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Abstract Graph theoretical representations of the brain as a complex network give
a special emphasis to anatomical or functional units of the gray matter. These units
are abstracted as the nodes of a graph and are pairwise connected by edges that
embody a notion of connectivity. Graph theoretical operations in brain network
analysis are typically employed to reveal organizational principles of the network
nodes. At the same time, relatively little attention has been given to connection
properties and the relations between them. Yet, various neuroscientific applications
place an increased importance on connections and often require a characterization
by multiple features per connection. It is not clear, however, how to incorporate
vector edge weights in the standard graph representation. In this paper, we present
a novel Dual graph formalism, in which the role of edges and vertices is inverted
relative to the original (Primal) graph. This transformation shifts the emphasis of
brain network analysis from gray matter units to their underlying connections in two
important ways. First, it applies standard graph theoretical operations to discover
the organization of connections, as opposed to that of gray matter centers. Second,
it helps in removing the single scalar weight restriction and allows each connection
to be characterized by a vector of several features. In this paper, we introduce the
main concepts of this novel dual formalism and illustrate its potential in a population
study on schizophrenia.
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1 Introduction

In recent years, the view that the functional and structural systems of the brain can
be modeled as complex networks has motivated a large amount of research on the
application of graph theoretical concepts to brain network analysis [3, 9].

The standard brain network model consists of a set of nodes, which represent
a partitioning of the cortex and of other gray matter structures. These nodes are
connected via a set of edges, or links, that represent structural and/or functional
connections between gray matter partition units. Such a graph model of the brain’s
network organization can be constructed from a variety of imaging modalities such
as structural MRI, diffusion MRI, functional MRI, or EEG/MEG. In this framework,
a characterization of the organization of the different computational nodes and the
functional or structural interaction between them is achieved via graph theoretical
analysis [3, 9].

In this standard view of the brain network, a natural emphasis is placed on the
nodes of the graph, which represent the computational units of the brain. While
most graph theoretical measures do take edges into account, their ultimate goal is
to describe the relationship between the computational centers, i.e. the nodes of the
graph. The relationship between the edges themselves is often overlooked.

Yet, the study of the brain warrants a deeper investigation into the connections
themselves. In our paper, we focus on structural connectivity networks derived from
diffusion MRI data. In such networks, the graph edges represent white matter tracts.
There is an extensive body of literature that implicates white matter tracts in a
variety of psychiatric disorders such as schizophrenia, autism (and many others),
where the tracts are seen not only as ‘wires’ that link computational nodes that may
be lesioned in some way, but are also seen as lesion sites themselves, as revealed,
for example, by changes in DTI measures such as FA, Trace etc. (see e.g. [6] for a
review of DTI findings in schizophrenia).

The motivation behind our paper is thus to introduce a novel formalism for brain
network analysis that shifts the emphasis from the nodes, which are typically gray
matter structures, to edges, which are typically white matter structures (at least in
the type of structural networks under consideration in this paper). Referring to the
standard brain network graph as the Primal graph, we introduce (a type of) a Dual
graph whose nodes correspond to the edges in the Primal graph. In the graph theory
community, different authors have given to this construct several alternative names:
the line graph, the edge-to-vertex dual, the interchange graph, the adjoint graph, and
others (e.g. [4, 8]). Here, we use interchangeably the names dual graph and line
graph for this construct which we describe in further detail below. It has previously
been used in brain network analysis for wavelet smoothing of connectivity [5], but
not explicitly as a descriptor of the organization of connections (to the extent of our
knowledge).
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1.1 Scalar vs. Vector Weights in Brain Network Analysis

In standard brain network analysis, the edges in the Primal graph may have a scalar
weight associated with them in order to reflect connectivity strength, measured
for example as functional or structural correlation between connected gray matter
regions, or as mean track FA in structural networks based on diffusion MRI [3, 9].
While graph theoretic measures for networks with scalar weights are well-known
and widely used [9], it is not clear how these measures can be extended to the case
of vector-weighted networks. In fact, the analysis of vector weighted networks is
still an open problem. Meanwhile, the ever-increasing abundance of measurements
on white matter tracts in neuroscientific applications highlights further the need to
remove the restriction to single scalar connection weights in traditional network
analysis.

