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Abstract In diffusion MRI, the reconstructed Ensemble Average Propagator (EAP)
from the diffusion signal provides detailed insights on the diffusion process and the
underlying tissue microstructure. Recently, the Simple Harmonic Oscillator based
Reconstruction and Estimation (SHORE) basis was proposed as a promising method
to reconstruct the EAP. However, the fitting of the basis is sensitive to noise. To solve
this we propose to use the Laplacian of the SHORE basis as a natural regularization
functional. We provide the derivation of the Laplacian functional and compare its
effect on EAP reconstruction with that of separated regularization of the radial and
angular parts of the SHORE basis. To find optimal regularization weighting we use
generalized cross-validation and validate our method quantitatively on synthetic and
qualitatively on human data from the Human Connectome Project. We show that
Laplacian regularization provides more accurate estimation of the signal and EAP
based microstructural measures.

1 Introduction

In diffusion MRI, the acquisition and reconstruction of the diffusion signal in 3D q-
space allows for the reconstruction of the water displacement probability, known as
the Ensemble Average Propagator (EAP) [6,16]. This EAP describes the probability
density that a particle will move along a certain direction in a given diffusion time
�. The EAP, or P.r/, is related to the diffusion signal by a Fourier transform.

P.r/ D
Z
R3

E.q/e�2i�q�rdq (1)

where r is a displacement vector in r-space and E.q/ is the measured diffusion
signal at wave vector q sampled in q-space. Here q is related to the applied magnetic
field gradient magnitude, direction and duration [6, 16]. Historically, the diffusion
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tensor (DT) [4] was the first model to describe the EAP by assuming it lies within
the family of Gaussian distributions, though this assumption also limits its ability to
describe complex tissue structures. To overcome this limition, so-called high angular
resolution diffusion imaging (HARDI) methods such as Q-ball imaging [18] and
constrained spherical deconvolution [17] were developed that are able to resolve
the directionality of more complicated fiber bundle configurations. However, these
models still make restricting assumptions on the shape of the EAP, which limits their
ability to describe the full 3D EAP in an unbiased way. It is possible to reconstruct
the EAP without any prior knowledge or restrictions using acquisition schemes such
as Diffusion Spectrum Imaging (DSI) [20]. Though, DSI’s need for a numerical
inverse Fourier transform of E.q/, which requires a dense and lengthy sampling
of q-space, limits its clinical applicability. Indeed, an important research topic has
been the accurate reconstruction of the EAP with a reduced number of samples. As
a solution, models that involve analytical representations of the signal have been
proposed as they provide compact representation of the 3D q-space signal and are
less sensitive to noise. Such models include the Spherical Polar Fourier (SPF) basis
[2], the Solid Harmonic (SoH) basis [10] and the Simple Harmonic Oscillator based
Reconstruction and Estimation (SHORE) basis [12]. These bases capture the radial
and angular properties of the diffusion signal by fitting a linear combination of
orthogonal dual basis functions. With a dual basis, the coefficients describing the
contribution of every basis function to the signal can also be used to describe the
EAP. In this way E.q/ and P.r/ are represented as

E.q/ D
1X

nD0

cn�n.q/ P.r/ D
1X

nD0

cn�n.r/ (2)

