Using this algorithm, the belief update can be performed with linear
time complexity O(K |Θx|) where K denotes the number of samples drawn from
the prior distribution (we use K = 10, 000 in Sect. 3). In order to obtain the
final class label, the pignistic transformation [14] is applied to the final belief
distribution and the singleton with the highest pignistic probability is returned.
Note that the pignistic transformation is only one way of determining the final
class label and other decision rules, like ones based on imprecise probabilities,
would be interesting to consider as well [16].

2.2 Information Gain

As described above, the system selects the action with the highest expected
information gain. For measuring information gain, a measure of uncertainty ap-
plicable to belief functions is required. Here, we use the Shannon entropy of
the pignistic transformation (denoted by HBetP ) of the underlying belief func-
tion. The reason for using the pignistic entropy is that the final classification is
also based on the pignistic transformation, though other measures could be used
as well [5]. The expected information gain I(ut) of action ut is defined as the
expected reduction in uncertainty after having performed action ut [15].

I(ut) = HBetP (mΘx [z1:t−1, u1:t−1]) − Ezt(HBetP (mΘx [z1:t, u1:t])) (3)

Because the sensory feature zt is not known prior to executing the corresponding
action ut, the expected value of the resulting uncertainty HBetP (mΘx [z1:t, u1:t])
with respect to zt has to be considered.

Finding the action u∗t associated with the highest expected information gain
simply requires computing the gain for every possible action ut and choosing the
one that maximizes I(ut). Let Θu;t ⊆ Θu denote the set of actions that have not
been performed up to time t (executing the same action twice would cause the
same piece of evidence to be counted twice, which is why only the subset Θu;t is
considered). Maximizing the expected information gain I(ut) with ut ∈ Θu;t is
equivalent to minimizing the expected uncertainty after having executed action
ut because the current uncertainty is constant.

u∗t = argmax
ut∈Θu;t

I(ut) = argmin
ut∈Θu;t

Ezt(HBetP (mΘx [z1:t, u1:t])) (4)

Computing this expected value consists of two parts: Computing the uncer-
tainty after having observed a particular value zt, which can be done using (1),
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and computing the pignistic probability of zt given all previous pieces of
evidence.

Ezt(HBetP (mΘx [z1:t, u1:t]))

=
∑

zt∈Θz

HBetP (mΘx [z1:t, u1:t])BetPΘz [z1:t−1, u1:t](zt) (5)

The mass function mΘz [z1:t−1, u1:t] underlying the pignistic probability of zt
can be obtained by conditioning on class X and by exploiting independence for
feature zt (it only depends on class X and action ut) and for class X (action ut
does not influence the class belief without the corresponding feature zt).

mΘz [z1:t−1, u1:t] =
∑

X⊆Θx

mΘz [X, ut]mΘx [z1:t−1, u1:t−1](X) (6)

Mass function mΘx [z1:t−1, u1:t−1] simply represents the belief at time t − 1
and is thus directly available. Because the feature distribution mΘz [X, ut] is
conditioned on a set of classes X ⊆ Θx, the disjunctive rule of combination
is applied in order to construct it from the singleton-conditioned distributions
mΘz [xi, ut] with xi ∈ X [12]. For this, the sum over all possible unions of sets
Zt;i ⊆ Θz resulting in Zt has to be computed.

mΘz [X, ut](Zt) =
∑

(
⋃

i:xi∈X

Zt;i)=Zt

∏
xi∈X

mΘz [xi, ut](Zt;i) (7)

The above equations can be used to find the optimal action at any given
time, however, solving them exactly is usually intractable. Like for inference,
the solution can be approximated though, and in [9], an efficient Monte-Carlo
algorithm with time complexity O(K ′ |Θu| |Θz| |Θx|) for finding the optimal ac-
tion is presented (K ′ denotes the number of samples). Usually, K ′ is chosen to
be smaller than the number of samples K used for inference because the effects
of approximation errors are not as severe for determining the next action.

2.3 Model Construction

The basis for inference are the likelihoods plΘz [x, ut](zt) where the sensory fea-
ture zt and the corresponding action ut are assumed to be discrete. The like-
lihoods have to be estimated from training data, which is problematic if the
number of model parameters is large compared to the available data (for the
object recognition problem described in the next section, there are 50,000 pa-
rameters resulting from |Θx| = 10, |Θz | = 100, and |Θu| = 50). This problem
is the motivation for using belief functions to model the distribution over zt be-
cause belief functions can make the reliability of the different likelihood estimates
explicit. Intuitively, this means that for the extreme case of a complete absence
of training samples, the corresponding belief function should be vacuous whereas
more training samples should result in a more committed belief function.
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We consider different methods from the literature for constructing the likeli-
hoods and we compare them empirically in next section.1 In particular, we use
the methods proposed in [2] (denoted by BelMax∗) and [1] (denoted by MCD∗),
which are both based on the idea of constructing confidence intervals and then
solving an optimization problem in order to derive a belief function from these
intervals. In both methods, solving the full optimization problem is intractable
for larger spaces which is why approximations are used in both cases (see (30)
in [2] and (28) in [1]). In addition, we use the Imprecise Dirichlet Model (IDM)
presented in [17], which was originally proposed in the context of the imprecise
probability framework. For comparison, we also consider the two most common
probabilistic methods, namely the maximum likelihood estimate (MLE; the rel-
ative frequencies are directly accepted as probabilities) and Laplace smoothing
(an additive term is used to smooth each feature count).

3 Application to Object Recognition

In this section, we apply the system to an object recognition problem where it
classifies an image by sequentially processing regions of interest in the image.
This resembles the way humans analyze scenes via saccadic eye movements and
the information gain strategy can be interpreted as a model for attention in this
context [10]. For each region of interest, a descriptor is extracted which is used
in conjunction with the performed action to update the belief distribution over
possible object classes. Note that the aim here is to demonstrate how the recog-
nition system functions and to compare the different model construction meth-
ods rather than to compete with state-of-the-art object recognition approaches
(e.g., [18]).

We use the Caltech-256 dataset [3] where we randomly select a subset of 10
classes in order to limit the computational effort (the only selection criterion
is that the class contains at least 100 images). The results presented below
are obtained using 10-fold cross validation where, for each class, 80 images are
used for training and 20 for testing. Before processing, all images are scaled and
cropped to a common size of 256×256 pixels. A region of interest corresponds to a
64×64 pixel patch, from which a gist feature vector [7] is extracted. Gist features
are based on histograms of orientation-selective band-pass filter responses and
are usually used as global image descriptors. However, they also work well for
describing local image patches, which is how they are used here. Each feature
vector is then discretized using k-means clustering trained on 20,000 randomly
sampled image patches (with k = 100). Clustering is also performed for actions
where an action simply represents the image coordinates of a region of interest
(with k = 50). An example of how the system performs recognition is shown in
Fig. 2.

The basis for constructing the likelihoods plΘz [x, ut] are sensorimotor his-
tograms where, for each combination of a class x and a quantized action ut, the

1 All of the methods are implemented in the open source library PyDS available at
https://github.com/reineking/pyds.

https://github.com/reineking/pyds
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Fig. 2. Object recognition example. Plots (a) to (f) show performed actions over time
where the white square represents the current fixation while the white lines indicate
previous fixations. The information gain distribution over possible target positions is
superimposed over the image where higher brightness values indicate higher expected
information gain values (a Gaussian located at each clustered prototype position is used
to interpolate between prototype positions). Plot (g) shows the corresponding pignistic
object class probability over time. The true class “binoculars” is correctly recognized
with high confidence after the system has performed 6 actions.
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Fig. 3. Mean recognition rate on Caltech-256 (using 10 classes) for different model
construction methods and different training sample counts. The sample count is plotted
on a logarithmic scale. Chance level is indicated by the dashed line.

number of occurrences of each quantized gist vector zt is counted. With 100 dis-
cretized gist vectors and 50 discretized actions, there are 5,000 histogram entries
for each class. By applying one of the belief construction methods described in
Sect. 2.3, the required plausibility can then be computed. In order to investigate
the influence of the amount of available training data for the different model
construction methods, we measure the recognition rate for different numbers of
training samples used for computing the sensorimotor histograms. The number
of samples states how many sensorimotor features are extracted in total from all
80 training images for each class.

The results of this investigation are shown in Fig. 3. As expected, all construc-
tion methods result in higher recognition rates for larger sample counts. Overall,
the IDM method performs best with Laplace smoothing being a close second.
Both methods significantly outperform the MLE solution. The MCD∗ method
only performs at chance level until reaching 106 samples, at which point it also
outperforms the MLE solution.2 The reason for this performance jump is that,
for smaller samples counts, the constructed belief functions are usually vacuous.
Despite this fact, the MCD∗ method is the only one that performs robustly on
all classes for higher sample counts (see [9] for details). In contrast, the BelMax∗

method consistently performs worse than the MLE solution in this experiment.
In general, there appears to be a limit when approaching 60% accuracy where
additional samples do not improve accuracy. This limit is likely due to the fact

2 We use α = 0.5 for the confidence intervals in the BelMax∗ and the MCD∗ method.
Although the original papers suggest using smaller values, larger ones tend to sig-
nificantly improve the recognition rate here.
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that there are only 80 training images for each class, which is why drawing ad-
ditional samples only results in redundant information at some point. Perhaps
surprisingly, even for a very large sample count of 107, the MLE solution is
still being outperformed by the other methods (except for BelMax∗). A possible
explanation for this effect is that that the other methods never estimate a like-
lihood to be strictly zero. Assigning a likelihood of zero is always problematic
because it causes the corresponding class to be categorically rejected.

4 Discussion

In the comparison of the different model construction methods, the IDM ap-
proach resulted in the highest recognition rate. However, a simple probabilistic
approach like Laplace smoothing yields almost equally good results in this par-
ticular experiment. An interesting direction for future research on belief function
construction would be to consider specialized methods for generative classifica-
tion models. This is because all of the considered methods construct full belief
functions over the feature space whereas only plausibilities of singletons are ac-
tually used during classification. As a result, it is not necessary to consider the
full power set over the feature space and strong restrictions like the assumption
of consonance in the case of the MCD∗ method could be avoided.

Regarding the use of the pignistic transformation, both for determining the
final class label as well as for measuring the expected information gain, it would
be very interesting to consider alternative decision rules that do not attempt to
reduce the available information to a probabilistic representation. With respect
to the information gain, one could, for example, investigate how measures based
on non-specificity would affect the system’s information gathering behavior.

Overall, it was shown that belief functions provide a sound theoretical ba-
sis for performing inference when there is insufficient training data for reliably
estimating the underlying probability distributions. For the problem of object
recognition, it was shown that a belief function model can outperform prob-
abilistic models in terms of recognition rate because belief functions can take
the number of training samples into consideration. We expect that this effect
becomes even stronger if there are different numbers of samples for different
classes but this is a subject of future work. The system presented in this paper
combines evidential inference with an information gain maximization strategy for
actively collecting evidence over time in order to reduce uncertainty as quickly
as possible. This information-driven cycle of acquisition and processing is essen-
tially domain independent though and it would therefore be interesting to apply
the same principles in other domains.

Acknowledgments. This work was supported by DFG (SFB/TR 8 Spatial
Cognition, project “A5-[ActionSpace]”).
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Abstract. Organizational social capital is critical to effective organizational 
functioning. Yet, different aspects of social capital are likely to be present to  
varying degrees within any given organization. In this study, alternative blends 
of structural, relational and cognitive social capital are modelled using a range 
of key organizational variables drawn from an incomplete dataset. A novel  
evidence-based approach to the ambiguous classification of objects (N-state 
Classification and Ranking Belief Simplex or NCaRBS) is used for the analysis. 
NCaRBS is uniquely able to capture the full range of ambiguity in the antece-
dents and effects of social capital, and to do so by incorporating incomplete da-
ta without recourse to the external management of the missing values. The 
study therefore illustrates the multi-faceted potential of analytical techniques 
based on uncertain reasoning, using the Dempster-Shafer theory of evidence 
methodology. 

Keywords: Dempster-Shafer theory, Incomplete data, NCaRBS, Social Capital, 
Validation. 

1 Introduction 

Positive relationships amongst organization members are essential for efficient know-
ledge transfer and creation [8].  Nevertheless, the social capital within organizations 
may be contingent upon internal structural characteristics, such as size, decentraliza-
tion and staffing cutbacks.  In this study, NCaRBS [4], a development on the original 
CaRBS technique introduced in [1, 2], is used to model alternative combinations of 
three key dimensions of social capital: structural (connections among actors); rela-
tional (trust among actors); and cognitive (shared goals and values) [9].   

As a technique whose rudiments are based on the Dempster-Shafer theory of evi-
dence [5, 11], NCaRBS undertakes n-state classification analysis based on uncertain 
reasoning.  One of the strengths of NCaRBS (and CaRBS in general) is that it can be 
applied directly to incomplete data without having to manipulate or exclude cases 
with missing values.  Using a large-scale survey dataset with a sizeable number of 
missing values, the results of two NCaRBS models of alternative social capital data 
sets are compared, namely when all missing values are included and when using a 
case deletion approach to the management of missing values. 
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Graphical analysis of the contribution of size, decentralization and staffing  
cutbacks towards social capital blends affirms the value of including missing values 
and the ability of NCaRBS to undertake such types of analysis. Added confidence  
in these results comes from a re-sampling procedure that identifies near-identical 
relationships. 

2 NCARBS 

NCaRBS [4] models the ambiguous classification of nO objects (o1, o2, ..), to nD deci-
sion outcomes (d1, d2, ..), based on their description by nC characteristics (c1, c2, ..).  
The characteristics’ evidence is expressed through the construction of constituent 
BOEs (bodies of evidence) from a characteristic value vi,j (i

th object, jth characteristic), 
to discern between an object’s association to a decision outcome (say dh), its comple-
ment (¬dh) and a level of concomitant ignorance ({dh, ¬dh}).   

The construction of a constituent BOE, defined mi,j,h(·) (ith object, jth characteristic, 
hth outcome), discerning between {dh} and {¬dh}, is described Fig. 1. 

 

Fig. 1. Stages within the NCaRBS technique  

In Fig. 1, stage a) shows the transformation of a characteristic value vi,j into a con-
fidence value cfj,h(vi,j), using cfj,h(vi,j) = 1/(1 + exp(−kj,h(vi,j − θj,h)), with control para-
meters kj,h and θj,h.  Stage b) transforms a cfj,h(vi,j) into a constituent BOE mi,j,h(⋅), 
made up of the three mass values (see [10]); 
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and mi,j,h({dh, ¬dh}) = 1 − mi,j,h({dh}) − mi,j,h({¬dh}), 
where Aj,h and Bj,h are two further control parameters. Stage c) shows a BOE mi,j,h(⋅); 
mi,j,h({dh}) = vi,j,h,1, mi,j,h({¬dh}) = vi,j,h,2 and mi,j,h({dh, ¬dh}) = vi,j,h,3, can be represented 
as a simplex coordinate (pi,j,h,v) in a simplex plot (equilateral triangle). 

Dempster’s rule of combination is used to combine these BOEs.  To illustrate, the 
combination of two constituent BOEs, )(,, 1

⋅hjim  and )(,, 2
⋅hjim , for the same object (oi) 

and single outcome (dh), defined ))(( ,,,, 21
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mass values (and focal elements) given by: 
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This combination process is graphically demonstrated for two example BOEs, 
mi,1,h(⋅) and mi,2,h(⋅), see Fig. 1c.  

The combination process can be performed iteratively to combine the characteristic 
based evidence, constituent BOEs mi,j,h(⋅) j = 1, .., nC, for an object oi to a single 
outcome dh, producing a outcome BOE, defined mi,-,h(·) (other ways of combining the 
evidence can be considered).  The respective outcome BOEs can also be combined to 
bring together the evidence contained in them, the result termed an object BOE, for 
object oi it is defined mi,-,-(·) (reduced to mi(·)), contains the evidence on the 
associations of the object to the nD decision outcomes.   

The object BOEs are made up of mass values associated with focal elements, 
which are the power set of {d1, d2, ..} (minus the empty set).  To enable the 
assignment of values to individual outcomes, the pignistic probability function 


∅≠∩

⊆

=

}{ 
 ,..},{ 21

||)()(

hj

j
ds

dds
jjihi ssmdBetP

 for object oi, it represents the level of pignistic 

probability associated with the outcome dh from the object BOE mi(·).  The series of 
pignistic probability values BetPi(dh) h = 1, .., nD (see [6]), dictates the association of 
the object oi to each of the outcomes dh h = 1, .., nD. 

The effectiveness of the NCaRBS technique, is governed by the values assigned to 
the incumbent control parameters kj,h, θj,h, Aj,h and Bj,h, j = 1, .., nC and h = 1, .., nD. 
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This necessary configuration is considered as a constrained optimization problem, 
solved here using trigonometric differential evolution (TDE) [7].  The configured 
NCaRBS system can be measured by a defined objective function (OBNCaRBS), the 
OBNCaRBS defined is given as: 
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in the limit, 0 ≤ OBNCaRBS ≤ 1 (see [3, 4]). 

3 Social Capital 

The social capital analysis considered here utilises data from a comparative large-N 
survey of senior public sector executives conducted in ten European countries (Aus-
tria, Estonia, France, Germany, Hungary, Italy, Netherlands, Norway, Spain, United 
Kingdom) in 2012.  The survey was sent to over 21,000 executives via post and 
email.  There were 4,814 valid answers, with a response rate of 22.6%.  Missing 
values are present for a range of questions that some respondents chose not to answer. 

Table 1. Organizational social capital dimensions (and items) 

People in my organization.... 

Structural 

(S_socap) 

Engage in open and honest communication with one another 

Share and accept constructive criticisms 

Willingly share information with one another 

Relational 

(R_socap) 

Have confidence in one another 

Have a good team spirit 

Are trustworthy 

Cognitive 

(C_socap) 

Share the same ambitions and vision for the organization 

Enthusiastically pursue collective goals and mission 

View themselves as partners in charting the organization’s direction 

 
Within the survey (see Table 1 and in text), the structural dimension of social  

capital (S_socap) was gauged by asking informants to score on seven-point scales, 
ranging from 1 (strongly disagree) to 7 (strongly agree), three questions about the 
exchange of information between organization members.  Three further questions 
dealing with the strength of working relationships were used to assess relational so-
cial capital (R_socap). The cognitive dimension (C_socap) was then evaluated by 
posing three questions about the extent to which values and objectives are shared by 
all staff within the organization.  

Alternative combinations, or blends, of the different dimensions of social capital may 
be the product of key internal organizational characteristics, such as organization size, 
decentralization of decisions and staffing cutbacks.  The size of the organizations for 
which executives worked is measured using a survey question asking respondents to 
indicate the approximate overall number of employees within the organization in which 
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they worked.  Executives were also asked about the presence of ‘decentralization of 
financial decisions’ and ‘decentralization of staffing decisions’ within their organizations 
on a 7-point scale, and an index of decentralization was then constructed from the res-
ponses.  Staffing cutbacks is measured using a question asking respondents to indicate 
from 1 (not at all) to 7 (to a great extent) to what extent their organization had applied 
staff layoffs in response to the fiscal crisis. 

As mentioned earlier, the original data set is incomplete, see Table 2, which shows 
the number of cases which have a certain number of missing characteristic values for 
the analysis that is undertaken. 

Table 2. Levels of incompleteness across considered 4,814 cases 

Number Missing 0 1 2 3 

Number Cases 3144 1017 112 541 

 
From Table 2, 4,273 respondents have at least 1 value present amongst the charac-

teristics, then using case deletion to deal with the missing values (for example), would 
mean that only 3,144 respondents would be considered in the analysis of organiza-
tional social capital.  By contrast, NCaRBS is able to analyse fully the incomplete 
dataset, thereby permitting the inclusion of over 1,000 further cases in the modelling 
process.   

Prior to undertaking comparative analysis of the incomplete and managed datsets, 
the separate S_socap, R_socap and C_socap values are transformed into a hybrid 
vector, which accounts for the distribution of the three values (to reduce the effects of 
social desirability bias for relational social capital for instance), see Table 3 (follow-
ing the approach in [4]). 

Table 3. Example of social capital blend vector construction 

Details S_socap R_socap C_socap 

Mean 4.855 5.013 4.532 

Standard deviation 1.209 1.20 1.302 

Original Capital values (o16) 5.667 5.333 5.000 

Transformed Capital values (o16) 0.354 0.319 0.327 
 
In Table 3 the mean and standard deviation values associated with the three social 

capital dimensions are presented, showing the general differences in their scores.  
An example transformation case is shown, for o16, where consideration of the 
R_socap and C_socap value demonstrates the mitigation of social desirability bias. As 
the individual social capital blend vectors are made up of three values, which add up 
to one, they can be represented as points in a simplex plot, see Fig. 2. 
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Fig. 2. Social capital blend vectors of cases (a – incomplete, b – managed)  

Fig. 2 shows the social capital blend vectors in their simplex coordinate format, for 
the incomplete (a - nO = 4,273) and managed (b - nO = 3,144) data sets.  There is 
slight variation in the simplex coordinate positions shown across the two different sets 
of hybrid social capital values (coming from the different numbers of cases consi-
dered in each version of the data set). 

4 NCaRBS Analyses of Social Capital Data Set 

This section presents the comparative NCaRBS analyses of the original incomplete 
social capital data set and an alternative version that is managed through case dele-
tion.  To analyse the incomplete data set there has to be a process to model a missing 
characteristic value, say vi,j.  Within NCaRBS, and CaRBS in general, from [2], the 
associated constituent BOE describing a missing value is defined as: 

mi,j,h({dh}) = 0, mi,j,h({¬dh}) = 0 and mi,j,h({dh, ¬dh}) = 1. 

This constituent BOE is fixed, and does not change depending on the control pa-
rameters found when configuring NCARBS (see for example Fig 1). 

The results from the two NCaRBS analyses are restricted here to the level of model 
fit (based on respective OBNCaRBS values) and contributions of organizational charac-
teristics to the objects’ social capital blend vectors. Each model was run 10 times, 
with best fit for the incomplete data being OBNCaRBS = 0.070779 and for the managed 
data set OBNCaRBS = 0.070336, indicating that the model fit for the incomplete data set 
exhibits the slightly worse predictive fit. To understand the variation in fit values, we 
should consider the actual numbers of available organizational characteristics to con-
figure on.  For the incomplete and managed data sets there are 11,578 and 9,432 
characteristic values respectively to model social capital. Hence with 81.465% of the 
data to work with, it is not entirely surprising that the OBNCaRBS value is lower for the 
managed data set. 

The results in terms of characteristics’ contributions are explored here through 
their graphical representation; see Fig. 3 and Fig. 4. 
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Fig. 3. Characteristic contribution based on incomplete data set 

   

Fig. 4. Characteristic contribution based on managed data set 

It can be clearly seen that alternative forms of information are gained from the 
NCaRBS analysis of the incomplete data (Fig. 3) and the managed data (Fig. 4). Gen-
erally, NCaRBS is able to fully demonstrate the nonlinearity in the associations be-
tween objects (respondents) and outcomes (social capital blend). Concentrating on the 
results from Fig. 3 (incomplete data set), Fig. 3a indicates that as organization size 
increases structural and relational capital decline, but cognitive social capital becomes 
stronger.  Fig. 3b illustrates that as decentralization increases structural social capital 
declines, but relational and (especially) cognitive social capital grow.  Finally, Fig. 
3c highlights that staff cutbacks are associated with declining intra-organizational 
communication and interpersonal trust, but higher levels of shared mission.  

5 Validation Analysis of NCaRBS results (Using Re-sampling) 

The results presented in section 4 are from a one-off analysis using all the available 
data (3,144 cases for incomplete data set and 4,273 for managed data set).  To add 
further confidence in the validity of the results from this analysis, a re-sampling pro-
cedure is undertaken and the models recalculated (see for example [12]).  Due to 
page limitation this validation exercise is undertaken on the incomplete data set only. 

The re-sampling undertaken here was based on performing multiple runs of the 
NCaRBS technique using identified in-samples and out-of-samples of cases.  Here, 
10 runs were performed, in each run 90% of cases (3,846) were used as the in-sample 
on which the NCaRBS was run to configure a model, and 10% of cases (427) were 
used an out-of-sample. 
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For each pair of in-sample and out-of-sample sets of data, levels of fit can be found 
based on the objective function (OBNCaRBS), see Fig. 5. 

 

Fig. 5. Scatter-plot of in-sample and out-of-sample fit values (based on incomplete data set) 

In Fig. 5, the two axes depict the OBNCaRBS fit value for in-sample (horizontal) and 
out-of-sample (vertical).  Clearly, there is a relatively consistent inverse relationship 
between the pairs of fit values, namely as the level of in-sample fit increases so the 
level of out-of-sample fit decreases.  Beyond this relationship, whether there is sig-
nificant difference between the in-sample and out-of-sample fit values are considered 
using a paired-sample t-test.  From the test there was not a significant difference 
between the fit values for in-sample (M = 0.0708, SD = 0.000270) and out-of-sample 
(M = 0.0705, SD = 0.00236) sets of data; t(9) = 0.372, p = 0.718.  Briefly, for the 
managed data set, similar analysis also suggested not a significant different between 
the fit values for in-sample (M = 0.0703, SD = 0.000270) and out-of-sample (M = 
0.0711, SD = 0.000270) sets of data; t(9) = −0.682, p = 0.512.  The results suggest 
the configured NCaRBS models in each of the 10 runs fit the out-of-sample cases. 

The contribution of the individual variables to the social capital blends following 
the re-sampling procedure can be illustrated graphically as for the one-off analysis 
using all of the data (see Fig. 6). 

In Fig. 6, the ten contribution lines associated with each separate social capital  
dimension derived from the re-sampling runs are plotted together to illustrate  
the general trends found through the re-sampling process.  Comparison of these 
graphs with those for the one-off analysis presented in Fig. 3, reveals very similar 
patterns in the relationship between the structural characteristics and each dimension 
of social capital. 

For example, comparing Fig. 3a with Fig. 6a, 6b and 6c, as organization size  
increases, structural and relational capital decline, but cognitive social capital  
becomes stronger; as decentralization increases, structural social capital declines, but 
relational and (especially) cognitive social capital grow; staff cutbacks are associated 
with declining intra-organizational communication and interpersonal trust, but higher 
levels of shared mission.  
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Fig. 6. Characteristic contribution in 10 runs (based on incomplete data)  

6 Conclusions 

The NCaRBS technique, along with all the family of CaRBS based techniques, offer 
an almost unique opportunity to analyze incomplete data without the need to manipu-
late or exclude cases with missing values.  The results for the evidence-based model-
ling of organizational social capital blends presented here dramatically illustrate the 
impact of this facility for incorporating incompleteness.  Nevertheless, the full poten-
tial of the technique has yet to be explored. Further research could investigate the 
sensitivity of the technique to alternative ways of capturing the impact of ignorance in 
the data.  In particular, it would be interesting to evaluate the effect of weighting the 
impact of cases in the objective functions depending on how incomplete the informa-
tion associated with them is.  
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For now though, this paper concludes by observing that NCaRBS offers organiza-
tional analysts and scientists in other fields a powerful means for incorporating  
data with missing values in their research.  In this respect, we concur with others who 
call for more and better work developing and demonstrating novel applications of 
Dempster-Shafer theory of evidence based analysis techniques. 
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Abstract. Evidential C-Means (ECM) is a technique for cluster analysis, which 
has a methodology based on the Dempster-Shafer theory of evidence (DST).  
To date this technique has been theoretically discussed but has had limited ap-
plication.  Based on DST, ECM facilitates the association of objects to sets of 
clusters, rather than simply a single cluster.  One feature of ECM is the facility 
for classifying cases to no cluster, the level of which is effected by the parame-
ters in ECM (in particular δ, which controls for the datapoints considered  
outliers). In this study, the substantive effects of varying δ are explored by in-
vestigating the relationship between organziational social capital and employee 
engagement.  Drawing on a large-N survey of senior public sector executives, 
the clustering of different dimensions of organizational social capital is under-
taken, and the relationship between those clusters and employee engagement 
analysed at varying levels of δ.  The implications of the findings are discussed. 

Keywords: Clustering, Dempster-Shafer theory, Evidential C-Means,  
Engagement, Evidential C-Means, Social Capital 

1 Introduction 

The Evidential C-Means (ECM) clustering technique [11], is based on the Dempster-
Shafer theory of evidence (DST - [5, 14]), and is a development on the well-known 
crisp k-means and fuzzy c-means non-hierarchical clustering techniques ([4, 10]).  
Its development, in particular, is to enable consideration of levels of association  
of objects not only to single clusters but to sets of clusters and even no clusters  
(potential outliers).   

In this paper, the substantive effects of varying the parameter determining the in-
clusion of outliers in ECM (δ - see later) is illustrated by investigating the relationship 
between three different dimensions of organizational social capital and the work en-
gagement of senior managers.   

The management of outliers is a key concern within applied research ([6, 8]). A 
pertinent consideration (statement) in regard to outliers, within the context of cluster-
ing, as in this study, was given in [3], noting that outliers may be considered as noise 
points lying outside a set of defined clusters or alternatively outliers may be defined 
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as the points that lie outside of the set of clusters but are also separated from the 
noise.  In [6], in their introduction to a cluster approach to outlier detection, they do 
point out that not only a single point but also a small cluster can probably be an outlier.  
This study contributes to debates around the inclusion or exclusion of outliers in clus-
ter analysis by examining how this issue plays out when using ECM.  

First, senior public sector executives’ perceptions of the degree to which structural, 
relational and cognitive social capital are present within the organizations in which 
they work are clustered at different levels of δ,.  Next, the validation of the different 
clusters that are derived is established by comparing levels of employee engagement 
for different social capital clusters.  Finally, whether different results are observed 
when δ, takes a low or high value is evaluated, before conclusions are drawn on the 
basis of the findings. 

2 Evidential C-Means 

ECM ([11]) is based on a finite set of c elements Θ = {C1, C2, ..., Cc}, called a frame 
of discernment (here c clusters).  Based on the notion of partial knowledge, a basic 
belief assignment (bba), defined as a function m from 2Θ (subset of Θ) to [0, 1], has 


Θ⊆jA

jAm )(  = 1.  A subset Aj of the frame of discernment Θ (Aj ⊆ Θ), for which m(Aj) 

is non-zero, is called a focal set and represents the exact belief in the proposition de-
picted by Aj (allocated to Aj from the given evidence). 

In ECM, for each object xi and the bbas mij = mi(Aj) (Aj ≠ ∅ , Aj ⊆ Θ), the mij is low 
(resp. high) when the distance dij between xi and the focal set Aj is high (resp. low).  
ECM assumes that each cluster Ck is represented by a center ck ∈ ℜp (p dimensions of 

object xi).  For each subset Aj of Θ (set of clusters) the barycenter jc  of the center 
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membership to no clusters.  Within the JECM(M, C) expression, the impacts of  
the three parameters α, β and δ can be interpreted as follows (see [11]): α - controls 
the level of penalization of cluster subsets (Aj) with high cardinality (here α = 2),  
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β (> 1) - controls the fuzziness of the partition across focal elements (here β = 2) and 
δ - controls the amount of data considered as outliers (choice of δ  described later).  
For an object xi, its credal partition mi is made up of the levels of exact belief (bba) 
allocated to each subset of the considered c clusters (Aj ⊆ Θ has bba mi(Aj)), including 
no clusters (the empty set ∅ with bba mi(∅)). 

A number of concomitant functions exist within Dempster-Shafer theory that ena-
ble variations in the final cluster membership results to be created for objects when 
using ECM, subject to a credal partition having been constructed.  Without loss of 
generality (for a focal set Aj and an object xi), we consider the Belief function, 

Bel({Aj}) = 
Θ⊆⊆ )(

})({
hjh AAA

hi Am  for Aj ⊆ Θ, representing the confidence in an object’s 

membership to the focal set cluster Aj (subset of clusters). 
This, and other functions, can be used to identify the majority association of ob-

jects to a single cluster or to possible subsets of clusters.  In this study, a level of 
sensitivity analysis is undertaken, by considering different values of the δ parameter, 
when constructing the credal partition (previously also considered in [1]). In doing so, 
the substantive effects of varying the δ parameter are explored by investigating the 
relationship between organizational social capital and employee engagement. 

3 The Survey Data 

The exploration of dealing with outliers in ECM presented here utilises data from a 
comparative large-N survey of senior public sector executives conducted in ten Euro-
pean countries (Austria, Estonia, France, Germany, Hungary, Italy, Netherlands, 
Norway, Spain, United Kingdom) in 2012.  The survey was sent to over 21,000 ex-
ecutives via post and email.  There were 4,814 valid answers, with a response rate of 
22.6%, this was reduced to 3,177 cases which had the complete data for the needs of 
the intended analysis.   

Respondents answered nine questions relating to three dimensions of social capital 
within the civil service organizations in which they work, namely i) Structural 
(S_socap) - exchange of information between organization members, ii) Relational 
(R_socap) - strength of working relationships and iii) Cognitive (C_socap) – the ex-
tent to which values and objectives are shared by all staff within the organization [12].  
The respondents were also asked three questions relating to their engagement with 
their work (Engagement). 

Before carrying out the ECM of the different dimensions of social capital, three 
separate values for each dimension are constructed and then transformed into a social 
capital vector (see details in [2]), which takes account of the levels of each of the 
three values, see Table 1.  That is, the derivation of the social capital vector includes 
the aim to remove the potential for social desirability bias to influence relative levels 
of each dimension.  Moreover, the vector is relative to the individual case, after re-
moval of general external influences (social bias). 
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Table 1. Example construction of social capital vector 

Details S_socap R_socap C_socap 
Mean 4.855 5.013 4.532 

Standard deviation 1.209 1.200 1.302 
    

Original Capital values (o16) 5.667 5.333 5.000 
Transformed Capital values (o16) 0.354 0.319 0.327 

 
In Table 1, the mean and standard deviation values associated with the three social 

capital variables are presented, showing the differences in their scores.  An example 
transformation case is also shown, for o16, where consideration of the R_socap and 
C_socap value demonstrates the mitigation of social bias.   

As the social capital vectors are made up of three values which add up to one, they 
can each be represented as a point in a simplex plot, which graphically depicts the 
ratios of the three values as positions in an equilateral triangle - see Fig. 1. 

 

Fig. 1. Social capital vectors for 3,144 senior executives  

Each point in the simplex plot describes a respondent’s perception of the different 
dimensions of social capital within the organization in which they work.  The nearer 
a point is to one of the three vertices, the more a respondent associates their organiza-
tion with that dimension of social capital.  A point at the centre of the simplex plot 
would show a consistent level of association to the three dimensions of social capital 
(whatever that level is). 

4 The ECM Cluster Analysis 

This section presents a cluster analysis of the social capital data depicted in Fig. 1.  
The number of clusters to be derived is a key consideration when carrying out cluster 
analysis [9].  Here, two, three, four and five cluster solutions were examined (over 
only one δ parameter value), with the three cluster based solution offering the clearest 
conceptual connection with the analytical requirements of the study (a non-statistical 
approach advocated by Ketchen and Shook [9]).  
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Using ECM requires the assignment of values to control parameters (see section 2).  
Here, α (the level of penalization of cluster subsets) and β  (the fuzziness of the parti-
tion across focal elements) are assigned default values given in [11], namely α = 2 
and β  = 2.   For the control parameter δ (the amount of datapoints considered as 
outliers), a number of different values are evaluated.  With respect to the three cluster 
solution, the impact of the value of δ over a continuous sub-domain can be seen in 
Fig. 2.   

 

Fig. 2. Levels of association to singleton clusters and no cluster (δ changes) 

The impact of changes in the value of δ  is here interpreted in two ways: i) the 
percentage of the data associated with no cluster (potential outliers); and ii) the per-
centage of the data associated with a single cluster (here {C1}, {C2} and {C3}), in 
terms of their exact belief (see section 2 and [11]). 

In Fig. 2, holding α  and β constant, as δ  goes from 1 to 10, there is a decrease in 
the proportion of objects associated with no cluster (from 1 down to 0), and an in-
crease in the association of the objects with singleton clusters (from 0 up to near 0.7 
proportion of objects).  This latter impact (0.7 < 1) is a by-product of trying to move 
objects from association with no cluster (outlier) to association with a subset of clus-
ters of some sort (note it reaches a limit of just above 0.7, suggesting that about 0.3 of 
objects for the high values of δ are associated with sets of two or three clusters – also 
acknowledging the role of the α  and β  parameters here). 

Based on the results in Fig. 2, ECM was undertaken with three separate δ values, 
namely δ = 0.8, 1.2 and 8.6, which are associated with previously identified propor-
tion values near 0.5, 0.6 and 0.7 of objects associated with single clusters (not without 
loss of generality to other rubrics for choosing specific δ values), see Fig. 3.  The 
resultant series of Bel({Aj}) values are used to identify the focal elements (from pow-
er set of {C1, C2, C3}), that represents a majority association (see [1]). 

Fig. 3 provides an overview of the constituent cluster means (the means of the three 
social capital vector values for the single clusters {C1}, {C2} and {C3}) under each 
cluster solution (using a) δ = 0.8, b) 1.2 and c) 8.6).  Comparison of these constituent 
means permits the identification of patterns in the combination of the different dimen-
sions of social capital.  In Fig. 3, the constituent cluster means are the points joined 
by the lines labelled ‘1’, ‘2’ and ‘3’ (for clusters {C1}, {C2} and {C3}, respectively).  
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Fig. 3. Constituent cluster means for clusters {C1}, {C2} and {C3} (δ changes)  

To establish whether the {C1}, {C2} and {C3} constituent cluster means shown in 
Fig. 3 represent distinctive combinations of social capital values, it is necessary to 
establish whether the clusters are genuinely different from one another. Accordingly, 
Table 2 reports ANOVA and post-hoc results showing the statistical differences be-
tween the {C1}, {C2} and {C3} clusters for the three different values of δ  (see [9]). 

Table 2. Differences between social capital dimensions across clusters 

ECM Statistic S_socap R_socap C_socap 
      

δ = 0.8 ANOVA 64.15 (0.00) 42.16 (0.00) 57.75 (0.00) 
C1 – 418  

Post-hoc 
Bonferroni 

C1 and C2 .0031 (0.00) .0030 (0.00) .0038 (0.33) 
C2 – 610 C1 and C3 .0032 (0.00) .0031 (1.00) .0040 (0.00) 
C3 - 527 C2 and C3 .0029 (0.00) .0028 (0.00) .0036 (0.00) 

  

δ = 1.2 ANOVA 113.4 (0.00) 83.6 (0.00) 101.8 (0.00) 
C1 - 530  

Post-hoc 
Bonferroni 

C1 and C2 .0027 (0.00) .0026 (0.00) .0033 (0.46) 
C2 - 727 C1 and C3 .0027 (0.00) .0027 (1.00) .0034 (0.00) 
C3 - 650 C2 and C3 .0025 (0.00) .0024 (0.00) .0031 (0.00) 

  

δ = 8.6 ANOVA 493.7 (0.00) 487.8 (0.00) 638.2 (0.00) 
C1 - 845  

Post-hoc 
Bonferroni 

C1 and C2 .0020 (0.00) .0020 (0.00) .0023 (0.00) 
C2 - 502 C1 and C3 .0018 (0.00) .0017 (0.00) .0020 (0.00) 
C3 - 859 C2 and C3 .0020 (1.00) .0019 (0.00) .0023 (0.00) 

         In Bold  p ≤ 0.05 (two-tailed tests) 
 

Table 2 shows that there are large number of statistically significant differences be-
tween the singleton clusters, indicating that the ECM has identified distinctive combi-
nations of the different dimensions of organizational social capital. Returning to Fig 
3a), and taking into account the results in Table 2, for δ = 0.8, the three clusters are 
defined by their cluster means, namely; {C1} is described by low S_socap, high 
R_socap and high C_socap, {C2} described by medium S_socap, low R_socap and 
medium C_socap, and {C3} described by high S_socap, high R_socap and low 
C_socap.  In Fig 3b) and Fig 3c) slight variations are shown, most noticeably in the 
position of S_socap (for {C2}) and R_socap (for {C1}) in Fig 3c).   

Due to the transformation-based construction of the social capital vector (see  
Fig 1), attention has to be given to values of these constituent means below or above 
the average values of 0.333, indicating the below or above average association of that 
cluster of respondents on that dimension of social capital. 
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Fig. 4. Simplex plot based representation of cluster associations  

The inclusion of more datapoints within the ECM by increasing the value of δ does 
not seem to have dramatically altered the differences between the social capital values 
for the different clusters, though as one might expect there are more statistical signifi-
cant differences between the clusters when more datapoints are included in the cluster 
solution. The impact of this clustering process can be further illustrated by visualising 
the positions of the objects associated with each of the singleton clusters and their 
potential subsets, namely, {C1}, {C2}, {C3}, {C1, C2}, {C1, C3}, {C2, C3}, {C1, C2, 
C3}, {}, see Fig 4. 

In Fig 4, over the three different values δ considered, there are variations in the ob-
jects associated with each of the subsets of clusters.  The results for associations with 
{C1}, {C2} and {C3}, are shown in a), d) and g). Critically, as the value of δ increases 
so the notion of an outlier becomes more and more parsimonious, until in Fig 4i), 
once the singleton clusters and cluster sub-sets are all plotted, there are only eight 
datapoints associated with no cluster at all (overlapping points in simplex plot). 
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To validate the three cluster solution and to explore the substantive effects of 
changes in the value of δ further, the values of an external variable are compared 
across each cluster [11], namely employee engagement, which research has shown is 
associated with high levels of social capital [13], see Table 3. 

Table 3. Social capital clusters and employee engagement 

ECM Statistic Engagement 
    

 
δ = 0.8 

 

Order (Means) C3 (5.30) < C2 (5.54) < C1 (5.56) 
ANOVA F. 31.752 (Sig. 0.00) 

 

Post-hoc 
Bonferroni 

C1 and C2 Mn. Diff. 0.075 (Sig. 1.000) 
C1 and C3 Mn. Diff. 0.078 (Sig. 0.027) 
C2 and C3 Mn. Diff. 0.071 (Sig. 0.023) 

  

 
δ = 1.2 

 

Order (Means) C3 (5.21) < C2 (5.47) < C1 (5.48) 
ANOVA F. 35.646 (Sig. 0.000) 

 

Post-hoc 
Bonferroni 

C1 and C2 Mn. Diff. 0.068 (Sig. 1.000) 
C1 and C3 Mn. Diff. 0.069 (Sig. 0.006) 
C2 and C3 Mn. Diff. 0.064 (Sig. 0.002) 

  

 
δ = 8.6 

 

Order (Means) C2 (5.05) < C3 (5.14) < C1 (5.29) 
ANOVA F. 19.625 (Sig. 0.000) 

 

Post-hoc 
Bonferroni 

C1 and C2 Mn. Diff. 0.068 (Sig. 0.015) 
C1 and C3 Mn. Diff. 0.058 (Sig. 0.250) 
C2 and C3 Mn. Diff. 0.068 (Sig. 1.000) 

      [F.- F statistic, Sig.- Significance, Mn Diff.- Mean Difference]. In Bold p ≤ 0.05 (two-tailed tests) 

 
The results shown in Table 3 highlight that when δ = 0.8 and δ = 1.2, there is a 

consistent pattern of no statistically significant differences between the engagement 
values associated with clusters C1 and C2 against those of C3.  However, when δ = 
8.6 the pattern of statistically significant results completely reverses, with differences 
observed only between C1 and C2 and none between C3 and the other clusters.  

These findings then underline that the criteria for the inclusion of outliers can have 
dramatic effects on the substantive interpretation of the findings of applied research 
studies.  More importantly, within the context of ECM, they highlight the importance 
of the careful calibration of the parameters for cluster analysis, and the need to ex-
plain and justify the reasons behind the choice of the δ value that is adopted.  

5 Conclusions 

This paper has demonstrated that how outliers are dealt with when undertaking ECM 
cluster analysis can have important implications for the substantive interpretation of 
the findings from applied research studies. With ECM able to associate objects with 
single as well as groups of clusters, and also no clusters, these early results show how 
changes in one of the key parameters of ECM can lead to different findings, especial-
ly when clusters are used to explain other phenomena. Given the limited number of 
applications of ECM to date, the analysis presented here therefore provides research-
ers interested in using the technique with some initial pointers for ensuring that their 
work is robust and defensible. 
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Although this study has begun to investigate some of the key methodological con-
siderations underpinning ECM, there are a number of other important areas for further 
exploration.  At the technical and empirical levels, changes in the δ value clearly 
matter.  As a result, it will be interesting to see in subsequent studies how changing 
the other two parameters in ECM (α and β) impacts on the interpretation of the find-
ings.  Given that prima facie changes in all three parameters seem likely to have the 
potential to generate highly divergent results, it will be crucial that researchers pay 
more attention to this issue in the future. 
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Abstract. This paper shows that Pearl’s causal networks can be de-
scribed using compositional models in the valuation-based systems (VBS)
framework. There are several advantages of using the VBS framework.
First, VBS is a generalization of several uncertainty theories (e.g., prob-
ability theory, a version of possibility theory where combination is the
product t-norm, Spohn’s epistemic belief theory, and Dempster-Shafer
belief function theory). This implies that causal compositional models,
initially described in probability theory, are now described in all uncer-
tainty calculi that fit in the VBS framework. Second, using the operators
of VBS, we describe how causal inference can be made in causal compo-
sitional models in an elegant and unifying algebraic way. This includes
the computation of conditioning, and the computation of the effect of
interventions.

Keywords: Valuation-based system, causality, conditionals, interven-
tion, compositional model.

1 Introduction

In many situations we are faced with the question of what will happen if we
make some changes, such as if we intervene by an action that changes the status
quo. In [5], Pearl shows that such questions can be answered using causal prob-
abilistic models because of their ability to represent and respond to external or
spontaneous changes. In [3], causal probabilistic models were described by causal
compositional models in the probabilistic framework. In this paper we show that
such causal compositional models can be described in the valuation-based sys-
tems (VBS) framework [7], so that they apply to all uncertainty calculi that fit
in the VBS framework.

An outline of the paper is as follows. Section 2 reviews the VBS framework.
Section 3 reviews the composition operator and its basic properties in the VBS
framework. Section 4 describes causal compositional models in the VBS frame-
work, and making inferences in such models. We distinguish between condition-
ing and the effect of interventions. We also describe a small illustrative example.
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2 Valuation-Based Systems

We use notation from [7] and [4] that have a detailed introduction to VBS and
to compositional models in VBS. Φ denotes a set whose elements are called
variables that are denoted by upper-case Roman alphabets (e.g., X , Y , and Z).
Subsets of Φ are denoted by lower-case Roman alphabets (e.g., r, s, and t). Ψ
denotes a set whose elements are called valuations. Elements of Ψ are denoted
by lower-case Greek alphabets (e.g., ρ, σ, and τ). Each valuation is associated
with a subset of variables, and represents some knowledge about the variables
in the subset. Thus, we say that ρ is a valuation for r, where r ⊆ Φ is the subset
associated with ρ.

It is useful to identify a subset of valuations Ψn ⊂ Ψ , whose elements are
called normal. Normal valuations are those that are coherent in some sense. For
example, in D-S belief function theory, normal valuations are basic probability
assignment potentials whose values for non-empty subsets add to one.

We describe a specific VBS model by a pair (ΦS , ΨS). This pair must be
consistent in the sense that for each X ∈ ΦS there exists a valuation ρ ∈ ΨS for
r such that X ∈ r, and that each valuation ρ ∈ ΨS must be for variables r ⊆ ΦS .
The VBS framework includes three operators — combination, marginalization,
and removal — that are used to make inferences from the knowledge encoded
in a VBS.

Combination. The combination operator ⊕ : Ψ × Ψ → Ψn represents aggrega-
tion of knowledge. It satisfies the following three axioms:

1. (Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ⊕ σ is
a normal valuation for r ∪ s.

2. (Commutativity) ρ⊕ σ = σ ⊕ ρ.
3. (Associativity) ρ⊕ (σ ⊕ τ) = (ρ⊕ σ) ⊕ τ .

Marginalization. The marginalization operator −X : Ψ → Ψ allows us to
coarsen knowledge by marginalizing X out of the domain of a valuation. It
satisfies the following four axioms:

1. (Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for
r \ {X}.

2. (Normal) ρ−X is normal if and only if ρ is normal.
3. (Order does not matter) If ρ is a valuation for r, X ∈ r, and Y ∈ r, then

(ρ−X)−Y = (ρ−Y )−X , which is denoted by ρ−{X,Y }.
4. (Local computation) If ρ and σ are valuations for r and s, respectively,X ∈ r,

and X /∈ s, then (ρ⊕ σ)−X = (ρ−X) ⊕ σ.

Sometimes it is useful to use the notation ρ↓r\{X,Y } to denote ρ−{X,Y }, when
we wish to emphasize the variables that remain (instead of the variables that
are marginalized out).

The set of all normal valuations with the combination operator ⊕ forms a
commutative semigroup. We let ι∅ denote the (unique) identity valuation of this
semigroup. Thus, for any normal valuation ρ, ρ⊕ ι∅ = ρ.
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The set of all normal valuations for s ⊆ Φ with the combination operator
⊕ also forms a commutative semigroup (which is different from the semigroup
discussed in the previous paragraph). Let ιs denote the (unique) identity for this
semigroup. Thus, for any normal valuation σ for s, σ ⊕ ιs = σ.

