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Preface

The 2014 MICCAI Workshop on Computational Diffusion MRI (CDMRI) was held
on September 18 in Boston, MA, USA, under the auspices of the 17th International
Conference on Medical Image Computing and Computer Assisted Intervention,
MICCAI 2014. The sixth event in a successful series, CDMRI’14 followed the
exciting and well-attended workshops in 2008, 2010, 2011, 2012, and 2013.

The 18 original research papers collected in this proceedings volume clearly
demonstrate that the field remains as vibrant and diverse as ever. From fundamental
theoretical work on mathematical diffusion modeling to the development of robust
algorithms for tractography and connectivity mapping, diffusion MRI continues
to provide mathematical and computational challenges. We are confident that
the computational research presented at the CDMRI workshop will continue to
provide a unique insight into the microstructure of living tissue, enable in vivo
connectivity mapping of the brain, give fundamental new insights in neuroscience
and neuroanatomy, and support a widespread transfer of diffusion MRI into the
clinic.

We would like to express our gratitude to the members of the Program Committee
for ensuring the quality of the presented work and to Carl-Fredrik Westin for serving
as keynote speaker. It has been our distinct pleasure to welcome participants to
CDMRI 2014 and to provide this record of the exciting work represented at the
workshop.

London, UK Gemma Nedjati-Gilani
Boston, MA, USA Lauren J. O’Donnell
Boston, MA, USA Yogesh Rathi
Freiburg, Germany Marco Reisert
London, UK Torben Schneider
September 2014
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Vector Weights and Dual Graphs: An Emphasis
on Connections in Brain Network Analysis

Peter Savadjiev, Carl-Fredrik Westin, and Yogesh Rathi

Abstract Graph theoretical representations of the brain as a complex network give
a special emphasis to anatomical or functional units of the gray matter. These units
are abstracted as the nodes of a graph and are pairwise connected by edges that
embody a notion of connectivity. Graph theoretical operations in brain network
analysis are typically employed to reveal organizational principles of the network
nodes. At the same time, relatively little attention has been given to connection
properties and the relations between them. Yet, various neuroscientific applications
place an increased importance on connections and often require a characterization
by multiple features per connection. It is not clear, however, how to incorporate
vector edge weights in the standard graph representation. In this paper, we present
a novel Dual graph formalism, in which the role of edges and vertices is inverted
relative to the original (Primal) graph. This transformation shifts the emphasis of
brain network analysis from gray matter units to their underlying connections in two
important ways. First, it applies standard graph theoretical operations to discover
the organization of connections, as opposed to that of gray matter centers. Second,
it helps in removing the single scalar weight restriction and allows each connection
to be characterized by a vector of several features. In this paper, we introduce the
main concepts of this novel dual formalism and illustrate its potential in a population
study on schizophrenia.

P. Savadjiev (�)
Laboratory for Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, USA

Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School,
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4 P. Savadjiev et al.

1 Introduction

In recent years, the view that the functional and structural systems of the brain can
be modeled as complex networks has motivated a large amount of research on the
application of graph theoretical concepts to brain network analysis [3, 9].

The standard brain network model consists of a set of nodes, which represent
a partitioning of the cortex and of other gray matter structures. These nodes are
connected via a set of edges, or links, that represent structural and/or functional
connections between gray matter partition units. Such a graph model of the brain’s
network organization can be constructed from a variety of imaging modalities such
as structural MRI, diffusion MRI, functional MRI, or EEG/MEG. In this framework,
a characterization of the organization of the different computational nodes and the
functional or structural interaction between them is achieved via graph theoretical
analysis [3, 9].

In this standard view of the brain network, a natural emphasis is placed on the
nodes of the graph, which represent the computational units of the brain. While
most graph theoretical measures do take edges into account, their ultimate goal is
to describe the relationship between the computational centers, i.e. the nodes of the
graph. The relationship between the edges themselves is often overlooked.

Yet, the study of the brain warrants a deeper investigation into the connections
themselves. In our paper, we focus on structural connectivity networks derived from
diffusion MRI data. In such networks, the graph edges represent white matter tracts.
There is an extensive body of literature that implicates white matter tracts in a
variety of psychiatric disorders such as schizophrenia, autism (and many others),
where the tracts are seen not only as ‘wires’ that link computational nodes that may
be lesioned in some way, but are also seen as lesion sites themselves, as revealed,
for example, by changes in DTI measures such as FA, Trace etc. (see e.g. [6] for a
review of DTI findings in schizophrenia).

The motivation behind our paper is thus to introduce a novel formalism for brain
network analysis that shifts the emphasis from the nodes, which are typically gray
matter structures, to edges, which are typically white matter structures (at least in
the type of structural networks under consideration in this paper). Referring to the
standard brain network graph as the Primal graph, we introduce (a type of) a Dual
graph whose nodes correspond to the edges in the Primal graph. In the graph theory
community, different authors have given to this construct several alternative names:
the line graph, the edge-to-vertex dual, the interchange graph, the adjoint graph, and
others (e.g. [4, 8]). Here, we use interchangeably the names dual graph and line
graph for this construct which we describe in further detail below. It has previously
been used in brain network analysis for wavelet smoothing of connectivity [5], but
not explicitly as a descriptor of the organization of connections (to the extent of our
knowledge).



Vector Weights and Dual Graphs 5

1.1 Scalar vs. Vector Weights in Brain Network Analysis

In standard brain network analysis, the edges in the Primal graph may have a scalar
weight associated with them in order to reflect connectivity strength, measured
for example as functional or structural correlation between connected gray matter
regions, or as mean track FA in structural networks based on diffusion MRI [3, 9].
While graph theoretic measures for networks with scalar weights are well-known
and widely used [9], it is not clear how these measures can be extended to the case
of vector-weighted networks. In fact, the analysis of vector weighted networks is
still an open problem. Meanwhile, the ever-increasing abundance of measurements
on white matter tracts in neuroscientific applications highlights further the need to
remove the restriction to single scalar connection weights in traditional network
analysis.

In this paper, we propose a two-step solution to this problem. First, we introduce
a transformation from the Primal graph to a Dual graph, such that weights on edges
in the Primal graph become feature vectors on nodes in the Dual graph. Then,
we introduce a metric on vector weights associated to nodes in dual space. The
Dual graph can then be analysed via standard graph measures, modified to take into
account the metric on feature vectors associated with each node. With this approach,
we achieve a solution to the vector weights problem while incorporating it into a
novel graph formalism, which allows to stress novel aspects of network connectivity.

To summarize, working in the dual space makes it possible to explicitly model
relations between connections in the Primal graph. Furthermore, these connections
can now be characterized by a vector of relevant features as opposed to single scalar
features. We test our approach on a small population study on schizophrenia, where
we show that the dual graph can improve the separation between schizophrenia
patients and normal controls. Of course, the goal of this study is certainly not
to make clinical claims regarding schizophrenia. As a first study based on this
novel methodology, with a small population sample, it is inherently preliminary
and limited, and its purpose is to only illustrate the method and show how it could
be applied in a future clinical study.

2 The Model

Before describing the dual graph model, we first formalize the notions of feature
vectors and distances between them. We then incorporate these concepts into our
novel dual graph formalism, which is designed to facilitate the analysis of network
relations between connections associated with feature vectors.
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2.1 Feature Vectors in Product Spaces

Consider the simple case of two feature vectors .x1; y1/ and .x2; y2/. If Rx and Ry
are 2 metric spaces and x1; x2 2 Rx and y1; y2 2 Ry , then the metric for the product
space Rx � Ry is given by

d2..x1; y1/; .x2; y2// D d2.x1; x2/C d2.y1; y2/: (1)

Please see [2] for details. This result can be used to formulate geodesic distances
between two feature vectors.

In general, we will be working withm feature vectors fi D .xi1; xi2 : : : ; xin/; i 2
Œ1 :: m�, each with n features. As a first step in computing (1), we need to define the
metrics of each individual feature space. We can endow each of the feature metric
spaces with either an Euclidean or a Riemannian metric. In the Euclidean case, the
metric is simply d.xi1; xj1/ D jxi1 � xj1j. In the Riemannian case, one possible
metric is d.xi1; xj1/ D log.t.xi1/=t.xj1//, where t W R1 ! RC

Sf0g � R0C is a
mapping of the feature value from its native space to the space of non-negative real
numbers.

In this article, we use feature vectors with three features: xFA; xTr; xDisp, which
are the mean values of FA, Trace and Dispersion, respectively, computed over each
track. Dispersion is a measure of track geometry introduced in [10, 11]. The values
of all these three features range from 0 to some maximum value. In the case of FA,
this maximum value is 1. In the case of Trace, it is three times the maximum value of
the diffusion coefficient of free water at normal body temperature, i.e. 0.009 s/mm2.
In the case of Dispersion, the maximum value is � radians. Thus, for these three
features we define t.x/ D x=.xmax � x/ where xmax is the maximum possible value
for each feature, as given above.

These metrics, together with (1) allow us to define geodesic distance measures
on the product space of our feature vectors fi D .xiFA; xiTr; xiDisp/:

dR.fi ; fj / D
s

log

�
t.xiFA/

t.xjFA/

�2
C log

�
t.xiTr/

t.xjTr/

�2
C log

�
t.xiDisp/

t.xjDisp/

�2
(2)

for the Riemannian case, or

dE.fi ; fj / D
q

jxiFA � xjFAj2 C jxiTr � xjTrj2 C jxiDisp � xjDispj2 (3)

for the Euclidean case. Note that these distances could also be used to compute
other operations on the space F of feature vectors, for example the mean of a set of
feature vectors ff1; : : : ; fmg, which can be defined as

minNf2F

mX

iD1
d.Nf; fi /; (4)
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where d can be one of dR or dE as defined above. However, in the present paper,
we only focus on distance.

2.2 The Dual Graph

A network is represented as a graph G D fV;Eg where V is a set of vertices that
are pairwise joined by a set of edges E. Our model is based on the concept of the
line graph, borrowed from graph theory, which defines a dual form of the graph G
[4, 8] and which we will denote as D.G/. Given a graph G, its line graph D.G/
is formed by interchanging the roles of V and E. In other words, the line graph
D.G/ D fVD;EDg has a one-to-one correspondence between its vertex set VD and
the edge set E of G. Furthermore, two vertices in D.G/ are connected if and only
if the corresponding edges in G share a common endpoint (vertex). More formally,

ED D f f.v1; v/; .v; v2/g j
fv; v1; v2g 2 V;
.v1; v/ 2 E; .v; v2/ 2 E g:

(5)

The transformation of the Primal graph G to the Dual graph D.G/ entails that
each vertex of degree k in G results in k.k � 1/=2 edges in D.G/. Isolated nodes
in G, i.e. nodes of degree 0, are not represented in D.G/.

Figure 1 shows a simple example of a graph and its corresponding line graph.

e1

e2

e3

e4

e5

G

e1

e2

e3

e4

e5
v1

v2

v3

v4

v5

D(G)

Fig. 1 A simple example of a graph G and it’s corresponding dual graph D.G/
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3 Experimental Methods

These theoretical tools are combined in a set of experiments designed to illustrate
their application to neuroscientific studies. To this end, we performed a small scale
population study on schizophrenia, where we computed the three features for a set
of connections in each participant. We then used the above distance measures in
computing the standard network measure of global efficiency on the dual graph [9].
This dual approach reveals between-group network differences that are not detected
with a standard analysis on the Primal graph. The efficiency measure was picked as
an example, others are possible as well.

3.1 Subjects and Data Acquisition

Our subject population consists of 14 adult male healthy control subjects and ten
adult male chronic schizophrenia patients. In each subject, diffusion MRI data was
acquired on a GE Signa HDxt 3.0T scanner using an echo planar imaging sequence
with a double echo option, an 8 Channel coil and ASSET with a SENSE-factor
of 2. The acquisition consisted of 51 directions with b D 900 s/mm2, and eight
images with b D 0 s/mm2, with scan parameters TR D 17,000 ms, TE D 78 ms,
FOV D 24 cm, 144 �144 encoding steps, 1.7 mm slice thickness. Eighty five axial
slices covering the whole brain were acquired. Structural MR T1 images at 1 mm
resolution were acquired as well.

3.2 Network Construction and Analysis

In each subject, we computed whole-brain tractography with the filtered tractog-
raphy method of [7], followed by a standard FreeSurfer parcellation of the cortex
(http://surfer.nmr.mgh.harvard.edu), which was then registered to the subject’s dif-
fusion MRI space, specifically to the unweighted b0 volume. From the whole-brain
tractography we extracted all existing connections between pairs of FreeSurfer-
defined cortical areas. As the number of fibers per connection varies across subjects,
we selected those connections that have at least 30 fibers in every subject. There
were 218 such connections. Based on them, we constructed a structural network
graph, our Primal graph G, a schematic view of which is shown in Fig. 2. By
working with only these 218 connections, we ensure to have the same network
representation in all 24 subjects. In this manner, the structural network topology
is not a source of variability, and will not affect the observed between-group
differences.

In each subject, we computed the mean values for FA and Trace along each
of these 218 connections. Additionally, we applied the method of [10] to compute

http://surfer.nmr.mgh.harvard.edu
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Fig. 2 An illustration of our
structural network consisting
of 218 connections, shown
over a translucent rendering
of the brain surface

mean fiber dispersion over each fiber bundle, using a spatial scale parameter S D
8:5mm. We then computedD.G/, the Dual graph of our Primal brain network graph
G, as described previously in Sect. 2.2. Each node in the Dual graph represents one
of the 218 connections and is associated with a feature vector of three elements, i.e.
the mean values of FA, Trace and Dispersion.

Using the distance measures defined in Sect. 2.1, we then computed the global
efficiency measure on the dual graph using the implementation available in the Brain
Connectivity Toolbox [9]. The global efficiency of a graph is a network theoretic
measure commonly used in brain network analysis, defined as the average inverse
shortest path length in the network [9]. In the case of our dual graph, path length
between nodes translates to similarity between feature vectors. We chose global
efficiency as one possible network measure that can be used to compare graphs. Of
course, many other measures are available, and a future study should investigate
several different network measures, not only one. Here, we restrict ourselves to one
measure for brevity of exposition. Also, we note that previous network analysis
studies have shown global efficiency in functional networks to be abnormal in
schizophrenia [1]. Thus, we chose the global network efficiency as an example
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measure to compare the primal graph vs. the dual graph approach in a population
study in schizophrenia, with results presented next in Sect. 4.

4 Results

It is important to remember that the goal of our experiments is not to make clinical
claims of significance in schizophrenia, but rather to simply illustrate the behavior
of our method and to suggest ways in which it could be used in the future. At this
stage, we only use a small population sample, and all our clinical findings remain
preliminary.

We compared global network efficiency between our groups of schizophrenia
patients and control subjects in a series of experiments, where the efficiency measure
was computed on the Dual graph using either the Riemannian distance measure
(2) or the Euclidean distance measure (3). We performed these comparisons using
the full feature vectors. In addition, to explore the performance of single features
in isolation, we considered modified feature vectors containing only one feature.
The global efficiency measure computed with individual features on the Dual graph
was also compared to the efficiency measure computed in the Primal graph, where
the feature under consideration was used as weight in a classical weighted graph
computation [9]. The results of all these experiments, in the form of p-values, are
summarized in Table 1. We note that network efficiency in functional connectivity
has previously been shown to be abnormal in schizophrenia [1]. Broadly, our results
seem to fall in line with this finding.

Table 1 p-Values for the global network efficiency comparison between our schizophrenia and
controls groups

D.G/, dE D.G/, dR G

FA 0.92 0.83 0.58

Tr 0:0075 0:0075 0.65

Disp 0.15 0:026 0.19

(FA, Tr, Disp) 0.36 0.063

Column heading D.G/ indicates efficiency was computed on the dual graph D.G/, with the
Euclidean distance measure dE (3) or the Riemannian distance measure dR (2). Column headingG
indicates efficiency was computed on the Primal graph G. FA, Tr, Disp indicate the features used
in the feature vector when working with the Dual graph D.G/, or alternatively indicate the scalar
weight used in the Primal graph G. Significant p-values (below 0.05) are indicated in boldface
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5 Discussion

We wish to re-emphasize that the main conclusions to be drawn from our results do
not rest in the specific p-values. Even when the p-value drops below the standard
threshold of 0.05, it is still difficult to make claims of clinical significance given the
small size of the subject population. Rather, we would like to steer the reader’s
attention to the overall pattern of the p-value change. First, we note that the
choice of Euclidean vs. Riemannian distance measure may or may not influence
the comparison result. When the comparison is made with the full feature vector
with three features, the p-value drops to a nearly significant level when choosing the
Riemannian metric over the Euclidean.

Second, our experiments demonstrate that working with the Dual graph, as
opposed to the Primal graph, comes with a ‘dual’ benefit. First, we are no longer
restricted to single scalar features (weights), we can now work with feature
vectors—the equivalent of vector-valued edge weights in the Primal graph. Second,
even when using single scalar features, the dual graph formalism appears to allow
for a better discrimination between the control and schizophrenia groups. An exact
mathematical derivation of why this may be the case is the topic of future work.
At this point, we will point to the fact that in the Primal weighted graph, a path
length is a sum of edge weights. In contrast, in the Dual graph formalism, a path
length is the sum of distances between features. Thus, in some sense, the Dual graph
represents a differential form of the Primal graph. Thus, in the case of the Dual
graph, increased efficiency embodies the notion that along a path, connections have
a smaller variation between their feature vectors, possibly denoting reduced local
‘specialization’. In other words, increased efficiency implies that connections along
a path are more homogeneous in terms of their feature vectors. If some of these
features carry functional information (not in our present paper, but in our future
work), then changes in such similarity could be important to reveal how functional
and structural connection properties change together in a disease. Of course, a full
theoretical analysis of the Dual graph measures is necessary, as well as an extended
analysis of their implications. This will be done in future work.

We believe that this novel Dual graph formalism holds great promise for
highlighting the importance of connections in brain network analysis. In terms of
relevance to brain disorders such as schizophrenia, where white matter abnormali-
ties are known to be important, the Dual graph approach is expected to reveal a novel
view on the organization and distribution of white matter abnormalities in the brain,
in a manner that cannot be directly accessed with traditional track-based studies, or
with the traditional Primal graph approach to brain network analysis.

The present paper was aimed at introducing and illustrating the main concepts.
Future work can proceed in several different directions. First, we showed how a
distance measure between feature vectors can be used to compute a length-based
network measure, namely efficiency. Other network measures, such as clustering
and centrality need to be explored as well. Second, in this paper we worked with
up to three features per connection. Future work will surely explore a wider variety
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of connection features, not all of which need to be tied to DTI. Additionally, we
kept network topology constant across subjects in the present work, in order to
limit potential sources of variability. Future work needs to relax this constraint. In
order to do this, however, first we must understand the effect of thresholding the
network structure. In the present work, our network consisted of connections with
at least 30 fibers in every subject. Future work needs to investigate how robust are
the results relative to variation in this threshold value. In addition to answering all
these methodological questions, the method’s performance in clinical studies needs
to also be further explored, in carefully designed studies with a larger population
size.
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Rich Club Network Analysis Shows Distinct
Patterns of Disruption in Frontotemporal
Dementia and Alzheimer’s Disease
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Abstract Diffusion imaging and brain connectivity analyses can reveal the under-
lying organizational patterns of the human brain, described as complex networks 
of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-
weighted images from 64 participants—15 patients with behavioral variant fron-
totemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), 
and 30 healthy elderly controls. Based on whole-brain tractography, we recon-
structed structural brain connectivity networks to map connections between cortical 
regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’—a 
network property where high-degree network nodes are more interconnected than 
expected by chance. bvFTD disrupts both the nodal and global organization of the 
network in both low- and high-degree regions of the brain. EOAD targets the global 
connectivity of the brain, mainly affecting the fiber density of high-degree (highly 
connected) regions that form the rich club network. These rich club analyses suggest 
distinct patterns of disruptions among different forms of dementia.

1 Introduction

Rapid advances in neuroimaging have revolutionized the study of brain connectivity, 
also known as ‘connectomics’ [1], revealing organizational principles in fiber 
connections and how these contribute to the functional and structural integrity of
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the brain. Structural and functional imaging can be used to create connectivity maps
of the brain. To analyze these maps, advanced mathematical methods have been
employed, such as graph theory, to better understand connectivity patterns in the
healthy [2, 3] and diseased brain [4].

Diffusion weighted imaging (DWI) can be used in structural brain connectivity
studies to assess the global and local breakdown of network integration in degener-
ative disease. Recent concepts that describe network properties—such as the “rich
club” effect—can provide important information on the complexity and higher-
order structure of the brain network. The rich club network is composed of densely
interconnected components that are more heavily interconnected among themselves
than would be expected by chance. Rich club components are highly central and
interconnected regions of the brain [5] that have also been identified as “brain
hubs” [2]. Studying the role and function of these hubs allows us to describe the
brain in terms of a hierarchical ordering, specialization, and level of resilience [3]—
identifying properties of brain networks in health and disease.

In this study we analyzed the nodal and global weighted rich club network in
behavioral variant frontotemporal dementia (bvFTD) and early onset Alzheimer’s
disease (EOAD), as compared to the healthy brain. Prior work suggests that if
in particular the rich club organization is altered, it can cause damage to the
cortical synchronization of the brain [3, 6]. Here, we hypothesize that the rich club
network may be disrupted in both forms of dementia, perhaps leading to disrupted
communication among cognitive systems of the brain. We expected frontal cortical
regions to be disrupted in bvFTD [7], while in EOAD, we hypothesized differences
in the posterior cingulate and precuneus regions [8]. Overall, we aimed to detect
distinct patterns of disruption in the nodal and global organization of the rich club
network. We found, for the first time, severely disrupted global connectivity in
bvFTD participants with lower fiber density in both low- and high-degree cortical
regions. This was accompanied by altered connectivity across more than 60 % of
the nodal connections of the brain. On the other hand, EOAD mainly affected the
global connectivity of the network, and some of the high-degree cortical regions that
form the rich-club. However, unlike in bvFTD, the overall organization of the brain
network in EOAD was relatively preserved.

2 Methods

2.1 Participants and Diffusion-Weighted Brain Imaging

We analyzed diffusion-weighted images (DWI) from 30 healthy controls and
34 dementia patients—15 bvFTD subjects and 19 age-matched EOAD subjects
(Table 1). All 64 subjects underwent whole-brain MRI scanning on 1.5-Tesla
Siemens Avanto scanners, at the MRI Center at UCLA. Standard anatomical T1-
weighted sequences were collected (256 � 256 matrix; voxel size D 1 � 1 � 1 mm3;
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Table 1 Demographic information for the 30 healthy controls, 15 bvFTD and 19 EOAD patients.
The mean age and sex are listed for each diagnostic group

CTL bvFTD EOAD Total

Age 59.5 ˙ 9.6 SD 61.3 ˙ 10.8 SD 57.9 ˙ 4.3 SD 59.5 ˙ 8.7 SD
Sex 13M/17F 7M/8F 7M/12F 27M/37F

TI D 900, TR D 2,000 ms; TE D 2.89 ms; flip angle D 40ı), and diffusion-weighted
images (DWI) using single-shot multisection spin-echo echo-planar pulse sequence
(144 � 144 matrix; voxel size: 2 � 2 � 3 mm3; TR D 9,800 ms; TE D 97 ms; flip
angle D 90; scan time D 5 min 38 s). 31 separate images were acquired for each
DTI scan: 1 T2-weighted images with no diffusion sensitization (b0 image) and 30
diffusion-weighted images (b D 1,000 s/mm2). Image preprocessing was performed
as described in [4]. This was not included here due to space limitations.

2.2 N � N Connectivity Matrix Computation

We performed whole-brain tractography as described in [4]. We used a method
based on the Hough transform to recover fibers, using a constant solid angle
orientation distribution function to model the local diffusion propagator [9].

Each subject’s dataset contained �10,000 useable fibers (3D curves) in total. 34
cortical labels per hemisphere, as listed in the Desikan–Killiany atlas [10], were
automatically extracted from all aligned T1-weighted structural MRI scans with
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

For each subject, a 68 � 68 connectivity matrix was created whereby each
element represented the total number of detected fibers, in that subject, that passed
through each pair of ROIs. The connectivity matrices were normalized by the total
number of fibers extracted for each brain.

2.3 Weighted Rich Club Networks

Graph theory metrics were used to examine the topology of the connectivity matri-
ces. We used the Brain Connectivity Toolbox measures as described previously [11].

The weighted rich club coefficient is a function of the nodal degree, k—the
number of edges that connect to a node. At a particular k level the nodal degree
is computed as:

k D
X

j 2N
aij (1)

http://surfer.nmr.mgh.harvard.edu/
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where ki is the degree of a node i, and aij is a connections status between nodes i
and j (aij D 1 if nodes i and j are connected and aij D 0 otherwise) [4, 12].

We computed the rich club coefficient for each subject’s anatomical network at a
range of k value thresholds (i.e., k D 1–22). To do this, we examined subnetworks,
M, in the connectivity matrix, and computed the nodal degree by counting the links
that interconnected each node i in the subnetwork with k other nodes. Nodes that
had a nodal degree �k were removed from the network. Then, we ranked all the
connections in the network as a function of weight and stored them in a vector,
Wranked. Within M, we selected the degrees larger than k; the number of links
between the components of the subnetwork was counted, E>k, as well as the sum
of their collective weight, W>k. Then, the weighted rich club, �w(k), was computed
as the ratio between W>k and the sum of the ranked weights from Wranked (from the
whole network) given by the top strongest connections in E>k [3].

�w .k/ D W>k
XE>k

lD11
wranked

l

(2)

To normalize the measures, we compared the observed values to a rich club
coefficient computed on an average calculated from 100 randomized networks of
equal size and similar connectivity distribution. This is an important step in the
analysis, as the absolute values provide limited information on network integration
in the brain [2] (Fig. 2a).

�w
norm .k/ D �w .k/

�w
rand .k/

(3)

Rich club subnetworks, as described throughout the study, were set at a high-
degree k-levels (k> 15), as previously reported [3]. As part of our nodal analysis,
we investigated the rich club networks at k D 16 by thresholding the connectivity
matrices at nodal degree, k. We computed the nodal degree on the rich club networks
at k D 16 and compared it between bvFTD and controls, using a linear regression,
with healthy coded at 0 and diseased coded as 1; we covaried for age, sex and
brain volume. Similarly, we compared the EOAD group to controls and, separately,
bvFTD to EOAD. For our global analyses, we tested how the unnormalized and
separately, normalized, rich club coefficients at all 22 k-levels differed in bvFTD,
relative to controls, using the same setup for the linear regression as described
above. Then, we compared EOAD to controls and finally, bvFTD to EOAD. We
used the false discovery rate procedure (FDR) to correct for the multiple tests
performed at each cortical region and at each k level. In addition, we corrected
for the three comparisons between diagnostic groups by adjusting the significance
threshold to 0.05/3.
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3 Results

3.1 Nodal Analysis

In our nodal analysis of the rich club network (at k D 16), over 60 % of the
cortical regions in the bvFTD brain network were less interconnected (43 regions
of 68), relative to healthy controls (FDR critical p-value D 0.016). Among these,
the most affected regions (p-value< 10�10) were the left and right hemisphere
caudal and rostral anterior cingulate, lateral orbitofrontal, rostral middle frontal
and superior frontal regions. In addition, the left hemisphere insula and pars
triangularis were also less interconnected in bvFTD, as was the precentral gyrus
in the right hemisphere (p-value< 10�10) (Fig. 1). Not all regions are listed due
to space limitations. On the other hand, 20 % of the cortical regions (14 regions
of 68) in the rich club had a lower nodal degree in EOAD participants, relative to
healthy controls (FDR critical p-value D 0.010) with most affected regions found in
the left hemisphere posterior cingulate, precuneus and superior frontal region (p-
value< 10�4) (Fig. 1).

When compared to each other, the brain network of bvFTD participants
was significantly less interconnected than the EOAD brain (FDR critical p-
value D 0.013). The left and right hemisphere caudal and rostral anterior cingulate,
lateral orbitofrontal, rostral middle frontal and superior frontal, pars triangularis
had a lower nodal degree in bvFTD (p-value< 10�5); furthermore, the left
hemisphere lateral and medial orbitofrontal and insula were also more affected
in bvFTD. Overall, the left hemisphere was most affected in both bvFTD and
EOAD, indicating that it might be more vulnerable to network disruptions than the
right.

3.2 Global Analysis

The unnormalized rich club coefficient was lower in the diseased groups, relative
to healthy controls (Fig. 2). The unnormalized rich club coefficient was lower
in bvFTD participants, relative to controls (FDR critical p-value D 0.010), but
no difference was detected in EOAD. Furthermore, the bvFTD group had a
lower unnormalized rich club coefficient than EOAD participants (FDR critical
p-value D 5 � 10�4).
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Fig. 1 Average pattern of network connections and group differences in the nodal degree (at
k D 16) between bvFTD and controls (CTL) (top), and EOAD and CTL (bottom). Nodes and
connections in red indicate the presence of rich club components (at k D 16) averaged across all
subjects for bvFTD and EOAD participants; components in black are in the low-degree k-level
regime (k< 16), not included in the rich club network. Most affected cortical regions in disease
with a decrease in nodal degree are indicated in blue along with their connections to neighboring
nodes; blue large spheres are part of the rich club network, but small spheres are not. The bvFTD
network shows a visibly sparse organization, especially in the frontal lobe; EOAD targets the rich
club components of the left hemisphere, but the overall organization of the rich club network is
preserved

In a separate analysis, the normalized weighted rich club coefficient was higher
in the diseased groups, relative to healthy controls (Fig. 2). The normalized rich
club was significantly higher in bvFTD subjects across most of the k-value regime
(FDR critical p-value D 0.016). Similarly, the normalized rich club coefficient was
also higher in EOAD subjects, relative to healthy controls, but mostly in the high
k-level network (k> 13) (FDR critical p-value D 0.016). When we compared the
diseased global networks to each other, bvFTD participants had a significantly
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Fig. 2 (a) Shows the rich club curves, including the unnormalized (�w), normalized (�w
norm)

and randomized rich club (�w
rand) as a function of nodal degree, k, for the weighted group

average networks in healthy controls; a rich club is formed at k> 15. (b) Shows significant
differences (red) in the normalized (FDR critical p-value D 0.016) and unnormalized rich club
coefficient (FDR critical p-value D 0.010) between bvFTD (green) and controls (blue) across
most of the k-value regime. (c) Shows significant differences in the normalized (FDR critical
p-value D 0.016) rich club coefficient between EOAD (purple) and controls mostly in the
high-level k-value regime. (d) Shows significant differences in the normalized (FDR critical
p-value D 0.016) and unnormalized rich club coefficient (FDR p-value D 5 � 10�4) between
bvFTD and EOAD participants. Gray dots on the curves indicate that no differences were detected.
Error bars indicate standard error

higher normalized rich club coefficient than EOAD across the low and high k-level
regime (FDR critical p-value D 0.016).

4 Discussion

Here we analyzed structural brain connectivity by examining the weighted rich
club organization in cognitively healthy controls and participants with dementia
(bvFTD and EOAD). The weighted rich club curves revealed distinct patterns of
disruption in each disease group—bvFTD subjects showed severe nodal and global
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network disruptions in fiber density across the entire k-value regime, while EOAD
participants showed disruptions mainly in the rich club network (i.e., high k-value
regime), suggesting an overall more robust network than bvFTD.

The rich club phenomenon describes the hierarchical “assortative” organization
of the human brain where high degree nodes are more likely to be interconnected
among themselves than expected by chance [3, 13]. The human brain, in both health
and disease, exhibits networks with high connectivity density indicating that the
communication hubs of the brain operate collectively, and not as individual entities
[3]. The findings from our nodal analysis are in line with prior reports that the
central hubs of the human and non-human brain, often called the ‘central brain
module’, include the superior frontal regions, precuneus, posterior cingulate and
insula [2, 5, 14]. We found that these rich club regions are disrupted in disease:
bvFTD participants showed severe alterations in the left and right hemisphere frontal
regions and insula, while EOAD participants showed greatest disruptions in the left
hemisphere precuneus, posterior cingulate and superior frontal region (Fig. 1).

Failure of the central brain module may severely affect global network efficiency,
and the communication among network components [3, 15]. Meanwhile, EOAD
targets the rich club cortical regions of the left hemisphere, which is in line with
some prior work suggesting that the left hemisphere structural connectivity might
be more affected in late-onset AD than the right [4].

The global analysis of the weighted right club coefficient takes into account the
interconnectivity of the densest subnetworks of the brain, as a function of weight
(i.e., fiber density), at each k-level, relative to the top k ranked weights across of
the whole network. Hence, the unnormalized rich club coefficient decreased with
increasing k-value thresholds as nodes are “peeled off” (Fig. 2). When normalized,
using random networks of the same size and degree distribution, this pattern
inverts. The bvFTD brain network is more vulnerable to the erosive decomposition
method of the rich club showing disruptions in fiber density throughout most of
the k-value regime (Fig. 2b). This is indicated by a lower unnormalized rich club
coefficient and higher normalized rich club coefficient, relative to healthy elderly.
In contrast, the early stages of AD showed a more robust network, unaffected in
the low k-value regime, but fiber density was disrupted among the rich club nodes
of the EOAD network, relative to controls (Fig. 2c). Similarly, this is indicated
by a higher normalized rich club coefficient while no differences were detected
in the unnormalized rich club coefficient, compared to controls. Finally, among
the two disease groups, bvFTD seemed to have a more drastically altered global
connectivity, with lower fiber density compared to EOAD (Fig. 2d).

There is room for possible speculation regarding the biological origins of the
low and high-degree k-value regime. It may be that the low-degree k-value regime,
where low degree nodes are eliminated from the rich-club subnetwork, may reflect a
high level of specialization of these nodes [3]. Meanwhile, the high-degree k-value
regime may indicate the absence of a densely interconnected connectome, where
low-degree connections between cortical regions are missing; this may also reflect
levels of differentiation between the densely connected hubs of the network [3].
In our analyses, bvFTD participants had a severely impaired fiber density across
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both the low- and high-degree k-value regime; the lower fiber density may have
eliminated some of the potentially highly specialized low-degree nodes and reduced
the connections among the high-degree nodes, leading to a more sparse rich club
network. This may impair communication with neighboring nodes, and possibly
function. Although EOAD affects the fiber density of major hubs in the network,
the organizational integrity of the high-degree nodes in the rich club network is,
however, relatively preserved.

One limitation of this study is the low spatial resolution of connectome—we
represented the human brain as a network of 68 segmented cortical regions. This
low network resolution may affect the topological properties of the recovered
network [3]. In addition, the number of tractography fibers (�10,000) may also
impact the detection of changes in complex structure and architecture of the white
matter bundles. Overall, our analyses have successfully outlined distinct patterns of
disruption in two different forms of dementia, providing insight into how damage to
the human connectome may occur in degenerative brain disorders.
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Parcellation-Independent Multi-Scale
Framework for Brain Network Analysis

M.D. Schirmer, G. Ball, S.J. Counsell, A.D. Edwards, D. Rueckert,
J.V. Hajnal, and P. Aljabar

Abstract Structural brain connectivity can be characterised by studies employing
diffusion MR, tractography and the derivation of network measures. However,
in some subject populations, such as neonates, the lack of a generally accepted
paradigm for how the brain should be segmented or parcellated leads to the appli-
cation of a variety of atlas- and random-based parcellation methods. The resulting
challenge of comparing graphs with differing numbers of nodes and uncertain node
correspondences has yet to be resolved, in order to enable more meaningful intra-
and inter-subject comparisons. This work proposes a parcellation-independent
multi-scale analysis of commonly used network measures to describe changes in
the brain. As an illustration, we apply our framework to a neonatal serial diffusion
MRI data set and show its potential in characterising developmental changes.
Furthermore, we use the measures provided by the framework to investigate the
inter-dependence between network measures and apply an hierarchical clustering
algorithm to determine a subset of measures for characterising the brain.

1 Introduction

The analysis of brain connectivity has many challenges and requires approaches
dedicated to the analysis of complex systems of interacting components. Thus,
graph theoretical applications are an attractive concept to analyse brain networks
(see e.g. [15]). Brain networks can be defined over various scales, from synapses to
entire brain regions, and a variety of imaging and sensing methods can be used to
infer them, e.g. diffusion MRI (dMRI), functional MRI (fMRI) or EEG. The latter
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two focus on functional networks, in which two brain regions are considered to
have a connection if there exists a correlation in activation (see e.g. [5]). Diffusion
MRI on the other hand infers the underlying structural network by identifying the
probable pathways of white matter tracts connecting regions of interest [7].

Various network-theoretical aspects of brain connectivity have been investigated,
such as segregation and integration [3] and rich club organisation [2, 6], alongside
the study of conditions, such as Alzheimer’s disease [9]. These approaches define
a set of brain regions that act as nodes in a graph. In adults, these regions (parcels)
are assumed to be functionally coherent or anatomically correspondent. For groups
such as neonates, however, due to the significant changes in the developing brain
in this early period, no such gold standard exists. In particular, the lack of such a
standard parcellation and the unknown (and possibly varying) number of regions in
the developing brain strongly motivates the use of random parcellation approaches,
as they rely on fewer assumptions about the underlying anatomy [1]. The stochastic
nature of random parcellation methods, however, can lead to varying number of
nodes in the resulting network, either for the same brain or across different subjects.
This can subsequently lead to artifactual variation in topological network measures
obtained from the brain networks. Network normalisation has been proposed as a
method of eliminating such dependency effectively on a local scale (see e.g. [14]).
Figure 1 shows the dependence of the betweenness centrality as the number of
regions varies over a range of 100–550.

