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Abstract. This paper introduces Financial Self–Organizing Maps (Fin-
SOM) as a SOM sub–class where the mapping of inputs on the neural
space takes place using functions with economic soundness, that makes
them particularly well–suited to analyze financial data. The visualiza-
tion capabilities as well as the explicative power of both the standard
SOM and the FinSOM variants is tested on data from the German Stock
Exchange. The results suggest that, dealing with financial data, the Fin-
SOM seem to offer superior representation capabilities of the observed
phenomena.
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1 Introduction

The 2008 great crisis dramatically highlighted the poor forecasting performance
of existing Earling Warning Systems (EWS) i.e. those automatic systems that
looking at proper combinations of macroeconomic variables would have alerted
both policy makers and investors, hence stemming most dramatic aspects of the
flooding financial wave. From the perspective of automatic systems design, this
experience suggested the importance to develop new systems that are able to
offer more readable and intuitive results, to facilitate the task of monitoring
and regulating the overall level of risk. This rationale has recently inspired the
development of EWS based on the paradigm of Kohonen maps [5]: an EWS based
on Self–Organizing Maps (SOM) was suggested in [8] to measure the economic
vulnerability of countries, and to estimate the probability of future crises; [13]
and [14] discussed a fuzzified version of SOM, particularly well suited to apply
on macroeconomic variables and to pickup alerting signal for upcoming financial
shocks; [9] and later [10] analyzed a hybrid structure joining SOM to graphs in
order to enhance clusters visualization capabilites of Kohonen maps, and used
it to analyze the topological structure of various financial markets. A common
aspect of the cited works is that in substance they leave unchanged the backbone
of the original Kohonen’s algorithm. However, a not negligible issue concerns the
way SOM perform the mapping task. Obviously, depending on the metric in use,
results can consistently vary: [6], for instance, discovered that hyperbolic space
is ideally suited to embed large hierarchical structures, as later proved by the
Hyperbolic Self-Organizing Map [12]. Moreover [1] show that in high dimensional
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space, the concept of proximity, distance or nearest neighbor may not even be
qualitatively meaningful.

The main point, however, is that despite of the importance of information
retrieval from financial markets, there is a lack of metrics specifically thought to
manage financial data.

Moving from this point, in this paper we discuss an alternative approach,
replacing the similarity measure which represents the core of the SOM algorithm
by way of alternative functions with greater financial soundness, thus originating
Financial Self Organizing Maps (FinSOM). FinSOM would allow to make the
SOM algorithm most suitable to analyze financial data and to capture relevant
information. In our view rather than a single algorithmic procedure FinSOM
must be intended as a family of different SOM, whose members are characterized
depending on the function used to manage the similarity between inputs and
neurons in the topological grid. In this respect, we hereafter discuss two SOM
variants obtained incorporating into the learning procedure, respectively, Value
at Risk (VaR–SOM), and Linear Granger Causality (LGC–SOM). The structure
of the paper is therefore as follows. Section 2 is divided into two subsections, to
provide the reader with basic understanding of the proposed algorithms. Section
3 discusses an application on financial data, while Section 4 concludes.

2 The FinSOM Framework

As widely known, Self Organizing Maps [5] (SOM) assume to order a set of
neurons, often (but not exclusively) arranged either in a mono–dimensional or
in a 2–D rectangular/hexagonal grid, to form a discrete topological mapping of
an input space X ⊂ R

n.
Assuming for sake of simplicity a map made by M nodes, if we denote by

wi ∈ R
n (i = 1, . . . ,M) the weight vector associated to neuron ri, the algorithm

works as shown in the Box 1.

Algorithm 1. The basic SOM algorithm explained.