Notice that, in general, ρ⊕ ρ 
= ρ. Thus, it is important to ensure that we do
not double count knowledge when it matters. This can be ensured, e.g., when
defining the composition operator in Section 3, by the removal operator that is
defined next.

Removal. This operator - : Ψ×Ψn → Ψn represents removing knowledge in the
second valuation from the knowledge in the first valuation. It must satisfy the
following three axioms:

1. (Domain): Suppose σ is a valuation for s and ρ is a normal valuation for r.
Then σ - ρ is a normal valuation for r ∪ s.

2. (Identity): For each normal valuation ρ for r, ρ⊕ ρ- ρ = ρ. Thus, ρ- ρ acts
as an identity for ρ, and we denote ρ- ρ by ιρ. Thus, ρ⊕ ιρ = ρ.

3. (Combination and Removal): Suppose π and θ are valuations, and suppose
ρ is a normal valuation. Then, (π ⊕ θ) - ρ = π ⊕ (θ - ρ).

We call σ - ρ the valuation resulting after removing ρ from σ. The identity
axiom defines the removal operator as an inverse of the combination operator.

In [7], a number of properties of combination, marginalization, and removal
operators are stated and proved. For example, for valuations σ and θ for s and
t, respectively, a normal valuation ρ for r, and X ∈ s \ r it holds that

1. (σ ⊕ θ) - ρ = (σ - ρ) ⊕ θ.
2. (σ - ρ)−X = σ−X - ρ.

Domination. As defined in the identity property of removal, ρ ⊕ ιρ = ρ. In
general, if ρ′ is a normal valuation for r that is distinct from ρ, then ρ′ ⊕ ιρ
may not equal ρ′. However, there may exist a class of normal valuations for
r such that if ρ′ is in this class, then ρ′ ⊕ ιρ = ρ′. We will call this class of
normal valuations as valuations that are dominated by ρ. Thus, if ρ dominates
ρ′, written as ρ ) ρ′, then ρ′ ⊕ ιρ = ρ′.

3 Composition Operator

The composition operator aggregates knowledge encoded in two normal valua-
tions while adjusting for the double counting of knowledge when it does matter.
Suppose ρ and σ are normal valuations for r and s, respectively, and suppose
that σ↓r∩s ) ρ↓r∩s. The composition of ρ and σ, written as ρ � σ, is defined as
follows:

ρ � σ = ρ⊕ σ - σ↓r∩s. (1)

The following theorem summarizes the most important properties of the com-
position operator.
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Theorem 1. Suppose ρ, σ and τ are normal valuations for r, s, and t, re-
spectively, and suppose that σ↓r∩s ) ρ↓r∩s, τ↓(r∪s)∩t ) (ρ � σ)↓(r∪s)∩t and
τ↓r∩t ) ρ↓r∩t. Then the following statements hold:

1. (Domain): ρ � σ is a normal valuation for r ∪ s.
2. (Composition preserves first marginal): (ρ � σ)↓r = ρ.
3. (Reduction:) If s ⊆ r then, ρ � σ = ρ.
4. (Non-commutativity): In general, ρ � σ 
= σ � ρ.
5. (Commutativity under consistency): If ρ and σ have a common marginal for

r ∩ s, i.e., ρ↓r∩s = σ↓r∩s, then ρ � σ = σ � ρ.
6. (Non-associativity): Suppose τ is a normal valuation for t, and suppose

τ↓(r∪s)∩t ) (ρ � σ)↓(r∪s)∩t. Then, in general, (ρ � σ) � τ 
= ρ � (σ � τ).
7. (Associativity under special condition I): If r ⊃ (s ∩ t) then, (ρ � σ) � τ =

ρ � (σ � τ).
8. (Associativity under special condition II): If s ⊃ (r∩ t) then, (ρ � σ) � τ =

ρ � (σ � τ).
9. (Stepwise composition): If (r ∩ s) ⊆ t ⊆ s then, (ρ � σ↓t) � σ = ρ � σ.

10. (Exchangeability): If r ⊃ (s ∩ t) then, (ρ � σ) � τ = (ρ � τ) � σ.
11. (Simple marginalization): If (r ∩ s) ⊆ t ⊆ r ∪ s then, (ρ � σ)↓t = ρ↓r∩t �

σ↓s∩t.
12. (Irrelevant combination): If t ⊆ r \ s then, ρ � (σ ⊕ τ) = ρ � σ.

Proof. All properties are proved in [4] with the exception of Properties 3, 7 and
12.

Property 3 is a direct consequence of Property 2. To prove Property 7, it is
sufficient to use the definition of the composition operator (Equation 1), simple
marginalization (Property 11), the commutativity and associativity of combina-
tion, and the fact that under the specified condition (r ∪ s) ∩ t = r ∩ t:

ρ � (σ � τ) = ρ⊕ (σ � τ) - (σ � τ)↓r∩(s∪t)

= ρ⊕ σ ⊕ τ - τ↓s∩t - (σ � τ)↓r∩(s∪t)

= ρ⊕ σ ⊕ τ - τ↓s∩t - (σ↓r∩s � τ↓r∩t) ⊕ σ↓r∩s - σ↓r∩s ⊕ τ↓r∩t - τ↓r∩t

= ρ⊕ σ ⊕ τ - (σ↓r∩s � τ↓r∩t) ⊕ (σ↓r∩s � τ↓r∩t) - σ↓r∩s - τ↓r∩t

= (ρ � σ) ⊕ τ - τ↓(r∪s)∩t = (ρ � σ) � τ.

To prove Property 12 we use the definition of the composition operator (Equa-
tion 1), simple marginalization (Property 11), and the commutativity and asso-
ciativity of combination:

ρ � (σ ⊕ τ) = ρ⊕ (σ ⊕ τ) - (σ ⊕ τ)↓r∩(s∪t) = ρ⊕ (σ ⊕ τ) - (σ↓r∩s ⊕ τ)

= ρ⊕ σ↓r∩s - σ↓r∩s ⊕ σ ⊕ τ - (σ↓r∩s ⊕ τ)

= ρ⊕ σ - σ↓r∩s ⊕ (σ↓r∩s ⊕ τ) - (σ↓r∩s ⊕ τ) = ρ � σ.

In designing computational procedures for probabilistic compositional models
in [1], we compensated the lack of associativity of the composition operator by
the so-called anticipating composition operator. Its name is suggestive from the
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fact that it introduces an additional conditional independence relation into the
result of composition—it anticipates the independence relation that is necessary
for associativity, and therefore it must take into account the set of variables,
for which the preceding distribution is defined. In this paper we introduce the
anticipating operator of composition for VBS in the following way. Suppose ρ
and σ are normal valuations for r and s, respectively, and suppose t is a subset
of variables. Then,

ρ ©� tσ = (ρ⊕ σ↓(t\r)∩s) � σ. (2)

Notice that, as explained above, this composition operator is parameterized by
subset t. If (t \ r)∩ s = ∅ then ρ ©� tσ = ρ � σ. The importance of this operator
stems from the following assertion.

Theorem 2. Suppose τ, ρ, and σ are normal valuations for t, r, and s, respec-
tively, and suppose that σ↓r∩s ) ρ↓r∩s and ρ↓r∩t ) τ↓r∩t. Then

(τ � ρ) � σ = τ � (ρ ©� tσ). (3)

Proof. The proof uses irrelevant combination (Property 12 of Theorem 1), and
associativity under special condition I (Property 7 of Theorem 1):

(τ � ρ) � σ = (τ � (ρ⊕ ι(t\r)∩s)) � σ

= τ � ((ρ⊕ ι(t\r)∩s) � σ) = τ � (ρ ©� tσ).

4 Causal Compositional Models

Suppose Φ = {X1, X2, . . . , Xn}. For each variableXi, let C(Xi) denote the subset
of the variables that are causes of Xi. We assume that Xi 
∈ C(Xi). {C(Xi)}ni=1

constitutes a causal model. Using Pearl’s terminology [5], we say that a causal
model is Markovian if there exists an ordering of variables (without loss of
generality we assume that it is the orderingX1, X2, . . . , Xn) such that C(X1) = ∅,
and for i = 2, 3, . . . , n, C(Xi) ⊆ {X1, . . . , Xi−1}. Markovian causal models are
causal models without feedback relations.

Let ri denote C(Xi) ∪ {Xi}. From here onwards, the symbol τ exclusively
denotes causal models, i.e. if we have valuations ρi for ri for i = 1, . . . , n a
causal compositional model (CCM) τ is defined as follows:

τ = (. . . ((ρ1 � ρ2) � ρ3) � . . . � ρn−1) � ρn = ρ1 � ρ2 � . . . � ρn. (4)

(To increase legibility of the formulae, we will not include parentheses if the
composition operator is successively performed from left to right.)

Notice that all the properties of the composition operator, including Prop-
erty 10, describe Markovian preserving modifications. For example, if ρ1 �ρ2 �ρ3
is a Markovian CCM, then r1 ⊇ r2 ∩r3 guarantees that ρ1 �ρ3 �ρ2 is also Marko-
vian (it follows from the fact that under this assumption r3 ∩ (r1 ∪r2) = r3 ∩r1).

Readers familiar with Pearl’s causal networks [5] have certainly noticed that
for the probabilistic case, CCM τ defined by formula (4) is exactly the causal
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network represented by an acyclic directed graph G = (V,E) with V = Φ, and
there is an edge (Xj → Xi) ∈ E iff Xj ∈ C(Xi). The conditional probability
distributions necessary to define the probabilistic causal network are ρ(Xi|C(Xi))
for i = 1, . . . , n.

4.1 Conditioning and Intervention

In causal models, there is a difference between conditioning and intervention.
Suppose S = 1 denotes a person who smokes, Y = 1 denotes (nicotine-stained)
yellow teeth, and C = 1 denotes presence of lung cancer. We assume C(S) = ∅,
C(Y ) = {S}, and C(C) = {S}. Conditioning on Y = 0 means including evidence
that teeth are not stained (which lowers the chances that the person has cancer).
On the other hand, the intervention denoted by do(Y = 0) means a changed
universe where the person gets his teeth whitened (e.g., from his dentist), but
the chances of cancer remains unchanged.

To simplify the exposition, in the rest of this subsection, let s denote r1∪. . .∪rn
and t denote s \ {X} for some X ∈ s. Thus, in CCM τ = ρ1 � ρ2 � . . . � ρn,
conditioning by X = x leads to a valuation τ(t|X = x) for t.

As shown in [3], we can realize both the conditioning and intervention as a
composition of the causal compositional model ρ1�. . .�ρn with a valuation ν|X;x,
which is a valuation for variable X expressing knowledge that X = x. Using this
notation we can apply the following simple formulae that were proved for the
probabilistic framework in [3]:

τ(t|X = x) =
(
ν|X;x � (ρ1 � ρ2 � . . . � ρn)

)−X
, (5)

and
τ(t|do(X = x)) =

(
ν|X;x � ρ1 � ρ2 � . . . � ρn

)−X
. (6)

Notice the importance of the pair of brackets by which the formulae above dif-
fer from each other. This difference arises from the fact that the operator of
composition is not associative.

To clarify these formulae, consider for a moment, again, probabilistic inter-
pretation. Then, the expression in formula (5) equals

ν|X;x � (ρ1 � ρ2 � . . . � ρn) = ν|X;x � τ(s) =
ν|X;x · τ(s)
τ(X)

,

which is a probability distribution for variables s, and equals τ(t|X = x) for
those combinations of values of variables s for which X = x, and 0 for all the

remaining combinations of values. Therefore τ(t|X = x) =
(
ν|X;x � τ(s)

)−X
.

To explain formula (6) we have to make a reference to Pearl’s causal networks
[5], and to consider CCM

σ = ρ0 � ρ1 � ρ2 � . . . � ρn, (7)

for a one-dimensional distribution ρ0(X) (ρ0 may be considered uniform). At
the end of the preceding section we said that CCM τ defined by formula (4)



262 R. Jiroušek and P.P. Shenoy

corresponds to the causal network with an acyclic directed graph G = (Φ,E),
where (Xj → Xi) ∈ E iff Xj ∈ C(Xi). Obviously, CCM σ defined by formula (7)
corresponds to the causal network with an acyclic directed graph Ḡ = (Φ, Ē),
in which there is no edge heading to X and all the remaining edges from E are
preserved; i.e., Ē = {(Xj → Xi) ∈ E : Xi 
= X}.

Following Definition 3.2.1 in [5] (or formula (3.11) from the same source), we
can see that the result of intervention performed in the causal model τ can be
computed as a conditioning in the model σ:

τ(t|do(X = x)) = σ(t|X = x) =
(
ν|X;x � σ(s)

)−X

=
(
ν|X;x � (ρ0 � ρ1 � . . . � ρn)

)−X
.

Applying Property 8 of Theorem 1 n-times (it is possible because ν|X;x and ρ0
are defined for the same variable X) we get:

ν|X;x � (ρ0 � ρ1 � . . . � ρn−1 � ρn) = ν|X;x � (ρ0 � ρ1 � . . . � ρn−1) � ρn = . . .

= ν|X;x � ρ0 � ρ1 � . . . � ρn−1 � ρn,

from which the formula (6) is obtained using Property 3 of Theorem 1.
Readers familiar with the Pearl’s causal networks [5] have certainly noticed an

advantage of CCM. In CCM, we can compute both conditioning and intervention
from one causal compositional model as shown above. In Pearl’s causal networks,
we have to consider two different networks. Conditioning is computed from the
complete causal network. For the computation of intervention, we have to con-
sider a reduced causal network where all the arrows heading to the intervention
variable are deleted.

4.2 An Example: Elimination of Hidden Variables

In this subsection, as an illustration, we derive formulae for computation of
conditioning and intervention in a simple causal compositional model with four
variables U, Y,X,Z, the first of which is assumed to be hidden (unobservable).
Suppose that C(U) = ∅, C(Y ) = {U}, C(X) = {Y }, C(Z) = {U,X}, so that the
causal model is Markovian. Also, suppose that the situation is described by a
causal compositional model as follows:

τ(U, Y,X,Z) = ρ1(U) � ρ2(U, Y ) � ρ3(Y,X) � ρ4(U,X,Z).

In the CCM above, ρ1(U) denotes a normal valuation for U , etc., and
τ(U, Y,X,Z) denotes the joint normal valuation for {U, Y,X,Z}. As U is a
hidden variable, only ρ3(Y,X) can be estimated from data, all others include
U in their domains. To simplify notation, we will let, e.g., τ(Y,X,Z) denote
τ(U, Y,X,Z)−U , etc.

Computation of the conditional τ(Z|Y = y) is simple.

τ(Z|Y = y) =
(
ν|Y ;y � τ(U, Y,X,Z)

)↓{Z} (11)
=

(
ν|Y ;y � τ(U, Y,X,Z)

−{U}
)↓{Z}

(11)
=

(
ν|Y ;y � τ(Y,X,Z)

−{X}
)↓{Z}

=
(
ν|Y ;y � τ(Y, Z)

)↓{Z}
.
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Thus we can estimate τ(Z|Y = y) by
(
ν|Y ;y � τ̂ (Y, Z)

)↓{Z}
, which includes only

observable variables. Notice that during these computations we used Property 11
of Theorem 1 twice. This is why the symbol (11) appears above the respective
equality signs. This type of explanation will also be used in the subsequent
computations.

To compute τ(Z|do(Y = y)) we use the properties of the composition and the
anticipating operators defined in the preceding section. To simplify the exposi-
tion, we do just one elementary modification at each step, and thus the following
computations may appear more cumbersome than they really are.

τ(Z|do(Y = y)) =
(
ν|Y ;y � ρ1(U) � ρ2(U, Y ) � ρ3(Y,X) � ρ4(U,X,Z)

)↓{Z}

(3)
=

(
ν|Y ;y � ρ1(U) � ρ3(Y,X) � ρ4(U,X,Z)

)↓{Z}

(10)
=

(
ν|Y ;y � ρ3(Y,X) � ρ1(U) � ρ4(U,X,Z)

)↓{Z}

Th 2
=

(
ν|Y ;y � ρ3(Y,X) �

(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

))↓{Z}

(11)
=

(
ν|Y ;y � ρ3(Y,X) �

(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U
)↓{Z}

.

To express
(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U

we take advantage of the idea of

extension used by Pearl in [5]. It is one way of taking into account the mutual
dependence of variables X , Y , and Z. It plays the same role as the inheritance
of parents property of Shachter’s arc reversal rule [6].

(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U

=
(
ρ1(U) ©�{X} ρ4(U,X,Z)

)−U

(11)
=

((
ρ2(U, Y ) ©�{X} ρ4(U,X,Z)

)−Y
)−U

=
(
(ρ4(X) ⊕ ρ2(U, Y )) � ρ4(U,X,Z)

)↓{X,Z}

=
(
(ρ4(X) ⊕ ρ2(Y )) � ρ2(U, Y ) � ρ4(U,X,Z)

)↓{X,Z}

(3)
=

(
(ρ4(X) ⊕ ρ2(Y )) � ρ2(U, Y ) � ρ3(Y,X) � ρ4(U,X,Z)

)↓{X,Z}

(7)
=

(
(ρ4(X) ⊕ ρ2(Y )) � (ρ2(U, Y ) � ρ3(Y,X)) � ρ4(U,X,Z)

)↓{X,Z}

(8)
=

(
(ρ4(X) ⊕ ρ2(Y )) � (ρ2(U, Y ) � ρ3(Y,X) � ρ4(U,X,Z))

)↓{X,Z}

=
(
(ρ4(X) ⊕ ρ2(Y )) � τ(U, Y,X,Z)

)↓{X,Z}

(11)
=

(
(ρ4(X) ⊕ ρ2(Y )) � τ(Y,X,Z)

)↓{X,Z}

=
(
(τ(X) ⊕ τ(Y )) � τ(Y,X,Z)

)↓{X,Z}
=

(
τ(Y ) ©�{X}τ(Y,X,Z)

)−Y

,
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which eventually leads to

τ̂ (Z|do(Y = y))

=
(
ν|Y ;y � ρ3(Y,X) �

(
(ρ4(X) ⊕ ρ2(Y )) � τ(Y,X,Z)

)↓{X,Z})↓{Z}

=
(
ν|Y ;y � τ̂ (Y,X) �

(
(τ̂ (X) ⊕ ρ2(Y )) � τ̂ (Y,X,Z)

)↓{X,Z})↓{Z}

=

(
ν|Y ;y � τ̂ (Y,X) �

(
τ̂(Y ) ©�{X}τ̂ (Y,X,Z)

)−Y
)↓{Z}

=

(
ν|Y ;y � τ̂ (Y,X) �

(
τ̂(Y ) ©�{X}τ̂ (Y,X,Z)

)−Y
)↓{Z}

.

5 Conclusions

We have described causal compositional models, originally introduced in [3] in
the probabilistic framework, in the VBS framework. Both conditioning and in-
terventions can be described easily using the composition operator. A simple
example illustrates the use of the composition operator for conditioning and
intervention.
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2. Jiroušek, R.: Foundations of compositional model theory. Int. J. of General Sys-
tems. 40(6), 623–678 (2011)

3. Jiroušek, R.: On causal compositional models: Simple examples. In: Laurent, A.,
Strauss, O., Bouchon-Meunier, B., Yager, R.R., et al. (eds.) IPMU 2014, Part I.
CCIS, vol. 442, pp. 517–526. Springer, Heidelberg (2014)
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Merging Possibilistic Networks

through a Disjunctive Mode

Faiza Titouna and Salem Benferhat
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Abstract. This paper addresses the problem of merging a number of
expert opinions which have expressed by means of possibilistic networks
in order to make additional decision more reliable and precise. We have
considered the fusion of graphical possibilistic models through a dis-
junctive mode. For this purpose, we have chosen the maximum operator
which generally used when information issued from different sources are
totally in conflict. So, we have proposed a new combination approach
when initial models shared the same variables.

Keywords: Possibility theory, possibilistic networks, maximum
operator.

1 Introduction

Possibility theory provides a good framework for dealing with merging problems
when information is pervaded with uncertainty and inconsistency. One of the
important aims in merging uncertain information is to exploit complementari-
ties between the sources in order to get a more complete and precise global point
of view. Many different merging operators have been proposed [10], [13], [18].
In [2], [3] a conjunctive operator is introduced to exploit the symbolic comple-
mentarities between pieces of information provided by different sources and to
deal with conflict the authors use a disjunctive operator to merge inconsistent
knowledge bases.

Information fusion issued from multiple sources has an increasing interest in
diverse areas applications. For instance, the information provided by individual
sensors is incomplete, inaccurate and/or unreliable. Therefore, a fusion based
estimate provides a more effective approach towards traffic speed estimation [1].
In [20], a combination of multi-agent systems and information fusion technology
in target recognition system has been used. Agents are informed by information
sources of varying levels of reliability. The information provided by an agent
can be viewed as his belief. However, the beliefs of different agents may be con-
flicting and partially inconsistent. Therefore, to establish a global point of view
about the real world, it is important to merge beliefs of different agents accord-
ing to their levels of reliability. Uncertain pieces of information are assumed to
be represented by possibilistic networks. So, the integration or the merging of
distributed heterogeneous networks is a challenging problem. This problem is

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 265–274, 2014.
c© Springer International Publishing Switzerland 2014
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difficult because different networks to be merged may have different structures
and data from different networks may be conflicting.

There are few works that deal with the problem of fusing probabilistic [6],
[16] or possibilistic networks, [12], [14], [15]. The context of this paper concerns
merging uncertain information represented by graphical models. We explore a
fusion method through a disjunctive mode expressed by the maximum operator.
It extends and completes results presented in [4],[5].

After some preliminaries introduced in Section 2, Section 3 discusses the com-
bination modes in particular the disjunctive mode. In Section 4, we present how
to merge conflicting information defined by different possibilsitic networks. Fi-
nally, we conclude.

2 Formal Preliminaries

The possibility theory introduced by Zadeh [19] and by Dubois and Prade [9] is
a theoretical framework for modeling uncertainty in a qualitative way.

Let V = {A1, A2, ..., An} be a set of variables. We denote by DA = {a1, ..., an}
the domain associated with the variable A. By a we denote any instance of A.
Ω = ×Ai∈VDAi denotes the universe of discourse, which is the cartesian product
of all variables domains. Each element ω ∈ Ω is called a state or an interpretation
or a solution. Subsets of Ω are simply called events. In the following, we only
give a brief background on possibility theory; for more details see [9].

2.1 Possibility Theory

Possibility theory introduces the notion of possibility distribution denoted by π
and corresponding to a mapping fromΩ to the scale [0,1] encoding our knowledge
on the real world, denoted by u, which is generally ill known. The possibilistic
scale can be interpreted in an ordinal and numerical manners.

Two dual measures, called possibility and necessity, are used in order to
model available information. The possibility measure Π(φ) = maxω∈φ,φ⊂Ωπ(ω)
is called the possibility degree of φ and it corresponds to the possibility degree to
have one of the models of φ as the real world. This measure evaluates at which
level φ is consistent with our knowledge represented by π. The necessity measure
N(φ) = 1 − Π(¬φ) = minω/∈φ(1 − π(ω)) called the necessity degree of φ, this
measure evaluates at which level φ is certainly implied by our knowledge repre-
sented by π. A possibility distribution π is said to be normalized (or coherent),
if maxωπ(ω) = 1.

2.2 Possibilistic Networks

In possibility theory [9], [19], there are two kinds of possibilistic networks de-
pending if possibilistic conditioning1 is based on the minimum (it is then called

1 The notion of conditioning consists in modifying initial knowledge, encoded by a
possibility distribution π, by the arrival of a new certain piece of information.
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ordinal or min-based possibilistic networks) or on the product operator (it is
called numerical or quantitative networks).

A possibilistic network N is composed of two principles parts. The first one,
it is a graphical structure called a DAG (Directed Acyclic Graph) and denoted
by G, it represents a set of nodes (variables) linked by arcs. The latter encode
the influence relation between variables. In the second part, uncertainties are
quantified by a priori and conditional possibility distributions π(a) and π(a|UA)
for each instance a ∈ DA respectively, where UA represents the parents of A.

When, we use the product form of possibilistic conditioning, we get a pos-
sibilistic network close to the probabilistic one sharing the same features and
having the same theoretical and practical results [17]. A possibilistic network
encodes independence assertions, which do not depend on how the network is
quantified. An independence assertion is a statement of the form X and Y are
independent given Z, namely : ∀X, ∀Y, ∀Z, π(X |Y ∧ Z) = π(X |Z) (see [11] and
[7]). The independence assertions in a belief network are important because it
allows to reduce the complexity of inference. In this paper, the joint possibility
distribution πJ is defined via the chain rule based on the minimum as follows :

Definition 1. Let N = (π,G) be a possibilistic network. The joint possibility
distribution associated with N, denoted by πJ , is expressed by the following chain
rule:

πJ (A1, .., AN ) = mini=1..Nπ(Ai | UAi). (1)

3 Disjunctive Combination

When sources are in conflict, we usually use a T-conorm to combine them. A
T-conorm is an operation Tc from [0, 1] × [0, 1] to [0,1] such as :

Tc(a, b) = Tc(b, a) (commutativity),
Tc(a, T c(b, c)) = Tc(Tc(a, b), c) (associativity),
b ≤ c, T c(a, b) ≤ Tc(a, c) (monotonicity),
Tc(a, 0) = a (neutral element 0).

For any T-conorm, the following inequality holds: ∀(a, b) ∈ [0, 1]2, Tc(a,b)≥
max(a,b). This shows that the maximum operator is the smallest T-conorm
and that any T-conorm has a disjunctive behavior which satisfies the following
property : ∀a ∈ [0, 1], Tc(a,1) = 1.

Unlike the conjunctive mode, the disjunctive fusion corresponds to a lower
reliability, in the sense where among elements of a group, there is at least a fully
reliable element. However, we do not know which elements is reliable and which
is not. So, to keep the whole information, it is preferable to use the disjunctive
mode expressed generally by the maximum operator. Moreover, when pieces of
information provided by different sources have the same degree of reliability and
in conflict, it is absurd to prefer one source rather than another. Such behavior
cannot be obtained by applying the conjunctive operator, only the disjunctive
operator gives a reasonable result. The disjunctive operator can be viewed as a
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Fig. 1. Cases of disjunctive fusion

logical union. Different cases are represented in Fig. 1, to explain the behavior
of this operator. The disjunction will favor the reliable source as the one which
gives the higher degree of confidence. Indeed, the maximum operator is appro-
priate when the sources are highly conflicting with each other and the minimum
operator is meaningful when the sources are consistent. The reason that the
maximum operator is chosen because the inconsistency is viewed as a bad thing
and needs to be avoided.

4 Graphical-Model Based Merging

Before presenting our approach of disjunctive combination by applying the max-
imum operator, we need to give some important and necessary definitions which
are useful to extend any possibilistic network.

In the rest of paper, we restrict our work to binary variables. The following
proposition provides an interesting way to explain how initial information is
preserved.

Proposition 1. Let N = (G, π) be the possibilistic network defined over the set
of variables denoted by V. Let A be a variable such that A /∈ V and UA the
parents of A. Let N′ = (G′, π′) be the network obtained by adding a new variable
A to the initial network N such as :

– G′ = G ∪ {A},
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– ∀ai ∈ DA, π
′(ai) = 1,

– ∀X ∈ V, ∀xi ∈ DX , π′(xi|UX) = π(xi|UX).

Then, we have :

∀ω ∈ Ω, πJ (ω) = maxa∈DAπ
′
J(aω). (2)

In the next definition, we present how to augment a network.

Definition 2. (Augmented Network) Let N = (G, π) be a possibilistic net-
work defined over a set of variables V. Let N′ = (G′, π′) be an augmented possi-
bilistic network obtained as follows :

– Adding a new variable A according to Proposition 1,
– Adding a new link from the new variable A to each variable of the initial

network N.
The possibility distributions associated with the augmented network are de-
fined as follows :

– ∀ai ∈ DA, π
′(ai) = 1,

–

∀X ∈ V, X 
= A, ∀xi ∈ DX , π
′(xi|UX , aj) =

{
π(xi|UX) if j=1
1 otherwise.

We recall that the joint possibility distribution is computed via the chain rule
based on the minimum.

Example 1. Let N be a possibilistic network. Let G be the DAG associated with
N, and represented by Fig. 2(a). The possibility distributions associated with
N are given respectively in Table 1. Let C be a new binary variable. Namely,
DC = {c1, c2}. Let N′ be the augmented possibilistic network obtained from N
such that:

– G′ = G ∪ {C},
– ∀ci ∈ DC , π

′(ci)= 1,
– ∀X ∈ V, ∀xi ∈ DX , ∀cj ∈ DC , π

′(xi | UX , cj) = π(xi | UX) for j=1,
– ∀X ∈ V, ∀xi ∈ DX , ∀cj ∈ DC , π

′(xi | UX , cj) = 0 for j = 2.

The first step of the construction of the augmented DAG depicted in Fig. 2(b)
represents the extension of the initial DAG Fig. 2(a) by adding a new variable C
according to Proposition 1. Then, the equation 2 is well checked. For instance, let
ω = a2b1 be an interpretation and let c1 and c2 be two states of the variable C.
So, π′

J(c1a2b1) = min(π′(c1), π′(a2|c1), π′(b1|a2, c1)) = min(1, π(a2), π(b1|a2))
= min(1, 0.3, 0.5)= 0.3. Likewise for π′(c2a2b1)= min(1,0.3,0.5)= 0.3. Indeed,
maxcπ

′
J (cω) = πJ (ω) = 0.3.

In the second step (Fig. 2(c)), we have added a new link from the variable C
to A and another link from C to B according to Definition 2. Table 2 gives the
conditional possibility distributions π′ associated with the augmented network.

The next definition shows how to merge two possibilistic networks based on
the maximum operator. This fusion process reveals the relationship between the
semantic combination and its graphical counterpart.
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Fig. 2. Construction steps of an augmented DAG

Table 1. Initial possibility distributions π associated with N

A π(A) A B π(B | A)
a1 1 a1 b1 1
a2 0.3 a1 b2 0.2

a2 b1 0.5
a2 b2 1

Table 2. Conditional possibility distributions π′ associated with N′

C π′(C) A C π′(A | C)
c1 1 a1 c1 1
c2 1 a1 c2 1

a2 c1 0.3
a2 c2 1

A B C π′(B | A ∧ C) A B C π′(B | A ∧ C)

a1 b1 c1 1 a2 b1 c1 0.5
a1 b1 c2 1 a2 b1 c2 1
a1 b2 c1 0.2 a2 b2 c1 1
a1 b2 c2 1 a2 b2 c2 1

Definition 3. Let N1 = (G1, π1) and N2 = (G2, π2) be two possibilistic net-
works having the same graphical model. Let Nmax = (Gmax, πmax) be the merged
network obtained by applying the maximum operator.

At the graphical level, the merged graph Gmax is obtained by applying the
following steps :

a. Choose anyone of the initial graphs. For example G2,
b. Rename each variable X in G2. Let X

′ be the new variable,
c. Augment separately G1 and G2 by adding new nodes C and C’ respectively

according to Proposition 1 and Definition 2,
d. Create a link from each variable X in G1 to its associated X ′ in G2. Namely:

X → X ′.
e. Create a Link from the variable C to the variable C’. Namely : C → C′.
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At the semantic level, the conditional possibility distributions of the merged
network are computed as:

1.
∀ci ∈ DC , πmax(ci) = 1.

2.

∀cj ∈ DC , ∀c′i ∈ DC′ , πmax(c
′
i|cj) =

{
1 if i 
= j,
0 otherwise.

3.

∀xi ∈ DX , ∀cj ∈ DC , πmax(xi|UX , cj) =

{
π1(xi|UX) if j=1,
1 otherwise.

4. ∀x′i ∈ DX′ , ∀xj ∈ DX , ∀c′k ∈ DC′ ,

πmax(x
′
i|UX , xj , c

′
k) =

⎧⎨⎩
π2(xi|UX) if i=j and k=1,
1 if i=j and k=2,
0 if i 
= j.

The interesting specification of the augmented network consists in preserv-
ing all information through the marginal possibility distributions of the initial
network.

Proposition 2. Given two possibilistic networks N1 and N2 associated with π1
and π2 respectively. let Πmax be the marginal possibility distribution associated
with the fused possibilistic network Nmax the result of merging N1 and N2 using
the maximum operator. Then, we have:

∀ω ∈ Ω,Πmax(ω) = max(π1(ω), π2(ω)). (3)

Proof. Suppose that ω = a1, ..., an and ai is an instance of Ai ∈ V . Let a′1, ..., a′n
be instances of renamed variables. Let c and c’ instances of added variable in
the augmented networks. The marginal possibility distribution associated with
the fused network is computed as follows: Πmax(a1, ..., an) =
maxa′

1,...,a
′
n,c,c

′πmax(a1, ..., an, a
′
1, ..., a

′
n, c, c

′) =
maxa′

1,...,a
′
n,c,c

′min(πmax(a1|UA1 , c), ..., πmax(an|UAn , c), πmax(a
′
1|UA1 , a1, c

′), ...,
πmax(a

′
n|UAn , an, c

′), πmax(c
′|c)) (1).

Using Definition 3. the term πmax(c
′|c) =1 if the instances of c and c’ are oppo-

site, otherwise πmax(c
′|c)=0. In this case, either πmax(ai|UAi , c) = π1(a1|UA1)

or πmax(a
′
j |UAj , aj , c

′) = π2(a1|UA1). Moreover, some terms are eliminated due
to the third condition of equation 4. Hence, at the final step, we obtain :
Πmax(a1, ..., an) = max(π1(a1, ..., an), π2(a1, ..., an)).
We remark that to compute the obtained expression (1), we apply the variable
elimination algorithm (see [8]).

The next example illustrates Definition 3 and shows how to construct the
merged network Nmax. It also illustrates the Proposition 2 showing that the
global joint distribution is preserved.
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Table 3. Initial possibility distributions

A π1(A) π2(A) A B π1(B | A) π2(B | A)
a1 1 1 a1 b1 1 1
a2 0.3 0.4 a1 b2 0.2 0.6

a2 b1 0.5 0.1
a2 b2 1 1

Example 2. Let be two possibilistic networks N1 and N2. The DAGs associated
to these networks have the same graphical structure and they are represented by
the initial graph in Fig. 2(a). The conditional possibility distributions associated
with N1 and N2 are defined by the Table 3. Now, we will apply the construction
process of fusion network based on the maximum operator. For this purpose,
we should follow the steps given in Definition 2. Then, at the graphical level,
we obtain the DAG presented in Fig. 3. First, we rename each variable of G2.
Indeed, A is replaced by A’ and B is replaced by B’. Next, we add a link from
A to A’ and another one from B to B’. The third step consists to add new
variables C and C’. Finally, we link the variable C and the variable C’ belonging
to each of graphs G1 and G2 respectively. At the semantic level, we apply the
equations, formalized in the Definition 2, to compute the conditional possibility
distributions associated with the fused network. These distributions are showed
in Table 4.
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Fig. 3. The fused network

The conditional possibility distributions associated with the node B’ are com-
puted by applying the last equation given in Definition 3. For instance, we have:
πmax(b

′
1|a′2, b2, c′1) = 0 and πmax(b

′
2|a′2, b2, c′1)=π2(b2|a2) = 0.1.

Also, πmax(b
′
2|a′2, b2, c′2)= 1. Based on conditional possibility distributions

πmax given in different tables, the equation 3 is well verified. For example, we
have:
π1(a2b1)= min(π1(a2), π1(b1|a2)) = 0.3 and π2(a2b1)= min(π2(a2), π2(b1|a2)) =
0.1. On the other hand, we compute the marginal distribution associated with the
merged network as follows : ∀i, j,Πmax(a2b1)=maxa′,b′,c,c′πmax(a2, b1, a

′, b′c, c′)
= maxa′,b′(max(max(πmax(a2, b1, a

′, b′, c1, c′1), πmax(a2, b1, a
′, b′, c1, c′2)),
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Table 4. Conditional possibility distributions πmax

A C C’ πmax(A|C) πmax(C
′|C)

a1 c1 c′1 1 0
a1 c2 c′1 0 1
a2 c1 c′2 0.3 1
a2 c2 c′2 1 0

B A C πmax(B|A,C) B A C πmax(B|A,C)

b1 a1 c1 1 b2 a1 c1 0.2
b1 a1 c2 1 b2 a1 c2 1
b1 a2 c1 0.5 b2 a2 c1 1
b1 a2 c2 1 b2 a2 c2 1

C πmax(C) A’ A C’ πmax(A
′|A,C′) A’ A C’ πmax(A

′|A,C′)

c1 1 a′
1 a1 c′1 1 a′

2 a1 c′1 0
c1 1 a′

1 a1 c′2 1 a′
2 a1 c′2 0

a′
1 a2 c′1 0 a′

2 a2 c′1 0.4
a′
1 a2 c′2 0 a′

2 a2 c′2 1

max(πmax(a2, b1, a
′, b′, c2, c′1), πmax(a2, b1, a

′, b′, c2, c′2))) =
Applying the second equation in Definition 3, we obtain:
maxa′,b′(max(max(0, πmax(a2, b1, a

′, b′, c1, c′2),
max(πmax(a2, b1, a

′, b′, c2, c′1), 0)))
= max(max(max(max(0, πmax(a2, b1, a

′, b′, c1, c′2),
max(πmax(a2, b1, a

′, b′, c2, c′1), 0)))) = max(0, 0.3, 0.1, 0) = 0.3.
Using Definition 3, we apply the third and the fourth equations and by devel-
oping this expression according to the variables a’ and b’, we can show that the
result is checked. So,we have: Πmax(a2, b1) = max(π1(a2b1), π2(a2b1)).

The computations of the process of merging via the maximum operator is achieved
in linear time. Moreover, inference algorithms applied on the merged network, re-
quires adding new links in the step of moralization in the junction tree.

5 Conclusion

Information issued from different sources must be combined to reduce uncer-
tainty and inconsistency. This paper has provided a new approach of data fusion
in the framework of possibility theory. So, conflicting information is modeled by
possibilistic networks and it is merged using the maximum operator in order
to produce a consistent possibilistic network. The main feature of this mode of
combination is that it takes into consideration all available information.
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Abstract. In this paper, an innovative method for estimating mass
functions using Kohonen’s Self Organizing Map is proposed. Our ap-
proach allows a smart mass belief assignment, not only for simple hy-
potheses, but also for disjunctions and conjunctions of hypotheses. This
new method is of interest for solving estimation mass functions problems
where a large quantity of multi-variate data is available. Indeed, the use
of Kohonen map that allows to approximate the feature space dimen-
sion into a projected 2D space (so called map) simplifies the process
of assigning mass functions. Experimentation on a benchmark database
shows that our approach gives similar or better results than other meth-
ods presented in the literature so far, with an ability to handle large
amount of data.

Keywords: Evidence Theory, Belief assignment, Kohonen map, Esti-
mation.

1 Introduction

When it comes to exploit the redundancy and the complementarity of informa-
tion stemming from very varied sources to give a unique representative informa-
tion, the belief function theory, introduced by Dempster [1] and formalized by
Shafer [2], is considered as an appealing formalism in information fusion domain.
Indeed, it offers a mathematical framework that allows the processing of both
imprecise and uncertain information.

The initial theory was improved in different directions, for example through
the work of Dezert-Smarandache [3], a paradoxical reasoning has been proposed.
Despite, the fact that belief function theory performs well in extracting the most
truthful proposition from a multisource context, it nevertheless presents a major
difficulty that is the estimation of basic belief assignments.

If we take a look at the various works that deal with this problem of be-
lief function estimation, we distinguish two main family approaches. Likelihood
based approaches [2,4], require the knowledge, or the estimation, of the condi-
tional probability density for each class. The second family is the distance-based
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approaches [5,6]. However, these two types of estimation present some limits:
among them we can mention the need of the a priori knowledge on the hypothe-
ses which is not always easy to know, especially, for compound hypotheses.

An original method is presented in this paper to estimate mass functions
when a large quantity of multi-variate data is available. In the feature space (in
�

p), operations on Basic Belief Assignment (BBA) can be much more complex
and may not be feasible due to computing time or accuracy consideration. The
proposed method to overcome this limitation is based on Kohonen’s Map that
allows to approximate the feature space dimension into a projected 2D space (so
called map). Then, the use of Kohonen’s map simplifies the process of assigning
mass functions on conjunctions and disjunctions of hypotheses when consider-
ing relative distance of an observation to the map. Thus, it can model at the
same time ignorance, imprecision, paradox as result exploits all the conceptual
contribution of the theory.

2 Evidence Theory

Dempster-Shafer Theory (DST) is used for representing belief on imperfect ob-
servation through the Basic Belief Assignment (BBA), defined on all the subsets
of the frame of discernment Θ, noted 2Θ. In our context, m(·) will have to be
built from the observation provided by a sensor, that is from a sample x ∈ �p.
A BBA m(·) is the mapping from elements of the power set 2Θ onto [0, 1] under
constraints: {

m(x ∈ ∅) = 0∑
A⊆2Θ m(x ∈ A) = 1.

(1)

The frame of discernment Θ is the set of possible answers of the problem
under concern. It is composed of exhaustive and exclusive hypotheses: Θ =
{θ1, θ2, . . . , θN}. From this frame of discernment, the power set noted 2Θ can be
built, including all the disjunctions of hypotheses θi such as θi∪θj or θi∪θj ∪θk...
As discussed above, Dezert-Smarandache theory (DSmT) [3] is considered as
amelioration of beliefs theory. The main idea of DSmT is to work on the hyper-
powerset of the frame of discernment. The hyper-power set DΘ is defined as the
Dedekind’s lattice built from Θ whith ∩ and ∪ operators. For decision making
from mass function, the Generalized Pignistic Transformation [3] noted BetPg

is frequently used:

BetPg(x ∈ A) =
∑

B∈DΘ

CM (B ∩ A)

CM (B)
m(x ∈ B), ∀A ∈ DΘ (2)

where CM is the cardinality within DSmT. The decision is taken by the max-
imum of pignistic probability function BetP (·). Similarly, the Pignistic Trans-
formation BetP can be used within DST framework for decision making.
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3 Overview on Kohonen’s Map

There exist many versions of the Self Organizing Maps (SOM). However, the
basic philosophy is very simple and already effective [7]. A SOM defines a map-
ping from the input space (say �p) onto a regular array of M × N nodes (see
Fig. 1) [8].

wx Nwx
(t3)

Nwx
(t2)

Nwx
(t1)

Fig. 1. A schematic view of a 11×11 Kohonen’s Self Organizing Map. Several topologi-
cal neighborhoods Nwx(ti) of the winning neuron wx are drawn. The size is decreasing
with the number of iterations (t1 < t2 < t3) during the training phase.

A reference vector, also called weighting vector, w(i, j) ∈ �p is associated to
the node at each position (i, j) with 1 � i � N and 1 � j �M . An input vector
x ∈ �p is to be compared to each w(i, j). The best match is defined as output
of the SOM: thus, the input data x is mapped onto the SOM at location (ix, jx)
where w(ix, jx) is the neuron the most similar to x according to a given metric.
SOM performs a non linear projection of the probability density function p(x)
from the high-dimensional input data onto the two-dimensional array.

In practical applications, the Euclidean distance is usually used to compare x
and w(i, j). The node that minimizes the distance between x and w(i, j) defines
the best-matching node (or the so-called winning neuron), and is denoted by the
subscript wx:

‖x − wx‖ = min
1�i�M
1�j�N

‖x − w(i, j)‖. (3)

An optimal mapping would be the one that maps the probability density function
p(x) in the most faithful fashion, preserving at least the local structures of p(x).

It canbe considered also that the SOMachieves a non-uniformquantization that
transforms x to wx by minimizing the given metric. Nevertheless, thanks to the
training phase (detailed below) the neuronsw are located on the map according to
their similarity. Then, when considering neurons w(i, j) located not too far from
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the winning neuronwx, the distance in�
p between x and w(i, j) is not dramati-

cally different from the one between x and wx. That means that in the neighbor-
hood of wx on the map, are located the wining neurons of the neighbors (in �p)
of x. Hence, a class in �p is projected into the map at the same area, remaining
homogeneous. Moreover, whatever the initial shape of the class in the �p feature
space is, the projected class is highly likely to be of isotropic shape in the map.

4 Feature Space for Smart BBA

The proposed smart BBA intends to evaluate the mass of each class in 2Θ or 2D

according to the topology of the observed manifold. Then, two sets of data may
be handled (see Fig. 2): on the first hand the initial observations x and class
centers {C1, C2, . . . , CK} in �p and, on the other hand the so-called winning
neurons wx and the projected class centers wCk

.

C1

C2

C3

x

wC1

wC2

wC3

wx

Feature space �p {1, . . . , N} × {1, . . . ,M} SOM

Fig. 2. Observations in the feature space and their projections into Kohonen’s map.
Note that the neurons wx and wCk can be located on the map through their location
index (n,m) or in �p with their p component value.

Then, Kohonen’s map can be used to build easily BBA and to balance between
conjunction and disjunction when considering relative distance of an observation
to the map. Moreover, the use of Kohonen’s map simplifies the evaluation of the
masses since operations on the maps require calculation on index only, while
operations on the feature space (in �p) may be much more complex (when
dealing with stochastic divergence for instance). So two kinds of distances will
be considered and their related difference will induce uncertainty:

1. d�p(·, ·) which is the distance in �p. It can be defined through the Euclidean
norm L2 (�p) but also through a spectral point of view such as the spectral
angle mapper or the spectral information divergence [9]. It may also be based
on the Kullback-Leibler divergence or the mutual information when dealing
with Synthetic Aperture Radar (SAR) [10].
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2. dmap(·, ·) which is the distance along Kohonen’s map. It is mainly based on
the Euclidean norm and uses the index that locates the 2 vectors on the map:

dmap(w1,w2) =

√
(n1 − n2)

2
+ (m1 −m2)

2
if w1 (resp. w2) is located at

position (n1,m1) (resp. (n2,m2)) on the map.

5 A New Method to Build BBA

This section details a strategy for building a BBA by using Kohonen’s map and
an initial classifier on �p.

Mass of simple hypotheses: The definition of masses of focal elements could
be based on the distance on the feature space. Nevertheless, an appropriated
definition should take into account the variance of the classes to weight each of
them, as it is the case in a likelihood point of view. This weighting is already
performed by the projection onto Kohonen’s map so that, the mass of focal class
is defined as:⎧⎪⎨⎪⎩

m(x ∈ θk) ∼ 1 if wx=wCk

m(x ∈ θk) ∼ dmap(wx,wCk
)
−1∑K

�=1 dmap(wx,wC�
)
−1

otherwise
(4)

where k = 1, 2, . . . ,K, wCk
is the projected class, wx is the winning neurons.

According to eq. (4), we consider that the more the distance dmap(wx,wCk
)

(relatively to the other distances between x and C� on the map) the less the
mass m(x ∈ θk).

Total ignorance case: From the feature space, we may consider that the mass
evaluation of an observation falls into ignorance if its distance to the map is
much more important that the distance of its related class center to the map.
Then, it can be expressed as follows:

m(x ∈ Θ) ∼ 1 − min

(
d�p(x,wx)

d�p(Cx,wCx)
,
d�p(Cx,wCx)

d�p(x,wx)

)
(5)

where Cx is the class center of x, wCx is its projection on the map.

Mass of the conjunction between two classes: The conjunction between two
classes may be defined into the feature space as the space in-between the two
classes. But, one has to account for the variance of each classes that increases
the complexity of this measure. Once again, it is much more convenient to define
the φk ∩ φ� mass into Kohonen’s map, as:

m(x ∈ θk ∩ θ�) ∼ e−γ(z−1)2 (6)

where z = dmap(wx,
wCk

+wC�

2 ), 0 < k, � � K, � 
= k. By adopting eq. (6) we
consider that the value of m(x ∈ θk ∩ θ�) becomes maximal when x reaches the
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middle of [wCk
,wC�

] segment. Eq. (6) yields a value of m(x ∈ φk ∩ φ�) closed
to 1 in the middle. Moreover, m(x ∈ φk ∩ φ�) vanishes when x is far away
from the [wC�

,wCk
] segment. The γ parameter tunes this vanishing behavior.

For example, if we want eq. (6) be over 1
2 between the 1st and the 3rd quartile

of [wCk
,wC�

] segment, then γ should be equal to 2
√
2. For a smaller domain

around the median of [wCk
,wC�

] segment, γ should be greater.

Mass of disjunction between two classes: The ignorance in the decision making
between two classes Ck and C� may be considered to a dual of eq. (6), but here
by considering distances in the feature space. When a sample x is not too far
from class Ck or C�, it is not too difficult to decide if it has too be associated to
the class k or �. But if x is far from Ck and C�, it comes the disjunction. Then,
disjunction mass may be related to:

m(x ∈ θk ∪ θ�) ∼ 1 − tanh(βh) (7)

where h = d�p (Ck,C�)
d�p(x,Ck)+d�p (x,C�)

, 0 < k, � � K, k 
= �. Here, the β parameter

stands for the level of ambiguity. When x is close, in �p, to the segment [Ck, C�],
d(Ck, C�) 0 d�p(x, Ck) + d�p(x, C�) so that z is close to 1, and m(x ∈ θk ∪ θ�)
has to vanish. The more the β, the less the ambiguous mass.

Conjunction and disjunction for more than 2 classes: This construction that
takes into consideration the ratio of distance between 2 classes or the distance
to the middle of 2 classes can be extended to more than 2 classes. For instance,
eq. (6) can be based on the centroid of more than 2 class. Eq. (7) can be general-
ized by the composition of one against one class from a set of K classes, divided
by the sum of distance of x to each of the K class centers. Nevertheless, this
part has not been deeper investigated since those compositions should not have
significative impact on the fusion or the classification results.

