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Abstract The ensemble average diffusion propagator (EAP) obtained from diffu-
sion MRI (dMRI) data captures important structural properties of the underlying
tissue. As such, it is imperative to derive accurate estimate of the EAP from the
acquired diffusion data. Taking inspiration from the theory of radial basis functions,
we propose a method for estimating the EAP by representing the diffusion signal
as a linear combination of 3D anisotropic Gaussian basis functions centered at the
sample points in the q-space. This is in contrast to other methods, that always center
the Gaussians at the origin in q-space. We also derive analytical expressions for the
estimated diffusion orientation distribution function (ODF), the return-to-the-origin
probability (RTOP) and the mean-squared-displacement (MSD). We validate our
method on data obtained from a physical phantom with known crossing angle and
on in-vivo human brain data. The performance is compared with the 3D-SHORE
method of [4, 9] and radial basis function based method of [15].

1 Introduction

A classical method in dMRI is Diffusion tensor imaging (DTI) [3] which assumes
the EAP to be a single Gaussian centered at the origin. However, this over-simplified
assumption has limitations in voxels where there are more complicated structures.
To resolve this issue, Diffusion spectrum imaging (DSI) was proposed in [17].
However, a large number of measurements and a long acquisition time makes it
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impractical to use DSI in clinical setting. To this end, many imaging methods have
been proposed, which reduce the number of measurements by using suitable signal
models or by using compressed sensing techniques. For example, Hybrid diffusion
imaging (HYDI) [18], Diffusion Propagator Imaging (DPI) [5], the SHORE basis
[9, 11], the Bessel Fourier basis [6], the Spherical Polar Fourier (SPF) basis [2, 4]
and the spherical ridgelet basis [14] extend the spherical representation of the signal
on a single shell to multiple shells with a continuous radial term. On the other hand,
MAP-MRI [12] represents the diffusion signal using Hermite polynomials. Finally,
the method of [19] (NODDI) estimates axonal dispersion while the CHARMED
model [1] uses very high b-value to estimate the axon diameter distribution.

2 Our Contributions

In this work, we use 3D Gaussian functions for representing the diffusion signal
and computing the EAP. The diffusion signal is expressed as a linear combination
of Gaussian basis functions centered at several locations in the q-space at which
measurements are available. This is in contrast to other mixture models, which
typically center the basis functions at the origin in q-space [7, 13]. The present
work is a generalization of the radial basis functions method in [15], incorporating
directional anisotropic (non-radial) Gaussians for continuous representation of the
diffusion signal and the propagator. Since the Fourier transform of a Gaussian is
another Gaussian, one obtains simple analytical expressions for the EAP, the ODF,
the return-to-the-origin probability (RTOP) and the mean-squared-displacement
(MSD). We validate our method on a physical phantom data set with known fiber
crossing and on in-vivo human brain data set. We also compare our method to the
one using radial basis functions (RBF) [15], 3D-SHORE [9], and show that adding
constraints helps in improving the performance of 3D-SHORE.

3 Signal Representation

Accurate reconstruction of high dimensional continuous functions from finite
number of samples can be achieved using as a linear combination of radial basis
functions centered around the given data points [8]. We use a similar methodology
to represent the dMRI signal continuously in the q-space. Given a sampling of
diffusion signal E.q/ at N data locations fq1; : : : ; qN g in q-space, we consider
its reconstruction using

OE.q/ D
NX

nD0

wn�n.q � qn/; with �n.q � qn/ D exp.�.q � qn/T D.q � qn//;

(1)
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q0 D 0 and �0.q/ D e�qT D0q . The tensor D is assumed to have a cylindrical
shape with eigenvalues �0; �1; �2 such that �1 D �2. The interpolation weights
wn’s can then be computed by solving the following linear system: E.qi / DPN

nD0 wn�n.qi �qn/ for i D 0; : : : ; N with E.0/ D 1. Due to antipodal symmetry,
we enforce equal coefficients for �n.q � qn/ and �n.q C qn/.

3.1 Closed Form Expressions for EAP and ODF

The EAP is given by the Fourier transform of OE.q/. Since the constructed OE.q/ is a
linear combination of Gaussian functions, its Fourier transform is given by a linear
combination of the Fourier transforms of the individual basis functions. Hence, the
estimated EAP is of the form P.r/ D F . OE.q// D PN

nD0 wn˚n.r/ with ˚0 D
F .�0.q// and ˚n D F .�n.q � qn/ C �n.q C qn//. In particular, ˚0 is given by

˚0.r/ D
Z

R3

e�i2�rT qe�qT D0qdq D �
3
2 jD0j� 1

2 e��2rT D�1
0 r : (2)

A translation of a basis function leads to a phase shift of its Fourier transform, i.e.
F .�n.q C qn// D ei2�rT qnF .�n.q//. Hence, for n � 1,

˚n.r/ D 2�
3
2 jDj� 1

2 cos.2�rT qn/e��2rT D�1r : (3)