In this paper, we propose a two-step solution to this problem. First, we introduce
a transformation from the Primal graph to a Dual graph, such that weights on edges
in the Primal graph become feature vectors on nodes in the Dual graph. Then,
we introduce a metric on vector weights associated to nodes in dual space. The
Dual graph can then be analysed via standard graph measures, modified to take into
account the metric on feature vectors associated with each node. With this approach,
we achieve a solution to the vector weights problem while incorporating it into a
novel graph formalism, which allows to stress novel aspects of network connectivity.

To summarize, working in the dual space makes it possible to explicitly model
relations between connections in the Primal graph. Furthermore, these connections
can now be characterized by a vector of relevant features as opposed to single scalar
features. We test our approach on a small population study on schizophrenia, where
we show that the dual graph can improve the separation between schizophrenia
patients and normal controls. Of course, the goal of this study is certainly not
to make clinical claims regarding schizophrenia. As a first study based on this
novel methodology, with a small population sample, it is inherently preliminary
and limited, and its purpose is to only illustrate the method and show how it could
be applied in a future clinical study.

2 The Model

Before describing the dual graph model, we first formalize the notions of feature
vectors and distances between them. We then incorporate these concepts into our
novel dual graph formalism, which is designed to facilitate the analysis of network
relations between connections associated with feature vectors.
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2.1 Feature Vectors in Product Spaces

Consider the simple case of two feature vectors .x1; y1/ and .x2; y2/. If Rx and Ry

are 2 metric spaces and x1; x2 2 Rx and y1; y2 2 Ry , then the metric for the product
space Rx � Ry is given by

d 2..x1; y1/; .x2; y2// D d 2.x1; x2/ C d 2.y1; y2/: (1)

Please see [2] for details. This result can be used to formulate geodesic distances
between two feature vectors.

In general, we will be working with m feature vectors fi D .xi1; xi2 : : : ; xin/; i 2
Œ1 :: m�, each with n features. As a first step in computing (1), we need to define the
metrics of each individual feature space. We can endow each of the feature metric
spaces with either an Euclidean or a Riemannian metric. In the Euclidean case, the
metric is simply d.xi1; xj1/ D jxi1 � xj1j. In the Riemannian case, one possible
metric is d.xi1; xj1/ D log.t.xi1/=t.xj1//, where t W R1 ! RC

Sf0g � R0C is a
mapping of the feature value from its native space to the space of non-negative real
numbers.

In this article, we use feature vectors with three features: xFA; xTr; xDisp, which
are the mean values of FA, Trace and Dispersion, respectively, computed over each
track. Dispersion is a measure of track geometry introduced in [10, 11]. The values
of all these three features range from 0 to some maximum value. In the case of FA,
this maximum value is 1. In the case of Trace, it is three times the maximum value of
the diffusion coefficient of free water at normal body temperature, i.e. 0.009 s/mm2.
In the case of Dispersion, the maximum value is � radians. Thus, for these three
features we define t.x/ D x=.xmax � x/ where xmax is the maximum possible value
for each feature, as given above.

These metrics, together with (1) allow us to define geodesic distance measures
on the product space of our feature vectors fi D .xiFA; xiTr; xiDisp/:

dR.fi ; fj / D
s

log

�
t.xiFA/

t.xjFA/

�2

C log

�
t.xiTr/

t.xjTr/

�2

C log

�
t.xiDisp/

t.xjDisp/

�2

(2)

for the Riemannian case, or

dE.fi ; fj / D
q

jxiFA � xjFAj2 C jxiTr � xjTrj2 C jxiDisp � xjDispj2 (3)

for the Euclidean case. Note that these distances could also be used to compute
other operations on the space F of feature vectors, for example the mean of a set of
feature vectors ff1; : : : ; fmg, which can be defined as

minNf2F

mX

iD1

d.Nf; fi /; (4)
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where d can be one of dR or dE as defined above. However, in the present paper,
we only focus on distance.

2.2 The Dual Graph

A network is represented as a graph G D fV; Eg where V is a set of vertices that
are pairwise joined by a set of edges E. Our model is based on the concept of the
line graph, borrowed from graph theory, which defines a dual form of the graph G

[4, 8] and which we will denote as D.G/. Given a graph G, its line graph D.G/

is formed by interchanging the roles of V and E. In other words, the line graph
D.G/ D fVD; EDg has a one-to-one correspondence between its vertex set VD and
the edge set E of G. Furthermore, two vertices in D.G/ are connected if and only
if the corresponding edges in G share a common endpoint (vertex). More formally,

ED D f f.v1; v/; .v; v2/g j
fv; v1; v2g 2 V;

.v1; v/ 2 E; .v; v2/ 2 E g:
(5)

The transformation of the Primal graph G to the Dual graph D.G/ entails that
each vertex of degree k in G results in k.k � 1/=2 edges in D.G/. Isolated nodes
in G, i.e. nodes of degree 0, are not represented in D.G/.