Final mass belief function: The complete BBA has to respect eq. (1) constraint
so that is it necessary to apply a normalization step to the unnormalized BBA
obtained by separately calculates the belief masses on simple and compound
hypotheses.

6 Experiments on Benchmark Dataset

In order to highlight some advantages and possible drawbacks of the proposed
SOM-based BBA, the performance of the SOM-based BBA is compared to EV-
CLUS [11] and ECM [6] ones by using dataset provided by the University of
California - Irvine (UCI) Machine Learning Repository1. Seven numerical data
sets out of 270 have been taken into consideration with various amounts of fea-
tures (that correspond to the feature space dimension �p) and number of classes
(from 2 to 7) as detailed in Table 1.

1 The dataset is available at http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Kohonen’s map has been trained with the following parameters: a size of 20×
20 neurons, trained with 200 iterations. An initial neighborhood size Nw(t0) of
10 neurons and a learning rate α(t0) of 0.9. It appears that the SOM-based BBA
yields most of the time the highest classifications results (put in boldface in the
results of Table 2). In each row of Table 2, the first line corresponds to the number
of correctly classified samples, the second line corresponds to the proportion of
samples correctly classified, and the last line shows the computation time. It
is worth noting that when ECM performs better, the SOM-based approach is
close to the best accuracy (73.52 % versus 74.11 % for the benefit of ECM
with the Wine database, and 69.24 % versus 69.62 % with the Statlog Landsat
satellite images database). Equivalent results prove that SOM-based BBA is
just a simplified (i.e. quantized) version of the feature space ECM work with.
Better results are due to the fact that distances on the map (in 2D) are more
appropriated for complex (or non isotropic) class (in pD). EVCLUS is always
below. It seems that the performance ranking between ECM and SOM-based
BBA is not depending on the feature space dimension nor the number of classes
since the Wine and Statlog Landsat satellite image data bases are very different
to each other. Since the SOM-based approach considers a projected feature space
of dimension 2, it may induce on those cases a too coarse approximation of the
manifold in comparison to ECM. Nevertheless, it is worth noting that the benefit
in using a SOM-based approach for BBA is related to the number of samples
to be handled. Fig. 3 shows that the more the number of sample the fastest the
SOM-based approach in comparison to the ECM while yielding the same level
of accuracy. Then the SOM-based approach appears to be a valuable alternative
to handle large data set such as real images for classification purpose. In fact,
distance in �p is more computational demanding than in �2. Indeed, the form
of the class in the SOM is more isotropic, so that no consideration on the shape
of the manifold is to be considered. On the contrary, ECM has to care of the
standard deviation of the classes to build the mass distribution.

Table 1. Characteristics of the UCI datasets used for comparison

Dataset Features classes samples
Banknote authentication 4 2 1372
Pima Indians Diabetes 8 2 768

Seeds 7 3 210
Wine 13 3 170

Statlog (Landsat Satellite) 36 6 6435
Statlog (Image Segmentation) 19 7 2130

Synthetic control chart time series 60 6 600
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Table 2. Classification results of EVCLUS, ECM with decision by BetP and SOM-
based BBA with decision by BetPg

Dataset
Banknote

Pima
Seeds Wine

Statlog Statlog Synthetic control
Indians (Landsat (Image chart

authentication Diabetes Satellite) Segmentation) time series

EVCLUS
843 475 157 103 3027 895 384

61.44 % 61.84 % 74.76 % 60.58 % 47.03 % 42.01 % 64.0 %
1172.2sec 181.7sec 34.3sec 6.7 sec 5857 sec 3657 sec 370 sec

ECM
848 506 189 126 4480 1282 453

61.80 % 65.88 % 90.0 % 74.11 % 69.62 % 55.49 % 72.5 %
3.4sec 3.2sec 0.3sec 0.9sec 480sec 161sec 6.9sec

SOM-
based

1090 549 191 125 4456 1431 501
79.44 % 71.48 % 90.95 % 73.52 % 69.24 % 67.18 % 83.5 %
8.6sec 6.7sec 5.8sec 5.9sec 163sec 84sec 8.0sec

Fig. 3. Computation time depending on the feature space dimension

7 Conclusion

In this article, a new method for mass function construction through Kohonen’s
map has been proposed. Our method performs the assignment of belief masses on
simple, conjunctive and disjunctive hypotheses. So, unlike the other approaches,
it exploits all the conceptual contribution of the theory thanks to its ability to
deal with uncertain and paradoxical data through the proposed BBA. Experi-
ments on a set of benchmark database showed that our approach yields better
accuracy as stated by the confusion matrices. Moreover, the overall SOM-based
BBA algorithm is much less demanding in term of computation so that it is
possible to handle large data set.
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Abstract. Hidden Markov Models (HMMs) are learning methods for
pattern recognition. The probabilistic HMMs have been one of the most
used techniques based on the Bayesian model. First-order probabilistic
HMMs were adapted to the theory of belief functions such that Bayesian
probabilities were replaced with mass functions. In this paper, we present
a second-order Hidden Markov Model using belief functions. Previous
works in belief HMMs have been focused on the first-order HMMs. We
extend them to the second-order model.

Keywords: Belief functions, Dempster-Shafer theory, first-order belief
HMM, second-order belief HMM, probabilistic HMM.

1 Introduction

A Hidden Markov Model (HMM) is one of the most important statistical models
in machine learning [15]. A HMM is a classifier or labeler that can assign label
or class to each unit in a sequence [10]. It has been successfully utilized over
several decades in many applications for processing text and speech such as
Part-of-Speech (POS) tagging [11], named entity recognition [29] and speech
recognition [7]. However, such works in the early part of the period are mainly
based on first-order HMMs. As a matter of fact, the assumption in the first-
order HMM, where the state transition and output observation depend only
on one previous state, does not exactly match with the real applications [13].
Therefore, they require a number of sophistications. For example, even though
the first-order HMM for POS tagging in early 1990s performs reasonably well, it
captures a more limited amount of the contextual information than is available
[27]. As consequence, most modern statistical POS taggers use a second-order
model [3].

Uncertainty theories can be integrated in statistical models such as HMMs:
The probability theory has been used to classify units in a sequence with the
Bayesian model. Then, the theory of belief functions is employed to this statis-
tical model because the fusion proposed in this theory simplifies computations
of a posteriori distributions of hidden data in Markov models. This theory can
provide rules to combine evidences from different sources to reach a certain level
of belief [21,28,24,4,23]. Belief HMMs introduced in [6,12,14,16,25,19,2,8,18], use

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 284–293, 2014.
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combination rules proposed in the framework of the theory of belief functions.
This paper is an extension of previous ideas for second-order belief HMMs. For
the current work, we focus on explaining a second-order model. However, the
proposed method can be easily extended to higher-order models.

This paper is organized as follows: In Sections 2 and 3, we detail probabilistic
HMMs for the problem of POS tagging where HMMs have been widely used.
Then, we describe the first-order belief HMM in Section 4. Finally, before con-
cluding, we propose the second-order belief HMM.

2 First-Order Probabilistic HMMs

POS tagging is a task of finding the most probable estimated sequence of n
tags given the observation sequence of v words. According to [15], a first-order
probabilistic HMM can be characterized as follows:

N The number of states in a model St = {st1, st2, · · · stN}.
M The number of distinct observation symbols.

V = {v1, v2, · · · , vM}.
A = {aij} The set of N transition probability distributions.
B = {bj(ot)} The observation probability distributions in state j.
π = {πi} The initial probability distribution.

Figure 1 illustrates the first-order probabilistic HMM allowing to estimate the
probability of the sequence st−1

i and stj where aij is the transition probability

from st−1
i to stj and bj(ot) is the observation probability on the state stj . Re-

garding POS tagging, the number of possible POS tags that are hidden states
St of the HMM is N . The number of words in the lexicons V is M . The transi-
tion probability aij is the probability that the model moves from one tag st−1

i to
another tag stj . This probability can be estimated using a training data set in su-
pervised learning for the HMM. The probability of a current POS tag appearing
in the first-order HMM depends only on the previous tag. In general, first-order
probabilistic HMMs should be characterized by three fundamental problems as
follows [15]:

– Likelihood: Given a set of transition probability distributions A, an observa-
tion sequence O = o1, o2, · · · , oT and its observation probability distribution
B, how do we determine the likelihood P (O|A,B)? The first-order model
relies on only one observation where bj(ot) = P (oj |stj) and the transition

probability based on one previous tag where aij = P (stj |st−1
i ). Using the

forward path probability, the likelihood αt(j) of a given state stj can be com-

puted by using the likelihood αt−1(i) of the previous state st−1
i as described

below:

αt(j) =
∑
i

αt−1(i)aijbj(ot) (1)
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a [St−1
i ]

Fig. 1. First-order probabilistic and belief HMMs

– Decoding: Given a set of transition probability distributions A, an observa-
tion sequence O = o1, o2, · · · , oT and its observation probability distribution
B, how do we discover the best hidden state sequence? The Viterbi algorithm
is widely used for calculating the most likely tag sequence for the decoding
problem. The Viterbi algorithm can calculate the most probable path δt(j)
which contains the sequence of ψt(j). It can select the path that maximizes
the likelihood of the sequence as described below:

δt(j) = max δt−1(i)aijbj(ot)
ψt(j) = argmaxψt−1(i)aij

(2)

– Learning: Given an observation sequence O = o1, o2, · · · , oT and a set of
states S = {st1, st2, · · · , stN}, how do we learn the HMM parameters for A
and B? The parameter learning task usually uses the Baum-Welch algorithm
which is a special case of the Expectation-Maximization (EM) algorithm.

In this paper, we focus on the likelihood and decoding problems by assuming a
supervised learning paradigm where labeled training data are already available.

3 Second-Order Probabilistic HMMs

Now, we explain the extension of the first-order model to a trigram1 in the
second-order model. Figure 2 illustrates the second-order probabilistic HMM
allowing to estimate the probability of the sequence of three states st−2

i , st−1
j

and stk where aijk is the transition probability from st−2
i and st−1

j to stk, and

bk(ot) is the observation probability on the state stk. Therefore, the second-order
probabilistic HMM is characterized by three fundamental problems as follows:

– Likelihood: The second-order model relies on one observation bk(ot). Unlike
the first-order model, the transition probability is based on two previous tags
where aijk = P (stk|st−2

i , st−1
j ) as described below:

αt(k) =
∑
j

αt−1(j)aijkbk(ot) (3)

However, it will be more difficult to find a sequence of three tags than a se-
quence of two tags. Any particular sequence of tags st−2

i , st−1
j , stk that occurs

1 The trigram is the sequence of three elements, i.e. three states in our case.
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Fig. 2. Second-order probabilistic and belief HMMs

in the test set may simply never have occurred in the training set because of
data sparsity [10]. Therefore, a method for estimating P (stk|st−2

i , st−1
j ), even

if the sequence st−2
i , st−1

j , stk never occurs, is required. The simplest method

to solve this problem is to combine the trigram P̂ (stk|st−2
i , st−1

j ), the bigram

P̂ (stk|st−1
j ), and even the unigram P̂ (stk) probabilities [3]:

P (stk|st−2
i , st−1

j ) = λ1P̂ (s
t
k|st−2

i , st−1
j ) + λ2P̂ (s

t
k|st−1

j ) + λ3P̂ (s
t
k) (4)

Note that P̂ is the maximum likelihood probabilities which are derived from
the relative frequencies of the sequence of tags. Values of λ are such that λ1 +
λ2 + λ3 = 1 and they can be estimated by the deleted interpolation algorithm
[3]. Otherwise, [27] describes a different method for values of λ as below:

λ1 = k3
λ2 = (1 − k3) · k2
λ3 = (1 − k3) · (1 − k2)

(5)

where k2 =
log(C(st−1

j ,stk)+1)+1

log(C(st−1
j ,stk)+1)+2

, k3 =
log(C(st−2

i ,st−1
j ,stk)+1)+1

log(C(st−2
i ,st−1

j ,stk)+1)+2
, and

C(st−2
i , st−1

j , stk) is the frequency of a sequence st−2
i , st−1

j , stk in the training
data. Note that λ1+λ2+λ3 is not always equal to one in [27]. The likelihood of
the observation probability for the second-order model uses B where bk(ot) =
P (ok|stk, st−1

j ).
– Decoding: For second-order model we require a different Viterbi algorithm.

For a given state s at the time t, it would be redefined as follows [27]:

δt(k) = max δt−1(j)aijkbk(ot)
where δt(j) = maxP (s1, s2, · · · , st−1 = si, s

t = sj , o1, o2, · · · , ot)
ψt(k) = argmaxψt−1(j)aijk
where ψt(k) = argmaxP (s1, s2, · · · , st−1 = si, s

t = sj , o1, o2, · · · , ot)

(6)

– Learning: The problem of learning would be similar to the first-order model
except that parameters A and B are different.

With respect to performance measures, different transition probability distri-
butions in [3] and [27] obtain 97.0% and 97.09% tagging accuracy for known
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words, respectively for the same data (the Penn Treebank corpus). Even though
probabilistic HMMs perform reasonably well, belief HMMs can learn better un-
der certain conditions on observations [8].

4 First-Order Belief HMMs

In probabilistic HMMs, A and B are probabilities estimated from the train-
ing data. However, A and B in belief HMMs are mass functions (bbas) [16,8].
According to previous works on belief HMMs, a first-order HMM using belief
functions can be characterized as follows2:
N The number of states in a model

Ωt = {St
1, S

t
2, · · · , St

N}.
M The number of distinct observation symbols V .
A = {mΩt

a [St−1
i ](St

j)} The set of conditional bbas to all possible subsets of
states.

B = {mΩt

b [ot](S
t
j)} The set of bbas according to all possible observations

Ot.

π = {mΩ1
π (SΩ1

i )} The bba defined for the the initial state.
Difference between the first-order probabilistic and belief HMMs is presented

in Figure 1, the transition and observation probabilities in belief HMMs are
described as mass functions. Therefore, we can replace aij by m

Ωt
a [St−1

i ](St
j) and

bj(ot) bym
Ωt

b [ot](S
t
j). The set Ωt has been used to denote states for HMMs using

belief functions [16,8]. Note that sti is the single state for probabilistic HMMs and
St
i is the multi-valued state for belief HMMs. First-order belief HMMs should

also be characterized by three fundamental problems as follows:

– Likelihood: The likelihood problem in belief HMMs is not solved by likeli-
hood, but by using the combination. The first-order belief model relies on
(i) only one observation mΩt

b [ot](S
t
j) and (ii) a transition conditional mass

function based on one previous tag mΩt
a [St−1

i ](St
j). Mass functions of sets

A and B are combined using the Disjunctive Rule of Combination (DRC)
for the forward propagation and the Generalized Bayesian Theorem (GBT)
for the backward propagation [22]. Using the forward path propagation, the
mass function of a given state St

j can be computed as the combination of
mass functions on the observation and the transition as described below:

qΩt
α (St

j) =
∑

mΩt−1
α (St−1

i ) · qΩt
a [St−1

i ](St
j) · qΩt

b (St
j) (7)

Note that the mass function of the given state St
j is derived from the com-

monality function qΩt
α .

– Decoding: Several solutions have been proposed to extend the Viterbi algo-
rithm to the theory of belief functions [16,20,17]. Such solutions maximize
the plausibility of the state sequence. In fact, the credal Viterbi algorithm

2 In the model Ωt, S
t are focal elements.
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starts from the first observation and estimates the commonality distribu-
tion of each observation until reaching the last state. For each state St

j, the

estimated commonality distribution (qΩt

δ (St
j)) is converted back to a mass

function that is conditioned on the previous state. Then, we apply the pig-
nistic transform to make a decision about the current state (ψt(s

t
j)):

qΩt

δ (St
j) =

∑
St−1
i ⊆At−1 m

Ωt−1

δ (St−1
i ) · qΩt

a [St−1
i ](St

j) · qΩt

b (St
j)

ψt(s
t
j) = argmaxSt−1

i ∈Ωt−1
(1 −mΩt

δ [St−1
i ](∅)) · Pt[S

t−1
i ](St

j)
(8)

where At = ∪St−1
j ∈Ωt

ψt(S
t
j) [16].

– Learning: Instead of the traditional EM algorithm, we can use the E2M
algorithm for the belief HMM [18].

To build belief functions from what we learned using probabilities in the
previous section, we can employ the least commitment principle by using the
inverse pignistic transform [26,1].

5 Second-Order Belief HMMs

Like the first-order belief HMM, N , M , B and π are similarly defined in the
second-order HMM. The set A is quite different and is defined as follows:

A = {mΩt
a [St−2

i , St−1
j ](St

k)} (9)

where A is the set of conditional bbas to all possible subsets of states based on
the two previous states. Second-order belief HMMs should also be characterized
by three fundamental problems as follows:

– Likelihood: The second-order belief model relies on one observation
mΩt

b [ot](S
t
k) in a state Sk at time t and the transition conditional mass

function based on two previous states St−2
i and St−1

j , defined by

mΩt
a [St−2

i , St−1
j ](St

k). Using the forward path propagation, the mass function

of a given state St
k can be computed as the disjunctive combination (DRC)

of mass functions on the transition mΩt
a [St−2

i , St−1
j ](St

k) and the observation

mΩt

b (St
k) as described below:

qΩt
α (St

k) =
∑

mΩt−1
α (St−1

j ) · qΩt
a [St−2

i , St−1
j ](St

k) · qΩt

b (St
k) (10)

where qΩt
a [St−2

i , St−1
j ](St

k) is the commonality function derived from the
conjunctive combination of mass functions of two previous transitions. The
conjunctive combination is used to have the conjunction of observations on
previous two states St−2

i and St−1
j . The combined mass function

mΩt
a [St−2

i , St−1
j ](St

k) of two transitionsm
Ωt−1
a [St−2

i ](St−1
j ) andmΩt

a [St−1
j ](St

k)
is defined as follows:

mΩt
a [St−2

i , St−1
j ](St

k) = m
Ωt−1
a [St−2

i ](St−1
j ) ∪© mΩt

a [St−1
j ](St

k) (11)
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The conjunctive combination is required to obtain the conjunction of both
transitions. Note that the mass function of the given state St

k is derived from
the commonality function qΩt

α . We use DRC with commonality functions like
in [16]. Note that the observation only on one previous state is taken into
account in the first-order belief HMM, but the conjunction of observations
on two previous states is considered in the second-order belief HMM.

– Decoding: We accept our assumption of the first-order belief HMM for the
second-order model. Similarly to the first-order belief HMM, we propose
a solution that maximizes the plausibility of the state sequence. The credal
Viterbi algorithm estimates the commonality distribution of each observation
from the first observation till the final state. For each state St

k, the estimated

commonality distribution (qΩt

δ (St
k)) is converted back to a mass function

that is conditioned on a mass function of the two previous states. This mass
function is the conjunctive combination of mass functions of the two previous
states. Then, we apply the pignistic transform to make a decision about the
current state (ψt(s

t
j)) as before:

qΩt

δ (St
k) =

∑
St−1
j ⊆At−1 m

Ωt−1

δ (St−1
j ) · qΩt

a [St−2
i , St−1

j ](St
k) · qΩt

b (St
k)

ψt(s
t
k) = argmaxSt−1

j ∈Ωt−1
(1 −mΩt

δ [St−1
j ](∅)) · Pt[S

t−2
i , St−1

j ](St
k)

(12)

– Learning: Like the first-order belief model, we can still use the E2M algo-
rithm for the belief HMM [18].

Since the combination of mass functions in the belief HMM is required where
the previous observation is already considered in the set of conditional bbas
mΩt

a [St−2
i , St−1

j ], we do not need to refine the observation probability for the
second-order model as in the second-order probabilistic model.

6 Conclusion and Future Perspectives

The problem of POS tagging has been considered as one of the most important
tasks for natural language processing systems. We described such a problem
based on HMMs and tried to apply our idea to the theory of belief functions.
We extended previous works on belief HMMs to the second-order model. Using
the proposed method, we will be able to easily extend the higher-order model
for belief HMMs. Some technical aspects still remain to be considered. Robust
implementation for belief HMMs are required where in general we can find over
one million observations in the training data to deal with the problem of POS
tagging. As described before, the choice of inverse pignistic transforms would be
empirically verified.3 We are planning to implement these technical aspects in
near future.
3 For example, [5] used the inverse pignistic transform in [26] to calculate belief func-
tions from Bayesian probability functions. As matter of fact, the problem of POS
tagging can be normalized and inverse pignistic transforms in [26] did not propose
the case for m(∅).
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The current work is described to rely on a supervised learning paradigm from
labeled training data. Actually, the forward-backward algorithm in HMMs can
do completely unsupervised learning. However, it is well known that EM per-
forms poorly in unsupervised induction of linguistic structure because it tends to
assign relatively equal numbers of tokens to each hidden state [9].4 Therefore, the
initial conditions can be very important. Since the theory of belief functions can
take into consideration of uncertainty and imprecision, especially for the lack of
data, we might obtain a better model using belief functions on an unsupervised
learning paradigm.
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Abstract. Directed evidential networks with conditional belief func-
tions are one of the most commonly used graphical models for analyzing
complex systems and handling different types of uncertainty. A crucial
step to benefit from the reasoning process in these models is to quantify
them. So, we address, in this paper, the issue of estimating parameters in
evidential networks from evidential databases, by applying the maximum
likelihood estimation generalized to the evidence theory framework.

Keywords: Belief Functions, Parameters Estimation, Evidential mod-
els, Evidential DataBases.

1 Introduction

Evidential graphical models have gained, in recent years, an expanding interest
as a powerful tool for modeling and analyzing complex systems and reasoning
under different types of uncertainty based on the belief functions theory.

One of the most commonly applied models in the evidential framework are
the Directed EVidential Networks with conditional belief functions (DEVNs) [3].
On one hand, these models generalize the evidential networks with conditional
belief functions [18] by handling n-ary relations between variables, on the other
hand, unlike probabilistic models such as Bayesian networks [10], they are able
to handle different levels of uncertainty in data.

A DEVN is based on two parts: the graphical part that consists on a directed
acyclic graph with a set of nodes and a set of edges and the numeric parameters
represented by conditional belief functions. Another point of interest of these
networks is their flexibility in representing beliefs. In fact, conditional beliefs in
these models can be expressed according to two different manners: for each node
in the context of its parents (per child node) or for each dependency relation
between a parent node an a child node (per edge).

The majority of works concerning DEVNs address inference algorithms and
reasoning in these networks [3,2,8]. Nevertheless, an essential step before being
able to reason with evidential networks is to quantify them. The data needed
in the quantification process are generally derived from expert opinions or from
data stored in databases.

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 294–303, 2014.
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Thus, we address in this paper the problem of learning parameters in DEVNs
from uncertain data stored in Evidential DataBases (EDB) [1], and this, by
applying the maximum likelihood principle, one of the most statistical methods
generally used in learning BNs [6,7,12].

The paper is organized as follow: In Section 2, we remaind briefly the most im-
portant background notions regarding the belief functions theory. The evidential
data bases are recalled in Section 3. We recall the basic concepts related to the
directed evidential networks with conditional belief functions in section 4. Sec-
tion 5 concerns the maximum likelihood and its use in learning BNs. In Section
6, we present the main purpose of the paper which is the algorithm of learning
parameters in DEVNs with its two variants, per child node and per edge. In the
last Section, we explain the proposed approach through an illustrative example.

2 Belief Functions Theory: Basic Concepts

The belief functions theory, also known as evidence theory or Dempster-Shafer
theory is a general and flexible framework for handling and modeling different
types of uncertainty [13]. In the following, we remind some basic concepts of this
theory, more details can be found in [13,15].

Let Ω be a finite set of exclusive and exhaustive elements called the frame of
discernment and 2Ω its power set.

The portion of belief supporting exactly a proposition A is called the basic
belief assignment (bba), which is a function from 2Ω to [0, 1] such that:∑

A⊆Ω

mΩ(A) = 1 (1)

Any subset A ∈ Ω with mΩ(A) > 0 is called a focal element, and the set of all
these elements is denoted by �(mΩ).

With each mass functionmΩ is associated a belief (belΩ) and plausibility (plΩ)
functions from 2Ω to [0, 1], which give the minimum and maximum amount of
support attributed to A, respectively. These functions are defined as follows:

belΩ(A) =
∑

∅	=B⊆A

mΩ(B) (2)

plΩ(A) =
∑

∅	=B∩A

mΩ(B) (3)

Let mΩ[B](A) denote the conditional basic belief assignment of A given B, it is
defined by Dempster’s rule of conditioning as:

mΩ[B](A) =
∑
C⊆B

mΩ(A ∩ C), (4)

where B̄ is the complement of the proposition B. More details about the rules
of conditioning in the belief functions theory can be found in [14,16].



296 N. Ben Hariz and B. Ben Yaghlane

3 Evidential DataBases

An Evidential DataBase (EDB) or a Dempster-Shafer (DS) database is a
database storing certain or/and uncertain data modeled using the belief func-
tions framework [1].

In an EDB with L lines and C columns (attributes), each attribute c ∈ [1, C]
has a frame of discernment Ωc including its possible values.

Let Vlc be the value of cell in the lth line and cth column, Vlc is an evidential
value defined by a mass function mlc from 2Ωc to [0, 1] such as:

mlc(∅) = 0 and
∑

A⊆Ωc

mlc(A) = 1 (5)

Data in an EDB, can take different levels of imperfection:

– Certain data: when the focal element is a singleton with a mass equal to one.
– Probabilistic data: when all focal elements are singletons.
– Possibilistic data: when focal elements are nested.
– Missing data: when the total amount of evidence is affected to one focal

element which is the frame of discernment.
– Evidential data: including any other type of information.

4 Directed Evidential Networks with Conditional Belief
Functions

Directed EVidential Networks with conditional belief functions (DEVNs) are
proposed in [3] to generalize the evidential networks with conditional belief func-
tions (ENCs) [18] that generalize Bayesian Networks (BNs) [10] for handling
different types of uncertainty using evidence theory framework.

As it is derived from ENCs and BNs, a DEVN is based on two principal parts:

The qualitative level which is modeled by a Directed Acyclic Graph (DAG)
G = (N,E), where N = {N1, ..., Nx} is the set of nodes (variables), and E =
{E1, ..., Ey} is the set of edges coding the different conditional dependencies
between variables.

The quantitative level which is represented by a set of parameters θ modeled
by conditional belief functions. Each node in the DEVN is associated with
an a priori mass function. If it is a root node, adding to this function, the
node is associated with a conditional mass function defined per edge or per
child node.

Each node Ni in a DEVN is a representation of a random variable taking its
values on a frame of discernment ΩNi . Let PA(Ni) and CH(Ni) denote the set
of its parent nodes and the set of its child nodes, respectively. Like in BNs, each
root node in a DEVN is associated with an a priori bbm, but unlike in BNs,
child nodes in DEVNs are associated with both an a priori mass function and a
conditional one.
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Conditional belief functions in DEVNs can be defined in two manners:

– Per child node, as in BNs: for each child nodeNc is associated a conditional
belief function given all its parent nodes PA(Nc). This conditional mass is
denoted by mΩNc [PA(Nc)](Nc).

– Per edge, as in ENCs: the conditional relation between a child node Nc

and a parent node Np ∈ PA(Nc), represented by an edge, is weighted with
a conditional mass function mΩNc [Np](Nc).

These to ways of modeling conditional beliefs makes DEVNs more flexible
than BNs and ENCs and make the quantification of the network easier to an
expert.

5 Maximum Likelihood and Learning in BNs

The issue of parameter estimation from data sets remains an important sub-
ject in statistics and knowledge management problems. One of the well known
statistic methods for estimating parameters of a statistical model is the Maxi-
mum Likelihood (ML) principle [11]. This method is the center of the majority
of approaches of learning parameters in probabilistic models from databases
containing both complete and missing data.

When all variables are observed perfectly, the simplest and most used method
for estimating probabilities in BNs is the ML which measure the probability of an
event by its frequency of occurrence in the database. The estimated probability
to a random variable1 Xi conditionally to its parent nodes PA(Xi) is calculated
as follows:

P (Xi = xk|PA(Xi) = xj) =
Ni,j,k∑
kNi,j,k

, (6)

where Ni,j,k is the number of events for which Xi takes the value xk and its par-
ents takes the configuration of values xj . More details concerning the statistical
learning in BNs can be found in [6,7,12].

Many other learning approaches are developed to estimate parameters from
databases containing missing data, one of the most popular is the Expectation
Maximization (EM) algorithm [4] which is based mainly on the ML estimation.

The likelihood principle and the EM algorithm were generalized, under the
belief functions framework, to the Credal EM [17] and the Evidential EM [5] in
order to handle the imprecision and the uncertainty in data.

The main idea of the extension of the likelihood notion to the evidence frame-
work is to take the classical likelihood, defined originally in the probability frame-
work, weighted by the mass function associated to each variable [5].

Thus, we apply, in the rest of the paper, the maximum likelihood principle
and its generalization in the evidence theory, to develop a new algorithm for
estimating the a priori mass function and the conditional beliefs in a directed
evidential network from data bases storing different types of data: complete,
missing, certain and/or uncertain.

1 Each random variable corresponds to a node in the Bayesian network.
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6 Learning Parameters in DEVNs

We present in this part, the main purpose of the paper which is learning param-
eters in directed evidential networks with conditional belief functions from an
evidential database by applying the maximum likelihood estimation principle.

As mentioned previously, in a DEVN, each node is associated with an a priori
bba and each child node is quantified by a conditional belief function modeled
according to two different approaches: per child node, when the mass function
of each child node is calculated given all its parent nodes, or per edge, when the
relation between a child node and a parent node is evaluated by a conditional
belief.

Let us consider a DEVN with a set of nodes N and a set of edges E and
an EDB with L lines and C columns such that each column corresponds to a
random variable (node) in the DEVN.

Building on the generalization idea of the likelihood principle in the evidence
theory and analogically to the ML in the probability framework expressed by
equation (6), the a priori mass function of a node Ni ∈ N can be calculated as
follows:

mΩNi (Ni = Ak) =

∑|L|
l=1m

ΩNi

lc (Ni = Ak)∑|L|
l=1m

ΩNi

lc (Ni)
, (7)

where Ak is a proposition from 2ΩNi , c denotes the column corresponding to the

node Ni and m
ΩNi

lc is the mass function defining the cell in the lth line and cth

column.
Similarly, we define in equation (8) the conditional mass function of a node

Ni given its parent nodes PA(Ni) = {pa1(Ni), ..., paz(Ni)}:

mΩNi [PA(Ni) = x](Ni = Ak) =

∑|L|
l=1 m

ΩNi
lc (Ni = Ak) ∗

∏
j m

Ωpaj

lcj (paj(Ni) = xj)∑|L|
l=1

∏
j m

Ωpaj

lcj (paj(Ni) = xj)
,

(8)

where x is a configuration of values in which each parent node takes a possible
proposition from its frame of discernment.

These equations are the core of the learning parameters algorithms in directed
evidential networks.

6.1 Learning Algorithm Per Child Node

The process of estimating parameters per child node in a DEVN is based on
two main steps: the estimation of an a priori mass function for each node and
the estimation of the conditional mass function of each child node given all its
parent nodes. This process is detailed formally by Algorithm 1.

Note that this algorithm can be used for learning parameters in Bayesian
networks from probabilistic data.
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Algorithm 1. Learning parameters per child node

Require: DAG = (N,E), Data
Ensure: DEV N = (N,E, θp, θc)

for each node Ni ∈ N do
1. Calculate the a priori mass function mΩNi (Ni)
c ← SelectColumn(Ni,C)

for each proposition Ak in 2ΩNi do
mΩNi (Ak) ←Result of equation(7)

end for
Ni.θp ← mΩNi (A)
2. Calculate the conditional mass function mΩNi [PA](Ni)

if Ni is a child node then
cPA = SelectColumns(PA,C)

for each proposition Ak in 2ΩNi do

for each possible configuration confj do
mΩNi [PA = confj ](Ak) ← Result of equation(8)

end for
end for
Ni.θc ← mΩNi [PA](A)

else
Ni.θc ← ∅

end if
end for

6.2 Learning Algorithm Per Edge

The approach of learning parameters per edge, described in Algorithm 2, aims
to quantify each dependency relation between a parent node and a child node by
a conditional mass function. The step of estimation the a priori mass function
for each node is similar to the first step in Algorithm 1.

Note that this algorithm can be also used for learning parameters in evidential
networks with conditional belief functions from any type of data.

7 Illustrative Example

In order to explain the learning algorithm detailed previously, we present in the
following an illustrative example focusing on a part from ”ASIA” network2 and
a part from a corresponding evidential database modeled in figure 1.

2 The Bayesian network of the classical problem Asia Chest Clinic first described in
[9]
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Algorithm 2. Learning parameters per edge

Require: DAG = (N,E), Data
Ensure: DEV N = (N,E, θp, θc)

for each node Ni ∈ N do
1. Calculate the a priori mass function mΩNi (Ni)
2. Calculate the conditional mass function mΩNi [pa(Ni)](Ni)

if Ni is not a root node then
PA ← Parents(Ni)

for each proposition Aj in 2ΩNi do

for each parent node pa ∈ PA do
c ← SelectColumn(pa, C)
mΩNi [pa = xq](Aj) ← Result of equation(8)
Ni.pa.θc ← mΩNi [pa](A)

end for
end for

else
Ni.θc ← ∅

end if
end for

All variables in ”ASIA” network are binary, we consider in this example, as
shown in figure 1, four variables {A, T,O, L} having the power sets, respectively:
{a, ā, a ∪ ā}; {t, t̄, t ∪ t̄}; {o, ō, o ∪ ō} and {l, l̄, l ∪ l̄}.

Data used in this example are composed from 20 instances and contain differ-
ent levels of imperfection: uncertain attributes, certain attributes and imprecise
attributes.

The different results of applying the learning process to the selected part of
”ASIA” network are shown in figure 2. For each root node (A and L) is associated
an a priori mass function. The node T is quantified by an a priori mass function
mΩT (T ) and a conditional belief knowing its parent node mΩT [A](T ). Note that
in the case of a node having one parent (such as T ), the result of learning
parameters per child node or per edge is the same. For the node O is associated
an a priori mass function mΩO(O), a conditional mass function given all its
parent nodes mΩO [T, L](O) and a conditional mass function given one parent
node mΩO [T ](O) and mΩO [L](O).
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Fig. 1. The graphical structure and the EDB of the network for the Asia Chest Clinic
problem

In the following we present some examples of calculation details in order to
further clarify equations (7) and (8):

• mΩA(A = a)=
∑20

1 m
ΩA
lc (A=a)∑

20
1 (m

ΩA
lc (A=a)+m

ΩA
lc (A=ā)+m

ΩA
lc (A=a∪ā))

= 0+0+0.5+...+1
1+1+0.5+0.5+...+1 =

0.2185

mΩA (A)

a 0.2185

ā 0.558

a ∪ ā 0.2235

mΩT [A](T )

mΩT (T ) a ā a ∪ ā

t 0.45 0.736 0.376 0.353

t̄ 0.55 0.264 0.624 0.647

t ∪ t̄ 0 0 0 0

mΩL (L)

l 0.3

l̄ 0.6

l ∪ l̄ 0.1

Per child node Per edge

mΩO [T,L](O)

l l̄ l ∪ l̄

mΩO (O) t t̄ t ∪ t̄ t t̄ t ∪ t̄ t t̄ t ∪ t̄

o 0.5145 1 0.52 0 0.57 0.425 0 0 0 0

ō 0.3555 0 0.48 0 0.2 0.325 0 1 1 0

o ∪ ō 0.13 0 0 1 0.23 0.25 1 0 0 1

mΩO [T ](O) mΩO [L](O)

mΩO (O) t t̄ t ∪ t̄ l l̄ l ∪ l̄

o 0.45 0.554 0.48 0 0.6 0.558 0

ō 0.55 0.267 0.42 0 0.4 0.22 1

t ∪ ō 0 0.18 0.09 1 0 0.216 0

Fig. 2. The result of applying the learning parameters algorithms on a part of ASIA
network
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• mΩT [A = a](T = t̄) =
∑20

1 m
ΩT
lc (T=t̄)∗mΩA

lc (A=a)∑20
1 m

ΩA
lc

(A=a)
= 1∗0.5+1∗0.2+1∗0.45

0.5+1+0.22+0.2+0.45+1+1 =

0.264

• mΩO [T = t̄, L = l](O = o) =
∑20

1 m
ΩO
lc (O=o)∗mΩT

lc (T=t̄)∗mΩL
lc (L=l)∑20

1 m
ΩT
lc (T=t̄)∗mΩL

lc (L=l)
=

1∗1∗1+1∗1∗1+1∗1∗0.6
1∗1+1∗1+1∗1+1∗1+1∗1 = 0.52

Note that if we use probabilistic data (as in node T), then these equations give
the same result as equation (6) which explains the fact that applying our first
algorithm (for the case per child node) to learn the parameters of the DEVNs
from a complete database gives the same results as the algorithm based in the
maximum likelihood for learning parameters in Bayesian networks.

It is important to mention that if a configuration value of a parent node does
not exist in the database, then the total amount of belief will be assigned to
the total ignorance. For instance the proposition {t ∪ t̄} does not appear in the
database (the value {0, 1} in T column), this makes mΩO [T = t ∪ t̄, L = l](O =
o ∪ ō) equal to mΩO [T = t ∪ t̄, L = l̄](O = o ∪ ō) equal to mΩO [T = t ∪ t̄, L =
l∪ l̄](O = o∪ ō) equal to 1. This can be a simple solution for the problem of zero
counts in the data.

8 Conclusion

We have proposed, in this paper, new algorithms for learning parameters in
directed evidential networks with conditional belief functions by applying the
generalization of the maximum likelihood estimation in the evidence theory for
handling uncertainty in data, stored in evidential databases.
As a future work, we intend to study the complexity of the proposed algorithm
by applying it to complex systems and big databases. Another center of interest
will be to improve the equation used in the proposed algorithms to deal with
some problems such as zero counts and overfitting.
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Abstract. We describe a method for quantifying the uncertainty in sta-
tistical forecasts using belief functions. This method consists in two steps.
In the estimation step, uncertainty on the model parameters is described
by a consonant belief function defined from the relative likelihood func-
tion. In the prediction step, parameter uncertainty is propagated through
an equation linking the quantity of interest to the parameter and an aux-
iliary variable with known distribution. This method allows us to com-
pute a predictive belief function that is an alternative to both prediction
intervals and Bayesian posterior predictive distributions. In this paper,
the feasibility of this approach is demonstrated using a model used ex-
tensively in econometrics: linear regression with first order autoregressive
errors. Results with macroeconomic data are presented.

Keywords: Dempster-Shafer theory, evidence theory, prediction, sta-
tistical inference.

1 Introduction

Forecasting can be defined as the task that consists in making statements about
events that have not yet been observed. Such a task is of the utmost importance
in many areas, in particular in economics. This is the reason why a vast literature
has been devoted to this subject (see, e.g., [11]). Typically, there is a distinction
between judgmental forecasting that relies on expert opinions, and statistical
forecasting, which is based on past data and statistical models. In practice, both
sources of knowledge (expert opinions and data) are often used jointly to achieve
more reliable forecasts.

Usually, statements about future events cannot be made with full confidence.
It is thus very important to quantify the uncertainty of such statements. In
statistical forecasting, this is usually achieved using either prediction intervals
or Bayesian posterior predictive distributions. Prediction intervals at level α are
intervals that would contain the quantity of interest 100α% of the time if they
were repeatedly computed for an infinite number of data sets drawn from the
same distribution as the one that is postulated to have generated the observed
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data. However, their use to quantify the uncertainty pertaining to predictions
based on a single dataset can be questioned (see, e.g., a thorough discussion in [7]
on this issue). Also, it is not clear how prediction intervals can be combined with
uncertain information from other sources such as expert opinions, and their use
in a decision making context with utilities is also problematic. Bayesian posterior
distributions do not have these limitations, but they require the specification of
a prior probability distribution on the parameters, which poses some theoretical
and practical difficulties when prior knowledge of parameter values is actually
weak or even inexistent.

The Dempster-Shafer theory of belief functions is now a well established for-
mal framework for modeling uncertainty. Recently, applications to statistical in-
ference have gained revived interest [4,5,10]. The belief function approach does
not have the same limitation as Bayesian inference as it does not require to spec-
ify a prior probability distribution. Both approaches coincide, though, when a
probabilistic prior is available. Recently, a statistical forecasting method based on
a parametric model and belief functions has been introduced [10]. This method
is based on two steps: estimation and prediction. In the estimation step, a con-
sonant belief function is built from the likelihood function, as initially proposed
by Shafer [12] and recently justified in Ref. [5]. In the prediction step, the un-
certainty on the parameter value is propagated through an equation linking the
quantity of interest to the parameter and auxiliary variables with known distri-
bution. The result is a predictive belief function quantifying the uncertainty on
the prediction.

In [10], the above approach was applied to a very specific model in the field
of marketing econometrics. In this paper, we further develop the approach and
apply it to econometric forecasting using a widely used model: multiple regres-
sion with serial correlation. The rest of this paper is organized as follows. The
inference and general forecasting method will first be recalled in Section 2. The
approach will then be particularized to the linear regression model in Section 3.
Finally, Section 4 will conclude the paper.

2 Inference and Prediction Using Belief Functions

Basic knowledge of the theory of belief functions will be assumed throughout
this paper. A complete exposition in the finite case can be found in Shafer’s
book [12]. The reader is referred to [2] for a quick introduction on those aspects
of this theory needed for statistical inference. In this section, the definition of a
belief function from the likelihood function and the general forecasting method
introduced in [10] will be recalled in Sections 2.1 and 2.2, respectively.

2.1 Inference

Let Z ∈ Z denote the observable data, θ ∈ Θ the parameter of interest and fθ(z)
the probability mass or density function describing the data-generating mecha-
nism. Statistical inference has been addressed in the belief function framework
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by many authors, starting from Dempster’s seminal work [3]. In [12], Shafer
proposed, on intuitive grounds, a more direct approach in which a belief func-
tion BelΘz on Θ is built from the likelihood function. This approach was applied
to statistical tests for auditing in [14,8]. It was further elaborated by Wasser-
man [15] and discussed by Aickin [1], among others. It was recently justified
by Denœux in [5], from three basic principles: the likelihood principle, compat-
ibility with Bayesian inference and the least commitment principle [13]. The
least committed belief function verifying the first two principles, according to
the commonality ordering [6] is the consonant belief function BelΘz , the contour
function of which is the relative likelihood function

plz(θ) =
Lz(θ)

supθ′∈Θ Lz(θ′)
. (1)

This belief function is called the likelihood-based belief function on Θ induced
by z. The corresponding plausibility function can be computed from plz as

PlΘz (A) = sup
θ∈A

plz(θ), (2)

for all A ⊆ Θ. The focal sets of BelΘz are the levels sets of plz(θ) defined as

Γz(ω) = {θ ∈ Θ|plz(θ) ≥ ω}, (3)

for ω ∈ [0, 1]. These sets may be called plausibility regions and can be interpreted
as sets of parameter values whose plausibility is greater than some threshold
ω. The belief function BelΘz is equivalent to the random set induced by the
Lebesgue measure λ on [0, 1] and the multi-valued mapping Γz from [0, 1] to 2Θ.
In particular, the following equalities hold:

BelΘz (A) = λ({ω ∈ [0, 1]|Γz(ω) ⊆ A}) (4a)

PlΘz (A) = λ({ω ∈ [0, 1]|Γz(ω) ∩A 
= ∅}), (4b)

for all A ⊆ Θ such that the above expressions are well-defined.

2.2 Forecasting

The forecasting problem can be defined as follows: given some knowledge about θ
obtained by observing past data z (represented here by a belief function), we wish
to make statements about some random new data W ∈ W whose conditional
distribution gz,θ(w) given Z = z depends on θ. For instance, in a time series
forecasting problem, z = (y1, . . . , yT ) may denote the observed data until time
T and w = (yT+1, . . . , yT+h) the future data to be forecasted.

A solution to the forecasting problem can be found using the sampling model
used by Dempster [3] for inference. In this model, the new data W is expressed
as a function of the parameter θ and an unobserved auxiliary variable ξ taking
values in Ξ with known probability distribution μ independent of θ:

W = ϕ(θ, ξ), (5)
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where ϕ is defined in such a way that the distribution ofW for fixed θ is gz,θ(w).
When W is a real random variable, a canonical model of the form (5) can be
obtained as W = G−1

z,θ(ξ), where Gz,θ is the conditional cumulative distribution

function (cdf) of W given Z = z, G−1
z,θ is its generalized inverse and ξ has a

continuous uniform distribution in [0, 1].
The belief function BelΘz on Θ, the probability measure μ and relation (5)

between W , θ and ξ joinly define a belief function on W . This belief function is
induced by a random set defined as follows. Let Γ ′

z be the multi-valued mapping
from [0, 1]×Ξ to 2W that maps each pair (ω, ξ) to the set of values ϕ(θ, ξ) such
that θ ∈ Γz(ω); formally,

Γ ′
z : [0, 1] × Ξ → 2W

(ω, ξ) → ϕ(Γz(ω), ξ).
(6)

As the distribution of ξ does not depend on θ, ξ and the underlying random
variable ω associated with BelΘz are independent. We thus have a random set
defined by the product measure λ⊗μ on [0, 1]×Ξ and the multi-valued mapping
Γ ′
z. This random set induces predictive belief and plausibility functions on W

defined as

BelWz (A) = (λ⊗ μ) ({(ω, ξ)|Γ ′
z(ω, ξ) ⊆ A}) , (7a)

PlWz (A) = (λ⊗ μ) ({(ω, ξ)|Γ ′
z(ω, ξ) ∩ A 
= ∅}) , (7b)

for all A ⊆ W. When closed-form expressions for these quantities are not avail-
able, they can be approximated by Monte Carlo simulation [10].

3 Application to Linear Regression

In this section, the approach summarized above will be applied to the multiple
linear regression model. When using this model for time series forecasting, the
errors cannot usually be assumed to be independent. We will thus consider the
case where the error terms are serially correlated and follow a first order au-
toregressive [AR(1)] process (see, e.g., [11]). The corresponding linear model is

Yt = x′
tβ + εt, t = 1, . . . , T, (8)

where Yt is the dependent variable at time t, xt = (1, x1t, . . . , xpt)
′ is the vector

of independent variables at time t (considered to be fixed), β = (β0, . . . , βp)
′ is

the vector of regression coefficients and εt is the error at time t, assumed to be
related to the error at the previous time step by the equation

εt = ρεt−1 + Ut, (9)

where ρ is a correlation parameter such that |ρ| < 1 and Ut is an error term. It
is assumed that Ut ∼ N (0, σ2) and Cov(Ut, Us) = 0 whenever t 
= s. The vector
of parameters is thus θ = (β, σ, ρ)′ ∈ Rp+3. Inference and prediction for this
model will be addressed in Sections 3.1 and 3.2, respectively.
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3.1 Inference

Let z = (y1, . . . , yT ) be the observed data. The likelihood function for the above
model can be written as:

Lz(θ) = fθ(y1)

T∏
t=2

fθ(yt|yt−1). (10)

Now, we can notice that ρyt−1 = ρx′
t−1β + ρεt−1. Subtracting this expression

from (8), we get Yt − ρyt−1 = (xt − ρxt−1)
′β + Ut. Hence,

Yt|yt−1 ∼ N (ρyt−1 + (xt − ρxt−1)
′β, σ2). (11)

Now, it is easy to see that �(εt) = 0 and Var(εt) = σ2/(1 − ρ2). Consequently,

we can take Y1 ∼ N
(
x′
1β,

σ2

1−ρ2

)
, from which the expression of the likelihood

function (10) can easily be obtained. The contour function (1) is then plz(θ) =

Lz(θ)/Lz(θ̂), where θ̂ is the maximum likelihood estimate (MLE) of θ. Several
specific iterative procedures have been proposed to maximize the likelihood for
this model [11]. However, any non linear optimization algorithm can be used.

Given J ⊂ {1, . . . , p+ 3}, the marginal contour function for θJ is

plz(θJ ) = max
{θj,j 	∈J}

plz(θ), (12)

which can be computed numerically using a non linear constrained optimization
algorithm. More generally, the plausibility of any hypothesis H ⊂ Θ can be
computed as

Plz(H) = max
θ∈H

plz(θ). (13)

It thus makes sense to reject H if its plausibility is smaller than some threshold.
An interesting connection with the classical theory of significance tests can be
made if we notice that Plz(H) is exactly the likelihood ratio statistic for H .
It is known that, under regularity conditions and under H , the large sample
distribution of −2 lnPlz(H) is chi-squared, with degrees of freedom equal to the
number r of restrictions imposed. Consequently, rejecting hypothesis H if its
plausibility is smaller than exp(−χ2

r;1−α/2), where χ
2
r;1−α is the 1 − α-quantile

of the chi-square distribution with r degrees of freedom, is a testing procedure
with significance level approximately equal to α. Of particular interest in linear
regression are hypotheses of the form H : ρ = 0 and H : βj = 0.

