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Abstract Diffusion magnetic resonance imaging (AMRI) provides unique capabil-
ities for non-invasive mapping of fiber tracts in the brain. It however suffers from
relatively low spatial resolution, often leading to partial volume effects. In this paper,
we propose to use a super-resolution approach based on dictionary learning for
alleviating this problem. Unlike the majority of existing super-resolution algorithms,
our proposed solution does not entail acquiring multiple scans from the same
subject which renders it practical in clinical settings and applicable to legacy
data. Moreover, this approach can be used in conjunction with any diffusion
model. Motivated by how functional connectivity (FC) reflects the underlying
structural connectivity (SC), we quantitatively validate our results by investigating
the consistency between SC and FC before and after super-resolving the data. Based
on this scheme, we show that our method outperforms traditional interpolation
strategies and the only existing single image super-resolution method for dMRI that
is not dependent on a specific diffusion model. Qualitatively, we illustrate that fiber
tracts and track-density maps reconstructed from super-resolved dMRI data reveal
exquisite details beyond what is achievable with the original data.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) based tractography provides a
powerful non-invasive in vivo tool for localizing white matter tracts in the brain.
Accurate mapping of white matter fiber tracts is important in gaining insights into
the brain function since fiber tracts act as a substrate enabling communication
between brain regions [8]. However, accuracy of the reconstructed fiber tracts is
often hampered by the inherently low resolution of dMRI data. Currently achievable
spatial dMRI resolution is around 2 x 2 x 2mm?, while the actual neuronal
fiber diameter is on the order of 1 wm [18]. A voxel can thus comprise several
distinct fiber bundles with differing orientations, leading to partial volume averaging
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[2]. At such locations, diffusion information typically becomes ambiguous, and
tractography is often falsely terminated. Therefore, increasing the spatial resolution
in dMRI holds great promise towards more accurate delineation of fiber tracts. There
are practical limitations in increasing the resolution of the acquired data directly,
such as reduced signal-to-noise ratio (SNR) and prolonged scanning time [13].
Such limitations motivate the search for post-processing solutions for increasing
the spatial resolution, such as super-resolution techniques.

Super-resolution techniques have been previously adopted to increase the spatial
detail in dMRI. In the literature, the term super-resolution is used for two distinct
classes of methods which follow different paradigms. The first class of methods are
based on performing multiple low-resolution acquisitions, followed by the fusion
of the information in these images to generate high-resolution images. To this end,
fusing images spatially shifted at sub-voxel level [16], as well as fusing multiple
anisotropic images with high resolution only along one axis [17, 18] have been
explored. In a fairly similar spirit, combining diffusion-weighted (DW) images
acquired at two different resolutions to infer high-resolution diffusion parameters
using a Bayesian model has also been proposed [20]. The inherent drawback of
these approaches is the dependence on a specific acquisition protocol, limiting
their usability in general settings. The second class of methods do not require
multiple acquisitions, and these are typically based on examples or priors about the
correspondence between low and high resolution images. Falling in this category, an
approach to reconstruct diffusion tensors at a resolution higher than the underlying
DW images using a single dMRI acquisition has been recently proposed [7]. Even
though this method eliminates the need for multiple acquisitions, it is only geared
towards estimating diffusion tensors, and cannot be easily extended to higher order
diffusion models such as orientation distribution functions (ODFs). To the best
of our knowledge, the only previous work that tackled the problem of super-
resolving dMRI data from a single acquisition independent of the diffusion model
was by Coupé et al. [4]. Specifically, the authors showed that super-resolving
b = 0 (non-diffusion-weighted) image using a locally adaptive patch-based
strategy, and using this high-resolution » = 0 image to drive the reconstruction
of DW images outperforms upsampling of dMRI data using classical interpolation
methods. Beyond these two classes, a new perspective to gain spatial resolution in
dMRI has been proposed which is termed as super-resolution track-density imaging
(TDI) [3]. This approach is fundamentally different than the aforementioned super-
resolution methods in the sense that the aim is to generate high resolution track
density maps through counting the number of tracts present in each element of a
sub-voxel grid, rather than super-resolving the DW volumes prior to tractography.