Changes in global network measures have served as a basis to investigate
differences in networks. However, the mentioned dependence on the network size
hinders quantitative comparison of such measures across studies. As suggested in
Fig. 1, determining which subject and which scan (baseline or follow-up) reveals
a higher betweenness centrality is dependent on the number of regions/nodes and
consequently might lead to different results when comparing subjects. Furthermore,
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Fig. 1 Betweenness centrality taken from multiple brain networks defined over a range of 100–
550 regions/nodes for two subjects S1 and S2, each with a baseline scan (� 31 weeks gestational
age (GA)) and a follow-up scan (� 41 weeks GA). The fit for each subject at each scan is based
on a logarithmic function
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the trend of betweenness centrality suggests that the baseline scan may have a
higher betweenness centrality than the follow-up scan at a number of regions
higher than 550. This emphasises the potential bias of the results on the chosen
parcellation scheme. It also emphasises that effects based on age or pathology may
be difficult to detect, if a specific number of regions is chosen. This motivates the
use of parcellations over a range of number of regions and subsequently the use
of multi-scale analyses. Even though network normalisation methods may be able
to eliminate this dependency on a local scale around a set number of regions, on a
larger scale such dependencies might still exist [14].

It has been suggested that networks may undergo basic changes, such as subtle
randomisation [13]. In particular in the early stages of brain development, during
mid- to late-gestation when significant structural changes occur, it is reasonable
to assume that such developmental changes are reflected in the structural network
topology of the brain. This raises the question of how to quantify such changes in
network structure.

In this work we propose the use of a parcellation-independent multi-scale
framework for commonly used network measures in order to describe changes in the
developing brain. This form of multi-scale analysis can use the dependence of the
results of network measures on the number of regions for network characterisation.
Furthermore, by using a reparametrisation, we are able to determine changes in
structural brain networks independent of a specific parcellation scheme of the brain,
with a given number of regions, which in turn allows us to investigate the clustering
of network measures and propose a meaningful subset.

2 Methods and Data

2.1 Network Measures

There are various measures to describe properties of networks. For a more complete
summary and detailed discussion, the reader is referred to [12]. Our analysis focuses
mainly on three types of network measures, commonly thought to describe local
segregation, global integration and prevalence of important nodes. Table 1 broadly
subdivides the measures investigated into these three categories.

Table 1 Division of the measures investigated into three broad categories

Local segregation Clustering coefficient (C), Transitivity (T), Modularity (Q)

Global integration Characteristic path-length (�), Efficiency (E),

Diameter (dia), Eccentricity (ecc), Degree (k)

Node importance Betweenness centrality (BC)
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2.2 Parcellation-Independent Multi-Scale Analysis

The proposed approach begins by parcellating the brain of each subject at multiple
scales, ranging from a coarse scale with larger regions (� 100) to a fine scale
(� 550 regions). Structural networks at each scale are then estimated, based on
probabilistic tractography of the dMRI data for each subject, and using each of its
multiple parcellations. This provides a number of measures of network connectivity
(see Table 1) at a variety of different scales. We use the complete set of values for
each measure to fit a model and subsequently use the model parameters to represent
the data across all scales. The model that is fitted can be determined by the user and
our approach can readily accommodate different choices of models. We find that the
function

m.G/ D a � log.N.G//C b; (1)

where m.G/ is an individual measure obtained from a graph G defined over N.G/
nodes, can be used to reparametrise the network measure over the entire range,
with parameters a and b. These parameters can be estimated with a standard fitting
algorithm and serve as a summary measure for the subject as part of a group
analysis. We emphasise that other functions may be used within this framework
and that the choice of function acts as a parameter of our approach.

This process is repeated for each subject and the parameters a and b can be
used as multi-scale measures to describe the brain networks of all subjects for each
of the original network measures. Furthermore they can be used to compare brain
networks across subjects and across ages in a parcellation-independent manner.
The framework of the parcellation-independent multi-scale analysis is shown
schematically in Fig. 2.

2.3 Correlation

In order to potentially determine a subset of independent parameters for charac-
terising changes in the developing brain we conduct a correlation analysis among
the calculated parameters. As it has been suggested that network measures may be
non-linearly correlated [8], we base our analysis on Spearman’s rank correlation
coefficient.

2.4 Subject and Image Data

Ethical permission was granted by the Hammersmith and Queen Charlotte’s and
Chelsea Hospital (QCCH) Research Ethics Committee and written parental consent
was obtained for each infant.
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Fig. 2 A framework for parcellation-independent multi-scale analysis. Each brain image is
parcellated at multiple scales from a coarse (larger regions) to a fine scale. Subsequent estimates
of structural networks are based on the subjects’ dMRI data. For each network, the fitted models
for global network measures over multiple scales are used for group comparison

As part of studies at Queen Charlotte’s and Chelsea Hospital, serial dMRI data
were acquired from 28 recruited infants born at less than 32weeks GA. Mean GA at
birth was 28:0˙ 2:3 weeks and the mean age at scan was 30:8˙ 1:9 and 41:2˙ 1:2

weeks at the first and second scans respectively.
Each infant successfully underwent 32-direction dMRI at both time points

on a Philips 3T scanner, using an eight channel phased array head coil. Single
shot echo planar imaging dMRI was acquired in the transverse plane in 32-non-
collinear directions using the following parameters: TR: 8; 000ms; TE: 49ms; slice
thickness: 2mm; field-of-view: 224mm; matrix: 128�128 (voxel size: 1:75�1:75�
2mm; b-value: 750 s=mm2; SENSE factor of 2). The individual gradient directions
of the diffusion-weighted images were assessed and 17 of 28 subjects had at least
one gradient removed (maximum: 4, mean: 2.35) due to motion artefacts.

Twenty instances of random parcellations of the cortex into between 100 and
550 small regions were obtained for each subject using Poisson disk sampling [4].
We emphasise that the use of a probabilistic parcellation method is beneficial, as
the optimal number and location of brain regions in neonates for the purpose of
connectivity analysis is unknown. The approach allows distinct parcellations across
a large number of regions to be readily generated, enabling stochastic analysis
methods to be applied. Diffusion MRI data were pre-processed using the FSL’s
Diffusion Toolkit and corrected for geometric distortions. Subsequently a voxelwise,
two compartment “ball-and-stick” diffusion model (implemented as BedpostX in
FSL) was fit to the diffusion data, with a maximum of two fibre populations
per voxel. A probabilistic diffusion tractography algorithm (modified version of
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ProbtrackX [11]) was applied to each parcellation in order to generate structural
networks, where the connections were weighted by the mean integrated anisotropy
along the streamlines that reached their target. For more details the reader is referred
to [2].

3 Results

3.1 Multi-Scale Analysis

In order to analyse our datasets, we fitted the model given by Eq. 1 to the global
network measures generated by 20 parcellations over a range of 100–550 regions.
The results for parameters a and b are given in Fig. 3. The values represent the group

Fig. 3 Box-plots for the model parameters a (top) and b (bottom) for each measure at both time
points. Values represent the group at each scan, where the subjects of scan one and two were
30:8 ˙ 1:9 and 41:2 ˙ 1:2 weeks old, correspondingly. One and two stars next to the measure
name represents P -values of P < 0:01 and P < 0:001, correspondingly
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Table 2 Coefficients of determination of a linear fitting model and the logarithmic fitting model
(given by Eq. 1) for each network measure averaged over 56 subjects

BC k C Q � E ecc dia T

Linear model 0.919 0.748 0.904 0.923 0.976 0.929 0.881 0.872 0.903

Logarithmic model 0.986 0.894 0.989 0.988 0.982 0.992 0.894 0.881 0.990

The average standard deviation of the coefficients of determination over all measures for the linear
and logarithmic model are 0:053 and 0:045, respectively

at each scan. The stars indicate P -values obtained from a paired t-test of P < 0:01

(*) and P < 0:001 (**).
Our results suggest that parameter a changes highly significantly with age for

all network measures. Parameter b changes highly significantly for all measures,
except modularityQ.

In order to assess the quality of fit, we calculated the coefficient of determination
R2 for each measure and each subject.R2 2 Œ0; 1� represents the amount of variation
in the data explained by a given model and is equivalent to 1/0 if all/none of the
variation in the data is captured by the model. We furthermore compared the results
for R2 for the logarithmic model given by Eq. 1 to a linear model. The results are
given in Table 2.

Our results show that the logarithmic model explains on average 95% of the
variation within the data and outperforms a linear model for all network measures.

3.2 Determining an Independent Subset of Measures

In a further test we analysed the non-linear correlations between the model
parameters across the network measures. Our results indicate a high correlation
between the model parameters for all network measures, with an average absolute
correlation coefficient of 0:68 and 0:58 for parameters a and b respectively. Our
results support the suggestion that most network measures are highly correlated, as
presented e.g. [10], suggests that the computation of all network measures may be
unnecessary for the characterisation of the changes within brain networks.

In order to determine a comparatively independent subset of measures, we
conducted a hierarchical cluster analysis using the absolute value of the correlations
for each parameter individually and for the combination of both, where we calcu-
lated the combined correlation by taking the geometric mean of the corresponding
individual absolute values for a and b. Figure 4 shows the results of the complete-
linkage hierarchical cluster analysis.

In order to pick a number of clusters nc , we analysed the dendrogram presented
in Fig. 4 in terms of consistency. All three provided the same clustering for
nc 2 f2; 4;� 6g. The choice of clusters, as it presents an open challenge, is user
dependent and difficult to determine in a data driven analysis. For example, based on
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Fig. 4 Complete-linkage hierarchical cluster analysis performed on the pairwise measure correla-
tions, based on the individual and combined correlations of parameter a and b

a choice of four clusters, our work suggests a grouping of fC; T;E;BCg, fecc; diag,
fk; �g and fQg, where any combination may be used to build a subset of measures
to investigate changes in brain networks.

4 Conclusion

In this work, we introduced a multi-scale framework for analysing network mea-
sures that can be used to characterise changes in brain networks, circumventing
the dependency on the parcellation scheme. Our approach allows for analysis of
networks in two ways. First, the off-set parameter b may be used in a similar way to
global network measure comparison, however, the benefit of our approach lies in the
independence of changes in parcellation scale. The second model parameter, a, on
the other hand may provide insight into the underlying network type. This has been
suggested in the results of Zalesky et al., which show that clustering coefficient and
characteristic path-length in complete random networks have a different slope than
brain networks across a large number of regions [16]. Further investigation is needed
to show in more detail if these changes can be used as biomarkers in order to assist
in the early detection of mental and developmental diseases and their dependency
on the dMRI and tractography model.

Interpreting the changes of b in our analysis in a similar way to global network
measure comparison indicates that the brain develops towards a higher efficiency
with respect to information flow on local scales. This reinforcement of local
segregation is highlighted by the increase in clustering coefficient and transitivity.
However, measures thought to reflect global integration appear to decrease with
age (decreasing degree and increasing characteristic path-length, diameter and
eccentricity), but with a contrasting increase in efficiency. These results differ from
previously published studies which suggest an increase in both local segregation and
global integration over this period [14]. Further analysis regarding the interpretation
of b with respect to changing network topology is necessary. The aim of future
work will be to determine if this approach is compatible with direct global
network measure comparisons, which in turn might indicate an inherent bias on
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the parcellation scheme of the latter. The change of parameters a may suggest a
fundamental change of the underlying structural brain network, as one might expect
in these early stages of brain development.

Our work highlights further the inter-measure dependence. It suggests that
commonly used network measures are correlated and thus may reflect the same
underlying topological features. In this work we showed their interdependence
independent of the parcellation scheme, number of nodes and processing steps
such as normalisation. Furthermore, we used our results to propose a subset of
measures, which can be used to investigate changes in brain networks. We note that
finding a maximally independent subset of measures would not only be beneficial
for computational reasons, but also for second order analysis, where artefactual
correlations are removed from the data.
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Multiple Stages Classification of Alzheimer’s
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Abstract To classify each stage for a progressing disease such as Alzheimer’s
disease is a key issue for the disease prevention and treatment. In this study, we
derived structural brain networks from diffusion-weighted MRI using whole-brain
tractography since there is growing interest in relating connectivity measures to
clinical, cognitive, and genetic data. Relatively little work has used machine learning
to make inferences about variations in brain networks in the progression of the
Alzheimer’s disease. Here we developed a framework to utilize generalized low rank
approximations of matrices (GLRAM) and modified linear discrimination analysis
for unsupervised feature learning and classification of connectivity matrices. We
apply the methods to brain networks derived from DWI scans of 41 people with
Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly
healthy controls and 221 young healthy controls. Our results show that this
new framework can significantly improve classification accuracy when combining
multiple datasets; this suggests the value of using data beyond the classification task
at hand to model variations in brain connectivity.
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1 Introduction

Alzheimer’s disease is by far the leading form of dementia. There is no cure for the
disease, which worsens as it progresses, and eventually leads to death. According
to the studies of Alzheimer’s Disease Neuroimaging Initiative (ADNI) and other
large-scale multicenter studies, this disease has been described into four stages:
health control (HC); early mild cognitive impairment (EMCI), late mild cognitive
impairment (LMCI) and Alzheimer’s disease (AD) [1–3]. HC means there is no
sign/clue that subject have any cognition impairment, while EMCI and LMCI
are the middle stages in time for disease detection. AD is the last stage when
there is clearly clue that disease has been onset. Defining at-risk stages of this
disease is crucial for predementia detection, which in turn is the requirement for
future predementia treatment. In literature, the Alzheimer’s disease multiple stages’
classification is mainly based on subjective questionnaire [1, 4]. Here we adopted
machine learning method to explore multiple stages’ automatic classification using
diffusion-weighted MRI (DW-MRI).

DW-MRI is a non-invasive brain imaging technique, sensitive to aspects of the
brain’s white matter microstructure that are not typically detectable with standard
anatomical MRI [5]. With DWI, anisotropic water diffusion can be tracked along
the direction of axons using tractography methods. When tractography is applied to
the entire brain, one can reconstruct major fiber bundles and describe connectivity
patterns in the brain’s anatomical network [6]. Brain networks and topological mea-
sures derived from them have been shown to be highly associated with aspects of
brain function and clinical measures of disease burden [7]. Some studies have begun
to apply machine learning techniques to identify network features that differentiate
people with various neurological and psychiatric disorders from matched HC [8].
However, most studies focus only on identifying abnormal connectivity patterns in
a single disease, compared to controls, and not intermediate stages of the disease,
using only using one dataset to do so. While this may improve our understanding
of the outcome of the disease, when applying the same analysis to a new disease
or a new dataset, the model must be re-trained and re-evaluated. Often, disease
effects (or effects of other predictors on brain networks) are subtle and may not
be detected in one dataset alone, or may show conflicting results across datasets.
In this light, consortia such as Enhancing Neuro Imaging Genetics through Meta-
Analysis (Enigma) have been formed to jointly analyze over 20,000 brain scans
from patients and controls scanned at over 100 sites worldwide to meta-analyze
effects on the brain [9]. This allows researchers to compare effect sizes obtained
with different imaging protocols and scanners, but also across different diseases.
The notion of who qualifies as a healthy control may also depend on the dataset
and may not represent the healthy population at large. If multiple datasets are used
to model normal variation, then arguably diagnostic classification may be improved
without retraining new models for every disease and every new dataset.

When pooling scans from patients with a variety of diseases, or at different
stages of disease progression, machine learning techniques can classify the data
into diagnostic groups. This may involve feature extraction, dimension reduction,
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model training and testing. For example, principal component analysis (PCA) uses
an orthogonal linear transformation to convert observations of potentially correlated
variables into a new set of linearly uncorrelated principal components (PC). New
datasets can then be classified into groups based on PC-projected features. Linear
discriminant analysis (LDA) can also be used for dimensionality reduction and
classification. It finds a linear combination of features that optimally separates
two or more classes. LDA and PCA both use linear combinations of variables to
model the data. LDA models the differences between classes within the data, but
PCA seeks components that have the highest variance possible under the constraint
that they are orthogonal to (i.e., uncorrelated with) the preceding components [10].
These dimensionality reduction methods assume that the data form a vector space.
Here, each subject’s data is modeled as a vector and the collection of subjects is
modeled as a single data matrix. Each column of the data matrix corresponds to
one subject and each row corresponds to a feature. There are disadvantages of this
vector model, as it overlooks spatial relations within the data. To overcome this,
generalized low rank approximations of matrices (GLRAM) has been proposed to
use a lower dimension 2D matrix to obtain more compact representations of original
data with limited loss of information [11].

In this study, we combined two different datasets collected with both standard
T1-weighted MRI and DW-MRI and created connectivity networks for all study
participants. Both datasets had scanned healthy controls; one had also scanned
patients with Alzheimer’s disease and patients with early and advanced signs of mild
cognitive impairment (early MCI and late MCI respectively). We merged this data
hypothesizing that we could automatically classify the scans into four groups (HC,
EMCI, LMCI, and AD) using brain networks as the raw features. We used GLRAM
to first reduce the dimensionality, and then applied LDA in the PCA subspace to
classify the data. Classification of data from multiple sites and scanners will help us
to understand differences in disease progression, ideally unconfounded by scanner
differences.

2 Subjects and Methods

2.1 Data Description

Table 1 summarizes the two datasets used in this study. For all datasets, participants
were scanned with both DW-MRI and standard T1-weighted structural MRI.

The first dataset included 221 healthy young adults. Images were acquired with
a 4T Bruker Medspec MRI scanner, using single-shot echo planar imaging with
the following parameters: TR/TE D 6,090/91.7 ms, 23 cm FOV, and a 128�128
acquisition matrix. Each 3D volume consisted of 55 2-mm axial slices, with no
gap, and 1.79�1.79 mm2 in-plane resolution. Hundred and five image volumes were
acquired per subject: 11 with T2-weighted b0 volumes and 94 diffusion-weighted
volumes (b D 1,159 s/mm2).
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Table 1 Summary of data used in this study

Dataset 1 Dataset 2

Type Number Age Sex Number Age Sex (M)

HC 221 24.1˙2:1 85M 47 72.6˙6:2 21

EMCI
N/A

73 72.3˙7:9 44

LMCI 38 72.6˙5:6 24

AD 41 75.5˙9:0 25

Fig. 1 Flowchart of proposed framework for connectivity based disease classification

The second dataset was from ADNI2, the second stage of the Alzheimer’s disease
neuroimaging initiative (ADNI), publically available online (http://adni.loni.usc.
edu). This dataset has 199 subjects, which includes 47 healthy elderly controls,
111 with mild cognitive impairment (MCI) and 41 with Alzheimer’s disease (AD).
Images were acquired with 3T GE Medical Systems scanners at 14 sites across
North America. Each 3D volume consisted of 2.7 mm isotropic voxels with a
128�128 acquisition matrix. Forty six image volumes were acquired per subject:
5 T2-weighted b0 images and 41 diffusion-weighted volumes (b D 1,000 s/mm2).

2.2 Proposed Framework

First, we first used GLRAM to create dimensionality-reduced matrices for each
subject. These new matrices were used as input to LDA on PCA for model training.
Adaptive 1-nearest neighbor classification (A-1NNC) was used to label the test
cases. The framework’s flowchart is shown in Fig. 1.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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2.2.1 Brain Network Computation

In this study, we used the subjects’ structural networks as features for classification.
To compute the brain networks, FreeSurfer (http://freesurfer.net/) was run on the T1-
weighted images to automatically segment the cortex into 68 unique regions (34 per
hemisphere). This segmentation was dilated with an isotropic box kernel of 5 mm to
ensure cortical labels would intersect with the white matter tissue in areas of reliable
tractography for the connectivity analysis. We registered the T1-weighted intensity
image to the fractional anisotropy (FA) image from the DWI data. The resultant
transformations were used to transform the dilated cortical segmentations into the
DWI space.

DWI images were corrected for eddy current distortions using FSL [12]. Then we
used an optimized global probabilistic tractography method [13] to generate whole
brain tractography for each subject. We combined the cortical segmentation and
tractography to compute a connectivity matrix for each subject. The matrices were
68�68 in dimension, corresponding to the 68 segmented cortical regions. Each cell
value of the matrix represented the number of fibers that intersected pairs of cortical
regions. We normalized the matrix by the total number of fibers per subject. This
symmetric 68�68 matrix served as the input for our classification.

2.2.2 Data Normalization

Some form for data normalization is critical especially when working with data
from different cohorts or projects, covering a wide age range. So directly pooling
two datasets may introduce bias, if the proportion of controls depends on the scanner
used or scanning site. To account for these confounds, we used generalized linear
regression to adjust each value in the brain connectivity matrix for age, sex and
scanning site. Then we further normalized the residual after regression to yield
centered, scaled data, which served as the input for next step. This normalization
used a Z-transformation based on the standardized statistic ZD(X-mean(X))/std(X),
where X is one feature vector within each dataset. For our connectivity matrix, X is
element (i,j) for all subjects in each dataset.

2.2.3 GLRAM

The purpose of GLRAM, proposed in [11], is similar to singular value decomposi-
tion (SVD) but has lower computational cost; it finds a lower rank 2D matrix Di to
approximate the original 2D matrix Ai, realizing the following function:

min
L;R;D

NX

iD1

�
�Ai � LDiR

T
�
�2
F

(1)

http://freesurfer.net/
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Here, Ai is each subject’s raw brain network, N is the total number of subjects,
Di is the reduced representation of Ai ; and L and R are transformation matrices on
the left and right side, respectively. F is the Frobenius norm. Details of how to solve
this cost function optimization problem are in [11].

2.2.4 LDA on the PCA Subspace

PCA finds linear projections that maximize the scatter of all projected samples.
Mathematically, given a set of N subjects X D fx1; x2; : : :xN g, where each subject
belongs to one of C classes X1, X2, . . . XC , we plan to map xi to yi where yi 2
Rm and m<n. To do this, we define a linear transformation W to satisfy yiDWT xi
(iD1,2,. . . N). In PCA, the optimal projection Wopt�pca is defined as:

8
<

:

Wopt�pca D arg maxw

ˇ
ˇW T STW

ˇ
ˇ

ST D
NP

iD1
.xi � �/.xi � �/T

(2)

Here � 2 Rn is the mean value of all samples. And Wopt�pca D
fwi 2 Rn ji D 1::m g is the set of eigenvectors of ST corresponding to the m largest
eigenvalues. Once eigenvectors are determined, all data can be projected into this
eigenspace for classification. However, PCA is not optimal for classification as the
dimensions that model the greatest amount of variance in the data are not typically
the ones that best differentiate groups. In other words, the discriminant dimensions
could be thrown out or intermixed during PCA.

LDA seeks a projection to maximize the ratio of the determinant of the between-
class scatter matrix (SB ) of the projected data to the determinant of the within-
class scatter matrix (SW ) of the projected data. However, the within-class scatter
matrix SW in LDA is typically singular. This is because the number of subjects
is often much smaller than the number of variables in the data. To overcome the
complication of a singular SW , we adopted the solution in [14]. In short, C is the
number of classes, so we first adopted PCA to reduce the dimension of the feature
space to N-C , and then we applied the standard LDA to reduce the dimension to
C-1, so the transformation Wopt is given by:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Wopt D Wopt�pcaWopt�pca�lda

Wopt�pca�lda D arg maxw
jW TW T

opt�pcaSBWopt�pcaW j
jW TW T

opt�pcaSW Wopt�pcaW j
SB D

CP

iD1
Ni.�i � �/.�i � �/T

Sw D
CP

iD1
P

xk2Xi
.xk � �i /.xk � �i/

T

(3)

Where �i is the mean vector of class Xi , and Ni is the number of samples in
class Xi . Also, Wopt�pca can be computed using Eq. 2.
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2.2.5 Adaptive 1-NNC

We classified the subject’s class membership based on the Euclidean distance using
1-nearest neighbor classification (1-NNC). 1-NNC is designed to assign an object
to the same class as its single nearest neighbor. Adaptive 1-NNC (A-1NNC) is a
variation of 1-NNC. The test objects’ class membership is still decided based on
the class membership of the single nearest-neighbor used for training, but once a
new test object’s class membership has been determined, it is grouped into training
group to enhance the membership class affinity.

2.3 Experimental Procedure

The detailed procedure is described as follows:

1. Construct the brain network for each subject in both datasets.
2. Data Normalization to get input matrix A.
3. Group subjects into four classes: HC, EMCI, LMCI and AD.
4. Divide each class into three parts by randomization: training (80 %), optimizing

(10 %) and testing (10 %).
5. Pick up training dataset Atrain

6. Set the initial dimension size to run GLRAM on Atrain to get Ltrain, Rtrain and
DtrainDD1, D2, . . . DN for each class (using Eq. 1)

7. Transfer Dtrain into vector xi and form matrix XtrainD{ x1, x2, . . . xN }
8. Run LDA in PCA subspace to get Wopt (using Eq. 3) and get the projected data

YtrainD y1, y2, . . . yN DWoptX
9. Then the projection of the optimizing dataset Aoptimizing can be generated using

Eq. 4.
10. Use A-1NNC classification to assign Y

0

optimizings class based on Ytrain and
compute the accuracy by comparing the assigned membership to ground truth

11. Then adjust the parameter in Step 6, re-run steps 6–10 to find the optimal
parameter for the dimension of L and R in Eq. 1 that achieves best accuracy

12. Use this optimal parameter achieved in Step 11, and use the test dataset to test
our framework and get final grade

13. Repeat steps 4–12 (100 times) and compute the area under the curve (AUC)
for overall classification accuracy, as well as for the accuracy of each class. The
higher the AUC, the better the model performance.

8
<

:

Doptimizing D LTtrainAoptimizingRtrain

Doptimizing ! Xoptimizing

Yoptimizing D WoptXoptimizing

(4)
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3 Results and Discussion

Before we ran classification experiments, we first studied the effects of pooling
datasets 1 and 2 together. A testable null hypothesis is that the feature set in
the dataset 1 and dataset 2 are independent random samples drawn from Normal
distributions with equal means and equal but unknown variances. As each subject’s
brain network is symmetric and has dimension 68�68, we have 68�67/2D2,278
features per subject. Thus we adopted false discovery rate (FDR) to account for the
multiple comparisons (FDR q D 0.05). Figure 2 shows the FDR-corrected P map
from a Student’s t-test between dataset 1 (all HC) and HC from dataset 2. Our results
showed that by using our proposed normalization methods, there are no detectable
differences between the HCs in dataset 1 and dataset 2. Given this information, we
pooled data bettering an effort to boost statistical power.

Fig. 2 An FDR-corrected P map (on a log scale) for the null hypothesis asserting that features
in datasets 1 and 2 are independent random samples drawn from Normal distributions with equal
means and equal but unknown variances. All P values larger than the critical FDR threshold have
been set to zero. The top left map is for the raw brain networks (generated in Sect. 2.2.1). The top
right map is for residual brain networks after the effects of age and sex are removed (regression on
age, sex and data label, described in Sect. 2.2.2). The bottom map is for normalized brain networks
generated as in Sect. 2.2.2
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Table 2 Comparison of AUCs

Overall HC EMCI LMCI AD

Dataset2 only

Direct PCA 26.19 26.50 46.47 17.50 22.44

LDA in the PCA subspace 26.31 59 21.20 9.25 13.67

GLRAM only 26.74 53.1 14.38 12.38 21.22

Proposed method 40.48 40 53.33 37.50 22.22

Dataset1+Dataset2

Direct PCA 65.43 82.36 5.25 5.75 14

LDA in the PCA subspace 66.48 90.14 5.2 2 5.11

GLRAM only 80.69 99.96 43.40 15 21.33

Proposed method 83.62 100 46.67 37.50 33.33

A higher value indicates greater accuracy

Then we compared our proposed method with the other three methods including:
direct PCA, LDA in the PCA subspace, and GLRAM only. Table 2 shows the AUC
comparison for the 4-class (HC, EMCI, LMCI and AD) classification results using
dataset 2 only and then also using both datasets for defining the PCs. The results
indicated that our proposed framework performed better than other methods. As
shown in Table 2, PCA showed the poorest performance, which is reasonable as
PCA emphasizes the data variance, which is not necessarily useful for classification.
Also, GLRAM performed better than LDA. The possible explanation could be
that our features were the full brain networks, which emphasized the connections
between the nodes. So there may be some 2D spatial information in the features that
are ignored in the vector space model (LDA). Moreover, HC classification accuracy
improved when adding dataset 1, suggesting the advantage of pooling data, so long
as appropriate normalization is applied.

4 Conclusion

Here we presented a novel framework using GLRAM and modified LDA to reduce
the dimension of a 68�68 element structural brain connectivity network. We then
used Adaptive-1NNC to classify patients with different stages of Alzheimer’s
disease versus healthy controls. Our proposed method outperformed classical
classification methods, but incorporating healthy controls from additional datasets
also improved classification.

As our proposed framework is based on some elementary approaches (such
as PCA and LDA), we compared these methods to ours, instead of other more
complex approaches. In future work, we will try more sophisticated approaches.
As an innovation, most current studies focus on one type disease vs. HC, while our
target is for a more complicated (realistic) situation and we know there are ways to
improve the proposed framework. Our current results indicate that our approach is
promising.
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The Added Value of Diffusion Tensor Imaging
for Automated White Matter Hyperintensity
Segmentation
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and Koen L. Vincken

Abstract Automated white matter hyperintensity (WMH) segmentation techniques
for brain MRI often employ voxel-wise classifiers, trained on traditional features
such as: multi-spectral MR image intensities, spatial location, texture, or shape.
Recent studies show that diffusion tensor imaging (DTI) provides a measure
for WMH, independent from the commonly used FLAIR images. Hence, we
hypothesized that adding features derived from DTI to a voxel-wise classifier for
WMH segmentation may have added value and improve segmentation results.

A k nearest neighbour (kNN) classifier was implemented and trained on
various combinations of features. Manual delineations of WMH were available for
20 subjects. Classifiers trained with diffusion features, such as fractional anisotropy
and mean diffusivity, are compared to an equivalent classifier without diffusion
features. Evaluation measures are sensitivity and Dice similarity coefficient (SI).

Adding diffusion features to a kNN classifier significantly (Student’s t-test, p <
0:0001) improved the quality of the segmentation. Depending on the chosen kNN
parameters and features, improvements in sensitivity ranged from 2.4 to 13.5 % and
in SI from 4.7 to 18.0 %.

In conclusion, adding diffusion features derived from DTI to a voxel-wise classi-
fier for WMH segmentation significantly improves the quality of the segmentation.

1 Introduction

Vascular lesions in the brain, like white matter hyperintensities (WMH), are
commonly encountered on MR images of elderly people and are associated with
cognitive impairment, vascular risk factors, and an increased risk for future stroke,
dementia, and death [8, 16, 23].
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WMH are usually visualized on MRI with a FLAIR sequence, on which they
appear as hyperintense regions in the white matter. The assessment of WMH can
be performed manually, with visual rating scales such as the Age-Related White
Matter Changes rating scale [23]. Manual delineations of WMH can be used to
quantitatively assess volume, shape, or location. However, this task is tedious, time-
consuming, and observer dependent, making it infeasible for use in large research
studies or daily clinical practice.

Automated segmentation techniques for WMH have been proposed in the
literature for many years [17]. Many of these techniques employ a voxel-wise
classification (e.g. k nearest neighbours (kNN), neural networks, support vector
machines, random forest), using features such as intensity, spatial location, texture,
or shape [1, 2, 7, 20]. Such features are derived from the traditional MR sequences
that are available, including T1-weighted, T2-weighted, PD-weighted, FLAIR, or
IR sequences. Often, post processing routines are applied to improve the resulting
segmentation.

Diffusion tensor imaging (DTI) can be used to study the microstructural organi-
zation of white matter by sensitizing the MR sequence to diffusion [4]. Measures
derived from DTI, such as fractional anisotropy (FA) and mean diffusivity (MD), are
known to detect changes in the white matter microstructure [5]. A recent study by
Maillard et al. [16] showed that FLAIR and DTI signals are independent predictors
of white matter hyperintensities [8, 16].

Based on these findings, we hypothesize that it can be beneficial to add DTI
measures to a voxel-wise classification technique for WMH segmentation. In this
study, we will use a popular classifier for WMH segmentation, the kNN classifier
[2, 17, 20], and investigate the added value of DTI measures.

2 Methods and Materials

2.1 Participants and MRI

For the present study, 20 subjects (mean age: 71 years, sd: 4 years, ten men,
ten women) were recruited at the University Medical Center Utrecht, the Nether-
lands. Subjects included patients with diabetes and matched controls, all with
varying degrees of atrophy and WMH. The study was approved by the medical
ethics committee of the University Medical Center Utrecht. All subjects gave written
informed consent.

The subjects underwent a standardized MR exam on a 3:0 T Philips Achieva
MR scanner using an eight-channel head coil, including, amongst others, a 3D T1-
weighted turbo field echo sequence (TR: 7:9 ms, TE: 4:5 ms), a multi-slice FLAIR
sequence (TR: 11,000 ms, TE: 125 ms, TI: 2,800 ms), a multi-slice IR sequence
(TR: 4,416 ms, TE: 15 ms, TI: 400 ms), and a single-shot EPI DTI sequence with
45 directions at b D 1,200 s mm�2 and a b D 0 s mm�2 image (TR: 6,638 ms, TE:
73 ms).
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Using the elastix toolbox for medical image registration [13], the 3D T1, IR,
and b = 0 s mm�2 DTI images were aligned with the FLAIR image and resampled
to a voxel size of 0:96 � 0:95 � 3:00 mm3. This matched the voxel size of
the FLAIR and established a voxel-wise correspondence between all the images.
The diffusion weighted scans were corrected for subject motion, eddy current
induced geometric distortions [19], and EPI distortions [12], including the required
B-matrix adjustments [15]. These corrections were performed in one interpolation
step to minimize blurring effects, using ExploreDTI [14]. A binary mask including
all intracranial structures (the brain and cerebrospinal fluid) was available for all
subjects.

WMH were delineated manually by an experienced human observer on the
FLAIR image using a freehand spline drawing tool. All delineations were verified
by a second experienced human observer and adapted if needed.

2.2 Classification

A kNN classifier, as implemented in scikit-learn [18], was used to perform a voxel-
wise classification. Here, only two classes were considered: a voxel is either WMH
or non-WMH (background, brain tissue, etc.). The kNN classifier is trained with
labelled samples, where each sample is an individual voxel for which the true class
is known from the manual delineations. Each sample has certain features, which are
explained below.

To perform WMH segmentation for a new subject, each voxel in the image data of
that subject is evaluated by the kNN classifier. It will find k training samples having
features that are the most similar to the new voxel (the nearest neighbours). The
most frequent class amongst the nearest neighbours is assigned to the new voxel.

A leave-one-out cross-validation strategy was used to classify the data of each
subject. The kNN classifier was trained on the data of 19 subjects and then applied
to segment the data of 1 subject. This procedure was repeated 20 times, so that the
data of each individual subject was classified using the data of the other 19 subjects.
The quality of the resulting segmentation could be assessed by comparing the results
of the kNN classifier against the manual delineations.

Included in the training data were all voxels labelled as WMH and 10 % of the
non-WMH voxels within the binary mask. A k-d tree with a leaf size of 30 was
used to perform the nearest neighbour search, with an Euclidean distance metric.
To determine the robustness of the technique, various settings for the number of
neighboursk and the neighbour weighting function w were used, as explained below
in Sect. 2.4.
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Fig. 1 Example image data of a subject with a high white matter hyperintensity (WMH) load
(WMH volume: 34 ml). The top row shows the intensity features, where WMH appear dark on T1
and IR, and bright on FLAIR. Bottom row shows diffusion features, where WMH appear dark on
FA and bright on MD, with the manual delineation of the WMH. (a) T1; (b) FLAIR; (c) IR; (d)
FA; (e) MD; (f) Manual delineation

2.3 Features

A number of features was computed for each voxel in the image data of a subject,
including: intensity, spatial, and diffusion features. All features were scaled to have
values between 0 and 1, giving them equal weights within the kNN classification.
Intensity and diffusion features for an example subject are shown in Fig. 1, together
with the manual delineation of the WMH.

2.3.1 Intensity Features

The T1, FLAIR, and IR intensities were included as features. For each image, the
intensities within the binary mask were normalized using the method proposed by
Cocosco et al. [6], clipping the first and last percentile of the histogram and rescaling
all intensities in between.

2.3.2 Spatial Features

As spatial features, the MNI-normalized spatial coordinates x, y, and z of each voxel
were included. The T1 sequence of each subject was transformed to the MNI152
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standard-space atlas by computing a linear registration using elastix [10,11,13].
By applying the inverse transformation, the MNI152 coordinates were “warped” to
the coordinate space of the subject data and no interpolation or resampling of the
original data was required. This approach is nicely demonstrated by Steenwijk et al.
[20]. All values for x, y, and z within the binary mask were normalized.

By warping the MNI152 atlas, the spatial location of each voxel was comparable
between all subjects and differences in, e.g., position in the scanner or head size
were normalized.

2.3.3 Diffusion Features

Diffusion tensors were estimated using a weighted linear least squares approach
[22]. The diffusion measures FA, MD, axial diffusivity (AD), radial diffusivity (RD)
[3], and the Westin measuresCL, CP , and CS [24] were computed and subsequently
normalized.

2.4 Experiments

Multiple settings for the kNN parameters k and w were applied. k is the number of
neighbours used by the classifier and was set to 50, 75, or 100. w is the weighting
function that was applied to the nearest neighbours to select a final class and was set
to either ‘uniform’ or ‘distance’. With uniform weighting, the class that occurs most
amongst the nearest neighbours is assigned to the voxel being tested. With distance
weighting, the inverse of the distance to each training sample is used as a weight:
closer neighbours will have a greater influence in determining the final class than
neighbours further away.

Various combinations of features were used, where combinations consisting of
‘traditional’ features will be compared to combinations with diffusion features.
Selected combinations fi 2 F included:

f1: T1, IR, FLAIR
f2: T1, IR, FLAIR, x, y, and z
f3: T1, IR, FLAIR, with FA and MD
f4: T1, IR, FLAIR, x, y, z, with FA and MD
f5: T1, IR, FLAIR, x, y, z, with FA, MD, CL, CP , CS , AD, and RD

In total, six different kNN classifiers will be evaluated for each fi 2 F .
Each classifier employed a leave-one-out cross-validation approach. For each
resulting segmentation, the sensitivity (percentage of true WMH voxels detected)
and the commonly reported Dice similarity coefficient (SI, overlap between manual
delineation and resulting segmentation) [9] will be assessed. Differences between
the classifiers will be tested for significance using a paired samples two-tailed
Student’s t-test.
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Table 1 Left: sensitivity and Dice similarity coefficient (SI) (higher is better) for the classifiers
trained on combinations of features fi 2 F . Right: relative improvement between classifiers with
diffusion features versus the equivalent classifier without diffusion features

F Sensitivity (%) SI
f1 59.7 ˙ 0.2 0.349 ˙ 0.001 Relative improvement
f2 73.4 ˙ 0.4 0.536 ˙ 0.005 Sensitivity (%) Dice (%)
f3 67.8 ˙ 0.3 0.411 ˙ 0.003 f3 vs f1 13.5 ˙ 0.2* 18.0 ˙ 0.6*

f4 77.2 ˙ 0.4 0.565 ˙ 0.004 f4 vs f2 5.1 ˙ 0.1* 5.4 ˙ 0.2*

f5 75.2 ˙ 0.6 0.561 ˙ 0.003 f5 vs f2 2.4 ˙ 0.3* 4.7 ˙ 0.5*

*The difference is statistically significant, using a paired samples two-tailed Student’s t-test with
p < 0:0001

3 Results

For each classifier trained on a combination of features fi 2 F , the reported results
are the mean ˙ sd obtained by averaging the results for each setting of k and w.
These results are reported in Table 1, together with the difference between classifiers
using diffusion features versus the equivalent classifier without diffusion features.

