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Abstract In this work, we present a new multi-parametric magnetic resonance
imaging (MP-MRI) texture feature model for automatic detection of prostate cancer.
In addition to commonly used imaging sequences in conventional MP-MRI, namely
T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-
MRI texture feature model uses computed high-b DWI (CHB-DWI) and a new
diffusion imaging sequence called correlated diffusion imaging (CDI). A set of
texture features was calculated for both the conventional MP-MRI and new MP-
MRI texture feature model. We evaluated the performance of the proposed MP-MRI
texture feature model via leave-one-patient-out cross-validation using a Bayesian
classifier trained on cancerous and healthy tissue samples obtained from real clinical
MP-MRI datasets. The proposed MP-MRI texture feature model outperformed the
conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy.

1 Introduction

Prostate cancer is the most common form of cancer and second leading cause of
cancer death diagnosed in North American men, with more than 262,000 new cases
and an estimated 33,660 deaths in 2013 [1,2]. Given that the median patient survival
time for metastatic prostate cancer ranges from 12.2 to 21.7 months [3], early
diagnosis of clinically significant prostate cancer would have significant benefits
to patient care. This is particularly true given that the 5 year survival rate after
diagnosis for patients with prostate cancer at the non-metastatic stage is 96 % in
Canada [4].
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In the current clinical model, men with positive digital rectal exam (DRE)
and elevated prostate-specific antigen (PSA) require multicore random biopsies
for risk stratification. However, there is an ongoing controversy about the role of
prostate PSA as a screening test in prostate cancer. Two recent major randomized
clinical trials [5, 6] have demonstrated that PSA screening contains a significant
risk of overdiagnosis for prostate cancer where it is estimated that 50 % of screened
men are diagnosed with prostate cancer. This leads to painful needle biopsies and
subsequent potential overtreatment [5, 6]. Moreover, it has become increasingly
clear that prostate biopsies are harmful as they cause discomfort and possible sexual
dysfunction and may result in increased hospital admission rates due to infectious
complications [7]. Nevertheless, PSA testing has proven to reduce prostate cancer
mortality by 20-30% at long-term follow-ups [8]. Therefore, the PSA testing
remains an important biomarker in diagnosing prostate cancers that are clinically
significant. The remaining challenge is how to improve the prostate cancer diagnosis
to reduce the overdiagnosis of clinically insignificant cancers.

Automatic detection of prostate cancer as part of a clinical decision support sys-
tem can potentially help radiologists in interpreting images more accurately. Specif-
ically, multi-parametric MR imaging (MP-MRI) which combines T2-weighted MRI
(T2w), diffusion-weighted imaging (DWI), and dynamic contrast enhanced imaging
(DCE) has been found to be a promising method for prostate cancer diagnosis and it
has been used in different prostate cancer detection algorithms. By taking advantage
of the unique information provided by each individual imaging technique, MP-MRI
can exploit the different characteristics of prostate tissue to improve differentiation
between cancerous and surrounding tissues. For example, cancerous tissue in the
prostate gland may exhibit a moderate drop in signal in T2w [9] (which characterizes
differences in transverse (spin-spin) relaxation time of tissue); restricted diffusion in
DWI [9] (which characterizes diffusion of water in tissue); earlier onset time, higher
peak, and shorter peak time in DCE [10] (which characterizes the concentration of
an injected gadolinium contrast agent over time as it passes into the extracellular
extravascular space of the tissue). Although DCE is considered as part of MP-
MRI, T2w+DWI is the most common MP-MRI because it does not require invasive
contrast agent as DCE does.

Radiologists’ interpretations of MP-MRI have shown to achieve good prostate
cancer detection rates, reaching accuracies of 80% in the peripheral zone of
the prostate gland. Similarly, several algorithms have been proposed for auto-
detection of prostate cancer using MP-MRI setting [11-14]. These algorithms
usually compute a set of low-level features from the MP-MRI data to construct
feature vectors. Next, a supervised classifier is trained using the computed feature
vectors from the training cases and their associated ‘ground-truth’ labels (e.g.,
labeled healthy or cancerous). Finally, the trained classifier is used to classify
new cases. The reported values for accuracy of cancerous versus healthy tissue
classification ranges from 64 to 89 %, depending on the feature sets and training/test
data.

