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Abstract In Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) the
modeling of the magnitude signal is complicated by the Rician distribution of
the noise. It is well known that when dealing instead with the complex valued
signal, the real and imaginary parts are affected by Gaussian distributed noise and
their modeling can thus benefit from any estimation technique suitable for this
noise distribution. We present a quantitative analysis of the difference between
the modeling of the magnitude diffusion signal and the modeling in the complex
domain. The noisy complex and magnitude diffusion signals are obtained for a
physically realistic scenario in a region close to a restricting boundary. These signals
are then fitted with the Simple Harmonic Oscillator based Reconstruction and
Estimation (SHORE) bases and the reconstruction performances are quantitatively
compared. The noisy magnitude signal is also fitted by taking into account the
Rician distribution of the noise via the integration of a Maximum Likelihood
Estimator (MLE) in the SHORE. We discuss the performance of the reconstructions
as function of the Signal to Noise Ratio (SNR) and the sampling resolution of
the diffusion signal. We show that fitting in the complex domain generally allows
for quantitatively better signal reconstruction, also with a poor SNR, provided
that the sampling resolution of the signal is adequate. This applies also when the
reconstruction is compared to the one performed on the magnitude via the MLE.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) measures the signal
attenuation due to the loss of spin phase coherence caused by particles subject to
Brownian motion. DW-MRI thus is inherently a low Signal to Noise Ratio (SNR)
technique. Indeed, increasing the diffusion-weighting measured by the b-value or
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decreasing the voxel size can further reduce the SNR, causing the signal to be
close to the background noise level [7]. This is particularly problematic when
characterizing the non-Gaussianity of the diffusion signal profile, associated to
restricted diffusion, since a high b-value is generally required [1]. Indeed a nonlinear
dependence between the log-transformed DW intensity and the diffusion-weighting
(b-value), as the sole result of noise, has been previously reported [7]. This can
lead to misinterpretations of the underlying diffusion process which, for instance,
can be erroneously thought as restricted, thus ascribing to the tissue more structural
complexity than exists. However, one of the major sources of error in Magnetic
Resonance Imaging (MRI), and even more accentuated in DW-MRI due to the
inherent low SNR, is the noise.

In MRI the signal, acquired for each coil in quadrature, is complex with an
additive thermal noise that can be considered to be derived from a bivariate normal
distribution N(0, o) [6]. However, when the magnitude of the complex signal is
computed, the noise becomes Rician distributed [S] and a not-negligible noise
floor, the minimum signal measurable, appears. The bias introduced by the Rician
distribution leads to the distortion of estimated quantitative diffusion parameters.
For instance, the noise floor causes the DW signal to be overestimated, leading
to underestimation of the Apparent Diffusion Coefficient (ADC) [4]. Other noise-
related issues have also been reported, such as orientationally dependent deviation
from Gaussianity of the ADC profile, underestimation of diffusion anisotropy
indices and correlation between mean diffusivity and diffusion anisotropy [7].
Hence, denoising is essential in DW-MRI.

To properly denoise magnitude signals, the noise distribution should be taken
into account. However, the distribution of the noise affecting magnitude DW images
(DWIs) changes depending on the number of coils used for the acquisition and
on the employed reconstruction method. For instance, when magnitude images are
obtained from multiple coils after sum-of-squares reconstruction, the noise follows
a non-central y distribution [3]. Nevertheless, the complex diffusion signal is still
affected by noise with a Gaussian distribution, which can be exploited via any
Gaussian-based denoising technique or fitting procedure.