Assume T as the size of input space X.
Set M as the map size.
At t = 0 initialize the weights at random.
for 1 ≤ t ≤ T do

(i) Present an input x(t) ∈ X
(ii) Select the winner: ν(t) = argmin

i
||x(t)−wi(t)||

(iii) Update the weights of the winner and its neighbors: Δwi(t) =
h(t)η(ν, i, t) (x(t)−wν) .

end for

Here || · || denotes a distance (usually the Euclidean distance or, more gener-
ally, a function in the family of either Minkowsky or Riemann norms), while
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η(ν, i, t) = exp
(
− ||rν−ri||2

2s2

)
is the neighborhood function among the leader

node rν and all the grid neurons ri (i = 1, . . . ,M), s is the effective range of
the neighborhood; finally h(t) is the so called learning rate, that is a scalar–
valued function, decreasing monotonically, and satisfying: (i)0 < h(t) < 1;
(ii)lim

t→0
h(t) → +∞;(iii) lim

t→∞h(t) → 0 [5,11].

Next paragraphs are devoted to provide insights on how to modify the stan-
dard SOM backbone, thus making it more suitable to deal with financial and
economic data.

2.1 The Value at Risk SOM

The Value at Risk SOM (VaR–SOM) is a SOM based on the key concept of
Value at Risk.

In a quite informal way, assuming the level of confidence α, V aR1−α is a
smallest value such that probability that loss exceeds or equals to this value is
bigger than or equals to α:

V aR1−α = −xα (1)

where xα is the left–tail α percentile of a normal distribution: N(μ, σ2) with
mean μ and variance σ2; xα is described in the expression: P [R < xα] = α,
where R is the expected return. Using a standard normal distribution enables
to replace xα by zα through the following permutation: zα = (xα − μ)/σ, which
yields: xα = μ+ zα · σ, being zα the left-tail α percentile of a standard normal
distribution. Consequently, it is possible to re-write (1) as:

V aR1−α = −(μ+ zα · σ) (2)

In order for VaR to be meaningful, the confidence level is generally set equal
to 95% or 99%: the higher the confidence level, the higher the VaR, as it travels
downwards along the tail of the distribution (further left on the x-axis).

Incorporating VaR into the SOM algorithm means to pair any input to a
node in the map having similar behavior in the left hand side of the sampled
distribution; in the case of financial data this means to match patterns sharing
similar losses profile.

In Box 2 some pseudo–code is provided, explaining how the Kohonen’s algo-
rithm is modified to take the VaR information into account. Note that V aR1−α

(z(t)) and V ar1−α(wi(t)), (i = 1, . . . ,M) indicate the Value at Risk associated
to the normalized input z(t) and the normalized map nodes, respectively at
the level (1− α)%. As VaR is generally negative (it represents a loss!), here we
considered its absolute value.

2.2 The Linear Granger Causality SOM

The Linear Granger Causality [3] (LGC) is a statistical measure of causality
based on forecast power. Given two stationary time–series A and B, (for sim-
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Algorithm 2. The VaR–SOM algorithm.

Assume T as the size of input space X.
Set M as the map size.
Set the confidence level α.
At t = 0 initialize the weights at random.
for 1 ≤ t ≤ T do

(i) Convert the input x(t) ∈ X into z(t)
(ii) Select the winner: ν(t) = argmin

i
| |V aR1−α(z(t))| − |V aR1−α(wi(t))| |

(iii) Update the weights of the winner and its neighbors: Δwi(t) =
h(t)η(ν, i, t) (z(t)−wν) .

end for

plicity assume that they have zero mean), we can represent their linear inter-
relationships with the following model:

At =

p∑
j=1

ajAt−j +

q∑
j=1

bjBt−j + εt

Bt =

p∑
j=1

cjBt−j +

q∑
j=1

djAt−j + θt

(3)

where εt and θt are two uncorrelated white noise processes; p, q are the maximum
lags considered; aj , bj , cj and dj are the real valued model coefficients. The
definition of causality implies that B causes A when bj is different from zero;
likewise, A causes B when dj is different from zero. The causality is based on
the F–test [7] of the null hypothesis that coefficients bj or dj are equal to zero
according to the direction of the Granger causality.

