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Abstract To classify each stage for a progressing disease such as Alzheimer’s
disease is a key issue for the disease prevention and treatment. In this study, we
derived structural brain networks from diffusion-weighted MRI using whole-brain
tractography since there is growing interest in relating connectivity measures to
clinical, cognitive, and genetic data. Relatively little work has used machine learning
to make inferences about variations in brain networks in the progression of the
Alzheimer’s disease. Here we developed a framework to utilize generalized low rank
approximations of matrices (GLRAM) and modified linear discrimination analysis
for unsupervised feature learning and classification of connectivity matrices. We
apply the methods to brain networks derived from DWI scans of 41 people with
Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly
healthy controls and 221 young healthy controls. Our results show that this
new framework can significantly improve classification accuracy when combining
multiple datasets; this suggests the value of using data beyond the classification task
at hand to model variations in brain connectivity.
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1 Introduction

Alzheimer’s disease is by far the leading form of dementia. There is no cure for the
disease, which worsens as it progresses, and eventually leads to death. According
to the studies of Alzheimer’s Disease Neuroimaging Initiative (ADNI) and other
large-scale multicenter studies, this disease has been described into four stages:
health control (HC); early mild cognitive impairment (EMCI), late mild cognitive
impairment (LMCI) and Alzheimer’s disease (AD) [1–3]. HC means there is no
sign/clue that subject have any cognition impairment, while EMCI and LMCI
are the middle stages in time for disease detection. AD is the last stage when
there is clearly clue that disease has been onset. Defining at-risk stages of this
disease is crucial for predementia detection, which in turn is the requirement for
future predementia treatment. In literature, the Alzheimer’s disease multiple stages’
classification is mainly based on subjective questionnaire [1, 4]. Here we adopted
machine learning method to explore multiple stages’ automatic classification using
diffusion-weighted MRI (DW-MRI).

DW-MRI is a non-invasive brain imaging technique, sensitive to aspects of the
brain’s white matter microstructure that are not typically detectable with standard
anatomical MRI [5]. With DWI, anisotropic water diffusion can be tracked along
the direction of axons using tractography methods. When tractography is applied to
the entire brain, one can reconstruct major fiber bundles and describe connectivity
patterns in the brain’s anatomical network [6]. Brain networks and topological mea-
sures derived from them have been shown to be highly associated with aspects of
brain function and clinical measures of disease burden [7]. Some studies have begun
to apply machine learning techniques to identify network features that differentiate
people with various neurological and psychiatric disorders from matched HC [8].
However, most studies focus only on identifying abnormal connectivity patterns in
a single disease, compared to controls, and not intermediate stages of the disease,
using only using one dataset to do so. While this may improve our understanding
of the outcome of the disease, when applying the same analysis to a new disease
or a new dataset, the model must be re-trained and re-evaluated. Often, disease
effects (or effects of other predictors on brain networks) are subtle and may not
be detected in one dataset alone, or may show conflicting results across datasets.
In this light, consortia such as Enhancing Neuro Imaging Genetics through Meta-
Analysis (Enigma) have been formed to jointly analyze over 20,000 brain scans
from patients and controls scanned at over 100 sites worldwide to meta-analyze
effects on the brain [9]. This allows researchers to compare effect sizes obtained
with different imaging protocols and scanners, but also across different diseases.
The notion of who qualifies as a healthy control may also depend on the dataset
and may not represent the healthy population at large. If multiple datasets are used
to model normal variation, then arguably diagnostic classification may be improved
without retraining new models for every disease and every new dataset.

When pooling scans from patients with a variety of diseases, or at different
stages of disease progression, machine learning techniques can classify the data
into diagnostic groups. This may involve feature extraction, dimension reduction,
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model training and testing. For example, principal component analysis (PCA) uses
an orthogonal linear transformation to convert observations of potentially correlated
variables into a new set of linearly uncorrelated principal components (PC). New
datasets can then be classified into groups based on PC-projected features. Linear
discriminant analysis (LDA) can also be used for dimensionality reduction and
classification. It finds a linear combination of features that optimally separates
two or more classes. LDA and PCA both use linear combinations of variables to
model the data. LDA models the differences between classes within the data, but
PCA seeks components that have the highest variance possible under the constraint
that they are orthogonal to (i.e., uncorrelated with) the preceding components [10].
These dimensionality reduction methods assume that the data form a vector space.
Here, each subject’s data is modeled as a vector and the collection of subjects is
modeled as a single data matrix. Each column of the data matrix corresponds to
one subject and each row corresponds to a feature. There are disadvantages of this
vector model, as it overlooks spatial relations within the data. To overcome this,
generalized low rank approximations of matrices (GLRAM) has been proposed to
use a lower dimension 2D matrix to obtain more compact representations of original
data with limited loss of information [11].