The underlying challenge in all these auto-detection algorithms is whether there
is enough separability between the cancerous and healthy tissues in the feature
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space. This means if the separability is poor, even sophisticated feature extraction
algorithms may not have a significant effect on the accuracy of cancer detection. On
the other hand, improving the separability of cancerous and healthy tissues in the
images would have a significant impact on the performance of cancer auto-detection
algorithms, potentially reducing the dependency on the feature extraction methods.

In this paper, we propose a new MP-MRI texture feature model that, in
addition to T2w and conventional DWI, uses computed high-b diffusion-weighted
imaging (CHB-DWI) [15] and the recently proposed correlated diffusion imaging
(CDI) [16]. Compared to DWI, CHB-DWI and CDI have both shown initial
promise to improve visual separability of cancerous and healthy tissues in prostate,
which can lead to improved performance of the proposed MP-MRI texture feature
model for detecting prostate cancer. To the authors’ best knowledge, the proposed
texture feature model is the first that utilizes all of the above-mentioned MP-MRI
modalities.

This paper is organized as follows: in Sect. 2, the proposed MP-MRI texture
feature model is presented. Section 3 presents the testing methodology which
includes the description of image data and the evaluation metrics used in this
research. Sections 4 and 5 present the experimental results and conclusions,
respectively.

2 Proposed Multi-Parametric Magnetic Resonance Imaging
Texture Feature Model

In this section, we present the proposed MP-MRI texture feature model for prostate
cancer and discuss the imaging and feature extraction methods used in the model.

2.1 Imaging Methods

This subsection summarizes the imaging methods used in the proposed MP-MRI
feature model.

2.1.1 T2-Weighted Imaging

T2w is a MR imaging modality in which the sensitivity of tissue is characterized
by measuring the relaxation time (spin-spin) of the applied magnetic field. The T2w
imaging of the prostate usually shows a small reduction in signal in the cancerous
tissue [9].



82 E Khalvati et al.

2.1.2 Diffusion-Weighted Imaging

DWI is a promising imaging modality in which the sensitivity of tissue to Brownian
motion of water molecules is measured by applying pairs of opposing magnetic field
gradient pulses [17]. The diffusion-weighted signal, S is measured as:

S = Spe PP (1)

where Sy is the signal intensity without the diffusion weighting, b consists of
amplitude and duration of the diffusion pulses, and the time between the two pulses
as well as the gyromagnetic ratio, and D represents the strength of the diffusion. The
diffusion-weighted image (S) is usually generated with different b values which can
be used to estimate D in Eq. 1, called apparent diffusion coefficient map (ADC),
using least-squares or maximum likelihood strategies [18]. The cancerous tissue
in ADC is usually represented by a darker intensity compared to the surrounding
tissue.

2.1.3 Computed High-b Diffusion-Weighted Imaging (CHB-DWI)

Previous research has shown that high b-value DWI images (e.g., b-values greater
than 1,000 s/mm?) allow for increased delineation between tumours and healthy tis-
sues [15, 19] which makes the prostate cancer detection more robust. Nevertheless,
due to hardware limitations, most MRI machines in practice do not produce DWI
with b-values higher than 1,500 s/mm?. CHB-DWI is an alternative approach to
obtain high-b DWI in which a computational model is used to reconstruct DWT at
high b-values using low b-value DWI acquisitions [15]. For our experiments, we
constructed CHB-DWI with b-value at 2,000 s/mm? using the same least squares
estimation technique used for ADC, extrapolating to the b-value of 2000 s/mm?.

2.1.4 Correlated Diffusion Imaging (CDI)

CDI [16] is a new diffusion magnetic resonance imaging modality, which takes
advantage of the joint correlation in signal attenuation across multiple gradient
pulse strengths and timings to not only reduce the dependency on the way diffusion
gradient pulses are applied, but also improve delineation between cancerous and
healthy tissue. The local correlation of signal attenuation across all b-values within
a local sub-volume is calculated to better represent the overall characterization of the
water diffusion properties of the tissue. The CDI signal is calculated as follows [16]:

bn
CDI(x) = //b So(x). .8y (x) P(So(x). . ... Su(X)|V(x))

xdSy(x)...dS,(x) ()
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where x denotes spatial location, S denotes the acquired signal, P denotes the
conditional joint probability density function, and V(x) denotes the local subvolume
around x.