Adding DTI measures as features to a kNN classifier results in statistically
significant (p < 0:0001) improvements in both sensitivity and SI.

Including more diffusion features besides FA and MD, as is done with f5,
diminished the measured improvement, although the results are still significantly
better than without these features.

The inclusion of spatial features (f2 vs f1 and f4 vs f3) resulted in a statistically
significant (p < 0:0001) improvement in sensitivity and SI.

In cases where the sensitivity is high or approaches the inter observer variability,
it is informative to inspect the false negative rate/type II error (defined as 1-
sensitivity; the percentage of undetected WMH voxels). The relative reductions in
false negative rate are: f3 vs f1: �20:0˙ 0:4%, f4 vs f2: �14:2˙ 0:2%, and f5 vs
f2: �6:5˙ 1:0%. All reductions are statistically significant (p < 0:0001).

4 Discussion

It is clear that adding diffusion features to a voxel-wise classifier for WMH
segmentation significantly improves the segmentation results. This is in line with the
reports from literature that FLAIR and DTI are independent predictors and confirms
our hypothesis that DTI has added value in automated WMH segmentation.

The kNN classifiers as presented herein do not have a high performance in
terms of SI. However, the current classifiers are only used to demonstrate the added
value of DTI measures. More advanced segmentation methods that are proposed
in literature are also likely to benefit from diffusion features. Post processing steps
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that reduce the number of false positive detections might increase the SI to a level
comparable with literature, since SI is a measure that combines both sensitivity
and specificity. However, adding these post processing routines is not relevant to
demonstrate the added value of DTI.

Adding FA and MD features to the classifiers proved to be valuable. The addition
of more DTI measures, such as CL, CP , CS , AD, and RD, still improved the results
with respect to an equivalent classifier without any DTI measures, but showed a
diminished improvement with respect to the classifiers that only included FA and
MD. A possible explanation for this can be found in the high correlation that exists
between the DTI measures, since they are all derived from the eigenvalues of the
diffusion tensor. Adding a feature to the classifier increases the dimensionality of
the feature space and slightly reduces the influence of all other features. When a
feature is added that (strongly) correlates with an existing feature, the influence of
all other features is reduced. Therefore, only features that provide new information
should be added and in the present situation, this is provided by FA and MD.

Future work will consist of improving the overall performance of the classifiers,
by including more features and post processing routines that are known from
literature to improve the segmentation quality. Possible improvements are the
inclusion of tissue type priors [20], morphological operations to close segmentation
gaps and remove too small hyperintensities, or optimize the probability threshold
of the kNN classifier [2]. The latter option has the potential to further increase the
sensitivity (by lowering the threshold), but will introduce more false positives that
need to be removed by post processing. Increased involuntary head motion or altered
cardiac pulsatile motion in these elderly patients may cause acquisition artefacts.
This can result in large biases in the diffusion measures, which can be prevented by
using robust tensor estimation procedures in future work [21].

5 Conclusion

Including DTI measures as features in a classification technique for WMH segmen-
tation significantly improves the results of the final segmentation.
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Algebraic Connectivity of Brain Networks
Shows Patterns of Segregation Leading
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Abstract Measures of network topology and connectivity aid the understanding
of network breakdown as the brain degenerates in Alzheimer’s disease (AD). We
analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the
Alzheimer’s Disease Neuroimaging Initiative—50 healthy controls, 72 with early-
and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD.
Using whole-brain tractography, we reconstructed structural connectivity networks
representing connections between pairs of cortical regions. We examined, for the
first time in this context, the network’s Laplacian matrix and its Fiedler value,
describing the network’s algebraic connectivity, and the Fiedler vector, used to
partition a graph. We assessed algebraic connectivity and four additional supporting
metrics, revealing a decrease in network robustness and increasing disarray among
nodes as dementia progressed. Network components became more disconnected
and segregated, and their modularity increased. These measures are sensitive to
diagnostic group differences, and may help understand the complex changes in AD.
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1 Introduction

Brain connectivity analyses are increasingly popular, and combine concepts from
neuroscience and engineering to characterize the brain in terms of its structural
and functional connections. Diffusion weighted imaging (DWI) and advanced
tractography methods may offer new insights into how the brain changes in
degenerative diseases such as Alzheimer’s disease (AD), and its precursor, mild
cognitive impairment (MCI). In addition, graph theory can be applied to study
topological changes in the brain’s networks using graphs—defined as a set of
interconnected nodes and edges.

There is an increasing interest in analyzing the brain using graphs, which can be
studied using network analysis toolboxes [1]. In a graph, network nodes are typically
defined as regions of interest (ROIs)—in our case on the cortex, segmented from
anatomical MRI. These nodes are linked by ‘edges’ that can be binary or weighed.
However, as the field is still in its formative stages, we do not yet know which graph
theoretic measures best differentiate disease states or change the most with disease
progression.

Here, we applied ideas from algebraic graph theory—not previously examined
in the context of AD using DWI derived measures. Specifically, we computed the
second smallest eigenvalue of the Laplacian matrix (Fiedler value) for each subject
to describe their algebraic connectivity—i.e., how difficult it is to tear a graph apart.
A Fiedler value> 0 indicates that a graph is fully connected and the higher the
magnitude of the Fiedler value, the more interconnected the graph is. The Fiedler
value, accompanied by a measure of link density (interconnectedness of nodes) can
further describe the robustness of a graph—the denser the connections, the less
vulnerable the brain network is to being disconnected. Similarly, based on the set of
eigenvalues, we determined the number of disconnected network components (ROIs
that do not have connections to other ROIs, or where network connections are not
detected). To expand our analysis of brain connectivity, we computed more standard
measures of modularity—a measure that describes the degree to which a network
may be subdivided to significantly delineated groups of nodes [1, 2].

To determine whether the network changes were behaviorally and clinical
relevant, we related the network measures to the Mini Mental Status Examination
score—a simple but widely-used test to evaluate patients and help in diagnosis of
dementia. We hypothesized that with disease progression, the graph representation
of the brain would become more modular (i.e., segregated), reducing the density
of connections among its ROIs and eventually, leading to disconnections among
its nodes. We expected to see changes predominantly in the entorhinal areas
and temporal cortices, areas affected first by structural atrophy in Alzheimer’s
disease. In diagnostic group comparisons, we also aimed to show that the algebraic
connectivity is disrupted. The overall goal of our work is to mathematically describe
how the brain network changes in disease. Although all measures were sensitive
to disease effects in the ADNI cohort, we found that the Fielder value was most
sensitive to picking up topological effects among AD patients as well as lMCI
patients.
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2 Methods

2.1 Participants and Diffusion-Weighted Brain Imaging

We analyzed diffusion-weighted images (DWI) from 202 participants scanned as
part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI is a large
multi-site longitudinal study to evaluate biomarkers of AD. Table 1 shows the demo-
graphics of the participants included here, including age, sex, and mini-mental state
exam (MMSE) scores, broken down by diagnosis. All 202 participants underwent
whole-brain MRI on 3-Tesla GE Medical Systems scanners, at 16 sites across
North America. Standard anatomical T1-weighted IR-FSPGR (inverse recovery
fast spoiled gradient recalled echo) sequences were collected (256 � 256 matrix;
voxel size D 1.2 � 1.0 � 1.0 mm3; TI D 400 ms, TR D 6.984 ms; TE D 2.848 ms;
flip angle D 11ı) in the same session as the DWI (128 � 128 matrix; voxel size:
2.7 � 2.7 � 2.7 mm3; scan time D 9 min). Forty six separate images were acquired
for each scan: 5 T2-weighted images with no diffusion sensitization (b0 images)
and 41 diffusion-weighted images (b D 1,000 s/mm2). Image preprocessing was
performed as described previously in [3]. This was not included here due to space
limitations.

2.2 N � N Connectivity Matrix Creation

We performed whole-brain tractography as described in [3]. We used a method
based on the Hough transform to recover fibers, using a constant solid angle
orientation distribution function to model the local diffusion propagator. Each
subject’s dataset contained �10,000 useable fibers (3D curves) in total [4]. Thirty
four cortical labels per hemisphere, as listed in the Desikan–Killiany atlas [5], were
automatically extracted from all aligned T1-weighted structural MRI scans with
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

Table 1 Demographic information from 50 controls, 72 eMCI, 38 lMCI and 42 AD participants
scanned with diffusion MRI as part of the ADNI project

Controls eMCI lMCI AD Total

N 50 72 38 42 202
Age (mean ˙ SD
in years)

72.6 ˙ 6.1 72.4 ˙ 7.9 72.6 ˙ 5.6 75.5 ˙ 8.9 73.1 ˙ 7.4

MMSE
(mean ˙ SD)

28.9 ˙ 1.4 28.1 ˙ 1.5 26.9 ˙ 2.1 23.3 ˙ 1.9 27.1 ˙ 2.7

Sex 22M/28F 45M/27F 25M/13F 28M/14F 120M/82F

Their ages ranged from 55.2 to 90.4 years. The mean age and mini mental state exam (MMSE)
scores are listed for each diagnostic group

http://surfer.nmr.mgh.harvard.edu/
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For each subject, a 68 � 68 connectivity matrix was created whereby each
element represented the total number of fibers, in that subject, that passes through
each pair of ROIs. For simplicity, all connectivity matrices were binarized to
describe whether any connection was detected between a pair of cortical ROIs
(marked as 1), or otherwise (marked as 0). Weighted networks will be considered in
future work.

2.3 Algebraic Connectivity and Supporting Network Metrics

Algebraic graph theory is a branch of mathematics that uses linear algebra and
matrix theory to study the properties of graphs [4]. In algebraic graph theory, the
Laplacian matrix is used to study the spectrum of a graph, which is the topic
of study in another branch of mathematics known as spectral graph theory [5].
Recently, spectral theory has been applied to study the separability of brain networks
in resting-state functional MRI data from ADHD participants [6]; also, it was
employed to study the altered networks in AD using magnetoencephalography
(MEG) data [7]. Other applications of algebraic graph theory are in the fields of
circuit design, parallel and distributive computing, data representation [8] and the
online web [9]. Here, we are the first to explore the application of algebraic graph
theory to better understand the global structural changes in Alzheimer’s disease
using DWI derived networks.

Structural networks are usually modeled as undirected and symmetric graphs,
G(N,E) containing a set of nodes, N, and edges, E. Here we computed an adjacency
matrix for each graph, A(G) D aij, where aij was 1 if a connection linked a pair
of nodes and 0 otherwise. Next, we computed the Laplacian matrix of graph G
(Fig. 1), L(G) D lij, where L(G) D D(G) � A(G). D(G) is the N � N diagonal degree
adjacency matrix (i.e., diag(sum(G))). Then, the eigenvalues, �i, were computed on
the Laplacian matrix, where 0 D det(L ��I) and I is an N � N identity matrix. In this
study, we were interested in the second smallest eigenvalue, also called the Fiedler
value, and its corresponding eigenvector, x, computed from (L ��I)x D 0 [10].

The magnitude of the Fiedler value describes the algebraic connectivity among
the elements of a network; a Fiedler value of zero indicates that the network is

Fig. 1 Illustration of a graph G, its corresponding Laplacian matrix, L(G), and the Fiedler vector,
x. The algebraic connectivity of G is approximately 0.43
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disconnected [11]. The Fiedler value may be used in conjunction with the number
of edges and nodes to further describe the robustness of a network [12]. To evaluate
robustness, we also computed the number of edges in each brain network, E, and the
link (edge) density defined as d D 2E/N(N � 1), because a decreasing edge density
may indicate decreased robustness.

Another measure obtained from the eigenvalues of L(G), the number of �i D 0,
which reflects the number of disconnected components in the brain network [9].
The number of network components was further assessed with modularity computed
using Newman’s equations [2]. The algorithm efficiently defines an optimal com-
munity structure into non-overlapping sets of nodes such that the within group edges
are maximized and the between-group edges are minimized. Essentially, modularity
is a statistical evaluation of the degree to which the network may be subdivided to
significantly delineated groups of nodes, Q DP

u 2 M(Euu � (
P

v 2 MEuv)2), where
M is a nonoverlapping module that the network is subdivided into, and Euv is the
proportion of links that connects nodes in module u to nodes in modules v [1, 2]. If
Q< 0.3, the community structure formed is not significant as the within-community
edges are close or equal to what would be expected by chance; however, Q � 0.3
signifies significant community structures [2].

To plot the algebraic connectivity we sorted brain network nodes as a function
of the Fiedler vector; components in the brain were assigned to groups based on the
sorted magnitude of the eigenvector’s corresponding component. This method is
similar to spectral partitioning [5], however, in this study no partitions were added.
Tools from the MIT Strategic Engineering website (http://strategic.mit.edu) were
used for all calculations [9] excluding the modularity measure implemented from
Newman [2] in the brain connectivity toolbox [1].

2.4 Statistical Analyses

First, we assessed if the graph metrics (Fiedler value, total number of nodes,
link density, the number of disconnected components and modularity) related to
Mini Mental State Examination (MMSE) scores across all 202 participants using a
random-effects regression, covarying for sex and using site as a grouping variable.
As we cannot assume statistical normality for the network measures, nonparametric
methods may be more appropriate. We performed m D 10,000 permutations of the
independent variable of interest (i.e., MMSE or disease status), while maintaining
covariates (sex and age and imaging site) true to the subject. Next, we generated
permutation-corrected p-values using the following formula: p D (b C 1)/(m C 1),
where b is the number of randomized test statistics tperm found to have a greater
magnitude than the observed test statistic tobs. By performing 10,000 permutations,
the smallest possible permutation corrected p-value is 10�4, so even if the observed
p-value was much less than 10�4, the lowest corrected p-value was 10�4.

Next, we tested if any of the graph theory metrics that closely describe algebraic
connectivity (i.e., Fiedler value, link density and modularity) detected group

http://strategic.mit.edu
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differences between controls and the diseased groups by running a random-effects
regression with controls coded as 0 and diseased participants coded as 1, covarying
for age and sex and using the imaging site as a random-effects grouping variable,
to eliminate confounding effects of the scan site. Then, 10,000 permutations of the
independent value were performed as described above.

3 Results

MMSE scores—a measure of clinical decline—were significantly related to five
of the network measures across all 202 participants. To adjust for multiple
statistical tests, the significance threshold was set to 0.05/5 when testing
associations of MMSE with five network measures. MMSE scores declined
with a decreasing Fielder value (pperm< 10�4) decreasing total number of
edges (pperm< 10�4) and decreasing link density (pperm< 10�4). Meanwhile, as
hypothesized, MMSE scores declined with an increasing number of disconnected
components (pperm D 3.2 � 10�3) in the network and increasing modularity among
network communities (pperm D 3.4 � 10�4). These disruptions led to a less robust
and inefficient distribution of the brain’s network components with advancing
disease, and were sorted here as a function of the eigenvectors corresponding to
the Fiedler eigenvalue (Fig. 1). Also, brain regions that showed most frequent
disconnections (0 eigenvalues) among diseased participants were those of the
entorhinal, temporal and frontal poles bilaterally, in line with the sites that typically
show the earliest AD pathology.

For the group comparisons, AD participants showed a significantly decreasing
algebraic connectivity and a topological organization of the brain network that was
different overall, relative to controls. Here, the significance threshold was set to
0.05/3, to adjust for testing three network metrics in the group comparison. The
Fiedler value (pperm< 10�4) and link density (pperm< 10�4) was lower in AD, than
in controls. Meanwhile, modularity increased in AD, relative to healthy elderly
(pperm< 10�4).

For group comparisons between lMCI and controls, the Fiedler value was the
only measure to be significantly decreasing in lMCI, relative to healthy elderly
(permuted p-value D 0.012). No significant differences were detected between
eMCI and controls; this is not surprising as this group comparison is typically the
most challenging among those we tested.

The average link density was 0.360 across all healthy elderly, 0.331 in eMCI and
0.333 in lMCI participants, and 0.304 in AD. This indicates that eMCI and lMCI
had an 8.2–8.8 % “less” interconnected network, under this metric, while the AD
patients had a 15.7 % less interconnected network.
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4 Discussion

This study introduces the application of algebraic connectivity, with additional
supporting neural metrics, to the analysis of brain connectivity. Here, we treated
the networks as sets of nodes and edges and analyzed their interconnectedness
based on associations with cognitive decline scores (i.e., MMSE) and diagnostic
group differences. We fused all steps of analysis together and reported an overall
assessment of how and where in the brain Alzheimer’s strikes.

The decline in algebraic connectivity, as indicated by the decreased Fiedler
values with disease progression (decreasing MMSE scores), accompanied by the
reductions in the density of connections among brain regions, highlights the
loss of interconnectedness within the brain network. The diseased brains may
be more vulnerable to losses in connections that allow communication between
cortical regions, leading to a less robust neural network, at least according to these
mathematical metrics. If brain connections were to be purged (lost altogether), eMCI
and lMCI brain networks would disconnect approximately 8–9 % more readily than
healthy networks, while AD brain networks would disconnect approximately 16 %
more readily than controls. Cortical regions that contributed the most to the loss
of nodes were located in the entorhinal areas—regions that typically degenerate
early in AD [11, 13], and the temporal pole progressing into the frontal pole in the
more impaired—also supported by previous studies [11]. Disconnections in these
nodes may in turn impair connected nodes, as information transfer may be reduced
accordingly.

Modularity computed on the original graphs (not the Laplacian) was used to
verify the goodness of component partitioning in the brain network [6]. Modularity
increased with disease progression indicating that the brain networks became more
segregated (formed more modular structures) with a loss in connections between
modules, leading to a less efficient distribution of the network overall (Fig. 2). This
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Fig. 2 Sorted connectivity matrix as a function of the sorted eigenvector, x, corresponding to the
Fiedler value (i.e., second smallest eigenvalue) in one participant from each diagnostic group. E is
the number of edges within each network. The plots indicate patterns of disarray with increasing
numbers of disconnected components with disease progression; no completely disconnected
components are shown in controls (CTL) (no zero value rows/columns, i.e., missing dots), but
there are 2 in eMCI, 4 in lMCI and 8 disconnected components in AD
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Fig. 3 Circle drawings of nodes (v1 through v68) interconnected by averaged edges across 50
controls (CTL) and 42 AD participants. The loss in link (edge) density across the nodes indicates
decreased interconnectedness

is complements the Fielder value, which defines the level of network integrity (i.e.,
connectedness) in the brain. Modular networks were less defined in controls at an
average Q D 0.34, with Q D 0.36 in eMCI and lMCI and 0.39 in AD participants—
leading to readily detectable disease differences.

The Fiedler value, link density, and modularity were sensitive to group differ-
ences in eMCI, lMCI and AD, versus controls (except for the Fiedler value that
did not detect differences in eMCI, relative to controls). The direction of change
for all these measures indicated an overall lower interconnectness for the diseased
connectomes (Fig. 3).

Discovering changes in brain network organizational properties allows us to
understand disease progression with additional detail. Most of these network algo-
rithms have been successfully developed and applied for non-medical applications
such as online social interactions [9] and functional imaging [6, 7]; our study
used these properties to study disease progression using DWI. We found that
measures such as the Fiedler value—a measure of algebraic connectivity—was
the most sensitive measure to detecting differences between disease groups and
controls. Supporting network metrics, such as the number of edges, link density,
the number of disconnected components, and modularity, validate and strengthen
the results indicating a less robust and more segregated brain with increased
cognitive impairment. As a limitation, we acknowledge that future studies should
compare these new metrics with standard DTI-derived measures such as FA and
MD, and other non-DTI or non-imaging biomarkers of AD, to determine what
added predictive value they contain. Also, for future works, weighted matrices (i.e.,
with measures of fiber density or FA) will be used and may provide additional
information about network disruptions. Overall, the network disruptions in disease
are so complex that the added mathematical descriptors are likely to enhance our
understanding of network dysfunction in the living brain.



Algebraic Connectivity of Brain Networks Shows Patterns of Segregation. . . 63

Acknowledgments Algorithm development and image analysis for this study was funded, in part,
by grants to PT from the NIBIB (R01 EB008281, R01 EB008432) and by the NIA, NIBIB, NIMH,
the National Library of Medicine, and the National Center for Research Resources (AG016570,
AG040060, EB01651, MH097268, LM05639, RR019771 to PT). Data collection and sharing for
this project was funded by ADNI (NIH Grant U01 AG024904). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through
contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen
Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and
Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare;
Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development,
LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of Health. The grantee organization is
the Northern California Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are
disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This
research was also supported by NIH grants P30 AG010129 and K01 AG030514 from the National
Institute of General Medical Sciences. This work was also supported in part by a Consortium grant
(U54 EB020403) from the NIH Institutes contributing to the Big Data to Knowledge (BD2K)
Initiative, including the NIBIB and NCI.

References

1. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpre-
tations. Neuroimage 52(3), 1059–1069 (2010)

2. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E:
Stat. Nonlinear Soft Matter Phys. 69(6 Pt 2), 066133 (2004)

3. Daianu, M., Jahanshad, N., Nir, T.M., Toga, A.W., Jack, C.R., Jr., Weiner, M.W., Thompson,
P.M. and the Alzheimer’s Disease Neuroimaging Initiative: Breakdown of brain connectivity
between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain
Connect. 3(4), 407–422 (2013)

4. Norman, B.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge
(1993)

5. Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications.
Alavi, Y., Chartrand, G., Oellermann, O.R., Schwenk, A.J.: Wiley vol. 2, pp. 871–898 (1991)

6. Bohland, J.W., Saperstein, S., Pereira, F., Rapin, J., Grady, L.: Network, anatomical, and non-
imaging measures for the prediction of ADHD diagnosis in individual subjects. Front. Syst.
Neurosci. 6, 78 (2012). doi:10.3389/fnsys.2012.00078

7. de Haan, W., van der Flier, W.M., Wang, H., Van Mieghem, P.F., Scheltens, P., Stam, C.J.:
Disruption of functional brain networks in Alzheimer’s disease: what can we learn from graph
spectral analysis of resting-state magnetoencephalography? Brain Connect. 2(2), 45–55 (2012)

8. Chung, F.R.K., Faber, V., Manteuffel, T.A.: SIAM J. Discrete Math. 7, 443 (1994)
9. Bounova, G., de Weck, O.L.: Overview of metrics and their correlation patterns for multiple-

metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 85, 016117 (2012)
10. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 298–305 (1973)
11. Thompson, P.M., Hayashi, K.M., de Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J.,

Herman, D., Hong, M.S., Dittmer, S.S., Doddrell, D.M., Toga, A.W.: Dynamics of gray matter
loss in Alzheimer’s disease. J. Neurosci. 23(3), 994–1005 (2003)

http://dx.doi.org/10.3389/fnsys.2012.00078


64 M. Daianu et al.

12. Jamakovic, A., van Mieghem, P.: On the robustness of complex networks by using the
algebraic connectivity. Networking, network ad-hoc and sensor networks, wireless networks,
next generation Internet. Lect. Notes Comput. Sci. 4982, 183–194 (2008)

13. Devanand, D.P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., Rusinek, H.,
Pelton, G.H., Honig, L.S., Mayeux, R., Stern, Y., Tabert, M.H., de Leon, M.J.: Hippocampal
and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer. Neurology
68(11), 828–836 (2007)

14. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the
Orientation Distribution Function in Single and Multiple Shell Q-Ball Imaging within Constant
Solid Angle: Magn Reson Med 64(2), 554–466 (2010)

15. Desikan, RS., Segonne, F., Fischl, B., Quinn, BT., Dickerson, BC., Blacker, D., Buckner, RL.,
Dale, AM., Maguire, RP., Hyman, BT., Albert, MS., Killiany, RJ: An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
interest: Neuroimage 31(3), 968–80 (2006)



Diffusion-Map: A Novel Visualizing Biomarker
for Diffusion Tensor Imaging of Human Brain
White Matter

Mohammad Hadi Aarabi and Hamid Saligheh Rad

Abstract Rich information about brain tissue microstructure and composition is
yielded by MRI-based measurement of the local diffusion tensor (DT) of water
molecules in neural fibers, whose axons are running in myelinated fiber tracts.
Diffusion tensor imaging (DTI) possesses high-dimensional and complex structure,
so that detecting available pattern information and its analysis based on conven-
tional linear statistics and classification methods become inefficient. Classification,
segmentation, compression or visualization of the data could be facilitated through
dimension reduction. The previously proposed methods mostly rely on complex
low dimensional manifold embedding of the high-dimensional space, which are not
able to deal with complex and high dimensional data. The purpose of this paper is
to propose a new method for meaningful visualization of brain white matter using
diffusion tensor data to map the six-dimensional tensor to a three dimensional space,
employing Markov random walk and diffusion distance algorithms, leading to a
new distance-preserving map for the DTI data with lower dimension and higher
throughput information.

1 Introduction

To gain a better insight into the disease effects on brain anatomy and physiology,
a systematic pattern of anatomy must be detected in anatomical imaging of
the brain. Diffusion tensor imaging (DTI) is a promising method, which yields
fundamental information of the brain tissue microstructure and composition by
means of magnetic resonance imaging (MRI)-based measurement of local diffusion
tensor (DT) of water molecules in human brain [1]. In particular, DTI is used to
characterize and map the three dimensional (3D) diffusion of water, as a function
of spatial location and generate 3D quantitative maps like mean-diffusivity (MD) or
fractional-anisotropy (FA), obtained from dominant orientation of water diffusion
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for each voxel in the image. Brain regions, such as cortical and subcortical gray
matter and cerebrospinal fluid, have a vast isotropic diffusivity due to the lack of
constraining process of diffusion by axons, running in myelinated fiber tracts [6].
The diffusion tensor can be used for characterizing magnitude, degree of anisotropy
and orientation of directional diffusion. Therefore, mapping diffusion anisotropy
and principal diffusion directions is one of the best ways to estimate white matter
connectivity patterns in the brain obtained from white matter tractography. This
could result in voxel-wise and tensor-wise analysis of diffusivity and anisotropic
change in the white matter, which enables neuroscientists to chart the complex
network of neural fiber tracts in the human brain. DTI possesses high dimension and
complex structure, so that, detecting available pattern information and its analysis
are mainly based on conventional linear statistics and classification methods be-
come inefficient. In order to facilitate classification, segmentation, compression or
visualization of the data, alleviating the undesirable properties of high-dimensional
spaces, i.e. dimensionality reduction, is far-reaching. Dimensionality reduction is
based on finding valid structures and geometric characterization of high dimensional
data, to be realized with several techniques, which are categorized into linear
and nonlinear methods. Linear methods are based on classic approaches, such as
principal component analysis (PCA) and multi-dimensional scaling (MDS) [12].
Although they guarantee acquisition of real data structures lying on or near a linear
subspace of high dimensional input space, they cannot deal with complex nonlinear
data. This has led to development of nonlinear methods, such as Kernel PCA [9],
and Isomap and diffusion-map (DM) techniques for biological data with highly non-
linear manifolds [2,7,8,10–13]. This paper seeks to address a technique for multiple
valued DTI data visualization, based on images with pixels, sampled from under-
lying manifold, e.g. every single pixel may consist of a high dimensional vector
as a positive semi-definite tensor in a DT-MRI acquisition. Diffusion map (DM)
represents a dataset via a weighted graph of corresponding points to vertices and
edges, in which, the spectral properties of the graph Laplacian would be used to map
six-dimensional data to a 3D representation. Diffusion distance is applied by using a
specific value, which is obtained for the proximity of each data point, performing the
random walk for a number of time steps. Thus, pairwise diffusion distances in the
low-dimensional representation of the data is maintained [4,5]. Differences between
DT-MRI pixels are mainly evaluated using a diffusion distance metric with regard to
rank 3, second-order positive semi-definite DTs, while the difference between DT
pixels is approximated by DM. In this article, we evaluated case studies of high-
dimensional phantom data, as well as normal clinical brain DT-MRI.

2 Method

To represent the underlying DTI data, high dimensional DT-MRI data are used. As
long as the pixel dimensionality is greater than 3D space, dimensionality reduction
must be employed in order to represent the low dimensional image pixels. To
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Fig. 1 Distribution of multi-dimensional DT-MR data

achieve this intention, pixel dissimilarities must be measured and pixels must be
mapped to perceptually meaningful colors [3, 13]. It is assumed that high dimen-
sional pixel values are sampled from underlying manifold acquired with distance
metric. The manifolds are either learned using manifold learning techniques (e.g.
DM), derived analytically or by approximation. Diffusion distance between two
corresponding points on the manifold are the measured differences between any
two high dimensional pixels. Similarities between DT pixels are evaluated by
diffusion metric that scales the rank 3 manifold of DT pixels. DTs are symmetric
3 � 3 matrices, or second-order rank 3 diffusion tensors, with six unique elements.
Furthermore, DTs must be positive semi-definite (PSD), in that six unique elements
are defined in Diffusion tensors which are symmetric 3� 3 matrices, i.e. f .x/ W x 2
R3 ! R6. An example of data distribution of a real data is shown in Fig. 1.

2.1 Dissimilarity Between High Dimensional Diffusion Tensor
Imaging Data

Measuring dissimilarities between observations is an important step in handling
high dimensional data. As far as the DT-MRI goes, estimation of DM and
dissimilarity metrics are needed for the manifold learning structures, assuming
x1; x2; : : : ; xk 2 M , M is the manifold embedded in R3.
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2.2 Implementation of Diffusion Map Algorithm in DT-MRI

The implemented algorithm proposed for DT-MRI of human brain is outlined in six
steps as follows:

1. Constructing the similarity matrix, W, of the graph; the entries of W are
the weights along the edges connecting corresponding nodes i and j , to be
determined by the heat kernel as follows [13]:

Wij D exp.�kxi � xj k2
�

/ (1)

whereW is PSD and k:k is the Euclidean norm. One should note thatW 2 Rk�k
is a symmetric matrix. In the DM algorithm, the choice of the parameter � is very
important. Lafon in chose � to be in the order of the average smallest non-zero
value of kxi � xj k2, that is:

� D 1

k

kX

iD1
minkxi � xj k2I xi ¤ xj (2)

2. Formulating k � k normalization matrix of D; diagonal entries of D are row or
column sum of W [11]:

Dii D
nX

iD1
Wij; i 2 1; : : : ; n (3)

The W matrix is then normalized as

P D D�1W (4)

Since DMs originate from dynamical systems theory, the resulting matrix P is
considered to be a Markov matrix that defines the forward transition probability
matrix of a data point.

3. Find the eigenvalues of P; the conjugate matrix of P is calculated as below:

QP D D� 1
2 WD

1
2 (5)

This so-called normalized graph Laplacian preserves the eigenvalues.
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4. Singular value decomposition (SVD) of QP to be calculated by:

QP D U	U � (6)

yielding the eigenvalues

	 D diag.Œ�1; �2; : : : ; �n�/ (7)

and eigenvectors in matrix

U D Œu1; u2; : : : ; un� (8)

[2]
5. Computing eigenvectors of QP ; one notes that eigenvalues of P and QP stay the

same

V D D
1
2 U (9)

6. Creating low-dimensional coordinates in the embedded space 
 using 	 and V,
as follows:


 D V	 (10)

Now, for each n-dimensional point xi , there is a corresponding d-dimensional
coordinate, where d < n. The coordinates for a single point can be expressed as:


d W xi ! Œ�1v1; �2v2; : : :; �dC1vdC1�: (11)

Finally, diffusion map (DM) is defined as:

DM D Œ�1v1 C �2v2 C �3v3�

3
: (12)

An overview of all these steps is shown in Fig. 2.
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Fig. 2 Overview of proposed method

3 DT-MR Data

The idea of generating simulated MR images for this work are adopted from. The
fibers were constructed based on streamline algorithm in ExploreDTI software [13].
The six tensor elements were calculated using linear fitting methods. MR acquisition
on real data was performed on four normal subjects on a 1.5T clinical scanner
MAGNETOM Avanto (Siemens Medical Solution, Erlangen, Germany) equipped
with a maximum gradient strength of 40 mT/m and a slew rate of 200 mT/m/s. DT
images were obtained with a single-shot echo-planar sequence with TR D 4,900 ms,
TE D 85 ms, b-valueD 1,000 s=mm2, FOV D 230 mm, matrix size D 76� 76, slice
thickness D 3 mm, number of directions D 30, and NEX D 1.
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4 Results and Discussion

4.1 Simulated MR Images

The implemented DM method was compared with fractional anisotropy (FA) and
mean diffusivity (MD) maps (as shown in Fig. 3) on the simulated data. We
quantitatively evaluated the image energy resulting from each method as indicated
in Table 1, in terms of entropy, contrast, and correlation, which are defined as
follows:

1. Entropy is a statistical measure of the randomness of data, representing the
texture of the image:

Entropy D �
bX

a

Plog2P (13)

2. Contrast is a measure of intensity contrast, calculated between a pixel and its
neighbor on the whole image:

Contrast D
jX

i

ji � j j2p.i; j / (14)

3. Correlation returns the amount of similarity between a pixel and its neighbor over
the whole image:

Correlation D
X

i;j

.i � �i/.j � �j/p.i; j /
�i�j

(15)

The higher value of entropy and contrast, and lower correlation represent higher
energy and more heterogeneity among the provided information. It can be inferred
from Fig. 3 and Table 1 that DM technique yields higher amount of entropy and
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Fig. 3 Simulated data obtained using, mean diffusivity (MD) and fractional anisotropy (FA) maps
in comparison with the proposed diffusion map (DM)
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Table 1 Evaluation of the proposed diffusion map (DM), in comparison with mean diffusivity
(MD) and fractional anisotropy (FA) maps, in terms of entropy, contrast, and correlation

Map Entropy Contrast Correlation

DM 5.7014 0.2419 0.9690

MD 4.1800 0.2333 0.9827

FA 4.9542 0.2333 0.9827

Table 2 The amount of
similarity between FA and
DM

Correlation coefficient r �0:5392
Significance level P<0.0001

95 % confidence interval for r �0:5573 to �0:5207

Table 3 The amount of
similarity between MD and
DM

Correlation coefficient r 0.5967

Significance level P<0.0001

95 % confidence interval for r 0.5798–0.6130

contrast, and lower correlation value in comparison with FA and MD maps, meaning
that it extracts more information from a DT-MR image.

4.2 Real MR Images

In Tables 2 and 3, the amount of similarity between DM and FA, MD are calculated
in terms of correlation coefficient and the significance of this correlation is assessed
by p-value. It can be observed that DM has high correlation with both FA and MD
with a significant level (p<0.0001). This means that DM could contain essential
information from both FA and MD, providing better visualization of the information
in DT-MRI. Figure 4 illustrates the results of applying the proposed DM technique
and calculated FA and MD maps on the real data. It is apparent that DM map
contains more information than T1-weighted image, MD and FA maps. This
suggests that DM could be reliably employed for further statistical analysis of
human brain. Figure 4 demonstrates the values of DM, MD and FA on the region
of interest (ROI), located on the hippocampus region in the coronal view of the
T1-weighted image. For convenient analysis, MD values are multiplied by 1,000
to bring it into the same scale as FA and DM. The pixel intensity versus pixel
number plot shows that when MD is high, FA and DM have reverse signs and when
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Fig. 4 The results on real data (a) T1-weighted image in a coronal view, with a region-of-interest
(ROI) located on the hippocampal region; (b) the corresponding MD map; (c) fractional anisotropy
(FA) map; (d) the proposed diffusion map (DM); and (e) the values of MD, FA, and DM on the
selected ROI in part (a). The MD values are multiplied by 1,000 to be in the same scale as FA and
DM

MD is low, their relationship is held with the similar sign. This suggests that DM
has mutual information from both FA and MD, recommending a new visualization
technique consisting of the necessary information of FA and MD, which could be
used as a proper substitute for clinical applications. The visualization of DM, MD
and FA are compared on several slices of a normal subject in axial, coronal and
sagittal views in Figs. 5, 6, and 7.
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Fig. 5 Axial view of the results on real data: (left column) MD map, (middle column) FA map,
and (right column) proposed diffusion map (DM)
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Fig. 6 Coronal view of the results on real data: (left column) MD map, (middle column) FA map,
and (right column) proposed diffusion map (DM)

5 Conclusion

This study set out to propose a method for visualization of diffusion tensor (DT)-
MRI as a robust method to noise, preserving distance in nonlinear data, while
keeping low-dimensional space. The proposed analysis suggests that the diffusion
map (DM) dimensionality reduction improves white matter segmentation and
visualization, particularly in the low-SNR regimen of DT-MRI, while it stays an
active research problem. Due to the wide range of research and clinical applications
of DT-MRI, we hope that the proposed method will broaden new horizons for
exploring the full richness of DTI to realize ways, in which such measurements
are affected by pathologies and treatments. Manifold learning problems involve
vector bundle on graphs providing the demand for vector diffusion mapping. Since
vector diffusion mapping is an extended form of diffusion mapping, their properties
and convergence behavior are similar. Besides, because the idea of vector diffusion
mapping is a natural extended form of graph Laplacian operator combined with
diffusion mapping on graphs, in the future, we are going to investigate the issues of
smoothing and interpolation, as well as clustering of components of DTI datasets,
leading to successful fiber clustering. In this work, it was indicated that DM could
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Fig. 7 Sagittal view of the results on real data: (left column) MD map, (middle column) FA map,
and (right column) proposed diffusion map (DM)

provide information, which is present in both mean diffusivity (MD) and fractional
anisotropy (FA) maps, as conventionally employed as quantitative maps in human
brain. The exact mathematical relationship between DM and FA, MD along with the
clinical applications of the proposed quantitative map will further be investigated in
our future works.