Figure 1 shows a simple example of a graph and its corresponding line graph.
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Fig. 1 A simple example of a graph G and it’s corresponding dual graph D.G/
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3 Experimental Methods

These theoretical tools are combined in a set of experiments designed to illustrate
their application to neuroscientific studies. To this end, we performed a small scale
population study on schizophrenia, where we computed the three features for a set
of connections in each participant. We then used the above distance measures in
computing the standard network measure of global efficiency on the dual graph [9].
This dual approach reveals between-group network differences that are not detected
with a standard analysis on the Primal graph. The efficiency measure was picked as
an example, others are possible as well.

3.1 Subjects and Data Acquisition

Our subject population consists of 14 adult male healthy control subjects and ten
adult male chronic schizophrenia patients. In each subject, diffusion MRI data was
acquired on a GE Signa HDxt 3.0T scanner using an echo planar imaging sequence
with a double echo option, an 8 Channel coil and ASSET with a SENSE-factor
of 2. The acquisition consisted of 51 directions with b D 900 s/mm2, and eight
images with b D 0 s/mm2, with scan parameters TR D 17,000 ms, TE D 78 ms,
FOV D 24 cm, 144 �144 encoding steps, 1.7 mm slice thickness. Eighty five axial
slices covering the whole brain were acquired. Structural MR T1 images at 1 mm
resolution were acquired as well.

3.2 Network Construction and Analysis

In each subject, we computed whole-brain tractography with the filtered tractog-
raphy method of [7], followed by a standard FreeSurfer parcellation of the cortex
(http://surfer.nmr.mgh.harvard.edu), which was then registered to the subject’s dif-
fusion MRI space, specifically to the unweighted b0 volume. From the whole-brain
tractography we extracted all existing connections between pairs of FreeSurfer-
defined cortical areas. As the number of fibers per connection varies across subjects,
we selected those connections that have at least 30 fibers in every subject. There
were 218 such connections. Based on them, we constructed a structural network
graph, our Primal graph G, a schematic view of which is shown in Fig. 2. By
working with only these 218 connections, we ensure to have the same network
representation in all 24 subjects. In this manner, the structural network topology
is not a source of variability, and will not affect the observed between-group
differences.

In each subject, we computed the mean values for FA and Trace along each
of these 218 connections. Additionally, we applied the method of [10] to compute

http://surfer.nmr.mgh.harvard.edu
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Fig. 2 An illustration of our
structural network consisting
of 218 connections, shown
over a translucent rendering
of the brain surface

mean fiber dispersion over each fiber bundle, using a spatial scale parameter S D
8:5 mm. We then computed D.G/, the Dual graph of our Primal brain network graph
G, as described previously in Sect. 2.2. Each node in the Dual graph represents one
of the 218 connections and is associated with a feature vector of three elements, i.e.
the mean values of FA, Trace and Dispersion.

Using the distance measures defined in Sect. 2.1, we then computed the global
efficiency measure on the dual graph using the implementation available in the Brain
Connectivity Toolbox [9]. The global efficiency of a graph is a network theoretic
measure commonly used in brain network analysis, defined as the average inverse
shortest path length in the network [9]. In the case of our dual graph, path length
between nodes translates to similarity between feature vectors. We chose global
efficiency as one possible network measure that can be used to compare graphs. Of
course, many other measures are available, and a future study should investigate
several different network measures, not only one. Here, we restrict ourselves to one
measure for brevity of exposition. Also, we note that previous network analysis
studies have shown global efficiency in functional networks to be abnormal in
schizophrenia [1]. Thus, we chose the global network efficiency as an example
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measure to compare the primal graph vs. the dual graph approach in a population
study in schizophrenia, with results presented next in Sect. 4.

4 Results

It is important to remember that the goal of our experiments is not to make clinical
claims of significance in schizophrenia, but rather to simply illustrate the behavior
of our method and to suggest ways in which it could be used in the future. At this
stage, we only use a small population sample, and all our clinical findings remain
preliminary.

