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Abstract Measures of network topology and connectivity aid the understanding
of network breakdown as the brain degenerates in Alzheimer’s disease (AD). We
analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the
Alzheimer’s Disease Neuroimaging Initiative—50 healthy controls, 72 with early-
and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD.
Using whole-brain tractography, we reconstructed structural connectivity networks
representing connections between pairs of cortical regions. We examined, for the
first time in this context, the network’s Laplacian matrix and its Fiedler value,
describing the network’s algebraic connectivity, and the Fiedler vector, used to
partition a graph. We assessed algebraic connectivity and four additional supporting
metrics, revealing a decrease in network robustness and increasing disarray among
nodes as dementia progressed. Network components became more disconnected
and segregated, and their modularity increased. These measures are sensitive to
diagnostic group differences, and may help understand the complex changes in AD.
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1 Introduction

Brain connectivity analyses are increasingly popular, and combine concepts from
neuroscience and engineering to characterize the brain in terms of its structural
and functional connections. Diffusion weighted imaging (DWI) and advanced
tractography methods may offer new insights into how the brain changes in
degenerative diseases such as Alzheimer’s disease (AD), and its precursor, mild
cognitive impairment (MCI). In addition, graph theory can be applied to study
topological changes in the brain’s networks using graphs—defined as a set of
interconnected nodes and edges.

There is an increasing interest in analyzing the brain using graphs, which can be
studied using network analysis toolboxes [1]. In a graph, network nodes are typically
defined as regions of interest (ROIs)—in our case on the cortex, segmented from
anatomical MRI. These nodes are linked by ‘edges’ that can be binary or weighed.
However, as the field is still in its formative stages, we do not yet know which graph
theoretic measures best differentiate disease states or change the most with disease
progression.

Here, we applied ideas from algebraic graph theory—not previously examined
in the context of AD using DWI derived measures. Specifically, we computed the
second smallest eigenvalue of the Laplacian matrix (Fiedler value) for each subject
to describe their algebraic connectivity—i.e., how difficult it is to tear a graph apart.
A Fiedler value > 0 indicates that a graph is fully connected and the higher the
magnitude of the Fiedler value, the more interconnected the graph is. The Fiedler
value, accompanied by a measure of link density (interconnectedness of nodes) can
further describe the robustness of a graph—the denser the connections, the less
vulnerable the brain network is to being disconnected. Similarly, based on the set of
eigenvalues, we determined the number of disconnected network components (ROIs
that do not have connections to other ROIs, or where network connections are not
detected). To expand our analysis of brain connectivity, we computed more standard
measures of modularity—a measure that describes the degree to which a network
may be subdivided to significantly delineated groups of nodes [1, 2].

To determine whether the network changes were behaviorally and clinical
relevant, we related the network measures to the Mini Mental Status Examination
score—a simple but widely-used test to evaluate patients and help in diagnosis of
dementia. We hypothesized that with disease progression, the graph representation
of the brain would become more modular (i.e., segregated), reducing the density
of connections among its ROIs and eventually, leading to disconnections among
its nodes. We expected to see changes predominantly in the entorhinal areas
and temporal cortices, areas affected first by structural atrophy in Alzheimer’s
disease. In diagnostic group comparisons, we also aimed to show that the algebraic
connectivity is disrupted. The overall goal of our work is to mathematically describe
how the brain network changes in disease. Although all measures were sensitive
to disease effects in the ADNI cohort, we found that the Fielder value was most
sensitive to picking up topological effects among AD patients as well as lMCI
patients.
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2 Methods

2.1 Participants and Diffusion-Weighted Brain Imaging

We analyzed diffusion-weighted images (DWI) from 202 participants scanned as
part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI is a large
multi-site longitudinal study to evaluate biomarkers of AD. Table 1 shows the demo-
graphics of the participants included here, including age, sex, and mini-mental state
exam (MMSE) scores, broken down by diagnosis. All 202 participants underwent
whole-brain MRI on 3-Tesla GE Medical Systems scanners, at 16 sites across
North America. Standard anatomical T1-weighted IR-FSPGR (inverse recovery
fast spoiled gradient recalled echo) sequences were collected (256 � 256 matrix;
voxel size D 1.2 � 1.0 � 1.0 mm3; TI D 400 ms, TR D 6.984 ms; TE D 2.848 ms;
flip angle D 11ı) in the same session as the DWI (128 � 128 matrix; voxel size:
2.7 � 2.7 � 2.7 mm3; scan time D 9 min). Forty six separate images were acquired
for each scan: 5 T2-weighted images with no diffusion sensitization (b0 images)
and 41 diffusion-weighted images (b D 1,000 s/mm2). Image preprocessing was
performed as described previously in [3]. This was not included here due to space
limitations.