References

1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging.
J. Biophys. 66(1), 259–267 (1994). doi:10.1016/s0006-3495(94)80775-1

2. Mori, S., Zhang, J.: Principles of diffusion tensor imaging and its applications to basic
neuroscience research. Neuron 51(5), 527–539 (2006)

3. van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a
comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)

4. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput. 10(5), 1299–1319 (1998)

5. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

doi:10.1016/s0006-3495(94)80775-1


Diffusion-Map: A Novel Visualizing Biomarker for DTI for Human Brain White Matter 77

6. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)
7. Hamarneh, G., McIntosh, C., Drew, M.S.: Perception-based visualization of manifold-valued

medical images using distance-preserving dimensionality reduction. IEEE Trans. Med. Imag-
ing 30(7), 1314–1327 (2011)

8. Khurd, P., Baloch, S., Gur, R., Davatzikos, C., Verma, R.: Manifold learning techniques
in image analysis of high-dimensional diffusion tensor magnetic resonance images. Paper
Presented at the IEEE Conference on Computer Vision and Pattern Recognition, 2007
(CVPR’07), pp. 1–7 (2007)

9. Goldberg, Y., Zakai, A., Kushnir, D., Ritov, Y.A.: Manifold learning: the price of normalization.
J. Mach. Learn. Res. 9, 1909–1939 (2008)

10. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.G.: Diffusion Maps-A Probabilistic Inter-
pretation for Spectral Embedding and Clustering Algorithms Principal Manifolds for Data
Visualization and Dimension Reduction, pp. 238–260. Springer, New York (2008)

11. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering
and reaction coordinates of dynamical systems. Appl. Comput. Harmon. Anal. 21(1), 113–127
(2006)

12. Farup, I., Hardeberg, J.Y., Bakke, A.M., Kopperud, S., Rindal, A.: Visualization and interactive
manipulation of color gamuts. Paper presented at the Color and Imaging Conference (2002)

13. Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.: ExploreDTI: a graphical toolbox for
processing, analyzing, and visualizing diffusion MR data. Paper Presented at the 17th Annual
Meeting of International Society of Magnetic Resonance in Medicine, p. 3537 (2009)



A Multi-Parametric Diffusion Magnetic
Resonance Imaging Texture Feature Model
for Prostate Cancer Analysis

Farzad Khalvati, Amen Modhafar, Andrew Cameron, Alexander Wong,
and Masoom A. Haider

Abstract In this work, we present a new multi-parametric magnetic resonance
imaging (MP-MRI) texture feature model for automatic detection of prostate cancer.
In addition to commonly used imaging sequences in conventional MP-MRI, namely
T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-
MRI texture feature model uses computed high-b DWI (CHB-DWI) and a new
diffusion imaging sequence called correlated diffusion imaging (CDI). A set of
texture features was calculated for both the conventional MP-MRI and new MP-
MRI texture feature model. We evaluated the performance of the proposed MP-MRI
texture feature model via leave-one-patient-out cross-validation using a Bayesian
classifier trained on cancerous and healthy tissue samples obtained from real clinical
MP-MRI datasets. The proposed MP-MRI texture feature model outperformed the
conventional model (i.e., T2wCDWI) with regard to cancer detection accuracy.

1 Introduction

Prostate cancer is the most common form of cancer and second leading cause of
cancer death diagnosed in North American men, with more than 262,000 new cases
and an estimated 33,660 deaths in 2013 [1,2]. Given that the median patient survival
time for metastatic prostate cancer ranges from 12.2 to 21.7 months [3], early
diagnosis of clinically significant prostate cancer would have significant benefits
to patient care. This is particularly true given that the 5 year survival rate after
diagnosis for patients with prostate cancer at the non-metastatic stage is 96 % in
Canada [4].

F. Khalvati (�) • A. Modhafar • M.A. Haider
Sunnybrook Research Institute, Toronto, ON, Canada
e-mail: farzad.khalvati@sri.utoronto.ca

A. Cameron • A. Wong
University of Waterloo, Waterloo, ON, Canada
e-mail: a28wong@uwaterloo.ca

© Springer International Publishing Switzerland 2014
L. O’Donnell et al. (eds.), Computational Diffusion MRI, Mathematics
and Visualization, DOI 10.1007/978-3-319-11182-7_8

79

mailto:farzad.khalvati@sri.utoronto.ca
mailto:a28wong@uwaterloo.ca


80 F. Khalvati et al.

In the current clinical model, men with positive digital rectal exam (DRE)
and elevated prostate-specific antigen (PSA) require multicore random biopsies
for risk stratification. However, there is an ongoing controversy about the role of
prostate PSA as a screening test in prostate cancer. Two recent major randomized
clinical trials [5, 6] have demonstrated that PSA screening contains a significant
risk of overdiagnosis for prostate cancer where it is estimated that 50 % of screened
men are diagnosed with prostate cancer. This leads to painful needle biopsies and
subsequent potential overtreatment [5, 6]. Moreover, it has become increasingly
clear that prostate biopsies are harmful as they cause discomfort and possible sexual
dysfunction and may result in increased hospital admission rates due to infectious
complications [7]. Nevertheless, PSA testing has proven to reduce prostate cancer
mortality by 20–30 % at long-term follow-ups [8]. Therefore, the PSA testing
remains an important biomarker in diagnosing prostate cancers that are clinically
significant. The remaining challenge is how to improve the prostate cancer diagnosis
to reduce the overdiagnosis of clinically insignificant cancers.

Automatic detection of prostate cancer as part of a clinical decision support sys-
tem can potentially help radiologists in interpreting images more accurately. Specif-
ically, multi-parametric MR imaging (MP-MRI) which combines T2-weighted MRI
(T2w), diffusion-weighted imaging (DWI), and dynamic contrast enhanced imaging
(DCE) has been found to be a promising method for prostate cancer diagnosis and it
has been used in different prostate cancer detection algorithms. By taking advantage
of the unique information provided by each individual imaging technique, MP-MRI
can exploit the different characteristics of prostate tissue to improve differentiation
between cancerous and surrounding tissues. For example, cancerous tissue in the
prostate gland may exhibit a moderate drop in signal in T2w [9] (which characterizes
differences in transverse (spin-spin) relaxation time of tissue); restricted diffusion in
DWI [9] (which characterizes diffusion of water in tissue); earlier onset time, higher
peak, and shorter peak time in DCE [10] (which characterizes the concentration of
an injected gadolinium contrast agent over time as it passes into the extracellular
extravascular space of the tissue). Although DCE is considered as part of MP-
MRI, T2wCDWI is the most common MP-MRI because it does not require invasive
contrast agent as DCE does.

Radiologists’ interpretations of MP-MRI have shown to achieve good prostate
cancer detection rates, reaching accuracies of 80 % in the peripheral zone of
the prostate gland. Similarly, several algorithms have been proposed for auto-
detection of prostate cancer using MP-MRI setting [11–14]. These algorithms
usually compute a set of low-level features from the MP-MRI data to construct
feature vectors. Next, a supervised classifier is trained using the computed feature
vectors from the training cases and their associated ‘ground-truth’ labels (e.g.,
labeled healthy or cancerous). Finally, the trained classifier is used to classify
new cases. The reported values for accuracy of cancerous versus healthy tissue
classification ranges from 64 to 89 %, depending on the feature sets and training/test
data.

The underlying challenge in all these auto-detection algorithms is whether there
is enough separability between the cancerous and healthy tissues in the feature
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space. This means if the separability is poor, even sophisticated feature extraction
algorithms may not have a significant effect on the accuracy of cancer detection. On
the other hand, improving the separability of cancerous and healthy tissues in the
images would have a significant impact on the performance of cancer auto-detection
algorithms, potentially reducing the dependency on the feature extraction methods.

In this paper, we propose a new MP-MRI texture feature model that, in
addition to T2w and conventional DWI, uses computed high-b diffusion-weighted
imaging (CHB-DWI) [15] and the recently proposed correlated diffusion imaging
(CDI) [16]. Compared to DWI, CHB-DWI and CDI have both shown initial
promise to improve visual separability of cancerous and healthy tissues in prostate,
which can lead to improved performance of the proposed MP-MRI texture feature
model for detecting prostate cancer. To the authors’ best knowledge, the proposed
texture feature model is the first that utilizes all of the above-mentioned MP-MRI
modalities.

This paper is organized as follows: in Sect. 2, the proposed MP-MRI texture
feature model is presented. Section 3 presents the testing methodology which
includes the description of image data and the evaluation metrics used in this
research. Sections 4 and 5 present the experimental results and conclusions,
respectively.

2 Proposed Multi-Parametric Magnetic Resonance Imaging
Texture Feature Model

In this section, we present the proposed MP-MRI texture feature model for prostate
cancer and discuss the imaging and feature extraction methods used in the model.

2.1 Imaging Methods

This subsection summarizes the imaging methods used in the proposed MP-MRI
feature model.

2.1.1 T2-Weighted Imaging

T2w is a MR imaging modality in which the sensitivity of tissue is characterized
by measuring the relaxation time (spin-spin) of the applied magnetic field. The T2w
imaging of the prostate usually shows a small reduction in signal in the cancerous
tissue [9].
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2.1.2 Diffusion-Weighted Imaging

DWI is a promising imaging modality in which the sensitivity of tissue to Brownian
motion of water molecules is measured by applying pairs of opposing magnetic field
gradient pulses [17]. The diffusion-weighted signal, S is measured as:

S D S0e
�bD (1)

where S0 is the signal intensity without the diffusion weighting, b consists of
amplitude and duration of the diffusion pulses, and the time between the two pulses
as well as the gyromagnetic ratio, andD represents the strength of the diffusion. The
diffusion-weighted image (S) is usually generated with different b values which can
be used to estimate D in Eq. 1, called apparent diffusion coefficient map (ADC),
using least-squares or maximum likelihood strategies [18]. The cancerous tissue
in ADC is usually represented by a darker intensity compared to the surrounding
tissue.

2.1.3 Computed High-b Diffusion-Weighted Imaging (CHB-DWI)

Previous research has shown that high b-value DWI images (e.g., b-values greater
than 1,000 s/mm2) allow for increased delineation between tumours and healthy tis-
sues [15, 19] which makes the prostate cancer detection more robust. Nevertheless,
due to hardware limitations, most MRI machines in practice do not produce DWI
with b-values higher than 1,500 s/mm2. CHB-DWI is an alternative approach to
obtain high-b DWI in which a computational model is used to reconstruct DWI at
high b-values using low b-value DWI acquisitions [15]. For our experiments, we
constructed CHB-DWI with b-value at 2,000 s/mm2 using the same least squares
estimation technique used for ADC, extrapolating to the b-value of 2000 s/mm2.

2.1.4 Correlated Diffusion Imaging (CDI)

CDI [16] is a new diffusion magnetic resonance imaging modality, which takes
advantage of the joint correlation in signal attenuation across multiple gradient
pulse strengths and timings to not only reduce the dependency on the way diffusion
gradient pulses are applied, but also improve delineation between cancerous and
healthy tissue. The local correlation of signal attenuation across all b-values within
a local sub-volume is calculated to better represent the overall characterization of the
water diffusion properties of the tissue. The CDI signal is calculated as follows [16]:

CDI.x/ D
Z

: : :

Z bn

b0

S0.x/: : :Sn.x/P.S0.x/; : : :; Sn.x/jV.x//

�dS0.x/: : :dSn.x/ (2)
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where x denotes spatial location, S denotes the acquired signal, P denotes the
conditional joint probability density function, and V.x/ denotes the local subvolume
around x.

2.2 Texture Feature Model

In order to separate the cancerous tissue from the healthy one, a set of features is
calculated on a given MR imaging sequence (i.e., T2w, DWI, CHB-DWI, CDI).
As part of the proposed MP-MRI texture feature model, we incorporate the texture
features used in separate studies to establish a relationship between these features
and tumour glucose metabolism and stage [20] and to predict the response of
metastatic renal cell cancer to treatment [21]. These features include mean grey-
level intensity (M), entropy (En), and uniformity (U), which are calculated as
follows:

M D 1

N

N�1X

x;yD0
pix.i; j / (3)

En D �
kX

lD1
p.l/log2Œp.l/� (4)

U D
kX

lD1
Œp.l/�2 (5)

where pix.i; j / is the gray-level intensity in the pixel window,N is the window size,
p is the probability density function of pixels in the window, and k is the number of
grey levels in the image.

In addition, the proposed MP-MRI texture feature model incorporates another
set of texture features extracted from the gray-level co-occurrence matrix (GLCM)
in 4 directions: 0ı, 45ı, 90ı, and 135ı. The GLCM texture features are calculated
as follows:

1. Contrast (Con)—a measure of the intensity difference between a pixel and its
neighbors:

Con D
N�1X

x;yD0
jx � yj2pglcm.x; y/ (6)
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2. Energy (Eg)—the sum of squared elements in the GLCM;

Eg D
N�1X

x;yD0
pglcm.x; y/

2 (7)

3. Homogeneity (H)—a value that measures the closeness of the distribution of
elements in the GLCM to the GLCM diagonal.

H D
N�1X

x;yD0

pglcm.x; y/

1C .x � y/2 (8)

4. Correlation (Cor)—a measure of how correlated a pixel is to its neighbors:

Cor D
N�1X

x;yD0

.x � �x/.y � �y/pglcm.x; y/

�x�y
(9)

where pglcm is the probability value from the GLCM, �x , �y , �x , and �y are the
means and standard deviation values of pglcm in horizontal and vertical directions,
respectively.

As a result, the proposed MP-MRI texture feature model consists of a total of
19 features for each imaging modality: 16 from GLCM (4 in each direction) and 3
other texture features (i.e., mean gray level, entropy, and uniformity).

3 Testing Methodology

In the following, details about the image acquisition protocols and the performance
measures are presented.

3.1 Image Data

MRI data of five patients were acquired using a Philips Achieva 3.0T machine
at Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. All data was
obtained under the local institutional research ethics board. For each patient, the
following MP-MRI modalities were obtained (Table 1): T2w, DWI, and CDI. The
patients’ age ranged from 53 to 75.

Table 1 Description of the prostate T2w, DWI, and CDI images

Sequence DFOV (cm2) Resolution (mm2) Resolution (pixels) TE (ms) TR (ms)

T2w 22� 22 0:49 � 0:49� 3 440 � 425 � 26 110 4,687

DWI 20� 20 1:56 � 1:56� 3 128 � 128 � 24 61 6,178

CDI 20� 20 1:56 � 1:56� 3 128 � 128 � 24 61 6,178
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3.2 Evaluation Metrics

We evaluated the performance of the proposed MP-MRI texture feature model
for detecting prostate cancer via a leave-one-patient-out cross-validation using a
Bayesian classifier. First, the feature extraction function was applied to each MR
imaging sequence (i.e., T2w, ADC, CHB-DWI, and CDI) separately across all
patients’ data. This generated four sets of features based on the proposed MP-MRI
texture feature model. Next, a conventional MP-MRI setting was established by
combining the features of T2w and ADC. As a new MP-MRI texture feature model,
three configurations were realized: T2wCADCCCHB-DWI, T2wCADCCCDI,
and CHB-DWICADCCCDI.

We used a Bayesian classifier to calculate sensitivity, specificity, and accuracy
using leave-one-patient-out cross-validation approach. As ground-truth, all images
were reviewed and marked as healthy and cancerous tissue by a radiologist with 18
and 13 years of experience interpreting body and prostate MRI, respectively.

4 Experimental Results

Table 2 shows sensitivity, specificity, and accuracy for all 8 MP-MRI modali-
ties/models. For each modality, on average, 5,260 (5,110 healthy and 150 cancerous)
and 1,315 (1,275 healthy and 40 cancerous) samples (i.e., pixel windows) were
used as training and testing data, respectively for the leave-one-patient-out cross-
validation. The results were averaged across all patients. In order to unify all
three measures (sensitivity, specificity, and accuracy) for the purpose of comparison
among different configurations, we also report the average of the three measures for
each modality/configuration.

It is seen that CHB-DWI alone improves results compared to T2w and ADC
(Sensitivity: 0.88 vs. 0.70 and 0.87, Specificity: 0.58 vs. 0.48 and 0.37, Accuracy:
0.58 vs. 0.49 and 0.38). Although CDI has a lower sensitivity compared to T2w
(0.66 vs. 0.70), its specificity and accuracy is the highest among all individual

Table 2 Evaluation results for prostate cancer detection

Imaging modality Sensitivity Specificity Accuracy Average

T2w 0:7037 0:4815 0:4878 0:5577

ADC 0:8730 0:3659 0:3805 0:5398

CHB-DWI 0:8836 0:5751 0:5839 0:6809

CDI 0:6614 0:7998 0:7958 0:7523

T2wCADC 0:8360 0:4096 0:4219 0:5558

T2wCADCCCHB-DWI 0:8571 0:6350 0:6414 0:7112

T2wCADCCCDI 0:6772 0:8125 0:8086 0:7661

CHB-DWICADCCCDI 0:7831 0:7867 0:7866 0:7854
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Fig. 1 (a) T2w does not
clearly show a tumour
although there is mild signal
alteration in the left
peripheral zone (arrow). (b)
ADC does not clearly show a
tumour (arrow). (c)
CHB-DWI of 2,000 s/mm2

shows no tumour (arrow). (d)
CDI clearly shows a bright
nodule (arrow) corresponding
to tumour

modalities (0.80). This is due to the fact that CDI combines the information across
b-values making it robust.

The first configuration of the new MP-MRI texture feature model, T2wCADCC
CHB-DWI, improves the results with regard to the conventional model, T2wCADC,
(Sensitivity: 0.86 vs. 0.84, Specificity: 0.63 vs. 0.41, Accuracy: 0.64 vs. 0.42). The
second configuration of the new MP-MRI texture feature model, T2wCADCCCDI,
loses the sensitivity compared to the conventional model, T2wCADC, (0.68 vs.
0.84) but outperforms it in both specificity (0.81 vs. 0.41) and overall accu-
racy (0.81 vs. 0.42). The third configuration of the proposed MP-MRI (CHB-
DWICADCCCDI) only loses 5 % in sensitivity compared to the conventional
MP-MRI (T2wCADC) (0.783 vs 0.836). In return, it improves the specificity and
accuracy by 38 and 37 %, respectively (Specificity: 0.79 vs. 0.41, Accuracy: 0.79
vs. 0.42). In other words, with a slight reduction in true positive cases, a significant
amount of false positive cases can be avoided. The best result for average of all three
measures (i.e., sensitivity, specificity, and produced by CHB-DWICADCCCDI
(0.79).

Figure 1 shows an example for all four modalities which include T2w, ADC,
CHB-DWI, and CDI. As it can be seen, CDI (Fig. 1d) is the only modality
that clearly shows a bright nodule where a tumour is located (confirmed by
histopathology data).
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5 Conclusions

In this paper, we introduced a new multi-parametric MRI texture feature model
for prostate cancer detection. Our new MP-MRI texture feature model adds two
new image modalities, CHB-DWI and CDI, to the most commonly used MP-
MRI, T2wCADC. We calculated a set of texture features for both the conventional
MP-MRI and new MP-MRI texture feature models. A Bayesian classifier was
trained via leave-one-patient-out setting to classify the new cases. We evaluated
the proposed MP-MRI texture feature model in three configurations. The first con-
figuration (T2wCADCCCHB-DWI) improved the results (sensitivity, specificity,
and accuracy) compared to the conventional MP-MRI. The second configuration
(T2wCADCCCDI) improved specificity (40 %) and accuracy significantly (39 %)
with a loss in sensitivity (16 %) with respect to the conventional MP-MRI. The
best result was achieved by the third configuration (CHB-DWICADCCCDI); it
improved specificity and accuracy significantly (38 and 37 %, respectively) with
a rather small loss in sensitivity (5 %) with respect to the conventional MP-
MRI. The proposed MP-MRI texture feature model showed promise to tackle the
overdiagnosis problem in prostate cancer detection.
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Predicting Poststroke Depression from Brain
Connectivity

J. Mitra, K.-K. Shen, S. Ghose, P. Bourgeat, J. Fripp, O. Salvado,
B. Campbell, S. Palmer, L. Carey, and S. Rose

Abstract Depression is a common neuropsychological consequence of stroke. The
ability to predict patients at high risk of developing depressive disorders using non-
invasive neuroimaging strategies has the potential to help guide treatment programs
aimed to enhance functional and cognitive recovery. In this study we hypothesize
that modeling the disconnection of key cortical and subcortical brain networks due
to ischemic brain injury may be used to predict poststroke depression. The loss in
structural connectivity was measured using diffusion-weighted MRI (dMRI) and
white matter fiber tracking for 25 stroke patients (acquired 12 months after stroke)
and 41 age-matched control participant. Two connectivity matrices were generated
for each control participant, one with and one without the use of a manually
delineated stroke lesion of a patient as an exclusion mask. A paired t-test using
network-based statistics (NBS) was then performed on these connectivity matrices
to determine the neural networks affected by the ischemic injury. This procedure
was repeated for all stroke patients, in an independent fashion, to generate 25
disconnectivity matrices that were subsequently used in regression forest to provide
a probabilistic prediction of depression. The probabilistic scores obtained from
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regression forests (in a leave-one-out manner) and the clinical depression scores
for 25 stroke patients achieved a high positive Pearson’s correlation with � D 0:78

(p < 0:00001). This methodology shows promise as a predictive tool of poststroke
depression that maybe useful for optimizing rehabilitation strategies.

1 Introduction

Approximately one-third of stroke survivors exhibit depressive symptoms at some
time following stroke [3]. Poststroke depression (PSD) has been associated with
poor functional recovery, cognitive impairment, with individuals presenting with
PSD twice as likely to experience poor long term functional outcomes [10].
Treatment and subsequent remission of PSD have been associated with improved
physical and cognitive functional recovery [6]. Currently, there are no robust
methods for identifying which stroke patients may go on to develop clinical
depression. A number of assessment and screening tools exist for PSD [11], however
many of these rely on self-reporting or observer-rating scales, applied well after the
onset of depressive symptoms. The ability to identify stroke patients at high risk
of developing PSD would enable the introduction of early interventions to improve
functional recovery after stroke.

In this paper, we investigate the use of diffusion-weighted MRI (dMRI), proba-
bilistic tractography and structural connectivity for predicting PSD. We hypothesize
that white-matter (WM) fiber connections will be disrupted by the ischemic injury
and that patients clinically identified with moderate or severe levels of PSD will
have more disconnections within brain networks that are believed to be involved
with depression compared to those patients who recover from stroke with little or
no clinical symptoms of depression. Recent studies suggested that stroke lesions
in limbic, cortical, striatal, pallidal and thalamic structures were associated with
PSD [12, 14], with a prospective study suggesting little association between stroke
location and onset of PSD [1]. Therefore, our hypothesis builds on the concept that
not only is the anatomical location of the stroke important for assessing recovery,
but the pronounced effect of the injury on key intra- and inter-hemispheric neural
circuits is important for measuring the extent of injury and predicting functional
recovery.

This hypothesis was tested and validated using a concept of network disconnec-
tivity, where the impact of ischemic lesion on brain connectivity is measured using
normative control data following [4]. This approach stems from the concept that
fiber tracking may be more robust without the presence of significant pathology.
Given a stroke patient, two sets of connectivity matrices were generated from
dMRI data acquired from each age-matched control participants, one without the
stroke lesion and the other with the lesion mask as an exclusion mask. The loss in
connectivity associated with this stroke, assessed across the normative population,
can then be determined using a network-based statistics (NBS) [15], employing a
standard paired t-test design. The advantage of using a paired t-test approach in
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a control population is that a simple measure of streamline number, although not
quantitative in nature, can be used to infer information about cortical connectivity.
Disconnectivity matrices for each stroke patient were used as features in a regression
forest to provide a probabilistic prediction of depression. The novelties of our
methodology are (1) measuring the impact of the stroke lesion on brain connectivity
across a range of normative subjects using GLM based permutation testing and
(2) using regression forest for continuous prediction of PSD from brain network
disconnections. To the best of our knowledge this is the first attempt to predict PSD
levels using a dMRI structural connectivity analysis.

2 Prediction of PSD Levels from Connectivity

In this study, we first identify the network connections that are affected by the
ischemic lesion for each stroke patient when compared to a control population.
The patterns of the disconnected networks are then used in the regression forests to
predict the level of PSD. The schematic diagram of our method is shown in Fig. 1.
The figure shows that two structural connectivity matrices are generated from dMRI
data acquired from each of 41 age-matched control participant one with and without
the stroke lesion as exclusion mask. The disconnectivity matrix obtained for each
stroke patient using NBS, was passed into regression forest to predict PSD levels in
a leave-one-out manner. The following sections explain our method in more details.

Fig. 1 Schema diagram of our proposed methodology
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2.1 Connectivity with Network-Based Statistics (NBS)

The NBS is a non-parametric t-test using the generalized liner model (GLM), to
isolate the components of a l � l undirected and symmetric connectivity matrix
C that differ significantly between two distinct populations [15]. The number l
depends on the number of parcellated regions of the brain. For DWI, usually the
strengths of the fiber connections passing between a pair of regions is encoded
into the C th

ij and C th
ji elements of the matrix C . Rather than using the raw fiber

connection measures, we convert the connectivity matrix into an autocorrelation
matrixCH that ensures a unit diagonal and intensifies the stronger fiber connections
while suppressing the noise in the estimation. The connectivity measures were
further thresholded at  to keep the significant network connections. Figure 2 shows
a connectivity matrix with raw fiber connections and those with autocorrelation
measures of fiber connections.

Fig. 2 Connectivity matrices. (a) Raw fiber connection measures encoded in connectivity matrix;
(b) autocorrelation measures of the connectivity matrix in (a); and (c) connectivity matrix in (b)
thresholded to keep the important connections
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Given the connectivity matrices of whole brain connectivity CH
w and with the

manually segmented stroke masks as exclusion masks CH
s as obtained from a

tractography algorithm [13], the NBS controls the family-wise error-rate in a weak
sense, when the null hypothesis is tested independently at each of the l.l � 1/=2

edges comprising the connectivity matrix. It employs the GLM to perform a two-
sample t-test at each edge independently to test the hypothesis that the connectivity
between the two populations come from distributions with equal means. The GLM
equation y D Xb C � is defined by the data matrix y of size n �M , where n is the
total number of cases in both the populations and M is the size of the vectorized
upper triangular connectivity matrix since CH

w and CH
s are symmetric; X is the

design matrix of size n�k with independent predictor variables including a column
of intercepts, and b of size k � M is a matrix of unknown parameters (regression
coefficients) that need to be estimated. The error � is minimized to predict the

optimized parameters of b using a least-square estimate as b D �
XTX

��1
XT y.

To compute the differences in networks connections among the populations, a
paired t-test is done in conjunction with permutation testing i.e. by randomly
permuting the rows of the matrix y for s times, and is calculated as follows:

t D cT br

Var.�/cT
�
XTX

�
�1

c
, where, c is a 1�k contrast vector with the first element as 1

and remaining zeros that implies that network connections are more inCH
w thanCH

s ,
and t is vector of size M . The t-statistic available at each edge are thresholded to
form a set of suprathreshold edges and the size of the observed components defined
by these edges are recorded for each permutation which yields an estimate of the null
distribution of the maximal component size. A corrected p-value for each observed
component is then calculated using this null distribution.

2.2 Prediction with Regression Forest

Given a labeled training set, a regression forest learns a general mapping which
associates previously unseen independent test data with their correct continuous
prediction [2]. In a regression forest training, each tree T in the forest receives the
full multivariate training set V , along with the label at the root node and selects
a test threshold along randomly chosen dimensions of the feature space to split
V into two subsets in order to maximize the information gain. The left and the
right child nodes receive their respective subsets Vi and the process is repeated
at each child node to grow the next level of the tree. Each node in a decision
tree also contains a class predictor piT .C jx/, which is the probability of sample
x belonging to class C . Growth is terminated when either information gain is
minimum or the tree has grown to maximum depth. At testing, a new multivariate
data to be predicted is pushed through each tree T by applying the learned split
functions. When reaching a leaf node L , posterior probabilities pL

T .C jx/) are
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gathered in order to compute the final posterior probability of the voxel defined
by p.C jx/ D 1

N

PN
T D1 pL

T .C jx/, where is the number of trees.

3 Experiments and Results

3.1 Data and Pre-Processing

Our study cohort involved 25 stroke patients at 12 month post-stroke stage and 41
age-matched normal subjects. High angular resolution diffusion imaging (HARDI),
acquired using 60 diffusion encoding directions (b D 3,000 s/mm2) were available
for both stroke and normal cohort. Fractional anisotropy (FA) maps were generated
using MRtrix [13] after preprocessing to reduce artifacts from involuntary head
movement, cardiac pulstile motion and image distortions [8, 9]. 3D ROIs for the
stroke lesions were manually delineated by an expert neurologist on fluid-attenuated
inversion recovery (FLAIR) images. To ensure all connectivity measures were
generated in dMRI space, intra-patient affine registrations [7] were performed to
transform the stroke ROIs from FLAIR to FA co-ordinates. Non-rigid registrations
[5] were performed between the FA maps of each stroke patient and each control
subject to transform the ROIs into control co-ordinates. Additionally, the brain
regions for each control subject were parcellated on the TIW images using the AAL
atlas with 116 regions and the information was subsequently transferred into the
dMRI space by affine registration. The depression scores for each stroke patient
had been analyzed by a neuro-psychiatrist at 12 month chronic stage using the
Montgomery-Åsberg depression scale (MADRS) which is an observer-rating scale.

3.2 Detecting Differences in Brain Networks Due to Stroke

Whole brain probabilistic diffusion tractography [13] with 5,000,000 tracks, and
with each stroke ROI (used as exclusion mask) were performed respectively for
each of the 41 control data sets. Connectivity matrices for each control participant
were generated by hit-testing both terminal ends points of every streamline with
every cortical and subcortical region (defined by the AAL atlas). For every possible
link between brain regions, the number of connecting streamlines passing between
each region was computed and their autocorrelation measures were encoded in each
of the connectivity matrices. Although care should be taken when using streamline
number as a measure of connectivity for group-wise analyses, to reduce any impact
regarding quantitation, we employed a paired t-test analysis design of connectivity
matrices in this study. The threshold  for correlation measures of connectivity
was set to 0.5 to consider significant connections. The data matrix y comprises
of vectorized upper triangular matrices of the connectivity measures of 2 � 41
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Fig. 3 An example of the network disconnections for a patient with stroke in the thalamus
region. (a) Disconnectivity matrix showing the pattern of inter-AAL region disconnections;
(b) network disconnectivity graph; (c) affected AAL regions due to stroke in thalamus. The
regions are colored according to the number of inter-regional disconnections; (d), (e) & (f)
show the probabilistic tracts of the connections between Superior_frontal_gyrus_dorsolateral_R
& Thalamus_R, Supplementary_motor_area_R & Thalamus_R, and Superior_parietal_gyrus_R &
Lenticular_nucleus_pallidum_R respectively

cases that includes the contrast group. The design matrix X consists of a column
of intercepts to compare groups “with” and “without” stroke masks. Therefore
for each row of the matrix X, the first regressor models the “with-without” stroke
masks comparison and the other regressors model out each subjects mean separately.
Pairwise comparison of the two groups (whole-brain connectivity and those with a
stroke ROI as exclusion mask) was performed using the NBS permutation testing
with 5,000 permutations, t-statistic threshold equal to 1.8 and p < 0:05. Figure 3
shows an example set of disconnections for a stroke patient. This patient had severe
PSD and the stroke lesion was located in the thalamus region. The disconnections
due to stroke were observed in the pallidal region; where both pallidal and thalamic
regions are known to be associated with PSD [12]. Table 1 shows the list of
significant disconnections with p < 0:01 for this patient that labelled according
to the AAL regions.

Selecting the optimal values for  and the t-statistic threshold of NBS were
important since these indices influenced the inclusion/exclusion of certain connec-
tions in pairwise comparison and consequently the size of the networks that were
significantly affected. Lowering  below 0.5 would have resulted in the inclusion
of more connections, however the robustness of these connectivity measures may
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Table 1 Neural connections that are disconnected for a patient with severe depression due to
stroke in the thalamus region

Region 1 Region 2

Superior_Frontal_gyrus_dorsolateral_R Supplementary_motor_area_R

Supplementary_motor_area_R Superior_frontal_gyrus_medial_R

Supplementary_motor_area_R Paracentral_Lobule_R

Superior_frontal_gyrus_medial_R Paracentral_Lobule_R

Superior_Frontal_gyrus_dorsolateral_R Caudate_nucleus_R

Supplementary_motor_area_R Caudate_nucleus_R

Superior_frontal_gyrus_medial_R Caudate_nucleus_R

Paracentral_Lobule_R Caudate_nucleus_R

Postcentral_gyrus_R Lenticular_nucleus_putamen_R

Superior_parietal_gyrus_R Lenticular_nucleus_putamen_R

Precentral_gyrus_R Lenticular_nucleus_pallidum_R

Superior_parietal_gyrus_R Lenticular_nucleus_pallidum_R

Paracentral_Lobule_R Lenticular_nucleus_pallidum_R

Precentral_gyrus_R Thalamus_R

Superior_Frontal_gyrus_dorsolateral_R Thalamus_R

Supplementary_motor_area_R Thalamus_R

Postcentral_gyrus_R Thalamus_R

Paracentral_Lobule_R Thalamus_R

Caudate_nucleus_R Thalamus_R

have been impacted by the inclusion of false positive fiber tracts, or less well-
defined connections through regions of complex WM architecture. The choice of
the t-statistic threshold in our study was chosen empirically with the assumption
that significant network disconnectivities due to stroke were associated with PSD.
Regression forest was further used to predict the levels of PSD associated with such
network disconnections obtained from NBS.

3.3 Depression Prediction with Regression Forest

The network disconnectivity matrices from NBS for each stroke patient were
associated with training labels PSD and normal depending on the clinically assessed
MADRS scores (MADRS score > 6�PSD, else normal, while the range was
between 0–29 for our cohort). The regression forest training/testing were performed
in a leave-one-patient-out manner. The forest provided a posterior probability of
prediction for a new test data at each tree leaf node that was learned form the trained
split functions. The tree parameters were found optimally using a search space of
tree-depth (D) in a range of 5–20 and number of trees (N) in a range of 10–300
in steps of 10, to avoid over-fitting and improve generalization while maximizing
the correlation between the predicted and the clinical scores. The values N D 190
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Fig. 4 Prediction accuracies of PSD for the stroke patient cohort. (a) Correlation of predicted
scores vs. actual clinical scores plotted against varying number of trees and the depth of trees; (b)
the correlation between predicted and clinical scores are shown for 25 patients with the optimal T
and D values of regression forest

and D D 10 were found as the optimal parameters with a Pearson’s correlation
of � D 0:78 (p <0.00001) between the predicted and clinical depression scores.
Figure 4 shows the surface plot of PSD prediction & MADRS score correlations vs.
N and D; and the regression line between the predicted and clinical MADRS scores
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Table 2 Depression
prediction accuracy with NBS
and regression forest
(NBSCRF)

Method TP TN FP FN ACC (%)

NBS 9 5 9 2 56

NBSCRF 11 14 0 0 100

of PSD with the optimal parameters. It is known that higher values of D causes
over-fitting while higher values of N does not necessarily overfit but too many trees
may reduce generalization; a similar effect was observed in our study as shown in
Fig. 4a [2]. Since the aim of this study is only to predict depression based on the
network disconnectivity pattern of individual stroke patients, we do not measure the
feature importance returned by regression forest for each stroke patient, where the
significant connections were already obtained from NBS at a previous stage.

Although not a defined scope of this study, the binary prediction accuracies of
PSD and normal with those obtained from NBS and regression forest are shown
in Table 2. The ground truth for PSD and normal cases were obtained from the
clinical MADRS scores as defined before. The accuracy for NBS was measured
on the basis of the assumption defined before: presence of network difference &
PSD—true positive (TP); absence of network difference & normal—true negative
(TN); presence of network difference & normal—false positive (FP); and absence
of network difference & PSD—true negative (FN). While, for the regression forest
(RF), the TP, TN, FP and FN values were calculated after thresholding the prediction
probabilities at >D 0:5 for PSD and normal otherwise. The accuracy (ACC) was
measured as .TP C TN/=.TP C TN C FP C FN/. The table signifies that the number
of false positives have reduced when regression forest was used in conjunction with
NBS rather than NBS alone.

4 Conclusions

We have proposed a novel framework to quantify the level of PSD based on
GLM-based permutation testing and regression forest from disconnections of
structural connectivity due to stroke. The resulting algorithm involving NBS and
regression forest showed high accuracies for the prediction of PSD levels and
statistically significant correlations were shown with clinical depression scores.
Future directions and works in progress include validating our method in a larger
prospective study including a non-stroke patient group with depression and finding
discriminative structural connections differentiating between the disease and control
group. Our approach has the potential to identify stroke patients at high risk of
developing depression, enabling early intervention strategies to improve long term
outcome measures.
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Fiber Bundle Segmentation Using Spectral
Embedding and Supervised Learning

Dorothée Vercruysse, Daan Christiaens, Frederik Maes, Stefan Sunaert,
and Paul Suetens

Abstract Diffusion-weighted imaging and tractography offer a unique approach
to probe the microarchitecture of brain tissue noninvasively. Whole brain tractog-
raphy, however, produces an unstructured set of fiber trajectories, whereas clinical
applications often demand targeted tracking of specific bundles. This work presents
a novel, hybrid approach to fiber bundle segmentation, using spectral embedding
and supervised learning. Training data of 20 healthy subjects is labeled with a
parcellation-based method, and used to train support vector machine and random
forest classifiers. Cross-validation was used to avoid overfitting. Results on testing
data of five independent subjects show a clear improvement over unsupervised
methods. Moreover, estimating the label probabilities allows to reduce the effect
of outliers.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) [1] is a unique approach to
probe the microarchitecture of brain tissue noninvasively. Based on measurements
of the local diffusion anisotropy, and assuming that diffusion is larger along the
direction of neuronal fibers [3], numerous methods exist to estimate the local
fiber orientation distribution function (fODF) [7, 17]. Tractography methods aim to
reconstruct white matter (WM) pathways, usually by following the estimated fiber
directions. Two distinct groups of stepwise tractography methods exist: determin-
istic methods, which select the most likely track direction in every step [2, 5, 12],
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and probabilistic methods, which draw random samples from the fODF or a similar
distribution [15, 18].