In this study, we combined two different datasets collected with both standard
T1-weighted MRI and DW-MRI and created connectivity networks for all study
participants. Both datasets had scanned healthy controls; one had also scanned
patients with Alzheimer’s disease and patients with early and advanced signs of mild
cognitive impairment (early MCI and late MCI respectively). We merged this data
hypothesizing that we could automatically classify the scans into four groups (HC,
EMCI, LMCI, and AD) using brain networks as the raw features. We used GLRAM
to first reduce the dimensionality, and then applied LDA in the PCA subspace to
classify the data. Classification of data from multiple sites and scanners will help us
to understand differences in disease progression, ideally unconfounded by scanner
differences.

2 Subjects and Methods

2.1 Data Description

Table 1 summarizes the two datasets used in this study. For all datasets, participants
were scanned with both DW-MRI and standard T1-weighted structural MRI.

The first dataset included 221 healthy young adults. Images were acquired with
a 4T Bruker Medspec MRI scanner, using single-shot echo planar imaging with
the following parameters: TR/TE D 6,090/91.7 ms, 23 cm FOV, and a 128�128
acquisition matrix. Each 3D volume consisted of 55 2-mm axial slices, with no
gap, and 1.79�1.79 mm2 in-plane resolution. Hundred and five image volumes were
acquired per subject: 11 with T2-weighted b0 volumes and 94 diffusion-weighted
volumes (b D 1,159 s/mm2).
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Table 1 Summary of data used in this study

Dataset 1 Dataset 2

Type Number Age Sex Number Age Sex (M)

HC 221 24.1˙2:1 85M 47 72.6˙6:2 21

EMCI
N/A

73 72.3˙7:9 44

LMCI 38 72.6˙5:6 24

AD 41 75.5˙9:0 25

Fig. 1 Flowchart of proposed framework for connectivity based disease classification

The second dataset was from ADNI2, the second stage of the Alzheimer’s disease
neuroimaging initiative (ADNI), publically available online (http://adni.loni.usc.
edu). This dataset has 199 subjects, which includes 47 healthy elderly controls,
111 with mild cognitive impairment (MCI) and 41 with Alzheimer’s disease (AD).
Images were acquired with 3T GE Medical Systems scanners at 14 sites across
North America. Each 3D volume consisted of 2.7 mm isotropic voxels with a
128�128 acquisition matrix. Forty six image volumes were acquired per subject:
5 T2-weighted b0 images and 41 diffusion-weighted volumes (b D 1,000 s/mm2).

2.2 Proposed Framework

First, we first used GLRAM to create dimensionality-reduced matrices for each
subject. These new matrices were used as input to LDA on PCA for model training.
Adaptive 1-nearest neighbor classification (A-1NNC) was used to label the test
cases. The framework’s flowchart is shown in Fig. 1.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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2.2.1 Brain Network Computation

In this study, we used the subjects’ structural networks as features for classification.
To compute the brain networks, FreeSurfer (http://freesurfer.net/) was run on the T1-
weighted images to automatically segment the cortex into 68 unique regions (34 per
hemisphere). This segmentation was dilated with an isotropic box kernel of 5 mm to
ensure cortical labels would intersect with the white matter tissue in areas of reliable
tractography for the connectivity analysis. We registered the T1-weighted intensity
image to the fractional anisotropy (FA) image from the DWI data. The resultant
transformations were used to transform the dilated cortical segmentations into the
DWI space.

DWI images were corrected for eddy current distortions using FSL [12]. Then we
used an optimized global probabilistic tractography method [13] to generate whole
brain tractography for each subject. We combined the cortical segmentation and
tractography to compute a connectivity matrix for each subject. The matrices were
68�68 in dimension, corresponding to the 68 segmented cortical regions. Each cell
value of the matrix represented the number of fibers that intersected pairs of cortical
regions. We normalized the matrix by the total number of fibers per subject. This
symmetric 68�68 matrix served as the input for our classification.