In this paper we analyze the theoretical performance gain given by considering
the complex signal instead of just using the magnitude. The complex signal is
synthetically generated, according to [8], by considering a voxel located close to a
boundary, where the underlying diffusion process is restricted. In fact, by exploiting
the asymmetry, due to the presence of the boundary, of the displacement density
probability of the water molecules, also known as Ensemble Average Propagator
(EAP) [2,13], it is possible to obtain a complex valued signal. The complex signal
is generated along one gradient direction and for a voxel located in the proximity of
a single infinite plate. The noisy complex and magnitude signals are then obtained
and the reconstruction of the magnitude diffusion signal is performed from each
of them. The reconstructed signal, as the linear combination of basis functions,
leads to an effective characterization of the diffusion properties and is a useful tool
for measuring noise-related performances. In this respect we employ the Simple
Harmonic Oscillator based Reconstruction and Estimation (SHORE) [9]. Within
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this framework, a Maximum Likelihood Estimator (MLE), for the reconstruction
based on the Rician magnitude signal, is also proposed for performance comparison.

2 Methods

In this section we present the theoretical framework. First, we present the diffusion
signal equation for a voxel in a position close to a single infinite plate. Then we
recapitulate the SHORE formulation for the signal fitting. Finally we describe the
integration of the MLE in the SHORE.

2.1 Signalin the Proximity of a Single Infinite Plate

When considering a voxel located in the proximity of a restricting boundary such as
an infinite plate, with voxel’s dimensions significantly smaller than the separation
distance between the plate and any other boundary, the magnetization in the voxel is
influenced only by the boundary in the vicinity [8]. A graphical representation of this
scenario is shown in Fig. 1a, where an infinite plate is represented with its normal
aligned with the z-axis, and a voxel with height z, —z; is located at a distance z; from
the plate itself. Using the notation in [8] it is convenient to define the dimensionless
position variable
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Fig. 1 (a) An infinite plate lies along the x-axis, with normal along the z-axis. A voxel is located
at a distance z; from the infinite plate and has a height given by z, — z;. The gradient vector q
makes a right angle with the x-axis toward the positive z-axis; adapted from [8]. (b) Magnitude,
real and imaginary parts of the signal generated according to Eq. 3 for a voxel with z; = 0 and
dimensionless height of 0.25; § = 3ms, A=100ms, Dy = 2.299 X 107" m?/s and G, =
350 mT/m
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where u is the characteristic diffusion length given by

u= /4DoA )

with Dy being the free diffusion coefficient and A the diffusion time. Figure la
also shows the gradient vector which, in this case, is assumed to be aligned with
the positive z-axis. The gradient vector magnitude is then given by ¢ = y3G/2m
where y is the gyromagnetic ratio, § is the diffusion pulse duration and G is
the diffusion gradient strength. The considered experiment is the pulsed gradient
spin echo (PGSE) sequence with pulse duration § small compared to A. Finally,
after defining the dimensionless wave-number x = mqu, the complex signal is
given by [8]
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where ¢; and ¢, are the dimensionless coordinates of the voxel corresponding to z;
and z; via Eq. 1, and F() is
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2.2 Signal Reconstruction
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The signal fitting is performed with SHORE [9], a promising signal reconstruction
method suitable for g-space magnetic resonance. Within this framework the signal
is represented as the linear combination of orthogonal basis functions, result of the
multiplication between a Gaussian and an Hermite polynomial

;i u T —Zr u
$uluq) = i7"y 2,,1/2;,6 24 ] (2 qu) (5)

where 7 is the order of the basis, H, (x) is the nth-order Hermite polynomial and u is
the characteristic data dependent diffusion length or scaling factor to be determined,
for instance by fitting the signal to a Gaussian according to E(gq) = exp(—2m2q*u?).
Our formulation of the basis functions in Eq.5 differs from the one given in [9]
with the introduction of the normalizing factor 24/u+/m, which renders the bases
orthonormal. The bases are well suited for representing the signal in the complex
domain: the even order basis functions are real valued and evenly symmetric
whereas the odd order basis functions are imaginary and show odd symmetry, which
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is precisely the case of the real and the imaginary parts of the diffusion signal. The
normalized diffusion signal in the SHORE representation can thus be expressed by

N—1

E(q) = anpu(u.q) (6)

n=0

where N is the maximum allowed order in the reconstruction and a, are the
coefficients corresponding to the respective bases. The choice of N directly affects
the signal reconstruction: in the case of noisy data, a high order will potentially
cause the reconstruction to follow the noise, whereas a low order will inherently
enforce a smoothing effect. For a given order N the signal reconstruction in the
complex domain is performed by considering the even and odd coefficients for
the real and imaginary parts respectively. In the case of the magnitude signal
reconstruction, only the even coefficients are taken into account. In any case, a
fitting procedure with a Linear Least Squares (LLS) approach is used to estimate
the coefficients.