where coefficients cn describe the contribution of dual basis functions �n to the
signal and �n to the EAP. However, the fitting of the basis is sensitive to noise and
appropriate regularization is required. In literature several regularization methods
have been developed for such bases, most of which try to enforce smoothness in
the reconstructed signal. For example, in the SoH basis only an angular Laplace
Beltrami regularization term was used [10]. For the SPF basis, the combination of
a radial low-pass filter and an angular Laplace Beltrami regularizer was proposed
[2] (which we will now call separated regularization). Later, it was shown that the
Laplacian functional for the SPF basis outperformed separated regularization [7].
For the SHORE basis, a regularization using the Laplacian functional was proposed
only for 1D-SHORE [14], while for 3D-SHORE separated regularization [11] and
later quadratic programming [15] was used. As for a choice of basis, an advantage of
SHORE over the others is that its elements are eigenvectors of the Fourier transform,
a property that ensures rapid convergence in both real and Fourier spaces [19]. For
this reason, in this work we focus on regularization for the SHORE basis. Inspired
by what was proposed in [7] for the SPF basis, we propose to use the full 3D
Laplacian regularization of the SHORE basis as it is well suited for the smooth
nature of the diffusion signal. We validate our approach in three steps: First we
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simulate the intra-axonal signal for a single white matter (WM) bundle and quantify
signal reconstruction based on the estimation of microstructural measures known as
the Return-To-Axis and Return-To-Origin probability (RTAP and RTOP). Secondly,
we generate fiber crossings and compare signal and EAP reconstruction with respect
to similarity to the ground truth, and finally we compare EAP projections and ODF
visualizations on human data from the Human Connectome Project.

2 Theory

The SHORE basis [12, 15] was designed to reconstruct the diffusion signal and the
EAP in the complete 3D space. In this basis the diffusion signal is given by

�jlm.u0; q/ D p
4�i�l .2�2u2

0q
2/l=2e�2�2u2

0q2

L
lC1=2
j �1 .4�2u2

0q
2/Y m

l .uq/ (3)

where j D .n C 2 � l/=2 is related to the radial order n and angular order l where
j � 1, l � 0 and q D q � uq is the q-space vector with q its magnitude and uq its
normalized orientation. The real spherical harmonic basis Y m

l was introduced in [9]

with angular order l and phase factor m such that �l � m � l . Here L
lC1=2
j �1 is the

generalized Laguerre polynomial and u0 is the isotropic scale factor related to the
diffusivity of the measured data. The basis functions �jlm of the EAP are obtained
by the three-dimensional inverse Fourier transform of �jlm resulting in

�jlm.u0; r/ D .�1/j �1

p
2�u3

0

�
r2

2u2
0

�l=2

e�r2=2u2
0 L

lC1=2
j �1

�
r2

u2
0

�
Y m

l .ur / (4)

where r D r � ur is the r-space vector with r its magnitude and ur its normalized
orientation. When the propagator is assumed symmetric, as is a consequence of
the acquisition protocol in diffusion MRI, the number of coefficients is given by
Ncoef D 1=6.F C 1/.F C 2/.4F C 3/ with F D bnmax=2c. Note that for both bases
the angular dependence is only contained in the spherical harmonics function.

As the basis functions �jlm are orthonormal on R
3, we use Eq. (2) to estimate

the coefficients cn from the entire q-space data consisting of Ndata points. The
coefficients are cast into an Ncoef-dimensional vector c and the signal values are
placed in an Ndata-dimensional vector y. Design matrix Q 2 R

Ndata�Ncoef then has
elements Qij D �i .u0; qj /. With these definitions, Eq. (2) turns into the matrix
equation y D Qc. The coefficients c are found by solving the least squares problem
c D argminc ky � Qck2 D .QTQ/�1QTy. Note that Q needs to be recomputed
for every voxel as u0 is data dependent. The EAP can then be sampled at specific
positions r using the matrix equation r D Kc, where matrix K 2 R

Nsample�Ncoef has
elements Kij D �i.u0; rj / [15]. The basis fitting can then be regularized in different
ways, which we explain in the next section.
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2.1 Regularization

2.1.1 Laplacian Regularization

We propose to compute the Laplacian regularization term for the fitting procedure.
In this case we want to minimize the quantity c D argmincky � Qck2 C �� U.c/

where �� weights the regularization functional

U.c/ D
Z
R3

k�Ec.q/k2dq (5)

with Ec.q/ D P
i ci �i .q/ the reconstructed signal and � is the Laplacian operator.