Whole brain tractography, however, produces an unstructured set of fiber tra-
jectories, whereas clinical applications often demand targeted tracking of specific
bundles. Generally, this requires manual delineation of regions-of-interest (ROI),
which is tedious and subjective work. Therefore, a number of automated bundle
segmentation methods have been presented, which can be categorized into fiber
clustering methods and parcellation-based methods [14]. Fiber clustering methods
aim to group neighbouring or similar tracks into clusters, which can then be
assigned anatomically meaningful labels from an atlas [10, 11, 13]. Parcellation-
based methods, on the other hand, employ carefully defined ROIs in atlas space, e.g.,
a cortical parcellation, to segment and label predefined WM bundles [21]. While this
allows for highly specific labeling, tracts that do not intersect the ROIs are excluded
from the analysis and may hence result in a low sensitivity.

This work presents a novel, hybrid approach to fiber bundle segmentation, using
spectral embedding and supervised learning. The white matter query language
(WMQL) [21], a parcellation-based method, is used to generate ground-truth labels
to train the classifiers. The sensitivity and specificity of the proposed method is
calculated using cross-validation, and results on unlabeled, whole brain tractography
data are presented.

2 Methods and Materials

The proposed method is based on spectral embedding, a dimensionality reduction
technique that allows to represent each track as a vector in the embedding space
such that nearby tracks (provided some distance metric), are mapped onto nearby
embedding vectors. O’Donnell et al. [13] were the first to use spectral embedding
for fiber clustering, using the unsupervised k-means algorithm in the embedding
space. Instead, we propose to use supervised learning, specifically support vector
machines (SVM) and random forests, on the embedding vectors. The training data,
required for this approach, is provided by the WMQL.

2.1 Spectral Embedding

The aim of spectral embedding is to find a meaningful representation of the input
data in a lower dimensional space. When used for clustering, this representation
should preferably group data points that score high for a certain similarity measure.
As such, similarity relationships are represented spatially, i.e., every fiber is
represented as a point and nearby points generally correspond to similar trajectories,
which simplifies the clustering [13].
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Fig. 1 Block structure of the normalized affinity matrix W , used in the Nyström method. The
regions in submatrices A and B denote the individual subjects. Submatrix C represents the part that
does not need to be calculated when using the Nyström method. For the automatic segmentation
of a new subject, matrix S contains the affinity values between the new tracks and the subset of
matrix A (reproduced from [13])

Assuming that fibers following a similar trajectory belong to the same anatomical
bundle, a pairwise fiber affinity wij between tracks i and j is calculated from the
symmetrized mean closest point (MCP) distance dij D dji D .MCPij C MCPji/=2

via a Gaussian kernel, i.e., wij D e
� d2ij
�2 . These affinities are computed between all

pairs of fibers, resulting in a symmetric affinity matrix W. Based on the Normalized
Cuts algorithm by Shi and Malik [16], the embedding vectors are then computed
using the eigenvectors U of the normalized affinity matrix W D D� 1

2 W D� 1
2 , where

D is a diagonal matrix containing the row sums of W. The number of eigenvectors
determines the dimension of the embedding space [13], and is fixed to e D 25 in
our experiments.

In practice, the entire affinity matrix is too large to compute. Therefore, as
described in Fowlkes et al. [8], its eigenvectors are approximated using the Nyström
method [8]. Instead of calculating all pairwise fiber affinities, a random subset of
tracks is chosen (containing an equal amount of fiber trajectories from each subject)
and only the affinities from all subjects to this subset are computed. The layout of the
entire affinity matrix is shown in Fig. 1. Submatrix A contains the pairwise affinities
between the fibers of the subset and B those of the rest of the fibers to the subset.
The largest submatrix C does not have to be calculated, reducing the computation
time considerably.

Note that in order to make a multi-subject atlas, spectral clustering needs to
be performed in all subjects together. Therefore, a registration step is required to
transform the tracks to a common space, e.g., MNI space, using subject dependent
deformation fields. As such, the fibers of all subjects are treated as if they originate
from one brain for training, which results in one embedding space.
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2.2 Supervised Classification

The proposition made is to cluster the embedding vectors into anatomically
relevant bundles using supervised clustering instead of k-means. The training of
the classifiers is performed on labeled WMQL output tracks. The WMQL is a
parcellation based segmentation method developed by Wassermann et al. [21] which
uses queries based on (1) anatomical terms that state if a fiber track traverses or ends
in a certain anatomical region of the brain, (2) relative position terms that state if a
track lies, for instance, lateral or frontal of a certain anatomical structure such as the
amygdala and (3) logical operations that are for example conjunctions, disjunctions
or exclusions of the previous two types of terms.

The supervised learning methods used in this study are support vector machines
(SVM) and random forests. The basic principle of SVMs is to find a unique
hyperplane by maximizing the margin between two classes [20]. Two different
kernels are tested, linear SVMs and Gaussian radial basis function (RBF) kernels.
The advantage of SVMs is that they are effective in high dimensional spaces.
Furthermore, they employ only a subset of training points, the support vectors,
in the decision function, which makes them memory efficient [6]. A drawback,
however, is the slow training for large data sets. Random forests on the other hand,
are classifiers developed by Breiman [4] which use the ensemble (forest) of decision
trees, generated from random input vectors and using only a random subset of
features for splitting nodes. Since the number of randomly selected features is much
smaller than the number of input vectors, random forests learn fast on large datasets.

2.3 Automatic Segmentation

By training the classifiers, a white matter atlas is created which can be used for the
automatic segmentation of fiber bundles from novel subjects. First, the new tracks
must be registered or transformed to the atlas (MNI) space. Secondly, the affinity
between the tracks of the new subject and the atlas is calculated. As illustrated in
Fig. 1, a matrix S is calculated that contains the affinity values between the new
tracks and the subset of tracks used for calculating A. Note that S also has to be
normalized [13]. Next, each new fiber will be embedded in the same embedding
space as created for the original clustering. A detailed description of the eigenvector
estimation of the novel subject is given by O’Donnell et al. [13]. The final step is the
automatic segmentation itself, i.e., the cluster information from the atlas is applied
to the new embedding vectors. In order to do this, the novel embedding vectors are
used as input for the trained classifiers.
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2.4 Materials

Data of 25 healthy subjects were provided by the Human Connectome Project
(HCP), WU-Minn consortium [19]. DWI data consists of 3 � 90 gradient directions
at b-values 1,000, 2,000, and 3,000 s/mm2 and 18 non-diffusion weighted images
(b D 0), at an isotropic voxel size of 1.25 mm, and was corrected for motion
and EPI distortions as described in [9]. The fODF, and subsequent deterministic
and probabilistic fiber tracks (50,000 each), were reconstructed with MRtrix [17]
using default parameters. The tracks were segmented into 44 WM bundles using
Wasserman’s WMQL and the WM parcellation available in the HCP data set,
resulting in approximately 4,500 labeled tracks for each subject. All tracks are
warped to MNI space using the deformation fields provided by the HCP. The
multisubject deterministic and probabilistic training sets to create the atlases consist
of the labeled tracks of 20 subjects, the other five form the test set. For affinity
calculation � is set to 60 mm. The submatrix A contains a random sample of 4,000
tracks.

3 Validation

The proposed method was applied on the 20 training subjects, constructing the
embedding space and training the SVM and random forest classifiers. To avoid
overfitting, fivefold cross-validation is used for the training. The true positive rate,
calculated on the test set of five novel subjects and assuming their WMQL labels as
ground truth, is given in Table 1. For comparison, k-means is included, using 200
clusters (identical to [13]), and assigning labels based on majority voting.

The scores of the supervised classifiers are all in the same range of around 95 %,
with a maximum of 95.78 % for the SVM with RBF-kernel on deterministic tracks.
The true positive rate (TPR) for k-means, on the other hand, is below 85 %, hence
the proposed method achieves over 10 % improvement.

To evaluate the performance of the models on finding each individual bundle,
scores are determined following a one-versus-the-rest principle. The performance
plots in Fig. 2 give an overview of the results on deterministic tracks. Results
are preferably expected in the upper left quadrant of the plot, where the TPR
(sensitivity) is high and the false positive rate (FPR, (1 � specificity)) is low.

Table 1 Validation scores (true positive rate, TPR)

TPR (deterministic) (%) TPR (probabilistic) (%)

K-means (KD200) 83.41 80.84

SVM, kernelDlinear 94.90 93.75

SVM, kernelDRBF 95.78 95.63

Random forests 95.07 94.77
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Fig. 2 Performance plots of the different classifiers for all 44 bundles (one-versus-the-rest) on
deterministic WMQL output tracks, representing the true positive rate (sensitivity) versus the false
positive rate (1� specificity). The marker colors represent the bundle number. Note that the x-axis
ranges from 0 to 0.025 to give a more detailed view

Since the negative class will always be very large (43 bundles, versus 1 bundle
in the positive class), true negatives (TN) will be very high in comparison to false
positives (FP). Therefore, the specificity will be high and the FPR low. Note that
the x-axis in the plots only ranges from 0 till 0.025 instead of 1, to give a more
detailed view. The sensitivity is spread over a wider range. The green bundle that
scores very low with every supervised classifier (Fig. 2a–c), represents the right
superior occipitofrontal fasciculus, a bundle that contains very little to no tracks
in most subjects. This explains the bad training performance. The plot for the k-
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means classifier (Fig. 2d) shows an overall larger spread, as was expected from the
lower total clustering performance.

4 Results

The unsupervised and supervised classifiers that were trained as discussed above
are now evaluated on the unlabeled whole brain track sets (deterministic and
probabilistic, each containing 50,000 tracks) of the test subjects. The tracks are
warped to atlas space and projected onto the embedding space of the training data.
Afterwards, their labels are estimated by using the resulting embedding vectors as
input for the trained classifiers. In case of the k-means classifier, each track receives
the label of the closest centroid in embedding space.

Since the whole track set is used as input, including many spurious tracks (i.e.,
false positives) and interrupted tracks that were not labeled by the WMQL, it is
no longer possible to use the labels generated by the WMQL as ground truth to
calculate, e.g., the TPR. Therefore, the results can only be analyzed visually by
comparing the resulting segmentation with the WMQL output bundles, and with
basic neuroanatomical knowledge.

First, the results are studied without considering the label probability, i.e., using
maximum-likelihood classification. This is shown in Figs. 3 and 4 for determin-
istic and probabilistic tractography respectively, in a single subject. The top row
shows the segmentation of the corticospinal track (CST) in 1 subject. Notice the
misclassified cerebellum (which is not defined in the WMQL queries) tracks in the
k-means and linear SVM segmentation. Additionally, all classifiers label sagittal
dispersions in the corona radiata as CST. The segmentation of the cingulum bundle
(CB) contains misclassified tracks of the fornix (which is not labeled in the WMQL)
and dispersing tracks from the corpus callosum.

In Fig. 5, a threshold is put on the labeling probabilities of the SVM with RBF-
kernel and the random forest classifier, in order to try to ameliorate the results
by excluding outlier tracks. For the CST, increasing the threshold results in the
exclusion of the corona radiata tracks, while the cut off tracks of the left CST
bundle are still correctly labeled, contrary to the WMQL segmentation. The CB
segmentation contains a lot less dispersions into the CC with a high threshold and
also the tracks from the fornix are eliminated.

5 Discussion

The high scores for validation on labeled WMQL output tracks show the potential
of the proposed method for fiber bundle segmentation. The true positive rates (TPR)
for the supervised classifiers are considerably higher than that obtained by the k-
means classifier. The performance evaluation across individual bundles allows to
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Fig. 3 Segmentation results on deterministic, whole brain tractography data, using the white
matter query language (WMQL), k-means clustering, support vector classifiers (SVM) with linear
and RBF-kernels, and random forests, shown for the corticospinal track (CST), cingulum bundle
(CB), corpus callosum (CC), actuate fasciculus (AF), unicate fasciculus (UF), superior, middle, and
inferior longitudinal fasciculus (SLF, MdLF, ILF), and inferior occipitofrontal fasciculus (IOFF)
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Fig. 4 Segmentation results on probabilistic, whole brain tractography data, using the white matter
query language (WMQL), k-means clustering, support vector classifiers (SVM) with linear and
RBF-kernels, and random forests, shown for the corticospinal track (CST), cingulum bundle (CB),
corpus callosum (CC), actuate fasciculus (AF), unicate fasciculus (UF), superior, middle, and
inferior longitudinal fasciculus (SLF, MdLF, ILF), and inferior occipitofrontal fasciculus (IOFF)
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Fig. 5 Effect of different thresholds on the labeling probabilities for support vector machine
(SVM) and random forest-based segmentation of the corticospinal track (CST, top) and the
cingulum bundle (CB, bottom). The segmentation results of the white matter query language
(WMQL) are shown for reference on the right
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conclude that the results are in the same range for most bundles, except for three of
them which contain little to no tracks in the training set. This could be solved by
re-evaluating the WMQL queries for these specific bundles.

As expected, the results on complete whole brain tractography data sets, which
include all outlier tracks (i.e., false positives), are not as good as those on validation
data (WMQL output). This can be explained by the fact that the WMQL excludes
most outliers due to the strict requirements of the queries, resulting in a cleaner
segmentation. As demonstrated, setting a threshold on the labeling probabilities
creates a virtual outlier class that can be used to eliminate such tracks. Since setting
the threshold too high can lead to sparse bundles, a method for optimal threshold
selection still has to be developed.

Since there is no real ground truth available for white matter structures, it would
be useful to let a neuroanatomy expert revise the segmentations obtained by the
atlas. Expert knowledge could also be used to extend the WMQL with known
bundles such as the fornix which is not yet included in the queries.

6 Conclusion

This work introduced a new method for fiber bundle segmentation, based on spectral
embedding and supervised learning. The proposed method outperforms existing
unsupervised methods and is more robust to outlier tracks when the label probability
is taken into account. Future work may extend the atlas to smaller, currently
undefined fiber bundles.
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Atlas-Guided Global Tractography: Imposing
a Prior on the Local Track Orientation

Daan Christiaens, Marco Reisert, Thijs Dhollander, Frederik Maes,
Stefan Sunaert, and Paul Suetens

Abstract Since its introduction over a decade ago, diffusion tractography has
come a long way from local, deterministic methods, over probabilistic approaches,
towards global tractography. Yet, the development of tractography methods has
been largely focused on single subject data, and very little on cross-population
analysis and inter-subject variability. In this work, we extend global tractography
with a prior on the local track orientation distribution (TOD), derived from 20
normal subjects. The proposed method is evaluated in five independent subjects.
Results show that adding such prior regularizes the reconstructed track distribution,
although registration errors can induce local artefacts. We conclude that atlas-guided
global tractography can improve the fibre reconstruction and ultimately detect and
quantify inter-subject differences in tractography.

1 Introduction

Since its introduction over a decade ago, diffusion tractography has come a long
way from local, deterministic methods, over probabilistic approaches, towards
global tractography [10, 12], steadily gaining importance for in vivo neuroanatomy
studies and neurosurgical planning. Deterministic streamline approaches [14] are
highly sensitive to local estimation errors, leading to low accuracy, sensitivity and
specificity of the reconstructed tracks in the presence of noise, modelling errors,
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and partial volume effects [10, 16]. Probabilistic fibre tracking can accommo-
date for this uncertainty [16], but won’t improve the quality of each individual
streamline. Moreover, streamline tractography is inherently difficult to quantify due
to its dependence on the seeding distribution. Global fibre tracking methods [6, 11,
13,18] aim to reconstruct the ensemble of fibres that best explain the measured DWI
data [12]. By addressing the problem at a global scale, these methods can be less
sensitive to local estimation errors and maintain a quantifiable correspondence to
the data.

Yet, the development of tractography methods has been largely focused on
single subject data, and very little on cross-population analysis and inter-subject
variability. Indeed, while atlases are at the core of state-of-the-art segmentation and
label fusion methods [1], their use in diffusion tractography is mostly limited to
automated and consistent delineation of regions of interest for seeding, inclusion,
and exclusion in streamline tractography, and for clustering and labelling of the
resulting fibre tracks [15]. In regard to streamline tractography, Cook et al. [3] have
demonstrated the use of a diffusion tensor atlas as a prior distribution for the fibre
orientation. Yap et al. [22] have similarly used a distribution of the maxima of the
fibre orientation distributions (FOD) in different subjects, as a means of improving
tractography of the average atlas. Finally, Yendiki et al. [23] imposed a shape prior
on specific pathways connecting segmented end regions.

In this work, we extend the global tractography framework of Reisert et al. [18]
with a prior on the local track orientation distribution (TOD) [5]. This prior is
derived from 20 normal subjects and represented as an atlas in the basis of spherical
harmonics (SH), that captures both the expected fibre directions and their support
by the local neighbourhood. We expect this atlas to guide the global tractography
towards a more targeted reconstruction, due to its higher angular contrast. In contrast
to the current state of the art, our method finds the globally optimal tractogram
without restrictions to specific pathways.

2 Methods

2.1 Global Tractography in the SH Basis

2.1.1 Generative Model

The set of tracks we aim to reconstruct, i.e., the fibre model M , is represented as
a set of segments f.ri ;ni /g, with position ri , direction ni , and fixed length 2`, and
a set of connections between their endpoints. Ultimately, we wish to maximize the
posterior probability of M given the data D, which, according to Bayes’ rule and
assuming an exponential model, equals

P.M jD/ / P.DjM / P.M / D e�Eext.M ;D/=T e�Eint.M /=T : (1)
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As such, the problem becomes finding the global minimum ofE.M / D Eint.M /C
Eext.M ;D/. The internal energyEint promotes connectivity and smoothness of the
reconstructed tracks, and is defined identically as in [18]. The external energy Eext

measures the similarity to the data, defined as the mean squared error �extkD.b; g/�
D0.b; g/k2 between the measured data D and the predicted data D0 given the fibre
model, for all b-values and gradient directions g.

Given the model M , we simulate the dataD0 by assuming that each segment has
an equal contribution to the predicted signalD0 in the form of a fibre response kernel
Kb.�/, as used in spherical deconvolution techniques [4, 19]. Kb.�/ is a spherical
function depending only on the elevation, that models the expected diffusion signal
for a single fibre direction along the z-axis. The data is then simulated by rotating
this kernel along all segments, and integrating over all segments in a voxel V.r/, i.e.,
D0
b.u/ D P

i2V.r/ Kb.arccos.u � ni //. Cast into the real, symmetric SH basis [4],
this becomes D0

b.u/ D P
i Kb 	 ıni .u/ D Kb 	 
.u/ where ıni .u/ is the SH

Dirac delta function along direction ni , 	 is the spherical convolution operator,
and 
.u/ D P

i ıni .u/ models the orientation distribution of the segments in that
voxel. In addition, we introduce one or more isotropic kernels c.b/ that account for
partial volume contamination of other tissue types and depend only on the b-value.
In summary, the predicted DWI signal in every voxel equals

D0.b; g/ D Kb 	 
.g/CP
j fj cj .b/ ; (2)

where fj are the respective isotropic fractions, estimated in each voxel as the least-
squares solution of the external energy, given the current segment configuration.

The intermediary representation
.u/ of the fibre model is related to the recently
introduced TOD [5] by convolution with an apodized point spread function (aPSF),
defined as the sharpest non-negative function that can be represented in the SH
basis of order `max. We denote the resulting TOD as Q
.u/ D aPSF 	 
.u/, a
non-negative distribution that is more robust to SH aliasing effects. Note that for
global tractography, the TOD closely resembles the FOD obtained from constrained
spherical deconvolution [19], as the reconstructed track distribution is optimized for
maximal correspondence to the data.

2.1.2 Optimization

The optimization of (1) relies on the Metropolis-Hastings (MH) algorithm, a
Markov Chain Monte Carlo technique, to obtain random samples from the posterior
distribution [9]. As in simulated annealing methods, the temperature T is gradually
cooled down to increase the likelihood of sampling from the maximum of P.M jD/
(or the minimum ofE.M /). At each iteration, the MH sampler proposes a new state
M 0, obtained as a random perturbation of the current state M , and evaluates the
Green’s ratio

R D min

 

1;
e�E.M 0/=T

e�E.M /=T

pprop.M jM 0/
pprop.M 0jM /

!

; (3)
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where pprop.yjx/ is the transition probability from state x to state y. The proposed
state M 0 is then accepted with probability R, or discarded otherwise. Transition
proposals include birth/death of segments, random and optimal shifts, and cre-
ation/deletion of connections [11, 18].

2.2 Atlas Prior

Given an atlas A of the local track orientation, the posterior probabil-
ity of the fibre model equals P.M jD;A/ / P.DjM ; A/P.M jA/ /
P.DjM / P.AjM / P.M /, using Bayes’ rule and assuming the subject data is
independent of the atlas. Assuming the usual exponential model, the new energy
function becomes

E.M / D Eext.M ;D/C Eatlas.M ; A/C Eint.M / : (4)

Hence, the atlas prior is a direct extension of the global tractography framework
explained in the previous section, and can be optimized in the same way.

We define the atlas energy Eatlas.M ; A/ as the L2-distance between the recon-
structed TOD Q
.u/ and the atlas TOD Q
a.u/, which, according to Parseval’s
theorem, equals the sum of squared differences between the corresponding SH
coefficients. In the spirit of [5], we propose to use a minimum track length threshold
for the atlas TOD, which emphasizes the neighbourhood support of the local track
orientation. Note that by imposing such length threshold, the distinction between
the TOD, which is a direct representation of any tractogram, and the FOD, which
relates to the data, becomes important.

3 Experiments and Results

3.1 Data

Data of 25 neurologically healthy subjects between ages 22 and 35 years old were
provided by the WU-Minn Human Connectome Project (HCP) Q3 data release [20].
The diffusion data consists of 3 � 90 gradient directions at b-values 1,000, 2,000,
and 3,000 s/mm2 and 18 non-diffusion weighted images (b D 0), at an isotropic
voxel size of 1.25 mm, and was corrected for motion and EPI distortions as
described in [8]. In each subject, the white matter (WM) response function was
estimated in a fractional anisotropy (FA � 0:75) mask using standard techniques
for all shells [19]. Isotropic grey matter (GM) and cerebrospinal fluid (CSF) kernels
were estimated as the average signal in manually delineated regions. Finally, the
kernels of all subjects were averaged to obtain one mean WM, GM and CSF kernel.
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3.2 Atlas Construction

The atlas was constructed out of 20 randomly selected subjects, using our global
tractography method without atlas prior in each of them individually. The segment
length was set to 2 mm, the maximal order of the SH basis to `max D 10, and
the weight of each segment to 0.1, such that on average ten segments per white
matter voxel are reconstructed. We ran the MH sampler for 109 iterations, which
took around 10 h on a standard desktop computer.

The resulting fibre segments were normalized to MNI space, using the non-linear
warps provided by the HCP and originally obtained from FSL FNIRT [8]. The centre
point of each segment is transformed to atlas space and its direction is reoriented
according to the Jacobian of the local deformation field. Next, we imposed a
minimum track length threshold, such that only tracks consisting of at least ten
segments remained. These segments were subsequently transformed and reoriented
to the space of the five remaining subjects for testing. Finally, the set of transformed
and filtered segments of all subjects was converted to a TOD representation using
aPSFs as described in Sect. 2.1. Conceptually, this is identical to existing methods
for FOD/TOD reorientation and atlas construction [2,17], except that those methods
first fit a weighted sum of uniformly oriented aPSFs to the data in every voxel. The
segment representation, used in global tractography, allows to avoid this fitting step.

3.3 Evaluation

The effect of the proposed atlas prior was evaluated in the five remaining subjects,
using identical parameter settings as for the initial global tractography. First
of all, the mean track length, reported in Table 1, is exponentially distributed
and increases significantly with the atlas prior (F-test, p-value 10�6) by about
25 %. Simultaneously, the imposed atlas prior reduces the number of tracks by
approximately 50 %. These observations indicate that while the overall density
decreases, mostly the number of short, incomplete or interrupted tracks is reduced
by the atlas prior.

Table 1 Mean track length and the total number of reconstructed tracks for the five test subjects

Uniform prior Atlas prior

Subject Average length (mm) No. tracks Average length (mm) No. tracks

1 16.05 281,403 19.27 131,196

2 17.04 211,759 21.93 112,591

3 16.16 249,838 20.48 119,286

4 16.79 199,610 21.93 109,324

5 16.98 221,455 21.57 116,499
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Fig. 1 Coronal slab (5 mm) of the reconstructed tractogram in the cerebrum, overlaid on a
fractional anisotropy map, without atlas prior (left), and with atlas prior (right)

Fig. 2 Track orientation distribution (TOD) in the centrum semiovale, obtained without atlas prior
(left), and with atlas prior (right). With atlas prior, the track orientations are more consistent across
neighbouring voxels

Figure 1 shows a cross-section of the reconstructed tractogram of test subject 1,
and illustrates that the density decrease with the atlas prior is mainly located in the
distal gyri. All major WM bundles are present in the reconstruction, and the crossing
of the corpus callosum, the corona radiata, and the superior longitudinal fasciculus,
sometimes challenging for tractography, is successfully recovered in both global
tractography reconstructions, with and without the atlas prior. However, a close-up
of the TOD in this region, as shown in Fig. 2, illustrates that the main fibre directions
are more consistent across neighbouring voxels when using the atlas prior. Similar
results were observed in the remaining test subjects (not shown).

Finally, we segmented the left cingulate track in both reconstructions based on
a WM parcellation obtained with FreeSurfer [7] following the protocol described
in [21]. As shown in Fig. 3, the atlas prior strongly reduces the amount of spurious
tracks that run from the cingulum into the corpus callosum. Hence, incorporating
the atlas prior improves the specificity of the track reconstruction.
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Fig. 3 Sagittal view of the left cingulate track, segmented from the global fibre reconstruction
without atlas prior (left), and with atlas prior (right). Notice that with the prior, the number of false
positive connections to the corpus callosum is reduced

4 Discussion

At a conceptual level, there are many analogies between tractography and segmen-
tation. Both aim to delineate structures of interest, both rely on neighbourhood
information for doing so, and both aim to reconstruct shapes with remarkable simi-
larity across subjects. As such, we can expect that tractography, like segmentation,
can benefit from inter-subject information in the shape of an atlas that captures the
expected anatomy.

The global tractography framework is well suited for the inclusion of such atlas
prior, as it aims to reconstruct the optimal fibre configuration in the whole image
volume. Indeed, we have shown that a prior of the local track orientation can be
elegantly included as an additional energy term in the optimization. Selecting the
weight of this atlas energy allows to set the reliance on the atlas relative to the
subject data, whereas the internal energy ensures spatial continuity.

While the atlas contains only local information, the imposed minimum track
length ensures “track-like local support” in the neighbouring voxels [5], which
can be a powerful prior for guiding the fibre reconstruction. This is particularly
evidenced by our results in Figs. 2 and 3, in which we observed more consistent
track orientations and fewer spurious connections. An alternative application of the
presented method could be to use a high-resolution atlas, built from HCP data,
in conjunction with data of lower spatial and angular resolution. As such, the
reconstruction of clinical data with fast acquisition schemes may be improved.

Nevertheless, our proposed atlas-guided tractography method also suffers from
some of the limitations of atlas-based segmentation methods. Foremost, the required
atlas-to-subject registration can introduce misalignment artefacts that make for a
fuzzy prior at best, and a plain wrong one at worst. We noticed the effect of such
artefacts in some of the distal gyri, where a “null prior” was mapped onto the
gyrus, disabling any track reconstruction in that area. Secondly, the robustness of
the current setup to pathology is in question, as registration in the presence of
(tumorous) lesions is still an open issue.
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5 Conclusions

This work is, to the best of our knowledge, the first to include a track orientation
prior in a global tractography framework. Our method has a beneficial effect on
the reconstructed tractogram, although its success depends on the quality of the
registration. Future work can focus on alternative atlas measures and multi-atlas
approaches, which may perform better in this regard.

Acknowledgements D. Christiaens is supported by a Ph.D. grant of the Agency for Innovation
by Science and Technology (IWT). Data were provided by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

References

1. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Bach Cuadra, M.: A review of atlas-based
segmentation for magnetic resonance brain images. Comput. Meth. Prog. Biomed. 104(3),
e158–e177 (2011)

2. Christiaens, D., Dhollander, T., Maes, F., Sunaert, S., Suetens, P.: Groupwise deformable
registration of fiber track sets using track orientation distributions. In: Schultz, T., Nedjati-
Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E. (eds.) Computational Diffusion
MRI and Brain Connectivity, Mathematics and Visualization, pp. 151–161. Springer, New York
(2014)

3. Cook, P.A., Zhang, H., Awate, S.P., Gee, J.C.: Atlas-guided probabilistic diffusion-tensor fiber
tractography. In: 5th International Symposium on Biomedical Imaging: From Nano to Macro—
ISBI 2008, pp. 951–954. IEEE (2008)

4. Descoteaux, M., Deriche, R., Knosche, T., Anwander, A.: Deterministic and probabilistic
tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging
28(2), 269–286 (2009)

5. Dhollander, T., Emsell, L., Van Hecke, W., Maes, F., Sunaert, S., Suetens, P.: Track orientation
density imaging (TODI) and track orientation distribution (TOD) based tractography. Neu-
roImage 94, 312–336 (2014)

6. Fillard, P., Poupon, C., Mangin, J.F.: A novel global tractography algorithm based on an
adaptive spin glass model. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor,
C. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009,
LNCS, vol. 5761, pp. 927–934. Springer, Berlin (2009)

7. Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012)
8. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal
preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)

9. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57(1), 97–109 (1970)

10. Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connect. 1(3),
169–183 (2011)

11. Kreher, B., Mader, I., Kiselev, V.: Gibbs tracking: a novel approach for the reconstruction of
neuronal pathways. Magn. Reson. Med. 60(4), 953–963 (2008)



Atlas-Guided Global Tractography 123

12. Mangin, J.F., Fillard, P., Cointepas, Y., Le Bihan, D., Frouin, V., Poupon, C.: Toward global
tractography. NeuroImage 80, 290–296 (2013)

13. Mangin, J.F., Poupon, C., Cointepas, Y., Riviere, D., Papadopoulos-Orfanos, D., Clark, C.,
Régis, J., Le Bihan, D.: A framework based on spin glass models for the inference of
anatomical connectivity from diffusion-weighted MR data—a technical review. NMR Biomed.
15(7–8), 481–492 (2002)

14. Mori, S., van Zijl, P.: Fiber tracking: principles and strategies—a technical review. NMR
Biomed. 15(7–8), 468–480 (2002)

15. O’Donnell, L.J., Golby, A.J., Westin, C.F.: Fiber clustering versus the parcellation-based
connectome. NeuroImage 80, 283–289 (2013)

16. Parker, G.J.: Probabilistic fiber tracking. In: Jones, D.K. (ed.) Diffusion MRI: Theory, Methods,
and Applications, pp. 396–408. Oxford University Press, Oxford (2010)

17. Raffelt, D., Tournier, J., Crozier, S., Connelly, A., Salvado, O.: Reorientation of fiber
orientation distributions using apodized point spread functions. Magn. Reson. Med. 67(3),
844–855 (2012)

18. Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber
reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)

19. Tournier, J., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distri-
bution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.
NeuroImage 35(4), 1459–1472 (2007)

20. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The
WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

21. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., Westin,
C.F.: On describing human white matter anatomy: The white matter query language. In:
Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2013, Lecture Notes in Computer Science, vol.
8149, pp. 647–654. Springer, Berlin (2013)

22. Yap, P.T., Gilmore, J.H., Lin, W., Shen, D.: PopTract: population-based tractography. IEEE
Trans. Med. Imaging 30(10), 1829–1840 (2011)

23. Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R.,
Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., Fischl, B.: Automated probabilistic
reconstruction of white-matter pathways in health and disease using an atlas of the underlying
anatomy. Front. Neuroinformatics 5 (2011)



Part IV
Q-space Reconstruction



Magnitude and Complex Based Diffusion Signal
Reconstruction

Marco Pizzolato, Aurobrata Ghosh, Timothé Boutelier, and Rachid Deriche

Abstract In Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) the
modeling of the magnitude signal is complicated by the Rician distribution of
the noise. It is well known that when dealing instead with the complex valued
signal, the real and imaginary parts are affected by Gaussian distributed noise and
their modeling can thus benefit from any estimation technique suitable for this
noise distribution. We present a quantitative analysis of the difference between
the modeling of the magnitude diffusion signal and the modeling in the complex
domain. The noisy complex and magnitude diffusion signals are obtained for a
physically realistic scenario in a region close to a restricting boundary. These signals
are then fitted with the Simple Harmonic Oscillator based Reconstruction and
Estimation (SHORE) bases and the reconstruction performances are quantitatively
compared. The noisy magnitude signal is also fitted by taking into account the
Rician distribution of the noise via the integration of a Maximum Likelihood
Estimator (MLE) in the SHORE. We discuss the performance of the reconstructions
as function of the Signal to Noise Ratio (SNR) and the sampling resolution of
the diffusion signal. We show that fitting in the complex domain generally allows
for quantitatively better signal reconstruction, also with a poor SNR, provided
that the sampling resolution of the signal is adequate. This applies also when the
reconstruction is compared to the one performed on the magnitude via the MLE.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) measures the signal
attenuation due to the loss of spin phase coherence caused by particles subject to
Brownian motion. DW-MRI thus is inherently a low Signal to Noise Ratio (SNR)
technique. Indeed, increasing the diffusion-weighting measured by the b-value or
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decreasing the voxel size can further reduce the SNR, causing the signal to be
close to the background noise level [7]. This is particularly problematic when
characterizing the non-Gaussianity of the diffusion signal profile, associated to
restricted diffusion, since a high b-value is generally required [1]. Indeed a nonlinear
dependence between the log-transformed DW intensity and the diffusion-weighting
(b-value), as the sole result of noise, has been previously reported [7]. This can
lead to misinterpretations of the underlying diffusion process which, for instance,
can be erroneously thought as restricted, thus ascribing to the tissue more structural
complexity than exists. However, one of the major sources of error in Magnetic
Resonance Imaging (MRI), and even more accentuated in DW-MRI due to the
inherent low SNR, is the noise.

In MRI the signal, acquired for each coil in quadrature, is complex with an
additive thermal noise that can be considered to be derived from a bivariate normal
distribution N.0; �/ [6]. However, when the magnitude of the complex signal is
computed, the noise becomes Rician distributed [5] and a not-negligible noise
floor, the minimum signal measurable, appears. The bias introduced by the Rician
distribution leads to the distortion of estimated quantitative diffusion parameters.
For instance, the noise floor causes the DW signal to be overestimated, leading
to underestimation of the Apparent Diffusion Coefficient (ADC) [4]. Other noise-
related issues have also been reported, such as orientationally dependent deviation
from Gaussianity of the ADC profile, underestimation of diffusion anisotropy
indices and correlation between mean diffusivity and diffusion anisotropy [7].
Hence, denoising is essential in DW-MRI.

To properly denoise magnitude signals, the noise distribution should be taken
into account. However, the distribution of the noise affecting magnitude DW images
(DWIs) changes depending on the number of coils used for the acquisition and
on the employed reconstruction method. For instance, when magnitude images are
obtained from multiple coils after sum-of-squares reconstruction, the noise follows
a non-central � distribution [3]. Nevertheless, the complex diffusion signal is still
affected by noise with a Gaussian distribution, which can be exploited via any
Gaussian-based denoising technique or fitting procedure.

In this paper we analyze the theoretical performance gain given by considering
the complex signal instead of just using the magnitude. The complex signal is
synthetically generated, according to [8], by considering a voxel located close to a
boundary, where the underlying diffusion process is restricted. In fact, by exploiting
the asymmetry, due to the presence of the boundary, of the displacement density
probability of the water molecules, also known as Ensemble Average Propagator
(EAP) [2, 13], it is possible to obtain a complex valued signal. The complex signal
is generated along one gradient direction and for a voxel located in the proximity of
a single infinite plate. The noisy complex and magnitude signals are then obtained
and the reconstruction of the magnitude diffusion signal is performed from each
of them. The reconstructed signal, as the linear combination of basis functions,
leads to an effective characterization of the diffusion properties and is a useful tool
for measuring noise-related performances. In this respect we employ the Simple
Harmonic Oscillator based Reconstruction and Estimation (SHORE) [9]. Within
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this framework, a Maximum Likelihood Estimator (MLE), for the reconstruction
based on the Rician magnitude signal, is also proposed for performance comparison.

2 Methods

In this section we present the theoretical framework. First, we present the diffusion
signal equation for a voxel in a position close to a single infinite plate. Then we
recapitulate the SHORE formulation for the signal fitting. Finally we describe the
integration of the MLE in the SHORE.