2.2.1 Maximum Likelihood Estimation

To better take into account the Rician distribution of the noise affecting the
magnitude diffusion signal, the estimation of the coefficients can be performed with
the Maximum Likelihood Estimator (MLE). In the case of Rician noise, the MLE
has been introduced in [12]. Normally several noisy realizations of each signal
sample are required to properly estimate via the MLE. However in the case of
one noisy realization per sample, the signal samples can be interpreted as noisy
realizations of a function, thus the likelihood is given by

L l_[ it ([Ac(le) -

i=l1

where 7 is the number of samples of the magnitude signal, M; is the i-th sample, o2
is the noise variance, A is the real SHORE design matrix, c is the even coefficients
vector and I is the modified zeroth order Bessel function of the first kind. The MLE
is then defined as the estimator maximizing L or equivalently log L

¢y, = argmax (log L) . ©))

The performance of the estimator is expected to increase with the increasing number
of samples of the signal. It should then be noticed that the MLE requires o> to be
given. Thus a prior estimation of the signal noise variance is necessary.
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3 Experimental Results

This section describes the parameters adopted for the generation of the complex
signal (see Sect. 2.1) and how the noisy complex and magnitude signals are obtained
from this. Then, the reconstruction of the magnitude signal with SHORE, starting
from both the complex and the magnitude signals (with both LLS and MLE), i
discussed. Finally we present the way the performances of the magnitude signal
reconstructions are compared.

We generated the complex diffusion signal, according to Eq.3, for a voxel
adjacent to an infinite plate and with dimensionless height of 0.25 (Fig. 1b). A total
of n equally spaced samples of the signal, with n € {2,3,...,100}, is generated
along the direction normal to the infinite plate (Fig. l1a). The sequence parameters
are fixed to G5 = 350mT/m, § = 3ms, A = 100 ms and the physical quantities
to y = 2.675 x 108rad/sT and Dy = 2.299 x 10~ m?/s. Uncorrelated Gaussian
noise with equal variance is added on the real and imaginary parts of the signal,
obtaining the noisy complex signal. From this the magnitude is computed, obtaining
the noisy magnitude signal. The standard deviation of the noise is calculated for
several different SNR values as ¢ = SNR™! relatively to the non-weighted signal
sample (G = 0).

The noisy complex and magnitude signals are then fitted via SHORE according
to Eq. 6. The even (real) and odd (imaginary) SHORE bases are used for the complex
signal fitting whereas only the even bases are used in the case of the magnitude
signal fitting. Moreover the magnitude signal is also fitted with the MLE, obtaining
the vector of the SHORE coefficients according to Eq. 8. To observe the influence
of the maximum allowed order in the SHORE reconstruction N (see Sect.2.2 and
Eq. 6), two orders are tested: one relatively low order N = 6 and one relatively
high order N = 10. However the following discussion is referred to N = 6 and
a comparison with N = 10 will be given later in Sect.4. In order to render the
fitting of the complex and magnitude signals independent from the estimation of the
scaling factor u, in every case the u estimated on the noisy magnitude is also used
for the complex fitting.

After the complex signal fitting a real and an imaginary vectors of coefficients
are obtained, leading to a real and an imaginary reconstructions respectively. These
reconstructions are then used to compute the magnitude reconstruction from the
complex signal fitting (.#(), which is then compared to the one reconstructed from
the noisy magnitude signal via both LLS (.#j) and MLE (.#)y,,, ) based fittings.