2.2 Texture Feature Model

In order to separate the cancerous tissue from the healthy one, a set of features is
calculated on a given MR imaging sequence (i.e., T2w, DWI, CHB-DWI, CDI).
As part of the proposed MP-MRI texture feature model, we incorporate the texture
features used in separate studies to establish a relationship between these features
and tumour glucose metabolism and stage [20] and to predict the response of
metastatic renal cell cancer to treatment [21]. These features include mean grey-
level intensity (M), entropy (En), and uniformity (U), which are calculated as
follows:

1 N—1
M= > pix(i. j) 3)
x,y=0
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=1

where pix(i, j) is the gray-level intensity in the pixel window, N is the window size,
p is the probability density function of pixels in the window, and k is the number of
grey levels in the image.

In addition, the proposed MP-MRI texture feature model incorporates another
set of texture features extracted from the gray-level co-occurrence matrix (GLCM)
in 4 directions: 0°, 45°, 90°, and 135°. The GLCM texture features are calculated
as follows:

1. Contrast (Con)—a measure of the intensity difference between a pixel and its

neighbors:

N—1

Con="Y " |x =y pgem(x. y) 6)
x,y=0
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2. Energy (Eg)—the sum of squared elements in the GLCM;

N—1

Eg = Z pglcm(xvy)2 @)

x,y=0

3. Homogeneity (H)—a value that measures the closeness of the distribution of
elements in the GLCM to the GLCM diagonal.

pglem(x Y)
V?Ol-'—(x_y)z (8)

4. Correlation (Cor)—a measure of how correlated a pixel is to its neighbors:

Cor — Z (¥ = m) (Y = 1) Pgtem (X, ) ©)

S 0,0,
where pgic,, is the probability value from the GLCM, uy, iy, 0y, and o, are the
means and standard deviation values of pgy., in horizontal and vertical directions,
respectively.

As a result, the proposed MP-MRI texture feature model consists of a total of
19 features for each imaging modality: 16 from GLCM (4 in each direction) and 3
other texture features (i.e., mean gray level, entropy, and uniformity).

3 Testing Methodology

In the following, details about the image acquisition protocols and the performance
measures are presented.

3.1 Image Data

MRI data of five patients were acquired using a Philips Achieva 3.0T machine
at Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. All data was
obtained under the local institutional research ethics board. For each patient, the
following MP-MRI modalities were obtained (Table 1): T2w, DWI, and CDI. The
patients’ age ranged from 53 to 75.

Table 1 Description of the prostate T2w, DWI, and CDI images

Sequence | DFOV (cm?) | Resolution (mm?) | Resolution (pixels) | TE (ms) | TR (ms)
T2w 22 x22 0.49x049x 3 440 x 425 x 26 110 4,687
DWI 20 x 20 1.56 X 1.56 x 3 128 x 128 x 24 61 6,178
CDI 20 x 20 1.56 X 1.56 x 3 128 x 128 x 24 61 6,178
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3.2 Evaluation Metrics

We evaluated the performance of the proposed MP-MRI texture feature model
for detecting prostate cancer via a leave-one-patient-out cross-validation using a
Bayesian classifier. First, the feature extraction function was applied to each MR
imaging sequence (i.e., T2w, ADC, CHB-DWI, and CDI) separately across all
patients’ data. This generated four sets of features based on the proposed MP-MRI
texture feature model. Next, a conventional MP-MRI setting was established by
combining the features of T2w and ADC. As a new MP-MRI texture feature model,
three configurations were realized: T2w+ADC+CHB-DWI, T2w+ADC+CDI,
and CHB-DWI+ADC+CDI.

We used a Bayesian classifier to calculate sensitivity, specificity, and accuracy
using leave-one-patient-out cross-validation approach. As ground-truth, all images
were reviewed and marked as healthy and cancerous tissue by a radiologist with 18
and 13 years of experience interpreting body and prostate MRI, respectively.

4 Experimental Results

Table 2 shows sensitivity, specificity, and accuracy for all 8 MP-MRI modali-
ties/models. For each modality, on average, 5,260 (5,110 healthy and 150 cancerous)
and 1,315 (1,275 healthy and 40 cancerous) samples (i.e., pixel windows) were
used as training and testing data, respectively for the leave-one-patient-out cross-
validation. The results were averaged across all patients. In order to unify all
three measures (sensitivity, specificity, and accuracy) for the purpose of comparison
among different configurations, we also report the average of the three measures for
each modality/configuration.