2.1 Signal in the Proximity of a Single Infinite Plate

When considering a voxel located in the proximity of a restricting boundary such as
an infinite plate, with voxel’s dimensions significantly smaller than the separation
distance between the plate and any other boundary, the magnetization in the voxel is
influenced only by the boundary in the vicinity [8]. A graphical representation of this
scenario is shown in Fig. 1a, where an infinite plate is represented with its normal
aligned with the z-axis, and a voxel with height z2�z1 is located at a distance z1 from
the plate itself. Using the notation in [8] it is convenient to define the dimensionless
position variable

� D z

u
(1)

Fig. 1 (a) An infinite plate lies along the x-axis, with normal along the z-axis. A voxel is located
at a distance z1 from the infinite plate and has a height given by z2 � z1. The gradient vector q
makes a right angle with the x-axis toward the positive z-axis; adapted from [8]. (b) Magnitude,
real and imaginary parts of the signal generated according to Eq. 3 for a voxel with z1 D 0 and
dimensionless height of 0:25; ı D 3ms, �D100 ms, D0 D 2:299 � 10�9 m2=s and Gmax D
350mT=m
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where u is the characteristic diffusion length given by

u D
p
4D0� (2)

with D0 being the free diffusion coefficient and � the diffusion time. Figure 1a
also shows the gradient vector which, in this case, is assumed to be aligned with
the positive z-axis. The gradient vector magnitude is then given by q D �ıG=2�

where � is the gyromagnetic ratio, ı is the diffusion pulse duration and G is
the diffusion gradient strength. The considered experiment is the pulsed gradient
spin echo (PGSE) sequence with pulse duration ı small compared to �. Finally,
after defining the dimensionless wave-number � D �qu, the complex signal is
given by [8]

E.Œ�1; �2�; �/ D e��2 F .�2/� F.�1/

2.�2 � �1/ (3)

where �1 and �2 are the dimensionless coordinates of the voxel corresponding to z1
and z2 via Eq. 1, and F.�/ is

F.�/ D� C 1p
�
e�.��i�/2 C ei4��

i4�
Œ1 � erf.� C i�/�

�
	

� � i
�

� C 1

4�

�


erf.�� C i�/:

(4)

2.2 Signal Reconstruction

The signal fitting is performed with SHORE [9], a promising signal reconstruction
method suitable for q-space magnetic resonance. Within this framework the signal
is represented as the linear combination of orthogonal basis functions, result of the
multiplication between a Gaussian and an Hermite polynomial

�n.u; q/ D i�n
s

u
p
�

2n�2nŠ
e�2�2q2u2Hn.2�qu/ (5)

where n is the order of the basis,Hn.x/ is the nth-order Hermite polynomial and u is
the characteristic data dependent diffusion length or scaling factor to be determined,
for instance by fitting the signal to a Gaussian according toE.q/ D exp.�2�2q2u2/.
Our formulation of the basis functions in Eq. 5 differs from the one given in [9]
with the introduction of the normalizing factor 2

p
u
p
� , which renders the bases

orthonormal. The bases are well suited for representing the signal in the complex
domain: the even order basis functions are real valued and evenly symmetric
whereas the odd order basis functions are imaginary and show odd symmetry, which
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is precisely the case of the real and the imaginary parts of the diffusion signal. The
normalized diffusion signal in the SHORE representation can thus be expressed by

E.q/ D
N�1X

nD0
an�n.u; q/ (6)

where N is the maximum allowed order in the reconstruction and an are the
coefficients corresponding to the respective bases. The choice of N directly affects
the signal reconstruction: in the case of noisy data, a high order will potentially
cause the reconstruction to follow the noise, whereas a low order will inherently
enforce a smoothing effect. For a given order N the signal reconstruction in the
complex domain is performed by considering the even and odd coefficients for
the real and imaginary parts respectively. In the case of the magnitude signal
reconstruction, only the even coefficients are taken into account. In any case, a
fitting procedure with a Linear Least Squares (LLS) approach is used to estimate
the coefficients.

2.2.1 Maximum Likelihood Estimation

To better take into account the Rician distribution of the noise affecting the
magnitude diffusion signal, the estimation of the coefficients can be performed with
the Maximum Likelihood Estimator (MLE). In the case of Rician noise, the MLE
has been introduced in [12]. Normally several noisy realizations of each signal
sample are required to properly estimate via the MLE. However in the case of
one noisy realization per sample, the signal samples can be interpreted as noisy
realizations of a function, thus the likelihood is given by

L D
nY

iD1

Mi

�2
e

�M2
i CŒAc�2i
2�2 I0

�
ŒAc�iMi

�2

�

(7)

where n is the number of samples of the magnitude signal,Mi is the i -th sample, �2

is the noise variance, A is the real SHORE design matrix, c is the even coefficients
vector and I0 is the modified zeroth order Bessel function of the first kind. The MLE
is then defined as the estimator maximizing L or equivalently logL

OcML D argmax
c

.logL/ : (8)

The performance of the estimator is expected to increase with the increasing number
of samples of the signal. It should then be noticed that the MLE requires �2 to be
given. Thus a prior estimation of the signal noise variance is necessary.
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3 Experimental Results

This section describes the parameters adopted for the generation of the complex
signal (see Sect. 2.1) and how the noisy complex and magnitude signals are obtained
from this. Then, the reconstruction of the magnitude signal with SHORE, starting
from both the complex and the magnitude signals (with both LLS and MLE), i
discussed. Finally we present the way the performances of the magnitude signal
reconstructions are compared.

We generated the complex diffusion signal, according to Eq. 3, for a voxel
adjacent to an infinite plate and with dimensionless height of 0:25 (Fig. 1b). A total
of n equally spaced samples of the signal, with n 2 f2; 3; : : : ; 100g, is generated
along the direction normal to the infinite plate (Fig. 1a). The sequence parameters
are fixed to Gmax D 350mT=m, ı D 3ms, � D 100ms and the physical quantities
to � D 2:675 � 108 rad=sT and D0 D 2:299 � 10�9 m2=s. Uncorrelated Gaussian
noise with equal variance is added on the real and imaginary parts of the signal,
obtaining the noisy complex signal. From this the magnitude is computed, obtaining
the noisy magnitude signal. The standard deviation of the noise is calculated for
several different SNR values as � D SNR�1 relatively to the non-weighted signal
sample (G D 0).

The noisy complex and magnitude signals are then fitted via SHORE according
to Eq. 6. The even (real) and odd (imaginary) SHORE bases are used for the complex
signal fitting whereas only the even bases are used in the case of the magnitude
signal fitting. Moreover the magnitude signal is also fitted with the MLE, obtaining
the vector of the SHORE coefficients according to Eq. 8. To observe the influence
of the maximum allowed order in the SHORE reconstruction N (see Sect. 2.2 and
Eq. 6), two orders are tested: one relatively low order N D 6 and one relatively
high order N D 10. However the following discussion is referred to N D 6 and
a comparison with N D 10 will be given later in Sect. 4. In order to render the
fitting of the complex and magnitude signals independent from the estimation of the
scaling factor u, in every case the u estimated on the noisy magnitude is also used
for the complex fitting.

After the complex signal fitting a real and an imaginary vectors of coefficients
are obtained, leading to a real and an imaginary reconstructions respectively. These
reconstructions are then used to compute the magnitude reconstruction from the
complex signal fitting (MC ), which is then compared to the one reconstructed from
the noisy magnitude signal via both LLS (MM ) and MLE (MMML) based fittings.

We performed the comparison by calculating the Root Sum of Squares (RSS)
value of the residuals between the magnitude reconstructions (MC , MM ,MMML)
and the ground truth MGT D jE.q/j. The whole procedure is performed with
1; 000 different noise realizations for each couple of SNR and number of samples
n (sampling resolution). Hence a triple of averaged RSS values, RSSC ˙ SDRSSC ,
RSSM ˙ SDRSSM and RSSMML ˙ SDRSSMML

(RSSML; SDRSSML from now on and in the
figures) is obtained for each pair .SNR; n/. For each value of n, the RSS values and
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Fig. 2 Root sum of squares values RSSC , RSSM and RSSML (a), and standard deviations SDRSSC ,
SDRSSM and SDRSSML (b), as functions of the SNR. Each point represents the averaged value over
1; 000 noise realizations with the corresponding SNR. Gmax D 350mT=m, with n D 31

their standard deviations can be represented as functions of the SNR, obtaining the
curves fRSSg and fSDRSSg as shown in Fig. 2a and b respectively (n D 31).

We also compared the reconstruction performances as function of the signal
sampling resolution, i.e. as function of the number of samples n. In the following
several numbers of samples n will be tested. However, when estimating the SHORE
coefficients, if the number of unknown coefficients is higher than the number of
samples considered for the signal, then the estimation is under determined. This
happens for n < N=2. Figure 3 shows the integral of the difference between the
RSS (light blue) and SDRSS (magenta) curves of different techniques, as function of
the number of samples n. Precisely, it shows the integral values of fRSSM g�fRSSC g
and fSDRSSM g � fSDRSSC g (Fig. 3a), fRSSMLg � fRSSC g and fSDRSSMLg � fSDRSSC g
(Fig. 3b), and finally fRSSM g�fRSSMLg and fSDRSSM g�fSDRSSMLg (Fig. 3c). Thus a
positive value globally indicates a better reconstruction (less overall reconstruction
error) for MC compared to MM (Fig. 3a), MC compared to MMML (Fig. 3b) and
MMML compared to MM (Fig. 3c). It should be noticed that Fig. 3c substantially
describes the difference between Fig. 3a and b.

Figure 4 shows the inter-technique comparisons of the mean RSS values (a,b,c)
and their standard deviations (d,e,f ), as function of both the SNR and the sampling
resolution (i.e. n). In detail it shows the differences RSSM � RSSC (Fig. 4a) and
SDRSSM �SDRSSC (Fig. 4d), RSSML �RSSC (Fig. 4b) and SDRSSML �SDRSSC (Fig. 4e),
and finally RSSM � RSSML (Fig. 4c) and SDRSSM � SDRSSML (Fig. 4f). Thus a positive
value (red) indicates a better reconstruction MC compared to MM (Fig. 4a,d), MC

compared to MMML (Fig. 4b,e) and MMML compared to MM (Fig. 4c,f). It should be
noticed that the range of values in the color bars are different. For instance the
amplitude of the range of the performance gain for the complex reconstruction,
compared to the magnitude based one, is higher when the comparison is made with
respect to the LLS fitting (Fig. 4a) than when the MLE is considered (Fig. 4b). The
opposite holds for the performance loss. On the contrary we observe that the range of
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Fig. 3 In light blue the differences between the areas under the RSS curves of two different
compared techniques (i.e. the curves in Fig. 2a); in magenta the differences between the areas
under the SDRSS curves (i.e. the curves in Fig. 2b). Values are shown as a function of the number of
samples n. A positive value indicates a globally better reconstruction (less overall reconstruction
error) for MC over MM (a), MC over MMML (b) and MMML over MM (c). Gmax D 350mT=m
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Fig. 4 Differences between RSS values (a,b,c) and correspondent SDRSS (d,e,f) for different
compared techniques, as function of the SNR and of the number of samples n. A positive value
(red) indicates a better reconstruction for MC compared to MM (a), MC compared to MMML

(b) and MMML compared to MM (c), or less error variance (d,e,f). Each pixel represents the
average value over 1; 000 noise realizations for the corresponding SNR and number of samples
n. Gmax D 350mT=m
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Fig. 5 The best reconstruction technique as a function of the SNR and the number of samples
n, for a maximum reconstruction order N D 6 (a) and N D 10 (b), see Sect. 2.2 and Eq. 6 for
reference. Red, green and blue colors indicate that the signal reconstruction showing less error
is the one performed by fitting the noisy complex signal, MC , the noisy magnitude signal with
the Maximum Likelihood Estimator (MLE), MMML , and with Linear Least Squares (LLS), MM ,
respectively. A purple color indicates that the best reconstruction is based on the noisy magnitude
signal fitting, without any preference regarding the estimation technique

the performance gain/loss in the standard deviation is higher when the comparison
refers to the MLE (Fig. 4e) rather than the LLS (Fig. 4d). Finally Fig. 5 shows the
map of the best reconstruction technique for each pair of SNR and n, that is the
technique giving less mean reconstruction error (RSS value). In order to show the
influence of the maximum reconstruction order of SHORE N on the results, maps
are generated for N D 6 (Fig. 5a) and N D 10 (Fig. 5b).

We performed the reconstructions also for a signal generated with a set of
parameters closer to that achievable in experimental conditions. In detail the voxel
size is set to 50�m, Gmax D 60mT=m, ı D 15ms and � D 50ms. Results are
shown in Fig. 6 for N D 6. More precisely it shows the comparison between the
RSS value of the complex based reconstruction and that of the magnitude based
reconstruction obtained with LLS (Fig. 6a) and MLE (Fig. 6b) respectively. The
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Fig. 6 Differences between RSS values for different compared techniques (a,b) and best recon-
struction technique (c), as function of n and SNR. Results reported for a voxel with side 50�m
and with Gmax D 60mT=m, ı D 15ms, � D 50ms. A positive value (red) indicates a better
reconstruction for MC compared to MM (a) and for MC compared to MMML (b). (c). Red, green
and blue colors indicate that the signal reconstruction showing less error is the one performed by
fitting the noisy complex signal, MC , the noisy magnitude signal with the Maximum Likelihood
Estimator (MLE), MMML , and with Linear Least Squares (LLS), MM , respectively. A purple color
indicates that the best reconstruction is based on the noisy magnitude signal fitting, without any
preference regarding the estimation technique

range of SNR values Œ2; 20� in the figures is set to that showing major differences
(values different from zero) in the results and corresponds to that generally adopted
[7]. The number of samples n range has been focused to Œ2; 15�, in fact at higher
values the trend is similar to that shown in Fig. 4a and 4b. Figure 6c finally shows
the best reconstruction technique for SNR values up to 50 and is representative also
for higher SNR up to 100.

4 Discussion of the Results

The noisy complex and magnitude signals have been fitted with the SHORE obtain-
ing the complex MC and the magnitude based MM reconstructions respectively.
The magnitude has also been fitted via MLE, MMML . In each of the three cases



138 Pizzolato et al.

MC , MMML and MM the reconstruction error has been calculated and compared as
function of the SNR and the number of samples n.

The magnitude reconstruction performed by fitting the complex domain signal,
MC , globally shows a better performance (less reconstruction error) compared to
the one based on the LLS fitting on the magnitude, MM , for n > 5 (Fig. 3a).
The performance gain for the complex reconstruction is particularly evident for
SNR � 5 (Fig. 4a), as expected. Indeed at higher SNR values the Rician distribution
is well approximated by a Gaussian [10, 11], thus the performances of magnitude
and complex based reconstructions should be equivalent. However an opposite trend
is registered in case of n D 4; 5.

Moreover a performance dependence with the sampling resolution is observed.
Indeed, by increasing the sampling resolution (n) the complex reconstruction MC

shows less error compared to the magnitude based one MM also at SNR > 5; with
this regard the range of SNR values in which the performance gain is observed also
increases (Fig. 4a). In addition, the amount of error reduction in the case of MC

with respect to MM increases with n.
Similar observations apply when the complex based reconstruction MC is

compared to that obtained via MLE on the magnitude MMML , but in this case for
n > 11 (Fig. 3b). Indeed the MLE for the magnitude based fitting, sensibly improves
the overall performance with respect to LLS at any sampling resolution, specially
for low SNR values (Fig. 3c). However it should be noticed that the MLE requires
an estimation of the noise variance, and in the present case the exact value was
supplied. The reconstruction improvement given by the MLE over the LLS also
occurs for SNR < 5 (Fig. 4c), as clearly represented in the example of Fig. 2a.
In addition the amplitude of the error reduction obtained with MLE over LLS
increases with the sampling resolution (n), whereas the range of SNR within which
a performance gain is observed reduces (Fig. 4c).

Moreover, a performance loss for the MLE on the magnitude when compared to
the LLS is observed within a region with n � 6 and SNR 2 Œ6; 13� at different grades
(Fig. 4c). However the limits of this region seem to be dependent on the maximum
reconstruction order N allowed in the SHORE, as shown in Fig. 5a for N D 6

and b for N D 10. In fact when N D 10 the range of the SNR values within which
the performance gain of the MLE over the LLS is observed reduces. On the other
hand the range of the number of samples n within which MMML shows less error
than MC , at very low SNR, slightly increases. Otherwise, the region in which the
complex based reconstruction is the most performing do not seems to be affected
by the choice of N . However the region where the SHORE estimation is under
determined increases according to N.n D 3 for N D 6 and n D 5 for N D 10/.

Finally the complex based fitting leads to a reconstruction with an error standard
deviation SDRSSC lower than SDRSSM for n > 6 (Figs. 3a and 4d). Similar
observations apply when SDRSSC is compared to SDRSSML for n > 8 (Fig. 3b),
although at low SNR the MLE shows a lower standard deviation (Fig. 4e and f).

Very similar considerations apply when the reconstructions are performed and
evaluated for the case of signal generated with different voxel and pulse sequence
parameters as shown in Fig. 6. However in this case the region in which the
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magnitude based reconstruction shows better performances (Fig. 6c) is almost
entirely defined by the performance of the MLE (Fig. 6b). Indeed almost everywhere
in this region the performance of the LLS is comparable or inferior to that of the
complex based reconstruction (Fig. 6a). Finally at higher SNR values the complex
based reconstruction is generally the one showing the best performance (Fig. 6c).

Hence, as shown in Figs. 3b, 5a and 6c, at low SNR values it might be better
to perform a reconstruction on the noisy magnitude signal when n � 10 with
order N D 6 and n � 15 with order N D 10 (Fig. 5b). Within this region the
MLE generally shows better performances for SNR � 5. However in the rest of
the cases a reconstruction performed in the complex domain generally leads to less
reconstruction error.

5 Conclusions

We have presented a comparative analysis between the magnitude diffusion signal
reconstruction obtained by fitting the complex signal or magnitude signal directly.
For the magnitude signal reconstruction we relied on the SHORE bases for both the
noisy complex and magnitude fittings. In the case of the noisy (Rice distributed)
magnitude fitting we introduced the maximum likelihood coefficients estimation
(MLE) for the SHORE, as an alternative to the Linear Least Squares approach
(LLS). We compared the performance of the reconstructions as a function of both
the SNR and the number of samples in the signal n (sampling resolution).

Our results show that the choice of which reconstruction technique to adopt
mainly depends on the SNR and on the number of samples of the signal, as shown
in Figs. 5a,b and 6c. Depending on these parameters, the best magnitude signal
reconstruction can be achieved for any of the compared techniques. However the
complex based reconstruction reveals to be the most performing at any SNR with
the increasing total number of samples of the diffusion signal. To further improve
its performance, regularization constraints could also be implemented. This would
be beneficial for the estimation of the diffusion parameters.

Despite the difficulty that may be encountered in clinical conditions in achieving
an acquisition setup such as the one here adopted, the presented results might be
directly useful and potentially validated in experimental setups.
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Diffusion Propagator Estimation Using
Gaussians Scattered in q-Space

Lipeng Ning, Oleg Michailovich, Carl-Fredrik Westin, and Yogesh Rathi

Abstract The ensemble average diffusion propagator (EAP) obtained from diffu-
sion MRI (dMRI) data captures important structural properties of the underlying
tissue. As such, it is imperative to derive accurate estimate of the EAP from the
acquired diffusion data. Taking inspiration from the theory of radial basis functions,
we propose a method for estimating the EAP by representing the diffusion signal
as a linear combination of 3D anisotropic Gaussian basis functions centered at the
sample points in the q-space. This is in contrast to other methods, that always center
the Gaussians at the origin in q-space. We also derive analytical expressions for the
estimated diffusion orientation distribution function (ODF), the return-to-the-origin
probability (RTOP) and the mean-squared-displacement (MSD). We validate our
method on data obtained from a physical phantom with known crossing angle and
on in-vivo human brain data. The performance is compared with the 3D-SHORE
method of [4, 9] and radial basis function based method of [15].

1 Introduction

A classical method in dMRI is Diffusion tensor imaging (DTI) [3] which assumes
the EAP to be a single Gaussian centered at the origin. However, this over-simplified
assumption has limitations in voxels where there are more complicated structures.
To resolve this issue, Diffusion spectrum imaging (DSI) was proposed in [17].
However, a large number of measurements and a long acquisition time makes it
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impractical to use DSI in clinical setting. To this end, many imaging methods have
been proposed, which reduce the number of measurements by using suitable signal
models or by using compressed sensing techniques. For example, Hybrid diffusion
imaging (HYDI) [18], Diffusion Propagator Imaging (DPI) [5], the SHORE basis
[9, 11], the Bessel Fourier basis [6], the Spherical Polar Fourier (SPF) basis [2, 4]
and the spherical ridgelet basis [14] extend the spherical representation of the signal
on a single shell to multiple shells with a continuous radial term. On the other hand,
MAP-MRI [12] represents the diffusion signal using Hermite polynomials. Finally,
the method of [19] (NODDI) estimates axonal dispersion while the CHARMED
model [1] uses very high b-value to estimate the axon diameter distribution.

2 Our Contributions

In this work, we use 3D Gaussian functions for representing the diffusion signal
and computing the EAP. The diffusion signal is expressed as a linear combination
of Gaussian basis functions centered at several locations in the q-space at which
measurements are available. This is in contrast to other mixture models, which
typically center the basis functions at the origin in q-space [7, 13]. The present
work is a generalization of the radial basis functions method in [15], incorporating
directional anisotropic (non-radial) Gaussians for continuous representation of the
diffusion signal and the propagator. Since the Fourier transform of a Gaussian is
another Gaussian, one obtains simple analytical expressions for the EAP, the ODF,
the return-to-the-origin probability (RTOP) and the mean-squared-displacement
(MSD). We validate our method on a physical phantom data set with known fiber
crossing and on in-vivo human brain data set. We also compare our method to the
one using radial basis functions (RBF) [15], 3D-SHORE [9], and show that adding
constraints helps in improving the performance of 3D-SHORE.

3 Signal Representation

Accurate reconstruction of high dimensional continuous functions from finite
number of samples can be achieved using as a linear combination of radial basis
functions centered around the given data points [8]. We use a similar methodology
to represent the dMRI signal continuously in the q-space. Given a sampling of
diffusion signal E.q/ at N data locations fq1; : : : ; qN g in q-space, we consider
its reconstruction using

OE.q/ D
NX

nD0
wn�n.q � qn/; with �n.q � qn/ D exp.�.q � qn/

TD.q � qn//;

(1)
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q0 D 0 and �0.q/ D e�qT D0q . The tensor D is assumed to have a cylindrical
shape with eigenvalues �0; �1; �2 such that �1 D �2. The interpolation weights
wn’s can then be computed by solving the following linear system: E.qi / DPN

nD0 wn�n.qi � qn/ for i D 0; : : : ; N with E.0/ D 1. Due to antipodal symmetry,
we enforce equal coefficients for �n.q � qn/ and �n.q C qn/.

3.1 Closed Form Expressions for EAP and ODF

The EAP is given by the Fourier transform of OE.q/. Since the constructed OE.q/ is a
linear combination of Gaussian functions, its Fourier transform is given by a linear
combination of the Fourier transforms of the individual basis functions. Hence, the
estimated EAP is of the form P.r/ D F . OE.q// D PN

nD0 wn˚n.r/ with ˚0 D
F .�0.q// and ˚n D F .�n.q � qn/C �n.q C qn//. In particular, ˚0 is given by

˚0.r/ D
Z

R3

e�i2�rT qe�qT D0qdq D �
3
2 jD0j� 1

2 e��2rT D�1
0 r : (2)

A translation of a basis function leads to a phase shift of its Fourier transform, i.e.
F .�n.q C qn// D ei2�rT qnF .�n.q//. Hence, for n � 1,

˚n.r/ D 2�
3
2 jDj� 1

2 cos.2�rT qn/e
��2rT D�1r : (3)

The ODF is computed from the EAP by evaluating the integral 
.u/ DR1
0
P.ru/r2dr [17], where u is a unit vector and r is the radial co-ordinate. From

the propagator P.r/, 
.u/ is given analytically as 
.u/ D PN
nD0 wn
n.u/ with


0.u/ D 1

4�jD0j 12 .uTD�1
0 u/

3
2

(4)

and


n.u/ D 1

2�jDj 12 .uT D�1u/ 32

�

1 � 2.uT qn/
2

uTD�1u

�

e
� .uT qn/

2

uT D�1u ; n � 1: (5)

3.2 Expressions for RTOP and MSD

Similarly, closed form expressions for RTOP and MSD can be computed.
RTOP, which is given by

R
R3

OE.q/dq, is simply P.0/ D �
3
2 .w0jD0j� 1

2 C
2jDj� 1

2
PN

nD1 wn/. Similarly, the MSD, which is given by
R
R2
P.r/krk2dr , can be
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computed from
R
R2
˚0.r/krk2dr D 1

2�2
trace.D0/, and

Z

R2

˚n.r/krk2dr D 1

�2

�
trace.D/ � 2qTnD2qn

�
e�qTn Dqn :

3.3 The Relation to Radial Basis Functions Method

The radial basis functions method [15] is a special case of the proposed framework
where radially symmetric Gaussian functions centered at the sample locations are
used to represent diffusion measurement. The basis function is of the form �rbf

n D
e��kq�qnk2 which corresponds to an isotropic tensorD D �I3�3. The corresponding
EAP is expressed as P.r/ D PN

nD1 wn˚ rbf
n .r/ with

˚ rbf
n .r/ D 2

��

�

� 3
2

cos.2�rT qn/e
� �2krk

2

� :

The ODF is given by 
.u/ D PN
nD1 wn
 rbf

n .u/ with


 rbf
n .u/ D 1

2�

�
1 � 2�.uT qn/

2
�
e��.uT qn/

2

:

3.4 Estimation Procedure

We discuss different methods for estimating the coefficients wn. From the samples
at N locations in the q-space, we obtain an N C 1 dimensional vector e with the
first entry being the measurement at the origin. The tensor D0 is computed as in
standard DTI [3], while the tensorD is chosen to have the same eigenvectors asD0.
One constructs an .N C 1/ � .N C 1/ dimensional matrix A with

A.i; 1/ D �0.qi�1/ and A.i; j / D �j .qi�1 � qj�1/C �j .qi�1 C qj�1/

for j � 1 and i D 1; : : : ; N C1. We denote by w, anN C1 vector whose entries are
the coefficients wn to be estimated. A simple method to estimate w is w D A�1e.
However, to avoid ill conditioned matrices A, a Tikhonov regularized solution is
given by w`2 D .ATAC �I/�1AT e where � > 0 is a regularization parameter.

This method, however, does not account for the fact that the diffusion mea-
surements are monotonically decreasing with increasing b-values. Moreover, the
diffusion propagator should be positive and the value of the measurement at the
origin is known to be one. Thus, one could numerically enforce these constraints
while estimating the vector of weight w. The corresponding function then becomes:
minw kAw � ek2 C �kwk2; s:t: Bw � 0; cTw D 1: The matrix B is of the form
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B D ŒBT
1 ; B

T
2 �
T with each column of B1 being the difference of a Gaussian basis

functions �n along a given set of gradient directions at several b-value shells and
each column of B2 being the evaluation of ˚n at given set of locations for r .
The vector c contains the values of the basis functions at the origin. We note that
these constraints are always feasible and a trivially feasible element is given by
w D Œ1; 0; : : : ; 0�T .

4 Experiments

We tested our method on a data set acquired from a spherical physical phantom with
a crossing angle of 45 degree [10]. We acquired ten separate scans of the phantom
with the 5 different b-values b D f1;000; 2;000; 3;000; 4;000; 5;000g s=mm2

and each b-value shell consisted of 81 gradient directions. The ten scans were
averaged to obtain the “gold-standard” data. The test data set was acquired
as follows: For each of the following number of gradient directions K D
f16; 20; 24; 26; 30; 36; 42; 60; 81g we acquired the diffusion measurement over
2 b-shells corresponding to b D f1;000; 3;000g s=mm2. Further, five repetitions
were acquired for each of these data samples to test the effect of noise on signal
reconstruction quality. Each acquisition had an average SNR of about 8.5.

4.1 Comparison Metrics

We used several quantitative metrics to test the ability of the proposed algorithm.
Let OEx denote the reconstructed signal in the voxel at location x and Ex;gold be
the “gold-standard” signal. The Normalized mean squared error (NMSE) in signal
reconstruction was computed as

NMSE D 1

j˝j
X

x2˝

k OEx � Ex;goldk2
kEx;goldk2

where˝ denotes the set of locations for all voxels. The estimated angle between the
two principal diffusion directions (in case of crossing) was computed as the average
estimated angle (EA) given by

EA D 1

j˝2j
X

x2˝2
j arccos.uTx;1ux;2/j

where ux;1 and ux;2 denote the direction of the two peaks in the voxel at location
x and ˝2 denote the set of locations for voxels that have two peaks. The estimated
angle was computed only in the voxels where only two peaks are detected. In order
to know if the recovered signal missed or exaggerated the number of peaks, we
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computed the percentage of false peaks (PF) given as

PF D 1

j˝goldj
X

x2˝gold

B.nx � ngold/

where ˝gold denotes the set of locations for voxels that have ngold peaks in gold
standard data which equals to 2 in this case, B is an indicator function whose value
is 1 if nx D ngold and 0 otherwise.

We used all of these metrics to quantify the reconstruction quality of the data
using Gaussian basis function. We used two methods to estimate the vector w. For
the first one, w was chosen as w`2 where the `2 regularization coefficient � is chosen
such that the condition number ofATAC�I is bounded by 107. The second estimate
of w was computed by solving a constrained quadratic programming problem.
We compared the proposed methods with the `1 3D-SHORE method [4], the `2
3D-SHORE method [9], the `2 3D-SHORE method with constraint of monotonic
decrease of the signal along gradient directions and the radial basis functions (RBF)
method [15].

4.2 Phantom Results

Results on the “gold standard” data (where the actual angle D 45ı) with different
methods are summarized in Table 1. For the test data set, the estimated angle
(averaged over the five acquisitions) with different number of gradient directions
are shown in Fig. 1. The percentage of false peaks and NMSE are shown in Fig. 1b,
c respectively. The parameters �0 D 0:002 and �1 D 0:001 were used for all
the Gaussian basis functions and for all experiments done on the test data set.
The estimated ODF’s with 42 gradient directions (two b-values, so a total of 84
measurements) with constrained Gaussians, constrained `2 3D-SHORE, `1 3D-
SHORE and radial basis functions are shown in Fig. 2a–d, respectively.

Note that, the proposed method produces much sharper ODF’s compared to the
3D-SHORE method. Further, from the error metrics shown in Fig. 1, it becomes
clear that the proposed method, while having a slightly higher error in terms of the
estimated angle, is yet very successful in detecting the two peaks (i.e. significantly
lower percentage of false negatives) compared to 3D-SHORE (see Fig. 1b). Further,
the method of 3D-SHORE itself does much better if constraints are added, which
was not done in the method presented in [4, 9].

Table 1 Gold standard error metrics

Method NMSE (%) EA (ı) Method NMSE (%) EA (ı)

Gauss no constraints 0.2 43.8 Gauss with constraints 0.4 42.4

`2 3D-SHORE 0.3 48.8 `2 3D-SHORE with constraints 0.4 48.8

`1 3D-SHORE 0.3 45.8 RBF 0.2 46.5
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Fig. 1 (a) Estimated angle vs. gradient directions. (b) Percentage of false peaks vs. gradient
directions. (c) NMSE vs. gradient directions

Fig. 2 Estimated ODF from measurements on 2 b-value shells with 42 gradient directions each
using: (a) Gaussian basis functions with constraints, (b) `2 3-D SHORE with constraints, (c) `1
3-D SHORE, (d) radial basis functions
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4.3 In Vivo Results

We tested our method on in-vivo human brain data with scan parameters: b-values
of f900; 2;000; 3;600; 5;600g s=mm2 with each b-value shell having 60 gradient
directions. This data set was considered as the “gold-standard” data. To obtain
the test data, we used two subsets of this data. The first set consisted of data
with b-values b D f900; 3;600g s=mm2 and 60 gradient directions on each shell,
while the second set had the same b-values but 30 gradient directions per shell.
For the rectangular region (white box) shown in Fig. 3c, the NMSE for these two
sets compared to the “gold standard” are given in Table 2. The estimated ODF for
the data set with 2 b-value shells and 60 gradient directions using the constrained
Gaussians (proposed) and the constrained `2 3D-SHORE are shown in Fig. 3a and b.

Fig. 3 Estimated ODF for the rectangle region in the color FA image (c) from measurements on
2 b-value shells with 60 gradient directions using: (a) Gaussian basis functions with constraints;
(b) `2 3-D SHORE with constraints; (c) color FA image
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Table 2 NMSE compared to “gold standard”

Test set Gauss Gauss-cons `2 3D-SHORE `2 3D-SHORE-cons `1 3D-SHORE RBF

(%) (%) (%) (%) (%) (%)

1 3.6 3.5 6.5 4.5 7.2 4.3

2 5.6 3.9 7.4 5.4 7.9 7.8

5 Conclusion

In this work, we proposed a novel method of using anisotropic Gaussian functions
centered at several locations in q-space to represent the diffusion signal and derive
analytical expressions for the EAP, the MSD and RTOP. By using the same set of
parameters, we showed the robustness of the proposed method to different number
of gradient directions on a physical phantom data with very high noise (SNR D 8.5).
We also showed that the 3D-SHORE method works better if it is constrained to
ensure monotonic decrease of the signal with increasing b-value. Quantitatively,
the proposed method seems to have lower error in detecting the crossing peaks
compared to 3D-SHORE and RBF. A limitation of the current method is that the
user has to choose the eigenvalues of the tensor for the Gaussian basis functions,
which can be also be chosen by minimizing the fitting error in a leave-one-out cross-
validation scheme [16].
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An Analytical 3D Laplacian Regularized
SHORE Basis and Its Impact on EAP
Reconstruction and Microstructure Recovery

Rutger Fick, Demian Wassermann, Gonzalo Sanguinetti, and Rachid Deriche

Abstract In diffusion MRI, the reconstructed Ensemble Average Propagator (EAP)
from the diffusion signal provides detailed insights on the diffusion process and the
underlying tissue microstructure. Recently, the Simple Harmonic Oscillator based
Reconstruction and Estimation (SHORE) basis was proposed as a promising method
to reconstruct the EAP. However, the fitting of the basis is sensitive to noise. To solve
this we propose to use the Laplacian of the SHORE basis as a natural regularization
functional. We provide the derivation of the Laplacian functional and compare its
effect on EAP reconstruction with that of separated regularization of the radial and
angular parts of the SHORE basis. To find optimal regularization weighting we use
generalized cross-validation and validate our method quantitatively on synthetic and
qualitatively on human data from the Human Connectome Project. We show that
Laplacian regularization provides more accurate estimation of the signal and EAP
based microstructural measures.

1 Introduction

In diffusion MRI, the acquisition and reconstruction of the diffusion signal in 3D q-
space allows for the reconstruction of the water displacement probability, known as
the Ensemble Average Propagator (EAP) [6,16]. This EAP describes the probability
density that a particle will move along a certain direction in a given diffusion time
�. The EAP, or P.r/, is related to the diffusion signal by a Fourier transform.

P.r/ D
Z

R3

E.q/e�2i�q�rdq (1)

where r is a displacement vector in r-space and E.q/ is the measured diffusion
signal at wave vector q sampled in q-space. Here q is related to the applied magnetic
field gradient magnitude, direction and duration [6, 16]. Historically, the diffusion
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tensor (DT) [4] was the first model to describe the EAP by assuming it lies within
the family of Gaussian distributions, though this assumption also limits its ability to
describe complex tissue structures. To overcome this limition, so-called high angular
resolution diffusion imaging (HARDI) methods such as Q-ball imaging [18] and
constrained spherical deconvolution [17] were developed that are able to resolve
the directionality of more complicated fiber bundle configurations. However, these
models still make restricting assumptions on the shape of the EAP, which limits their
ability to describe the full 3D EAP in an unbiased way. It is possible to reconstruct
the EAP without any prior knowledge or restrictions using acquisition schemes such
as Diffusion Spectrum Imaging (DSI) [20]. Though, DSI’s need for a numerical
inverse Fourier transform of E.q/, which requires a dense and lengthy sampling
of q-space, limits its clinical applicability. Indeed, an important research topic has
been the accurate reconstruction of the EAP with a reduced number of samples. As
a solution, models that involve analytical representations of the signal have been
proposed as they provide compact representation of the 3D q-space signal and are
less sensitive to noise. Such models include the Spherical Polar Fourier (SPF) basis
[2], the Solid Harmonic (SoH) basis [10] and the Simple Harmonic Oscillator based
Reconstruction and Estimation (SHORE) basis [12]. These bases capture the radial
and angular properties of the diffusion signal by fitting a linear combination of
orthogonal dual basis functions. With a dual basis, the coefficients describing the
contribution of every basis function to the signal can also be used to describe the
EAP. In this way E.q/ and P.r/ are represented as

E.q/ D
1X

nD0
cn�n.q/ P.r/ D

1X

nD0
cn�n.r/ (2)

where coefficients cn describe the contribution of dual basis functions �n to the
signal and �n to the EAP. However, the fitting of the basis is sensitive to noise and
appropriate regularization is required. In literature several regularization methods
have been developed for such bases, most of which try to enforce smoothness in
the reconstructed signal. For example, in the SoH basis only an angular Laplace
Beltrami regularization term was used [10]. For the SPF basis, the combination of
a radial low-pass filter and an angular Laplace Beltrami regularizer was proposed
[2] (which we will now call separated regularization). Later, it was shown that the
Laplacian functional for the SPF basis outperformed separated regularization [7].
For the SHORE basis, a regularization using the Laplacian functional was proposed
only for 1D-SHORE [14], while for 3D-SHORE separated regularization [11] and
later quadratic programming [15] was used. As for a choice of basis, an advantage of
SHORE over the others is that its elements are eigenvectors of the Fourier transform,
a property that ensures rapid convergence in both real and Fourier spaces [19]. For
this reason, in this work we focus on regularization for the SHORE basis. Inspired
by what was proposed in [7] for the SPF basis, we propose to use the full 3D
Laplacian regularization of the SHORE basis as it is well suited for the smooth
nature of the diffusion signal. We validate our approach in three steps: First we
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simulate the intra-axonal signal for a single white matter (WM) bundle and quantify
signal reconstruction based on the estimation of microstructural measures known as
the Return-To-Axis and Return-To-Origin probability (RTAP and RTOP). Secondly,
we generate fiber crossings and compare signal and EAP reconstruction with respect
to similarity to the ground truth, and finally we compare EAP projections and ODF
visualizations on human data from the Human Connectome Project.