We can then express Ec.q/ in a summation of SHORE basis functions

U.c/ D
Z
R3

 X
i

ci ��i .q/

!2

dq D
X

i

X
k

ci ck

Z
R3

��i .q/ � ��k.q/ dq (6)

where the subscripts i and k indicate the radial and angular order of the i th or kth
basis function �i .q/ D �j.i/l.i/m.i/.q/. We can write the summations in quadratic
form such that U.c/ D cTRc where regularization matrix R has elements

Rik D
Z
R3

��i .q/ � ��k.q/dq: (7)

The equation for the elements of R can be solved by using the general differential
equation whose solutions form the functional basis functions �jlm of the SHORE
basis

�
� �

.2�u0/2
C .2�u0/

2q2

�
�jlm.q/ D �jlm�jlm.q/ (8)

with �jlm D 2l C 4j � 1 [15]. By inverting this equation we can show that

��jlm.q/ D 4�2u2
0.4�2q2u2

0 � �jlm/�jlm.q/: (9)

Inserting Eq. (9) into Eq. (7), using the fact that Y m
l is an orthonormal basis with

respect to the dot product on S2 and L˛
n.x/ is orthonormal with respect to the

weighting function x˛e�x on Œ0; 1/, we find the general equation for R as

Rik D ı.l.i/;l.k//ı.m.i/;m.k//R .j.i/; j.k/; l/ (10)
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where we define the intermediate function R as

R .j.i/; j.k/; l/ D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

ı.j.i/;j.k/C2/
22�l �2u0� . 5

2 Cj.k/Cl/
� .j.k//

ı.j.i/;j.k/C1/
22�l �2u0.�3C4j.i/C2l/� . 3

2 Cj.k/Cl/
� .j.k//

ı.j.i/;j.k//
2�l �2u0.3C24j.i/2C4.�2Cl/lC12j.i/.�1C2l//� . 1

2 Cj.i/Cl/
� .j.i//

ı.j.i/;j.k/�1/
22�l �2u0.�3C4j.k/C2l/� . 3

2 Cj.i/Cl/
� .j.i//

ı.j.i/;j.k/�2/
22�l �2u0� . 5

2 Cj.i/Cl/
� .j.i//

(11)

with ı the Dirac delta function. Note that regularization matrix R is symmetric,
mostly sparse and its elements depend only on the ordering of the basis functions
and their radial and angular indices j , l and m. Using this formulation we can
compute R up to a given nmax and obtain the SHORE coefficients using penalized
least squares with unique minimum

c D .QTQ C ��R/�1QTy: (12)

2.1.2 Separated Regularization

In [2] a regularization method was proposed involving a separated angular Laplace
Beltrami functional L and a radial low pass filter N. In this case the penalized least
squares equation has unique minimum

c D .QTQ C �nNTN C �lLTL/�1QTy (13)

with regularization weights �n and �l . Note that separated regularization has two
weighting parameters, whereas our Laplacian regularization only has one, making
our approach easier to tune. In the next section we explain the methods to quantify
the reconstruction quality of the signal and EAP.

3 Materials and Methods

To quantify the reconstruction quality of the signal and EAP we simulate two types
of data. First we generate the restricted intra-axonal diffusion signal of a single
white matter (WM) bundle. On this data we quantify reconstruction quality based
on the similarity to the ground truth signal and EAP and on the estimation of a
microstructural measure known as the Return-to-Axis Probability (RTAP). Secondly
we compute fiber crossings using a multiple compartments Gaussian model on
which we quantify signal and EAP reconstruction quality.
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3.1 Microstructural Data Generation and Quantification

We first generate synthetic data using a recently introduced analytical model for
intra-axonal diffusion [21]. Assuming axon diameters are Gamma-distributed, this
model describes the restricted intra-axonal signal perpendicular to a WM bundle as

Eperp.q?I ˛; ˇ/ D3F2

�
3

2
;