In this paper, we employ a super-resolution approach [23] for dMRI that does
not require more than a single acquisition per subject. Importantly, we apply this
method on DW images before the diffusion modeling step, removing the limitation
of applicability to a specific model such as diffusion tensors. The technique is
based on sparse coding of DW images via dictionary learning [23]. We note that
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similar methods following the sparse coding principle have been investigated before
for natural images [6, 22], however the applicability of such an approach on DW
images and its added value remain unknown. Given a set of training images, we start
with constructing an over-complete dictionary representing the data. Another over-
complete dictionary is then constructed from the downsampled versions of these
training images. Notably, these two dictionaries are constructed such that the coding
vectors modeling downsampled and original data as sparse linear combinations
of the learned dictionary atoms are the same, hence the correspondence between
low and high resolution images are automatically captured. We then exploit this
correspondence between the two dictionaries to super-resolve a new input image
to a higher resolution. The advantage of this method is three-fold. First, the super-
resolved DW images can be used with any diffusion model as permitted by the
number of gradient directions in the original dataset. Second, this method does not
rely on repeated acquisitions from the same subject, allowing it to be used with
legacy data and under various clinical acquisition schemes. Third, this method may
still be readily applied when the imaging protocol involves multiple acquisitions, as
an additional step after reconstructing a single image from multiple low resolution
acquisitions [16—-18].

We qualitatively validate our proposed approach by comparing the fiber tracts
and track-density maps reconstructed from the original and super-resolution data.
In the absence of ground truth connectivity information, in order to provide a
meaningful basis for quantitative comparison, we use the consistency between
intra-subject structural connectivity (SC) and functional connectivity (FC) estimates
inferred from dMRI and resting state functional MRI (RS-fMRI) data, respectively.
Our rationale is that FC is inherently shaped by the wiring of the brain [8, 19].
Therefore, a more accurate estimate of SC would presumably increase the SC-FC
correlation. In addition, we also examine the number of fiber tracts for more insight
into the observed differences in the SC-FC correlation values.

2 Methods

We start by presenting our assumed data acquisition model (Sect. 2.1). Given a set
of acquired DW volumes, we form a training set that includes the original volumes
and a set of corresponding downsampled volumes at double the voxel size. We then
construct two over-complete dictionaries from the original and downsampled set
of volumes (Sect. 2.2). For a previously unseen input DW volume, we obtain the
super-resolution data in two steps. First, we sparsely code the volume against the
dictionary learned from the downsampled volumes in the training set. We finally
apply the generated sparse code to the dictionary learned from the original resolution
set to obtain the super-resolution data (Sect. 2.3).
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2.1 Acquisition Model

Let v, be an acquired volume and vy be the corresponding unobserved higher
resolution volume. We assume that the relationship between these two volumes is
modeled by [23]:

vi =SBvy +n (D

where S is a downsampling operator, B is a blurring operator and n is additive
white Gaussian noise. We aim to invert this acquisition model to approximate
the unobserved higher resolution volume through super-resolution. The maximum-
likelihood solution to this problem involves the minimization of |[SBvy — v.||2,
where v is the estimated high resolution volume. However, the inversion of SB is
ill-posed [23], hence infinitely many maximum-likelihood solutions exist. We thus
cast the problem in a dictionary learning framework instead, as explained in the
following sections.

2.2 Dictionary Construction

We model each 3D patch in dMRI volumes as a sparse linear combination of atoms
from a learned dictionary D. In the proposed approach, we use two dictionaries to
capture the correspondence between low and high resolution dMRI volumes. These
two dictionaries are learned from the original training dataset and its downsampled
version, respectively.

Let vp be the set of original training volumes concatenated across scans and
vp be the corresponding set of downsampled volumes. We extract all overlapping
patches in these two sets of volumes, denoted by pp and pp, respectively. Using po
and pp, we construct two over-complete dictionaries as follows:

pmin 37 o ~Dpyll3+ 3 [P0 Doyl + () @)
where y = {y( k) is the set of sparse coding vectors for each image location

(i, j, k), and Dp and Dy are the generated over-complete dictionaries of the
downsampled and original volumes, respectively [23]. ¥ (y) is a regularization term
which we set to be ¥ (y) = ||y||1, inducing sparsity on the generated coding vector
[21]. We note that the same set of coding vectors y is used for both dictionaries. In
other words, the learned atoms of the two dictionaries represent matched pairs. We
set the number of atoms in each dictionary to 1,000 and the patch size to 3 x 3 x 3
voxels, which were empirically chosen to strike a balance between representation
accuracy and overfitting.
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2.3 Super-Resolved Volume Generation

Let p; be the set of low resolution overlapping patches obtained from a previously
unseen input volume that we wish to super-resolve. We code p; with respect to
Dp as:

min_||p; — Doy 3 + ¥ (yr) 3)

where y; is the set of coding vectors for p;, with ¥ (y;) again being the /; norm of
¥, enforcing sparsity on the coefficients. Once the input volume is sparsely coded
using Dp, we generate a new set of super-resolved patches, ps, by applying the
sparse coding vector y; to Do previously constructed from the training data:

ps = Doy;r. 4

We note that this process results in a patch being generated for each voxel. We
then reconstruct the super-resolved volume by averaging neighboring overlapping
patches.