2 Theory

The SHORE basis [12, 15] was designed to reconstruct the diffusion signal and the
EAP in the complete 3D space. In this basis the diffusion signal is given by

�jlm.u0;q/ D p
4�i�l .2�2u20q2/l=2e�2�2u20q

2

L
lC1=2
j�1 .4�2u20q

2/Y ml .uq/ (3)

where j D .nC 2 � l/=2 is related to the radial order n and angular order l where
j � 1, l � 0 and q D q � uq is the q-space vector with q its magnitude and uq its
normalized orientation. The real spherical harmonic basis Y m

l was introduced in [9]

with angular order l and phase factor m such that �l � m � l . Here LlC1=2j�1 is the
generalized Laguerre polynomial and u0 is the isotropic scale factor related to the
diffusivity of the measured data. The basis functions �jlm of the EAP are obtained
by the three-dimensional inverse Fourier transform of �jlm resulting in

�jlm.u0; r/ D .�1/j�1
p
2�u30

�
r2

2u20

�l=2

e�r2=2u20L
lC1=2
j�1

�
r2

u20

�

Y ml .ur / (4)

where r D r � ur is the r-space vector with r its magnitude and ur its normalized
orientation. When the propagator is assumed symmetric, as is a consequence of
the acquisition protocol in diffusion MRI, the number of coefficients is given by
Ncoef D 1=6.F C 1/.F C 2/.4F C 3/ with F D bnmax=2c. Note that for both bases
the angular dependence is only contained in the spherical harmonics function.

As the basis functions �jlm are orthonormal on R
3, we use Eq. (2) to estimate

the coefficients cn from the entire q-space data consisting of Ndata points. The
coefficients are cast into an Ncoef-dimensional vector c and the signal values are
placed in an Ndata-dimensional vector y. Design matrix Q 2 R

Ndata�Ncoef then has
elements Qij D �i .u0;qj /. With these definitions, Eq. (2) turns into the matrix
equation y D Qc. The coefficients c are found by solving the least squares problem
c D argminc ky � Qck2 D .QTQ/�1QTy. Note that Q needs to be recomputed
for every voxel as u0 is data dependent. The EAP can then be sampled at specific
positions r using the matrix equation r D Kc, where matrix K 2 R

Nsample�Ncoef has
elements Kij D �i.u0; rj / [15]. The basis fitting can then be regularized in different
ways, which we explain in the next section.
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2.1 Regularization

2.1.1 Laplacian Regularization

We propose to compute the Laplacian regularization term for the fitting procedure.
In this case we want to minimize the quantity c D argmincky � Qck2 C �� U.c/
where �� weights the regularization functional

U.c/ D
Z

R3

k�Ec.q/k2dq (5)

with Ec.q/ D P
i ci�i .q/ the reconstructed signal and� is the Laplacian operator.

We can then express Ec.q/ in a summation of SHORE basis functions

U.c/ D
Z

R3

 
X

i

ci��i .q/

!2

dq D
X

i

X

k

ci ck

Z

R3

��i .q/ ���k.q/ dq (6)

where the subscripts i and k indicate the radial and angular order of the i th or kth
basis function �i .q/ D �j.i/l.i/m.i/.q/. We can write the summations in quadratic
form such that U.c/ D cTRc where regularization matrix R has elements

Rik D
Z

R3

��i .q/ ���k.q/dq: (7)

The equation for the elements of R can be solved by using the general differential
equation whose solutions form the functional basis functions �jlm of the SHORE
basis

�

� �

.2�u0/2
C .2�u0/

2q2
�

�jlm.q/ D 	jlm�jlm.q/ (8)

with 	jlm D 2l C 4j � 1 [15]. By inverting this equation we can show that

��jlm.q/ D 4�2u20.4�
2q2u20 �	jlm/�jlm.q/: (9)

Inserting Eq. (9) into Eq. (7), using the fact that Y ml is an orthonormal basis with
respect to the dot product on S2 and L˛n.x/ is orthonormal with respect to the
weighting function x˛e�x on Œ0;1/, we find the general equation for R as

Rik D ı.l.i/;l.k//ı.m.i/;m.k//R .j.i/; j.k/; l/ (10)
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where we define the intermediate functionR as

R .j.i/; j.k/; l/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

ı.j.i/;j.k/C2/
22�l �2u0� . 52Cj.k/Cl/

� .j.k//

ı.j.i/;j.k/C1/
22�l �2u0.�3C4j.i/C2l/� . 32Cj.k/Cl/

� .j.k//

ı.j.i/;j.k//
2�l �2u0.3C24j.i/2C4.�2Cl/lC12j.i/.�1C2l//� . 12Cj.i/Cl/

� .j.i//

ı.j.i/;j.k/�1/
22�l �2u0.�3C4j.k/C2l/� . 32Cj.i/Cl/

� .j.i//

ı.j.i/;j.k/�2/
22�l �2u0� . 52Cj.i/Cl/

� .j.i//

(11)

with ı the Dirac delta function. Note that regularization matrix R is symmetric,
mostly sparse and its elements depend only on the ordering of the basis functions
and their radial and angular indices j , l and m. Using this formulation we can
compute R up to a given nmax and obtain the SHORE coefficients using penalized
least squares with unique minimum

c D .QTQ C ��R/�1QTy: (12)

2.1.2 Separated Regularization

In [2] a regularization method was proposed involving a separated angular Laplace
Beltrami functional L and a radial low pass filter N. In this case the penalized least
squares equation has unique minimum

c D .QTQ C �nNTN C �lLTL/�1QTy (13)

with regularization weights �n and �l . Note that separated regularization has two
weighting parameters, whereas our Laplacian regularization only has one, making
our approach easier to tune. In the next section we explain the methods to quantify
the reconstruction quality of the signal and EAP.

3 Materials and Methods

To quantify the reconstruction quality of the signal and EAP we simulate two types
of data. First we generate the restricted intra-axonal diffusion signal of a single
white matter (WM) bundle. On this data we quantify reconstruction quality based
on the similarity to the ground truth signal and EAP and on the estimation of a
microstructural measure known as the Return-to-Axis Probability (RTAP). Secondly
we compute fiber crossings using a multiple compartments Gaussian model on
which we quantify signal and EAP reconstruction quality.



156 R. Fick et al.

3.1 Microstructural Data Generation and Quantification

We first generate synthetic data using a recently introduced analytical model for
intra-axonal diffusion [21]. Assuming axon diameters are Gamma-distributed, this
model describes the restricted intra-axonal signal perpendicular to a WM bundle as

Eperp.q?I˛; ˇ/ D3F2

�
3

2
;
˛

2
C 1;

˛

2
C 3

2
I 2; 3I �16�2ˇ2q2?

�

(14)

where 3F2 is a generalized hypergeometric function, ˛ and ˇ are the shape and scale
parameters of the Gamma distribution and q? is the norm of q perpendicular to the
fiber path. We assume axial symmetry of the diffusion signal and free diffusion
along the fiber path, i.e. Epar.qk;D/ D exp.�4�2q2kDk/ with qk the parallel
component of q and Dk the parallel free water diffusivity. We simulate the intra-
axonal signal similar as in [3] to be

Eintra.q/ D Eperp.q?I˛; ˇ/Epar.qk;Dk/: (15)

Using this model the restricted intra-axonal diffusion signal in the whole q-space
can be readily obtained for any Gamma distributed axon diameter distribution.
Rician noise is then added with noise variance � such that SNR D 1=� .

To quantify signal reconstruction based on the microstructure we use two mea-
sures known as the Return-To-Axis and Return-To-Origin probability (RTAP and
RTOP) [15]. These values are known to be sensitive to the anisotropy of WM tissue.
RTAP is computed as the integral of the diffusion signal on the plane perpendicular
to the fiber direction and RTOP is integral of the whole 3D diffusion signal.

RTAP D
Z

R2

E.q?/dq? RTOP D
Z

R3

E.q/dq (16)

Moreover, in the case of restricted intra-axonal diffusion in a single fiber path
RTAP is related to the reciprocal of the mean cross-sectional area of the axons, i.e.
hAi D 1=RTAP [13].

The computations of RTOP and RTAP rely on integrals of the complete q-
space, which depend highly on the extrapolation of the signal beyond the q-space
truncation. To quantify the accuracy of the extrapolation we simulate the intra-
axonal signal on three equispaced shells in q-space with 90 samples each for 22
realistic axon diameter distributions [1]. We consider two scenarios: (1) varying the
maximum q-value qmax included in the measurements while keeping the signal-to-
noise ratio (SNR) constant and (2) varying SNR while keeping qmax constant. In
both cases we fit SHORE to the signal with different regularization methods with
nmax D 6. We quantify the accuracy of RTAP by estimating hAi and comparing the
results with the ground truth hAigt , which can be computed using the parameters of
the Gamma distribution as hAigt D ˛.˛C1/ˇ2. For RTOP we directly compare the
estimated values with the 3D integrals of Eq. (15).
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3.2 Fiber Crossing Data Generation

To further quantify the quality of both signal and EAP reconstruction we generate
synthetic fiber crossing data. The signal is simulated using a multi-compartment
Gaussian model

E.q/ D
MX

mD1
fm exp.�2�2qTDmq/ (17)

where M is the number of compartments, fm is the relative compartment size withPM
mD1 fm D 1 and Dm the corresponding diffusion tensor. We use acquisition

parameters from the Human Connectome Project (HCP) where three shells with b-
values 2 Œ1;000; 2;000; 3;000� s=mm2 are sampled 90 times each with 5 b0 samples
per shell. A cross-section of the ground truth of the signal and EAP of anM D 2, 72
degree crossing with f1 D 0:6 and f2 D 0:4 is shown in Fig. 1. Again, Rician noise
is added with noise variance � such that SNR D 1=� . Figure 2 shows the signal
from Fig. 1a for three different noise levels. We then fit SHORE using separated
and Laplacian regularization and compare signal and EAP reconstruction using the
metrics given in the next section.

3.3 Error Metrics

We define two error metrics to quantify the reconstruction quality of the signal and
EAP in the single WM bundle data and the multiple compartment Gaussian model.
For the signal we use the L2 metric

a b

Fig. 1 Isocontour representations of the ground truth of the signal as a function of q (a) and the
EAP as a function of r (b). The isocontours are color-labeled from dark blue (0.95 of maximum
value) to red (0.1 of maximum value). The dashed grey circles in the signal represent the measured
shells in q-space. (a) Ground truth signal. (b) Ground truth EAP
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a b c

Fig. 2 The signal from Fig. 1a corrupted by Rician Noise. (a) SNRD30; (b) SNRD20;
(c) SNRD10

L2.c/ D
Z

R3

.EGT.q/ �Ec.q//2dq (18)

where EGT.q/ is the ground truth signal and Ec.q/ is the reconstructed signal with
coefficients c. For the EAP we use the Bhattacharyya distance (BD) [5] as it is a real
metric between probability densities

BD.c/ D � ln

�Z

R3

p
PGT.r/Pc.r/dr

�

(19)

where PGT.r/ and Pc.r/ are the ground truth and reconstructed probability density
functions of the EAP. We use these metrics to analyze the reconstruction quality for
different regularization methods in the next section.

3.4 Optimal Weighting Parameter Choice

To fairly compare EAP reconstructions, we use the Generalized Cross Validation
(GCV) algorithm [8] to obtain optimal regularization parameters �n, �l and ��.
GCV is based on an Ndata-fold cross validation. Fortunately, the estimation of � as
the minimum argument of the GCV function can be calculated as

GCV.�; y/ D ky � Oy�k
Ndata � Tr.S�/

(20)

where S� D Q.QTQ C�R/�1QT is the smoother matrix and Oy� D S�y. Here R can
contain multiple regularization functionals that can be optimized.
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4 Results

4.1 Microstructure Experiments

To compare signal and EAP reconstruction quality on a single WM bundle between
separated and Laplacian regularization we simulated the intra-axonal signal on three
equispaced shells in q-space with 90 samples each for 22 realistic axon diameter
distributions [1] as outlined in Eq. (14). We only generate the intra-axonal diffusion
signal for two scenarios: in the first we vary qmax from 10 to 310mm�1 in steps of
30mm�1 while keeping SNR D 20. In the second we vary SNR between noiseless
and SNR D 5 while keeping qmax at 200mm�1. In both cases we regenerate the
noise 100 times per qmax or SNR and average the results over all axon diameter
distributions and noise generations. For both datasets we compute the averaged
absolute error between the estimated mean cross-sectional area hAi and ground truth
hAigt (Fig. 5b and c) and the values for RTOP with the ground truth (Fig. 5d and e).
We do not show the results for the least squares solution as the extrapolation of
the signal without regularization is completely unreliable (see Fig. 5a). It should
be noted that using separated regularization approximately 2–3 % of all RTAP and
RTOP estimates yield negative values, while this is only 0:03% for Laplacian
regularization.

4.2 Fiber Crossing Experiment

To quantify general fitting of the signal and EAP, the SHORE basis was fitted
on a 72 degree crossing using separated and Laplacian regularization. In Fig. 3
we show the average L2 and BD metrics for the reconstruction of the signal and
EAP for 300 repetitions for every SNR. It is seen that Laplacian regularization
has the lowest metrics and standard deviation for both the signal and the EAP.
Furthermore, in Table 1 we show the variances for the weighting parameters,

Fig. 3 The error metrics for the reconstruction of (left) the signal (L2) and (right) the EAP (DB)
as a function of 1=SNR. The L2 plot for the signal is on a logarithmic scale. It can be seen that the
Laplacian better and more reliably approximates the signal and EAP for all SNR
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a b c d

Fig. 4 A section of the ground truth of the EAP (a) with EAP reconstructions using no (b),
separated (c) and Laplacian regularization (d). Noise was added such that 1=SNR D 0:1. The
red areas indicate negative values. The Laplacian best preserves the angular shape of the ground
truth among the given methods. (a) EAP GT; (b) EAP LS; (c) EAP Sep; (d) EAP Lap

together with the Pearson correlation between �n and �l for every SNR. It can be
seen that the variance for the Laplacian is much lower than those of the separated
regularization. Finally, to give a visual interpretation to the graphs in Fig. 3 we
show EAP reconstructions with different regularization methods at 1=SNR D 0:1

together with the ground truth in Fig. 4. It can be seen that Laplacian regularization
maintains the best angular characteristics of the ground truth, given that the signal
is severely distorted (see Fig. 2c).

4.3 Human Connectome Project

In our last experiment we use the Human Connectome Project data, which was
sampled on three shells with b-values 2 Œ1;000; 2;000; 3;000� s=mm2, with 90

directions per shell. We selected a section in the brain near the Corpus Callosum
(see Fig 6). In order to highlight reconstruction differences in the case of more
noisy images we add noise to the data such that SNR D 20. We used GCV to obtain
optimal weighting parameters for every voxel and we fit SHORE using nmax D 6.
In Fig. 6 we visualize the EAP at a radius of 10 and 20�m and the ODFs using
separated and our Laplacian regularization. The spherical representation of the EAP
P.r/ at a certain radius r shows the relative probability of particles traveling this
distance in the given diffusion time. It can be seen that the Laplacian attenuates
spurious behaviour in the lower radius of the EAP (yellow box), though this effect
is not as prominent in the ODF.

5 Discussion and Conclusion

In this paper we proposed and derived the full 3D Laplacian functional as a
regularization for the fitting of the SHORE basis. We compared our proposed
regularization with the previously proposed separated Laplace–Beltrami and radial
low-pass filtering [2]. In our first experiment we show that Laplacian regularization
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Fig. 5 (a) shows the Least Squares signal approximation. The red area indicates one standard
deviation of the approximation. It can be seen that after the last sampling shell (the grey dashed
line) the extrapolation is unreliable. (b) and (c) show the error in hAi for different regularization
methods as a function of qmax and SNR. (d) and (e) show the values of RTOP with the ground
truth. Both (b) and (c) show lower average error and lower standard deviations with Laplacian
regularization under all qmax and SNR. (d) shows that with Laplacian regularization the estimated
RTOP approaches the ground truth at qmax near 160mm�1 but continues to grow as qmax increases.
Moreover, it can be seen that RTOP for separated regularization has very unreliable estimates
for low qmax. Only after a qmax of 160mm�1 the estimation stabilizes and a similar trend is
seen of increasing RTOP as qmax increases. In (e) it can be seen that the mean RTOP becomes
slightly higher than the ground truth for Laplacian regularization and slightly lower for separated
regularization as SNR becomes lower. Again the Laplacian benefits from much lower standard
deviations

of the SHORE basis provides more reliable estimates of microstructural features
compared to separated regularization (Fig. 5). When comparing the mean and
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Fig. 6 Reconstructions of the EAP and ODF in an area near the Corpus Callosum of the Human
Connectome Project using separated regularization (left column) and Laplacian regularization
(right column). The EAP is reconstructed for two EAP radii (top two rows) and ODFs is given
on the bottom. The Laplacian regularization stops spurious behaviour in the EAP compared to
separated regularization (yellow and blue rectangles), though this effect is not as noticeable in the
ODFs (green rectangles)
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standard deviation of RTAP and RTOP between regularization methods, it can
be seen that Laplacian regularization greatly improves signal extrapolation and
robustness to noise at lower q-values and low SNR levels. The fact that almost no
negative values for microstructural values were found using the Laplacian further
underlines this result.

Moreover, in our second experiment we show that Laplacian regularization
enables better and more reliable approximation of the signal and EAP in crossings
(Fig. 3) and that the angular features of the EAP are better maintained under high
levels of noise compared to separated regularization (Fig. 4). We also show that
the estimation of the optimal weighting parameter is more stable for the Laplacian
than for the separated implementation (Table 1), which suggests that our approach
is better suited for this type of data. Finally, we provide visualization of the EAP
and ODF on the Human Connectome Project dataset (Fig. 6). It can be seen that the
influence of the regularization, while visible in the EAP, is not as noticeable on the
ODFs.

Nonetheless, combined with the results of the other experiments in this work,
we believe that the accurate approximation of the signal and EAP is essential to
understanding the underlying microstructure, and appropriate regularization such as
our Laplacian approach is therefore fundamental.
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Motion Is Inevitable: The Impact of Motion
Correction Schemes on HARDI Reconstructions

Shireen Elhabian, Yaniv Gur, Clement Vachet, Joseph Piven, Martin Styner,
Ilana Leppert, G. Bruce Pike, and Guido Gerig

Abstract Diffusion weighted imaging (DWI) is known to be prone to artifacts
related to motion originating from subject movement, cardiac pulsation and breath-
ing, but also to mechanical issues such as table vibrations. Given the necessity for
rigorous quality control and motion correction, users are often left to use simple
heuristics to select correction schemes, but do not fully understand the consequences
of such choices on the final analysis, moreover being at risk to introduce con-
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founding factors in population studies. This paper reports work in progress towards
a comprehensive evaluation framework of HARDI motion correction to support
selection of optimal methods to correct for even subtle motion. We make use of
human brain HARDI data from a well controlled motion experiment to simulate
various degrees of motion corruption. Choices for correction include exclusion or
registration of motion corrupted directions, with different choices of interpolation.
The comparative evaluation is based on studying effects of motion correction on
three different metrics commonly used when using DWI data, including similarity of
fiber orientation distribution functions (fODFs), global brain connectivity via Graph
Diffusion Distance (GDD), and reproducibility of prominent and anatomically
defined fiber tracts. Effects of various settings are systematically explored and
illustrated, leading to the somewhat surprising conclusion that a best choice is the
alignment and interpolation of all DWI directions, not only directions considered as
corrupted.

1 Introduction

In today’s clinical diffusion-weighted (DW)-MRI acquisitions, subject motion
is considered one of the most relevant sources of noise artifacts [1], ranging
from physiological motion such as cardiac pulsation, to physical (voluntary or
involuntary) movement by the patient. While physiological motion can be controlled
by gating or in the sequence design, the physical patient movement during the
diffusion-encoding gradient pulses leads to severe signal perturbation which results
in a significant signal phase shift, or signal loss [2].

During a scanning session, the degree of patient’s cooperation may vary. For
example, elderly people who may become uncomfortable during large scanning
sessions, patients in pain who become restless and agitated during a scan and
unsedated pediatric subjects who will not cooperate long enough to be imaged
without motion artifacts, to name a few. As such, it is safe to assume that there
are always motion artifacts in any given DW-MRI acquisition, a proof-of-concept
of this hypothesis being presented in Sect. 2.1.1.

Motion effects can be reduced by real-time motion detection [3, 4], where the
acquisition and the source of motion are synchronized so that the data is never
corrupted. However, this prospective approach for motion correction might affect
the acquisition time. Further there is no guarantee that the head will ever move
back to the original position. Alternatively, the exclusion of one or more gradients
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bearing strong motion artifacts can be exercised [5], a.k.a motion scrubbing in
functional MRI, however, this limits the ability to reconstruct crossing fibers
especially at small separation angles. As such, post-acquisition motion correction
is imperative to guarantee voxel-wise correspondence between different DWIs
referring to the same anatomical structure. A common practice is to heuristically
select transformation parameter thresholds for detection of motion outliers, where
registration and interpolation is applied to gradient directions that are claimed to be
corrupted.

To mitigate motion artifacts, raw DWIs are usually co-registered to the least
diffusion-weighted images using rigid transformation. Software packages for
image-based registration of DWIs are becoming readily available, e.g. FSL-
MCFLIRT [6], the Advanced Normalization Tools (ANTS) [7], TORTOISE [8] and
DTIPrep [9]. Nonetheless, the interpolation step of a typical registration approach
has been shown to significantly change the noise properties of DWIs [10].

The optimal pre-processing pipeline for HARDI sequences remains an open
question and a challenge on real data. For example, is there a threshold that would
identify a motion-corrupted volume? How sensitive are HARDI reconstructions
to such a pre-defined threshold? What is the impact of various motion-correction
schemes on subsequent HARDI-based reconstructions and tractography? So far,
these issues have received, surprisingly, little attention in various DW-MRI studies
of clinical populations.

This study does not focus on the closeness of HARDI-based reconstructions
to an existing truth, but on the effect of pre-processing schemes, in particular
motion correction, commonly deployed as a post-acquisition step, on succeeding
steps. In this paper, we propose a comprehensive experimental framework (see
Fig. 1) that enables making use of human brain HARDI data from a well controlled
motion experiment to simulate various degrees of motion corruption. Choices for
correction include scrubbing or registration of motion corrupted directions, with
different choices of interpolation, and also the option of registration/interpolation of
all directions. The comparative evaluation covers three different metrics, including
similarity of fiber orientation distribution functions (fODFs) via Jensen-Shannon
divergence (JSD), global brain connectivity via Graph Diffusion Distance (GDD),
and reproducibility of four anatomically-defined fiber pathways via Cohen’s Kappa
statistics.

On the basis of our findings, we recommend assuming there is always motion,
even subtle, in the acquired scans. As such, motion correction needs to be applied to
all gradient directions without relying heuristically on a threshold which determines
a gradient direction to be claimed as motion corrupted.
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Fig. 1 Experimental framework for subject motion simulation and HARDI-based reconstructions
evaluation. (a) Data acquisition/preprocessing. (b) Motion simulation. (c) Motion correction
schemes. (d) Reconstruction. (e) Evaluation
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2 Materials and Methods

2.1 Phantom Acquisition

2.1.1 Proof-of-Concept

To backup our assumption that motion is omnipresent, we analyze data from three
healthy human volunteers (males 30–40 years-old) visiting four clinical sites where
they signed a generic consent form at each site agreeing to be scanned for research
purposes. Each subject was scanned twice on a 3T Siemens Tim Trio scanner with
a strict calibration of image acquisition parameters. The scanning environment was
well controlled, a comfortable padding was used to minimize head motion while
urging participants to remain without movement. Eddy current was compensated
by using a Twice-refocused Spine Echo (TRSE) protocol, with FoV D 209mm, 76
transversal slices, thickness D 2mm, .2mm/3 voxel resolution, matrix size D 1062,
TR D 11,100 ms, TE D 103ms, one baseline image with zero b-value and 64 DWI
with b-value at 2,000 s/mm2, with total scan time of 12:5min.

FSL-MCFLIRT [6] was then used to provide the rigid transformation matrix
(6 DOF) for each image volume having the baseline image as the reference for
motion correction and normalized mutual information as the cost function. To
quantify motion, we used the magnitude of the translation vector (in mm) as well
as the axis-angle rotation representation (in degrees). The boxplots in Fig. 2 show
the rotational and translational components of the motion being detected from
a total of 24 DWI datasets. This shows an experimental proof of the existence
of quantifiable motion (on average 0:39ı rotation and 0:61mm translation), even
subtle, in the acquired HARDI data. The graphs in Fig. 2 illustrate the arbitrariness
of common calculation of percentage of motion corruption, here shown as a function
of thresholding on the estimated motion parameters.

Fig. 2 Average and standard deviation of the percentage of motion-corrupted gradient directions
as a function of thresholding on the estimated rotation angle in degrees (left) and the estimated
translation magnitude in mm (right) for three human phantoms scanned twice at four clinical sites.
The boxplots show the overall statistics of estimated motion parameters
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2.1.2 Atlas-Guided White Matter Parcellation

For automated placement of 3D region-of-interests (ROIs) defining seeds for
tractography and connectivity, we used the publicly available JHU-DTI-SS (a.k.a.
“Eve”) atlas described in [11], which includes 176 core and peripheral ROIs. To
reduce variability introduced by individual parcellation in subject space, we defined
a common reference for our population (multiple acquisitions of the same phantom).
This is achieved by generating an unbiased average and diffeomorphic deformations
from the sets of images (using tensor maps extracted from HARDI). The “Eve”
Fractional Anisotropy (FA) atlas was registered to FA images of the phantom-
specific atlases using the ANTS [7] tool, along with mapping of the “Eve” white
matter labels. Finally, “Eve” labels were mapped back to coordinates of original
HARDI data by inverse diffeomorphic transforms.

2.1.3 Human Motion Simulation

As a pilot, one human phantom was asked to be re-scanned while having the
head tilted to simulate noticeable motion. The two datasets were then used to
construct motion-corrupted sequences. Based on alignment of the baseline images
of the two scans (original and tilted) using FSL-MCLFIRT, 12ı rotation and 7mm
translation were detected, while less than 1ı of rotation and 0:8mm of translation
were found when aligning individual DWIs to their corresponding baseline image.
We arbitrarily considered the first out of the two scans as the “motion-free” sequence
and used it as a reference for performance evaluation of different motion correction
schemes. A random percentage of DW images (10, 30, 50, 70 and 90 %, each with
ten different random sets of gradient directions) drawn from the second scan (tilted
brain) were mixed with the first scan to construct 50 motion-corrupted datasets (10
experiments times 5 corruption percentages).

2.1.4 Motion Correction Schemes

We explored three motion correction schemes. In the first approach, we follow the
motion scrubbing approach, usually deployed in functional MRI, where we exclude
the affected gradient directions from subsequent computations (i.e., diffusion profile
reconstruction and tractography). In the second approach, we only align and
interpolate the corrupted gradient directions. This mimics the situation where a
pre-defined motion parameter threshold is used to claim whether a DWI volume
is motion-corrupted. Note that the diffusion gradient vectors corresponding to
the corrupted volumes are re-oriented to incorporate the rotational component
of subject motion. In the third approach, assuming there is always motion, we
force the alignment and interpolation of all DWI volumes while the respective
gradient vectors are re-oriented accordingly. The interpolation step in the second and
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third approaches was performed using FSL-MCFLIRT [6] with nearest neighbor,
trilinear, sinc and spline interpolants.

2.2 Reconstruction and Tractography

We employed the constrained spherical deconvolution (CSD) technique [12] to
reconstruct fODFs using the DiPy library [13]. We used spherical harmonics
representation of order 8 which was kept constant for all our experiments. Full brain
tractography was performed using the EuDX deterministic tracking technique [14]
(implemented in the DiPy library), using random seeding inside the brain region and
a turning-angle threshold of 30ı between two connected voxels. The fODFs and
tractography were computed for the 450 motion corrected sequences (50 datasets
times 9 correction schemes), as well as the motion-free sequence.

Further, a multi-ROI approach was used to reconstruct four prominent and
previously well-described fiber pathways using the Template ROI set (TRS) defined
in [15] which exploits the existing anatomical knowledge of track trajectories. The
TRS (pass through and not-pass through) of four fundamental fiber bundles (left
and right hemispheres) were defined based on “Eve” atlas-based parcellation of
the original DWI images. We report the matching results from the four bundles
as defined in [15]: the cortical spinal track (CST), the inferior fronto-occipital track
(IFO), the inferior longitudinal fasciculus (ILF), and the uncinate fasciculus (UNC).

2.3 Evaluation Metrics

2.3.1 Voxel-Based Metric

Similarities between the original motion-free fODFs and the fODFs corresponding
to the motion corrected images were measured using the Jensen-Shannon divergence
(JSD), which has been used to quantify differences between ODFs in various
studies [16].

2.3.2 Global Connectivity-Based Metric

We used the 176 core and peripheral ROIs defined in the white matter parcellation
(see Sect. 2.1.2) to compute weighted connectivity graphs from the full brain
tractography result. The edge weights were inversely proportional to the tracts
lengths giving a higher connection strength to short tracts to compensate for signal
attenuation. The brain connectivity graphs were then compared by means of the
recently proposed graph diffusion distance (GDD) metric [17], which takes into
account the graph structure in addition to the edge weights.
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2.3.3 Track-Based Metric

The spatial matching between motion-free and motion-corrected tracts was exam-
ined using Cohen’s Kappa statistic [18]. The Kappa statistic measures the level of
agreement of the tracking results (determined by cross-tabulating track detection
for two given tracking results) and corrects for agreement that would be expected
by chance (determined by the marginal frequencies of each tracking result).

3 Results and Discussion

The average JSD metric was computed using the fODF reconstruction from the
raw dataset not corrupted by mixing DWI directions from the tilted-brain scan as a
reference (i.e. only presenting subtle motion inherent to a scan). We differentiated
between regions where multiple fibers were detected versus single fiber regions.
Figure 3 shows the average JSD values for single and multiple fiber regions as a
function of motion corrupted percentage. As anticipated, heterogeneous regions are
more affected (showing larger average JSD) by the interpolation step of motion
correction in general when compared to that of single fiber regions, regardless
of the interpolation scheme employed. It can be observed that the impact of
motion scrubbing (removing gradient directions) becomes more pronounced when
compared to interpolation. The JSD values indicate minimal deformations in fODFs
reconstructed after forcing the alignment and interpolation of all gradient directions.

Figure 4(left) shows the average GDD metric computed based on the weighted
connectivity graphs from tractography result based on raw scan reconstructions
versus that of motion-corrected ones. One may observe consistent findings when
compared to the JSD metric; the global brain connectivity is least affected by the
motion correction step when forcing the alignment and interpolation of all gradient
directions without setting a pre-defined threshold to claim corrupted volumes.
Although excluding corrupted gradients might seem an alternative choice for motion
correction, the connectivity graphs show high deviations (larger GDD) especially
when the percentage of directions being corrupted is increased.

Fig. 3 The average Jensen-Shannon divergence (JSD) values for single fiber regions (left) and for
multiple fiber regions (right)
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Fig. 4 Left: average graph diffusion distance (GDD). Right: average Cohen’s Kappa statistic for
the cortical spinal track (CST) for the left hemisphere

Fig. 5 Sample tractography result for the cortical spinal track (CST) (left hemisphere) with 50 %
motion corruption

Figure 4(right) shows the average Kappa statistic computed from the CST track
in the left hemisphere (other fiber tracts showed similar trends, yet their graphs
were omitted due to space limitation). Being consistent with the results from JSD
and GDD metrics, motion scrubbing shows a significant decrease in the degree of
track agreement when increasing percentage of motion corruption which in turn
yields discarding more gradient directions. Nonetheless, the maximal agreement
is achieved when aligning and interpolating all gradient directions to correct for
motion, even if considered subtle, see Fig. 5 for a sample tractography result. One
can observe that the detected tracts when corrupted gradients are excluded deviate
from being anatomically realistic. This is due to insufficient number of gradients
and unbalanced sampling of the q-space.

4 Conclusion

Although there is excellent theoretical work on DWI acquisition parameters and
ODF reconstruction schemes, as well as its effects on the quality and crossing
fiber resolution, standard users lack clear guidelines and recommendations on the
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best ways to approach and correct for motion in practical settings. This work
investigates motion correction using transformation and interpolation of affected
DWI directions versus the exclusion of subsets of DWIs, and its impact on the
reconstructed fODFs, on brain connectivity and on the detection of fiber tracts. The
various effects are systematically explored and illustrated via living phantom data,
leading to the conclusion that motion, even subtle, exists in every acquired DW
scan while subsequent reconstructions are least affected by the motion correction
step when forcing the alignment and interpolation of all gradient directions without
setting pre-defined thresholds to claim corrupted volumes.
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Abstract Recently, super-resolution methods for diffusion MRI capable of retriev-
ing high-resolution diffusion-weighted images were proposed, yielding a resolution
beyond the scanner hardware limitations. These techniques rely on acquiring either
one isotropic or several anisotropic low-resolution versions of each diffusion-
weighted image. In the present work, a variational formulation of joint super-
resolution of all diffusion-weighted images is presented which takes advantage of
interrelations between similar diffusion-weighted images. These interrelations allow
to use only one anisotropic low-resolution version of each diffusion-weighted image
and to retrieve its missing high-frequency components from other images which
have a similar q-space coordinate but a different resolution-anisotropy orientation.
An acquisition scheme that entails complementary resolution-anisotropy among
neighboring q-space points is introduced. High-resolution images are recovered
at reduced scan time requirements compared to state-of-the-art anisotropic super-
resolution methods. The introduced principles of joint super-resolution thus have
the potential to further improve the performance of super-resolution methods.
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1 Introduction

Diffusion MRI allows measuring the molecular self-diffusion of water in biological
tissue, and provides unique information on tissue microstructure unavailable to other
non-invasive imaging techniques. Diffusion MRI has the potential to improve the
diagnosis of, inter alia, multiple sclerosis [11], traumatic brain injury [26], and
many kinds of cancer [19]. This potential stems from its ability to determine the
macroscopic orientation and “bulk statistics” of diffusion within the underlying
microscopic cellular architecture. This is done by acquiring diffusion-weighted
images for different diffusion directions and diffusion weightings (constituting a
three-dimensional diffusion space, the q-space), and fitting a diffusion model to the
measurements. For details, please refer to [12, 13].

A major challenge in diffusion MRI is balancing between acquisition duration,
image resolution and signal-to-noise ratio (SNR). Numerous denoising methods
were proposed to increase SNR by incorporating prior knowledge into postprocess-
ing [15, 28] or directly into image reconstruction [10].

Another approach to improve the balance between scan time, resolution and SNR
is to increase image resolution via super-resolution techniques.

1.1 Non-diffusion MRI Super-Resolution

Numerous super-resolution methods are available for non-diffusion MRI [20, 29].
Notably, the total generalized variation (TGV) [2, 14] regularizer, which prevents
staircasing artifacts by modeling higher-order derivatives of the image, was applied
to super-resolution of isotropic low-resolution MRI volumes [17].

1.2 Diffusion MRI Super-Resolution

In contrast to conventional diffusion MRI techniques, super-resolution methods for
diffusion MRI exceed the scanner hardware limitations on image resolution.

Fiber-based methods reconstruct super-resolution information on nerve fiber
bundles from conventional diffusion MRI [4–6, 18], or enhance the resolution of
diffusion-weighted images by using estimated underlying nerve fiber orientations
for the super-resolution model [31].

Patch-based super-resolution [8] uses one isotropic low-resolution version of a
diffusion-weighted image, and performs super-resolution using self-similarity [3,
16, 24] of the image. In collaborative patch-based super-resolution [8], a high-
resolution non-diffusion-weighted image is used to retrieve high-frequency infor-
mation for the isotropic low-resolution diffusion-weighted image, in addition to the
self-similarity prior.
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The methods introduced by Scherrer et al. [25] and Poot et al. [22] use several
anisotropic low-resolution versions of each diffusion-weighted image with com-
plementary resolution-anisotropy orientations. Resolution anisotropy is achieved
by anisotropic k-space sampling, meaning that high frequencies are not sampled
for all directions equally. Subsequently, each high resolution diffusion-weighted
image is reconstructed independently by using the complementary high-frequency
information from the anisotropic low-resolution acquisitions. Several anisotropic
low-resolution acquisitions with different distortions are used in [23] for joint
susceptibility artifact correction and super-resolution.

Model-based super-resolution [27] introduces a framework to estimate high-
resolution parameter maps for an arbitrary diffusion model from several anisotropic
low-resolution versions of each diffusion-weighted image. As a proof of concept,
the authors use the ball-and-stick model [1] and apply the method to an in silico
phantom. Model-based super-resolution uses information from the entire q-space
simultaneously, and is shown to outperform independent super-resolution of indi-
vidual diffusion-weighted images. However, information on high frequencies is still
completely acquired for every q-space coordinate—several acquisitions per q-space
coordinate are used.

Three different combination schemes of q-space coordinates and resolution-
anisotropy orientations were proposed for tomographic reconstruction of diffusion
tensors [7]. However, the scheme that uses only one anisotropic acquisition per
q-space coordinate restricts the resolution-anisotropy orientation exactly to the
respective diffusion gradient direction.

We propose a super-resolution method for diffusion MRI that jointly recovers
high frequencies of all diffusion-weighted images, but requires only one anisotropic
low-resolution acquisition per q-space coordinate. The resolution-anisotropy ori-
entations are chosen such that neighbors in q-space possess complementary high-
frequency information, and regularization along q-space allows them to propagate
this information to each other.

2 Methods

Two formulations for joint super-resolution of five-dimensional data (2-D image
space and 3-D q-space) are introduced, relying on two respective imaging models:
the formation of low-resolution images from high-resolution images, or the for-
mation of acquired subsampled k-space raw data from underlying high-resolution
images.
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2.1 Image Formation Model

In the following, five-dimensional data are considered. The 5-D low-resolution
images y are formed from the high-resolution images � in the following way:

y D D� C �y ; (1)

where D is the blur and downsampling operator [8,27], and �y is the residual noise.
The model for the acquired k-space data d is

d D UFx!k� C �d ; (2)

where Fx!k is the Fourier transform from image space (x-space) to k-space
along two of the five data dimensions, U is the undersampling operator in k-space
(omitting high frequencies in a certain orientation), and �d is complex-valued i.i.d.
Gaussian noise.

2.2 k-q Acquisition Scheme

For the present purpose, coordinates in q-space are sampled on a regular Cartesian
grid up to a maximum diffusion weighting bmax, as in diffusion spectrum imaging
(DSI) [30]. For each q-space point, only one anisotropic low-resolution image is
acquired by omitting high frequencies in k-space in one direction, see Fig. 1. The
resolution-anisotropy directions are chosen such that neighboring points in q-space
contain complementary high-frequency information. For an image lacking vertical
high frequencies, all of its six Cartesian-grid q-space neighbors contain vertical
high frequencies but lack horizontal high frequencies—and vice versa. Figure 2
illustrates this relationship.