Example 1. As an example, let us consider the wage-productivity data from [9,
page 460]. These data consist in indexes of real compensation per hour (Y ) and
output per hour (x) in the business sector of the U.S. economy for the period
1959 to 1998. The base of the indexes is 1992=100. We consider the following
model:

Yt = β0 + β1xt + β2x
2
t + εt. (14)

The MLEs are β̂0 = −12.9, β̂1 = 1.85, β̂2 = −7.13 × 10−3, σ̂ = 0.680 and
ρ̂ = 0.559. The marginal contour functions for parameters β0, β1, β2 and ρ are
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shown in Figure 1. The 0.15 horizontal line corresponds to the 5% critical value
exp(−χ2

1;0.95/2). We can see that both β2 and ρ are significantly different from
0, which means that the relation between wages and productivity is certainly non
linear and autocorrelation is very likely to be present. The intercept β0, however,
is not significantly different from 0.
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Fig. 1. Marginal contour functions for parameters β0 (a), β1 (b), β2 (c) and ρ (d)

3.2 Forecasting

Let us assume that we have observed the data z = (y1, . . . , yT ) up to time T and
we wish to predict future values of the dependent variableW = (YT+1, . . . , YT+h)
from time T + 1 to T + h. We can easily show by induction that

YT+j = ρjyT + (xT+j − ρjxT )
′β + σ

j∑
k=1

ρj−kξk, (15)
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for j = 1, . . . , h, where ξ1, . . . , ξh are independent random variable with stan-
dard normal distribution. We thus have a ϕ-equation of the form (5) with
ξ = (ξ1, . . . , ξh) ∈ Ξ = Rh following an h-dimensional standard normal dis-
tribution.

As explained in Section 2.2, this equation allows us to define a belief function
on W = Rh. Here, the focal sets Γ ′

z(ω, ξ) are subsets of Rh, which cannot be
easily described exactly. They can be approximated by boxes, i.e., Cartesian
products of intervals of the form

B(ω, ξ) = [Y L
T+1(ω, ξ), Y

U
T+1(ω, ξ)] × . . .× [Y L

T+h(ω, ξ), Y
U
T+h(ω, ξ)], t (16)

where Y L
T+j(ω, ξ) and Y

U
T+j(ω, ξ) are, respectively, the minimum and maximum

of (15) under the constraint plz(θ) ≥ ω, for j = 1, . . . , h. As explained in [10],
the plausibility of any proposition W ∈ A for A ⊂ Rh can be approximated by
Monte Carlo simulation as

PlWz (A) ≈ 1

N
# {i ∈ {1, . . . , N}|B(ωi, ξi) ∩ A 
= ∅} , (17)

where # denotes cardinality and (ωi, ξi), i = 1, . . . , N are N independent draws
of (ω, ξ).

Example 2. Let us consider again the wage-productivity data of Example 1.
Figure 2 displays the forecasts made at time T = 1988 for the period 1989-1998.
To make these predictions, the parameters have been estimated using the data
from 1959 to 1988. The graph shows the point predictions

ŷ(T + h) = ρ̂jyT + (xT+j − ρ̂jxT )
′β̂, (18)

as well as predictive quantile intervals [10] at levels 50%, 25% and 5%. We recall
that the predictive quantile interval at level α for YT+j is (qLα , q

U
1−α], where q

L
α is

the α-quantile of Y L
T+j and qU1−α is the (1 − α)-quantile of Y U

T+j. By definition,

the plausibility that YT+j is below qLα and the plausibility that YT+j is above qU1−α

are both equal to α. We can see that the true values yT+j remain most of the time
within the 25% quantile intervals, and always within the 5% quantile intervals.
Figure 3 shows the plausibility that Y1993 lies in the interval [y − δ, y + δ] as a
function of y, for different values of δ.

4 Conclusions

In business and economics, forecasts are typically used for decision-making and
strategic planning. When aggregating predictions from numerical models with
other information, decision-makers need to assess the uncertainty of the fore-
casts. Describing this uncertainty in a faithful and accurate way is thus a very
important issue. In this paper, this issue has been addressed in the Dempster-
Shafer framework. Our method for computing predictive belief functions has
been applied to a relatively simple but widely used model for time series fore-
casting: linear regression with serial correlation. We note that, for this model,
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Fig. 2. Predictions for the wage-productivity data.The solid line represents the true
values of real wage/hour as a function of time, the crosses show the point predictions
and the interrupted lines correspond to the predictive quantile intervals at levels 50%,
25% and 5%.
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the variance of prediction errors cannot be determined exactly, making it diffi-
cult to compute prediction intervals [11, page 215]. The proposed method can be
easily implemented using Monte Carlo simulation. Bayesian posterior predictive
distributions are recovered when a prior distribution on the model parameter is
specified. Model combination using this approach as well as theoretical analysis
of the asymptotic properties of the method are left for further study.
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Abstract. In this paper, we develop a method to find the uncertain
consequent by fusing the uncertain antecedent and the uncertain impli-
cation rule. In particular with Dempster-Shafer theoretic models utilized
to capture the uncertainty intervals associated with the antecedent and
the rule itself, we derive bounds on the confidence interval associated
with the rule consequent. We derive inequalities for the belief and plau-
sibility values of the consequent and with least commitment choice they
become equations. We also demonstrate the consistency of our model
with probability and classical logic.

Keywords: Belief, Plausibility, Fusion, Implication rule, Antecedent,
Consequent, Uncertainty.

1 Introduction

Implication rules, which take the form “if A, then B” or, as is often expressed,
A =⇒ B, constitute the backbone of reasoning and inference engines. A large
volume of existing work addresses the extraction of such rules from databases
and their use in various application scenarios. However, most of these works
assume that the evidence/information at hand is “perfect”, which, in practice,
is far from the truth. Databases are rife with imperfect (e.g., ambiguous, vague,
or incomplete) entries rendering the rule antecedent A, the rule =⇒ itself, and
hence the rule consequent B to be imperfect. Even otherwise, one cannot expect
to get “perfect” rules when only finite databases are available for rule extraction.

Probabilistic and fuzzy models are perhaps the two most commonly used ap-
proaches to capture imperfect rules [4],[10]. This current work of ours is based on
Dempster-Shafer (DS) theory [12] which can capture a wider variety of imper-
fections, provide interval-based models of the underlying uncertainties, and can
be considered a generalization of probability mass functions (p.m.f.s). Several
previous works deal with DS theory (DST) based modeling of imperfect rules:
in [6],[7], DST fusion/combination strategies are employed to get results that
are most similar to ours, but general bounds and inequalities that we derive are
absent and the approach is different; in [2], emphasis is placed on satisfying the

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 313–320, 2014.
c© Springer International Publishing Switzerland 2014



314 J.N. Heendeni et al.

material implications of propositional logic statements; [11] designs a complete
uncertain logic framework (imperfect rules being a special case) which is com-
patible with classical (perfect) logic [10]. We take a different view: we do not
impose compatibility with classical logic in imperfect domains; rather, we expect
compatibility only when the domain is perfect, so that our model is very general
and all probability and classical logic are special cases.

We model our imperfect rules via DST Fagin-Halpern (FH) conditionals [5].
While the use of the Bayesian conditional has been criticized as a model of
probabilistic imperfect rules [9],[2], we demonstrate that the DST FH condition-
als can be used as an effective interval-based model of imperfect rules to fuse
with imperfect antecedent. Given the uncertainty intervals associated with the
rule antecedent and the rule itself, we derive explicit lower and upper bounds
for the uncertainty interval of the rule consequent. Then we explicitly show its
consistency with Bayesian inference and classical logic.

2 Preliminaries

Basic DST Notions. Let Θ = {θ1, · · · , θM} denote the Frame of Discern-
ment (FoD) which contains the discrete set of mutually exclusive and exhaustive
propositions. The power set 2Θ, i.e., the set containing all the possible subsets
of Θ, is 2Θ. For arbitrary A ⊆ Θ, A denotes those singletons that are not in A.

As usual, mΘ(·) : 2Θ �→ [0, 1] is a basic belief assignment (BBA) or mass
assignment where

∑
A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. Propositions that receive

non-zero mass are the focal elements; the set of focal elements is the core FΘ.
The triplet E = {Θ,FΘ,mΘ} is the body of evidence (BoE).

Given a BoE, E ≡ {Θ,FΘ,mΘ}, the belief function BlΘ : 2Θ �→ [0, 1]
is BlΘ(A) =

∑
B⊆AmΘ(B). The plausibility function PlΘ : 2Θ �→ [0, 1] is

PlΘ(A) = 1 −BlΘ(A). The uncertainty interval associated with A is
[BlΘ(A), P lΘ(A)].

Of the various notions of DST conditionals abound in the literature, the Fagin-
Halpern (FH) conditional [5] possesses several attractive properties and offers a
unique probabilistic interpretation and hence a natural transition to the Bayesian
conditional notion [5], [3], [14].

Definition 1 (FH Conditionals). For the BoE E = {Θ,FΘ,mΘ} and A ⊆ Θ
s.t. BlΘ(A) 
= 0, the conditional belief BlΘ(B/A) : 2

Θ �→ [0, 1] and conditional
plausibility PlΘ(B/A) : 2

Θ �→ [0, 1] of B given A are

BlΘ(B/A) =
BlΘ(A ∩ B)

BlΘ(A ∩B) + P lΘ(A ∩B)
; P lΘ(B/A) =

P lΘ(A ∩ B)

P lΘ(A ∩B) +BlΘ(A ∩B)
.

3 Modelling and Fusion

3.1 Model Assumption

We model the implication rule by FH conditionals. Consider the implication rule
A =⇒ B, where A denotes the antecedent, B denotes the consequent, and =⇒
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denotes the rule R. There might be situations where A and B belong to two
different BoEs. In that case a common BoE which contains both A and B has
to be considered. Therefore without loss of generality we assume antecedent and
consequent are in same BoE. We consider the uncertainty of the rule R and it
is modeled as follows;

Bl(R) = Bl(B/A); Pl(R) = Pl(B/A) (1)

Additionally if we have evidence on A =⇒ B, which we model by Bl(B/A) and
Pl(B/A), more finer results can be obtained for the consequent. Later with
results, we conclude that these conditionals are a good way to model the impli-
cation rules.

3.2 Fusion

The purpose of this paper is to find the uncertainty intervals of the consequent
given the uncertainty intervals of antecedent and the rule. For simplicity, we will
use the following notation:

Bl(A)=α1; Pl(A)=β1; Bl(B)=α2; Pl(B)=β2;

Bl(B/A)=αr; Pl(B/A)=βr; Bl(B/A)=αr; Pl(B/A)=βr, (2)

Results: We obtain following relations for belief and plausibility of
the consequent.
If knowledge of antecedent and knowledge of both A =⇒ B and A =⇒ B are
available, following lower and upper bounds can be obtained for the belief and
plausibility respectively.

α2 ≥ α1αr + (1 − β1)αr. (3)

β2 ≤ α1βr + (1 − β1)βr + (β1 − α1). (4)

We call them General Bounds.

Least Commitment (LC) Choice. The principle of minimum or least com-
mitment (LC) [13], [1] dictates that we are least committed and rely on available
evidence only, i.e., select the lower bound for α2 and the upper bound for β2.
The corresponding LC choice;

α2 = α1αr + (1 − β1)αr. (5)

β2 = α1βr + (1 − β1)βr + (β1 − α1). (6)

If knowledge of antecedent and knowledge of only A =⇒ B are available the
relations become;

α2 ≥ α1αr. (7)

β2 ≤ 1 − α1(1 − βr). (8)
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We call them Relaxed Bounds. Since we are using only the implication
A =⇒ B, these are the bounds for the imperfect implication. With the LC
choice these bounds become following equations.

α2 = α1αr. (9)

β2 = 1 − α1(1 − βr). (10)

Uncertainty. The upper bound for the uncertainty of the General Bounds;

β2 − α2 ≤ (β1 − α1) + α1(βr − αr) + (1 − β1)(βr − αr). (11)

The above term for the upper bound of the uncertainty has an interesting intu-
itive interpretation: the uncertainty interval of the consequent is bounded above
by the uncertainty of the antecedent plus the uncertainties of the rules A =⇒ B
and A =⇒ B weighted by their corresponding belief terms; Bl(A) = α1 and
Bl(A) = 1− β1. And it can be easily shown that this term, the upper bound for
the uncertainty, is always less than or equal to 1, which is correct and intuitive.
The lower bound for the uncertainty is 0 since by definition β2 ≥ α2. (Note that
we define α2 and β2 as belief functions and then find relations for them). And
also it is clear that the relations which were obtained for β2 are always greater
than or equal to the relations which were obtained for α2.

The inequalities can be written in one line;
0 ≤ α1αr ≤ α1αr + (1 − β1)αr ≤ α2 ≤ β2 ≤ α1βr + (1 − β1)βr + (β1 − α1) ≤
1 − α1(1 − βr) ≤ 1 and it is apparent that when more knowledge (The term
knowledge refers to the knowledge of belief and plausibility values.) is available
the bounded uncertainty interval of the consequent gets narrower. When there
is no knowledge of implication rules, the uncertainty interval of the consequent
is [0, 1], when knowledge of antecedent and A =⇒ B is available the interval
becomes [α1αr, 1 − α1(1 − βr)], when antecedent and both A =⇒ B, A =⇒ B
are available the interval becomes [α1αr+(1−β1)αr, α1βr+(1−β1)βr+(β1−α1)]
and the knowledge of consequent is available it is [α2, β2].

Proofs: Without loss of generality we assumed that A and B are in same BoE.
Therefore;

Bl(B) = Bl(B ∩ A) +Bl(B ∩ A) +
∑

∅	=P⊆(B∩A)

∅	=Q⊆(B∩A)

m(P ∪Q). (12)

Bl(B) ≥ Bl(B ∩ A) +Bl(B ∩ A), (13)

We know that [8] Bl(A) ≤ Bl(B ∩A) + Pl(B ∩A). This, together with the FH
conditionals (where Bl(A) 
= 0) can then be used to write

Bl(A)Bl(B/A) ≤ Bl(B ∩ A). (14)
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This inequality holds true for Bl(A) = 0 as well. Substitute A for A in (14):

Bl(A)Bl(B/A) ≤ Bl(B ∩ A). (15)

Use (13), (14) and (15), and use the fact that Bl(A) = 1 − Pl(A) with notation
(2) to get (3);

α2 ≥ α1αr + (1 − β1)αr.

Substitute B for B in (13),(14), and (15) to get,

Bl(B) ≥ Bl(A)Bl(B/A) +Bl(A)Bl(B/A). (16)

Use the facts; Bl(B) = 1 − Pl(B), Bl(B/A) = 1 − Pl(B/A) and Bl(B/A) =
1 − Pl(B/A) with notation (2) to get (4);

β2 ≤ α1βr + (1 − β1)βr + (β1 − α1).

If the knowledge of A =⇒ B is unavailable, we relax the rule by assuming total
uncertainty which is [αr, βr] = [0, 1] in (3) and (4) to get (7) and (8);

α2 ≥ α1αr.

β2 ≤ 1 − α1(1 − βr).

4 Consistency with Probability and Classical Logic

4.1 Consistency with Probability

For p.m.f.s, we have (a) Pr(B) = Pr(B ∩A)+Pr(B ∩A), which corresponds to
(12), except that the additional summation term vanishes and the inequality (13)
reduces to an equality; and (b) Pr(B∩A) = Pr(A)Pr(B|A), which corresponds
to (14), except that the inequality reduces to an equality. Therefore, instead of
the bounds for α2 and β2, we get equalities identical to the LC choice.

α2 = α1αr + (1 − β1)αr; β2 = α1βr + (1 − β1)βr + (β1 − α1). (17)

When the belief and plausibility are equal for each proposition, DST models
reduce to p.m.f.s. The belief and plausibility (which are now identical) of each
proposition then yield the probability of that same proposition. Suppose the
antecedent and the rules A =⇒ B and A =⇒ B are probabilistic, i.e.,

α1 = β1 = Pr(A); αr = βr = Pr(B/A); αr = βr = Pr(B/A). (18)

Substitute in (17) to get α2 = β2 = α1αr + (1 − α1)αr. This corresponds to
Pr(B) = Pr(A)Pr(B|A) + Pr(A)Pr(B|A).



318 J.N. Heendeni et al.

4.2 Consistency with Classical Logic

Note that α1 = β1 = 1 and α1 = β1 = 0 imply the occurrence or non-occurrence
of proposition A with 100% confidence. Though FH conditionals are not defined
when α1 = β1 = 0 [5] we have shown that our relations are valid even α1 = β1 =
0, further if we take a limiting argument and let α1 = β1 tend to 0 in the limit and
the result will be same as if we substitute 0 for both α1 and β1 in the equations.
We associate the two cases α1 = β1 = 1 and α1 = β1 = 0 with the logical
‘Truth’ and logical ‘False’ in classical logic. For example, with α1 = β1 = {0, 1}
and α2 = β2 = {0, 1}, Table 1 shows the truth table of A =⇒ B. To see the
consistency with classical logic, we now use α1 = β1 = {0, 1}, αr = βr = {0, 1},
and αr = βr = {0, 1} with (5) and (6) (Note that (3) and (4) become (5) and
(6) in classical logic case as in probabilistic case). See Table 2. The results for
α2 = β2 in Table 2 can be expressed as (A∧ (A =⇒ B))∨ (¬A∧ (¬A =⇒ B)) =
(A ∧ (¬A ∨B)) ∨ (¬A ∧ (A ∨B)) = B.

Table 1. Truth Table for A =⇒ B in Classical Logic

α1 = β1 α2 = β2 A =⇒ B

0 0 1
0 1 1
1 0 0
1 1 1

Table 2. When we have both A =⇒ B and A =⇒ B for the Classical Logic Case
obtained from (5) and (6)

α1=β1 αr=βr αr=βr α2 β2 α2=β2

0 0 0 0 0 =⇒ 0
0 0 1 1 1 =⇒ 1
0 1 0 0 0 =⇒ 0
0 1 1 1 1 =⇒ 1
1 0 0 0 0 =⇒ 0
1 0 1 0 0 =⇒ 0
1 1 0 1 1 =⇒ 1
1 1 1 1 1 =⇒ 1

Now consider the implication case; (9) and (10). (Note that (7) and (8) become
(9) and (10) in classical logic case).

Let us compare the entries of Table 3 (obtained from (9) and (10)) and Table 1
(truth table for A =⇒ B in classical logic). (a) Antecedent is true: See lines 3-4
where both tables show identical behavior. (b) Antecedent is false: See lines 1-2
where the tables behave differently. (b.1) When rule is true: the consequent can
take 0 or 1 in both tables. Note that the information in lines 1-2 of Table 1 are
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Table 3. When we have only A =⇒ B for the Classical Logic Case obtained from (9)
and (10)

α2 	= β2 in general
α1 = β1 αr = βr α2 β2 α2 β2

0 0 0 1 =⇒ 0 1
0 1 0 1 =⇒ 0 1
1 0 0 0 =⇒ 0 0
1 1 1 1 =⇒ 1 1

captured in line 2 of Table 3 which explains when antecedent is false though
implication rule is true the consequent can be true or false. (b.2) When rule is
false: this is not in Table 1 whereas line 1 of Table 3 not only allows this, but
it also allows the consequent to take either 0 or 1 value which explains when
antecedent is false and the implication rule is false the consequent can be true
or false.

From these tables it is clear that the relations we developed are consistent
with classical logic as well as they better explain the classical logic behaviour of
implication rules than conventional implication truth table.

5 Illustrative Example

As an illustrative simple example, consider red and black balls, and 3 urns A,
B, and C: urn A has 3 red, 5 black, plus 2 additional balls; urn B has 5 red, 2
black, plus 3 additional balls; and urn C has 3 red, 5 black, plus 2 additional
balls. The additional balls could be any combination of red and black balls.

First we select urn A and randomly take out a ball (first trial). If we get a
red ball (RB), we select urn B; otherwise, if we get a black ball (BB), we select
urn C. Then we take out a ball from the selected urn (second trial). What are
the belief and plausibility values of getting a RB in the second trial?

In the DST framework, let [α1, β1], [αr, βr], and [α2, β2] denote the belief and
plausibility values corresponding to getting a RB in the first trial, getting a RB
in the second trial given that the first trial yields a RB, and getting a RB in
the second trial, respectively. Therefore, [α1, β1] = [0.3, 0.5], [α1, β1] = [0.5, 0.7],
[αr, βr] = [0.5, 0.8], [αr, βr] = [0.3, 0.5], and [α2, β2] = [0.36, 0.65] (computed by
accounting for all the possibilities).

Let us now see what our results yield: the general bounds yield 0.30 ≤ α2 ≤
β2 ≤ 0.69; the relaxed bounds yield 0.15 ≤ α2 ≤ β2 ≤ 0.94. Both these contain
[α2, β2] = [0.36, 0.65]. Also note that the general bounds are much tighter than
the relaxed bounds (which ignore the information in [αr, βr]).

6 Conclusion
We have derived mathematical relations to belief and plausibility values of a
consequent when the belief and plausibility values of corresponding antecedent
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and implication rule are given, by modelling the implication rule with DST FH
conditionals. The results and their consistency with probability and classical
logic demonstrate the reasonability of modelling the uncertain implication rules
by DST FH conditionals.

Further the results are more general and flexible than the previous works since
the derivations are not imposed by any probabilistic or classical logic relations
which are special cases of this model.
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Abstract. When combining belief functions by conjunctive rules of
combination, conflicts often appear, which are assigned to empty set by
the non-normalised conjunctive rule or normalised by Dempster’s rule
of combination in Dempster-Shafer theory. Combination of conflicting
belief functions and interpretation of their conflicts is often questionable
in real applications; hence a series of alternative combination rules were
suggested and a series of papers on conflicting belief functions have been
published and conflicts of belief functions started to be investigated.
This theoretical contribution introduces a new definition of conflict

between two belief functions on a general finite frame of discernment. Its
idea is based on Hájek-Valdés algebraic analysis of belief functions, on our
previous study of conflicts of belief functions, where internal conflicts of
belief functions are distinguished from a conflict between belief functions,
and on the decomposition of a belief function into its conflicting and
non-conflicting parts. Basic properties of this newly defined conflict are
presented, analyzed and briefly compared with our previous approaches
to conflict as well as with Liu’s degree of conflict.

Keywords: belief functions, Dempster-Shafer theory, uncertainty,
Dempster’s semigroup, internal conflict, conflict between belief functions,
non-conflicting part of belief function, conflicting part of belief function.

1 Introduction

Complications of highly conflicting belief function combination, see e.g., [2, 6, 27],
have motivated a theoretical investigation of conflicts between belief functions
(BFs) [8, 16, 21–25]. The problematic issue of an essence of conflict between belief
functions (BFs), originally defined as m ∩©(∅) by the non-normalised version of
Dempster’s rule ∩©, was first mentioned by Almond [1] in 1995, and discussed
further by Liu [22] in 2006. Almond’s counter-example has been overcome by
Liu’s progressive approach. Unfortunately, the substance of the problem has not
thus been solved as positive conflict value still may be detected in a pair of
mutually non-conflicting BFs.

Further steps ahead were presented in our previous study [8]. New ideas con-
cerning interpretation, definition, and measurement of conflicts of BFs were in-
troduced there. Three new approaches to interpretation and computation of

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 321–330, 2014.
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conflicts were presented: combinational conflict, plausibility conflict, and com-
parative conflict. Unfortunately, none of those captures the nature of conflict
sufficiently enough yet; thus these approaches need further elaboration. Never-
theless, the very important distinction between conflict between BFs and internal
conflicts in individual BFs is pointed out there; and the necessity to distinguish
between a conflict and difference among BFs is emphasized.

When the mathematical properties of the three approaches to BF conflicts
were analyzed, there appeared a possibility of expressing a BF Bel as Dempster’s
sum of non-conflicting BF Bel0 with the same plausibility decisional support as
the original BF Bel has and of indecisive BF BelS which does not prefer any
of the elements in the corresponding frame of discernment — see [9]. A new
measure of conflict between BFs is based on that approach.

2 Preliminaries

We assume classic definitions of basic notions from theory of belief functions
(BFs) [26] on a finite frame of discernment Ωn = {ω1, ω2, ..., ωn}, see also [5–
7]. We say that BF Bel is non-conflicting when conjunctive combination of Bel
with itself does not produce any conflicting belief masses (when (Bel ∩©Bel)(∅) =
0, i.e., Bel ∩©Bel = Bel ⊕ Bel), i.e. whenever Pl(ωi) = 1 for some ωi ∈ Ωn.
Otherwise, BF is conflicting, i.e., it contains some internal conflict [8].

Let us recall normalised plausibility of singletons1 ofBel: Pl P is the Bayesian
BF (i.e., probability distribution on Ωn in fact) Pl P (Bel) (or simply Pl P

if corresponding Bel is obvious) such, that Pl P (ωi) = Pl({ωi})∑
ω∈Ω Pl({ω}) , where

Pl is plausibility corresponding to Bel [3, 7] and alternative Smets’ pignistic

probability BetP (ωi) =
∑

ωi∈X
m(X)
|X| . An indecisive BF (or non-discriminative

BF) is a BF which does not prefer any ωi ∈ Ωn, i.e., a BF which gives no
decisional support for any ωi ∈ Ωn (it either gives no support as the vacuous
BF (V BF ), gives the same support to all elements as symmetric BFs give, or
Pl P (Bel) = Un (Pl P (ω) = 1

n for any ω ∈ Ωn). SPl = {Bel |Pl P (Bel) = Un}.
We can represent BFs by enumeration of their m-values, i.e., by (2n−1)-tuples

or by (2n−2)-tuples as m(Ωn) = 1 −
∑

X�Ωn
m(X); thus we have pairs (a, b) =

(m({ω1}),m({ω2})) for BFs on Ω2.
Hájek-Valdés algebraic structureD0 of these pairs (called d-pairs) with Demp-

ster’s rule ⊕ (called Dempster’s semigroup) and its analysis [19, 20, 28] were
further studied and generalised by the author, e.g., in [5, 10]. There are distin-
guished d-pairs 0 = (0, 0) (i.e., vacuous BF) and 0′ = (12 ,

1
2 ), −(a, b) = (b, a),

homomorphisms23 h : h(a, b) = (a, b) ⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ) and f : f(a, b) =

(a, b) ⊕ −(a, b) = (a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ). We will use the following sub-
sets of d-pairs: S = {(a, a)}, S1 = {(a, 0)}, S2 = {(0, b)}, and G = {(a, 1 − a)}.
1 Plausibility of singletons is called contour function by Shafer [26], thus P l P (Bel)
is a normalisation of contour function in fact (thus

∑
ω∈Ω P l P (ω) = 1).

2 Note that h(a, b) is an abbreviation for h((a, b)), similarly for f(a, b).
3 0′ and h are generalised by Un=(

1
n
, 1
n
, ..., 1

n
, 0, 0, ..., 0) and h(Bel)=Bel⊕Un on Ωn.
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We can express BFs on Ω2 (d-pairs) by a 2-dimensional triangle, see Fig. 1.
Complexity of the structure grows exponentially with cardinality of the frame
of discernment, e.g., we have a 6-dimensional structure on Ω3, see [9, 10].

Fig. 1. D0. Homomorphism h is in this
representation a projection ofD0 to group
G on G = {(a, 1 − a)} along the straight
lines running through the point (1, 1). All
of the d-pairs lying on the same ellipse
(running through points (0, 1) and (1, 0))
are mapped by homomorphism f to the
same d-pair in semigroup on S = {(s, s)}.

Fig. 2. Non-conflicting part (a0, b0) and
conflicting part (s, s) of a BF (a, b) on a
2-element frame of discernment Ω2

3 Conflicts of Belief Functions

Internal conflicts IntC(m) which are included in particular individual BFs are
distinguished from conflict between BFs C(m1,m2) in [8]; the entire sum of
conflicting masses is called total conflict TotC(m1,m2); and three approaches to
conflicts were introduced: combinational, plausibility and comparative.

Unfortunately, there are not yet any precise formulas, but only bounding in-
equalities for combinational conflicts: 1

2TotC(m,m)) ≤ IntC(m) ≤ TotC(m,m),
TotC(m1,m2) − (IntC(m1)+IntC(m2)) ≤ C(m1,m2) ≤ TotC(m1,m2).

Internal plausibility conflict of BF Bel is defined as Pl-IntC(Bel) = 1 −
maxω∈ΩPl({ω}), where Pl is the plausibility equivalent to Bel.

Plausibility conflict between BFs Bel1 and Bel2 is defined by the formula
Pl-C(Bel1, Bel2) = min(

∑
ω∈ΩPlC(Bel1,Bel2)

1
2 |Pl P (Bel1)(ω)−Pl P (Bel2)(ω)|,

(m1 ∩©m2)(∅) ), where conflicting set ΩPlC(Bel1, Bel2) is the set of elements ω ∈
Ω with conflicting Pl P values [8]. For an analysis and improvement of Pl-C
and analogously defined pignistic conflict Bet-C see [11, 12, 15].

The idea of comparative conflictness / non-conflictness is a specification of
basic belief masses (m-values) to smaller focal elements, which fit focal elements
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of the other BF as much as possible. The comparative conflict between BFs Bel1
and Bel2 is defined as the smallest difference of such more specified basic belief
assignments derived from the input m1 and m2.

The above three approaches were compared with Liu’s degree of conflict cf
in [8]; cf is defined as cf(mi,mj) = (m ∩©(∅), difBetPmj

mi ) in [22], difBetP
mj
mi is

defined as difBetP
mj
mi = maxA⊆Ω(|BetPmi(A) −BetPmj (A)|).

Analysing these three approaches to conflicts [8], especially plausibility conflict
Pl-C, the most elaborated of the approaches, a possibility of decomposition of
a belief function into its conflicting and non-conflicting parts was observed.

We can use the important property of Dempster’s combination, which is re-
specting the homomorphisms h and f , i.e., respecting the h-lines and f -ellipses,
when two BFs are combined on a two-element frame of discernment [5, 19, 20, 28],
see Fig 2. Using this property and two technical lemmata from [9] we obtain:

Theorem 1. Any BF (a, b) on a 2-element frame of discernment Ω2 is Demp-
ster’s sum of its unique non-conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique
conflicting part (s, s) ∈ S, which does not prefer any element of Ω2, i.e.,

(a, b) = (a0, b0) ⊕ (s, s). It holds true that s = b(1−a)
1−2a+b−ab+a2 = b(1−b)

1−a+ab−b2 and

(a, b) = (a−b
1−b , 0) ⊕ (s, s) for a ≥ b; and similarly that s = a(1−b)

1+a−2b−ab+b2 =
a(1−a)

1−b+ab−a2 and (a, b) = (0, b−a
1−a ) ⊕ (s, s) for a ≤ b.

An algebraic analysis of Dempster’s semigroup on Ω3 is currently in develop-
ment. We have only a simple description of the set of indecisive BFs, the most
basic algebraic substructures on Dempster’s semigroup on Ω3 now [10]. Thus we
do not have an analogy of Theorem 1 for BFs defined on general finite frames,
and existence of their unique conflicting part is still an open problem.

On the other hand, we have already proven homomorphic properties of h :
h(Bel) = Bel ⊕ Un and also existence of a unique non-conflicting part Bel0 for
any BF Bel on any finite frame of discernment Ωn [9].

Theorem 2. For any BF Bel defined on a general finite Ωn there exists a unique
consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel)

for any BF BelS for which BelS ⊕Un = Un (Especially also h(Bel0) = h(Bel)).

Algorithm 1. (Computing the non-conflicting part of a BF). Take all element(s)
with maximal contour value (plausibility of singletons); they create the least focal
element of Bel0; assign to it the m-value equal to the difference between the
max and max but one (different) contour values. A cycle: among the remaining
elements (if any remains) take again all the element(s) with maximal contour
value and add them to the previous focal element, thus you obtain a new focal
element of Bel0 (m-value: the corresponding difference between different contour
values again). Repeat the cycle until Ωn is obtained with m-value equal to min
contour value. For a positive minimal contour value include Ωn among focal
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elements of Bel0. For a non-consistent BF Bel (Pl({ωi}) < 1 for any ωi ∈ Ωn)
we need final normalisation of Bel0.

More formally (a construction of the set of focal elements SFE and basic belief
assignment m defined on SFE):

FE := ∅; SFE := ∅; Ω := Ωn

Max Pl := Pl({ω}), where ω∈Ωn s. t. Pl({ω}) ≥ Pl({ω′}) for any ω′ ∈Ωn

Min Pl := Pl({ω}) where ω∈Ωn s. t. Pl({ω}) ≤ Pl({ω′}) for any ω′∈Ωn

Max1 := {ω ∈ Ω |Pl({ω}) = Max Pl}
Ω := Ω \ Max1
Max2 := {ω ∈ Ω |Pl({ω}) ≥ Pl({ω′}) for any ω′∈Ω}
while Max2 
= ∅ do

FE := FE ∪ Max1; SPE := SPE ∪ {FE}
m(FE) := Pl({ω1}) − Pl({ω2}), where ω1 ∈Max1, ω2 ∈Max2
Max1 := Max2; Ω := Ω \ Max1
Max2 := {ω ∈ Ω |Pl({ω}) ≥ Pl({ω′}) for any ω′∈Ω}

end while
if Min Pl > 0 then

SFE := SPE ∪ Ωn (as FE ∪ Max1 = Ωn now)
m(Ωn) := Min Pl

end if
if Max Pl < 1 then normalisation of m (because

∑
X⊆Ωn

m(X) = Max Pl)
end if

4 Conflict between Belief Functions Based on Their
Non-conflicting Parts

4.1 Motivation and Definition of a New Measure of Conflict

One of the main problems of the previous definitions of conflict between BFs is
the fact that the defined conflict usually includes some part (or even entire in
the original Shafer’s definition) of internal conflicts which are included inside the
BFs in question. The other frequent problem is that the definitions of conflict
between BFs are incorrectly related to distance or difference between the BFs.

In the following Theorem 1 we have unique decomposition of any belief func-
tion Bel on Ω2 into its non-conflicting and conflicting parts Bel = Bel0 ⊕BelS .
There is no conflict in Bel0 and entire internal conflict of Bel is included in BelS
(as we suppose BelS to be non-conflicting with any BF for all BelS such that
h(BelS) = 0′). Unfortunately, we do not have such a decomposition for BFs on
a general finite frame of discernment Ωn (this topic is still under investigation).
Nevertheless, according to Theorem 2, we have a unique non-conflicting part
Bel0 for any BF Bel on Ωn, such that Bel0 does not include any part of internal
conflict of the original BF Bel.

Thus (m′
0 ∩©m′′

0)(∅) = TotC(Bel′0, Bel
′′
0 ) = C(Bel′0, Bel

′′
0 ) holds true for any

couple of BFs Bel′, Bel′′ on Ωn, their con-conflicting parts Bel′0, Bel′′0 and the
related bbas m′

0, m
′′
0 . Using these facts, we can define the conflict between BFs
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Bel′ and Bel′′ as the conflict between their non-conflicting parts Bel′0 and Bel′′0
(as conflicting parts Bel′S, Bel

′′
S are mutually non-conflicting and both of them

are non-conflicting with both non-conflicting parts Bel′0 and Bel′′0 ):

Definition 1. Let Bel′, Bel′′ be two belief functions on n-element frame of
discernment Ωn = {ω1, ω2, ..., ωn}. Let Bel′0 and Bel′′0 be their non-conflicting
parts and m′

0, m
′′
0 the related basic belief assignments (bbas). We define conflict

between BFs Bel′ and Bel′′ as

Conf(Bel′, Bel′′) = mBel′0 ∩©Bel′′0
(∅) = (m′

0 ∩©m′′
0)(∅).

Example 1. Let us suppose Ω3, now; and four BFs m′, m′′, m′′′, and m′′′′ given
as follows:

X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω3

m′(X) : 0.375 0.100 0.225 0.10 0.20
m′′(X) : 0.250 0.175 0.175 0.20 0.05 0.05 0.10
m′′′(X) : 0.350 0.250 0.25 0.05 0.10
m′′′′(X) : 0.100 0.200 0.40 0.00 0.00 0.30

Pl P ′ = (0.45, 0.20, 0.35), Pl P ′′ = (0.40, 0.35, 0.25), Pl P ′′′= (0.50, 0.40, 0.10),
Pl P ′′′′= (0.40, 0.45, 0.15),m′

0 = (1045 , 0, 0, 0,
15
45 , 0;

20
45 ),m

′′
0 =(0.125, 0, 0, 0.25, 0, 0;

0.625), m′′′
0 = (0.20, 0, 0, 0.60, 0, 0; 0.20), m′′′′

0 = (0, 5
45 , 0,

25
45 , 0, 0;

15
45 ). Thus,

Conf(Bel′, Bel′′) = 0 = Conf(Bel′, Bel′′′) = Conf(Bel′′, Bel′′′); and
Conf(Bel′, Bel′′′′) = 10

45 · 5
45 + 5

45 · 15
45 = 5

81 ; Conf(Bel
′′, Bel′′′′) = 5

45 · 5
40 = 1

72 ;
Conf(Bel′′′, Bel′′′′) = 10

50 · 5
45 = 1

45 .

Let us also present some highly conflicting examples. For simplicity we con-
sider Ω3 again; for examples on larger frames of discernment see [14].

Example 2. Let us suppose Ω3, again; and two pairs of highly conflicting BFs
m′, m′′, and m′′′, m′′′′ now:

X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω3

m′(X) : 0.9 0.1
m′′(X) : 0.9 0.1
m′′′(X) : 1.0
m′′′′(X) : 0.3 0.1 0.6

Pl P ′ = (0.9, 0.0, 0.1), Pl P ′′ = (0.0, 0.9, 0.1), Pl P ′′′= (0.0, 0.0, 1.0), Pl P ′′′′=
( 9
16 ,

7
16 , 0.0), m

′
0=(89 , 0, 0, 0,

1
9 , 0; 0), m

′′
0 =(0, 89 , 0, 0, 0,

1
9 , ; 0), m

′′′
0 =(0, 0, 1.0, 0, 0,

0; 0), m′′′′
0 =(29 , 0, 0,

7
9 , 0, 0; 0).

Thus, Conf(Bel′, Bel′′) = 8
9 · 8

9 + 8
9 · 1

9 + 8
9 · 1

9 = 80
81 = 0.98765432.

Conf(Bel′, Bel′′′)= 8
9 =Conf(Bel

′′, Bel′′′); and Conf(Bel′′′, Bel′′′′)= 2
9+

7
9 =1.0.

(Of course there is Conf(Bel′, Bel′′′′) = 0 and small conflict Conf(Bel′′, Bel′′′′).)
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4.2 An Analysis of Properties of the Measure of Conflict Conf

Let us present properties of Conf now, for proofs of the statements see [14].

Lemma 1. Conflict Conf between belief functions is symmetric: Conf(Bel′,
Bel′′) = Conf(Bel′′, Bel′).

Lemma 2. Any BF BelSPl ∈ SPl is non-conflicting with any other BF on Ωn:
Conf(BelSPl, Bel) = 0 for any Bel defined on Ωn and any BF BelSPl ∈ SPl =
{Bel |Pl P (Bel) = Un}.

Corollary 1. (i) Any BF BelS0 ∈ S0 = {(a, a, ...., a, 0, 0, .....0; 1−na) | 0 ≤ a ≤
1
n} is non-conflicting with any other BF Bel defined on Ωn, i.e., Conf((a, a, ....,
a, 0, 0, .....0; 1 − na), Bel) = 0. This specially holds true also for 0 and Un.
(ii) Any symmetric BF BelS ∈ S = {Bel |m(X) = m(Y ) for |X | = |Y |} is
non-conflicting with any other BF Bel defined on Ωn, i.e., Conf(BelS , Bel) = 0.

Theorem 3. Let Bel′ and Bel′′ be general BFs defined on an n-element frame
of discernment Ωn, let Bel′0 and Bel′′0 be their unique non-conflicting parts,
and X ′ = {ω ∈ Ωn |Pl′({ω}) ≥ Pl′({ω′}) for any ω′ ∈ Ωn}, X ′′ = {ω ∈
Ωn |Pl′′({ω}) ≥ Pl′′({ω′}) for any ω′ ∈ Ωn}. The following statements are
equivalent:
(i) BFs Bel′ and Bel′′ are mutually non-conflicting, i.e. Conf(Bel′, Bel′′) = 0,
(ii) The least focal elements of Bel′0 and Bel′′0 have non-empty intersection,
(iii) X ′ ∩X ′′ 
= ∅.

Corollary 2. (i) For any BFBelon Ωn the following holds: Conf(Bel, Bel)=0.
(ii) For any couple of BF Bel′ and Bel′′ defined on Ωn such that Pl P ′ =
Pl P ′′ the following holds true: Conf(Bel′, Bel′′) = 0.
(iii) For any couple of BFs (a, b) and (c, d) defined on Ω2 such that BetP (a, b)=
BetP (c, d) the following holds true: Conf((a, b), (c, d)) = 0.

Note that assertion (iii) holds true just for BFs defined on Ω2. Thus, on general
Ωn, there exist mutually conflicting BFs with same pignistic probabilities, see
Example 3.

Example 3. Let us suppose Ω3, now; and two BFs m′ and m′′ given as follows:

X : {ω1} {ω2} {ω3} {ω1, ω2} Ω3

m′(X) : 0.21 0.22 0.44 0.10 0.03
m′′(X) : 0.01 0.02 0.44 0.50 0.03

BetP ′= (0.27, 0.28, 0.45) = BetP ′′, Pl P ′= ( 34
116 ,

35
116 ,

47
116), Pl P

′′= ( 54
156 ,

55
156 ,

47
156),

m′
0 = (0, 0, 1247 , 0, 0,

1
47 ;

34
47 ), m

′′
0 = (0, 1

55 , 0,
7
55 , 0, 0;

47
55 ), Conf(Bel

′, Bel′′) =
8·12
47·55 = 96

2585 = 0.037137. Thus the conflict between BFs is small, but it is
positive.

Theorem 4. Let Bel′ and Bel′′ be arbitrary BFs on a general finite frame of
discernment Ωn given by bbas m′ and m′′. For conflict Conf between Bel′ and
Bel′′ it holds that

Conf(Bel′, Bel′′) ≤ (m′ ∩©m′′)(∅).
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Despite a simple idea and the simple definition of conflict Conf between BFs,
there are many variants of explicit formulas for computation of the conflict, due
to different ordering of m-values of focal elements of the BFs. For illustration,
we present only the simplest case of BFs on a 2-element frame of discernment:

Conf((a, b), (c, d)) =
a− b

1 − b
· d− c

1 − c
if a>b & c<d,

analogously for a<b & c>d, Conf((a, b), (c, d)) = 0 otherwise.
In general, we have just to follow Definition 1: to compute non-conflicting

parts Bel′0 and Bel′′0 of both BFs in question (Algorithm1) and simply apply ∩©.

Martin’s Axioms of Conflict between Belief Functions. There are the
following axioms of conflict between belief functions presented in [23]:

(A1) : Conf(Bel′, Bel′′) ≥ 0,
(A2) : Conf(Bel, Bel) = 0,
(A3) : Conf(Bel′, Bel′′) = Conf(Bel′′, Bel′),
(A4) : Conf(Bel′, Bel′′) ≤ 1.

All of these axioms4 are satisfied by the conflict Conf according our Defini-
tion 1. Martin underlines, that he does not assume triangle inequality Conf(Bel′,
Bel′′′) ≤ Conf(Bel′, Bel′′)+Conf(Bel′′, Bel′′′). Note, that our definition of the
conflict is the case, where triangle inequality does not hold true, see Example 4.

In addition to these axioms, we should mention also important properties
from Theorem 4 and Lemma 1 resp. its corollary on symmetric belief functions.

Example 4. Let Bel′ = (0.4, 0.1, 0.1, 0.2, 0, 0.1; 0.1), Pl P ′ = ( 7
15 ,

5
15 ,

3
15 ), Bel

′′=
(0.3, 0.2, 0.1, 0.1, 0, 0.1; 0.2),Pl P ′′=( 6

16 ,
6
16 ,

4
16),Bel

′′′=(0.1, 0.2, 0.3, 0.1, 0, 0.2; 0.1),
Pl P ′′′= ( 3

15 ,
6
15 ,

6
15 ), Bel

′
0 = (27 , 0, 0,

2
7 , 0, 0;

3
7 ), Bel

′′
0 = (0, 0, 0, 26 , 0, 0;

4
6 ), Bel

′′′
0 =

(0,0, 0, 0, 0, 36 ;
3
6 ),Conf(Bel

′, Bel′′′)= 1
7 �0=Conf(Bel′, Bel′′)+Conf(Bel′′, Bel′′′).

5 Open Problems for Future Research

We have a simply defined conflict between two belief functions on a general finite
frame of discernment. Nevertheless, to complete this study of conflicts of BFs
we will have to define and analyze also internal conflicts of individual BFs.

Two main open issues remain: The first one is a question of precise inter-
pretation of the conflicting part of a belief function and its relationship to the
internal conflict of the BF on a 2-element frame of discernment. First results are
presented in [13].

The second, more complex issue is a study of internal conflict of BFs on
a general finite frame of discernment. This also includes a question whether
a decomposition of a general BF exists to its non-conflicting and conflicting
parts; consequently, a generalisation of Hájek-Valdés algebraic analysis of BFs
to a general frame of discernment is concerned, namely a generalisation of the
operation −(a, b) = (b, a) and of homomorphism f .

As another open question remains a further elaboration of the theoretic prin-
ciples of the presented results with those from [16] and [23].

4 There is also (A5), unfortunately mistyped or incorrectly formulated in [23], see [14].
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6 Conclusion

In this study, we introduced a new definition of conflict Conf between belief func-
tions on a general finite frame of discernment. Its properties were compared with
our previous approaches [8], and also with Liu’s approach [22]. Conf is a simpli-
fication of plausibility conflict Pl-C, while keeping its nature. Conf also specifies
the size of the conflict between belief functions in a way which is compatible with
the combinational conflict. Thus, we can consider Conf as an improvement of
both the combinational- and the plausibility-conflict approaches.

The presented theoretical results improve general understanding of conflict
between belief functions and the entire nature of belief functions. Correct un-
derstanding of conflicts may, consequently, improve combination of conflicting
belief functions in their practical applications.
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Abstract. Marginal problem in the framework of evidence theory is
introduced in a way analogous to probabilistic one, to address the ques-
tion of whether or not a common extension exists for a given set of
marginal basic assignments. Similarities between these two problem types
are demonstrated, concerning necessary condition for the existence of an
extension and sets of all solutions. Finally, product extension of the set
of marginal basic assignments is introduced as a tool for the expression
of a representative in a closed form.

Keywords: Marginal problem, extension, product extension.

1 Introduction

The marginal problem – which addresses the question of whether or not a com-
mon extension exists for a given set of marginal distributions – is one of the most
challenging problem types in probability theory. The challenges lie not only in
a wide range of the relevant theoretical problems (probably the most important
among them is to find conditions for the existence of a solution to this prob-
lem), but also in its applicability to various problems of statistics [4], computer
tomography [7], and artificial intelligence [12]. Recently it has also been stud-
ied in other frameworks, for example, in possibility theory [10] and quantum
mathematics [8].

In this paper we will introduce an evidential marginal problem analogous
to that encountered in the probabilistic framework. We will demonstrate the
similarities between these frameworks concerning necessary conditions, and sets
of solutions; finally we will also introduce product extension of the set of marginal
basic assignments.

The paper is organised as follows: after a brief overview of necessary concepts
and notation (Section 2), we will introduce the evidential marginal problem,
necessary condition, and the set of solutions in Section 3; and in Section 4 we
will deal with product extension.

2 Basic Concepts and Notation

In this section we will, as briefly as possible, recall basic concepts from evidence
theory [9] concerning sets and set functions.
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For an index set N = {1, 2, . . . , n}, let {Xi}i∈N be a system of variables,
each Xi having its values in a finite set Xi. In this paper we will deal with
a multidimensional frame of discernment XN = X1 × X2 × . . . × Xn, and its
subframes (for K ⊆ N)

XK = ×i∈KXi.

Throughout this paper, XK will denote a group of variables {Xi}i∈K when
dealing with groups of variables on these subframes.

ForM ⊂ K ⊆ N and A ⊂ XK , we denote by A↓M a projection of A into XM :

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M},

where, for M = {i1, i2, . . . , im},

x↓M = (xi1 , xi2 , . . . , xim) ∈ XM .

In addition to the projection, in this text we will also need its inverse operation
that is usually called a cylindrical extension. The cylindrical extension of A ⊂
XK to XL (K ⊂ L) is the set

A↑L = {x ∈ XL : x↓K ∈ A} = A× XL\K .

A more complex instance is to make a common extension of two sets, which
will be called a join [1]. By a join of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N),
we will understand a set

A �# B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that, for any C ⊆ XK∪L, it naturally holds C ⊆ C↓K �# C↓L, but
generally C 
= C↓K �# C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just
their Cartesian product, A �# B = A× B, and if K = L then A �# B = A ∩ B.
If K ∩ L 
= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then A �# B = ∅ as well. Generally,
A �# B = A↑K∪L ∩ B↑K∪L), i.e. , a join of two sets is the intersection of their
cylindrical extensions.