The ODF is computed from the EAP by evaluating the integral �.u/ DR 1
0

P.ru/r2dr [17], where u is a unit vector and r is the radial co-ordinate. From
the propagator P.r/, �.u/ is given analytically as �.u/ D PN

nD0 wn�n.u/ with

�0.u/ D 1

4�jD0j 1
2 .uT D�1

0 u/
3
2

(4)

and

�n.u/ D 1

2�jDj 1
2 .uT D�1u/

3
2

�
1 � 2.uT qn/2

uT D�1u

�
e

� .uT qn/2

uT D�1u ; n � 1: (5)

3.2 Expressions for RTOP and MSD

Similarly, closed form expressions for RTOP and MSD can be computed.
RTOP, which is given by

R
R3

OE.q/dq, is simply P.0/ D �
3
2 .w0jD0j� 1

2 C
2jDj� 1

2
PN

nD1 wn/. Similarly, the MSD, which is given by
R
R2 P.r/krk2dr , can be
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computed from
R
R2 ˚0.r/krk2dr D 1

2�2 trace.D0/, and

Z

R2

˚n.r/krk2dr D 1

�2

�
trace.D/ � 2qT

n D2qn

�
e�qT

n Dqn :

3.3 The Relation to Radial Basis Functions Method

The radial basis functions method [15] is a special case of the proposed framework
where radially symmetric Gaussian functions centered at the sample locations are
used to represent diffusion measurement. The basis function is of the form �rbf

n D
e��kq�qnk2

which corresponds to an isotropic tensor D D �I3�3. The corresponding
EAP is expressed as P.r/ D PN

nD1 wn˚ rbf
n .r/ with

˚ rbf
n .r/ D 2

��

�

� 3
2

cos.2�rT qn/e� �2
krk

2

� :

The ODF is given by �.u/ D PN
nD1 wn� rbf

n .u/ with

� rbf
n .u/ D 1

2�

�
1 � 2�.uT qn/2

�
e��.uT qn/2

:

3.4 Estimation Procedure

We discuss different methods for estimating the coefficients wn. From the samples
at N locations in the q-space, we obtain an N C 1 dimensional vector e with the
first entry being the measurement at the origin. The tensor D0 is computed as in
standard DTI [3], while the tensor D is chosen to have the same eigenvectors as D0.
One constructs an .N C 1/ � .N C 1/ dimensional matrix A with

A.i; 1/ D �0.qi�1/ and A.i; j / D �j .qi�1 � qj �1/ C �j .qi�1 C qj �1/

for j � 1 and i D 1; : : : ; N C1. We denote by w, an N C1 vector whose entries are
the coefficients wn to be estimated. A simple method to estimate w is w D A�1e.
However, to avoid ill conditioned matrices A, a Tikhonov regularized solution is
given by w`2 D .AT A C �I/�1AT e where � > 0 is a regularization parameter.

This method, however, does not account for the fact that the diffusion mea-
surements are monotonically decreasing with increasing b-values. Moreover, the
diffusion propagator should be positive and the value of the measurement at the
origin is known to be one. Thus, one could numerically enforce these constraints
while estimating the vector of weight w. The corresponding function then becomes:
minw kAw � ek2 C �kwk2; s:t: Bw � 0; cT w D 1: The matrix B is of the form
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B D ŒBT
1 ; BT

2 �T with each column of B1 being the difference of a Gaussian basis
functions �n along a given set of gradient directions at several b-value shells and
each column of B2 being the evaluation of ˚n at given set of locations for r .
The vector c contains the values of the basis functions at the origin. We note that
these constraints are always feasible and a trivially feasible element is given by
w D Œ1; 0; : : : ; 0�T .

4 Experiments

We tested our method on a data set acquired from a spherical physical phantom with
a crossing angle of 45 degree [10]. We acquired ten separate scans of the phantom
with the 5 different b-values b D f1;000; 2;000; 3;000; 4;000; 5;000g s=mm2

and each b-value shell consisted of 81 gradient directions. The ten scans were
averaged to obtain the “gold-standard” data. The test data set was acquired
as follows: For each of the following number of gradient directions K D
f16; 20; 24; 26; 30; 36; 42; 60; 81g we acquired the diffusion measurement over
2 b-shells corresponding to b D f1;000; 3;000g s=mm2. Further, five repetitions
were acquired for each of these data samples to test the effect of noise on signal
reconstruction quality. Each acquisition had an average SNR of about 8.5.

4.1 Comparison Metrics

We used several quantitative metrics to test the ability of the proposed algorithm.
Let OEx denote the reconstructed signal in the voxel at location x and Ex;gold be
the “gold-standard” signal. The Normalized mean squared error (NMSE) in signal
reconstruction was computed as

NMSE D 1

j˝j
X

x2˝

k OEx � Ex;goldk2

kEx;goldk2

where ˝ denotes the set of locations for all voxels. The estimated angle between the
two principal diffusion directions (in case of crossing) was computed as the average
estimated angle (EA) given by

EA D 1

j˝2j
X

x2˝2

j arccos.uT
x;1ux;2/j

where ux;1 and ux;2 denote the direction of the two peaks in the voxel at location
x and ˝2 denote the set of locations for voxels that have two peaks. The estimated
angle was computed only in the voxels where only two peaks are detected. In order
to know if the recovered signal missed or exaggerated the number of peaks, we
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computed the percentage of false peaks (PF) given as

PF D 1

j˝goldj
X

x2˝gold

B.nx � ngold/

where ˝gold denotes the set of locations for voxels that have ngold peaks in gold
standard data which equals to 2 in this case, B is an indicator function whose value
is 1 if nx D ngold and 0 otherwise.