2.2 N � N Connectivity Matrix Creation

We performed whole-brain tractography as described in [3]. We used a method
based on the Hough transform to recover fibers, using a constant solid angle
orientation distribution function to model the local diffusion propagator. Each
subject’s dataset contained �10,000 useable fibers (3D curves) in total [4]. Thirty
four cortical labels per hemisphere, as listed in the Desikan–Killiany atlas [5], were
automatically extracted from all aligned T1-weighted structural MRI scans with
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

Table 1 Demographic information from 50 controls, 72 eMCI, 38 lMCI and 42 AD participants
scanned with diffusion MRI as part of the ADNI project

Controls eMCI lMCI AD Total

N 50 72 38 42 202
Age (mean ˙ SD
in years)

72.6 ˙ 6.1 72.4 ˙ 7.9 72.6 ˙ 5.6 75.5 ˙ 8.9 73.1 ˙ 7.4

MMSE
(mean ˙ SD)

28.9 ˙ 1.4 28.1 ˙ 1.5 26.9 ˙ 2.1 23.3 ˙ 1.9 27.1 ˙ 2.7

Sex 22M/28F 45M/27F 25M/13F 28M/14F 120M/82F

Their ages ranged from 55.2 to 90.4 years. The mean age and mini mental state exam (MMSE)
scores are listed for each diagnostic group

http://surfer.nmr.mgh.harvard.edu/
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For each subject, a 68 � 68 connectivity matrix was created whereby each
element represented the total number of fibers, in that subject, that passes through
each pair of ROIs. For simplicity, all connectivity matrices were binarized to
describe whether any connection was detected between a pair of cortical ROIs
(marked as 1), or otherwise (marked as 0). Weighted networks will be considered in
future work.

2.3 Algebraic Connectivity and Supporting Network Metrics

Algebraic graph theory is a branch of mathematics that uses linear algebra and
matrix theory to study the properties of graphs [4]. In algebraic graph theory, the
Laplacian matrix is used to study the spectrum of a graph, which is the topic
of study in another branch of mathematics known as spectral graph theory [5].
Recently, spectral theory has been applied to study the separability of brain networks
in resting-state functional MRI data from ADHD participants [6]; also, it was
employed to study the altered networks in AD using magnetoencephalography
(MEG) data [7]. Other applications of algebraic graph theory are in the fields of
circuit design, parallel and distributive computing, data representation [8] and the
online web [9]. Here, we are the first to explore the application of algebraic graph
theory to better understand the global structural changes in Alzheimer’s disease
using DWI derived networks.

Structural networks are usually modeled as undirected and symmetric graphs,
G(N,E) containing a set of nodes, N, and edges, E. Here we computed an adjacency
matrix for each graph, A(G) D aij, where aij was 1 if a connection linked a pair
of nodes and 0 otherwise. Next, we computed the Laplacian matrix of graph G
(Fig. 1), L(G) D lij, where L(G) D D(G) � A(G). D(G) is the N � N diagonal degree
adjacency matrix (i.e., diag(sum(G))). Then, the eigenvalues, �i, were computed on
the Laplacian matrix, where 0 D det(L � �I) and I is an N � N identity matrix. In this
study, we were interested in the second smallest eigenvalue, also called the Fiedler
value, and its corresponding eigenvector, x, computed from (L � �I)x D 0 [10].

The magnitude of the Fiedler value describes the algebraic connectivity among
the elements of a network; a Fiedler value of zero indicates that the network is

Fig. 1 Illustration of a graph G, its corresponding Laplacian matrix, L(G), and the Fiedler vector,
x. The algebraic connectivity of G is approximately 0.43
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disconnected [11]. The Fiedler value may be used in conjunction with the number
of edges and nodes to further describe the robustness of a network [12]. To evaluate
robustness, we also computed the number of edges in each brain network, E, and the
link (edge) density defined as d D 2E/N(N � 1), because a decreasing edge density
may indicate decreased robustness.