In evidence theory [9], two dual measures are used to model the uncertainty:
belief and plausibility measures. Each of them can be defined with the help of an-
other set function called a basic (probability or belief) assignment m on XN , i.e.,
m : P(XN ) −→ [0, 1], where P(XN ) is the power set ofXN , and

∑
A⊆XN

m(A) =

1. Furthermore, we assume that m(∅) = 0.1 A set A ∈ P(XN ) is a focal element
if m(A) > 0.

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment
of m on XM is defined (for each A ⊆ XM ) by the equality

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (1)

1 This assumption is not generally accepted, e.g. , in [2] it is omitted.
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3 Marginal Problem

Let {Xi}i∈N be a finite system of finite-valued variables with values in {Xi}i∈N .
Using the procedure of marginalisation (1) one can always uniquely restrict a
basic assignment m on XN to the basic assignment mK on XK for K ⊂ N .
However, the opposite process, the procedure of an extension of a system of
basic assignments mKi , i = 1, . . . ,m on XKi to a basic assignment mK on XK

(K = K1 ∪ · · · ∪Km), is not unique (if it exists) and can be done in many ways.
Let us demonstrate this fact with two simple examples.

Example 1. Consider, for i = 1, 2, two basic assignments mi on Xi = {ai, bi},
specified in the left-hand side of Table 1. Our task is to find a basic assignmentm

Table 1. Example 1: basic assignments m1 and m2 and m and m′

A ⊆ X1 m1(A) A ⊆ X2 m2(A) A ⊆ X1 ×X2 m(A) A ⊆ X1 ×X2 m′(A)

{a1} 0.2 {a2} 0.6 {a1a2} 0.2 {a1} ×X2 0.2

{b1} 0.3 {b2} 0 {b1a2} 0.3 {b1} ×X2 0.2

X1 0.5 X2 0.4 X1 × {a2} 0.1 {b1a2} 0.1

{a1a2, b1b2} 0.4 X1 ×X2 0.5

on X1 ×X2 satisfying these marginal constraints. It is easy to realise that, e.g.,
m or m′ contained in the left-hand side of Table 1 is a solution to this problem.
It is obvious that one can find numerous different solutions to this problem. ♦

The following example is devoted to a (more interesting) case of overlapping
marginals.

Example 2. Consider two basic assignments mi (for i = 1, 2) on Xi × X3

(Xi = {ai, bi}, i = 1, 2, 3) specified in Table 2. It is again easy to realise that both

Table 2. Example 2: basic assignments m1 and m2.

A ⊆ X1 ×X3 m1(A) A ⊆ X2 ×X3 m2(A)

{a1a3} 0.5 {a2a3} 0.5

{a1a3, b1b3} 0.3 {a2a3, b2b3} 0.3

X1 × {a3} 0.2 X2 × {a3} 0.2

joint basic assignments m and m′ contained in Table 3 satisfy these constraints.
And it is again obvious that one can find numerous different solutions to this
problem. ♦
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Table 3. Example 2: basic assignments m and m′

A ⊆ X1 ×X2 ×X3 m(A) A ⊆ X1 ×X2 ×X3 m′(A)

{a1a2a3} 0.5 {a1a2a3} 0.3

{a1a2a3, b1b2b3} 0.3 {a1a2a3, b1b2b3} 0.3

X1 ×X2 × {a3} 0.2 {a1} ×X2 × {a3} 0.2

X1 × {a2a3} 0.2

The evidential marginal problem can be, analogous to probability theory,
understood as follows: Let us assume that Xi, i ∈ N , 1 ≤ |N | < ∞ are finitely-
valued variables, K is a system of nonempty subsets of N and

S = {mK ,K ∈ K} (2)

is a family of basic assignments, where each mK is a basic assignment on XK .
The problem we are interested in is the existence of an extension, i.e., a basic

assignment m on X whose marginals are basic assignments from S; or, more
generally, the set

E = {m : m↓K = mK ,K ∈ K} (3)

is of interest.
Let us note that we will not be able to find any basic assignment onX1×X2×

X3 with prescribed two-dimensional marginals in Example 2 if these marginals
do not satisfy quite a natural condition called a projectivity (or compatibility)
condition.

Having two basic assignmentsm1 andm2 onXK andXL, respectively (K,L ⊆
N), we say that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such
that both m1 and m2 are marginal assignments of some m on XK∪L (cf. also
Theorem 2).

This condition is clearly necessary, but not sufficient, as demonstrated in
Example 3.

Example 3. Let Xi be the same as in Example 2, and m1,m2 and m3 be
defined as shown in Table 4.

Although these three basic assignments are projective, more exactly,
mi({aj}) = 0.5 and mi(Xj) = 0.5 for i = 1, 2, 3 and j = i, i+1(mod3), no basic
assignment m on X1 × X2 × X3 exists that would have them as its marginals .
From the first two marginals one can derive that the only focal elements of m
are {a1a2a3} and X1 × X2 × X3, but none of them is projected to any of the
focal elements of m3. ♦
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Table 4. Example 3: basic assignments m1, m2 and m3

A ⊆ X1 ×X2 m1(A) A ⊆ X2 ×X3 m2(A) A ⊆ X1 ×X3 m1(A)

{a1a2} 0.5 {a2a3} 0.5 {a1} ×X3 0.5

X1 ×X2 0.5 X2 ×X2 0.5 X1 × {a3} 0.5

In the probabilistic framework, projectivity is a necessary condition for the
existence of an extension, too, and becomes a sufficient condition if the index sets
of the marginals can be ordered in such a way that it satisfies a special property
called the running intersection property (see, e.g., [6]), or equivalently, if the
model is decomposable. We conjure that a similar result also holds in evidential
framework; nevertheless, it will remain a topic for our future research.

If a solution of an evidential marginal problem exists, it is (usually) not unique,
as we have already seen in Examples 1 and 2. This fact is completely analogous to
the probabilistic framework. And the following theorem reveals another analogy
in this respect.

Theorem 1. The set E(S) is a convex set of basic assignments.

Proof. Let m1,m2 ∈ E(S) and m be such that

m(C) = αm1(C) + (1 − α)m2(C)

for any C ⊂ XN . Since m↓K
1 (C↓K) = m↓K

2 (C↓K) = m↓K
K (C↓K) for any K ∈ K,

we get

m↓K(C↓K) = αm↓K
1 (C↓K) + (1 − α)m↓K

2 (C↓K) = m↓K
K (C↓K)

for any K ∈ K. Therefore, m ∈ E(S). ��

A convex combination of basic assignments m and m′ usually leads to a more
complex basic assignment with a higher number of focal elements, as can be seen
from the following simple example.

Example 1. (Continued) Combining m and m′ with α = 0.5, we obtain the
basic assignment contained in Table 4. ♦

This fact is again analogous to a probabilistic framework, but contrary to the
probabilistic case, where the number of focal elements is limited to the cardinality
of XN , in evidence theory the increase of the number of focal elements may lead
to intractable tasks.

4 Product Extensions

It is evident that it is rather hard to deal with the whole sets of extensions;
hence it seems to be reasonable to look for a representative of each such set.
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Table 5. Example 1: basic assignment m∗

A ⊆ X1 ×X2 m∗(A) A ⊆ X1 ×X2 m∗(A) A ⊆ X1 ×X2 m∗(A)

{a1a2} 0.1 {a1} ×X2 0.1 X1 × {a2} 0.05

{b1a2} 0.2 {b1} ×X2 0.1 X1 ×X2 0.25

{a1a2, b1b2} 0.2

Dempster’s rule of combination [9] is a standard way to combine (in the frame-
work of evidence theory) information from different sources. It has been fre-
quently criticised since the time it first appeared. That is why many alternatives
to it have been suggested by various authors.

From the viewpoint of this paper, the most important among them is the
conjunctive combination rule [2], which is, in fact, a non-normalised Dempster’s
rule defined for m1 and m2 on the same space XK by the formula

(m1 ∩©m2)(C) =
∑

A,B⊆XKA∩B=C

m1(A)m2(B).

The result of this rule is one of the examples of a non-normalised basic assign-
ment.

It can easily be generalised [3] to the case when m1 is defined on XK and m2

is defined on XL (K 
= L) in the following way (for any C ∈ XK∪L):

(m1 ∩©m2)(C) =
∑

A⊆XK ,B⊆XL

A↑L∪K∩B↑L∪K=C

m1(A)m2(B). (4)

Another possible way to solve this problem is to use the product extension of
marginal basic assignments defined as follows:

Definition 1. Let m1 and m2 be projective basic assignments on XK and XL

(K,L ⊆ N), respectively. We will call basic assignment m on XK∪L product
extension of m1 and m2 if for any A = A↓K �# A↓L

m(A) =
m↓K

1 (A↓K) ·m↓L
2 (A↓L)

m↓K∩L
1 (A↓K∩L)

, (5)

whenever the right-hand side is defined, and m(A) = 0 otherwise.

Let us note that the definition is only seemingly non-commutative, as m1 and
m2 are supposed to be projective. Therefore, it is irrelevant which marginal is
used in the denominator.

In the following example we will show that a product extension is more ap-
propriate than Dempster’s rule of combination.
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Table 6. Example 4: basic assignments m1, m2Z

A ⊆ X1 ×X3 m1(A) A ⊆ X2 ×X3 m2(A)

X1 × {b3} 0.5 X2 × {b3} 0.5

{(a1b3, b1a3)} 0.5 {(a2b3, b2b3)} 0.5

Example 4. Let Xi, i = 1, 2, 3, be the same as in previous examples and m1

and m2 be two basic assignments defined as shown in Table 6.
Since their marginals are projective, as can easily been checked, there exists

(at least one) common extension of both of them.
Applying the conjunctive combination rule to the marginals, one obtains val-

ues contained in the left-hand part of Table 7 with the marginal basic assign-
ments different from the originals.

Table 7. Example 4: basic assignments obtained by Dempster’s combination rule and
product extension

A ⊆ X1 ×X3 m1(A) A ⊆ X2 ×X3 m2(A)

X1 ×X2 × {b3} 0.25 X1 ×X2 × {b3} 0.5

{(a1a2b3, b1b2a3)} 0.25 {(a1a2b3, b1b2a3)} 0.5

X1 × {a2} × {b3} 0.25

{a1} ×X2 × {b3} 0.25

On the other hand, product extensions of basic assignments m1 and m2 con-
tained in the right-hand side of Table 7 keep both marginals. ♦

The difference consists in assigning values to joins of focal elements of the
marginal basic assignments. While in (4) the original basic assignments are used
even in instances in which focal elements have different projections; at least one
of the marginals is equal to zero in (5) in this case, which means that these sets
cannot be focal elements of the joint basic assignment.

This result was not obtained by chance, as the following assertion implies.

Theorem 2. Let m1 and m2 be two projective basic assignments on XK and
XL (K,L ⊆ N), respectively, and m be their product extension. Then

m↓K(B) = m1(B),

m↓L(C) = m2(C)

for any B ∈ XK and C ∈ XL, respectively.

Proof. It follows directly from Theorem 1 in [11]. ��
The next step would be to prove an analogous result for a more general system

of basic assignments (as suggested in the previous section). Results form [5]
indicate that it could be done.
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5 Conclusions

We have introduced an evidential marginal problem in a way analogous to a
probability setting, where marginal probabilities are substituted by marginal
basic assignments.

We presented the necessary conditions for the existence of a solution to this
problem and also dealt with the sets of all solutions. Finally, we introduced a
so-called product extension, which enables us to express an extension of the
problem in a closed form.

There are still many problems to be solved in the future, such as the structure
of the set of extensions of the problem as well as a generalisation of the product
extension to a more general index set of marginal basic assignments.
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Abstract. We present an evidential multi-sensor fusion approach for
navigating a maneuverable ice probe designed for extraterrestrial sam-
ple analysis missions. The probe is equipped with a variety of sensors
and has to estimate its own position within the ice as well as a map
of its surroundings. The sensor fusion is based on an evidential SLAM
approach which produces evidential occupancy grid maps that contain
more information about the environment compared to probabilistic grid
maps. We describe the different sensor models underlying the algorithm
and we present empirical results obtained under controlled conditions in
order to analyze the effectiveness of the proposed multi-sensor fusion ap-
proach. In particular, we show that the localization error is significantly
reduced by combining multiple sensors.

Keywords: SLAM, Mulit-Sensor Fusion, Evidence Theory, Navigation,
Mapping.

1 Introduction

The Cassini spacecraft has provided strong evidence that there is a subglacial sea
of liquid water under the ice crust of Saturn’s moon Enceladus. Because water
is an essential prerequisite for the existence of life, Enceladus is considered to be
one of the most promising candidates for finding extraterrestrial life. The goal
of the “Enceladus Explorer” project is therefore to develop a maneuverable ice
probe that is capable of autonomously navigating through deep ice in order to
obtain a sample from a subsurface water reservoir. As a first step towards an
extraterrestrial mission, the probe was tested on several glaciers in Europe and
Antarctica.

The probe is equipped with multiple sensors that need to be fused in order
to estimate a map of the surrounding ice and the probe’s position. When a mo-
bile robot navigates through an unknown environment, it has to solve a similar
problem of jointly estimating a map of the environment while localizing itself
with respect to this map. This problem is commonly known as simultaneous lo-
calization and mapping (SLAM) [5] and it forms the basis for the sensor fusion
approach presented in this paper. We use a fusion approach based on belief func-
tions because it allows us to cope with the uncertainty resulting from the fact
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that many of the underlying parameters are difficult to model probabilistically,
especially in the context of an extraterrestrial mission with an unknown environ-
ment. A particular advantage of the evidential approach is that the generated
maps provide additional information about uncertainty compared to probabilis-
tic maps.

2 Hardware Platform

The ice probe shown in Fig. 1 uses a melting head to penetrate the ice while a
screw assures close contact to the ice. The probe is maneuverable by differential
heating and can navigate through ice at a speed of up to 1.1m/h using a number
of different sensors. A combination of a tactical grade fiber optical gyro (FOG)
inertial measurement unit (IMU) and a differential magnetometer system mea-
sure the current attitude. To estimate the absolute position of the probe, an
acoustic positioning system (APS) was developed. It consists of 6 transducer
stations arranged above the operation area which send synchronized ultrasonic
pulses that can be received by the probe. In addition, the melting head carries
an acoustic close-proximity reconnaissance system (ARS) for mapping the sur-
roundings in order to detect obstacles like stones as well as water-filled crevasses
as a target for sampling. The ARS uses 4 ultrasonic phased arrays whose signals
can penetrate the ice up to a distance of 6 meters. A full description of the
melting probe itself is presented in [2] while the navigation subsystems including
details regarding the hardware and preprocessing steps as well as a rough outline
of the sensor fusion algorithm are described in [6]. In contrast, the focus in this
paper is on the problem of multi-sensor fusion based on an evidential SLAM
approach.

Fig. 1. The maneuverable melting probe “IceMole” in the launchpad on the Common-
wealth Glacier in Antarctica. (Figure reprinted from [6].)
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3 Multi-Sensor Fusion

The goal of the sensor fusion is to simultaneously estimate a map of the envi-
ronment and the probe’s trajectory (including position and attitude). We use
grid maps where the space is discretized into cells and each cell can be either
occupied or empty (denoted by o and e). For SLAM, the state of a cell is usu-
ally modeled as a single probability P (o). In our approach, each cell is instead
described by a belief function where mass can not only be assigned to the sin-
gletons but also to the union Θ = {o, e} and the empty set [7]. Effectively, this
allows representing additional dimensions of uncertainty with the mass assigned
to Θ representing a lack of evidence and the mass assigned to ∅ representing
conflicting measurements.

In order to solve the joint estimation problem of localization and mapping,
the evidential FastSLAM algorithm from [9] is used. It uses a Rao-Blackwellized
particle filter [3] to approximate the joint belief distribution m[z0:t, u1:t](x0:t, Y )
over the map Y and the probe’s trajectory x0:t (a sequence of poses x0, . . . , xt)
given the probe’s controls u1:t and all measurements z0:t. Due to the fact that
motion dynamics can usually be modeled probabilistically, the assumption is
made that the marginal distribution over the trajectory is Bayesian. This makes
it possible to factorize the joint belief distribution into a probabilistic trajectory
estimation part and a conditional evidential mapping part.1

m[z0:t, u1:t](x0:t, Y ) = p(x0:t|z0:t, u1:t)m[x0:t, z0:t](Y ) (1)

Using the generalized Bayesian theorem (GBT) [11], the posterior of the tra-
jectory can be further factorized into a plausibility pl[x0:t, z0:t−1](zt) of the cur-
rent measurement and a proposal distribution p(x0:t|z0:t−1, u1:t). The proposal
distribution can be updated probabilistically using a motion model p(xt|xt−1, ut)
that incorporates the current control ut.

p(x0:t|z0:t, u1:t) ∝ pl[x0:t, z0:t−1](zt) p(x0:t|z0:t−1, u1:t) (2)

p(x0:t|z0:t−1, u1:t) = p(xt|xt−1, ut) p(x0:t−1|z0:t−1, u1:t−1) (3)

Because the map Y is conditioned on the entire trajectory x0:t in Eq. (1),
the grid cells Yi are approximately independent of each other (there is no pose
uncertainty). This allows factorizing the joint map distribution into M marginal
cell distributions where M denotes the total number of grid cells.

m[x0:t, z0:t](Y ) =

M∏
i=1

m[x0:t, z0:t](Yi) (4)

As a result, each marginal cell distribution can be updated independently based
on the belief m[xt, zt](Yi) induced by the current measurement using an ap-
propriate combination rule (here, only the conjunctive rule of combination is
considered).

m[x0:t, z0:t](Yi = ·) = m[x0:t−1, z0:t−1](Yi = ·) ∩©m[xt, zt](Yi = ·) (5)

1 See [8] for a proof of this factorization.



342 J. Clemens and T. Reineking

The algorithm used to approximate the joint distribution in Eq. (1) is based on
a particle filter where each particle represents a complete trajectory and a corre-
sponding map belief function. Measurements are incorporated using importance
sampling where the particles are updated recursively over time as follows:

1. For each particle, sample a new pose xt in order to incorporate control ut.
2. Compute importance weights pl[x0:t, z0:t−1](zt) using measurement zt.
3. For each particle, update the map with measurement zt.
4. Resample particles with probability proportional to the importance weights.

The state of the probe at time t is a vector comprised of position and attitude.
The control ut represents the screw feed and zt is a vector consisting of measure-
ments zt;q from the IMU/differential magnetometer system, of measurements zt;p
from the APS, and of measurements zt;r from the ARS. Because measurements
from different sensors are assumed to be independent given the current pose xt
and the map Y , the product of the individual measurement plausibilities can be
used in Eq. (2) to compute the importance weights in step 2. Furthermore, only
the ARS is used to update the map in step 3 because the other sensors do not
provide any information about the environment.

4 Motion and Sensor Models

In this section, the motion and sensor models needed to perform steps 1 to 3 of
the fusion algorithm are described in more detail.

Motion Model

The motion model p(xt|xt−1, ut) in Eq. (2) describes the probe’s state transition
from t−1 to t given control ut and the previous state xt−1. The covered distance
between t− 1 and t is computed from the control commands given to the screw
step motor. The gear transmission ratio and the pitch of the ice screw are known
and the screw is assumed to be nearly slip-free with additive Gaussian noise.
Hence, the prediction can be performed using standard motion equations [1].

IMU and Differential Magnetometer System

After preprocessing the raw data from the IMU and the magnetometers with
appropriate algorithms [6], they provide an absolute, drift-free attitude esti-
mate zt;q with high accuracy for roll and pitch, and moderate accuracy for the
heading. The error is assumed to be normally distributed where the covariance
matrix Σzq is estimated in the preprocessing step. The measurement plausibil-
ity pl[x0:t, z0:t−1](zt;q) used in Eq. (2) is thus given by a multivariate Gaussian
where xt;q represents the expected attitude of the current state estimate and
normalization constant αq guaranties that the density values do not exceed 1
[10].

pl[x0:t, z0:t−1](zt;q) = αqN (zt;q;xt;q, Σzq ) (6)
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Acoustic Positioning System

The acoustic positioning system (APS) measures the time that a signal requires
for traveling from one of the transducers to the probe. Knowing the speed of
sound in ice, this can be used to localize the probe. In general, it would be
possible to estimate a position from the APS measurements zt;p using standard
trilateration techniques. However, the geometric constellation, with all transduc-
ers almost aligned in a single plane, would lead to high inaccuracies. In addition,
tritlateration needs measurements from at least 3 transducers, which are not
always available. Instead, a tightly coupled update is used to incorporate the
measurements for each transducer separately. Similar to the attitude model in
Eq. (6), the measurement plausibility for the k-th transducer is given by a scaled
Gaussian (with variance σ2

zp). The expected travel time results from the speed
of sound cice and the Euclidean distance between the transducer position xpk

and the probe’s position xt;p.

pl[x0:t, z0:t−1](zt;pk
) = αpN (zt;pk

; ||xt;p − xpk
|| · c−1

ice, σ
2
zp) (7)

Acoustic Reconnaissance System

Each acoustic reconnaissance system (ARS) measurement zt;r is an array of
values representing how strongly the ultrasonic waves were reflected for a given
distance and angle inside the 2D measurement cone. At a specific frequency, the
waves are able to penetrate ice while they are reflected by obstacles likes stones,
which is why the ARS data is suitable for mapping the environment. In addition,
the data is also used for localization because the degree of mismatch between
the map estimated from previous measurements and the map resulting from the
current measurement can be used as a measure for the plausibility of zt;r.

In order to perform mapping, an inverse sensor model m[xt, zt;r](Yi) is needed
in Eq. (5) which provides a belief distribution for each cell Yi given pose xt and
measurement zt;r. Here, we learn a logistic regression model in order to obtain an
occupancy probability for the i-th cell (denoted by PLR(Yi = o|xt, zt;r)) from an
ARS scan based on labeled training data. The occupancy probability resulting
from logistic regression is transformed into a belief function mLR[xt, zt;r](Yi)
by discounting with factor 1 − εr, which reflects the fact that measurements
are very noisy and that the learned logistic regression model does not capture
all the underlying effects. In addition, it has to be taken into account that the
ultrasonic signals are not able to penetrate massive obstacles. Therefore, the
final belief for each cell Yi is furthermore discounted by the masses assigned
to {o} for all cells Yj (j < i) located between the sensor and cell Yi (cells are
assumed to be arranged in ascending ordered by their distance to the sensor).
For singletons Yi = {o} and Yi = {e}, the mass is computed as follows (the mass
on Θ is implicitly given due to normalization):
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m[xt, zt;r](Yi) = mLR[xt, zt;r](Yi)
i−1∏
j=1

(
1 −mLR[xt, zt;r](Yj = {o})

)
, (8)

mLR[xt, zt;r](Yi) =

⎧⎪⎨⎪⎩
(1 − εr)PLR(Yi = o|xt, zt;r) if Yi = {o},
(1 − εr)(1 − PLR(Yi = o|xt, zt;r)) if Yi = {e},
εr else.

(9)

For the non-ARS sensors, the plausibility pl[x0:t, z0:t−1](zt) in Eq. (2) used for
localization can be directly computed from the corresponding measurements. In
contrast, for the ARS, the measurement plausibility pl[x0:t, z0:t−1](zt;r) has to
be computed from the information provided by zt;r about the map. Intuitively,
the plausibility (i.e., the importance weight) should reflect how well the scan
represented by zt;r matches the previously estimated map. Here, we use the de-
gree of conflict between the normalized map belief ηm[x0:t−1, z0:t−1](Y ) at time
t − 1 and the map belief induced by measurement zt;r according to the inverse
sensor model m[xt, zt;r](Y ) as a measure of mismatch. The conflict coni for each
cell Yi is given by the mass assigned to ∅ when applying the conjunctive rule
of combination to the map belief and the inverse model. The overall amount of
conflict results from multiplying the cell conflicts, meaning that the importance
weight is given by:

pl[x0:t, z0:t−1](zt;r) = 1 −
M∏
i=1

coni, (10)

coni =
(
m[xt, zt;r](Yi) ∩© ηm[x0:t−1, z0:t−1](Yi)

)
(Yi = ∅). (11)

5 Results

While the probe has been tested on several glaciers already, the results presented
here are based on a test conducted in an indoor swimming pool in order to have
controlled conditions and ground truth data. Fixated balls filled with air and
concrete (with a diameter of ca. 20 cm) were used to act as obstacles. Further-
more, 4 APS transducers were placed in the corners of the pool. The obstacles,
the transducers, and the probe were attached to floats hanging at a depth of
2m and laser trilateration was used to determine their position. In case of the
probe, front and back were measured in order to obtain the heading as well.
All objects where aligned in a horizontal plane, hence a 2D grid map was used.
Because the ice screw and magnetometer system could not be used during the
test, their measurements were simulated based on ground true with additional
noise. All results were computed with 1000 particles.

The localization error resulting from different sensor combinations is shown
in Fig. 2. As expected, performing only dead reckoning (DR) results in the
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highest error. When updating the DR estimate with absolute distance measure-
ments from the APS, the error is significantly smaller. Because of the higher
accuracy of the IMU and differential magnetometer (IMU/Mag), the perfor-
mance is even better when correcting with these sensors, although they only
provide attitude information. The lowest error is obtained when using the APS
in combination with IMU/Mag because absolute position and attitude estimates
are provided. Additionally updating the position with respect to the estimated
map based on the ARS currently does not significantly improve the localization
performance because further optimizations of the ARS sensors and models are
needed.
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Fig. 2. Mean position error of all particles over time for different sensor combina-
tions. The highest error results from only performing dead reckoning (DR) while each
additional sensor (IMU and magnetometers, acoustic positioning system (APS) and
acoustic reconnaissance system (ARS)) leads to an error reduction.

Fig. 3 shows the estimated map with the highest cumulative importance weight
over time. The high mass values for occupied in (a) indicate detected obstacles
while the area between the probe and the obstacles are believed to be empty
as shown in (b). For the areas behind obstacles as well as for the area that was
not covered by ARS measurements, most mass is assigned to Θ (see (c)), which
corresponds to ignorance about the true state of these cells. Finally, (d) shows
the mass on ∅, which results from conflicting measurements in the vicinity of
obstacles. These different dimensions of uncertainty can provide additional in-
formation to the probe’s guidance system or to an operator. In particular, areas
with high mass on ∅ may require more measurements to determine the exact size
and position of obstacles while mass on Θ indicates that there is no information
about obstacles at all.
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(a) m(o) (b) m(e)

(c) m(ΘY ) (d) m(∅)

Fig. 3. Grid map computed by the evidential FastSLAM algorithm. (a) and (b) show
the mass values for occupied and empty while (c) and (d) show the mass values for Θ
and ∅ (black indicates a value of one and white a value of zero). The circles indicate
the ground truth positions of the obstacles.

6 Summary

In this paper, we have presented a multi-sensor fusion approach for navigating
a maneuverable melting probe through deep ice in order to obtain samples from
subsurface water reservoirs in terrestrial as well as in extraterrestrial settings.
It is based on a SLAM algorithm that produces evidential occupancy grid maps
and utilizes a Rao-Blackwellized particle filter to estimate the joint distribution
over the probe’s trajectory and the map. Different sensor models were presented
as well as results from an empirical evaluation under controlled conditions. We
showed that the localization performance improved when using multiple sensors
and that the resulting map contains the obstacles in the environment along with
additional information about uncertainty compared to a probabilistic approach.
A quantitative comparison with other recent fusion techniques is one of the next
steps and further researches have to be done regarding some difficulties that may
occur when using the GBT and Dempster’s rule for fusion (see [4] for a recent
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discussion). While the results presented in this paper were obtained in a rather
artificial setting, more realistic tests will be conducted in Antarctica at the end
of the year, and the long term goals are Enceladus’ ice crust and Mars’ polar
regions.
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Abstract. This contribution presents the application ofDempster-Shafer
theory to the prediction of China’s stock market. To be specific, we pre-
dicted the most promising industry in the next month every trading day.
This prediction can help investors to select stocks, but is rarely seen in pre-
vious literatures. Instead of predicting the fluctuation of the stock market
from scratch all by ourselves, we fused ratings of 44 industries fromChina’s
securities companies using Shafer’s evidence theory. Our preliminary ex-
periment is a daily prediction since 2012-05-02 with ratings published 10
days before that day.Our predicted industries have an average rank of 19.85
in earnings, 11.8% better than random guessing (average rank is 22.5). The
average rise rate of predicted industries in a month is 0.59%, 0.86% higher
than overall (which is -0.274%), and nearly 0.7% higher than simple voting
(which is -0.097%). Our predictions are posted on Weibo every day since
2014-04-28.

Keywords: Belief Fusion, Stock Market, Dempster-Shafer Theory, Pre-
diction.

1 Introduction

A prediction of the most promising industry in the medium term can help in-
vestors select stocks or industry index funds1 if the accuracy is better than
random guessing. But this kind of prediction is rarely seen in literatures.

Previous prediction methods include statistics, technical analysis [5], funda-
mental analysis [5], and linear regression [12]. State-of-the-art in stock prediction
techniques is surveyed in [1]. Instead of predicting the fluctuation of stock market
from scratch all by ourselves, we fuse beliefs from experts — China’s securities
companies. These securities companies can be seen as soft data sensors [4] that
observe related phenomena, and give ratings for some industries as the output
of analysis. With their ratings as input, we try to predict the most promising

1 “An index fund (also index tracker) is a collective investment scheme (usually a
mutual fund or exchange-traded fund) that aims to replicate the movements of an
index of a specific financial market, or a set of rules of ownership that are held
constant, regardless of market conditions. As of 2007, index funds made up 11.5% of
equity mutual fund assets in the US.” — http://en.wikipedia.org/wiki/Index fund.
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industry in the next month, which is expected to have the highest average rise
in stock price.

As [1] states, “information regarding a stock is normally incomplete, complex,
uncertain and vague”. A securities company usually publishes ratings on less
than 2 industries every trading day. These ratings consist of “buy”, “overweight”
and “neutral”, representing different degrees of belief about the investment value.
For industries with no ratings, its investment value is ignorant other than neutral.
To combine ratings from different securities companies, we use the Dempster-
Shafer theory [8,9], which is a powerful tool for uncertainty reasoning. In this
theory, different sources express their uncertainty about the question of interest
with belief functions. Then those functions are fused by Dempste’s rule to arrive
at the final degree of belief.

This paper is structured as follows. In Sect. 2, we present our model and
formalization. We also describe our methods to predict. In Sect. 3, we introduce
our experiment. Section 4 demonstrates our results. In Sect. 5, we draw the
conclusion and discuss future work.

2 Problem Formalization and Methods

In this section, we describe the formalization and methods of our prediction of
the most promising industry.

2.1 Question of Interest and Frame of Discernment

Under the framework of Dempster-Shafer theory, the answer to the question of
interest is one element of a finite set called Frame of Discernment. It’s composed
of an exhaustive list of mutually exclusive answers.

In our problem, the question of interest is: “Which is the most promising
industry in the medium term”. There are 44 possible answers according to East-
Money2, which is one of China’s largest financial website. Let’s denote the frame
of discernment by Ω. Then

Ω = {electricity, electronic, culture and media, pharmaceuticals . . .} (1)

|Ω| = 44 (2)

2.2 Evidence and Basic Belief Assignment (BBA)

As far as we know, there is no direct answer to the question of interest. But
ratings of industries published by securities companies can be seen as evidence
for this question, which is available on the website 3.

2 http://www.eastmoney.com/
3 http://data.eastmoney.com/report/hyyb.html

http://www.eastmoney.com/
http://data.eastmoney.com/report/hyyb.html
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A securities company may rate an industry as “buy”, “overweight” or “neu-
tral”. There is no rating “sell” on the website. This special situation maybe
results from government policies and China’s special culture. As a securities
company publishes ratings of limited industries on a single day (usually less
than two industries on average), we combine its ratings from 10 consecutive
trading days as a single report. From such a report, we can get 4 sets, which
usually have intersections:

Sbuy = {industry I|I is rated as “buy”} (3)

Soverweight = {industry I|I is rated as “overweight”} (4)

Sneutral = {industry I|I is rated as “neutral”} (5)

Sothers = Ω − Sbuy − Soverweight − Sneutral (6)

When securities companies give different ratings for a particular industry
during these 10 days, only the latest one is adopted.

We haven’t taken the freshness of data into consideration, for the purpose
of reduction in computation burden. In our method, all the industries with the
same rating from a securities company are in a single set. So the number of
focal elements is only 4 in a securities company’s report. After combination, the
number will grow exponentially. To reduce it, we discard those focal elements
whose masses are under a threshold, which is set experientially as 0.0001.

Our subjective judgment is that, Sbuy is very likely to contain the most
promising industry, Soverweight is also likely to contain it, and Sneutral is not
likely to contain the most promising industry. According to this judgment, basic
belief assignment is calculated as follows when Sneutral is not empty:

m(Sbuy) =
44 − |Sothers|

44
∗ 4 ∗ |Sbuy|
4 ∗ |Sbuy| + |Soverweight| + |Sneutral|

(7)

m(Soverweight) =
44 − |Sothers|

44
∗ |Soverweight|
4 ∗ |Sbuy| + |Soverweight| + |Sneutral|

(8)

m(Sneutral) =
44 − |Sothers|

44
∗ |Sneutral|
4 ∗ |Sbuy| + |Soverweight| + |Sneutral|

(9)

m(Ω) =
|Sothers|

44
(10)

When Sneutral is empty, Sneutral equals Ω, basic belief assignment is calculated
as follows:

m(Sbuy) =
44 − |Sothers|

44
∗ 4 ∗ |Sbuy|
4 ∗ |Sbuy| + |Soverweight|

(11)

m(Soverweight) =
44 − |Sothers|

44
∗ |Soverweight|
4 ∗ |Sbuy| + |Soverweight|

(12)
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m(Ω) =
|Sothers|

44
(13)

These formulas are representations of evidence. We’ll modify them according
to statistics in the future.

After obtaining the basic belief assignment of each securities company, we
combine them one by one with Dempster’s combination rule [8]:

m(A) =

∑
A1⊆Ω,A2⊆Ω {m1(A1)m2(A2)|A1 ∩ A2 = A}∑
A1⊆Ω,A2⊆Ω {m1(A1)m2(A2)|A1 ∩ A2 
= ∅} (14)

In the above equation, m1 and m2 correspond to the evidence from the two
securities companies that are being combined, see Fig. 1. The prominent advan-
tage of Dempster’s combination rule over others [13,14] is its simplicity, which
is important in our scenario with 44 singleton sets and 25 data sources. Besides,
the result shouldn’t be influenced when we change the order of combination. So
we need a rule with features of associativity and commutativity.

Fig. 1. Prediction of the most valuable industry in the following 30 days by combining
ratings from each securities company

2.3 Decision

There is no agreement about how to make decision with final belief functions.
Candidate methods include choosing the hypothesis with the maximum BBA,
belief, plausibility or pignistic probability.

Smets proposed making decisions based on maximizing pignistic probabilities
[11]. Pignistic probability is derived from BBA by pignistic transformation [11]:

BetP (ω) =
∑

W⊆Ω,ω⊆W

1

|W |
m(w)

1 −m(φ)
, ∀ω ⊆ Ω (15)

This method is widely used in literatures [2,6,7,10].
In our experiment, we found that decisions based on maximum beliefs have

the best performance and we adopted it in our paper.
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3 Experiment

There are about 50 to 150 ratings published on the website4 every trading day
since 2012-04-25. On other days, there are usually less than 10 ratings every day.
We have collected all of these historical ratings, and made historical predictions
every day, supposing that we were in the past. Besides, we are making new
predictions every trading day, which are posted on Weibo5(China’s Twitter).

Fig. 2. Average number of industries with ratings “buy”, “overweight”, “neutral” and
without ratings for each of the selected 25 companies in 10 consecutive trading days
during the last two years

There are 78 securities companies who have published their ratings in the last
two years. But some of them are not active, we manually selected the top 25
active companies as our data sources, see Fig. 2.

To evaluate our predictions, we supposed that an investor would spend 1 dollar
to buy the stocks of each industry every trading day, and sell them after 30 days.
And we supposed that money spent for each stock is proportional to the trading
volume of it on that day (This is similar to index funds). Then we calculated the
earnings for each industry in the next month and got the rank of our predicted
industries. At the same time, we summed up the monthly rise rates of predicted
industries on every trading day during the last two years and compare it with the
average of all industries. The historical data of all the stocks (more than 2,000) in
the last two years was provided by Shanghai Wind Information Co., Ltd.

We also compared our methods with simple voting: if an industry is ranked
as “buy”, “overweight” or “neutral”, it gets 4, 1 or -1 vote respectively. If more
than one industries has the largest votes, we chose one of them randomly.

4 http://data.eastmoney.com/report/hyyb.html
5 http://weibo.com/u/3915945698

http://data.eastmoney.com/report/hyyb.html
http://weibo.com/u/3915945698
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4 Results

4.1 Computation Burden

The number of focal elements after the combination of 25 companies is usually
below 1000, see Fig. 3. We ran our python program on a computer with a 4-core
2.4GHz CPU and 2GB RAM. The combination of 25 data sources took 1.98
seconds on average.

Fig. 3. The trend of the number of focal elements after each combination. The decli-
nation results from the threshold of minimum mass, which we set as set experientially
as 0.0001.

Fig. 4. Accumulated monthly rise rate of predicted industries by D-S and simple voting,
and the average of all the industries



354 Y. Xu et al.

4.2 Accuracy

Every day, we ranked industries according to their rise rate in stock price in
the previous month. The average rank of our predicted industries is 19.85 in the
last two years, 11.8% better than random guessing (average rank is 22.5). The
average rise rate of predicted industries in a month is 0.59%, 0.86% higher than
overall (which is -0.274%), and nearly 0.7% higher than simple voting (which
is -0.097%). The accumulated monthly rise rate day by day is shown in Fig. 4.
To put it simple, this figure shows how many dollars you would have earned if
you bought 1 dollar of the predicted industry’s index fund every trading day
and sold it after 30 days since 2012-05-02. From this figure, we can see that
on 2014-04-28, you would have earned 2.715 and -0.45 dollars if the industry is
chosen according to D-S and simple voting respectively.

5 Conclusion and Future Work

We have introduced the application of Dempster-Shafer theory to the prediction
of industries in China’s stock market in this paper. Instead of forecasting stock
market by technical analysis or fundamental analysis, we fused output of soft
data sensors C reports from securities companies. Our predicted industries have
an average rank of 19.85 in earnings, 11.8% better than random guessing (average
rank is 22.5). The average rise rate of predicted industries in a month is 0.59%,
0.86% higher than overall (which is -0.274%), and nearly 0.7% higher than simple
voting (which is -0.097%). Our predictions are posted on Weibo every day since
2014-04-28.

In the future, we will continue collecting data for further evaluation and im-
provement of our methods. The basic belief assignment is determined according
to our subjective judgment at present. When more data is available, we plan to
adjust it on the basis of statistical information, such as using the probabilistic
representation of evidence presented by [3].

Acknowledgments. This paper is supported in part by National Natural Sci-
ence Foundation of China (NSFC) under grant No.(61173132).
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Abstract. These last years, a lot of combination rules emerged in order
to model the situations of belief fusion. These rules can be classified in
two different classes. However, these rules do not differentiate between
focal elements in the combination step which produce counterintuitive re-
sults in some situations. Motivated by this observation, we propose a new
combination rule which hybrids the strategies of these two classes. Our
rule is two-step operator where the averaging step comes first, and then
the conflict redistribution step. Experimental studies are conducted on a
real smart home dataset to show the accuracy of our rule in ubiquitous-
assisted living situation.

Keywords: Dempster–Shafer theory, belief functions, conflict redistri-
bution, combination rules, activity recognition.

1 Introduction

The Dempster-Shafer Theory (DST) has been popular because it seems well
suited for dealing with uncertainty [1]. However, the rule combination used in
this theory appears inadequate for some situation of belief fusion [2, 3]. Moti-
vated by solving this inadequateness numerous authors have proposed several
combination rules which can be broadly classified in two classes [4–10]. The first
class attempts to reduce or suppress the conflict before the combination step by
modifying the original evidences. In this context, Murphy proposed a combina-
tion rule [5] based on the arithmetic average of belief functions associated with
the evidences to be combined. This method is a commutative but not associative
trade-off rule [10]. The second class aims to eliminate evidential conflict in the
combination rule by managing this conflict in order to give no negative impact in
the combination rule. The idea behind these rules is to transfer total or partial
conflicting masses proportionally to non-empty set and the partial ignorance
involved in the model according to some constraints [9]. Many rules were de-
veloped around the propositionally conflict redistribution. In some approaches,
the proportionalization uses only the masses assigned to each set by the sources
of information [8] or according to the results of the conjunctive rule [7]. In the
Proportional Conflict Redistribution Rules (PCR1-5) [10], this proportionaliza-
tion uses both the sources of information and the masses obtained from the
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conjunctive rule. However, the conflict is not proportionally redistributed on the
whole focal set elements with respect to the masses assigned to each focal set
obtained after conjunctive rule application. A similar work that combines bodies
of evidence has been proposed in [9]. This approach is the generalization of the
PCR rules. However, these two classes do not treat the cardinality of focal sets
in a combination process since the results can not reflect the difference between
combined bodies of evidence in the situation belief functions.

This paper aims to address the above limitations and to propose a new com-
bination rule called Conflict Redistribution based on the Cardinality of focal
elements (CRC). The idea behind is based on a mixture between presented pre-
viously two classes. Our combination rule is two-step operator where the evidence
correction step comes first, and then the conflict redistribution step. The evi-
dence correction of each body of evidence is based on the arithmetic average
of belief computed in respect of the corresponding others sources. However, the
global conflict proportionalization uses the masses computed from the conjunc-
tive rule to determine weighting factors. These factors represent the weighted
sum computed from the basic belief assignments (bpas) weighted by the cardi-
nalities of focal elements used in the conjunctive rule. The proposed combination
alternative is evaluated with a real-world smart home dataset proposed in [11]
and our mapping technique [12] to translate uncertain contextual information
from the pervasive environment to the high-level activity layer.

The rest of this paper is organized as follows: In Section 2, we briefly recall ba-
sic notions of evidence theory. Section 3 describes the proposed rule for multiple
sources. Simulation and comparison studies based on both numerical examples
and real-world smart home dataset are reported and discussed in Section 4.

2 DS Theory

The first combination rule proposed by Dempster and Shafer [1] is the normalized
conjunctive combination rule given for two bodies of evidences. In the following,
we recall the grounds of the main concepts and principles of this rule. The frame
of discernment is a set of mutually exclusive and exhaustive hypotheses Hn.
The subsets H ∈ 2Θ is called the focal set elements of m(·). From a frame of
discernment Θ correspondingly 2Θ the power set of Θ, a basic belief assignment
(bba) is defined as a mapping m(·) satisfying the following proprieties:

m (∅) = 0 and
∑

H∈2Θ

m (H) = 1

Based on Shafer’s model of the frame; Dempster’s rule for two sources,
m = m1 ⊕m2 is defined by Eq.1:

mDS (H) =
m12 (H)

1 −m12 (∅)
(1)

m12 (H) =
∑

H1,H2∈2Θ

H1∩H2=H

m1 (H1)m2 (H2) (2)
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where m12(H) represents the conjunctive consensus operator and m12(∅) re-
flects the conflicting mass of the combination between the two sources.

3 The Proposed Combination Rule

In the Dempster’s and Murphy’s combination rules, the conflict is proportion-
ally redistributed on all focal set elements. Murphy [5] suggests that, if belief
functions associated with the evidences are available, the arithmetic average of
these beliefs can be combined in multiple times by Dempster’s rule. However, in
conflict redistribution approaches [7–10], the conflict is redistributed only on the
original focal elements. The proportionalization of PCR6 rule [9] uses both the
sources information and the masses obtained from the conjunctive rule. But the
conflict is not proportionally distributed to all focal set elements (all meaning-
ful propositions). The major disadvantage of these rules is that they do not
make the difference between bodies of evidence in combination step which yields
counterintuitive results in decision-making process. Let’s illustrate this disad-
vantage by the following example. Consider an example of activity recognition
with three interfered sensors. Suppose that these sensors have made observa-
tions of the occurring activity, and ensure that it’s an activity A1, A2, A3 or A4:
Θ = {A1, A2, A3, A4}, with the following bba’s:

m1(A1) = 0.5 m1(A2 ∪ A3 ∪ A4) = 0.5

m2(A1 ∪ A2) = 0.5 m2(A3) = 0.5

m3(A1 ∪ A2 ∪A4) = 0.5 m3(A2 ∪ A3 ∪ A4) = 0.5

Now we combine these masses using a given rule from each class: Dempster’s,
Murphy’s and PCR6 rules. As it can be seen from Table 1, the existing rules
do not redistribute a fraction of the conflicting mass effectively on the focal
set elements Ai. For example, in all rules the conflict redistribution process
assigns the same mass to focal elements {A1} and {A3} although there is a
difference between the cardinality of original evidences used in combination step.
The combined mass of the activity A1 (m123(A1)) is obtained from the masses
m1(A1), m2(A1 ∪ A2) and m3(A1 ∪ A2 ∪ A4) while, the combined mass of A3

(m123(A3)) is obtained from m2(A3), m1(A2 ∪A3 ∪A4) and m3(A2 ∪A3 ∪A4).
So the belief part of {A1} in {A1 ∪ A2} is greater than the belief part of {A3}

Table 1. Combination results of masses

Fused masses Rules

Dempster’s Murphy’s PCR6

m123({A1}) 0.25 0.1863 0.25
m123({A2}) 0.5 0.2941 0.25
m123({A3}) 0.25 0.1863 0.25
m123({A4}) 0 0 0
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in {A2 ∪ A3 ∪ A4}. Thus the certainty in {A1 ∪ A2} of 0.5 for A1 might give
some additional support in {A1} compared to the certainty in {A2 ∪ A3 ∪ A4}
of 0.5 for A3. We suppose that this result is not accordant to the objective
of reasoning over evidences accumulation since the results can not reflect the
difference between bodies of evidence.

To overcome the drawbacks of the preceding rules, we propose an alterna-
tive rule which is two-step operator where the evidence correction step comes
first, and then the conflict redistribution step. The evidence correction uses the
weighted average mass between sources observations through other respective
masses. This correction assumes the independence and the dependence between
the bodies of evidence at the same time because we believe that the certainty
about the most correct judgment increases by having more accumulated inde-
pendent evidence with the highest belief. Based on the conjunctive operator, the
conflict redistribution step uses the cardinality of the bodies of evidence.

First, we introduce the Weighted Average Mass (WAM) definition used in the
proposed combination rule.

Let Θ be a frame of discernment with n elements, and letms(·) be bbas defined
on 2Θ. We define the WAM associated to the focal element X as:

m̃i(X) =
mi(X) +mi(X)

2
(3)

where mi(X) denotes the average mass of the focal element. X computed using
the other bodies of evidence of X :

mi(X) =
1

s− 1

∑
j 	=i

mj(X) (4)

where s is the number of independent sources.
We propose a method to modify each original body of evidence according to

its arithmetic average mass using other sources. This WAM allows to preserve
the mass distribution in the same way as the original mass distribution. It means
that, if a bba for focal set element is bigger and other bbas are all small, a WAM
of this focal set get the same tendency. So this mechanism offers a good weighted
average mass correspondence as well as convergence.

Now, we describe our combination rule for multiple sources s ≥ 2 as follows:

m12···s|CRC (X) =
∑

X1,X2··· ,Xs∈2Θ

X1∩X2∩···Xs=X

s∏
i=1

m̃i (Xi)

+w1,2,··· ,s (X) k1,2,··· ,s

(5)

where k1,2,··· ,s represents the total conflicting mass while w1,2,··· ,s (X) is the
weighting factor defined by as follows:

w1,2,··· ,s (X) =
|X |
λ

∑
X1,X2··· ,Xs∈2Θ

X1∩X2∩···Xs=X

s∏
i=1

m̃i (Xi)

|Xi|
(6)

where λ is the normalization coefficient of the weighting factors.
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Table 2. The weighted average masses computation

Focal element

WAMs {A1} {A3} {A1 ∪A2} {A1 ∪A2 ∪ A4} {A2 ∪A3 ∪A4}
m̃1(·) 0.250 0.125 0.125 0.125 0.375
m̃2(·) 0.125 0.250 0.250 0.125 0.25
m̃3(·) 0.125 0.125 0.125 0.25 0.375

Let’s reconsider the preceding example: Using the above definition, we ob-
tained the WAMs reported in Table 2. Clearly, the WAMs are different from
the arithmetic average used in Murphy’s rule. So these WAMs have a similar
tendency as the original bodies of evidence and show a more realistic averaging
of the original bodies of evidence.

m123(A1) = 0.0898,m123(A2) = 0.1445,m123(A3) = 0.0898
m123(A1 ∪ A2) = 0.0313,m123(A2 ∪ A4) = 0.0781
m123(A1 ∪ A2 ∪ A4) = 0.0039,m123(A2 ∪A3 ∪ A4) = 0.0352

with the total conflicting mass k123 = 0.5273.

Now, we compute the weighted factors in respect to the results of the con-
junctive rule and the cardinality of focal elements.

w123(A1) = 0.1884 w123(A2) = 0.0651 w123(A3) = 0.1446
w123(A1 ∪ A2) = 0.1414 w123(A2 ∪ A4) = 0.1714
w123(A1 ∪ A2 ∪ A4) = 0.0289w123(A2 ∪ A3 ∪A4) = 0.2603

As it can be seen from these results, the weighted factor of the focal set {A1}
is bigger than the weighted factors of the focal sets {A2} and {A3}. This is due
to the fact that the combined mass m123(A1) according to the conjunctive rule
is computed in respect to the WAM masses of the focal sets {A1, A1 ∪A2, A1 ∪
A2,∪A4}. Whereas the combined masses m123(A2) and m123(A3) of focal sets
{A2} and {A3} are computed from the WAM masses of {A1 ∪ A2 ∪ A4, A1 ∪
A2, A2 ∪ A3 ∪ A4} and {A2 ∪ A3 ∪ A4, A3, A2 ∪ A3 ∪ A4} respectively.