˛

2
C 1;

˛

2
C 3

2
I 2; 3I �16�2ˇ2q2?

�
(14)

where 3F2 is a generalized hypergeometric function, ˛ and ˇ are the shape and scale
parameters of the Gamma distribution and q? is the norm of q perpendicular to the
fiber path. We assume axial symmetry of the diffusion signal and free diffusion
along the fiber path, i.e. Epar.qk; D/ D exp.�4�2q2

kDk/ with qk the parallel
component of q and Dk the parallel free water diffusivity. We simulate the intra-
axonal signal similar as in [3] to be

Eintra.q/ D Eperp.q?I ˛; ˇ/Epar.qk; Dk/: (15)

Using this model the restricted intra-axonal diffusion signal in the whole q-space
can be readily obtained for any Gamma distributed axon diameter distribution.
Rician noise is then added with noise variance 	 such that SNR D 1=	 .

To quantify signal reconstruction based on the microstructure we use two mea-
sures known as the Return-To-Axis and Return-To-Origin probability (RTAP and
RTOP) [15]. These values are known to be sensitive to the anisotropy of WM tissue.
RTAP is computed as the integral of the diffusion signal on the plane perpendicular
to the fiber direction and RTOP is integral of the whole 3D diffusion signal.

RTAP D
Z
R2

E.q?/dq? RTOP D
Z
R3

E.q/dq (16)

Moreover, in the case of restricted intra-axonal diffusion in a single fiber path
RTAP is related to the reciprocal of the mean cross-sectional area of the axons, i.e.
hAi D 1=RTAP [13].

The computations of RTOP and RTAP rely on integrals of the complete q-
space, which depend highly on the extrapolation of the signal beyond the q-space
truncation. To quantify the accuracy of the extrapolation we simulate the intra-
axonal signal on three equispaced shells in q-space with 90 samples each for 22

realistic axon diameter distributions [1]. We consider two scenarios: (1) varying the
maximum q-value qmax included in the measurements while keeping the signal-to-
noise ratio (SNR) constant and (2) varying SNR while keeping qmax constant. In
both cases we fit SHORE to the signal with different regularization methods with
nmax D 6. We quantify the accuracy of RTAP by estimating hAi and comparing the
results with the ground truth hAigt , which can be computed using the parameters of
the Gamma distribution as hAigt D ˛.˛ C1/ˇ2. For RTOP we directly compare the
estimated values with the 3D integrals of Eq. (15).



A 3D Laplacian Regularized SHORE Basis and Its Impact on EAP Reconstruction 157

3.2 Fiber Crossing Data Generation

To further quantify the quality of both signal and EAP reconstruction we generate
synthetic fiber crossing data. The signal is simulated using a multi-compartment
Gaussian model

E.q/ D
MX

mD1

fm exp.�2�2qTDmq/ (17)

where M is the number of compartments, fm is the relative compartment size withPM
mD1 fm D 1 and Dm the corresponding diffusion tensor. We use acquisition

parameters from the Human Connectome Project (HCP) where three shells with b-
values 2 Œ1;000; 2;000; 3;000
 s=mm2 are sampled 90 times each with 5 b0 samples
per shell. A cross-section of the ground truth of the signal and EAP of an M D 2, 72

degree crossing with f1 D 0:6 and f2 D 0:4 is shown in Fig. 1. Again, Rician noise
is added with noise variance 	 such that SNR D 1=	 . Figure 2 shows the signal
from Fig. 1a for three different noise levels. We then fit SHORE using separated
and Laplacian regularization and compare signal and EAP reconstruction using the
metrics given in the next section.

3.3 Error Metrics

We define two error metrics to quantify the reconstruction quality of the signal and
EAP in the single WM bundle data and the multiple compartment Gaussian model.
For the signal we use the L2 metric

a b

Fig. 1 Isocontour representations of the ground truth of the signal as a function of q (a) and the
EAP as a function of r (b). The isocontours are color-labeled from dark blue (0.95 of maximum
value) to red (0.1 of maximum value). The dashed grey circles in the signal represent the measured
shells in q-space. (a) Ground truth signal. (b) Ground truth EAP
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a b c