Another measure obtained from the eigenvalues of L(G), the number of �i D 0,
which reflects the number of disconnected components in the brain network [9].
The number of network components was further assessed with modularity computed
using Newman’s equations [2]. The algorithm efficiently defines an optimal com-
munity structure into non-overlapping sets of nodes such that the within group edges
are maximized and the between-group edges are minimized. Essentially, modularity
is a statistical evaluation of the degree to which the network may be subdivided to
significantly delineated groups of nodes, Q DP

u 2 M(Euu � (
P

v 2 MEuv)2), where
M is a nonoverlapping module that the network is subdivided into, and Euv is the
proportion of links that connects nodes in module u to nodes in modules v [1, 2]. If
Q < 0.3, the community structure formed is not significant as the within-community
edges are close or equal to what would be expected by chance; however, Q � 0.3
signifies significant community structures [2].

To plot the algebraic connectivity we sorted brain network nodes as a function
of the Fiedler vector; components in the brain were assigned to groups based on the
sorted magnitude of the eigenvector’s corresponding component. This method is
similar to spectral partitioning [5], however, in this study no partitions were added.
Tools from the MIT Strategic Engineering website (http://strategic.mit.edu) were
used for all calculations [9] excluding the modularity measure implemented from
Newman [2] in the brain connectivity toolbox [1].

2.4 Statistical Analyses

First, we assessed if the graph metrics (Fiedler value, total number of nodes,
link density, the number of disconnected components and modularity) related to
Mini Mental State Examination (MMSE) scores across all 202 participants using a
random-effects regression, covarying for sex and using site as a grouping variable.
As we cannot assume statistical normality for the network measures, nonparametric
methods may be more appropriate. We performed m D 10,000 permutations of the
independent variable of interest (i.e., MMSE or disease status), while maintaining
covariates (sex and age and imaging site) true to the subject. Next, we generated
permutation-corrected p-values using the following formula: p D (b C 1)/(m C 1),
where b is the number of randomized test statistics tperm found to have a greater
magnitude than the observed test statistic tobs. By performing 10,000 permutations,
the smallest possible permutation corrected p-value is 10�4, so even if the observed
p-value was much less than 10�4, the lowest corrected p-value was 10�4.

Next, we tested if any of the graph theory metrics that closely describe algebraic
connectivity (i.e., Fiedler value, link density and modularity) detected group

http://strategic.mit.edu
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differences between controls and the diseased groups by running a random-effects
regression with controls coded as 0 and diseased participants coded as 1, covarying
for age and sex and using the imaging site as a random-effects grouping variable,
to eliminate confounding effects of the scan site. Then, 10,000 permutations of the
independent value were performed as described above.

3 Results

MMSE scores—a measure of clinical decline—were significantly related to five
of the network measures across all 202 participants. To adjust for multiple
statistical tests, the significance threshold was set to 0.05/5 when testing
associations of MMSE with five network measures. MMSE scores declined
with a decreasing Fielder value (pperm < 10�4) decreasing total number of
edges (pperm < 10�4) and decreasing link density (pperm < 10�4). Meanwhile, as
hypothesized, MMSE scores declined with an increasing number of disconnected
components (pperm D 3.2 � 10�3) in the network and increasing modularity among
network communities (pperm D 3.4 � 10�4). These disruptions led to a less robust
and inefficient distribution of the brain’s network components with advancing
disease, and were sorted here as a function of the eigenvectors corresponding to
the Fiedler eigenvalue (Fig. 1). Also, brain regions that showed most frequent
disconnections (0 eigenvalues) among diseased participants were those of the
entorhinal, temporal and frontal poles bilaterally, in line with the sites that typically
show the earliest AD pathology.

For the group comparisons, AD participants showed a significantly decreasing
algebraic connectivity and a topological organization of the brain network that was
different overall, relative to controls. Here, the significance threshold was set to
0.05/3, to adjust for testing three network metrics in the group comparison. The
Fiedler value (pperm < 10�4) and link density (pperm < 10�4) was lower in AD, than
in controls. Meanwhile, modularity increased in AD, relative to healthy elderly
(pperm < 10�4).

For group comparisons between lMCI and controls, the Fiedler value was the
only measure to be significantly decreasing in lMCI, relative to healthy elderly
(permuted p-value D 0.012). No significant differences were detected between
eMCI and controls; this is not surprising as this group comparison is typically the
most challenging among those we tested.