We performed the comparison by calculating the Root Sum of Squares (RSS)
value of the residuals between the magnitude reconstructions (¢, Ay, #m,,)
and the ground truth .#Zgr = |E(q)|- The whole procedure is performed with
1, 000 different noise realizations for each couple of SNR and number of samples
n (sampling resolution). Hence a triple of averaged RSS values, RSSc & SDgss,.,
RSSM + SDRSSM and RSSMML + SDRSSMML (RSSML, SDRSSML from now on and in the
figures) is obtained for each pair (SNR, n). For each value of n, the RSS values and
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Fig. 2 Root sum of squares values RSSc, RSSy and RSSy; (a), and standard deviations SDggs,- ,
SDkgss,, and SDgss,,, (b), as functions of the SNR. Each point represents the averaged value over
1, 000 noise realizations with the corresponding SNR. G, = 350 mT/m, with n = 31

their standard deviations can be represented as functions of the SNR, obtaining the
curves {RSS} and {SDgss} as shown in Fig. 2a and b respectively (n = 31).

We also compared the reconstruction performances as function of the signal
sampling resolution, i.e. as function of the number of samples n. In the following
several numbers of samples n will be tested. However, when estimating the SHORE
coefficients, if the number of unknown coefficients is higher than the number of
samples considered for the signal, then the estimation is under determined. This
happens for n < N/2. Figure 3 shows the integral of the difference between the
RSS (light blue) and SDgss (magenta) curves of different techniques, as function of
the number of samples 7. Precisely, it shows the integral values of {RSSys} —{RSSc }
and {SDRSSM} - {SDRSSC} (Flg 33), {RSSML} - {RSSC} and {SDRSSML} - {SDRSSC}
(Fig. 3b), and finally {RSSy } —{RSSmr} and {SDgss,, } —{SDkrss,,, } (Fig.3c). Thus a
positive value globally indicates a better reconstruction (less overall reconstruction
error) for .#¢ compared to .# (Fig.3a), .#¢c compared to .#y,, (Fig.3b) and
My, compared to .4y (Fig.3c). It should be noticed that Fig. 3¢ substantially
describes the difference between Fig. 3a and b.

Figure 4 shows the inter-technique comparisons of the mean RSS values (a,b,c)
and their standard deviations (d,e,f), as function of both the SNR and the sampling
resolution (i.e. n). In detail it shows the differences RSSy, — RSSc (Fig.4a) and
SDRSSM _SDRSSC (Flg 4d), RSSML —RSSC (Flg 4b) and SDRSSML _SDRSSC (Flg 46),
and finally RSSy — RSSuy, (Fig. 4c) and SDgss,, — SDkgss,,, (Fig. 4f). Thus a positive
value (red) indicates a better reconstruction .#¢ compared to .#), (Fig.4a,d), #¢
compared to .#y,,, (Fig.4b,e) and .#y,,, compared to .#y (Fig.4c,f). It should be
noticed that the range of values in the color bars are different. For instance the
amplitude of the range of the performance gain for the complex reconstruction,
compared to the magnitude based one, is higher when the comparison is made with
respect to the LLS fitting (Fig. 4a) than when the MLE is considered (Fig. 4b). The
opposite holds for the performance loss. On the contrary we observe that the range of
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Fig. 3 In light blue the differences between the areas under the RSS curves of two different
compared techniques (i.e. the curves in Fig.2a); in magenta the differences between the areas
under the SDggs curves (i.e. the curves in Fig. 2b). Values are shown as a function of the number of
samples 7. A positive value indicates a globally better reconstruction (less overall reconstruction
error) for .#¢ over .#y (), #c over My, (b)and Ay, over My (€). Gpax = 350mT/m
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Fig. 4 Differences between RSS values (a,b,c) and correspondent SDggs (d,e,f) for different
compared techniques, as function of the SNR and of the number of samples n. A positive value
(red) indicates a better reconstruction for .#¢ compared to .#), (a), .#¢ compared to .#y,,
(b) and .#y,, compared to .#y (c), or less error variance (d,e,f). Each pixel represents the
average value over 1,000 noise realizations for the corresponding SNR and number of samples
n. Guge = 350mT/m
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Fig. 5 The best reconstruction technique as a function of the SNR and the number of samples
n, for a maximum reconstruction order N = 6 (a) and N = 10 (b), see Sect.2.2 and Eq. 6 for
reference. Red, green and blue colors indicate that the signal reconstruction showing less error
is the one performed by fitting the noisy complex signal, .Zc, the noisy magnitude signal with
the Maximum Likelihood Estimator (MLE), .#,, , and with Linear Least Squares (LLS), .#),
respectively. A purple color indicates that the best reconstruction is based on the noisy magnitude
signal fitting, without any preference regarding the estimation technique