2.2.2 Data Normalization

Some form for data normalization is critical especially when working with data
from different cohorts or projects, covering a wide age range. So directly pooling
two datasets may introduce bias, if the proportion of controls depends on the scanner
used or scanning site. To account for these confounds, we used generalized linear
regression to adjust each value in the brain connectivity matrix for age, sex and
scanning site. Then we further normalized the residual after regression to yield
centered, scaled data, which served as the input for next step. This normalization
used a Z-transformation based on the standardized statistic ZD(X-mean(X))/std(X),
where X is one feature vector within each dataset. For our connectivity matrix, X is
element (i,j) for all subjects in each dataset.

2.2.3 GLRAM

The purpose of GLRAM, proposed in [11], is similar to singular value decomposi-
tion (SVD) but has lower computational cost; it finds a lower rank 2D matrix Di to
approximate the original 2D matrix Ai, realizing the following function:

min
L;R;D

NX

iD1

��Ai � LDi R
T

��2

F
(1)

http://freesurfer.net/
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Here, Ai is each subject’s raw brain network, N is the total number of subjects,
Di is the reduced representation of Ai ; and L and R are transformation matrices on
the left and right side, respectively. F is the Frobenius norm. Details of how to solve
this cost function optimization problem are in [11].

2.2.4 LDA on the PCA Subspace

PCA finds linear projections that maximize the scatter of all projected samples.
Mathematically, given a set of N subjects X D fx1; x2; : : :xN g, where each subject
belongs to one of C classes X1, X2, . . . XC , we plan to map xi to yi where yi 2
Rm and m<n. To do this, we define a linear transformation W to satisfy yiDWT xi

(iD1,2,. . . N). In PCA, the optimal projection Wopt�pca is defined as:

8
<

:

Wopt�pca D arg maxw

ˇ̌
W T ST W

ˇ̌

ST D
NP

iD1

.xi � �/.xi � �/T (2)

Here � 2 Rn is the mean value of all samples. And Wopt�pca D
fwi 2 Rn ji D 1::m g is the set of eigenvectors of ST corresponding to the m largest
eigenvalues. Once eigenvectors are determined, all data can be projected into this
eigenspace for classification. However, PCA is not optimal for classification as the
dimensions that model the greatest amount of variance in the data are not typically
the ones that best differentiate groups. In other words, the discriminant dimensions
could be thrown out or intermixed during PCA.

LDA seeks a projection to maximize the ratio of the determinant of the between-
class scatter matrix (SB ) of the projected data to the determinant of the within-
class scatter matrix (SW ) of the projected data. However, the within-class scatter
matrix SW in LDA is typically singular. This is because the number of subjects
is often much smaller than the number of variables in the data. To overcome the
complication of a singular SW , we adopted the solution in [14]. In short, C is the
number of classes, so we first adopted PCA to reduce the dimension of the feature
space to N-C , and then we applied the standard LDA to reduce the dimension to
C-1, so the transformation Wopt is given by:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Wopt D Wopt�pcaWopt�pca�lda

Wopt�pca�lda D arg maxw
jW T W T

opt�pcaSB Wopt�pcaW j
jW T W T

opt�pcaSW Wopt�pcaW j
SB D

CP
iD1

Ni.�i � �/.�i � �/T

Sw D
CP

iD1

P
xk2Xi

.xk � �i /.xk � �i /
T

(3)

Where �i is the mean vector of class Xi , and Ni is the number of samples in
class Xi . Also, Wopt�pca can be computed using Eq. 2.
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2.2.5 Adaptive 1-NNC

We classified the subject’s class membership based on the Euclidean distance using
1-nearest neighbor classification (1-NNC). 1-NNC is designed to assign an object
to the same class as its single nearest neighbor. Adaptive 1-NNC (A-1NNC) is a
variation of 1-NNC. The test objects’ class membership is still decided based on
the class membership of the single nearest-neighbor used for training, but once a
new test object’s class membership has been determined, it is grouped into training
group to enhance the membership class affinity.

2.3 Experimental Procedure

The detailed procedure is described as follows:

1. Construct the brain network for each subject in both datasets.
2. Data Normalization to get input matrix A.
3. Group subjects into four classes: HC, EMCI, LMCI and AD.
4. Divide each class into three parts by randomization: training (80 %), optimizing

(10 %) and testing (10 %).
5. Pick up training dataset Atrain

6. Set the initial dimension size to run GLRAM on Atrain to get Ltrain, Rtrain and
DtrainDD1, D2, . . . DN for each class (using Eq. 1)

7. Transfer Dtrain into vector xi and form matrix XtrainD{ x1, x2, . . . xN }
8. Run LDA in PCA subspace to get Wopt (using Eq. 3) and get the projected data