We used K-singular value decomposition (K-SVD) [1] to construct the dic-
tionaries and orthogonal matching pursuit [15] to sparsely code the 3D patches.
Theoretically, po, pp and p; can be extracted at once from the volumes of all
gradient directions in the DW images. However, we opt to apply super-resolution for
each gradient direction separately. This helps circumvent computational limitations
that might arise, especially with the increasingly large number of gradient directions
acquired in practice.

3 Materials

We validated our method on the publicly available multimodal Kirby 21 dataset.'
Along with other imaging modalities, this dataset comprises dMRI and RS-fMRI
scans of 21 subjects with no history of neurological disease (11 men, 10 women,
32+9.4 years old). We summarize the key acquisition parameters in Sects. 3.1
and 3.2. Further details on data acquisition can be found in [10]. In our experiments,
we used 10 subjects for dictionary training, and 10 other subjects for testing.

I'This dataset is available online at: http://www.nitrc.org/projects/multimodal.
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3.1 RS-fMRI Data

The RS-fMRI data of 7 min duration were collected with a TR of 2 s and a voxel size
of 3 mm (isotropic). The data were preprocessed using in-house software written in
MATLAB, and the steps followed included motion correction, bandpass filtering at
0.01 and 0.1 Hz, and removal of white matter and cerebrospinal fluid confounds. We
divided the brain into 150 parcels by applying Ward clustering [12] on the voxel time
courses, which were temporally concatenated across subjects. Parcel time courses
were then found by averaging the voxel time courses within each parcel.

3.2 dMRI Data

The dMRI data had 32 diffusion-weighted images with a b-value of 700 s/mm? in
addition to a single b = 0 image, with a voxel size of 0.83 x 0.83 x 2.2 mm?>. Since
anisotropic voxels were previously shown to be suboptimal for fiber tractography
[14], we resampled each volume to 2 mm isotropic resolution prior to any analysis.
We also applied a Rician-adapted denoising filter [11] to eliminate nonstationary
noise commonly observed in DW images, since our acquisition model described in
Sect. 2.1 assumes Gaussian noise. We then warped our functionally derived group
parcellation map to the » = 0 volume of each subject using FSL [9] to facilitate the
computation of fiber count.

4 Results and Discussion

We first present a qualitative comparison between the fiber tracts reconstructed from
the original (2 mm isotropic) and super-resolved (1 mm isotropic) dMRI data. For
ease of interpretation, we chose to employ deterministic streamline tractography
with the diffusion tensor model, which is by far the most popular tractography
approach to date. However, we highlight that our super-resolution approach can
be used with any diffusion model and any tractography method. Tractography was
carried out using Dipy [5], with 750,000 seed points for both the original and super-
resolution data. We generated the track-density maps by calculating the total number
of fiber tracts present in each voxel. Figure 1a,c and b,d show sample track-density
maps with the original and super-resolved dMRI data, respectively. As observed
from these figures, the track-density maps generated from the super-resolution data
clearly convey more spatial information. Figure le,f and g,h show the corticospinal
tracts extracted using a region of interest (ROI) placed on the brain stem for two
representative subjects. It can be observed that fiber tracts reconstructed from the
super-resolution data can capture the fan-shape configuration of the corticospinal
track more fully.
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Original Super-resolved