We proportionalize the total conflicting mass using these weighting factors.
Consequently, the combination results are as follows:

m123|CRC({A1}) = 0.1892 m123|CRC({A2}) = 0.1788 m123|CRC({A3}) =
0.1661
m123|CRC({A1 ∪ A2}) = 0.1058 m123|CRC({A2 ∪ A4}) = 0.1685
m123|CRC({A1 ∪ A2 ∪ A4}) = 0.0192{A2 ∪ A3 ∪ A4} = 0.1724

These results are different from those reported in Table 1. Therefore, our rule
makes the difference between masses of focal sets {A1}, {A2} and {A3} in the
combination step.



An Evidential Fusion Rule for Ambient Intelligence 361

Unfortunately, our rule is commutative, not associative and a part of the fam-
ily of weighted operators such the weighted average operator [8]. It converges
toward Murphys rule when the conflict is approaching 0. In addition, our rule
does not preserve the vacuous belief assignment (Disappearing Ignorance. The
disappearing ignorance propriety in Dempster’s rule is an advantage in combi-
nation process because only the evidences without ignorance are combined. We
presume that the disappearing ignorance is not justified in all situation of belief
fusion [5]. As illustration, let’s consider again the activity recognition situation
and the following two bba’s: m1(A1) = 0.5, m1(A3 ∪A4) = 0.5, and m2(Θ) = 1.
In this example, Dempster’s rule yields the first belief assignments (m1(·)).
However in our rule we obtained the following results: m12|CRC(A1) = 0.3403,
m12|CRC(A3 ∪ A4) = 0.3542 and m12|CRC(Θ) = 0.3056. Thus, we cannot sup-
press or neglect the weaker belief committed to the activity A2 which can be
supported by the second totally ignorant source.

4 Performance Evaluation

In ambient intelligence applications, context reasoning aims to build new knowl-
edge from existing context data. Recently, a variety of evidential reasoning ap-
proaches have been proposed to treat contextual information [13–17]. The use
of dempster’s rule in [13,14] will get negative impact on the accuracy of activity
recognition since the conflicting masses are eliminated due to the normalization
factor. McKeever et al. [15] propose to include temporal information in the rea-
soning process. They propose also to extend the lifetime of the triggered sensor
evidence for the activity duration, and as a consequence inference continues over
the activity duration. For the combination they used Murphy’s rule. In [14], Hong
et al. generated an ontology for activities of daily living and used the D-S theory
to reason about the activity recognition. In [16], Sebbak et al. have proved that
an adequate mapping techniques to translate uncertain contextual information
from the pervasive environment to the high-level activity layer can provide an
efficient way to increase the efficiency and the accuracy of activity recognition.
In [17], Liao et al. propose a framework with a lattice structure based on the
evidence theory to manage the uncertainty in smart homes according to an ob-
ject, a context and an activity layers. Their approach aims to incorporate the
historical information and the patterns related to the activities being considered
to improve the reasoning performance.

In this section, we evaluate and compare the proposed combination rule using
a real-life smart home dataset proposed in [11] and the mapping technique [12]
for aggregating the raw data, which is captured using a wireless senor network,
into high-level activity knowledge. This evaluation aims to show how activity
recognition is improved using the proposed combination rule. It aims also to
compare the obtained results among other combination rules in evidential-based
approaches. The Van Kasteren’s dataset captures the activities of a 26 years old
man over a period of 28 day in his apartment. Over the 28 days, seven different
activities were recorded: ’sleeping’, ’leave home’, ’use toilet’,’take shower’,’get
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Table 3. Activity recognition accuracy using different combination rules

Combination rule Accuracy

CRC 0.6918
Murphy 0.6813
Mean 0.6593
PCR6 0.6534
Dempster-Shafer 0.5441
Smets / Yager / Dubois et Prade 0.5369
Disjunctive 0.3341
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Fig. 1. The cardinality effect on conflict redistribution for two activities

drink’,’prepare breakfast’ and ’prepare dinner’. Data are gathered from 14 binary
sensors installed in doors, cupboards, the refrigerator and toilet flush.

In this evaluation, we use the same masses construction process introduced
in [15]. These masses are build by examining for each activity occurrence the
number of times the sensors are used. For example, if in ten occurrences of ’get
drink’ activity the sensor cup is used nine times, then the corresponding masses
are 0.9 for the focal element get drink and 0.1 is allocated to the total ignorance:
Θ = {get drink, ¬get drink}. These masses can be discounted if we have more
information about sensor reliability.

Based on the Extended Dempster-Shafer Theory proposed in [15], Table 3
presents the results of activity recognition using the proposed rule and other
well-known combination rules. At the head of the this table, the CRC rule gives
the best activity accuracy and improves the performance of activity recognition
by improving F-measure metrics. The proposed rule manage and redistribute
the conflicting mass on the corresponding activities according to the original
sensor’s masses.

Dempster’s rule of combination did not show a good result because it com-
pletely ignores all the conflicts through the normalization factor. If a single
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sensor is off at a given time, the majority opinion of other sensors will be lost.
Therefore, unless all sensors are fired at the same time, the evidence from any
firing sensors will be lost. Murphy’s rule shows competent results by combining
the average of the multiple sensor masses. Fig. 1 shows the impact of the frame
of discernment scalability on conflict redistribution for two activities. As shown,
with the growth of the amount of the size of frame of discernment set, the belief
of the mass committed to the activity {b} decreases in our approach while it
remains constant in Murphy’s, PCR6 and Dempster’s rules. The reason is that
a part of this belief is weaker according to the variation of |Θ|.

5 Conclusion

In this paper, a two-step rule fusion is established where the averaging of evi-
dence step comes first, and then the conflict redistribution step. The latter step
considers a new notion of beliefs according to the cardinality of focal set el-
ements. Experimental studies are conducted on a real smart home dataset to
show the accuracy of our rule in ubiquitous-assisted living situation where our
CRC rule advances some existing evidential rules.
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Abstract. This paper presents an evidential fusion approach for senti-
ment classification tasks and a comparative study with linear sum com-
bination. It involves the formulation of sentiment classifier output in the
triplet evidence structure and adaptation of combination formulas for
combining simple support functions derived from triplet functions by
using Smets’s rule, the cautious conjunctive rules and linear sum rule.
Empirical comparisons on the performance have been made in individ-
uals and in combinations by using these rules, the results demonstrate
that the best ensemble classifiers constructed by the four combination
rules outperform the best individual classifiers over two public datasets
of MP3 and Movie-Review.

Keywords: Belief functions, combination rules, linear sum and senti-
ment polarity classification.

1 Introduction

The social media of online reviews, forum discussions and social networks is now
pervasive in so many areas of personal, social and economic life, and influences
people’s opinion toward entities, subjects and events. When used in the anal-
ysis of public opinion, such as the automated interpretation of online product
reviews, sentiment analysis can be extremely helpful in identifying the polarity
of opinions about the success of products. However, identifying opinions gleaned
from social media remains a challenging task due to the proliferation of diverse
social networks [1] and little is known about evidential fusion approaches in the
context of sentiment classification. This paper presents our latest research on an
evidential fusion approach for sentiment polarity classification.

Sentiment classification normally involves to assign opinionated texts with a
situation in the form of positive, negative or neutral, but supervised machine
learning algorithms are not able directly classify inputs to a neutral situation,
which could be alternatively obtained through a membership function on numer-
ical scores. In this study, we consider positive and negative situations as binary
mutually exclusive propositions for defining a frame of discernment and use the
frame to represent the neutral situation in terms of ignornace. In this way we can
effectively adapt the triplet function to represent sentiment classifier output [6].

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 365–373, 2014.
c© Springer International Publishing Switzerland 2014
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Following this we adapt the computational formulas derived to combine multiple
triplet functions by the cautious conjunctive combination rule, the normalized
version of the cautious rule [3], the Transferable Belief Model(TBM) conjunc-
tive rule [4] and linear sum rule, which could be regarded as a novel piece of
work as the application of the cautious rules and Smets’s rule to combine the
adapted triplet functions has not previously been investigated in the context
of sentiment polarity classification. The more comparative studies with other
combinations will be included in a future paper. To evaluate the effectiveness of
the proposed method two experiments have been conducted on combining eight
machine learning algorithms by using these rules in conjunction with the linear
sum combination over the online review datasets of MP3 and Movie-Review,
the experimental results show that on both of the datasets, the best combined
classifiers by using the four rules outperform the best individual classifiers.

2 Basics of Belief Functions

Belief functions were originally developed under the Dempster-Shafer (DS) the-
ory of evidence [5], which have been commonly used for modeling someone’s
degrees of belief. The TBM model is an alternative to DS with its own in-
terpretations to the conditions imposed in the DS model. TBM also provides
mechanisms for representing the quantified beliefs held on a frame of discern-
ment and concerns the same concepts as covered by the Bayesian model, but
based on belief functions rather than on probabilistic quantification.

Let Θ denote a finite set called the frame of discernment that is comprised of
mutually exclusive propositions. A mass function or called basic belief assignment
(bba) is defined as a function m : 2Θ → [0, 1] with the condition of∑

A⊆Θ

m(A) = 1

where m(A) measures the amount of belief that someone exactly commits to A,
rather than the total support committed to A. The condition ofm(∅) 
= 0 held in
DS is not imposed in TBM. Any subset A ⊆ Θ is called a focal element or focus
if m(A) > 0. To obtain the measurements of the total support committed to
A and of other situations, the DS provides other related functions, particularly,
commonality function (q) that can be obtained by a mass function as follows:

q(A) =
∑
B⊇A

m(B) (1)

As a special case of mass functions, measurements on the frame of discernment
are only committed to a specific subset A and Θ. Such a mass function is called
a simple support function, denoted by Aw, where m(A) = 1 − w and m(Θ) = w
represent the degree of support for proposition A ⊆ Θ and support for all other
possible worlds that are not included in A.

In practice, evidence sources may not be entirely reliable. Support degrees
derived from such sources need to be discounted to truly reflect the reliability of
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the sources. The DS theory also provides a discount mechanism by the following
formula.

mr(A) =

{
(1 − r)m(A), if A ⊂ Θ
r + (1 − r)m(Θ), if A = Θ

(2)

where r represents the discounting rate within the range of [0, 1].

Definition 1. Letm1 andm2 be two mass functions on the frame of discernment
Θ, and for any subset A ⊆ Θ, the conjunctive combination of m1 and m2 on A,
denoted by ∩©, is defined as follows:

m1 ∩©m2(A) =
∑

X∩Y=A

m1(X)m2(Y ) (3)

where X,Y ⊆ Θ, the conjunctive rule is also referred to as Smets’s rule. If the
conjunctive rule is divided by the normalization factorK = 1−

∑
X∩Y=∅m1(X)∗

m2(Y ), thereby resulting in a rule called Dempster’s rule of combination, denoted
by ⊕. Notice that the TBM model lifts the restriction on m(∅) = 0 and removes
the normalization operation held in the DS model.

Definition 2. Let m1 and m2 be two non dogmatic1 mass functions defined on
the frame of discernment Θ. The cautious conjunctive combination of m1 and
m2, denoted by m1 ∧©2 = m1 ∧©m2, is defined on the basis of a weight function
below [3]:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Θ (4)

and then

m1 ∧©m2 = ∩©A⊂ΘA
w1(A)∧w2(A). (5)

where the weight w(A) can be obtained from the commonalities by the following
formula:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

(6)

if the conjunctive operation ∩© in Equation (5) is replaced by the Dempster
orthogonal sum

⊕
, then the revised Equation (5) has to be divided by the

normalization factor of K = 1 − m1 ∧©m2(∅), resulting in a normalized version
of the cautious rule below:

m1 ∧©m2 =

⊕
∅	=A⊂Θ A

w1(A)∧w2(A)

K
. (7)

As indicated in [3] thatm1 ∧©m2(∅) = 1 never holds as ’the cautious combination
of two non dogmatic BBAs can never be dogmatic’.

1 Dogmatic means that the frame of discernment Θ is not a focal set.
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3 Triplet Belief Functions and Combinations

A sentiment polarity classification can simply be as a special case of topic-based
text categorization with the polar topics of positive and negative sentiments.
Formally let D be a training text collection, C = {c, c̃} be binary class labels and
ϕ be a classifier, then we represent classifier output by ϕ(d) = C × [0, 1], d ∈ D
and formulate the representation as a piece of evidence in the form of triplet
below.

Definition 3. Let Θ = {x1, x2, ..., xn} be a frame of discernment and ϕ(d) =
{m({x1}),m({x2}), ...,m({xn})} be mass probabilities derived from classifier
outputs. An expression in the form of A = 〈A1, A2, A3〉 is defined as a triplet,
where A1, A2 ⊂ Θ are singletons, A3 is the whole set Θ. When n = 2, the
frame of discernment Θ is comprised of only binary focal elements, denoted
by Θ = {x, x̃}, such that a triplet mass function on Θ satisfies the following
condition:

m({x}) +m({x̃}) +m(Θ) = 1,

where the degrees of support for {x}, {x̃} and Θ can be obtained by using
the discounting function Equation (2). Given multiple triplet mass functions of
m1, . . . ,mL that are committed to binary focal elements, the general formulas
of combining them by using Smets’s rule can be obtained below [6] [7]:

m({x}) = 1 −
n∏

i=1

(1 −mi({x})) (8)

m({x̃}) = 1 −
n∏

i=1

(1 −mi({x̃})) (9)

m(Θ) = 1 −
n∏

i=1

mi(Θ) (10)

To combine m1, . . . ,mL by the cautious rule, we arrange these L functions
into a group of pairs and combine each pair separately as follows:

m1 ∧©m2︸ ︷︷ ︸
l1

,m3 ∧©m4︸ ︷︷ ︸
l2

, . . . ,mL−1 ∧©mL︸ ︷︷ ︸
lL/2

(11)

where l1+, . . . lL/2 = L and L is assumed to be an even number.
Specifically taking the first pair of triplet functions as an example, the com-

bination involves three steps [3]. The first step is to compute the commonality
functions q1 and q2 from m1 and m2 by Equation (1); the second is to com-
pute the weight functions w1 and w2 using Equation (6) and then generate
(inverse)simple mass functions in the form of Aw1(A)∧w2(A), for all A ⊂ Ω such
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that w1 ∧ w2(A) 
= 1; and finally compute m1 ∧©2 = m1 ∧©m2 on these simple
mass functions by using Smets’s rule. From the former two steps, we have,

{x}w1({x})∧w2({x}) = {x}min({ m1(Θ)

m1({x})+m1(Θ)
,

m2(Θ)

m2({x})+m2(Θ)
})=w

(12)

{x̃}w1({x̃})∧w2({x̃}) = {x̃}min({ m1(Θ)

m1({x̃})+m1(Θ) ,
m2(Θ)

m2({x̃})+m2(Θ) })=w̃
(13)

with w and w̃, two (inverse) simple support functions can be generated as follows,

m1
12({x}) = 1 − w;m1

12(Θ) = w. (14)

m2
12({x̃}) = 1 − w̃;m2

12(Θ) = w̃. (15)

For the remaining pairs of triplet functions, we can repeat the same process
above by using Equations (12)-(15) to subsequently obtain L/2 simple support
functions that are committed to {x} by Equation (14) and L/2 simple support
functions that are committed to {x̃} by Equation (15). Finally we can calculate
the degrees of belief for {x}, {x̃} and Θ by using Equations (8) - (10). When
L is not an even number, it is straightforward to combine the Lth triplet mass
function with a simple support function resulting from the L−1 triplet functions.

4 Evaluation

To evaluate the performance of ensemble classifiers made by using the four com-
bination rules of the cautious conjunctive rule, the normalized cautious rule,
Smets’s rule and Linear Sum rule, we conducted the experiments with eight ma-
chine learning algorithms to generate base classifier over the two datasets of MP3
and Movie-Review. These learning algorithms include NaiveBayes, IBk, KStar,
DecisionStump, J48, RandomForest, DecisionTable and JRip, which are directly
taken from the Waikato Environment for Knowledge Analysis (Weka) version
3.6 [8]. The philosophies behind these algorithms are quite different, but each
has been shown to be effective in previous text categorization studies. For our
experiments parameters used for each algorithm were set at the default settings.

The MP3 dataset contains MP3 digital camera and player reviews collected in
Amazon.com [9]. Each of review consists of short sentences and is labeled with a
five star scale. The reviews with 1 and 2 stars are considered very negative and
negative, respectively, whereas reviews with 4 and 5 stars are considered positive
and very positive, and reviews with 3 stars are regarded as neutral [10]. The
Movie-Review are rated with a similar schema. For this work, we concentrated
only on discriminating between positive and negative polarity sentiment and
discarded the reviews with neutral. As a result the MP3 dataset used in our
experiments contains 21519 positive and 6390 negative reviews and the Movie-
Review consists of 1000 positive and 1000 negative movie reviews.

The experiments were conducted using a ten-fold cross validation, and the
performance of classifiers in individuals and combinations was measured by the
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Table 1. The accuracies of best individual classifier, best ensemble classifiers con-
structed by the cautious conjunctive rule, the normalized cautious rule, Smets’s rule
and Linear Sum on MP3 and Movie-Review (MR) datasets

Datasets Best individual Cautious rule Normalized rule Smets’s rule Linear sum

MP3 79.52% 81.74% 81.68% 82.32% 81.79%
MR 75.17% 76.57% 76.57% 76.49% 77.37%

Av 77.34% 79.16% 79.13% 79.41% 79.55%

F-measure. For construction of ensemble classifiers by the four combination rule,
all combinations of eight classifiers were generated. Specifically, we first combine
any two classifiers, denoted by C2, and combine the resulting combination of two
classifiers with a third classifier, denoted by C3, and the result with a fourth
classifier, denoted by C4, until combine all eight classifiers, denoted by C8,
resulting in a 247× 3 number of classifier combinations in total for one dataset.

Table 1 presents the summarized accuracies of the best individual and best en-
semble classifiers constructed by the four combination rules on the two datasets.
On average, the best accuracies increase by 2.36% compared with the best indi-
vidual on the MP3 dataset, and increase by 1.58% on Movie-Review. These give
a totally averaged 1.97% increase on these datasets. The details of each of the
experimental results are depicted below.

Fig. 1. Averaged (left) and best (right) accuracies of different groups combination of
classifiers using the four combination rules over the MP3 dataset

Figure 1 (left) shows the averaged accuracies of different ensemble classifier
groups on MP3, where C1 on the x-axis represents the averaged accuracy of eight
classifiers, C2 represents an averaged accuracy of all accuracies of the ensemble
classifiers that are comprised of two classifiers by using four combination rules
respectively, C3 represents an averaged accuracy of all accuracies of the ensemble
classifiers made up of three classifiers, and so forth. This figure illustrates that the
averaged accuracies of different groups of ensemble classifiers gradually increase
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with adding more classifiers into classifier ensembles. It can be seen that the
averaged performance of the combined classifiers by the cautious conjunctive
rule is the same as that of the ensemble classifiers made by the normalized
cautious rule, and the ensemble classifiers made by Smets’s rule and by Linear
Sum outperform that constructed by the cautious rules. Compared with the
averaged accuracy of eight base classifiers, the averaged accuracies of all ensemble
classifiers made by the cautious rules are 4.69% better, by Smets’s rule it is 5.36%
better, and by Linear Sum it is 5.16% better.

Figure 1 (right) shows the accuracies of the best ensemble classifiers among
the respective groups of ensemble classifiers on MP3, where C1, C2, . . ., C8 on
the x-axis represent the best individual accuracies among each of the ensemble
classifier groups, respectively. Unlike the trends embodying in Figure 1 (left), the
best accuracies increase from the combination of two classifiers to four classifiers
and then drop down with adding more classifiers into ensemble classifiers. It
can be found that the ensemble classifiers made by Smets’s rule perform best,
the cautious conjunctive rule, the normalized cautious rule and the Linear Sum
perform similarly. The best accuracy drawn from all the ensemble classifiers made
by Smets’s rule is 2.8% better than the accuracy of best individual classifier, by
Linear Sum it is 2.27% better, by the cautious conjunctive rule it is 2.22% than
better, and by the normalized cautious rule it is 2.21% better.

Fig. 2. Averaged (left) and best (right) accuracies of different groups combination of
classifiers using the four combination rules over the Movie-Review dataset

Figure 2 (left) presents a similar analysis as depicted in Figure 1 (left) on
Movie-Review instead. Compared with the analysis results with those in Figure
1 (left), the trend of the ensemble classifiers made by the Linear Sum is consistent
with those presented in Figure 1 (left), but the trends with the cautious rules are
opposite to what the cautious rules conducts on MP3. The averaged accuracies
of all ensemble classifiers constructed by the cautious rules are 0.79% less than
that of the averaged eight base classifiers, but by Smets’s rule it is 1.51% better
than that of the averaged eight base classifiers, however the averaged accuracy
by Linear Sum is 4.08%, marginally better than the averaged performance of
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eight base classifiers. Figure 2 (right) shows the best accuracies among each of
the ensemble classifier groups for the Movie-Review dataset. The performance
trends of the ensemble classifiers made by the four combination rules are roughly
embodied in a decreasing manner, but the accuracies of the ensemble classifiers
made by the cautious rules drop down sharply. The best accuracies achieved
are among the combinations of two, three or four classifiers cross four groups
of ensemble classifiers made by these combination rules. From the experimental
results, it is found that the Linear Sum performs best, the cautious rules performs
the second best, the accuracy of best ensemble classifier among seven groups of
ensemble classifiers is 1.4% better than that of the best individual classifier, for
Smets’s rule it is 1.33% better than the best individual classifier, and for Linear
Sum it is 2.21% better than the best individual classifier.

5 Conclusions

In this paper we proposed to use the triplet function to represent polarity sen-
timent classification output and adapted the formulas developed for computing
triplet functions to combining multiple triplets in the form of simple support
functions with the four combination rules. We empirically compare the pro-
posed approach with the linear sum approach, the results demonstrate that the
potential of the proposed method in determining the sentiment polarity of online
product reviews.

The experimental results reveal the fact that the best ensemble classifiers,
which are made by either the evidential rules or the linear sum, are composed
of 2-4 classifiers. This indicates that combining more classifiers represented by
triplet mass functions into an ensemble classifier may not result in the best
combined accuracy as combining more classifiers may not effectively make the
best combination to arrive at a convergent consensus in addition to increasing
computational complexity as observed in [2]. From a further examination on the
construction of the ensemble classifiers, it is also found that the best base classi-
fier is always a component classifier in the best ensemble classifiers. In opposition
to this, the second best base classifier plays in a varied role in constructing the
best ensemble classifiers, this means that the role played is depending the com-
bination rules and the datasets. In the best ensemble classifier constructed by
Smets’s rules on MP3, the second best classifier is one of the component classi-
fiers, by contrast it is not one with the cautious rules and the linear sum. While
for Movie-Review, the second best classifier does not play a role in constructing
the best ensemble classifiers made by the four combination rules.

In this study, the generation of sentiment classifiers is based on the con-
ventional text categorization approach, where we used the bag of words as a
feature representation, and we did not incorporate a set of seed words or part-
of-speech tagging as prior knowledge to associate features with aspects/topics.
This will be an important next step in an attempt to improve the sentiment clas-
sification accuracy. As mentioned previously the sentiment polarity classification
involves three possible outcomes: positive, negative and neutral. In this work the
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neutral category has implicitly been formulated as ignorance in the form of
a frame of discernment, but the associated mass probabilities were obtained
through the discounting function. The justification on such a treatment remains
to be addressed in connection with formulating the neutral output as a frame of
discernment in future.
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Abstract. In this paper, we present a method based on belief functions
to evaluate the quality of the optimal assignment solution of a classical
association problem encountered in multiple target tracking applications.
The purpose of this work is not to provide a new algorithm for solving
the assignment problem, but a solution to estimate the quality of the
individual associations (pairings) given in the optimal assignment solu-
tion. To the knowledge of authors, this problem has not been addressed
so far in the literature and its solution may have practical aspects for
improving the performances of multisensor-multitarget tracking systems.

Keywords: Data association, PCR6 rule, Belief function.

1 Introduction

Efficient algorithms for modern multisensor-multitarget tracking (MS-MTT) sys-
tems [1,2] require to estimate and predict the states (position, velocity, etc) of the
targets evolving in the surveillance area covered by the sensors. The estimations
and the predictions are based on sensors measurements and dynamical models
assumptions. In the monosensor context, MTT requires to solve the data asso-
ciation (DA) problem to associate the available measurements at a given time
with the predicted states of the targets to update their tracks using filtering
techniques (Kalman filter, Particle filter, etc). In the multisensor MTT context,
we need to solve more difficult multi-dimensional assignment problems under
constraints. Fortunately, efficient algorithms have been developed in operational
research and tracking communities for formalizing and solving these optimal as-
signments problems. Several approaches based on different models can be used
to establish rewards matrix, either based on the probabilistic framework [1,3], or
on the belief function (BF) framework [4,5,6,7]. In this paper, we do not focus on
the construction of the rewards matrix1, and our purpose is to provide a method
to evaluate the quality (interpreted as a confidence score) of each association
(pairing) provided in the optimal solution based on its consistency (stability)
with respect to all the second best solutions.

1 We assume that the rewards matrix is known and has been obtained by a method
chosen by the user, either in the probabilistic or in the BF framework.
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The simple DA problem under concern can be formulated as follows. We have
m > 1 targets Ti (i = 1, . . . ,m), and n > 1 measurements2 zj (j = 1, . . . , n)
at a given time k, and a m × n rewards (gain/payoff) matrix Ω = [ω(i, j)]
whose elements ω(i, j) ≥ 0 represent the payoff (usually homogeneous to the
likelihood) of the association of target Ti with measurement zj, denoted (Ti, zj).
The data association problem consists in finding the global optimal assignment
of the targets to some measurements by maximizing3 the overall gain in such a
way that no more than one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume ω(i, j) ≥ 0 because if some elements
ω(i, j) of Ω were negative, we can always add the same maximal negative value
to all elements of Ω to work with a new payoff matrix Ω′ = [ω′(i, j)] having all
elements ω′(i, j) ≥ 0, and we get the same optimal assignment solution with Ω
and with Ω′. Moreover, we can also assume, without loss of generality m ≤ n,
because otherwise we can always swap the roles of targets and measurements in
the mathematical problem definition by working directly with Ωt instead, where
the superscript t denotes the transposition of the matrix. The optimal assignment
problem consists of finding the m × n binary association matrix A = [a(i, j)]
which maximize the global rewards R(Ω,A) given by

R(Ω,A) �
m∑
i=1

n∑
j=1

ω(i, j)a(i, j) (1)

Subject to

⎧⎪⎨⎪⎩
∑n

j=1 a(i, j) = 1 (i = 1, . . . ,m)∑m
i=1 a(i, j) ≤ 1 (j = 1, . . . , n)

a(i, j) ∈ {0, 1} (i = 1, . . . , m and j = 1, . . . , n)

(2)

The association indicator value a(i, j) = 1 means that the corresponding
target Ti and measurement zj are associated, and a(i, j) = 0 means that they
are not associated (i = 1, . . . ,m and j = 1, . . . , n).

The solution of the optimal assignment problem stated in (1)–(2) is well re-
ported in the literature and several efficient methods have been developed in
the operational research and tracking communities to solve it. The most well-
known algorithms are Kuhn-Munkres (a.k.as Hungarian) algorithm [8,9] and its
extension to rectangular matrices proposed by Bourgeois and Lassalle in [10],
Jonker-Volgenant method [11], and Auction [12]. More sophisticated methods
using Murty’s method [13], and some variants [3,14,15,16,17,18,19], are also able
to provide not only the best assignment, but also the m-best assignments. We
will not present in details all these classical methods because they have been
already well reported in the literature [20,21], and they are quite easily acces-
sible on the web. In this paper, we want to provide a confidence level (i.e. a

2 In a multi-sensor context targets can be replaced by tracks provided by a given
tracker associated with a type of sensor, and measurements can be replaced by
another tracks set. In different contexts, possible equivalents are assigning personnel
to jobs or assigning delivery trucks to locations.

3 In some problems, Ω = [ω(i, j)] represents a cost matrix whose elements are the
negative log-likelihood of association hypotheses. In this case, the data association
problems consists in finding the best assignment that minimizes the overall cost.
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quality indicator) in the optimal data association solution. More precisely, we
are searching an answer to the question: how to measure the quality of the pair-
ings a(i, j) = 1 provided in the optimal assignment solution A? The necessity to
establish a quality indicator is motivated by the following three main reasons:

1. In some practical tracking environment with the presence of clutter, some
association decisions (a(i, j) = 1) are doubtful. For these unreliable associ-
ations, it is better to wait for new information (measurements) instead of
applying the hard data association decision, and making potentially serious
association mistakes.

2. In some multisensor systems, it can be also important to save energy con-
sumption for preserving a high autonomy capacities of the system. For this
goal, only the most trustful specific associations provided in the optimal
assignment have to be selected and used instead of all of them.

3. The best optimal assignment solution is not necessarily unique. In such sit-
uation, the establishment of quality indicators may help in selecting one
particular optimal assignment solution among multiple possible choices.

Before presenting our solution in Section 2, one must recall that the best, as well
as the 2nd-best, optimal assignment solutions are unfortunately not necessarily
unique. Therefore, we must also take into account the possible multiplicity of
assignments in the analysis of the problem. The multiplicity index of the best
optimal assignment solution is denoted β1 ≥ 1, and the multiplicity index of the
2nd-best optimal assignment solution is denoted β2 ≥ 1, and we will denote the

sets of corresponding assignment matrices by A1 = {A(k1)
1 , k1 = 1 . . . , β1} and

by A2 = {A(k2)
2 , k2 = 1 . . . , β2}. The next simple example illustrates a case with

multiplicity of 2nd-best assignment solutions for the reward matrix Ω1.

Example: β1 = 1 and β2 = 4 (i.e. no multiplicity of A1 and multiplicity of A2)

Ω1 =

[
1 11 45 30
17 8 38 27
10 14 35 20

]
This rewardmatrix provides a unique best assignmentA1providingR1(Ω1,A1) =
86, and β2 = 4 second-best assignment solutions providing R2(Ω1,A

k2
2 ) = 82

(k2 = 1, 2, 3, 4) given by

A1 =

[
0 0 1 0
0 0 0 1
0 1 0 0

]

Ak2=1
2 =

[
0 0 0 1
0 0 1 0
0 1 0 0

]
, Ak2=2

2 =

[
0 0 1 0
1 0 0 0
0 0 0 1

]
, Ak2=3

2 =

[
0 0 1 0
0 0 0 1
1 0 0 0

]
, Ak2=4

2 =

[
0 0 0 1
1 0 0 0
0 0 1 0

]

2 Quality of the Associations of the Optimal Assignment

To establish the quality of the specific associations (pairings) (i, j) satisfying
a1(i, j) = 1 belonging to the optimal assignment matrix A1, we propose to use
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both A1 and 2nd-best assignment solution A2. The basic idea is to compare the
values a1(i, j) with a2(i, j) obtained in the best and in the 2nd-best assignments
to identify the change (if any) of the optimal pairing (i, j). Our quality indicator
will depend on both the stability of the pairing and its relative impact in the
global reward. The proposed method works also when the 2nd-best assignment
solution A2 is not unique (as in our example). The proposed method will also
help to select the best (most trustful) optimal assignment in case of multiplicity
of A1 matrices.

2.1 A Simplistic Method (Method I)

Before presenting our sophisticate method based on belief functions, let’s first
present a simplistic intuitive method (called Method I). For this, let’s assume at
first that A1 and A2 are unique (no multiplicity occurs). The simplistic method
uses only the ratio of global rewards ρ � R2(Ω,A2)/R1(Ω,A1) to measure the
level of uncertainty in the change (if any) of pairing (i, j) provided in A1 and A2.
More precisely, the quality (trustfulness) of pairings in an optimal assignment
solution A1, denoted

4 qI(i, j), is simply defined as follows for i = 1, . . . ,m and
j = 2, . . . , n:

qI(i, j) �

⎧⎪⎨⎪⎩
1, if a1(i, j) + a2(i, j) = 0

1− ρ if a1(i, j) + a2(i, j) = 1

1, if a1(i, j) + a2(i, j) = 2

(3)

By adopting such definition, one commits the full confidence to the compo-
nents (i, j) of A1 and A2 that perfectly match, and a lower confidence value (a
lower quality) of 1 − ρ to those that do not match. To take into account the
eventual multiplicities (when β2 > 1) of the 2nd-best assignment solutions Ak2

2 ,
k2 = 1, 2, . . . , β2, we need to combine the QI(A1,A

k2
2 ) values. Several methods

can be used for this, in particular we can use either:

– A Weighted Averaging Approach: The quality indicator component
qI(i, j) is then obtained by averaging the qualities obtained from each com-
parison of A1 with Ak2

2 . More precisely, one will take:

qI(i, j) �
β2∑

k2=1

w(Ak2
2 )q

k2
I (i, j) (4)

where qk2

I (i, j) is defined as in (3) (with a2(i, j) replaced by ak2
2 (i, j) in

the formula), and where w(Ak2
2 ) is a weighting factor in [0, 1], such that∑β2

k2=1 w(A
k2
2 ) = 1. Since all assignments Ak2

2 have the same global reward

value R2, then we suggest to take w(Ak2
2 ) = 1/β2. A more elaborate method

would consist to use the quality indicator of Ak2
2 based on the 3rd-best

solution, which can be itself computed from the quality of the 3rd assignment
solution based on the 4th-best solution, and so on by a similar mechanism.
We however don’t give more details on this due to space constraints.

4 The subscript I in qI(i, j) notation refers to Method I.
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– A Belief-Based Approach (see [22] for basics on belief functions):
A second method would express the quality by a belief interval
[qmin

I (i, j), qmax
I (i, j)] in [0, 1] instead of single real number qI(i, j) in [0, 1].

More precisely, one can compute the belief and plausibility bounds of the
quality by taking qmin

I (i, j) ≡ Bel(a1(i, j)) = mink2 q
k2

I (i, j) and qmax
I (i, j) ≡

Pl(a1(i, j)) = maxk2 q
k2

I (i, j), with qk2

I (i, j) given by (3) and a2(i, j) replaced

by ak2
2 (i, j) in the formula. Hence for each association a1(i, j), one can de-

fine a basic belief assignment (BBA) mij(.) on the frame of discernment

Θ � {T = trustful,¬T = not trustful}, which will characterize the quality
of the pairing (i, j) in the optimal assignment solution A1, as follows:⎧⎪⎨⎪⎩

mij(T ) = qmin
I (i, j)

mij(¬T ) = 1− qmax
I (i, j)

mij(T ∪ ¬T ) = qmax
I (i, j) − qmin

I (i, j)

(5)

Remark: In practice, only the pairings5 (i, j) such that a1(i, j) = 1 are use-
ful in tracking algorithms to update the tracks. Therefore, we don’t need to
pay attention (compute and store) the qualities of components (i, j) such that
a1(i, j) = 0.

2.2 A More Sophisticate and Efficient Method (Method II)

The previous method can be easily applied in practice but it does not work very
well because the quality indicator depends only on the ρ factor, which means that
all mismatches between the best assignment A1 and the 2nd-best assignment
solution A2 have their quality impacted in the same manner (they are all taken
as 1 − ρ). As a simple example, if we consider the rewards matrix Ω1 given in
our example, we will have ρ = R2(Ω1,A

k2
2 )/R1(Ω1,A1) = 82/86 ≈ 0.95, and

we will get using method I with the weighting averaging approach (using same
w(Ak2

2 ) = 1/β2 = 0.25 for k2 = 1, 2, 3, 4) the following quality indicator matrix:

QI(A1,A2) =
1

β2

β2∑
k2=1

QI(A1,A
k2
2 ) =

⎡⎣1.0000 1.0000 0.5233 0.5233
0.5233 1.0000 0.7616 0.2849
0.7616 0.2849 0.7616 0.7616

⎤⎦ (6)

We observe that optimal pairings (2,4) and (3,2) get the same quality value
0.2849 with the method I (based on averaging), even if these pairings have dif-
ferent impacts in the global reward value, which is abnormal. If we use the
method I with the belief interval measure based on (5), the situation is worst
because the three optimal pairings (1,3), (2,4) and (3,2) will get exactly same
belief interval values [0.0465,1]. To take into account, and in a better way, the
reward values of each specific association given in the best assignment A1 and
in the 2nd-best assignment Ak2

2 , we propose to use the following construction of
quality indicators depending on the type of matching (called Method II):

5 Given in the optimal solution found for example with Murty’s algorithm.
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– When a1(i, j) = ak2
2 (i, j) = 0, one has full agreement on “non-association”

(Ti, zj) in A1 and in Ak2
2 and this non-association (Ti, zj) has no impact on

the global rewards values R1(Ω,A1) and R2(Ω,A
k2
2 ), and it will be useless.

Therefore, we can set its quality arbitrarily to qk2

II (i, j) = 1.

– When a1(i, j) = ak2
2 (i, j) = 1, one has a full agreement on the association

(Ti, zj) in A1 and in Ak2
2 and this association (Ti, zj) has different impacts in

the global rewards values R1(Ω,A1) and R2(Ω,A
k2
2 ). To qualify the quality

of this matching association (Ti, zj), we define the two BBA’s onX � (Ti, zj)
and X ∪ ¬X (the ignorance), for s = 1, 2:{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As)

ms(X ∪ ¬X) = 1−ms(X)
(7)

Applying the conjunctive rule of fusion, we get{
m(X) = m1(X)m2(X) +m1(X)m2(X ∪ ¬X) +m1(X ∪ ¬X)m2(X)

m(X ∪ ¬X) = m1(X ∪ ¬X)m2(X ∪ ¬X) (8)

Applying the pignistic transformation6 [24], we get finally BetP (X)=m(X)+
1
2 ·m(X ∪ ¬X) and BetP (¬X) = 1

2 ·m(X ∪ ¬X). Therefore, we choose the

quality indicator as qk2

II (i, j) = BetP (X).

– When a1(i, j) = 1 and ak2
2 (i, j) = 0, one has a disagreement (conflict)

on the association (Ti, zj) in A1 and in (Ti, zj2) in Ak2
2 , where j2 is the

measurement index such that a2(i, j2) = 1. To qualify the quality of this
non-matching association (Ti, zj), we define the two following basic belief

assignments (BBA’s) of the propositions X � (Ti, zj) and Y � (Ti, zj2){
m1(X) = a1(i, j) · ω(i,j)

R1(Ω,A1)

m1(X ∪ Y ) = 1−m1(X)
and

⎧⎨⎩m2(Y ) = a2(i, j2) · ω(i,j2)

R2(Ω,A
k2
2 )

m2(X ∪ Y ) = 1−m2(Y )
(9)

Applying the conjunctive rule, we get m(X ∩ Y = ∅) = m1(X)m2(Y ) and⎧⎪⎨⎪⎩
m(X) = m1(X)m2(X ∪ Y )

m(Y ) = m1(X ∪ Y )m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(10)

Because we need to work with a normalized combined BBA, we can choose
different rules of combination (Dempster-Shafer’s, Dubois-Prade’s,Yager’s
rule [23], etc). In this work, we recommend the Proportional Conflict Redis-
tribution rule no. 6 (PCR6), proposed originally in DSmT framework [23],
because it has been proved very efficient in practice. So, we get with PCR6:⎧⎪⎨⎪⎩

m(X) = m1(X)m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(Y ) = m1(X ∪ Y )m2(Y ) +m2(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(11)

6 We have chosen here BetP for its simplicity and because it is widely known, but
DSmP could be used instead for expecting better performances [23].
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Applying the pignistic transformation, we get finally BetP (X) = m(X)+ 1
2 ·

m(X ∪ Y ) and BetP (Y ) = m(Y ) + 1
2 ·m(X ∪ Y ). Therefore, we choose the

quality indicators as follows: qk2

II (i, j) = BetP (X), and qk2

II (i, j2) = BetP (Y ).

The absolute quality factor Qabs(A1,A
k2
2 ) of the optimal assignment given in

A1 conditioned by Ak2
2 , for any k2 ∈ {1, 2, . . . , β2} is defined as

Qabs(A1,A
k2
2 ) �

m∑
i=1

n∑
j=1

a1(i, j)q
k2
II (i, j) (12)

Example (continued): If we apply the Method II (using PCR6 fusion rule) to
the rewards matrix Ω1, then we will get the following quality matrix (using
weighted averaging approach)

QII(A1,A2) =
1

β2

β2∑
k2=1

QII(A1,A
k2
2 ) =

[
1.0000 1.0000 0.7440 0.7022
0.7200 1.0000 0.8972 0.5753
0.8695 0.4957 0.9119 0.8861

]

with the absolute quality factors Qabs(A1,A
k2=1
2 ) ≈ 1.66, Qabs(A1,A

k2=2
2 ) ≈

1.91, Qabs(A1,A
k2=3
2 ) ≈ 2.19, Qabs(A1,A

k2=4
2 ) ≈ 1.51. Naturally, we get

Qabs(A1,A
k2=3
2 ) > Qabs(A1,A

k2=2
2 ) > Qabs(A1,A

k2=1
2 ) > Qabs(A1,A

k2=4
2 )

because A1 has more matching pairings with Ak2=3
2 than with other 2nd-best

assignment Ak2
2 (k2 
= 3), and those pairings have also the strongest impacts in

the global reward value. One sees that the quality matrix QII differentiates the
qualities of each pairing in the optimal assignment A1 as expected (contrari-
wise to Method I). Clearly, with Method I we obtain the same quality indicator
value 0.2849 for the specific associations (2,4) and (3,2) which seems intuitively
not very reasonable because the specific rewards of these associations impact
differently the global rewards result. If the method II based on the belief in-
terval measure computed from (5) is preferred7, we will get respectively for the
three optimal pairings (1,3), (2,4) and (3,2) the three distinct belief interval
[0.5956,0.8924], [0.4113,0.7699] and [0.3524,0.6529]. These belief intervals show
that the ordering of quality of optimal pairings (based either on the lower bound,
or on the upper bound of belief interval) is consistent with the ordering of qual-
ity of optimal pairings in QII(A1,A2) computed with the averaging approach.
Method II provides a better effective and comprehensive solution to estimate
the quality of each specific association provided in the optimal assignment solu-
tion A1.

3 Conclusion

In this paper we have proposed a method based on belief functions for estab-
lishing the quality of pairings belonging to the optimal data association (or as-
signment) solution provided by a chosen algorithm. Our method is independent

7 Just in case of multiplicity of second best assignments.
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of the choice of the algorithm used in finding the optimal assignment solution,
and, in case of multiple optimal solutions, it provides also a way to select the
best optimal assignment solution (the one having the highest absolute quality
factor). The method developed in this paper is general in the sense that it can be
applied to different types of association problems corresponding to different sets
of constraints. This method can be extended to SD-assignment problems. The
application of this approach in a realistic multi-target tracking context is under
investigations and will be reported in a forthcoming publication if possible.
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Abstract. Several video surveillance applications aim at counting the
objects present in a scene. Using robust background substraction tech-
niques, detections are unlabelled and often correspond to fragments of
objects. Then, a key step for object counting is the association of the frag-
ments representing subparts of a same object. In this work, we model
the uncertainty and the imprecision of the location of the detected frag-
ments using Belief Function Theory. Specifically to the case of a video
sequence, we propose a data association method between the new detec-
tions and the objects already under construction. Tests on actual data
were performed. In particular, they allow for the evaluation of the pro-
posed method in term of robustness versus the objects moving.

Keywords: data Association, object enumeration, belief functions.

1 Introduction

Object detection and enumeration is a classical problem in computer vision and
more specifically video surveillance applications. In a typical scene, there may
be several objects of interest, appearing and disappearing from the scene during
the acquisition time period, so that the problem considered in this work is to
enumerate them, for instance in order to be tracked further. Now, neither back-
ground substraction techniques nor more sophisticated approaches (e.g., Gaus-
sian mixture models) succeed in avoiding the partial self occlusion of an object
or partial ‘camouflage’ (when the background looks just like some object parts).
Then, an object having some undetected subparts may appear as divided into
several fragments. In this work, we assume image processing outputs such that,
at each instant, a physical object is generally, given by several detections (blocs
of pixels) and we deal with the problem of object construction and enumeration
from these detections. Now, since detections are unlabelled, the first issue is to
associate them spatially and temporally. Besides probabilistic approaches, many
approaches have been proposed for the data association problem in the frame-
work of belief function theory [3,2,7,9,6,4]. In [3], belief function theory allows
integrating additional information (such as shape constraints, rigid motions.)
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into the Joint Probabilistic Data Association Filter to track articulated model
objects in the presence of many false detections and occlusions. In [7,6,4], belief
functions are defined on an elementary discernment frame {yes, no} to model
the relevance of each potential association. Then, to obtain a global association,
they are vacuously extended to a global discernment frame regarding the set of
associations. In those works, beliefs are specified from the object characteristics
like speed, class, colour, form, texture etc. In our case, objects are heterogeneous
in terms of colour and texture, so that they are characterized by their positions
on the image. Besides, considering that at each instant an object may be split-
ted into several fragments our problem is basically a multi association problem
rather than a 1 − 1 association problem implying that at most one detection is
associated with at most one object. In this paper, we show that, although appar-
ently dealing with a different problem namely objects identification (Combat ID
declaration), the work [9] can be transposed to derive a solution to our problem.
We also propose belief operators to take into account specific temporal and spa-
tial a priori on our problem. The remainder of the paper is as follows: Section 2
recalls some tools of belief function theory, our approach for data association is
described in Section 3 and finally some illustrative results and conclusions are
provided in Section 4.

2 Background

In the following, we denote by Ω the discernment frame and by 2Ω the set of its
subsets. Three belief functions are defined from 2Ω to [0,1]: the mass (also called
basic belief assignment or bba) m, the credibility bel and the plausibility pl [11].
An element A ∈ 2Ω such that m(A) > 0 is a focal element of m. A categorical
bba is a bba with only one focal element. It is simple if it has two focal elements
among them Ω. Assuming a closed world, m(∅) = 0. Conversely, for an open
world m(∅) ≥ 0 and m(∅) is often presented as the degree of conflict.

Several operators have been proposed to modify a bba according to new in-
formation pieces or bbas. For instance, the discounting operator allows taking
into account the reliability of a source quantified by α ∈ [0, 1]:

∀A ∈ 2Ω, m̂(A) = αm (A) , m̂ (Ω) = αm (Ω) + (1 − α) . (1)

Learning that the solution certainly belongs to C ∈ 2Ω, the bba m is conditioned
on C as follows:

∀A ∈ 2Ω,m[C](A) =
∑

B∈2Ω/A=B∩C

m (B) . (2)

Considering two bbas mΩ
1 and mΩ

2 , several combination rules have been pro-
posed. Let us cite Smets conjunctive rule ∩© that allows us to get a specialized
bba assuming distinct sources (Eq. 3) [11]. The orthogonal sum ⊕, proposed
by Dempster [10], assumes a closed world. Then, it normalizes the bba, so that
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m(∅) = 0 after normalization. The disjunctive rule ∪©[11] allows us to get a
generalized bba (Eq. 4) [11].

∀C ∈ 2Ω,m∩©(C) =
∑

(A,B)∈2Ω×2Ω/A∩B=C

m1 (A)m2 (B) . (3)

∀C ∈ 2Ω,m∪©(C) =
∑

(A,B)∈2Ω×2Ω/A∪B=C

m1 (A)m2 (B) . (4)

Finally, let us summarize the approach [9] for data association. One of its interest
is that the data association criterion is self-contained in the bbas defined for the
target identification problem. Since the definition of ‘initial’ bbas remains an
issue for evidential modelling, not defining specific bbas for the data association
subproblem appears to us as a major advantage. Let Ω = {ω1, ..., ωN} be the
set of the possible ID for a target. For each target o1j , a bba mΩ {o1j} is defined
on Ω representing the belief in the target ID. Then, assuming a target o1j to
be associated with a target o2i, the association criterion is as follows: Bbas
mΩ {o1j} andmΩ {o2i} are vacuously extended to Ω2 = Ω×Ω and conjunctively

combined, so that, ∀C ∈ 2Ω
2

,

mΩ2{o1j , o2i}(C) =
{
mΩ{o1j}(A)mΩ{o2i}(B) if C = (A,B)
0 else.

(5)

This bba represents the joint belief in the ID of targets o1j and o2i. Assuming that
two targets are the same (o1j ≡ o2i) if they have the same ID, the plausibility
of their association writes versus the mass on ∅ issued from the conjunctive
combination of bbas mΩ {o1j} and mΩ {o2i} as follows:

plΩ
2{o1j , o2i} (o1j ≡ o2i) = 1 −mΩ

j ∩©i(∅), (6)

where mj and mi are the abbreviations of mΩ {o1j} and mΩ {o2i}.
The generalization of this approach to the association of a set of n targets
{o1j}j=1...n with a second set of n targets {o2i}i=1...n is immediate. Targets bbas

defined on Ω are vacuously extended to product space Ω2n. The plausibility of
each association is then evaluated on Ω2n as follows:

plΩ
2n

(o1j ≡ o2aj : j = 1, ..., n) =

n∏
j=1

(1 −mj ∩©aj (∅)), (7)

where A = [a1, ..., an] is a permutation vector of size n representing the asso-
ciation of type 1-1 (o1j ≡ o2aj for j = 1, ..., n) [9]. Taking the opposite of the

logarithm of expression plΩ
2n

(o1j ≡ o2aj : j = 1, ..., n), the maximization of the
plausibility boils down to a well-known problem of minimization of the sum of
positive costs defined in Eq.8, for which efficient solutions exist (e.g., [8]).

c0(aj = i) = −log(1 −mj ∩©i(∅)) = −log
∑

A∩B 	=∅
mj (A)mi (B) . (8)
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3 Proposed Approach

Since, at a given time, the physical objects are often only partially detected,
they cannot be directly enumerated. The first issue is then to construct them
by collecting the unlabelled detections over time. For this, some objects already
partially constructed from detections of previous instants have to be associated
with the new detections. In the following, the word object refers either to the
physical object or to its approximation at a given time that is a set of associated
detections (i.e. having a same label).