We compared global network efficiency between our groups of schizophrenia
patients and control subjects in a series of experiments, where the efficiency measure
was computed on the Dual graph using either the Riemannian distance measure
(2) or the Euclidean distance measure (3). We performed these comparisons using
the full feature vectors. In addition, to explore the performance of single features
in isolation, we considered modified feature vectors containing only one feature.
The global efficiency measure computed with individual features on the Dual graph
was also compared to the efficiency measure computed in the Primal graph, where
the feature under consideration was used as weight in a classical weighted graph
computation [9]. The results of all these experiments, in the form of p-values, are
summarized in Table 1. We note that network efficiency in functional connectivity
has previously been shown to be abnormal in schizophrenia [1]. Broadly, our results
seem to fall in line with this finding.

Table 1 p-Values for the global network efficiency comparison between our schizophrenia and
controls groups

D.G/, dE D.G/, dR G

FA 0.92 0.83 0.58

Tr 0:0075 0:0075 0.65

Disp 0.15 0:026 0.19

(FA, Tr, Disp) 0.36 0.063

Column heading D.G/ indicates efficiency was computed on the dual graph D.G/, with the
Euclidean distance measure dE (3) or the Riemannian distance measure dR (2). Column heading G

indicates efficiency was computed on the Primal graph G. FA, Tr, Disp indicate the features used
in the feature vector when working with the Dual graph D.G/, or alternatively indicate the scalar
weight used in the Primal graph G. Significant p-values (below 0.05) are indicated in boldface
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5 Discussion

We wish to re-emphasize that the main conclusions to be drawn from our results do
not rest in the specific p-values. Even when the p-value drops below the standard
threshold of 0.05, it is still difficult to make claims of clinical significance given the
small size of the subject population. Rather, we would like to steer the reader’s
attention to the overall pattern of the p-value change. First, we note that the
choice of Euclidean vs. Riemannian distance measure may or may not influence
the comparison result. When the comparison is made with the full feature vector
with three features, the p-value drops to a nearly significant level when choosing the
Riemannian metric over the Euclidean.

Second, our experiments demonstrate that working with the Dual graph, as
opposed to the Primal graph, comes with a ‘dual’ benefit. First, we are no longer
restricted to single scalar features (weights), we can now work with feature
vectors—the equivalent of vector-valued edge weights in the Primal graph. Second,
even when using single scalar features, the dual graph formalism appears to allow
for a better discrimination between the control and schizophrenia groups. An exact
mathematical derivation of why this may be the case is the topic of future work.
At this point, we will point to the fact that in the Primal weighted graph, a path
length is a sum of edge weights. In contrast, in the Dual graph formalism, a path
length is the sum of distances between features. Thus, in some sense, the Dual graph
represents a differential form of the Primal graph. Thus, in the case of the Dual
graph, increased efficiency embodies the notion that along a path, connections have
a smaller variation between their feature vectors, possibly denoting reduced local
‘specialization’. In other words, increased efficiency implies that connections along
a path are more homogeneous in terms of their feature vectors. If some of these
features carry functional information (not in our present paper, but in our future
work), then changes in such similarity could be important to reveal how functional
and structural connection properties change together in a disease. Of course, a full
theoretical analysis of the Dual graph measures is necessary, as well as an extended
analysis of their implications. This will be done in future work.

We believe that this novel Dual graph formalism holds great promise for
highlighting the importance of connections in brain network analysis. In terms of
relevance to brain disorders such as schizophrenia, where white matter abnormali-
ties are known to be important, the Dual graph approach is expected to reveal a novel
view on the organization and distribution of white matter abnormalities in the brain,
in a manner that cannot be directly accessed with traditional track-based studies, or
with the traditional Primal graph approach to brain network analysis.

The present paper was aimed at introducing and illustrating the main concepts.
Future work can proceed in several different directions. First, we showed how a
distance measure between feature vectors can be used to compute a length-based
network measure, namely efficiency. Other network measures, such as clustering
and centrality need to be explored as well. Second, in this paper we worked with
up to three features per connection. Future work will surely explore a wider variety
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of connection features, not all of which need to be tied to DTI. Additionally, we
kept network topology constant across subjects in the present work, in order to
limit potential sources of variability. Future work needs to relax this constraint. In
order to do this, however, first we must understand the effect of thresholding the
network structure. In the present work, our network consisted of connections with
at least 30 fibers in every subject. Future work needs to investigate how robust are
the results relative to variation in this threshold value. In addition to answering all
these methodological questions, the method’s performance in clinical studies needs
to also be further explored, in carefully designed studies with a larger population
size.
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