Fig. 1 Qualitative comparison between the track-density maps and fiber tracts reconstructed from
the original (left) and super-resolved (right) dMRI data. Original dataset has 2mm isotropic
resolution which is super-resolved to 1 mm isotropic resolution. Each row corresponds to a
different test subject. Track-density maps of super-resolved data ((b) and (d)) show markedly
improved spatial detail compared to those of original data ((a) and (c)). Corticospinal tracts
reconstructed from super-resolved data ((f) and (h)) can capture the fan-shape configuration more
accurately than those generated from original data ((e) and (g))
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To quantify the improvement in tractography with the suggested approach,
we analyzed the consistency between measures of intra-subject SC and FC. We
estimated SC using the fiber counts between brain region pairs, and FC using
Pearson’s correlation between parcel time courses. For each subject, SC and FC
are vectors of size d(d — 1)/2 x 1 comprising the corresponding connectivity
estimates between each region pair, where d is the number of brain regions. We then
calculated Pearson’s correlation between intra-subject SC and FC to quantify the
consistency between the two connectivity estimates. Using this correlation measure,
we compared the proposed super-resolution approach with trilinear and spline
interpolation in addition to an alternative super-resolution method; collaborative
and locally adaptive super-resolution (CLASR) [4]. To the best of our knowledge,
CLASR is the only existing single image super-resolution method for dMRI which
is independent of the diffusion model employed. Figure 2 shows the SC-FC
correlation for each subject tested. Taking the average SC-FC correlation across the
group when using the original data as a baseline, the improvement was 5.7 % with
spline interpolation, 13.6 % with CLASR, and 27.1 % with our proposed method.
On the other hand, there was a 6.3 % decrease in the correlation when trilinear
interpolation was used. The difference in the performance of our method and every
other method tested was found to be statistically significant at p < 0.01 based
on the Wilcoxon signed-rank test, showing its potential for enhanced structural
connectivity assessment. Our results thus suggest that low spatial resolution of
dMRI data can partially account for the low SC-FC correlation, and statistically
significant improvements can be achieved using super-resolved dMRI data.

To investigate why trilinear interpolation resulted in a lower SC-FC correlation
compared to the original data, we calculated the number of tracts reconstructed
with each method. The local intra-parcel connections were excluded since they
have no effect on SC-FC correlation. Figure 3 shows the number of inter-parcel
tracts averaged across the group along with the corresponding standard deviations.
As observed from this figure, performing tractography on volumes upsampled
with trilinear interpolation resulted in a lower number of tracts compared to the
original volumes, even though the same number of seed points were used to initiate
tracking for all of the methods we compared. We speculate that the reason of this
phenomenon is the additional partial volume effects introduced by the blurring
of the data during trilinear interpolation, which hamper the tractography quality.
Spline interpolation, however, is known to cause less blurring compared to trilinear
interpolation, and our results suggest that upsampling dMRI data using spline
interpolation can be beneficial for tractography. The overall trend of inter-parcel
track counts closely resembles to that of the SC-FC correlation, with our proposed
method outperforming all other methods tested. This shows that dictionary based
super-resolution is a viable post-processing solution for dMRI that can help in
mapping the white matter brain architecture more accurately.
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Fig. 2 SC-FC correlation for 10 subjects with SC estimated from the data at its original resolution
(2 mm isotropic), and high-resolution data (1 mm isotropic) obtained using trilinear interpolation,
spline interpolation, CLASR and the proposed method. Our method outperforms all other methods
tested for eight of the subjects, and performs comparable to CLASR for two subjects (subjects 4
and 10)

1l

Original Trilinear Spline CLASR  Our method

Inter—parcel tract count

Fig. 3 Number of inter-parcel tracts reconstructed from the data at its original resolution (2 mm
isotropic), and high-resolution data (1 mm isotropic) obtained using trilinear interpolation, spline
interpolation, CLASR and the proposed method. Intra-parcel tracts are not included here since they
do not contribute to SC-FC correlation. We emphasize that tractography is initiated with the same
number of seeds (750,000) for each method
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5 Conclusions and Future Work

Low spatial resolution is a known limitation of dMRI, which often hinders the
performance of tractography significantly. We proposed the use of a simple yet very
effective super-resolution technique in dMRI to capture a more accurate portrayal
of the white matter architecture. This approach does not require multiple dMRI
acquisitions and is applicable to legacy data. Quantitatively, we demonstrated that
SC-FC consistency can be markedly increased with the use of our approach in
estimating SC. We also qualitatively illustrated that the gain in spatial resolution
remarkably improves the fiber tracts and track-density maps generated. Taken
collectively, our results suggest that dictionary based super-resolution holds great
promise in enhancing the spatial resolution in dMRI, without requiring additional
scans or any modifications of the acquisition protocol.

It is important to acknowledge that the performance of the proposed method
inherently depends on the training dataset, as in any machine learning method that
involves training or prior information. The age span of the subjects we used in our
experiments was 23-61, showing that the method can generalize to a large range of
ages. However, how well abnormalities such as tumor and edema can be modeled
with dictionary learning is currently unclear and warrants further research.
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