the performance gain/loss in the standard deviation is higher when the comparison
refers to the MLE (Fig. 4e) rather than the LLS (Fig. 4d). Finally Fig. 5 shows the
map of the best reconstruction technique for each pair of SNR and n, that is the
technique giving less mean reconstruction error (RSS value). In order to show the
influence of the maximum reconstruction order of SHORE N on the results, maps
are generated for N = 6 (Fig.5a) and N = 10 (Fig. 5b).

We performed the reconstructions also for a signal generated with a set of
parameters closer to that achievable in experimental conditions. In detail the voxel
size is set to 50 um, Gy = 60mT/m, § = 15ms and A = 50 ms. Results are
shown in Fig. 6 for N = 6. More precisely it shows the comparison between the
RSS value of the complex based reconstruction and that of the magnitude based
reconstruction obtained with LLS (Fig. 6a) and MLE (Fig. 6b) respectively. The
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Fig. 6 Differences between RSS values for different compared techniques (a,b) and best recon-
struction technique (c), as function of n and SNR. Results reported for a voxel with side 50 pm
and with G,y = 60mT/m, § = 15ms, A = 50ms. A positive value (red) indicates a better
reconstruction for .#¢ compared to .#y, (a) and for .#¢ compared to .#y,, (b). (¢). Red, green
and blue colors indicate that the signal reconstruction showing less error is the one performed by
fitting the noisy complex signal, .#c, the noisy magnitude signal with the Maximum Likelihood
Estimator (MLE), .#,,, , and with Linear Least Squares (LLS), .#)y, respectively. A purple color
indicates that the best reconstruction is based on the noisy magnitude signal fitting, without any
preference regarding the estimation technique

range of SNR values [2, 20] in the figures is set to that showing major differences
(values different from zero) in the results and corresponds to that generally adopted
[7]. The number of samples n range has been focused to [2, 15], in fact at higher
values the trend is similar to that shown in Fig.4a and 4b. Figure 6¢ finally shows
the best reconstruction technique for SNR values up to 50 and is representative also
for higher SNR up to 100.

4 Discussion of the Results

The noisy complex and magnitude signals have been fitted with the SHORE obtain-
ing the complex .#Z¢ and the magnitude based .#), reconstructions respectively.
The magnitude has also been fitted via MLE, .#y,, . In each of the three cases
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Mc, Mu,, and Ay the reconstruction error has been calculated and compared as
function of the SNR and the number of samples ».

The magnitude reconstruction performed by fitting the complex domain signal,
A, globally shows a better performance (less reconstruction error) compared to
the one based on the LLS fitting on the magnitude, .#4, for n > 5 (Fig.3a).
The performance gain for the complex reconstruction is particularly evident for
SNR < 5 (Fig. 4a), as expected. Indeed at higher SNR values the Rician distribution
is well approximated by a Gaussian [10, 11], thus the performances of magnitude
and complex based reconstructions should be equivalent. However an opposite trend
is registered in case of n = 4, 5.

Moreover a performance dependence with the sampling resolution is observed.
Indeed, by increasing the sampling resolution (7) the complex reconstruction .Z¢
shows less error compared to the magnitude based one .#), also at SNR > 5; with
this regard the range of SNR values in which the performance gain is observed also
increases (Fig.4a). In addition, the amount of error reduction in the case of .Z¢
with respect to .#), increases with n.