Formally, let us denote by D = {d1, ..., dl} the set of the l = |D| detections
at instant t and by O = {o1, ..., on} the set of the n = |O| objects at the same
instant. An association ‘1-1’ is represented by a vector A = [a1...an] of size n
that gives for each object of index j ∈ {1...n}, the index aj | aj ∈ {0...l} of the
associated element (detection or object as explained further) if it exists: aj = 0
means the absence of the associated element.

In order to be able to associate several detections with the same object, mul-
tiple associations called of type 1-N should be possible. However, this type of
association involves rather sensitive parameters, especially threshold (e.g., in [7]
threshold is used to discard the associations having ‘too’ low belief) so that
its behaviour may be difficult to control. Here, we propose to rather consider
iteratively, two kinds of 1-1 association:

– An association called ‘detection-object’ between each detection and an object
(note that non-association is possible if there is no object compatible with a
detection). Objects are then updated based on the new associated detections
whereas the non-associated detections initiate new objects.

– An association called ‘object-object’ between the different objects in order
to fuse them if they are subparts of the same physical object. Then, if two
detections have to be associated with the same physical object, the first one
will be associated during the detection-object association whereas the second
one that initiated a new object after ‘detection-object’ association step, can
be associated during the ‘object-object’ association step.

Both kinds of association are based on the minimization of a cost function
computed from belief functions representing the objects (Section. 3.1).

3.1 Credal Object Representation

In this work, an object is represented in term of imprecise location of a detection.
Then, the discernment frame is the image lattice (for an image of nl lines and nc
columns, Ω is then the product space {1...nl}×{1...nc}). A bba corresponding to
a given object represents the belief in the location of a detection (fragment of this
object). Note that, in order to satisfy the exclusivity of the discernment frame
hypotheses, the detection locations are exclusive (practically, image processing
provides distinct detections, at a given time, that could be for instance indexed
by their left upper corner coordinates). Reminding us that a detection dj may
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be a seed for a new object (that will be constructed based on further detection
associations), its credal representation is simply a categorical bba m {dj} having
as unique focal element A(dj) the set of the pixels belonging to dj . Then, the
bba m {oi} of an object oi is derived from the bbas of the associated detections.
Two mechanisms compete:

– The first one aims at spatially constructing an object from its detections.
This mechanism is performed using the disjunctive rule (Eq. 4) to combine
the object bba with the bbas of the associated detections.

– The second one aims, in the case of a video sequence and thus time indexed
detections, at considering the object possible motion. This mechanism is
performed through the temporal conditioning and the spatial conditioning
operators.

Disjunctive Combination. According to the first mechanism, the bba m{oj}
of an object oj associated with a detection daj is updated by combining it dis-
junctively (Eq. 4) with m

{
daj

}
as follows:

∀j ∈ {1, ..., n} | aj ∈ {1, ..., l} ,m{oj} ← m{oj} ∪© m
{
daj

}
. (9)

Considering the object-object association, just replace l by n and daj by oaj .
A non associated detection is identified by an index i | ∀j ∈ {1...n} , aj 
= i.
It initiates a new object whose life time may be very short if it is immediately
fused during the object-object association. We also note that the object-object
association may be iterated depending on the fragmentation rate, that depends
on the image processing algorithm (the more important this rate is, the greater
is the number of iterations during the object-object association).

Temporal and Spatial Conditionings. This second mechanism allows us to
take into account the temporal dimension of detections. The idea is to give more
weights to recent detections when constructing object bbas in order to cope with
object displacements and/or disappearances from the scene. In this study, we
deal with the construction of an object oj from its associated detections doj .
Then, assuming that Δt last instants are sufficient for the estimation of the
detection imprecise locations, boils down to a conditioning of the object bba
m{oj} on the disjunction of detections of the Δt last instants. In Eq. 10, we
denote by mΔt the categorical bba allowing this temporal conditioning. We also
assume that spatially close detections are also close in time. Then, the locations
close to the last observations of the object have their beliefs reinforced using
a conjunctive combination (Eq. 3) between the object bba (after conditioning)
and a simple bba mα

doj
,t−1 defined as follows: Let mdoj

,t−1 be the categorical

bba having as focal element the disjunction of detections associated with oj at
t − 1. Then, mα

doj
,t−1 is the result of its discounting by a factor α. So that the

greater α is, the less credible are old detections in term of locations of future
detections.

∀j ∈ {1, ..., n} ,m{oj} ← m{oj} ∩© mα
doj

,t−1 ∩© mΔt. (10)
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When the temporal conditioning copes with disappeared objects (elimination
of the bbas of objects undetected during the period of time Δt), the spatial
conditioning handles the objects separation. A typical example is the separation
of a group of persons, each one following a different way. Besides, it allows for
the separation of objects that are mistakenly fused during their crossing.

Spatial conditioning basic assumption is that an object is a connected mono
component so that any other connected component than the main one is ‘noise’
and can be removed. In practice, the connected components of an object are
not estimated on the image lattice but after projection on the column axis. This
projection is motivated by the observed symmetry of the objects with respect to
the column axis (e.g., case of objects of ‘human’ type imaged in a vertical plane
and we note that such an a priori can be modified depending on the geometry of
acquisition and objects) so that the object fragmentation is principally according
to the line axis. Let A correspond to the disjunction of detections associated with
the object. We denote by A↓X the projection of A on the column axis and by
C↓X the greater connected component of A↓X . The spatial conditioning is then
performed on the disjunction of detections associated with the object such that
their projection on the column axis belongs to C↓X . In summary, temporal and
spatial conditioning operations allow us to cope with the objects moving and
changing (e.g., separation in particular versus the column axis) along the video
sequence. Practically, both conditionings consist in combining the bba with a
bba whose unique focal element is a given hypothesis estimated from detections
and basic assumption about temporal and spatial consistency of the objects.
These conditionings are intrinsically renormalizations by the belief on the Δt
last instants or by the belief on the principal connected component of the object
under construction, performed using the orthogonal combination rule.

3.2 Association Criteria

In the presentation of the bba updating, we assume that the association be-
tween detections at t and objects (derived from previous detections) is known.
A main interest of the proposed representation is the ability to define a simple
and efficient data association criterion. Let us remind that for each object, the
bba represents the belief about the imprecise location of a future detection. We
propose two association criteria one for the detection-object association and the
other for the object-object association. The first one is derived transposing the
approach [9]. It is used for the definition of the cost of an elementary association
between a detection and an object, as the conflict generated by the conjunctive
combination of their bbas (Eq.8). Then, the cost matrixMc is rectangular of size
n× l. The Hungarian algorithm [8] allows us to get an efficient solution. In [9],
only the minimal number |n− l| of non-associations is allowed. In our case, to not
assume a minimal number of associations, we extend the cost matrix to a square
matrix of size 2 ×max {n, l} such that: ∀(j, i) ∈ {1, ..., n} × {1, ..., l} ,Mc(j, i) =
c0(aj = i) and ∀(j, i) /∈ {1, ..., n} × {1, ..., l} ,Mc(j, i) = cna, where cna denotes
the non association cost. Besides, specifically for the object-object association,
we propose to iterate nit times and to monitor the non-association cost. Also, we
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aim at limiting the fusion of objects corresponding to different physical objects.
Thus, a second criterion was defined to take into account the size of the focal el-
ements of the bbas. The implicit assumption is that a bba having focal elements
with large cardinalities corresponds to an object already well-reconstructed and
that completing it with a new set of detections should be performed carefully,
e.g., taking into account the relative size of the intersection between the focal
elements. As in the spatial conditioning step, we suppose that the fragmenta-
tion mainly occurs along the line axis, so that, in an ad-hoc way we propose an
elementary cost involving a weighting coefficient:

c1 (aj = i) = −log
∑

A∩B 	=∅
mj (A)mi (B)

|A↓X ∩B↓X |
|A↓X | |B↓X | . (11)

where D↓X (D ∈ {A,B}) is the projection of D ⊆ Ω in the column axis.
As for the detection-object association, we define a cost matrix for the object-
object association. This latter is square. It is such that the non-diagonal elements
are equal to c1 (aj = i). The diagonal elements are equal to the non-association
cost. In fact, the selection of a diagonal element corresponds to the association of
an object with itself and then its non-association with any other object. So, this
matrix is symmetrical since the two dimensions of the matrix represent in fact
the same set: A matrix element of coordinates (i, j) represents the association of
object oi with object oj or, equivalently, the association of object oj with object
oi, that is represented by matrix element (j, i). In order to ensure a symmetrical
solution, we have modified the Hungarian algorithm [8] to preserve the symmetry
of the cost matrix during its transformations into equivalent matrices. In this
case, the convergence time is no longer guaranteed. However, experimentally,
we noted that the algorithm rapidly converges in the majority of cases (in the
other rare cases, we get a potentially suboptimal solution). Five main steps are
then implemented for data association: (i) 1-1 association between detections at
t and objects under construction based on costs defined by Eq. 8; (ii) an iterative
1-1 association between objects using costs given by Eq.11; (iii) bbas updating
by combination of bbas of the associated elements using Eq.9; (iv) temporal
conditioning and refinement using Eq.10; (v) spatial conditioning.

4 Results

To evaluate the proposed method, we tested it on a sequence of real data acquired
at 25 images per second. In the presented sequence extract, six persons and
one car move in the scene and cross each other, so that until six objects of
interest may be simultaneously present. Different image processing algorithms
have been used: a variant of [5] for Fig. 1 and [1] for Fig. 2. Fig. 1 illustrates
qualitatively main conclusions about the performance of our method, namely:
(i) The proposed association process succeeds in handling multiple detections;
(ii) Temporal conditioning is able to cope with moving object. For instance,
the boy appearing on the right of the image before instant 112 and crossing to
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leave the scene after instant 167; (iii) Spatial conditioning allows for the object
separation like the three girls on the right of the image at instant 134 fused
into the same object (group) at instant 167 and separated into three objects
at instant 204; (iv) Considering focal element size limits the fusion of objects
crossing each other, like the two persons on the left of the image at instant 294.
Fig. 2 shows a qualitative comparison of the proposed method (first column)
with two variants, either only involving c0 criterion or only involving c1 criterion
(second and third columns, respectively). When our method globally succeeds
in constructing the objects from multiple detections, the c1 criterion in data
association leads to some remaining non-associated detections, e.g., in violet
and brown in Fig. 2b and the c0 criterion in data association sometimes leads
to undesirable fusion of some objects, e.g., the two girls in the left side coded

(a) t = 3 (b) t = 112 (c) t = 134

(d) t = 167 (e) t = 204 (f) t = 294

Fig. 1. Object construction: at instant t, detections of the same colour are associated
with the same object (in bold lines, detections at t and in fine lines, former detections).

(a) t = 182 (b) t = 182 (c) t = 182

(d) t = 302 (e) t = 302 (f) t = 302

Fig. 2. Example of object construction at 2 instants (respectively 1st and 2nd lines),
and considering 3 different association criteria for the detection-object association and
the object-object one: 1st column: (c0, c1), 2

nd column (c1, c1), 3
rd column (c0, c0). At

a given instant t, a same colour notifies that the detections are associated with the
same object, with the detections at t in bold lines.
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in orange in Fig. 2f. Noting the efficiency of the mixed criterion (c0, c1) in both
cases to both facilitate the first association between detections at t and already
existing objects and delaying the fusion between objects even when they overlap
(depending on the relative size of the overlap). Quantitatively, given a ground
truth (GT), the method has been evaluated in terms of precision (=

ntp

ntp+nfp
)

and recall (=
ntp

ntp+nfn
) measures, where ntp, nfp and nfn denote the number of

‘true positives’ (tp), ‘false positives’ (fp) and ‘false negatives’ (fn), respectively.
Fig. 3 illustrates their definition in a rather complex case. Fig. 3a shows the GT
of the detection labelling (i.e. unique colour for a given object) corresponding to
Fig. 2b. Using a bipartite graph representation, Fig. 3b shows the relationships
(graph vertices) given by the detection labelling either in the GT or in the result
(graph nodes). When two nodes are linked by only one vertex, it is a tp, whereas
when several vertices are present, one is counted as a tp and the other(s) either as
fp (two or more labels in the result for a unique label in the GT) or fn (one label
in the result for several labels in the GT). Fig. 4 shows the ‘precision’ (y-axis)
versus the ‘recall’ (x-axis) values computed either in terms of labels (Fig. 4a)
or in terms of fragments (Fig. 4b). The different curves represent the results of
the proposed method for different combinations of the association criteria (c0
or c1) for the detection-object association and the object-object one. The points
on a given curve correspond to different ‘delays in decision’, δt varying in [0, 4],

(a) (b)

Fig. 3. Example illustrating the definition of tp, fp and fn from the GT labelling
shown in (a) and the obtained results shown in Fig. 2b: ntp = 4, nfp = 1 and nfn = 1

(a) (b)

Fig. 4. Quantitative performance estimation of the proposed method according to the
delay in decision: recall and precision rates computed in terms of labels (a) and frag-
ments (b)
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introduced as follows: the fragmentary detections at t are labelled as in the result
at t+ δt, so that some fragments not associated at t may be associated at t+ δt.
Besides the fact that the results are very promising, we note that, as expected,
when δt increases, both nfp decreases and nfn increases so that, both ‘precision’
increases and ‘recall’ slightly decreases.

5 Conclusion

In this work, we proposed a method to construct objects present in a video se-
quence in the perspective of their enumeration and possibly further tracking,
from fragmentary detections. The temporal dimension allows for the accumu-
lation of the observations, while technically, multi association of incertain and
imprecise data (in term of location) becomes an issue that we solved using belief
functions theory. Future work will deal with more complete tests of the proposed
methodology and tracking of the constructed objects.
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Abstract. In this paper, classification of air vehicles according to their
types is studied. Demspter-Shafer theory is utilized for this purpose. The
target tracker data is used for obtaining the probability masses by com-
paring it with the prior information. Prior information is modeled as
the probability density function of the features used for classification.
The prior information models the selected features as Gaussian mixtures
while the tracker data models the same features as non-parametric den-
sity. This new methodology is tested on real data.

Keywords: Dempster-Shafer Theory, Belief Functions, Basic Probabil-
ity (Mass) Assignment, Dempster-Shafer Reasoning, Target Tracking,
Decision Making, Target Classification.

1 Introduction

Target classification is an important problem, which should be encountered in
designing an efficient air defense system. In all classification problems, features
are selected according to their discriminating powers and availability. In this
study, the available information comes from a radar target tracker that tracks
air vehicles. Tracker provides rich information about the state of the target,
which is composed of the velocity and the position vectors [1]. Tracker provides
the prob-ability density function of the state as a Gaussian density at discrete
time instants [1].

Most of the related work that exists in the literature uses Dempster Shafer
theory. Classification of a target is made using kinematic features or radar cross
section or any other relevant information like electronic support measures [3],
[11], [12]. Caramicoli et al. [5] and Ristic and Smets [12] use kinematic features to
derive some classification rules. Kinematic information is also used in our study
and we develop a new methodology for assigning masses to classes. The main

The original version of this chapter was revised: The limits of the integrals
in the equations (2-a), (2-c), (2-e), (2-g), (2-i), (2-k), (2-m), which are located
in pages 395–397 are corrected. The erratum to this chapter is available at
DOI: 10.1007/978-3-319-11191-9 48
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distinction of the mass assignment proposed in this work is that all the infor-
mation, i.e., the probability density function of the state instead of only mean,
provided by the tracker is utilized. The algorithm assumes that the prior prob-
ability density functions of all classes and the current measurement are known
for some related kinematic features of the target. Furthermore, as a sensible
assumption, we assume that prior probability density functions of the related
kinematic features of all classes can be approximated by Gaussian mixtures. As-
signing masses using both prior and measurement probability density functions
in Dempster-Shafer framework is the main contribution of this study.

Basic mass assignment is one of the main steps in any application of the
Dempster-Shafer theory. The methods of mass assignment in the literature are
numerous. At the early stages of the theory, masses were assigned according
to the expert opinion in various applications. Afterwards, various models were
used for this purpose. Yager [17] uses belief functions as a fuzzy measure. Zhu
et al. [18] uses membership functions. Florea et al. [6] uses membership values
as probability masses. Rmer et al. [13] uses possibility and necessity measures
of fuzzy logic theory for defining belief functions. Bloch [4], Jiang et al. [8] and
Masson et al. [10] use distances to cluster centers for mass assignment. Utkin
[15] uses imprecise Dirichlet model. Bendjebbour et al. [2], Hagarat-Mascle et al.
[9], Salzestein et al. [14] and Xu et al. [16] use probabilities for mass assignment.

The organization of the rest of this paper is as follows. Section 2 starts with the
problem definition and proposes a solution to the problem. Section 3 investigates
the effectiveness of the proposed method. Real data is used in the experiments.
Results are compared with another similar method that uses prior probability
den-sity functions. Conclusions are made in Section 4.

2 Dempster-Shafer Framework from the Tracking
Perspective

In target tracking applications, tracker supplies information about the state vec-
tor of the target by giving the probability density function of the state as Gaus-
sian [1]. The state vector usually consists of the position and the velocity of the
target. The problem considered here is to classify target as one of the prede-
fined types by using the information provided by the tracker. Tracker output is
collected over time, converted to probability masses and probability masses are
combined. We use the speed and the altitude of the aircraft as its discriminating
features. The proposed method assigns masses to the classes by using a novel
method. The combination of the masses is made by using Dempsters rule.

2.1 Basic Mass Assignment

Speed and the altitude of the air vehicle are selected as features that are used
for classification. It is assumed that these two variables are independent, hence
estimating individual densities is sufficient.

The application classifies the air target as bomber and surveillance plane,
helicopter or unmanned air vehicle.
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The prior information about the features for different classes has been col-
lected mainly from the Jane’s book [7] and the internet. The nominal and the
maximum speeds and altitudes of the above defined types of air vehicles are
used to generate prior probability density functions as mixtures of Gaussians.
For each class prior speed and altitude is represented by N Gaussians, where N
is selected according to the available data and probability density functions are
obtained by applying the kernel smoothing method to the collected data. The
resultant prior probability density functions are given in Section 3.

Tracker gives the (Gaussian) probability density function of the velocity and
the position of the target at each time instant which is considered as the mea-
surement. Altitude, which is one of the features, is already a part of the state
vector. Hence its probability density function is available. The probability density
function of the speed on the other hand should be calculated from the velocity
vector. Speed is defined as:

sk =
√
v2x + v2y + v2z (1)

The probability density function of sk can be approximated as a non-central
chi square distribution with 3 degrees of freedom. In this work we obtained the
probability density function of the speed using Monte Carlo methods from the
given Gaussian distribution of the velocity and equation 1.

2.2 A Novel Basic Mass Assignment Algorithm

We describe the mass assignment algorithm for the three class case. The gener-
alization of the algorithm to any number of classes is trivial. Since the number
of classes is three, the universal set contains three elements denoted by A, B and
C, that is Θ = A,B,C.

Figure 1 gives typical prior and measurement probability density functions.
The points ’a’, ’b’ and ’c’ are the equal likelihood points of the correspond-
ing classes and are used for mass assignments. In order to obtain masses, the
measurement probability density function is multiplied by the prior probability
density function of each class. The resultant curves are the unnormalized pos-
terior probability density functions, which are shown in Figure 1b. The masses
are selected to be proportional to areas under the curves over some selected in-
tervals after multiplication. Formal definitions of the associated masses for a 3
class problem are given below.

LetpA(x), pB(x) and pC(x) be the prior probability density functions of the
A, B and C classes respectively. Let p(x) be the probability density function of
the measurement. Then the masses assigned to the sets are:

m({A}) =

∫

x∈SA

pA(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2a)
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(a) Prior and measurement probability
density functions

(b) Unnormalized posterior probability
density functions

Fig. 1. Probability Density Functions

SA = {x|pA > pB and pA > pC} (2b)

m({B}) =

∫

x∈SB

pB(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2c)

SB = {x|pB > pA and pB > pC} (2d)

m({C}) =

∫

x∈SC

pC(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2e)

SC = {x|pC > pA and pC > pB} (2f)

m({A,C}) =

∫

x∈SAC

pA(x)p(x)dx+
∫

x∈SCA

pC(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2g)

SAC = {x|pA < pC and pA > pB} and SCA = {x|pC < pA and pC > pB} (2h)

m({A,B}) =

∫

x∈SAB

pA(x)p(x)dx+
∫

x∈SBA

pB(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2i)
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SAB = {x|pA < pB and pA > pC} and SBA = {x|pB < pA and pB > pC} (2j)

m({B,C}) =

∫

x∈SBC

pB(x)p(x)dx+
∫

x∈SCB

pC(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2k)

SBC = {x|pB < pC and pB > pA} and SCB = {x|pC < pB and pC > pA} (2l)

m({A,B,C}) =

∫

x∈SABC

pA(x)p(x)dx+
∫

x∈SBAC

pB(x)p(x)dx+
∫

x∈SCAB

pC(x)p(x)dx

∞∫

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2m)

SABC = {x|pA < pB and pA < pC} , SBAC = {x|pB < pA and pB > pC} and

SCAB = {x|pC < pA and pC > pB}
(2n)

Note that the procedure formulated above gives the normalized masses and
their sum is unity.

2.3 Analysis of the Novel Basic Mass Assignment Method

We analyze the performance of the proposed method by comparing it with Xu
et al. [16], as it is the most similar method that exists in the literature. A two
class artificial scenario is generated for this purpose. Since Xu et al. [16] uses
Gaussian densities, we selected the prior probability density functions of the two
classes and a measurement Gaussian as given below:

Prior probability density function of class A : pA(x) = N(x; 1000, 3002)
Prior probability density function of class B : pB(x) = N(x; 2000, 3002)
Probability density function of the measurement: pM (x) = N(x; 1513, 1002)

Under these conditions the proposed method assigns the following masses:
m({A}) = 0.3062
m({B}) = 0.3961
m({A,B}) = 0.2977

To compare the output of the proposed method with Xu et al. [16], we as-
sume that the actual measurement is some x drawn from the measurement
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Fig. 2. Prior and measurement probability density functions

probability density function. Xu et al. [16] assigns the masses according to the
actual measurement as given below.

m(.) =

{
m({A}) = αpA(x) and m({A,B}) = αpB(x), if pA(x) > pB(x)

m({B}) = αpB(x) and m({A,B}) = αpA(x), if pB(x) > pA(x)
(3)

Note that in this formulation the uncertainty of the measurement is not used.
Table 1 is generated from masses that are assigned by drawing 30 samples from
the given measurement probability density function as shown in figure 2 accord-
ing to Xu et al. [16]. The mass values for these 30 samples are illustrated in Figure
3. Table 1 shows that the mean values coincide with the probability masses that
are assigned by the proposed method. However the large standard deviations
show that probability masses vary with the incoming data that makes the result
susceptible to a realization at a given time. In Section 3, we compare the two
methods on a scenario of tracking a real target.

Table 1. Mean and standard deviation values for the method of Xu et al. [16]

Mean Standard Deviation

m({A}) 0.2907 0.3453

m({B}) 0.3908 0.3618

m({A,B}) 0.3186 0.1232

3 Experimental Results

We conducted a tracking experiment to analyze the method that we proposed
and compared it with the method proposed in Xu et al. [16], which is assumed
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Fig. 3. Basic probability assignments for the randomly selected 30 sample

to use only the mean of the estimated feature. The experiment is conducted by
using real data that belongs to a helicopter and is tracked by a radar that has a
scan period of 2 seconds. The trajectory of the helicopter in x-y plane and the
tracker output are given Figure 5.

Three air vehicle types for classification are defined to be: Bomber and surveil-
lance planes (P), helicopters (H) and unmanned air vehicles (U) so the universal
set consists of three elements as Θ = {P,H,U}.

The prior probability density functions of speed and altitude are given in
Figure 4 as Gaussian mixtures.

(a) Speed (b) Altitude

Fig. 4. Prior probability density functions

From the beginning to the end of the trajectory, the system assigns high
probability masses to the set H and some probability masses to other sets.
To obtain an overall decision, first, the instantaneous masses obtained from the
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Fig. 5. x-y view of the true trajectory and the tracker output: Helicopter

speed and the altitude are combined. For the ultimate decision all masses, from
the initial time to the final time, are also combined and the target is classified as
a helicopter at all times greater than 8 seconds with a mass greater than 0.98.

When a measurement comes, algorithm assigns the probability masses instan-
taneously for every feature and combines them. The computation time spent to
reach the overall decision is about 0.2843 seconds in an Intel i7 computer 8 GB
RAM with Matlab 2012a. Considering that the air defense radars produce mea-
surement reports with periods in the order of seconds, the algorithm is certainly
fast enough for real time operation.

In order to make a comparison, we also applied the method of Xu et al. [16]
on the same data by considering the measurements to be the mean value of the
features that are provided by the tracker. The instantaneous combined decisions
obtained from the speed and the altitude and the final decisions of both methods
are shown in Figures 6 and 6. The method that uses only the mean value makes
wrong assignments in quite a number of instances since the mean alone may give
low likelihood value due to the unsmooth nature of the speed of the helicopter.
This results in wrong classification decision.

4 Conclusion

This work utilizes Dempster-Shafer Theory for target classification and the main
contribution lies in the task of basic mass assignment. The methodology proposed
utilizes all of the information provided by the tracker which is given in the form
of a Gaussian probability density function unlike the alternative methods in the
literature using only the mean.

The proposed method is tested with real data. Results are compared with
another methodology that uses only the mean estimates of the features that can
be considered quite similar to the one given in Xu et al. [16]. Test results show
that using the whole probability density function of the features provided by the
tracker brings significant advantages for classification compared to using only
the mean of the features.
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(a) Proposed method (b) Method that uses the mean

Fig. 6. Instantaneous combined masses of features (speed and altitude)

(a) Proposed method (b) Method that uses the mean

Fig. 7. Combined masses from initial time to final time of features (speed and altitude)
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Abstract. This paper deals with the association step in a multi-sensor
multi-target tracking process. A new parameterless credal method for
track-to-track assignment is proposed and compared with parameter-
dependent methods, namely: the well known Global Nearest Neighbor
algorithm (GNN) and a credal method recently proposed by Denœux
et al.

Keywords: Track-to-track assignment, belief functions, appearance
management.

1 Introduction

In a multi-sensor context, the target environment can be observed differently
depending on sensors positions and observation capabilities. A centralized fu-
sion process can then help to enhance targets detections and recognitions. To
realize the merging of targets data, the central system has amongst other things
to order targets estimated data in a common way, which is done through the
track-to-track assignment step. Numerous probabilistic methods have been pro-
posed to solve this problem such as the Joint Probabilistic Data Association
(JPDA) method [7,3] and the Multi-Hypothesis Tracking (MHT) method [3]. In
the latter, probabilities of associations are propagated over time, which makes
this method more robust but also more computationally demanding. Other prob-
abilistic methods can also be found in [3,15,2].

The focus of this paper is on mono-hypothesis data assignments where match-
ings between sensors estimates are computed at each time step and no other hy-
potheses are conserved. In two dimensional assignment problems, which means
data obtained from two sensors, optimal matchings can be provided using the
Munkres algorithm [4]. Performances are therefore dependent on the manner
that data are represented and given to the optimal Munkres algorithm. In the
standard Global Nearest Neighbor algorithm (GNN) [3], data are simply Maha-
lanobis distances [11] between sensors positions estimates, and a parameter is
needed to manage targets which are partially observed (which do not belong to
all sensors fields of view). Recently, an equivalent belief-function-based method
was proposed by Denœux et al.[6]. Mahalanobis distances in this method are
transformed to mass functions. This method has the ability to perform multiple
information based assignments but, as in GNN method, it still depends on a fix
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parameter in order to build mass functions from distances. Some other equiva-
lent credal solutions can be found in [12,8]. The method proposed in [12] models
information in the same way as in [6] and [8] proposes a comparison study of
the recent belief functions assignment methods.

In this paper, a new parameterless credal method based on likelihoods cal-
culations is proposed. Using single sensor simulations this method is shown to
perform as good as parameter-dependent methods when their parameters are
optimally trained.

The multi-sensor multi-target tracking architecture used in this paper is pre-
sented in Section 2. The proposed solution for the assignment problem is exposed
in Section 3. Comparison results are then provided in Section 4.

2 Multi-sensor multi-target architecture

A centralized multi-sensor multi-target architecture, simplified to two sensors, is
illustrated in Figure 1. It represents the solution implemented by the authors,
which has been employed in previous works [9,10] and which is used in this paper
in Section 4.

Fig. 1. Track-to-track algorithm based on sensors estimates in a multi-sensor multi-
target global scheme.

Each sensor performs a complete tracking and a classification of each target.
Details about local tracking and classification algorithms can be found in [10].
Track-to-track assignment can be exclusively performed using distances between
sensors estimates, it represents the solution without local classification feedbacks
represented in Figure 1.

At each time step k, the set of estimates performed by sensor i is noted
X̂i(k) = {x̂1i (k), x̂2i (k), . . . , x̂ni

i (k)}, where ni is the number of targets observed
by sensor i at time step k, and x̂ti(k), t ∈ {1, . . . , ni}, is the state estimate of
target t.

For each time step k, the distance between the state estimate of target t by
sensor i and state estimate of target � by sensor j is defined by:

dt,�(k) = (x̂ti(k) − x̂j(k)
�)T (Covt,�(k))

−1(x̂ti(k) − x̂�j(k)), (1)
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with t ∈ {1, . . . , ni}, � ∈ {1, . . . , nj}, ni and nj respectively the number of
targets observed by sensors i and j at time step k, and the global covariance
matrix Covt,�(k) taken equal to the mean value of the covariance matrix of
target t estimated by sensor i (noted P t

i (k)) and the covariance matrix of target
� estimated by sensor j (noted P �

j (k)):

Covt,�(k) =
1

2
(P t

i (k) + P �
j (k)) . (2)

Local classifications performed by sensors can be used to enhance track-to-
track assignment step. This is done using the feedback assignment strategy given
in Figure 2.

Fig. 2. Track-to-track algorithm based on sensors estimates and local classification
results in a multi-sensor multi-target global scheme

Suppose targets local classifications results are given in the form of mass
functions m expressed on a the frame 2C , where C = {c1, c2, ...} represents the
set of all the possible classes. Such additional information can then be used in
the assignment step as explained in details in [6].

The association methods compared in Section 4 to achieve track-to-track
matchings are all based on distances expressed by (1).

3 A Non-parametric Credal Solution for the Assignment
Problem

In this section, a parameterless credal method is presented to perform the as-
sociations from the distances expressed by (1). In this solution, mass functions
modeling does not need any parameter design. It is based on likelihoods seen as
plausibility functions as in Smet’s works [14] (Similar notions can also be found
in [1]).

Time step k has been omitted for the sake of simplicity.
Let rt,� ∈ {0, 1} be the relation that x̂ti is associated or not with x̂�j (rt,l = 1

means that target t estimated by sensor i corresponds to target � estimated by
sensor j, rt,� = 0 otherwise).
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For each estimated target t ∈ {1, . . . , ni} given by a sensor i, a plausibility
function Plt is built on the set X̂∗t

j = {x̂1j , . . . , x̂
nj

j , ∗j} of sensor j known targets,

element ∗t meaning that a new target is associated with x̂ti. The set X̂∗t

j can be
shortly denoted {1, . . . , nj , ∗t}. The plausibility Plt is defined by:

Plt({�}) = G�,t, ∀� ∈ {1, . . . , nj}, (3)

where G�,t is a likelihood measure calculated as:

G�,t =
exp[−d2�,t/2]√
(2π)q|Cov�,t|

, � ∈ {1, ..., nj} , (4)

with q the dimension of the estimated state vector x̂ and Cov�,t defined as in
(2).

Plausibility Plt({�}) indicates the plausibility that target with state x̂ti is
associated with target with state x̂�j .

The maximum plausibility that target with state x̂ti will be associated to one of
the nj already known targets by sensors j corresponds to max

�=1,...,nj

(Plt({�})) ≤ 1.

This maximum can be lower than one, in particular if the frame of discernment
formed by the set of known objects is not exhaustive. Indeed, a target with state
x̂ti can correspond to a new object (∗t). The plausibility of this event is thus
defined by:

Plt({∗t}) = 1 − max
�=1,...,nj

(Plt({�})). (5)

Plt is then defined on a an exhaustive closed-world X̂j ∪{∗t}, the correspond-
ing mass function is denoted by mt and is obtained by a direct application of
the Generalized Bayesian Theorem (GBT)[13,5], recalled here for convenience:

mt(A) =
∏
�∈A

Plt({�})
∏
�∈Ā

(1 − Plt({�})), ∀A ⊆ X̂∗t

j . (6)

Each mass function mt, regarding the association of target x̂ti, can then be
combined with any other mass functions based on other additional information
(e.g. shape, color, class, etc.) [6].

Once all mass functions mt have been computed for each estimated target
t, they are transformed into pignistic probabilities BetPt using the pignistic
transformation [13].

The best assignment relation is then chosen as the one maximizing the fol-
lowing criterion:

max
∑
�,t

BetPt({�})r�,t, � = {1, . . . , ni + nj}, t = {1, . . . , nj} . (7)

with the following constraints:

ni+nj∑
�

r�,t ≤ 1 , (8)
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nj∑
t

r�,t = 1 , (9)

r�,t ∈ {0, 1} .∀� ∈ {1, . . . , ni + nj}, ∀t ∈ {1, . . . , nj} (10)

As Denœux et al.’s and GNN approaches, this problem can be solved using
Hungarian or Munkres algorithms [4].

The constraint expressed by (8) means that sensor i’s estimation of a given
target state can be assigned to sensor j’s estimation of a given target state, if
not, it is considered as a new target’s state. The constraint expressed by (9)
means that a target known by sensor j can be matched with a target of sensor
i. If the target is not known by sensor i, it is assigned to the extraneous element
(∗).

The assignment problem is illustrated in Table 1. Note that this description is
based on sensor i′s point of view (to which elements of sensor i are assigned the
elements of sensor j?). The same process may be performed for sensor j point
of view (to which elements of sensor j elements of sensor i are associated). As
Mercier et al.’s method [12], this process is generally not symmetric.

Table 1. Pignistic probabilities assignment matrix

x̂1
i x̂2

i . . . x̂ni
i

x̂1
j BetP1,1 BetP1,2 . . . BetP1,ni

x̂2
j BetP2,1 BetP2,2 . . . BetP2,ni

...
...

... . . .
...

x̂
nj

j BetPnj ,1 BetPnj,2 . . . BetPnj,ni

∗1 BetP∗1,1 0 . . . 0
∗2 0 BetP∗2,2 . . . 0
...

...
... . . .

...
∗ni 0 0 . . . BetP∗ni

,ni

4 Simulations Results

In this section, two scenarios of test are exposed to illustrate comparisons be-
tween GNN algorithm, Denoeux et al.’s algorithm and the proposed algorithm.

GNN algorithm depends on a parameter noted λ which allows GNN algorithm
to manage objects detection, the real λ being equal to the maximum distance
between an observation and a prediction in Munkres algorithm. In Denœux et
al.’s algorithm [6], a parameter noted γ is used to transform distances into mass
functions: the weight exp (−γdt,�), with dt,� the distance between objects t and
�, supports the belief in favor of the association of t with �, and 1− exp (−γdt,�)
supports the converse (non-association of t with �).
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Formalized in [8], a link between parameters λ and γ can be stated. As λ
is the maximum distance from which a non association is established for each
observation, the following relation can be considered: exp (−γλ) = 1−exp (−γλ),
which means:

γ =
− log (0.5)

λ
. (11)
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Fig. 3. Scenario 1 description: four conflicting targets. Estimations of sensor 1 are given
by circles. Estimations of sensor 2 are given by stars.
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Fig. 4. False decision rates aggregated over 10 noise realizations with different values
of parameters γ (and then λ (11)).

A first scenario is illustrated in Figure 3. Four nearby targets have to be
tracked. The idea is to match estimations of sensor 1 (circles) to estimations
of sensor 2 (stars). This scenario 1 aims to show the impact on the association
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decision when parameters are not optimally defined. False assignment rates av-
eraged over 10 different measurement noise realizations [10] for each association
algorithm for different values of parameters λ and γ are depicted in Figure 4.
It can be seen that changes in parameters λ and γ have clearly an effect on
the performances of the parameter-dependent algorithms. Indeed, large values
of γ correspond to low values of λ which is seen as the detection distance. Low
values of the detection distance force the parameter-dependent algorithms to
decide that some or all the incoming targets are new ones and some or all known
targets are non-detected. This is the reason of the increasing false decision rates
of the parameter-dependent algorithms in Figure 3.

Maximizing plausibilities instead of pignistic probabilities in (7) in the pro-
posed approach give similar results in these scenarios.
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Fig. 5. Scenario 2 description: two nearby targets. Estimations of sensor 1 are given
by circles. Estimations of sensor 2 are given by stars.

A second simulation, depicted in Figure 5, aims to illustrate the benefit of
the use of additional information in the assignment step (cf Figure 2). In this
case, classification mass functions are combined with mass functions provided
by distances for the two credal algorithms. Since, the GNN algorithm is based
on distances only as entering data, no method allowing the integration of addi-
tional information for GNN algorithm was already proposed. In this simulation,
optimal parameters λ and γ are used. In Figure 6, it can be observed that
additional information enhances the credal algorithms performances. Additional
information (classes, velocity, etc.) can help to resolve the conflicting assignment
situation. Thanks to the general formel aspect of belief functions theory, multi-
ple information can be modelled and combined, which leads to a more accurate
assignment decisions.
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refers to distance and multi-information refers to distance and class

5 Conclusion

This paper provides a new parameterless credal method to the assignment task
in multi-target tracking.

Contrarily to equivalent methods which are parameter-dependent, this one
does not need any parameter. Parameters in the concerned methods allows new
elements appearances to be managed (detection of new targets in the case of
observation-to-track assignment or partially observed targets in track-to-track
assignment). A more natural appearance management solution is provided in
this paper, it is based on a better understanding of targets environment.

Comparisons on conflicting scenarios show that the proposed method performs
equally to parameter-dependent methods, when their parameters are optimally
trained. Moreover, it is shown that credal algorithms performances can be en-
hanced, when additional information are available.

The ability of the credal methods to preserve the information on imprecise
sets would represent an important advantage for a future multi-scan and multi-
hypothesis based approaches.

Acknowledgments. The authors are grateful to Prof. T. Denœux for having
shared the MatlabTMcode of Denœux et al.’s assignment algorithm [6].
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Abstract. Recently, several works have focused on the study of conflict
among belief functions with a geometrical approach. In such framework,
a corner stone is to endow the set of belief functions with an appropriated
metric, and to consider that distant belief functions are more conflicting
than neighboring ones. This article discusses such approaches, caveats
some of their difficulties and highlights ways to circumvent them.

Keywords: belief functions, conflict, distance.

1 Introduction

Mass functions are rather simple objects from a mathematical point of view:
distributions over a finite powerset which add up to one. However, their seman-
tic is rich enough to be used in artificial intelligence to express the subjective
opinion of an agent, in versatile frameworks such as imprecisely known statistics
or censored data fusion. This difference between the simplicity of the mathe-
matical object, and the subtlety of its interpretation at a high semantic level is
probably the curse of belief function theory, as it prevents providing the scientist
or engineer with a simple textbook or recipe, that is no longer put into question,
on how to use belief functions to model a real world problem. For instance, after
few decades of developments, the theory still lacks a unique and well established
definition of conflicting belief functions. Since the seminal work of Dempster [8]
where the mass in the emptyset has been used as a normalization factor in
the orthogonal sum, the traditional conflict mass is regularly challenged with
alternative definitions [16,17,9].

This never-ending debate on the mathematical definition of conflict has been
fed for few years now by a trend, which is discussed in the present paper. This
trend is largely based on endowing the set of mass functions with a metric,
and on characterizing the degree of conflict between two mass functions accord-
ing to their pairwise distance. Historically, this direction was first initiated in
1996 by the work of George and Pal [10], which remains seldom cited (40 cita-
tions according to Google Scholar), while a few years latter (2001), Jousselme
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et al. [12] proposed their famous distance based on Jaccard’s index. During the
early 2000s, Cuzzolin developed his geometrical framework for belief functions,
and Liu proposed to complement the conflict mass by the Chebyshev (or L∞)
distance between pignistic transforms [16]. Jousselme’s work being cited 400
times, Liu around 200 times and Cuzzolin three most cited papers [4,5,6] on
the subject reaching more than 150 citations, we can fairly acknowledge that
the interplay of these works, crystalized in the 2012 survey of Jousselme [14] (a
presentation of which was given at BELIEF 2010, in Brest [13]) provided the
technical ground, on which these new ways to define conflict has blossomed in
the past years.

From that point on, numerous works have focused on providing a distance
based definition of conflict. The objective of this article is not to review or to
compare them. Rather, it is to go back to the foundation of this trend, and to
address the interplays between the very mathematical notion of distance and
the concept of conflict as acknowledged in belief function theory. After some
definitions (Section 2), these interplays are discussed at a mathematical level
(Section 3), and at a semantic one (Section 4).

2 Definition

Let us recall that a metric space (E, d) is a set E endowed with a distance d. A
distance on E is defined as:

1. An application from E × E,
2. onto R+,
3. so that ∀x, y ∈ E2, d(x, y) = 0 ⇔ x = y,
4. d(x, y) = d(y, x),
5. ∀x, y, z ∈ E3, d(x, z) ≤ d(x, y) + d(y, z).

Usually, (2) is referred to as non-negativity, (3) as separability, (4) as symmetry
and (5) as subadditivity, or triangle inequality. Although the term is not standard,
let us refer to (1) as binarity for convenience. Beyond algebraic definitions, it is
classically assumed in information-related sciences, that the semantic associated
to a distance is that of dissimilarity: Greater the distance between two elements
of E the more dissimilar they are, and the smaller the distance, the more similar.
In the particular case of belief function theory, E is generally the set M(Ω) of
mass functions with frame Ω. To simplify distance definitions, M(Ω) is also
often assumed to be a (n − 1) standard simplex in a n dimensional normed
vector space V spanned by the n possible focal elements that are canonically
derived from working on Ω (see [6]). Thus, any norm defined on V trivially leads
to a distance on M(Ω).

Let us now turn to the definition of conflicting belief functions: As explained
in the introduction, the belief function community has not accepted a single
mathematical definition for it, and scientists may derive a posteriori the mathe-
matical definition which fit with the particular situation they face. It means that
the definition is somehow clear at a “modeling” level, as everyone can tell if dif-
ferent opinions are conflicting or not; however, this does not obviously translate
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into the formalism of belief functions. If we refine a bit the process, it appears
that:

1. Several sources of information can agree or disagree on any phenomenon
they have evidence on;

2. We call degree of conflict among the sources the level to which the sources
disagree, yet no formal definition of such disagreement exists;

3. As the sources provide mass functions, a painless misnomer makes us talk
about degree of conflict among the mass functions ;

4. This degree of conflict is computed by applying various formulas to the mass
functions.

Finally, the main difficulty is to define how agreement/disagreement of the
sources translates into the result of a mathematical operation on mass func-
tions, so that one can quantify it. During this “translation”, distances are likely
to be called for assistance. The reason is the following: In most applications, the
level of conflict itself is of seldom interest, and the practitioner is more inter-
ested in the combination of the sources. This combination is somehow expressing
a consensus among the sources. Naturally, one expects that consensus to be eas-
ier to find if the sources have similar opinions, while it is impossible to find it if
the sources support completely opposite opinions. As the conflict is supposed to
quantify this possibility to find a consensus, it makes intuitively sense to measure
distances between the masses to combine.

3 Mathematical Discussion

At this point, one needs to check that the idea behind conflict measurement
is compliant with the mathematical definition of a distance. Regarding non-
negativity and symmetry, there should have very little problem: It is rather
intuitive that the conflict is a non-negative quantity, and most of the works on
the issue assume so. For instance, in [9], this assumption is explicitly included in
our first axiom, referred to as Extreme conflict value; and in [17], one finds it in
both the first axiom, simply called non-negativity, and in the fourth one, referred
to as normalization, and which corresponds to our Extreme conflict value axiom.
Similarly, it is also taken for granted that the conflict between m1 and m2 is the
same as the one between m2 and m1. As such, both [17] and [9] propose an
axiom named symmetry. However, the other properties (subadditivity, binarity
and separability) do not directly fit, and they are separately addressed hereafter.

3.1 The Binarity Issue

First, let us consider binarity: So far, in most works devoted to conflict, it is
assumed that n > 2 belief functions can generate some conflict, and that this
latter can be measured, which strongly goes against the binarity property. Thus,
if distances are involved in the process of conflict quantitation, a rigorous n-ary
extension is required. The most natural way to define such extension is to rely
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on hypervolumes, i.e. a distance in the binary case, an era in the ternary case, a
volume in the quaternary case, and so on. Naturally, this raises lots of questions:

– How to deal with hypervolume computation in case of belief functions pre-
sented by collinear/coplanar vectors?The problem is that the volume spanned
by a set of non full rank vectors is nil.

– How to compare the conflict arisen among a set of n1 belief functions, and
the conflict arisen among another set of n2 belief functions? In fact, volumes
of different dimensionalities are not comparable.

– Which type of hypervolume to consider? The smallest encompassing hyper-
sphere, the simplex spanned by the masses, etc.?

However, it has two major advantages: First, hypervolume computation being
insensitive to the order of the vertices under consideration, it naturally fits with
the n-ary generalization of the symmetry property discussed above. Second, it
can rely on matrix algebra as a robust mathematical background, where most
of the results are well documented: Indeed, determinant or eigenvalue computa-
tions relates to the geometry of the column vectors of a matrix. So far, such an
algebraic vision is seldom considered, and only weak justifications appear in [15].

3.2 The Separability Issue

Behind separability, one questions the equivalence between the following two
assertions: “These masses are non-conflicting” and “These masses are equal”.
To answer, one should question the implication of the first assertion by the
second, and the reverse implication; that is: Is it possible to find separable mass
functions with fully agreeing sources? and, is it possible to find fully disagreeing
sources with equal evidence?

Separable Mass Functions with Agreeing Sources? Let us remark that
in belief function theory, focal elements are most of the time interpreted as
epistemic sets [3], i.e. imprecise descriptions of the reality: one assumes the truth
is one and only one element amongst those composing the set1. Under such view,
it is possible to have sources of information having different descriptions with
a non-null intersection that they can agree on. The direct conclusion is that,
contrarily to distances, conflict is quantity that does not fit with the separability
property. Let us illustrate that with some examples:

Example 1 (Everyday life situation with an epistemic view). In this example,
we do not assume any model based on belief functions. We simply consider two
distinct sources of information. The first one supports an interval I1 (for a range
of acceptable values, a set of possible options, or whatever its meaning), while
the second source support another interval I2 included in I1. In such a case, both
sources can agree on I2 (there is no conflict), while their opinions differ.

1 To the best of my knowledge, no work proposes a new distance-based definition of
conflict while explicitely assuming an ontic view.



416 T. Burger

Example 2 (Separable mass functions with fully agreeing sources). Assume that
source S1 provides a vacuous mass function m1, and that source S2 provides
a non-vacuous consonant mass function m2. One clearly has m1 
= m2, and
thus d(m1,m2) > 0 whatever d. However, S1 and S2 are not conflicting, as the
evidence supported by m1 is non-informative in an epistemic model.

It is also possible to define other similar examples by replacing m2 by a con-
sonant mass function having its focal elements included in those of m1, while
having m1 
= m2. Whatever the example, the underlying idea is that a part of
the distance between two separate mass functions can arise from their respective
level of imprecision, and that this difference does not necessarily imply any con-
flicting views. This idea is implemented in the Ignorance is bliss axiom from [9]
and in the inclusion axiom from [17]. However, these axioms are not here taken
as the initial assumption to build these counter-examples on; I only rely on the
weaker assumption that belief functions theory assumes an epistemic model.
On the contrary, these axioms can be seen as a consequence of the epistemic
modeling.

Disagreeing Sources with Equal Evidence? Let m1 and m2 be two mass
functions such that m1 = m2, and thus d(m1,m2) = 0. Does this necessarily
imply that the conflict between m1 and m2 is nil? This question should be
sorted out with respect to the on-going discussions regarding the decomposition
of conflict into its inner part and its outer part [7,20]. These works assume
that the global conflict arising from m1 and m2 can be partly explained by the
conflicts that are carried by m1 on its own regardless m2, and by m2 on its own
regardlessm1. As such the outer conflict is what remains from the global conflict
once the inner conflicts have been subtracted. If d(m1,m2) = 0 implies a null
(global) conflict, one has to assume that inner conflict does not exist, which so far
contradicts with several state-of-the-art articles. An alternative is to assume that
a distance-based measure of conflict only accounts for outer conflict. However,
this line is also source of difficulties, as so far, no exact decomposition of the
conflict into its outer and inner parts holds.