It is seen that CHB-DWTI alone improves results compared to T2w and ADC
(Sensitivity: 0.88 vs. 0.70 and 0.87, Specificity: 0.58 vs. 0.48 and 0.37, Accuracy:
0.58 vs. 0.49 and 0.38). Although CDI has a lower sensitivity compared to T2w
(0.66 vs. 0.70), its specificity and accuracy is the highest among all individual

Table 2 Evaluation results for prostate cancer detection

Imaging modality Sensitivity Specificity Accuracy Average
T2w 0.7037 0.4815 0.4878 0.5577
ADC 0.8730 0.3659 0.3805 0.5398
CHB-DWI 0.8836 0.5751 0.5839 0.6809
CDI 0.6614 0.7998 0.7958 0.7523
T2w+ADC 0.8360 0.4096 0.4219 0.5558
T2w+ADC+CHB-DWI 0.8571 0.6350 0.6414 0.7112
T2w+ADC+CDI 0.6772 0.8125 0.8086 0.7661

CHB-DWI+ADC+CDI 0.7831 0.7867 0.7866 0.7854
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Fig. 1 (a) T2w does not
clearly show a tumour
although there is mild signal
alteration in the left
peripheral zone (arrow). (b)
ADC does not clearly show a
tumour (arrow). (c)
CHB-DWI of 2,000 s/mm?
shows no tumour (arrow). (d)
CDI clearly shows a bright
nodule (arrow) corresponding
to tumour

modalities (0.80). This is due to the fact that CDI combines the information across
b-values making it robust.

The first configuration of the new MP-MRI texture feature model, T2w+ADC+H
CHB-DWI, improves the results with regard to the conventional model, T2w+ADC,
(Sensitivity: 0.86 vs. 0.84, Specificity: 0.63 vs. 0.41, Accuracy: 0.64 vs. 0.42). The
second configuration of the new MP-MRI texture feature model, T2w+ADC+CDI,
loses the sensitivity compared to the conventional model, T2w+ADC, (0.68 vs.
0.84) but outperforms it in both specificity (0.81 vs. 0.41) and overall accu-
racy (0.81 vs. 0.42). The third configuration of the proposed MP-MRI (CHB-
DWI+ADC+HCDI) only loses 5% in sensitivity compared to the conventional
MP-MRI (T2w+ADC) (0.783 vs 0.836). In return, it improves the specificity and
accuracy by 38 and 37 %, respectively (Specificity: 0.79 vs. 0.41, Accuracy: 0.79
vs. 0.42). In other words, with a slight reduction in true positive cases, a significant
amount of false positive cases can be avoided. The best result for average of all three
measures (i.e., sensitivity, specificity, and produced by CHB-DWI+ADC+CDI
(0.79).

Figure 1 shows an example for all four modalities which include T2w, ADC,
CHB-DWI, and CDI. As it can be seen, CDI (Fig.1d) is the only modality
that clearly shows a bright nodule where a tumour is located (confirmed by
histopathology data).
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5 Conclusions

In this paper, we introduced a new multi-parametric MRI texture feature model
for prostate cancer detection. Our new MP-MRI texture feature model adds two
new image modalities, CHB-DWI and CDI, to the most commonly used MP-
MRI, T2w+ADC. We calculated a set of texture features for both the conventional
MP-MRI and new MP-MRI texture feature models. A Bayesian classifier was
trained via leave-one-patient-out setting to classify the new cases. We evaluated
the proposed MP-MRI texture feature model in three configurations. The first con-
figuration (T2w+ADC+CHB-DWI) improved the results (sensitivity, specificity,
and accuracy) compared to the conventional MP-MRI. The second configuration
(T2w+ADC+HCDI) improved specificity (40 %) and accuracy significantly (39 %)
with a loss in sensitivity (16 %) with respect to the conventional MP-MRI. The
best result was achieved by the third configuration (CHB-DWI4+ADC+CDI); it
improved specificity and accuracy significantly (38 and 37 %, respectively) with
a rather small loss in sensitivity (5 %) with respect to the conventional MP-
MRI. The proposed MP-MRI texture feature model showed promise to tackle the
overdiagnosis problem in prostate cancer detection.
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