The average link density was 0.360 across all healthy elderly, 0.331 in eMCI and
0.333 in lMCI participants, and 0.304 in AD. This indicates that eMCI and lMCI
had an 8.2–8.8 % “less” interconnected network, under this metric, while the AD
patients had a 15.7 % less interconnected network.
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4 Discussion

This study introduces the application of algebraic connectivity, with additional
supporting neural metrics, to the analysis of brain connectivity. Here, we treated
the networks as sets of nodes and edges and analyzed their interconnectedness
based on associations with cognitive decline scores (i.e., MMSE) and diagnostic
group differences. We fused all steps of analysis together and reported an overall
assessment of how and where in the brain Alzheimer’s strikes.

The decline in algebraic connectivity, as indicated by the decreased Fiedler
values with disease progression (decreasing MMSE scores), accompanied by the
reductions in the density of connections among brain regions, highlights the
loss of interconnectedness within the brain network. The diseased brains may
be more vulnerable to losses in connections that allow communication between
cortical regions, leading to a less robust neural network, at least according to these
mathematical metrics. If brain connections were to be purged (lost altogether), eMCI
and lMCI brain networks would disconnect approximately 8–9 % more readily than
healthy networks, while AD brain networks would disconnect approximately 16 %
more readily than controls. Cortical regions that contributed the most to the loss
of nodes were located in the entorhinal areas—regions that typically degenerate
early in AD [11, 13], and the temporal pole progressing into the frontal pole in the
more impaired—also supported by previous studies [11]. Disconnections in these
nodes may in turn impair connected nodes, as information transfer may be reduced
accordingly.

Modularity computed on the original graphs (not the Laplacian) was used to
verify the goodness of component partitioning in the brain network [6]. Modularity
increased with disease progression indicating that the brain networks became more
segregated (formed more modular structures) with a loss in connections between
modules, leading to a less efficient distribution of the network overall (Fig. 2). This
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Fig. 2 Sorted connectivity matrix as a function of the sorted eigenvector, x, corresponding to the
Fiedler value (i.e., second smallest eigenvalue) in one participant from each diagnostic group. E is
the number of edges within each network. The plots indicate patterns of disarray with increasing
numbers of disconnected components with disease progression; no completely disconnected
components are shown in controls (CTL) (no zero value rows/columns, i.e., missing dots), but
there are 2 in eMCI, 4 in lMCI and 8 disconnected components in AD
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Fig. 3 Circle drawings of nodes (v1 through v68) interconnected by averaged edges across 50
controls (CTL) and 42 AD participants. The loss in link (edge) density across the nodes indicates
decreased interconnectedness

is complements the Fielder value, which defines the level of network integrity (i.e.,
connectedness) in the brain. Modular networks were less defined in controls at an
average Q D 0.34, with Q D 0.36 in eMCI and lMCI and 0.39 in AD participants—
leading to readily detectable disease differences.

The Fiedler value, link density, and modularity were sensitive to group differ-
ences in eMCI, lMCI and AD, versus controls (except for the Fiedler value that
did not detect differences in eMCI, relative to controls). The direction of change
for all these measures indicated an overall lower interconnectness for the diseased
connectomes (Fig. 3).

Discovering changes in brain network organizational properties allows us to
understand disease progression with additional detail. Most of these network algo-
rithms have been successfully developed and applied for non-medical applications
such as online social interactions [9] and functional imaging [6, 7]; our study
used these properties to study disease progression using DWI. We found that
measures such as the Fiedler value—a measure of algebraic connectivity—was
the most sensitive measure to detecting differences between disease groups and
controls. Supporting network metrics, such as the number of edges, link density,
the number of disconnected components, and modularity, validate and strengthen
the results indicating a less robust and more segregated brain with increased
cognitive impairment. As a limitation, we acknowledge that future studies should
compare these new metrics with standard DTI-derived measures such as FA and
MD, and other non-DTI or non-imaging biomarkers of AD, to determine what
added predictive value they contain. Also, for future works, weighted matrices (i.e.,
with measures of fiber density or FA) will be used and may provide additional
information about network disruptions. Overall, the network disruptions in disease
are so complex that the added mathematical descriptors are likely to enhance our
understanding of network dysfunction in the living brain.
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