Fig. 2 The signal from Fig. 1a corrupted by Rician Noise. (a) SNRD30; (b) SNRD20;
(c) SNRD10

L2.c/ D
Z
R3

.EGT.q/ � Ec.q//2dq (18)

where EGT.q/ is the ground truth signal and Ec.q/ is the reconstructed signal with
coefficients c. For the EAP we use the Bhattacharyya distance (BD) [5] as it is a real
metric between probability densities

BD.c/ D � ln

�Z
R3

p
PGT.r/Pc.r/dr

�
(19)

where PGT.r/ and Pc.r/ are the ground truth and reconstructed probability density
functions of the EAP. We use these metrics to analyze the reconstruction quality for
different regularization methods in the next section.

3.4 Optimal Weighting Parameter Choice

To fairly compare EAP reconstructions, we use the Generalized Cross Validation
(GCV) algorithm [8] to obtain optimal regularization parameters �n, �l and ��.
GCV is based on an Ndata-fold cross validation. Fortunately, the estimation of � as
the minimum argument of the GCV function can be calculated as

GCV.�; y/ D ky � Oy�k
Ndata � Tr.S�/

(20)

where S� D Q.QTQ C �R/�1QT is the smoother matrix and Oy� D S�y. Here R can
contain multiple regularization functionals that can be optimized.
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4 Results

4.1 Microstructure Experiments

To compare signal and EAP reconstruction quality on a single WM bundle between
separated and Laplacian regularization we simulated the intra-axonal signal on three
equispaced shells in q-space with 90 samples each for 22 realistic axon diameter
distributions [1] as outlined in Eq. (14). We only generate the intra-axonal diffusion
signal for two scenarios: in the first we vary qmax from 10 to 310 mm�1 in steps of
30 mm�1 while keeping SNR D 20. In the second we vary SNR between noiseless
and SNR D 5 while keeping qmax at 200 mm�1. In both cases we regenerate the
noise 100 times per qmax or SNR and average the results over all axon diameter
distributions and noise generations. For both datasets we compute the averaged
absolute error between the estimated mean cross-sectional area hAi and ground truth
hAigt (Fig. 5b and c) and the values for RTOP with the ground truth (Fig. 5d and e).
We do not show the results for the least squares solution as the extrapolation of
the signal without regularization is completely unreliable (see Fig. 5a). It should
be noted that using separated regularization approximately 2–3 % of all RTAP and
RTOP estimates yield negative values, while this is only 0:03 % for Laplacian
regularization.

4.2 Fiber Crossing Experiment

To quantify general fitting of the signal and EAP, the SHORE basis was fitted
on a 72 degree crossing using separated and Laplacian regularization. In Fig. 3
we show the average L2 and BD metrics for the reconstruction of the signal and
EAP for 300 repetitions for every SNR. It is seen that Laplacian regularization
has the lowest metrics and standard deviation for both the signal and the EAP.
Furthermore, in Table 1 we show the variances for the weighting parameters,

Fig. 3 The error metrics for the reconstruction of (left) the signal (L2) and (right) the EAP (DB)
as a function of 1=SNR. The L2 plot for the signal is on a logarithmic scale. It can be seen that the
Laplacian better and more reliably approximates the signal and EAP for all SNR
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a b c d

Fig. 4 A section of the ground truth of the EAP (a) with EAP reconstructions using no (b),
separated (c) and Laplacian regularization (d). Noise was added such that 1=SNR D 0:1. The
red areas indicate negative values. The Laplacian best preserves the angular shape of the ground
truth among the given methods. (a) EAP GT; (b) EAP LS; (c) EAP Sep; (d) EAP Lap

together with the Pearson correlation between �n and �l for every SNR. It can be
seen that the variance for the Laplacian is much lower than those of the separated
regularization. Finally, to give a visual interpretation to the graphs in Fig. 3 we
show EAP reconstructions with different regularization methods at 1=SNR D 0:1

together with the ground truth in Fig. 4. It can be seen that Laplacian regularization
maintains the best angular characteristics of the ground truth, given that the signal
is severely distorted (see Fig. 2c).