YtrainD y1, y2, . . . yN DWoptX
9. Then the projection of the optimizing dataset Aoptimizing can be generated using

Eq. 4.
10. Use A-1NNC classification to assign Y

0

optimizings class based on Ytrain and
compute the accuracy by comparing the assigned membership to ground truth

11. Then adjust the parameter in Step 6, re-run steps 6–10 to find the optimal
parameter for the dimension of L and R in Eq. 1 that achieves best accuracy

12. Use this optimal parameter achieved in Step 11, and use the test dataset to test
our framework and get final grade

13. Repeat steps 4–12 (100 times) and compute the area under the curve (AUC)
for overall classification accuracy, as well as for the accuracy of each class. The
higher the AUC, the better the model performance.

8
<

:

Doptimizing D LT
trainAoptimizingRtrain

Doptimizing ! Xoptimizing

Yoptimizing D WoptXoptimizing

(4)
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3 Results and Discussion

Before we ran classification experiments, we first studied the effects of pooling
datasets 1 and 2 together. A testable null hypothesis is that the feature set in
the dataset 1 and dataset 2 are independent random samples drawn from Normal
distributions with equal means and equal but unknown variances. As each subject’s
brain network is symmetric and has dimension 68�68, we have 68�67/2D2,278
features per subject. Thus we adopted false discovery rate (FDR) to account for the
multiple comparisons (FDR q D 0.05). Figure 2 shows the FDR-corrected P map
from a Student’s t-test between dataset 1 (all HC) and HC from dataset 2. Our results
showed that by using our proposed normalization methods, there are no detectable
differences between the HCs in dataset 1 and dataset 2. Given this information, we
pooled data bettering an effort to boost statistical power.

Fig. 2 An FDR-corrected P map (on a log scale) for the null hypothesis asserting that features
in datasets 1 and 2 are independent random samples drawn from Normal distributions with equal
means and equal but unknown variances. All P values larger than the critical FDR threshold have
been set to zero. The top left map is for the raw brain networks (generated in Sect. 2.2.1). The top
right map is for residual brain networks after the effects of age and sex are removed (regression on
age, sex and data label, described in Sect. 2.2.2). The bottom map is for normalized brain networks
generated as in Sect. 2.2.2
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Table 2 Comparison of AUCs

Overall HC EMCI LMCI AD

Dataset2 only

Direct PCA 26.19 26.50 46.47 17.50 22.44

LDA in the PCA subspace 26.31 59 21.20 9.25 13.67

GLRAM only 26.74 53.1 14.38 12.38 21.22

Proposed method 40.48 40 53.33 37.50 22.22

Dataset1+Dataset2

Direct PCA 65.43 82.36 5.25 5.75 14

LDA in the PCA subspace 66.48 90.14 5.2 2 5.11

GLRAM only 80.69 99.96 43.40 15 21.33

Proposed method 83.62 100 46.67 37.50 33.33

A higher value indicates greater accuracy

Then we compared our proposed method with the other three methods including:
direct PCA, LDA in the PCA subspace, and GLRAM only. Table 2 shows the AUC
comparison for the 4-class (HC, EMCI, LMCI and AD) classification results using
dataset 2 only and then also using both datasets for defining the PCs. The results
indicated that our proposed framework performed better than other methods. As
shown in Table 2, PCA showed the poorest performance, which is reasonable as
PCA emphasizes the data variance, which is not necessarily useful for classification.
Also, GLRAM performed better than LDA. The possible explanation could be
that our features were the full brain networks, which emphasized the connections
between the nodes. So there may be some 2D spatial information in the features that
are ignored in the vector space model (LDA). Moreover, HC classification accuracy
improved when adding dataset 1, suggesting the advantage of pooling data, so long
as appropriate normalization is applied.

4 Conclusion

Here we presented a novel framework using GLRAM and modified LDA to reduce
the dimension of a 68�68 element structural brain connectivity network. We then
used Adaptive-1NNC to classify patients with different stages of Alzheimer’s
disease versus healthy controls. Our proposed method outperformed classical
classification methods, but incorporating healthy controls from additional datasets
also improved classification.

As our proposed framework is based on some elementary approaches (such
as PCA and LDA), we compared these methods to ours, instead of other more
complex approaches. In future work, we will try more sophisticated approaches.
As an innovation, most current studies focus on one type disease vs. HC, while our
target is for a more complicated (realistic) situation and we know there are ways to
improve the proposed framework. Our current results indicate that our approach is
promising.
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