2.3 Joint Super-Resolution

We perform super-resolution for all diffusion-weighted images jointly. The data
in our formulation is thus five-dimensional (2-D image space and 3-D q-space).
TGV [2, 14] along all five data dimensions is applied as a regularization term. This
regularization has a threefold effect:

• Regularization along q-space propagates complementary high-frequency infor-
mation between q-space-neighboring diffusion-weighted images of different
resolution-anisotropy orientations (Fig. 2).
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Fig. 1 Sampling scheme in joint k-q space. The six large squares correspond to q-space DSI
coordinates qz D �5 : : : 0 (coordinates qz D 1 : : : 5 analogous to qz D �1 : : : � 5 not
depicted). The small squares within each large square correspond to coordinates qx D �5 : : : 5,
qy D �5 : : : 5. The small squares depict sampled (white) and unsampled (gray) k-space points
for each q-space coordinate. Sampling anisotropy in k-space results in resolution anisotropy in
image space, and the anisotropy orientations are chosen such that neighbors in q-space have
complementary high-frequency information in horizontal and vertical directions (cf. Fig. 2)

• The image model of TGV introduces prior knowledge capable of retrieving
missing high frequencies when regularizing along image space in a super-
resolution framework [17].

• TGV regularization along five dimensions reconstructs missing information in
5-D space and reduces noise [9].

Second-order TGV is a piecewise-smooth image model, formulated [2, 14] as

TGV.�/ D min
v

Z

˝

˛1jr� � vjdx C ˛0

Z

˝

jE .v/jdx ; (3)

where E .v/ D 1
2

�rv C rvT
�

is the symmetrized derivative, ˛1 and ˛0 are
regularization parameters, and˝ is the image domain (field of view). TGV balances
the first and second derivatives of the image via the vector field v, allowing both
affine regions and edges.
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Fig. 2 Detail of a low-resolution image (middle) and its six neighbors in Cartesian q-space along
qx (left, right), along qy (bottom, top) and along qz (red, green). The middle image lacks horizontal
resolution, but its six q-space neighbors all have high horizontal resolution, and the information
they contain is propagated to the middle image in iterative joint super-resolution via regularization
along q-space. The same principle analogously applies to images lacking vertical resolution.
Middle image taken from DSI q-space coordinate .qx; qy; qz/ D .0;�3; 1/

Joint super-resolution is formulated in a variational framework. To estimate high-
resolution images O� from low-resolution images y formed according to the model in
Eq. (1), the following optimization problem is solved:

O� D arg min
�

kD� � yk22 C TGV.�/ : (4)

To obtain high-resolution 5-D image estimates O� from raw k-space data d formed
according to the imaging model in Eq. (2), the following optimization problem is
solved:

O� D arg min
�

kUFx!k� � dk22 C TGV.�/ : (5)

In both cases, solutions are obtained with a first-order primal-dual algorithm [21].
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2.4 Experiments

As a proof of concept, the resolution of a healthy volunteer scan was retrospectively
reduced according to the scheme described in Sect. 2.2. In this way, comparison
to the original high-resolution data was possible. The scan was performed using a
single coil on a 3T GE MR750 clinical MR scanner (GE Healthcare, Milwaukee,
WI, USA) with the following imaging parameters: TR D 2535 ms, TE D 93:3 ms,
515 DSI q-space coordinates within the sphere inscribed in a 11�11�11Cartesian
grid, bmax D 2000 s/mm2, voxel size 1:875 � 1:875 � 4 mm. Thus, the artificially
downsampled resolution was 1:875 � 3:75 � 4 mm and 3:75 � 1:875 � 4 mm,
depending on q-space coordinate, cf. Fig. 1. Informed consent was obtained.

Joint super-resolution from low-resolution image space, Eq. (4), and from low-
resolution (undersampled) k-space data, Eq. (5), was performed.

3 Results

Joint super-resolution results are shown in Fig. 3. Joint super-resolution, especially
from k-space data d, largely removes low-resolution artefacts which manifest
themselves as underestimations and overestimations (blue and red in the bottom
rows of Fig. 3) of the true signal around salient image features.

Six of the acquired 515 q-space coordinates, namely .qx; qy; qz/ D .˙5; 0; 0/,
.0;˙5; 0/ and .0; 0;˙5/, have only one neighbor in q-space. We observed that low-
resolution artefacts remained at these coordinates (not shown). Due to this issue,
but also for the sake of optimization of the entire protocol, adaptive regularizers
and/or further development of the sampling scheme might be beneficial for joint
super-resolution.

Peak signal to noise ratio (PSNR) was calculated, which is defined as

PSNR D 20 log10.MAX=RMSE/ ; (6)

where MAX is the maximal intensity of the image and RMSE is the root mean
squared error of the image compared to the high-resolution original. PSNR was
40:69 dB for low-resolution images, which could be improved to 41:33 dB for
joint super-resolution images reconstructed from low-resolution images via the
optimization problem (4), and 41:37 dB for joint super-resolution from k-space data
by solving (5). Since the original high-resolution image is noisy, its noise is also
captured in the calculation of PSNR, preventing the distinction between noise and
low-resolution artifact removal. However, artifacts are visibly removed by the joint
super-resolution method, cf. Fig. 3.

Besides, the denoising effect [9] of regularization of the five-dimensional data
can also be observed in our results (joint super-resolution results contain less noise
than the original high-resolution images, and a great part of the incoherent noise in
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image

image
(detail)

error
map

error
map

(detail)

low resolution
super−resolution
from y

super−resolution
from d

original
high resolution

Fig. 3 Comparison of low-resolution images, high-resolution images retrieved by joint super-
resolution, and original high-resolution images with full k-space coverage. Error maps compared
to the high-resolution original are shown in the third and fourth row. DSI q-space coordinate
.qx; qy; qz/ D .0;�3; 1/ is shown

the error maps, Fig. 3, is caused by noise in the original high-resolution image). This
indicates that the improved stability to noise when using TGV for super-resolution
as reported in [17] also benefits joint super-resolution.

4 Discussion and Conclusions

Two formulations for joint super-resolution of 5-D data were introduced along with
a k-q acquisition scheme. Joint super-resolution from k-space, Eq. (5), outperformed
joint super-resolution from low-resolution image space, Eq. (4), in terms of PSNR
and visual image quality. This result can be attributed inter alia to an imperfect
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approximation of D in the image space model, cf. [8, 22, 25, 27]. Both joint super-
resolution formulations were able to enhance fine details in diffusion-weighted
images.

All in all, acquiring only one anisotropic image per q-space point strongly
reduces the imaging time compared to state-of-the-art super-resolution techniques.
We demonstrated that it is feasible to retrieve missing high-resolution information
using an appropriate regularization and complementary resolution-anisotropy orien-
tations among q-space neighbors.

With this scan time reduction in prospect, future work may focus on optimizing
the protocol in terms of motion and distortion compensation [22, 25], q-space
coordinates, maximal b-value, anisotropy orientations and downsampling factors
in order to match a realistic clinical setting and compare the performance of joint
super-resolution to state-of-the-art super-resolution methods. From the discussed
results we conclude that the introduced principles of joint super-resolution have the
potential to further improve the performance of super-resolution methods.

Acknowledgements Grant support: Deutsche Telekom Foundation.
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Bilateral Filtering of Multiple Fiber
Orientations in Diffusion MRI

Ryan P. Cabeen and David H. Laidlaw

Abstract We present and evaluate a bilateral filter for smoothing diffusion MRI
fiber orientations with preservation of anatomical boundaries and support for
multiple fibers per voxel. Two challenges in the process are the geometric structure
of fiber orientations and the combinatorial problem of matching multiple fibers
across voxels. To address these issues, we define distances and local estimators
of weighted collections of multi-fiber models and show that these provide a basis
for an efficient bilateral filtering algorithm for orientation data. We evaluate our
approach with experiments testing the effect on tractography-based reconstruction
of fiber bundles and response to synthetic noise in computational phantoms and
clinical human brain data. We found this to significantly reduce the effects of noise
and to avoid artifacts introduced by linear filtering. This approach has potential
applications to diffusion MR tractography, brain connectivity mapping, and cardiac
modeling.

1 Introduction

In this paper, we present and evaluate a method for smoothing orientation image
data that preserves edges and supports multiple orientations per voxel. We apply
this to diffusion MR imaging, a technique for measuring patterns of water molecule
diffusion with clinical applications to the in-vivo characterization of tissue. While
many of properties of tissue microstructure can be measured, we consider fiber
orientations, which are a feature of most diffusion models. In brain white matter
imaging, fiber orientations provide the basis for the reconstruction of fiber bundles
and mapping of brain connectivity [2], and in cardiac imaging, fiber orientations
aid the understanding of myocardial structure and the electrical and mechanical
function of the heart [22]. A common issue with diffusion imaging is the presence
of noise, which can lead to errors in fiber orientation estimation. We examine a
model-based approach to regularization that extends the bilateral filter to single and
multiple orientation data.
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Standard approaches for diffusion MR filtering either operate the diffusion-
weighted signal measured in each voxel and gradient encoding direction [27]
or incorporate robust statistics when fitting diffusion models [3]. Alternatively,
model-based image processing has the potential advantage of greater efficiency and
the ability to incorporate anatomical knowledge [17]. However, one challenge is
that the geometric structure of diffusion models must be incorporated. There has
been much success in developing such model-based frameworks with differential
manifolds, such as with the tensor model [17] and orientation distribution functions
[11]. For multi-compartment models, an additional combinatorial problem arises,
where correspondence must be made between fibers in different voxels. Local
estimators that incorporate clustering are one solution and have been applied to
multi-tensors [25] and orientations [6]. Other more global approaches for orientation
regularization have also been studied for single [8, 19, 28] and multi-fiber models
[10, 23].

In this paper, we derive a bilateral filter that extends previous work on local
linear filters for fiber orientations [6]. Such bilateral filters are well-studied for
scalar and vector images [26] and are closely related to normalized convolution [14],
anisotropic diffusion, and kernel regression [15]. Model-based bilateral filters have
been developed for the regularization of single diffusion tensor [12] and functional
[21] MR images. Related data-adaptive filters for 2D image orientations have also
been proposed for 2D smoothing [18] and hair modeling [16] applications. Our
work’s distinguishing features are the handling of 3D orientations, support for
multiple fibers per voxel, and a computationally efficient formulation.

In the rest of the paper, we first discuss computational analysis of single and
multi-fiber orientations and derive the bilateral filter. We then evaluate our approach
with computational phantoms and human brain data, measuring the effect on
tractography-based reconstruction of fiber bundles and the voxelwise response to
synthetic noise. We show that the proposed filter improves bundle reconstructions,
significantly reduces the effects of noise, and offers an improvement over linear
filtering at anatomical boundaries.

2 Methods

In this section, we first describe models of fiber orientations in diffusion MRI
and discuss the computation of distances and averages of single and multiple
orientations. We then apply these results to derive the proposed bilateral filter.
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2.1 Fiber Orientation Modeling

Many methods exist for estimating fiber orientations. In this paper, we use the multi-
direction ball-and-stick compartment model to obtain both fiber orientations and
their volume fractions. This is a parametric mixture model consisting of an isotropic
ball compartment and multiple tensor sticks that are constrained to be completely
anisotropic [4]; our focus in this paper is on fiber orientations. These orientations
have no preferred direction, so they are typically considered axial or line data and
can be represented by unit vectors with no associated sign. For the case of multiple
fibers, we consider a model M to be a weighted combination of N fiber volume-
fraction and orientation pairs M D f.fi ; vi /gNiD1 that lie in a single voxel. To
perform analysis of these models, we need suitable distances, weighted averages,
and related efficient computational routines. In the following sections, we’ll discuss
such ideas for both individual fiber orientations and their weighted combinations.

2.2 Single Fiber Analysis

We measure the distance df .a; b/ between single fiber orientations a and b by
the sine of their angle. Although the angle between axes may seem more natural,
the sine angle distance allows for a desirable representation and offers robustness
to outliers [5]. This distance can be found by considering the representation
�.v/ D vvT , known as the Veronese–Whitney embedding, the dyadic product, or
Knutsson mapping [13,20]. This representation induces the sine angle fiber distance
d2
f via the Euclidean distance d2e in the embedding �:

d2f .a; b/ D d2e .�.a/; �.b// D k�.a/ � �.b/k2 (1)

D Tr..�.a/ � �.b//T .�.a/ � �.b// (2)

D 2.1� .a � b/2/ D 2sin2.�/ (3)

Weighted averages can then be computed with respect to this distance by
� D P

i wi �.vi /. As this is an extrinsic mean, the result may no longer lie in
the embedding, so it must be projected to the nearest point argminvd

2
e .�.v/; �/. A

closed form expression for this is given by the principal eigenvector of the matrix
� [5]. This formulation also has a statistical interpretation, as the fiber distance is
equivalent to the Bregman divergence between Watson distributions [7], and the
weighted average of fibers is the maximum likelihood estimate of the direction
of a Watson distribution [24]. We also note that both the fiber distance and the
embedding provide a computationally efficient approach for optimization with
orientations.
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2.3 Multi-Fiber Analysis

In addition to measuring distances between fibers, we also wish to measure a
distance dm.M; OM/ between weighted combinations of fibers:

d2m.M;
OM/ D min

�

X

j

fj d
2
f .vj ; Ov�.j // (4)

which is selected across all possible mappings � from left to right fibers. Intuitively,
this finds the weighted sum of squared fiber distances from each of the left fibers to
its nearest right fiber. Similar combinatorial distances have been applied to multi-
fiber analyses by [23, 25]. We note that d2m is asymmetric with respect to its inputs
and invariant to the specific order of fiber compartments inM . Of course, when one
fiber per voxel is present, this distance reduces to the single fiber distance d2

f . We

also need to compute the weighted average OM under this distance, which can be
defined and simplified as follows:

OM D argmin
M

CX

i

wi d
2
m.Mi ;M/ D argmax

M;�

CX

i

NiX

j

wi fij.vij � v�.ij//
2 (5)

For a fixed number of fibers in OM , this objective can be minimized by an iterative
Expectation Maximization procedure similar to k-means clustering. In fact, this is
equivalent to the procedure for hard Mixture of Watsons clustering of Sra et al.
[24]. With this in mind, we now move to the task of defining bilateral filtering for
multi-fiber models.

2.4 Bilateral Filtering

Perhaps one of the most basic smoothing filters is the Gaussian blur, where a
weighted average of pixel intensities is found based on spatial proximity to a given
voxel. While this approach can remove noise, it also tends to smooth features that
we’d rather preserve. In contrast, bilateral filtering is a non-linear technique that
has been found to smooth images while preserving edges [26]. This is achieved
by computing weights based on both spatial proximity and intensity similarity. For
multi-fiber models, we can make a similar extension to the linear multi-fiber filter
proposed in [6] by including weights for directional similarity of fiber models. We
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Fig. 1 An example of bilateral filter weights computed for a single voxel p0 with associated fiber
model M0 (left), located near a boundary in a noisy phantom. For each voxel pi and associated
model Mi in a neighborhood of p0, the bilateral weights (right) are given by the product of the
linear Gaussian weights K.pi ; p0/ (top) and data-adaptive weights K.Mi ;M0/ (bottom)

define such a filter on a per-voxel basis with a local estimation framework [15] as
follows. Given an input voxel position and model .p0;M0/ and local neighborhood
f.pi ;Mi /gCiD1, with Mi D f.fij; vij/gNijD1, the filtered model OM is:

OM D argmin
M

CX

iD0
K

 
d2e .pi ; p0/

h2p

!

K

�
d2m.Mi;M0/

h2m

�

d2m.Mi;M/ (6)

given bandwidth parameters hp and hm and a kernel functions K , which we take
to be the exponential K.x/ D exp .�x/. This defines non-linear filter weights that
depend on M0, as illustrated in Fig. 1. Each voxel may be processed separately by
recomputing weights and solving Eq. 5 with the related Expectation Maximization
procedure [24]. Two additional concerns are the number of fibers and the resulting
volume fractions, which we estimate with standard bilateral filtering. The number
of fibers is then a weighted average, which is rounded to the nearest integer, and
the volume fractions are also weighted averages, but within groups defined by the
optimal fiber correspondences � . Multiple passes through the volume may have
some benefit, but we only consider a single pass.

3 Experiments

We performed evaluation with two experiments: the first applies tractography-based
fiber bundle reconstructions in the human brain data, and the second measures the
response to noise in computational phantoms and human brain data. We compared
to the linear filtering approach [6] in both experiments.
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3.1 Datasets

3.1.1 Computational Phantom Data

Two computational phantoms were constructed with single and double fiber mod-
els. The first represents the interface between two bundles, such as the corpus
callosum/cingulum boundary. The second represents a similar interface with an
additional bundle crossing both, such as the corpus callosum/corona radiata/superior
longitudinal fasciculus juncture. These are represented by single and double fiber
models, respectively, and both include fanning and curving to represent features of
real data.

3.1.2 Human Brain Data

Diffusion MRIs were acquired from a healthy volunteer with a GE 1.5T scanner with
a voxel size of 2 mm3, dimensions 128x128x72, seven T2-weighted volumes, and 64
gradient encoding directions with b-value 1,000 s/mm2. Three repeated acquisitions
of a single subject were concatenated to produce a high signal-to-noise volume. The
repeated scans (high SNR) and a single acquisition (low SNR) were each processed
with FSL to correct for motion, extract the brain, and fit single and multi-fiber
models with Xfibres [4].

3.2 Design

The first experiment tested the effect of filtering on streamline tractography of the
superior longitudinal fasciculus I [9], as shown in Fig. 2. We compared bundles with
the Dice coefficient, fiber count, and volume, taking the high SNR acquisition as a
reference and applying filtering to the low SNR scan. The second experiment tested
the response to noise by randomly perturbing fiber orientations in the phantom and
real data, as shown in Fig. 3. We measured error by the volume-fraction weighted
minimum angular difference in degrees between models across all one-to-one
pairings (the same metric used in [6]) and estimated the error rates by a Monte Carlo
simulation with 1,000 noise iterations with hp D 3:0 and hm D 0:75. We tested for
a reduction in error by a one-sided paired t-test at each voxel, where samples were
paired by noise iteration. We measured the per-voxel effect size by a paired Cohen’s
d-score. In both experiments, we compared linear and bilateral filtering.
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Fig. 2 Filtering effects on tractography of the left superior longitudinal fasciculus I, which runs
anterior-posterior through dorsal frontal and parietal white matter. The high SNR (3x64 dir) taken
as a reference, the low SNR scan (64 dir) was taken as a test case, and linear and bilateral filtering
were applied to the test case. Using TrackVis, two spherical regions were manually chosen to
delineate the bundle consistently across cases, and agreement of bundles with the reference was
computed with the Dice coefficient, fiber count, and volume. We found bilateral filtering to be most
similar to the reference, while linear filtering inflated both volume and count

3.3 Results

In the first experiment, we found bilateral filtering to produce more similar bundles
to the reference than either the source or linear filtered volumes, as shown by
an increased Dice score and similar fiber counts and volumes. In the second
experiment, we found bilateral filtering to significantly reduce noise-induced error
in all voxels (d > 1:0, p < 0:05) and found linear filtering to reduce noise in
most areas, though not near some boundaries. Near these boundaries, the bilateral
error was significantly lower with a large effect size (d > 1:0, p < 0:05). We
also measured error as a function of adaptive bandwidth hm and found a nonlinear
trend that varied between high error as hm ! 0 and the linear filtering error as
hm ! 1 with a single global minimum between. On a 1.3 GHz Intel Core i5, our
implementation ran in two minutes for a full brain volume.
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Fig. 3 Filter response to synthetic noise in two phantoms and two human brain cases. Orientation
color-coded fiber models are superimposed on grayscale renderings of estimated voxel-wise error
(e) and effect size (d) of the error reduction of bilateral vs. linear filtering (described in Sect. 2).
Rows show (top to bottom): single and double fiber phantom, and coronal slices of single and
double human brain data. Columns show (left to right): original fibers, noisy fibers, linear filtering
error, bilateral filtering error, and significant improvements over linear filtering. We found both
filters to significantly reduce noise-induced error, with linear filtering having higher error near
junctions and boundaries but bilateral filtering showing reduced errors in these regions

4 Conclusion

In this paper, we presented a bilateral filter for fiber orientation data. Our exper-
iments suggest this approach is valuable for regularization and improving fiber
bundle reconstruction. Other practical applications include brain connectivity map-
ping [2], heart modeling [22], and texture analysis [1]. Open problems include
incorporation of microstructure properties, testing performance with partial volume
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effects, comparison with diffusion-weighted image smoothing techniques, and eval-
uation for clinical study. In conclusion, we found this approach to offer an efficient
way to improve fiber-based modeling in diffusion MR images, as demonstrated with
our experiments on synthetic phantom and real human brain datasets.
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Dictionary Based Super-Resolution
for Diffusion MRI

Burak Yoldemir, Mohammad Bajammal, and Rafeef Abugharbieh

Abstract Diffusion magnetic resonance imaging (dMRI) provides unique capabil-
ities for non-invasive mapping of fiber tracts in the brain. It however suffers from
relatively low spatial resolution, often leading to partial volume effects. In this paper,
we propose to use a super-resolution approach based on dictionary learning for
alleviating this problem. Unlike the majority of existing super-resolution algorithms,
our proposed solution does not entail acquiring multiple scans from the same
subject which renders it practical in clinical settings and applicable to legacy
data. Moreover, this approach can be used in conjunction with any diffusion
model. Motivated by how functional connectivity (FC) reflects the underlying
structural connectivity (SC), we quantitatively validate our results by investigating
the consistency between SC and FC before and after super-resolving the data. Based
on this scheme, we show that our method outperforms traditional interpolation
strategies and the only existing single image super-resolution method for dMRI that
is not dependent on a specific diffusion model. Qualitatively, we illustrate that fiber
tracts and track-density maps reconstructed from super-resolved dMRI data reveal
exquisite details beyond what is achievable with the original data.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) based tractography provides a
powerful non-invasive in vivo tool for localizing white matter tracts in the brain.
Accurate mapping of white matter fiber tracts is important in gaining insights into
the brain function since fiber tracts act as a substrate enabling communication
between brain regions [8]. However, accuracy of the reconstructed fiber tracts is
often hampered by the inherently low resolution of dMRI data. Currently achievable
spatial dMRI resolution is around 2 � 2 � 2mm3, while the actual neuronal
fiber diameter is on the order of 1 �m [18]. A voxel can thus comprise several
distinct fiber bundles with differing orientations, leading to partial volume averaging
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[2]. At such locations, diffusion information typically becomes ambiguous, and
tractography is often falsely terminated. Therefore, increasing the spatial resolution
in dMRI holds great promise towards more accurate delineation of fiber tracts. There
are practical limitations in increasing the resolution of the acquired data directly,
such as reduced signal-to-noise ratio (SNR) and prolonged scanning time [13].
Such limitations motivate the search for post-processing solutions for increasing
the spatial resolution, such as super-resolution techniques.

Super-resolution techniques have been previously adopted to increase the spatial
detail in dMRI. In the literature, the term super-resolution is used for two distinct
classes of methods which follow different paradigms. The first class of methods are
based on performing multiple low-resolution acquisitions, followed by the fusion
of the information in these images to generate high-resolution images. To this end,
fusing images spatially shifted at sub-voxel level [16], as well as fusing multiple
anisotropic images with high resolution only along one axis [17, 18] have been
explored. In a fairly similar spirit, combining diffusion-weighted (DW) images
acquired at two different resolutions to infer high-resolution diffusion parameters
using a Bayesian model has also been proposed [20]. The inherent drawback of
these approaches is the dependence on a specific acquisition protocol, limiting
their usability in general settings. The second class of methods do not require
multiple acquisitions, and these are typically based on examples or priors about the
correspondence between low and high resolution images. Falling in this category, an
approach to reconstruct diffusion tensors at a resolution higher than the underlying
DW images using a single dMRI acquisition has been recently proposed [7]. Even
though this method eliminates the need for multiple acquisitions, it is only geared
towards estimating diffusion tensors, and cannot be easily extended to higher order
diffusion models such as orientation distribution functions (ODFs). To the best
of our knowledge, the only previous work that tackled the problem of super-
resolving dMRI data from a single acquisition independent of the diffusion model
was by Coupé et al. [4]. Specifically, the authors showed that super-resolving
b D 0 (non-diffusion-weighted) image using a locally adaptive patch-based
strategy, and using this high-resolution b D 0 image to drive the reconstruction
of DW images outperforms upsampling of dMRI data using classical interpolation
methods. Beyond these two classes, a new perspective to gain spatial resolution in
dMRI has been proposed which is termed as super-resolution track-density imaging
(TDI) [3]. This approach is fundamentally different than the aforementioned super-
resolution methods in the sense that the aim is to generate high resolution track
density maps through counting the number of tracts present in each element of a
sub-voxel grid, rather than super-resolving the DW volumes prior to tractography.

In this paper, we employ a super-resolution approach [23] for dMRI that does
not require more than a single acquisition per subject. Importantly, we apply this
method on DW images before the diffusion modeling step, removing the limitation
of applicability to a specific model such as diffusion tensors. The technique is
based on sparse coding of DW images via dictionary learning [23]. We note that
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similar methods following the sparse coding principle have been investigated before
for natural images [6, 22], however the applicability of such an approach on DW
images and its added value remain unknown. Given a set of training images, we start
with constructing an over-complete dictionary representing the data. Another over-
complete dictionary is then constructed from the downsampled versions of these
training images. Notably, these two dictionaries are constructed such that the coding
vectors modeling downsampled and original data as sparse linear combinations
of the learned dictionary atoms are the same, hence the correspondence between
low and high resolution images are automatically captured. We then exploit this
correspondence between the two dictionaries to super-resolve a new input image
to a higher resolution. The advantage of this method is three-fold. First, the super-
resolved DW images can be used with any diffusion model as permitted by the
number of gradient directions in the original dataset. Second, this method does not
rely on repeated acquisitions from the same subject, allowing it to be used with
legacy data and under various clinical acquisition schemes. Third, this method may
still be readily applied when the imaging protocol involves multiple acquisitions, as
an additional step after reconstructing a single image from multiple low resolution
acquisitions [16–18].

We qualitatively validate our proposed approach by comparing the fiber tracts
and track-density maps reconstructed from the original and super-resolution data.
In the absence of ground truth connectivity information, in order to provide a
meaningful basis for quantitative comparison, we use the consistency between
intra-subject structural connectivity (SC) and functional connectivity (FC) estimates
inferred from dMRI and resting state functional MRI (RS-fMRI) data, respectively.
Our rationale is that FC is inherently shaped by the wiring of the brain [8, 19].
Therefore, a more accurate estimate of SC would presumably increase the SC-FC
correlation. In addition, we also examine the number of fiber tracts for more insight
into the observed differences in the SC-FC correlation values.

2 Methods

We start by presenting our assumed data acquisition model (Sect. 2.1). Given a set
of acquired DW volumes, we form a training set that includes the original volumes
and a set of corresponding downsampled volumes at double the voxel size. We then
construct two over-complete dictionaries from the original and downsampled set
of volumes (Sect. 2.2). For a previously unseen input DW volume, we obtain the
super-resolution data in two steps. First, we sparsely code the volume against the
dictionary learned from the downsampled volumes in the training set. We finally
apply the generated sparse code to the dictionary learned from the original resolution
set to obtain the super-resolution data (Sect. 2.3).
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2.1 Acquisition Model

Let vL be an acquired volume and vH be the corresponding unobserved higher
resolution volume. We assume that the relationship between these two volumes is
modeled by [23]:

vL D S B vH C n (1)

where S is a downsampling operator, B is a blurring operator and n is additive
white Gaussian noise. We aim to invert this acquisition model to approximate
the unobserved higher resolution volume through super-resolution. The maximum-
likelihood solution to this problem involves the minimization of jjS B OvH � vLjj2,
where OvH is the estimated high resolution volume. However, the inversion of S B is
ill-posed [23], hence infinitely many maximum-likelihood solutions exist. We thus
cast the problem in a dictionary learning framework instead, as explained in the
following sections.

2.2 Dictionary Construction

We model each 3D patch in dMRI volumes as a sparse linear combination of atoms
from a learned dictionary D. In the proposed approach, we use two dictionaries to
capture the correspondence between low and high resolution dMRI volumes. These
two dictionaries are learned from the original training dataset and its downsampled
version, respectively.

Let vO be the set of original training volumes concatenated across scans and
vD be the corresponding set of downsampled volumes. We extract all overlapping
patches in these two sets of volumes, denoted by pO and pD , respectively. Using pO
and pD , we construct two over-complete dictionaries as follows:

min
DO;DD;y

X
kpD � DDyk22 C

X
kpO � DOyk22 C  .y/ (2)

where y D fy.i;j;k/g is the set of sparse coding vectors for each image location
.i; j; k/, and DD and DO are the generated over-complete dictionaries of the
downsampled and original volumes, respectively [23].  .y/ is a regularization term
which we set to be  .y/ D jjyjj1, inducing sparsity on the generated coding vector
[21]. We note that the same set of coding vectors y is used for both dictionaries. In
other words, the learned atoms of the two dictionaries represent matched pairs. We
set the number of atoms in each dictionary to 1,000 and the patch size to 3 � 3 � 3
voxels, which were empirically chosen to strike a balance between representation
accuracy and overfitting.
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2.3 Super-Resolved Volume Generation

Let pI be the set of low resolution overlapping patches obtained from a previously
unseen input volume that we wish to super-resolve. We code pI with respect to
DD as:

min
yI

jjpI � DDyI jj22 C  .yI / (3)

where yI is the set of coding vectors for pI , with  .yI / again being the l1 norm of
yI , enforcing sparsity on the coefficients. Once the input volume is sparsely coded
using DD , we generate a new set of super-resolved patches, pS , by applying the
sparse coding vector yI to DO previously constructed from the training data:

pS D DOyI : (4)

We note that this process results in a patch being generated for each voxel. We
then reconstruct the super-resolved volume by averaging neighboring overlapping
patches.

We used K-singular value decomposition (K-SVD) [1] to construct the dic-
tionaries and orthogonal matching pursuit [15] to sparsely code the 3D patches.
Theoretically, pO , pD and pI can be extracted at once from the volumes of all
gradient directions in the DW images. However, we opt to apply super-resolution for
each gradient direction separately. This helps circumvent computational limitations
that might arise, especially with the increasingly large number of gradient directions
acquired in practice.

3 Materials

We validated our method on the publicly available multimodal Kirby 21 dataset.1

Along with other imaging modalities, this dataset comprises dMRI and RS-fMRI
scans of 21 subjects with no history of neurological disease (11 men, 10 women,
32˙9.4 years old). We summarize the key acquisition parameters in Sects. 3.1
and 3.2. Further details on data acquisition can be found in [10]. In our experiments,
we used 10 subjects for dictionary training, and 10 other subjects for testing.

1This dataset is available online at: http://www.nitrc.org/projects/multimodal.

http://www.nitrc.org/projects/multimodal
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3.1 RS-fMRI Data

The RS-fMRI data of 7 min duration were collected with a TR of 2 s and a voxel size
of 3 mm (isotropic). The data were preprocessed using in-house software written in
MATLAB, and the steps followed included motion correction, bandpass filtering at
0.01 and 0.1 Hz, and removal of white matter and cerebrospinal fluid confounds. We
divided the brain into 150 parcels by applying Ward clustering [12] on the voxel time
courses, which were temporally concatenated across subjects. Parcel time courses
were then found by averaging the voxel time courses within each parcel.

3.2 dMRI Data

The dMRI data had 32 diffusion-weighted images with a b-value of 700 s/mm2 in
addition to a single b D 0 image, with a voxel size of 0:83� 0:83� 2:2mm3. Since
anisotropic voxels were previously shown to be suboptimal for fiber tractography
[14], we resampled each volume to 2 mm isotropic resolution prior to any analysis.
We also applied a Rician-adapted denoising filter [11] to eliminate nonstationary
noise commonly observed in DW images, since our acquisition model described in
Sect. 2.1 assumes Gaussian noise. We then warped our functionally derived group
parcellation map to the b D 0 volume of each subject using FSL [9] to facilitate the
computation of fiber count.

4 Results and Discussion

We first present a qualitative comparison between the fiber tracts reconstructed from
the original (2 mm isotropic) and super-resolved (1 mm isotropic) dMRI data. For
ease of interpretation, we chose to employ deterministic streamline tractography
with the diffusion tensor model, which is by far the most popular tractography
approach to date. However, we highlight that our super-resolution approach can
be used with any diffusion model and any tractography method. Tractography was
carried out using Dipy [5], with 750,000 seed points for both the original and super-
resolution data. We generated the track-density maps by calculating the total number
of fiber tracts present in each voxel. Figure 1a,c and b,d show sample track-density
maps with the original and super-resolved dMRI data, respectively. As observed
from these figures, the track-density maps generated from the super-resolution data
clearly convey more spatial information. Figure 1e,f and g,h show the corticospinal
tracts extracted using a region of interest (ROI) placed on the brain stem for two
representative subjects. It can be observed that fiber tracts reconstructed from the
super-resolution data can capture the fan-shape configuration of the corticospinal
track more fully.
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a b

c d

e f
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Fig. 1 Qualitative comparison between the track-density maps and fiber tracts reconstructed from
the original (left) and super-resolved (right) dMRI data. Original dataset has 2 mm isotropic
resolution which is super-resolved to 1 mm isotropic resolution. Each row corresponds to a
different test subject. Track-density maps of super-resolved data ((b) and (d)) show markedly
improved spatial detail compared to those of original data ((a) and (c)). Corticospinal tracts
reconstructed from super-resolved data ((f) and (h)) can capture the fan-shape configuration more
accurately than those generated from original data ((e) and (g))
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To quantify the improvement in tractography with the suggested approach,
we analyzed the consistency between measures of intra-subject SC and FC. We
estimated SC using the fiber counts between brain region pairs, and FC using
Pearson’s correlation between parcel time courses. For each subject, SC and FC
are vectors of size d.d � 1/=2 � 1 comprising the corresponding connectivity
estimates between each region pair, where d is the number of brain regions. We then
calculated Pearson’s correlation between intra-subject SC and FC to quantify the
consistency between the two connectivity estimates. Using this correlation measure,
we compared the proposed super-resolution approach with trilinear and spline
interpolation in addition to an alternative super-resolution method; collaborative
and locally adaptive super-resolution (CLASR) [4]. To the best of our knowledge,
CLASR is the only existing single image super-resolution method for dMRI which
is independent of the diffusion model employed. Figure 2 shows the SC-FC
correlation for each subject tested. Taking the average SC-FC correlation across the
group when using the original data as a baseline, the improvement was 5:7% with
spline interpolation, 13:6% with CLASR, and 27:1% with our proposed method.
On the other hand, there was a 6:3% decrease in the correlation when trilinear
interpolation was used. The difference in the performance of our method and every
other method tested was found to be statistically significant at p < 0:01 based
on the Wilcoxon signed-rank test, showing its potential for enhanced structural
connectivity assessment. Our results thus suggest that low spatial resolution of
dMRI data can partially account for the low SC-FC correlation, and statistically
significant improvements can be achieved using super-resolved dMRI data.

To investigate why trilinear interpolation resulted in a lower SC-FC correlation
compared to the original data, we calculated the number of tracts reconstructed
with each method. The local intra-parcel connections were excluded since they
have no effect on SC-FC correlation. Figure 3 shows the number of inter-parcel
tracts averaged across the group along with the corresponding standard deviations.
As observed from this figure, performing tractography on volumes upsampled
with trilinear interpolation resulted in a lower number of tracts compared to the
original volumes, even though the same number of seed points were used to initiate
tracking for all of the methods we compared. We speculate that the reason of this
phenomenon is the additional partial volume effects introduced by the blurring
of the data during trilinear interpolation, which hamper the tractography quality.
Spline interpolation, however, is known to cause less blurring compared to trilinear
interpolation, and our results suggest that upsampling dMRI data using spline
interpolation can be beneficial for tractography. The overall trend of inter-parcel
track counts closely resembles to that of the SC-FC correlation, with our proposed
method outperforming all other methods tested. This shows that dictionary based
super-resolution is a viable post-processing solution for dMRI that can help in
mapping the white matter brain architecture more accurately.
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Fig. 2 SC-FC correlation for 10 subjects with SC estimated from the data at its original resolution
(2 mm isotropic), and high-resolution data (1 mm isotropic) obtained using trilinear interpolation,
spline interpolation, CLASR and the proposed method. Our method outperforms all other methods
tested for eight of the subjects, and performs comparable to CLASR for two subjects (subjects 4
and 10)

Fig. 3 Number of inter-parcel tracts reconstructed from the data at its original resolution (2 mm
isotropic), and high-resolution data (1 mm isotropic) obtained using trilinear interpolation, spline
interpolation, CLASR and the proposed method. Intra-parcel tracts are not included here since they
do not contribute to SC-FC correlation. We emphasize that tractography is initiated with the same
number of seeds (750,000) for each method
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5 Conclusions and Future Work

Low spatial resolution is a known limitation of dMRI, which often hinders the
performance of tractography significantly. We proposed the use of a simple yet very
effective super-resolution technique in dMRI to capture a more accurate portrayal
of the white matter architecture. This approach does not require multiple dMRI
acquisitions and is applicable to legacy data. Quantitatively, we demonstrated that
SC-FC consistency can be markedly increased with the use of our approach in
estimating SC. We also qualitatively illustrated that the gain in spatial resolution
remarkably improves the fiber tracts and track-density maps generated. Taken
collectively, our results suggest that dictionary based super-resolution holds great
promise in enhancing the spatial resolution in dMRI, without requiring additional
scans or any modifications of the acquisition protocol.

It is important to acknowledge that the performance of the proposed method
inherently depends on the training dataset, as in any machine learning method that
involves training or prior information. The age span of the subjects we used in our
experiments was 23–61, showing that the method can generalize to a large range of
ages. However, how well abnormalities such as tumor and edema can be modeled
with dictionary learning is currently unclear and warrants further research.
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