4.3 Human Connectome Project

In our last experiment we use the Human Connectome Project data, which was
sampled on three shells with b-values 2 Œ1;000; 2;000; 3;000
 s=mm2, with 90

directions per shell. We selected a section in the brain near the Corpus Callosum
(see Fig 6). In order to highlight reconstruction differences in the case of more
noisy images we add noise to the data such that SNR D 20. We used GCV to obtain
optimal weighting parameters for every voxel and we fit SHORE using nmax D 6.
In Fig. 6 we visualize the EAP at a radius of 10 and 20 �m and the ODFs using
separated and our Laplacian regularization. The spherical representation of the EAP
P.r/ at a certain radius r shows the relative probability of particles traveling this
distance in the given diffusion time. It can be seen that the Laplacian attenuates
spurious behaviour in the lower radius of the EAP (yellow box), though this effect
is not as prominent in the ODF.

5 Discussion and Conclusion

In this paper we proposed and derived the full 3D Laplacian functional as a
regularization for the fitting of the SHORE basis. We compared our proposed
regularization with the previously proposed separated Laplace–Beltrami and radial
low-pass filtering [2]. In our first experiment we show that Laplacian regularization
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Fig. 5 (a) shows the Least Squares signal approximation. The red area indicates one standard
deviation of the approximation. It can be seen that after the last sampling shell (the grey dashed
line) the extrapolation is unreliable. (b) and (c) show the error in hAi for different regularization
methods as a function of qmax and SNR. (d) and (e) show the values of RTOP with the ground
truth. Both (b) and (c) show lower average error and lower standard deviations with Laplacian
regularization under all qmax and SNR. (d) shows that with Laplacian regularization the estimated
RTOP approaches the ground truth at qmax near 160 mm�1 but continues to grow as qmax increases.
Moreover, it can be seen that RTOP for separated regularization has very unreliable estimates
for low qmax. Only after a qmax of 160 mm�1 the estimation stabilizes and a similar trend is
seen of increasing RTOP as qmax increases. In (e) it can be seen that the mean RTOP becomes
slightly higher than the ground truth for Laplacian regularization and slightly lower for separated
regularization as SNR becomes lower. Again the Laplacian benefits from much lower standard
deviations

of the SHORE basis provides more reliable estimates of microstructural features
compared to separated regularization (Fig. 5). When comparing the mean and
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Fig. 6 Reconstructions of the EAP and ODF in an area near the Corpus Callosum of the Human
Connectome Project using separated regularization (left column) and Laplacian regularization
(right column). The EAP is reconstructed for two EAP radii (top two rows) and ODFs is given
on the bottom. The Laplacian regularization stops spurious behaviour in the EAP compared to
separated regularization (yellow and blue rectangles), though this effect is not as noticeable in the
ODFs (green rectangles)
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standard deviation of RTAP and RTOP between regularization methods, it can
be seen that Laplacian regularization greatly improves signal extrapolation and
robustness to noise at lower q-values and low SNR levels. The fact that almost no
negative values for microstructural values were found using the Laplacian further
underlines this result.

Moreover, in our second experiment we show that Laplacian regularization
enables better and more reliable approximation of the signal and EAP in crossings
(Fig. 3) and that the angular features of the EAP are better maintained under high
levels of noise compared to separated regularization (Fig. 4). We also show that
the estimation of the optimal weighting parameter is more stable for the Laplacian
than for the separated implementation (Table 1), which suggests that our approach
is better suited for this type of data. Finally, we provide visualization of the EAP
and ODF on the Human Connectome Project dataset (Fig. 6). It can be seen that the
influence of the regularization, while visible in the EAP, is not as noticeable on the
ODFs.

Nonetheless, combined with the results of the other experiments in this work,
we believe that the accurate approximation of the signal and EAP is essential to
understanding the underlying microstructure, and appropriate regularization such as
our Laplacian approach is therefore fundamental.
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