We used all of these metrics to quantify the reconstruction quality of the data
using Gaussian basis function. We used two methods to estimate the vector w. For
the first one, w was chosen as w`2 where the `2 regularization coefficient � is chosen
such that the condition number of AT AC�I is bounded by 107. The second estimate
of w was computed by solving a constrained quadratic programming problem.
We compared the proposed methods with the `1 3D-SHORE method [4], the `2

3D-SHORE method [9], the `2 3D-SHORE method with constraint of monotonic
decrease of the signal along gradient directions and the radial basis functions (RBF)
method [15].

4.2 Phantom Results

Results on the “gold standard” data (where the actual angle D 45ı) with different
methods are summarized in Table 1. For the test data set, the estimated angle
(averaged over the five acquisitions) with different number of gradient directions
are shown in Fig. 1. The percentage of false peaks and NMSE are shown in Fig. 1b,
c respectively. The parameters �0 D 0:002 and �1 D 0:001 were used for all
the Gaussian basis functions and for all experiments done on the test data set.
The estimated ODF’s with 42 gradient directions (two b-values, so a total of 84
measurements) with constrained Gaussians, constrained `2 3D-SHORE, `1 3D-
SHORE and radial basis functions are shown in Fig. 2a–d, respectively.

Note that, the proposed method produces much sharper ODF’s compared to the
3D-SHORE method. Further, from the error metrics shown in Fig. 1, it becomes
clear that the proposed method, while having a slightly higher error in terms of the
estimated angle, is yet very successful in detecting the two peaks (i.e. significantly
lower percentage of false negatives) compared to 3D-SHORE (see Fig. 1b). Further,
the method of 3D-SHORE itself does much better if constraints are added, which
was not done in the method presented in [4, 9].

Table 1 Gold standard error metrics

Method NMSE (%) EA (ı) Method NMSE (%) EA (ı)

Gauss no constraints 0.2 43.8 Gauss with constraints 0.4 42.4

`2 3D-SHORE 0.3 48.8 `2 3D-SHORE with constraints 0.4 48.8

`1 3D-SHORE 0.3 45.8 RBF 0.2 46.5
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Fig. 1 (a) Estimated angle vs. gradient directions. (b) Percentage of false peaks vs. gradient
directions. (c) NMSE vs. gradient directions

Fig. 2 Estimated ODF from measurements on 2 b-value shells with 42 gradient directions each
using: (a) Gaussian basis functions with constraints, (b) `2 3-D SHORE with constraints, (c) `1

3-D SHORE, (d) radial basis functions
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4.3 In Vivo Results

We tested our method on in-vivo human brain data with scan parameters: b-values
of f900; 2;000; 3;600; 5;600g s=mm2 with each b-value shell having 60 gradient
directions. This data set was considered as the “gold-standard” data. To obtain
the test data, we used two subsets of this data. The first set consisted of data
with b-values b D f900; 3;600g s=mm2 and 60 gradient directions on each shell,
while the second set had the same b-values but 30 gradient directions per shell.
For the rectangular region (white box) shown in Fig. 3c, the NMSE for these two
sets compared to the “gold standard” are given in Table 2. The estimated ODF for
the data set with 2 b-value shells and 60 gradient directions using the constrained
Gaussians (proposed) and the constrained `2 3D-SHORE are shown in Fig. 3a and b.

Fig. 3 Estimated ODF for the rectangle region in the color FA image (c) from measurements on
2 b-value shells with 60 gradient directions using: (a) Gaussian basis functions with constraints;
(b) `2 3-D SHORE with constraints; (c) color FA image
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Table 2 NMSE compared to “gold standard”

Test set Gauss Gauss-cons `2 3D-SHORE `2 3D-SHORE-cons `1 3D-SHORE RBF

(%) (%) (%) (%) (%) (%)

1 3.6 3.5 6.5 4.5 7.2 4.3

2 5.6 3.9 7.4 5.4 7.9 7.8

5 Conclusion

In this work, we proposed a novel method of using anisotropic Gaussian functions
centered at several locations in q-space to represent the diffusion signal and derive
analytical expressions for the EAP, the MSD and RTOP. By using the same set of
parameters, we showed the robustness of the proposed method to different number
of gradient directions on a physical phantom data with very high noise (SNR D 8.5).
We also showed that the 3D-SHORE method works better if it is constrained to
ensure monotonic decrease of the signal with increasing b-value. Quantitatively,
the proposed method seems to have lower error in detecting the crossing peaks
compared to 3D-SHORE and RBF. A limitation of the current method is that the
user has to choose the eigenvalues of the tensor for the Gaussian basis functions,
which can be also be chosen by minimizing the fitting error in a leave-one-out cross-
validation scheme [16].
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