Similar observations apply when the complex based reconstruction .#Zc¢ is
compared to that obtained via MLE on the magnitude .#),,,, , but in this case for
n > 11 (Fig. 3b). Indeed the MLE for the magnitude based fitting, sensibly improves
the overall performance with respect to LLS at any sampling resolution, specially
for low SNR values (Fig. 3c). However it should be noticed that the MLE requires
an estimation of the noise variance, and in the present case the exact value was
supplied. The reconstruction improvement given by the MLE over the LLS also
occurs for SNR < 5 (Fig.4c), as clearly represented in the example of Fig.?2a.
In addition the amplitude of the error reduction obtained with MLE over LLS
increases with the sampling resolution (72), whereas the range of SNR within which
a performance gain is observed reduces (Fig. 4¢).

Moreover, a performance loss for the MLE on the magnitude when compared to
the LLS is observed within a region with n < 6 and SNR € [6, 13] at different grades
(Fig. 4c). However the limits of this region seem to be dependent on the maximum
reconstruction order N allowed in the SHORE, as shown in Fig.5a for N = 6
and b for N = 10. In fact when N = 10 the range of the SNR values within which
the performance gain of the MLE over the LLS is observed reduces. On the other
hand the range of the number of samples n within which .#),,, shows less error
than .Zc, at very low SNR, slightly increases. Otherwise, the region in which the
complex based reconstruction is the most performing do not seems to be affected
by the choice of N. However the region where the SHORE estimation is under
determined increases according to N(n = 3 for N = 6and n = 5 for N = 10).

Finally the complex based fitting leads to a reconstruction with an error standard
deviation SDggs. lower than SDgss,, for n > 6 (Figs.3a and 4d). Similar
observations apply when SDgss. is compared to SDgss,, for n > 8 (Fig.3b),
although at low SNR the MLE shows a lower standard deviation (Fig. 4e and f).

Very similar considerations apply when the reconstructions are performed and
evaluated for the case of signal generated with different voxel and pulse sequence
parameters as shown in Fig.6. However in this case the region in which the
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magnitude based reconstruction shows better performances (Fig.6c) is almost
entirely defined by the performance of the MLE (Fig. 6b). Indeed almost everywhere
in this region the performance of the LLS is comparable or inferior to that of the
complex based reconstruction (Fig. 6a). Finally at higher SNR values the complex
based reconstruction is generally the one showing the best performance (Fig. 6¢).

Hence, as shown in Figs.3b, 5a and 6c, at low SNR values it might be better
to perform a reconstruction on the noisy magnitude signal when n < 10 with
order N = 6 and n < 15 with order N = 10 (Fig.5b). Within this region the
MLE generally shows better performances for SNR < 5. However in the rest of
the cases a reconstruction performed in the complex domain generally leads to less
reconstruction error.

5 Conclusions

We have presented a comparative analysis between the magnitude diffusion signal
reconstruction obtained by fitting the complex signal or magnitude signal directly.
For the magnitude signal reconstruction we relied on the SHORE bases for both the
noisy complex and magnitude fittings. In the case of the noisy (Rice distributed)
magnitude fitting we introduced the maximum likelihood coefficients estimation
(MLE) for the SHORE, as an alternative to the Linear Least Squares approach
(LLS). We compared the performance of the reconstructions as a function of both
the SNR and the number of samples in the signal n (sampling resolution).

Our results show that the choice of which reconstruction technique to adopt
mainly depends on the SNR and on the number of samples of the signal, as shown
in Figs.5a,b and 6¢. Depending on these parameters, the best magnitude signal
reconstruction can be achieved for any of the compared techniques. However the
complex based reconstruction reveals to be the most performing at any SNR with
the increasing total number of samples of the diffusion signal. To further improve
its performance, regularization constraints could also be implemented. This would
be beneficial for the estimation of the diffusion parameters.

Despite the difficulty that may be encountered in clinical conditions in achieving
an acquisition setup such as the one here adopted, the presented results might be
directly useful and potentially validated in experimental setups.
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