3.3 The Subadditivity Issue

Let us finally and rapidly turn to subadditivity (or triangle ineqality). Is there
any reason to consider that the conflict between m1 and m2, plus the conflict
between m2 and m3 should be greater than the conflict between m1 and m3?
The following example provides a situation where this property is not desirable.

Example 3. Assume that m1 and m3 are consonant mass functions bearing on
different opinions, and each being different from the vacuous one. Naturally,
they have a non-null conflict. Now, let us assume m2 is the vacuous mass: it is
absolutely non-conflicting with either m1 or m3 so that the sum of these two
conflicts is nil, leading to a situation where the triangle inequality does not hold.
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Of course, this example relies on Example 2 and assumes an epistemic model.
However, it makes sense: in everyday life, it is possible to consider two extreme
positions that are in total conflict while an in-between position is hardly con-
flicting with both, as it supports an acceptable solution for everyone. In such
case, the triangle inequality does clearly not hold.

3.4 To Conclude on the Distance Properties

Finally, amongst the five properties of metrics, two naturally fits to conflict
definition (symmetry and non-negativity), one may accept some suitable gener-
alization (binarity), and two are absolutely not compatible (subadditivity and
separability) with an epistemic view of belief functions. At this point, we can
argue that conflict and distances (or dissimilarities) are different notions which
cannot be interchanged. Unfortunately, a lot of recent works assume it is possible
to do so (see for example [18,22,19,15]), which is arguable. On the other hand, it
is possible to agree on the mathematical differences between these notions, while
proposing to build a sounded definition of conflict thanks to the involvement of
an adapted metrics; most of the time, by coupling a distance measure to another
index, such as in [16,17]. This second approach authorizes much more rigorous
works. However, one needs to remain cautious regarding the semantic of such ag-
gregation. For instance, what is the meaning of a multi-dimensional conflict [16],
or of multiplying a distance by an inclusion measure [17]? This question is partly
addressed in the next section.

4 Semantic Discussion

Now, I leave the axiomatic discussion to question how conflict and distance
may interplay at a semantic level, i.e. at the moment when the practitioner
involves belief functions to model a particular real life phenomenon. I will first
push forward the line initiated in Section 3, by questioning the semantic of an
aggregation function used to build a measure of conflict on the basis of, among
others, a distance measure. Second, I will discuss the semantic of V , the normed
vector space derived from M(Ω). Finally, I will question the definition of a
consensus between several sources when the conflict is geometrically defined.

4.1 Between Similarity and Agreement

Let us assume that a measure of conflict is defined thanks to an aggregation
function which takes as input, among others, a distance measure. Let m1 and
m2 be two mass functions, and C a conflict measure reading:

C(m1,m2) = f (d (m1,m2) ,V1 (m1,m2) , . . . ,Vn (m1,m2))

where d is a distance over M(Ω), f an aggregation function, and V1, . . . ,Vn,
n ≥ 1 is a set of variables meaningfully describing some properties judged as
interesting to quantify conflict. For instance:
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– in [16], d is the Chebishev distance, f is a concatenation operator that builds
a vector on the basis of a list of its coordinates, n = 1, and V1 (m1,m2) is
the conflict mass.

– in [17], d is the Jousselme distance, f is a product, n = 1 and V1 (m1,m2)
is an inclusion measure.

– one could also assume that a distance is involved to measure the outer con-
flict, and that this latter is complemented with another measure accounting
for inner conflicts.

All these works assume that similarity and agreement are different notions, which
is so far supported by Section 3. However, they make an additional assumption,
which is that a distance can be combined with a finite set of other values, namely
V1 (m1,m2) , . . . ,Vn (m1,m2) so that the resulting combination is a conflict
measure that fairly describes the level of disagreement of the sources. So far,
I do not have any support for this assumption, nor any argument against it.
However, the assumption is often associated to a constructive approach I find
prone to discussion: Generally, a measure of conflict of the form of C is built
iteratively:

1. One starts from a first definition of conflict (either V1 (m1,m2) or d (m1,m2)
in the aforementioned examples);

2. One finds a counter-example on which this definition does not entirely cap-
ture what one expects as conflict;

3. One proposes a correction, generally by incorporating another variable, say
Vi (m1,m2). At this point, if the resulting definition of conflict is not sounded,
one goes back to the previous step.

During this process, onenever has the confirmation that the collection{d (m1,m2) ,
V1 (m1,m2) , . . . ,Vn (m1,m2)} is complete: As long as no example puts it back
into question, the definition is accepted; while, on the contrary, one should accept
it only after proving its completeness. Practically, when discussing the separability
issue in Section 3, I pointed out that some distance could arise from the different
levels of imprecision betweenm1 andm2, without implying any conflict. A similar
conclusion was drawn in [17], so that the proposed measure complements a dis-
tance by an inclusion measure. However, there is no evidence supporting that the
resulting measure of conflict is complete.

4.2 Sensitivity to Permutations

The second issue to focus on is best illustrated by an example:

Example 4. Let v1 = (1, 0, 0)� and v2 = (0, 1, 0)� be two vectors of R3, and let
σ ∈ S3 be a permutation. As any permutation of the coordinates of a vector
can be decomposed into a succession of cycles (which intuitively corresponds to
rotations of the basis of R3), it is rather intuitive that most of the canonical
distances (such as Minkowski distances) on R3 are insensitive to permutations:
Practically, if d is such a distance, then d(v1, v2) = d(σ(v1), σ(v2)), ∀σ ∈ S3.
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However, if v1 and v2 are intepreted as mass functions (let us name them m1

and m2) over a binary frame the powerset of which reads {{ω1}, {ω2}, {ω1, ω2}},
things become different: m1 and m2 are naturally conflicting as they respectively
fully support {ω1} and {ω2}, however, if σ is the cycle (2, 3), then σ(m1) =
(1, 0, 0)� and σ(m2) = (0, 0, 1)� are not conflicting, as σ(m2) is vacuous.

The above example illustrates that, contrarily to a classical vector space such
as Rn, where the order of the coordinates of a vector are seldom important,
M(Ω) is rather sensitive to permutations. Naturally, this example also relies on
the same tricks as Examples 2 and 3: one involves a vacuous mass function and
one assumes it is not conflicting with any other consonant mass. However, this
is mainly to keep the example both simple and catchy. What really matters here
is much more general: as the semantic of each coordinate of a vector is not the
same (some correspond to singleton focal elements, while others do not, respec-
tively encoding precise knowledge, or not), any permutation of the vector space
strongly modifies the semantic of the mass functions. However, several classical
distances are unchanged by permutations. Thus, the sensitivity to permutation
must be explicitly accounted for, if one expects a distance to be involved in a
conflict definition. Jousselme’s distance based on Jaccard’s index, as well as other
entropy-related distances, partially do, yet in different manners. However, other
distances defined on M(Ω) may not (including most of the canonical distances
on a vector space).

4.3 Geometric Definition of Consensus

When combining belief functions, the resulting mass is supposed to reflect a con-
sensus among the original sources. This consensus aims at being as compatible
as possible with the pieces of evidences provided by the sources, while being
specific enough (a vacuous mass is not a relevant consensus). Let us explore the
consequences of that, in the case where conflict is reflected by distances. If the
degree of disagreement between the sources if fairly captured by a distance mea-
sure, the consensus mass function is expected to have a minimal distance to all
the original pieces of evidence. From a geometrical viewpoint, such a mass func-
tion is defined by the barycenter of the sources to combine. Thus, the merging of
the pieces of information should not be conducted according to Dempster’s rule,
but according to a convex combination. Although in plain contradiction with
the mainframe of belief function theory, the idea that a consensus is well-defined
by a barycenter has already showed up in the literature: In [21], Assumption
1.1. reads that the pignistic transform should be invariant with respect to con-
vex combination rather than with respect to Dempster’s rule, such as advocated
in [2]. In a slightly less related way, the pignistic transform is easily interpreted
in terms of linear combination: It provides the barycenter of dominating prob-
abilities [1], which can be interpreted as a geometric consensus between all the
compliant probability distributions. However, by now, Dempster’s rule is well
established (it is seldom put into questions, such as in [11]), and such a change
would have major impacts on the theory (far beyond the simple definition of
conflict) and its consequences should be globally considered.
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5 Conclusion

This article discusses the recent trend which focuses on using metrics to quantify
the degree of conflict between belief functions. As I am sure it appeared through
this discussion, I am not a supporter of this trend, and my views remain coherent
with a previous article [9] I was a co-author of, where one has defined various
axioms that we believe a sounded measure of conflict should meet. However, I
understand that belief functions have rich and multiple semantics that may differ,
and among which none is better than the others. As such, in this viewpoint, I
considered the question through some constructive Cartesian skepticism: I tried
to push as far as possible the line of mixing distances and conflict, with the hope
that it would raise interesting questions.

As a result of the axiomatic discussion conducted in Section 3, it appears that
the separability and subadditivity properties of distances contradict what can be
expected from a conflict measure. It clearly indicates that, at a low mathematical
level, the notions of conflict and of distance cannot be interchanged. However, at
this point, it is impossible to reject another trend, which consists in elaborating a
measure of conflict thanks to an aggregation function which takes into account,
among others, a distance. This is why, in Section 4, I discuss the differences
between distances and conflict at a semantic level, through different angles.

Finally, it appears that even if no blatant contradiction appears at this se-
mantic level, several major issues remain, if one expects to build a complete
vision-based definition of conflict:

1. Such as discussed in Section 3.1, a suitable n-ary (n > 2) generalization of
the distance is necessary. Moreover, this generalization should be insensitive
to permutations, to fit with the symmetry property;

2. One only considers outer conflict (thus, a suitable separation of inner and
outer conflict is mandatory), such as advocated in Section 3.2;

3. An exhaustive definition of all the differences between agreement and sim-
ilarity must be given, so that the distance is aggregated to another set of
measures accounting for these differences, such as it is outlined in Section 3.2
and detailed in Section 4.1;

4. The distance must be defined so that it has a semantic robust to permuta-
tions of the focal elements, in order to avoid situation such as illustrated in
the Example 4 (Section 4.2);

5. The combination rule must be adapted to fit a barycentric vision of the
consensus, such as described in Section 4.3.

Finally, most of these issues are real locks that can only be addressed in dedicated
works. According to the amount of works focused on the definition of a geomet-
ric and distance-based vision of conflict, the subject is definitely an interesting
question for the belief function community. However, its complete and rigorous
definition still requires several issues (at least, the five aforementioned) to be
solved beforehand. Should these issues be sorted out, it would be interesting to
confront a distance-based conflict to pre-existing definitions.
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Abstract. In a recent paper [12], we introduced a new family of eviden-
tial distances in the framework of belief functions. Using specialization
matrices as a representation of bodies of evidence, an evidential distance
can be obtained by computing the norm of the difference of these ma-
trices. Any matrix norm can be thus used to define a full metric. In
particular, it has been shown that the L1 norm-based specialization dis-
tance has nice properties. This distance takes into account the structure
of focal elements and has a consistent behavior with respect to the con-
junctive combination rule. However, if the frame of discernment on which
the problem is defined has n elements, then a specialization matrix size
is 2n × 2n. The straightforward formula for computing a specialization
distance involves a matrix product which can be consequently highly
time consuming. In this article, several faster computation methods are
provided for Lp norm-based specialization distances. These methods are
proposed for special kinds of mass functions as well as for the general
case.

Keywords: evidence theory, Dempster-Shafer theory, distances, metrics

1 Introduction

The belief function theory, or evidence theory [6,16], is a formal framework for
reasoning under uncertainty. In the past decades, a growing interest has been
shown toward determining meaningful dissimilarity measures between bodies
of evidence. These measures are used in belief function approximation compu-
tation [1,4,5,2], in belief functions clustering [15,8], in evidential data classi-
fication [19], in evidential sensor reliability assessment [9,18] or in estimation
of some parameters feeding refined belief function combinations [7,13] or up-
date processes [11]. All (dis)similarity measures attempt to describe the degree
of (non-)alikeness between belief functions in a meaningful way for the widest
range of applications. Indeed, the choice of a particular measure is most of the
time application-dependent.
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A thorough survey about dissimilarity measures in the evidence theory and
their properties was presented by Jousselme and Maupin [10]. The authors also
provided generalizations of some distances thereby introducing families of new
measures.

We introduced in [12] a new family of evidential distances based on special-
ization matrices as a representation of bodies of evidence. In particular, the L1

norm-based specialization distance has unprecedented properties as compared to
state-of-the-art approaches. Unfortunately, a straightforward implementation of
specialization distances requires a rather large computation time. In this work,
we provide several faster computation methods for Lp norm-based specializa-
tion distances. These methods allow a computation at least as fast as for usual
evidential metrics.

The rest of this paper is organized as follows. Section 2 provides the prelim-
inaries of evidence theory. In section 3, faster computation methods for the Lp

norm are proposed for special kinds of mass functions as well as for the general
case. Finally, we conclude the paper in section 4.

2 Belief Function Framework: Notations and Definitions

In this section, mathematical notations for classical belief function concepts are
given. The reader is expected to be familiar with belief function basics and
consequently some definitions are not recalled. More material on belief functions
basics is found in [12]. A greater stress is given to a reminder on matrix calculus
as part of the belief function framework and on some specialization distances.

2.1 Belief Function Basics

For a given body of evidence Evi, the correspondingmass function representing
this piece of evidence is denoted by mi. These functions are set-functions with
respect to a frame of discernment denoted by Ω. The power set 2Ω is the set
of all subsets of Ω and it is the domain of mass functions. For any A ∈ 2Ω, the
cardinality of this set is denoted by |A| and |Ω| = n. The cardinality of 2Ω is
denoted by N = 2n. Mass functions have [0, 1] as codomain and they sum to one.
A focal element of a mass function mi is a set A ⊆ Ω such that mi(A) > 0. A
function having only one focal element A is called categorical mass function
and denoted by mA.

The most widely used way to combine pieces of evidence is to apply the con-
junctive combination rule to their corresponding mass functions. This rule is
denoted by ∩©. For two given mass functions m1 and m2, their conjunctive com-
bination is denoted bym1 ∩©2 = m1 ∩©m2. The conjunctive rule is a generalization
of evidential conditioning (or Dempster’s conditioning) which is itself a general-
ization of Bayesian conditioning. Indeed when mass functions are replaced with
probability distributions, then Bayes’ theorem is retrieved. An updated mass
function given A is denoted by m(.|A) = m ∩©mA. The conjunctive rule can be
applied if all sources of information providing pieces of evidence are fully reliable
in the sense that the pieces of evidence they provide are true.
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2.2 Belief Functions and Matrix Calculus

Mass functions can be viewed as vectors belonging to a vector space spanned by
categorical mass functions. Since mass functions sum to one, the set of mass func-
tions is the simplex of that vector space. In this paper, the following notations
and conventions are used :

• Vectors are written in bold small letters and matrices in bold capital letters.
• Vectors are column vectors and their length is N . The ith element of a mass
function vectorm is such that mi = m(A) with i the index of setA according
to the binary order. The binary order [17] is a common way to index elements
of 2Ω without supposing any order on Ω.

• Matrices are square and their size is N × N . A matrix can be represented
by X = [Xij ], or alternatively by the notation X = [X(A,B)], ∀A,B ∈ Ω.
The row and column indexes i and j are those corresponding to the subsets
A and B using the binary order.

Matrix calculus as part of the BFT is especially interesting when it comes to
conjunctive combination computation. Indeed, from Smets [17], one has:

m1 ∩©2 = M−1diag (Mm1)Mm2, (1)

with diag the operator turning a vector into a diagonal matrix and M a matrix
such that M(A,B) = 1 if A ⊆ B and M(A,B) = 0 otherwise. Note that this
matrix can be computed using n iterations of the following recurrence:

M(i+1) =

[
1 1
0 1

]
⊗ M(i), (2)

with ⊗ the Kronecker matrix product and M(0) = [1]. Furthermore, the matrix
S1 such that S1m2 = m1 ∩©2 is called the Dempsterian specialization matrix of
m1. This matrix thus writes:

S1 = M−1diag (Mm1)M. (3)

Each element of S1 represents actually the mass assigned to a set A after
conditioning on B: S1(A,B) = m1 (A|B). In other words, S1 does not only rep-
resent the current state of belief depicted by m1 but also all reachable states
from m1 through conditioning. From a geometric point of view [3], a specializa-
tion matrix contains the vertices the conditional subspace associated with the
function m. Specialization matrices are consequently relevant candidates for as-
sessing dissimilarities between bodies of evidence in consistence with evidential
conditioning and the conjunctive combination rule.

2.3 Specialization Distances

The most natural way to design distances between specialization matrices is to
rely on a given matrix norm ‖ . ‖x. Indeed, suppose two bodies of evidence1

1 For the sake of clarity, the distinction between a body of evidence and its corre-
sponding mass function is omitted in equations.
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represented respectively by m1 and m2, then the following function dSx is a
normalized full metric:

dSx(m1,m2) =
1

ρ
‖ S1 − S2 ‖x (4)

with ρ = maxmi,mj ‖ Si − Sj ‖x a normalization coefficient. Such distances are
called specialization distances.

In this article, we focus on specialization distances relying on the Lp matrix
norms. These distances are denoted by dp. For these distances, the normalization

coefficient is known in closed form: ρ = (2 (2n − 1))
1
p . Choosing Lp norm-based

specialization distances is justified by the fact that, in particular, the distance
d1 has interesting properties [12]. It takes into account the interactions2 between
focal elements (structural property) and two mass functions are necessarily closer
after conjunctive combination with addionnal evidence (conjunctive consistency
property).

The straightforward computation of distances dp is given by:

dp(m1,m2) =
1

ρ
‖ M−1diag (M (m1 − m2))M ‖p . (5)

Unfortunately, equation (5) involves a matrix product. Its complexity is thus
O(N3). Such a complexity can be prohibitive for many application contexts
and appears to be greater than the complexity of other evidential distances.
Consequently, faster ways to compute distances Lp are investigated in the next
section.

3 Faster Computation of Lp Norm-Based Specialization
Distances

In this section, new computation methods are introduced for Lp norm-based
specialization distances. First, some results are given for special cases of mass
functions and in the last subsection, an algorithm is provided for the general
case.

3.1 Distances between Categorical Mass Functions

A fast way to compute Lp norm-based specialization distances between categori-
cal mass functions is already given in [12]. Indeed, it is proved in this article that
there exists an bijective link between the Hamming set distance and distances
dp restricted to categorical mass functions. More precisely, one has:

dp (mA,mB) =

(
N − 2n−|AΔB|

N − 1

) 1
p

, (6)

2 For instance, focal elements may have a non-empty intersection.
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with Δ the set symmetric difference. The cardinality of the set symmetric dif-
ference is the Hamming set distance.

The interest of equation (6) is twofold: first the computation for such distances
is now just O (1), and second, it also sheds light on the fact that there is an order
isomorphism between the Hamming set distance and the specialization distance.
This latter property is extremely important for evidential distances as it proves
that the distance abides by the structural principle stated in [10].

3.2 Distances between A Categorical Mass Function and any Mass
Function

In this subsection, a broader case is investigated: computation of distances dp
between a categorical mass function and any mass function. We provide a result
only for the L1 norm-based specialization distance d1:

Proposition 1. Suppose m is a mass function on a frame Ω. Suppose A ⊆ Ω
and mA is its corresponding categorical mass function. The specialization matrix
of m is denoted by S and that of mA by SA. One has:

d1 (m,mA) =
N− ‖ S ◦ SA ‖1

N − 1
, (7)

=
N − tr (S tSA)

N − 1
, (8)

with ◦ the Hadamard matrix product3, tr the matrix trace operator and tSA the
transpose matrix of SA.

Proof. By definition of the L1 norm, one has :

‖ S − SA ‖1=
∑

X,Y ⊆Ω

|S(X,Y ) − SA(X,Y )|.

It is known that SA(X,Y ) = 1 if A∩Y = X and SA(X,Y ) = 0 otherwise, which
gives:

‖ S − SA ‖1 =
∑

X,Y⊆Ω
X=A∩Y

(1 − S(X,Y )) +
∑

X,Y⊆Ω
X �=A∩Y

S(X,Y ),

=
∑

X,Y⊆Ω
X=A∩Y

1 +
∑

X,Y⊆Ω
X �=A∩Y

S(X,Y ) −
∑

X,Y ⊆Ω
X=A∩Y

S(X,Y ),

= ‖ SA ‖1 +
∑

X,Y⊆Ω

S(X,Y ) − 2
∑

X,Y⊆Ω
X=A∩Y

S(X,Y ),

= ‖ SA ‖1 + ‖ S ‖1 −2 ‖ S ◦ SA ‖1 .
3 The Hadamard matrix product is the entrywise product or Schur product. Let X,
Y and Z be three matrices such that X ◦Y = Z, then we have Zij = XijYij , ∀i and
j.
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Since the L1 norm of any specialization matrix is N , and remembering that
ρ = 2N − 2 when p = 1, equation (7) is retrieved:

‖ S − SA ‖1 = 2N + 2 ‖ S ◦ SA ‖1,

⇔ d1 (m,mA) =
N− ‖ S ◦ SA ‖1

N − 1
.

Equation (8) is obtained from equation (7) using a classical algebra result. ��

In terms of computation time, equation (7) should be preferred. Specialization
matrices have 3n non-null elements. The Hadamard product can be restricted
to the entrywise product of these non-null elements. The complexity of equation
(7) is thus:

O (3n) = O
(
N

log(3)
log(2)

)
,

≈ O
(
N1.58

)
.

3.3 Distances between any Mass Functions

We now address the dp distance computation problem in the general case. An
algorithm for optimizing this computation will be introduced. This algorithm
relies on the following result:

Proposition 2. Suppose m is a mass function on a frame Ω. Suppose X ⊆
Y ⊆ Ω and let z /∈ Y . The following result holds:

m (X |Y ) = m (X |Y ∪ {z}) +m (X ∪ {z} |Y ∪ {z}) . (9)

Proof. By definition of evidential conditioning, one has:

m (X |Y ) =
∑
A⊆Ω

A∩Y=X

m(A) =
∑
A⊆Ω

A∩Y=X,z∈A

m(A) +
∑
A⊆Ω

A∩Y=X,z /∈A

m(A). (10)

Let us deal with the first term in equation (10). We need to prove that A∩Y = X
and z ∈ A if and only if A∩(Y ∪ {z}) = X∪{z}. Let us prove first that A∩Y = X
and z ∈ A implies A ∩ (Y ∪ {z}) = X ∪ {z}. If z ∈ A then

A ∩ (Y ∪ {z}) = (A ∩ Y ) ∪ (A ∩ {z} ) = A ∩ Y ∪ {z} .

In addition if A ∩ Y = X , we obtain:

A ∩ (Y ∪ {z}) = X ∪ {z} .

Reciprocally, let us now prove that A∩ (Y ∪ {z}) = X ∪ {z} implies A∩ Y = X
and z ∈ A. Suppose that X ∪ {z} = A∩ (Y ∪ {z}) = (A ∩ Y )∪ (A ∩ {z} ). Since
z /∈ Y , z /∈ A ∩ Y , hence z ∈ A ∩ {z}, which implies z ∈ A.
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In addition, we also haveX∪{z} = (A ∩ Y )∪{z}. Since z /∈ Y , then (A ∩ Y )∪
{z}\ {z} = A∩Y . Again, since z /∈ Y , then z /∈ X and therefore X ∪{z}\ {z} =
X = A ∩ Y . From the above reasoning, we deduce:∑

A⊆Ω
A∩Y=X,z∈A

m(A) =
∑
A⊆Ω

A∩(Y ∪{z})=X∪{z}

m(A) = m (X ∪ {z} |Y ∪ {z}) .

Let us now deal with the remaining term in equation (10). We need to prove
that A ∩ Y = X and z /∈ A if and only if A ∩ (Y ∪ {z}) = X . Let us prove first
that A ∩ Y = X and z ∈ A implies A ∩ (Y ∪ {z}) = X . Suppose z /∈ A and
A ∩ Y = X . One can write:

A ∩ (Y ∪ {z}) = (A ∩ Y ) ∪ (A ∩ {z} ) ,

= A ∩ Y ∪ ∅,
= X. (11)

Reciprocally, let us prove that A∩ (Y ∪ {z}) = X implies A∩Y = X and z /∈ A.
Suppose that X = A ∩ (Y ∪ {z}) = (A ∩ Y ) ∪ (A ∩ {z} ). Since z /∈ Y , then
z /∈ X . We thus have z /∈ A ∩ {z}, which implies z /∈ A. In addition, this leads
to X = A ∩ Y ∪ ∅ = A ∩ Y . From this reasoning, we deduce:∑

A⊆Ω
A∩Y=X,z /∈A

m(A) =
∑
A⊆Ω

A∩(Y ∪{z})=X

m(A) = m (X |Y ∪ {z}) .��

Proposition 2 is especially interesting when it comes to specialization matrix
computation as it shows that any element of the matrix can be obtained by
adding two other elements belonging to a right-hand column and lower lines.
Since the last column vector is equal to m, this matrix can be built incrementally
starting from the column with index N − 1 down to the first column. In each
column, we start with the lowest element up to the top one. This procedure is
given by algorithm 1.

This fast specialization matrix computation algorithm can be directly used
withm1−m2 as entry in order to obtain the matrix difference S1−S2. This algo-
rithm can also compute recursively distance dp by updating its value each time
a new element S1(X,Y ) − S2(X,Y ) is obtained. Given the definition of matrix
M, there are 3n loops in algorithm 1. Similarly to the previous subsection, the
distance dp computation complexity for any mass functions is thus O

(
N1.58

)
.

Figure 1 illustrates the computation time ease induced by algorithm 1 as com-
pared to the computation time when using equation (5). These results were
obtained using a laptop with an Intel� centrino2 2.53 GHz CPU and GNU
Octave c© programming environment. It can be seen that the log-ratio of com-
putation times is linear with respect to n which is compliant with the claim that
the complexity dropped from O

(
N3

)
to O

(
N1.58

)
.

Concerning distance computation, it should also be noted that algorithm 1
does not only improve the time-complexity but also the memory occupation.
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Algorithm 1. Fast computation of a specialization matrix S

entries : m, N , M.
S ← 0, the null matrix.
for X ⊆ Ω do

S(X,Ω)← m (X)
end for
for Y � Ω (following the decreasing binary order) do

for X ⊆ Y (following the decreasing binary order) do
if M(X, Y ) > 0 then
choose z ∈ Ȳ .
S(X,Y )← S(X,Y ∪ {z}) + S(X ∪ {z} , Y ∪ {z}).

end if
end for

end for
return S.
End

Indeed, it is unnecessary to store the whole matrix S1 − S2 when computing a
specialization distance because some colums will never be used again and one
can anticipate that.
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Fig. 1. Comparison of computation times using the classical approach (equation (5))
and using our faster approach (algorithm 1).

Most of state-of-the-art evidential metrics4, such as Jousselme distance, resort
to a product between a matrix and a mass function vector. Their complexity

4 Perry and Stephanou [14] introduced a full metric with O (N) complexity but it fails
to grasp structural mass function aspects (see [10]).
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is thus O
(
N2

)
(using naive programming). Consequently, we have succeeded in

making the Lp norm-based specialization distances at least as attractive as other
evidential metrics in terms of computation time.

4 Conclusion

In this article, several methods for a faster computation of Lp norm-based spe-
cialization distances are introduced. Initially, such distances are computed in
O
(
N3

)
with N the size of the power set of the frame of discernment. We pro-

vide an algorithmic way to reduce this complexity to O
(
N1.58

)
in the general

case. In case of categorical mass functions, the complexity is just O (1).
Using these approaches, Lp norm-based specialization distances become us-

able tools for several potential applications. In particular, we plan to tackle
mass function approximation problems using specialization distance minimiza-
tion. The hope is that the one-of-a-kind properties of such distances will help
resolving approximation problems more efficiently.
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Abstract. A distance or dissimilarity of evidence represents the degree
of dissimilarity between bodies of evidence, which has been widely used
in the applications based on belief functions theory. In this paper, new
distance measures are proposed based on belief intervals [Bel, P l]. For
a basic belief assignment (BBA), the belief intervals of different focal
elements are first calculated, respectively, which can be considered as
interval numbers. Then, according to the distance of interval numbers,
we can calculate the distance values between the corresponding belief
intervals of the same focal elements in two given BBAs. Based on these
distance values of belief intervals, new distance measures of evidence can
be obtained using Euclidean and Chebyshev approaches, respectively.
Some experiments and related analyses are provided to show the ratio-
nality and efficiency of the proposed measures.

Keywords: distance of evidence, dissimilarity, belief function theory,
evidence theory.

1 Introduction

The theory of belief functions [1], also called Dempster-Shafer evidence theory
(DST), proposes a mathematical model to represent sources of evidences and to
deal with uncertainty reasoning. DST has been used with some success in differ-
ent civilian and military applications, especially in information fusion, pattern
recognition and decision making. However, some limitations and flaws have been
put in light by different researchers, see for example [2,3], and references therein.
With the development of DST, some refined or extended evidence theories have
emerged, e.g., the transferable belief model (TBM) [4] and DSmT [5].

A distance or dissimilarity measure of evidence [6] can describe the degree
of dissimilarity or similarity between bodies of evidence (BOEs), which has at-
tracted more and more research interest recently and has been widely used in

F. Cuzzolin (Ed.): BELIEF 2014, LNAI 8764, pp. 432–441, 2014.
c© Springer International Publishing Switzerland 2014
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applications such as algorithm evaluation [7,8] or optimization, clustering anal-
ysis, etc. Among the different measures proposed in the literature, Jousselme’s
distance of evidence [9] and Tessem’s distance [10] (also called the betting com-
mitment distance or the pignistic probability distance) are most frequently used.
The conflict coefficient in Dempster’s rule can also be considered as a generalized
dissimilarity (not so strict). In our previous work [11], we have also proposed the
dissimilarity of evidence based on fuzzy sets theory. Most available definitions
on distance or dissimilarity measures of evidence can be found in an excellent
and detailed survey [6].

In this paper, we propose new ways to define distances of evidence. For each
piece of evidence, we calculate the belief interval of each focal element, respec-
tively. Then, a basic belief assignment (BBA) is represented by a set of belief
intervals, which can also be considered as a set of interval numbers or data. For
two different BBAs, we calculate the distance between their corresponding focal
element’s belief intervals using the distance of interval numbers [12]. Based on
the interval distance values corresponding to different focal elements, we propose
an Euclidean-family distance based on sum of squares, and a Chebyshev-family
distance based on the maximum selection, respectively. Actually, the distance
between BBAs is represented by the combination or selection of the distance
values between belief intervals corresponding to different focal elements. Some
experiments and related analyses are provided to show the effectiveness and
rationality of these new distances of evidence.

2 Basics of Belief Function Theory

In Dempster-Shafer evidence theory (DST) [1], the elements in frame of discern-
ment (FOD) Θ are mutually exclusive and exhaustive. Define m : 2Θ → [0, 1] as
a basic belief assignment (BBA, also called mass function) which satisfies:∑

A⊆Θ
m(A) = 1, m(∅) = 0 (1)

When m(A) > 0, A is called a focal element. The belief function and plausibility
function are defined respectively as follows.

Bel(A) =
∑

B⊆A
m(B); P l(A) =

∑
A∩B �=∅

m(B) (2)

The belief interval [Bel(A), P l(A)] represents the imprecision or uncertainty de-
gree of the proposition or focal element A.

Dempster’s rule of combination is as follows. ∀A ∈ 2Θ :

m(A) =

{
0, if A = ∅∑

Ai∩Bj=A m1(Ai)m2(Bj)

1−K , if A 
= ∅
(3)

where
K =

∑
Ai∩Bj=∅

m1(Ai)m2(Bj) (4)

is the conflict coefficient representing the total degree of conflict between evi-
dence sources. It is widely accepted that the combination should better not be
normalized. Many alternative rules were proposed to redistribute the conflict [5].
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3 Traditional Distances of Evidence

A distance or dissimilarity between BBAs can represent the degree of dissim-
ilarity between different BOEs. As we can find in [6], there are various types
of distance or dissimilarity definitions in evidence theory. Some are defined by
directly using the BBAs under the framework of geometrical interpretation of
evidence theory [13]. Jousselme’s distance dJ is a representative one [9].

1) Jousselme’s Distance

dJ(m1, m2) =

√
0.5 · (m1 −m2)

TJac (m1 −m2) (5)

where the elements Jac(A,B) of Jaccard’s weighting matrix Jac are defined as

Jac(A,B) = |A ∩B|/|A ∪B| (6)

Jousselme’s distance is in fact an L2 Euclidean distance with weighting matrix
Jac. It has been proved to be a strict distance metric in [14]; however, it might
cause some unreasonable results in some cases as shown in Exmaples 2 and 3
listed in section 5 of this paper.

Some other distances are defined using a transformation of BBAs at first, e.g.,
Tessem’s distance and the fuzzy membership function (FMF)-based dissimilarity.

2) Tessem’s Betting Commitment Distance
The pignistic probability corresponding to a BBA m(·) is defined by [4]

BetPm(A) =
∑

B⊆Θ

|A ∩ B|
|B| m(B) (7)

The betting commitment distance (or Tessem’s distance) dT is computed by [10]

dT (m1,m2) = max
A⊆Θ

{|BetP1(A)− BetP2(A)|} (8)

dT is a Chebyshev L∞ alike distance. It is actually not a strict distance metric
[15].

3) FMF-Based Dissimilarity
First transform BBAs m1(·) and m2(·) into FMFs: μ(1) and μ(2) as for i = 1, 2

μ(i) =
[
μ(i)(θ1), μ

(i)(θ2), · · ·μ(i)(θn)
]
=

[
P l(i)(θ1), P l(i)(θ2), · · · , P l(i)(θn)

]
(9)

According to the dissimilarity definition between FMFs, dF is defined as [11]

dF (m1,m2) = 1−
∑n

i=1 (μ
(1)(θi) ∧ μ(2)(θi))∑n

i=1 (μ
(1)(θi) ∨ μ(2)(θi))

(10)

In (10), the operator ∧ represents conjunction (min) and ∨ represents the dis-
junction (max). dF in fact indirectly represents the dissimilarity between two
BBAs using the dissimilarity between their corresponding FMFs.

Since the available definitions have some limitations, we attempt to propose
new distances of evidence with desired properties, which are based on the dis-
tances between belief intervals as described in the next section.
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4 Distance of Evidence Using Belief Intervals

Suppose that two BBAs m1(·) and m2(·) are defined on Θ = {θ1, θ2, ..., θn}. For
each focal element Ai ⊆ Θ (i = 1, ..., 2n−1), we can calculate belief intervals ofAi

for m1(·) and m2(·), respectively, which are denoted by [Bel1(Ai), P l1(Ai)] and
[Bel2(Ai), P l2(Ai)]. A belief interval is nothing but a classical interval number
included in [0, 1]. The strict distance between interval numbers [a1, b1] and [a2, b2]
(bi ≥ ai, i = 1, 2) is defined1 by [12]

dI ([a1, b1], [a2, b2]) =

√[
a1 + b1
2

− a2 + b2
2

]2

+
1

3

[
b1 − a1

2
− b2 − a2

2

]2

(11)

Therefore, we can calculate the distance between BI1(Ai) : [Bel1(Ai), P l1(Ai)]
and BI2(Ai) : [Bel2(Ai), P l2(Ai)] according to Eq. (11). dI (BI1(Ai), BI2(Ai))
can be regarded as the dissimilarity between m1(·) and m2(·) when considering
the focal element Ai. We can obtain totally 2n − 1 belief interval distance values
for all Ai ⊆ Θ. Using all the 2n − 1 distance values, we propose two different
distances of evidence based on two commonly used distance types [6], i.e., the
Euclidean family and the Chebyshev family.

1) Euclidean-family Belief Interval-Based Distance dEBI

dEBI(m1,m2) =

√
Nc ·

∑2n−1

i=1
[dI(BI1(Ai), BI2(Ai))]

2 (12)

Here Nc = 1/2n−1 is the normalization factor. Eq. (12) can be re-written as

dEBI(m1,m2) =
√

Nc · dI · I(2n−1) · dT
I =

√
Nc · dI · dT

I (13)

where T denotes transpose, I(2
n−1) is an identity matrix with rank 2n − 1, and

dI =
[
dI(BI1(A1), BI2(A1)), · · · , dI(BI1(A2n−1), BI2(A2n−1))

]
. The proof for the

normalization factor Nc is as follows.

Proof. Suppose that the FOD is {θ1, θ2, ..., θn}. m1(·) and m2(·) are two BOEs.
The maximum distance value is reached when

m1({θi}) = 1,m2({θj}) = 1, ∀i 
= j. (14)

When the focal element |A| = 1, there are only two belief intervals with
distance value dI of 1 (i.e., dI(BI1(θi), BI2(θi)) = 1 and dI(BI1(θj), BI2(θj)) =
1 ). The other values are 0.

When the focal element |A| > 1, dI values of those focal elements including
θi or θj (but not both including θi and θj) are 1. The other values are 0.

1 It corresponds to Mallows’ distance between two distributions when we assume that
each interval is the support of a uniform distribution. It should be noted that there
are also other types of distance between interval numbers [12]. We use the definition
in (11), because it is a strict distance metric, which is very crucial for defining
distances of evidence.
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To be specific,
when |A| = 2, dI values of 2 × C1

n−2 focal elements are 1; 2

when |A| = 3, dI values of 2 × C2
n−2 focal elements are 1;

...
when |A| = n− 1, dI values of 2 × Cn−2

n−2 focal elements are 1;
when |A| = n, the dI value of unique focal element, i.e., total set (Θ) is 0.

So, the summation Sc of all the (dI)2 value is

Sc = 2 × 1 + 2 × C1
n−2 + 2 × C2

n−2 + ...+ 2 × Cn−2
n−2 + 0

= 2 × (C0
n−2 + C1

n−2 + C2
n−2 + ...+ Cn−2

n−2 )
= 2 × 2n−2

= 2n−1

(15)

So, the normalization factor Nc = 1/Sc = 1/2n−1 ��

2) Chebyshev-family Belief Interval-based Distance dCBI

dCBI (m1,m2) = max
Ai⊆Θ,i=1,...,2n−1

{
dI (BI1(Ai), BI2(Ai))

}
(16)

Actually, we use the distance of belief intervals for focal elements instead of their
mass assignments to define the distances of evidence when compared with the
traditional definitions. A strict distance metric defined on the set ε d : ε×ε → 7,
(x, y) �→ d(x, y) should satisfy that [9]

1) Nonnegativity: d(x, y) ≥ 0;
2) Nondegeneracy: d(x, y) = 0 ⇔ x = y;
3) Symmetry: d(x, y) = d(y, x);
4) Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z), ∀z ∈ ε.
It can be proved that our new definitions are strict distance metric. The proof

is as follows.

Proof. dEBI and dCBI are defined over belief intervals. Given a BBA (m(Ai), i =
1, ..., 2n − 1), we can generate a set of belief intervals ([Bel(Ai), P l(Ai)]). On
the other hand, given a set of belief intervals ([Bel(Ai), P l(Ai)]), according
to the Möbius transformation [1], we can generate a unique BBA (m(Ai), i =
1, ..., 2n − 1) from Pl(Ai), i = 1, ..., 2n − 1 or Bel(Ai), i = 1, ..., 2n − 1. So, there
is a one-to-one mapping between a set of belief intervals ([Bel(Ai), P l(Ai)]) and
a BBA (m(Ai), i = 1, ..., 2n − 1).

According to the Eq. (12-13, 16), it is easy to find that dEBI and dCBI satisfy
nonnegativity, nondegeneracy and symmetry of are satisfied. Then we prove the
property of triangle inequality of dEBI .

2 Choose 1 element θk out of the Θ
′ = Θ−{θi, θj}(|Θ′| = n− 2). Then, together with

θi and θj , respectively, to constitute focal element {θk, θi} and {θk, θj}, respectively.
So, the number of focal elements with dI values of 1 is 2× C1

n−2 It is same way to
obtain the values in other cases for A > 1.
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Suppose that there are 3 BBAsm1(·),m2(·),m3(·) defined over the same FOD
with size of n. Because dI defined in Eq. (11) is a strict distance metric [12], so,
for each Ai (i = 1, ..., s, s = 2n − 1) there exists
dEBI(m1(Ai),m2(Ai)) + dEBI(m2(Ai),m3(Ai)) ≥ dEBI(m1(Ai),m3(Ai)).
Suppose that
dEBI(m1(Ai),m2(Ai)) = ai; d

E
BI(m2(Ai),m3(Ai)) = bi;

dEBI(m1(Ai),m3(Ai)) = ci.
There exists

ai + bi ≥ ci
⇒ (ai + bi)

2 ≥ c2i
⇒ a2i + b2i + 2aibi ≥ c2i

⇒
s∑

i=1

a2i +
s∑

i=1

b2i + 2
s∑

i=1

aibi ≥
s∑

i=1

c2i

(17)

According to the famous Cauchy-Schwarz inequality, there exists√√√√ s∑
i=1

a2i

s∑
i=1

b2i ≥
s∑

i=1

aibi (18)

So,

s∑
i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i ≥
s∑

i=1

a2i +
s∑

i=1

b2i + 2
s∑

i=1

aibi ≥
s∑

i=1

c2i

⇒
s∑

i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i ≥
s∑

i=1

c2i

(19)

Then we have

s∑
i=1

a2i +
s∑

i=1

b2i + 2

√
s∑

i=1

a2i
s∑

i=1

b2i

=

(√
s∑

i=1

a2i +

√
s∑

i=1

b2i

)2

=
(
dEBI(m1,m2) + dEBI(m2,m3)

)2
⇒

(
dEBI(m1,m2) + dEBI(m2,m3)

)2 ≥
(
dEBI(m1,m3)

)2
⇒ dEBI(m1,m2) + dEBI(m2,m3) ≥ dEBI(m1,m3)

(20)

So, the triangle inequality of dEBI is satisfied.
For dCBI , we have

dCBI(m1,m2) + dCBI(m2,m3) = max
i=1,...,s

ai + max
i=1,...,s

bi

dCBI(m1,m3) = max
i=1,...,s

ci = ak + bk, k = argmax
i=1,...,s

ci
(21)

There exists

ak + bk ≤ max
i=1,...,s

ai + max
i=1,...,s

bi = dCBI(m1,m2) + dCBI(m2,m3) (22)
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i.e., dCBI(m1,m2)+d
C
BI(m2,m3) ≥ dCBI(m1,m3). d

C
BI satisfies triangle inequality.

In summary, dEBI and dCBI are strict distance metrics. ��

5 Simulation Results

To verify the rationality of the proposed distances, numerical examples are pro-
vided. In each example, dJ , dT , dF , dC

3, dEBI and dCBI are compared.
1) Example 1. The size of FOD is 3. We calculated the dissimilarities be-

tween m1(·) and mi(·), i = 2, ..., 7 as illustrated in Fig. 1. m1(·) has relatively
large mass assignment value for {θ2}. Therefore, intuitively, for mi(·), i = 2, ..., 7
listed in Table 2, if the mass assignment for {θ2} is relative large, the distance
between m1(·) and mi(·) should be relatively small. As illustrated in Fig. 1, all
the dissimilarities perform similarly in all seven cases, which show that they are
all rational in this example. For m5 and m6, the mass of focal elements contain-
ing θ2 (i.e., θ1 ∪ θ2 and θ2 ∪ θ3) is 0.8, it should be more rational if the distance
values with respect to m5(·) and m6(·) decrease.
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Fig. 1. Dissimilarities between m1 and mi, i = 2, ..., 7

2) Example 2 [16].
Let us define three BBAs on the FOD Θ = {θ1, ..., θn} as follows:

m1({θ1}) = m1({θ2}) = · · · = m1({θn}) = 1/n;

m2(Θ) = 1;

m3({θk}) = 1, for some k ∈ {1, ..., n}.
3 dC corresponds to the conflict coefficient K given by (4).

Table 1. BBA m1(·)

Focal element θ1 θ2 θ3 θ1 ∪ θ2 θ2 ∪ θ3 θ1 ∪ θ3 θ1 ∪ θ2 ∪ θ3
Mass assignment 0.1 0.8 0.1 0 0 0 0
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Table 2. BBAs mi(·), i = 2, . . . , 7

Focal el.\ BBAs m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
θ1 0.8 0 0 0 0 0
θ2 0 0.8 0 0 0 0
θ3 0 0 0.8 0 0 0
θ1 ∪ θ2 0 0 0 0.8 0 0
θ2 ∪ θ3 0 0 0 0 0.8 0
θ1 ∪ θ3 0 0 0 0 0 0.8
θ1 ∪ θ2 ∪ θ3 0.2 0.2 0.2 0.2 0.2 0.2

In this example, m3(·) is absolutely confident in θk and it is significantly dif-
ferent from both m1(·) and m2(·). m1(·) is rather different from m2(·) even if
they represent both two different uncertain sources. m2(·) is actually a vacu-
ous belief assignment representing the full ignorance. m1(·) is much more spe-
cific than m2(·) since it is a Bayesian belief assignment. As one sees in Fig 2,
Jousselme’s distance cannot discriminate well the difference between these two
very different cases for dealing efficiently with the specificity of the informa-

tion because dJ(m1,m2) = dJ (m1,m3) =
√

1
2 (1 − 1

n ). For dF , dF (m1,m2) =

dF (m2,m3). The discriminating ability is not so well. For Tessem’s distance,
one gets dT (m1,m2) = 0 thus it cannot discriminate m1(·) and m2(·). dC can-
not discriminate m1(·) and m2(·), and also m2(·) and m3(·). For the new defined
belief intervals-based distance of evidences can discriminate all the three BOE’s
pretty well as shown in Fig. 2.

3) Example 3 [16].
Let us define three BBAs on the FOD Θ = {θ1, ..., θn} as follows:

m1({θ1}) = m1({θ2}) = m1({θ3}) = 1/3;

m2({θ1}) = m2({θ2}) = m2({θ3}) = 0.1,m2(Θ) = 0.7;

m3({θ1}) = m3({θ2}) = 0.1,m2(θ3) = 0.8.

The values of the different dissimilarities between m1(·) and m2(·), and be-
tween m1(·) and m3(·) are given in Table 3.

Table 3. Example 3: Results based on different distances of evidence

Distance types dJ dT dF dC dEBI dCBI

d(m1,m2) 0.4041 0 0.5833 0.2000 0.2858 0.2333
d(m1,m3) 0.4041 0.4667 0.6364 0.6667 0.4041 0.4667

m1(·) and m2(·) correspond to two very different situations in term of the
specificity of their informational content. m3(·) assigns its largest mass assign-
ment to θ3. Intuitively, it seems reasonable to consider that m1(·) and m2(·)
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Fig. 2. Dissimilarities between m1(·), m2(·) and m3(·) for Example 2

are closer than m1(·) and m3(·) since m1(·) and m2(·) yield the same indeter-
minate choice in decision-making because of the ambiguity in choice among the
singletons in the FOD. Using Jousselme’s distance, one obtains dJ (m1,m2) =
dJ(m1,m3) = 0.4041 which is not very satisfactory for such a case. Based on
the results of Table 3, one sees that when using dT , dF , d

E
BI and dCBI , one gets

d(m1,m2) < d(m1,m3) which is more reasonable. However, for Tessem’s dis-
tance, one gets dT (m1,m2) = 0 which is not rational (intuitively acceptable) or
at least very questionable.

According to the above simple examples, we can see that the new defined
belief intervals-based distances present an acceptable behavior with respect to
other classical distances presented in this paper.

6 Conclusions

In this paper, two novel distances of evidence are proposed based on the dis-
tances between belief intervals. It is experimentally shown that our proposed
distances can well describe the degree of dissimilarity between different BOEs.
In future work, besides the simple examples in this paper, we will try to use a
general formal property to show that our measures can satisfy a reasonable set
of properties. Furthermore, we will use these new distances in different applica-
tions, like data clustering, target recognition, etc, to evaluate how they perform
with respect to classical distances used so far.
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∞
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x∈SBA

pB(x)p(x)dx

∞

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2i)

m({B,C}) = x∈SBC

pB(x)p(x)dx+
x∈SCB

pC(x)p(x)dx

∞

−∞
[pA(x)p(x) + pB(x)p(x) + pC(x)p(x)]dx

(2k)

m({A,B,C}) = x∈SABC

pA(x)p(x)dx+
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∞
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André, Cyrille 383
Andrews, Rhys 237, 247
Autchariyapanitkul, Kittawit 219

Benameur, Kaouthar 374
Ben Dhaou, Salma 115
Benferhat, Salem 265
Ben Hamida, Ahmed 383
Benhammadi, Farid 356
Ben Hariz, Narjes 294
Ben Yaghlane, Boutheina 115, 294
Ben Yahia, Sadok 105
Beynon, Malcolm J. 95, 237, 247
Bi, Yaxin 365
Bou Farah, Mira 124
Bouznad, Sofiane 356
Bronevich, Andrey G. 21
Burger, Thomas 412

Chanaim, Somsak 219
Chebbah, Mouna 284
Chibani, Abdelghani 356
Clemens, Joachim 339
Colot, Olivier 1, 422

Daniel, Milan 321
Davoine, Franck 49
Delmotte, François 11, 124, 403
Demirekler, Mubeccel 393
Denoeux, Thierry 49, 58, 87, 219
Destercke, Sébastien 87
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