Incorporating Granger causality into the SOM algorithm, means testing
whether some causality is present or not among the input patterns and the
map nodes. Under the F–test the following situations can therefore occur: (i)
the causality is not significant; (ii) the causality is significant towards one di-
rection (either from X to M or from M to X); (iii) the causality is significant
towards both direction. Clearly, the most desiderable situations are either (ii),
in the direction from M to X , or (iii). In both cases, in fact, the nodes behavior
should increase the prediction (and hence the knowledge) of input patterns.

Box 3 shows how to build a SOM incorporating such information.
Note that selecting the winner implies now to choose either the node for

which the causality is highest, if the F–score is significant, or the neuron whose
non–causality is lowest, if the null hypothesis cannot be rejected. Clearly the
results are conditioned by the choice of the lags amplitude p and q. A way to
stem this issue is to run a bunch of LGC–SOM varying the couple {p, q}, and
hence selecting the map that assures the best performance under the Akaike
Information Criterion [2].



Financial Self-Organizing Maps 785

Algorithm 3. The LGC–SOM algorithm.

Assume T as the size of input space X.
Set M as the map size.
Set p, q as the lag amplitudes.
At t = 0 initialize the weights at random with zero mean.
for 1 ≤ t ≤ T do

Present an input x(t) ∈ X
for 1 ≤ i ≤ M do

(i) x(t) → At

(ii) wi(t) → Bt

(iii) Apply (3)
(iv) Run the F–test → Fi

end for
Select the winner: ν(t) as the node having the best F test score Fν .
Update the weights of the winner and its neighbors: Δwi(t) =
h(t)η(ν, i, t) (x(t)−wν) .

end for

3 Case study

The FinSOM class has been tested on a data sample made up by daily quotations
of 207 German companies, in the period: October 2012-December 2013. for an
overall number of 301 observations for each stock. The resulting 207× 301 input
matrix of price levels �(t) at time t has been then turned in the correspondent
207 × 300 matrix of log-returns X , where the log-return at time t for the i–th
stock is given by:

lri(t) = log �(t)− log �(t− 1), t = 2, . . . 301 (4)

We then launched both SOM and FinSOM procedures: in order to choose
optimal map dimensions we run extensive simulations, and motivated by the
robustness of the results, we are now going to discuss the results obtained by
way of equally sized maps composed by 96 neurons, arranged into a 8× 12 grid.
VaR computations have been made at both 95% and 99% levels of confidence,
while LGC–SOM assumed: p = 5 = q, as to say, we assumed that causality can
affect log–returns on a five days basis. This magic number corresponds to the
value of the fractal dimension estimated on data by way of the False Nearest
Neighbor (FNN) method [4]. The final maps are shown in Figure 1.

Clearly there is no room enough for a deeper investigation of the results,
however, from a visual perspective, it is possible to observe that the number of
maps clusters is quite different: six in the case of SOM, nine for VaR–SOM with
α = 99%, and five for both VaR–SOM with α = 95% and LGC–SOM.

Furthermore, it should be noted that in the case of standard SOM the nodes
coloring has been made uniquely by referring to the unified distance matrix
(UMatrix), while VaR–SOM nodes were colored by considering also the losses
profile associated to each neuron. Finally, color shades in the LGC–SOM take
also the causality significance of each node into account.
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(a) (b)

(c) (d)

Fig. 1. From left to right and from top to bottom: SOM (a), VaR–SOM with α = 99%
(b), VaR–SOM with α = 95% (c), and LGC–SOM (d), trained on data in the range
October 2012–December 2013

The groups highlighted in the standard SOM (Fig.1a), are strongly connoted
by sectors: C1 mainly embodies Banking and Finance stocks, C2 groups Heavy
Industry companies, C3 contains High–Tech firms, while Health–Care and En-
ergy Commodities are equally shared between C4 and C5.

In the case of VaR–SOM, nodes (and hence firms) with similar probability of
losses exposition are highlighted. In particular, when α = 99% (Fig.1b), lowest
VaR is associated to clusters C1 to C4, where we can find stocks of companies
that operating mainly at international rather than at national level have had
greater opportunities to hedge from local crisis effect. On the other hand, the
clusters C7 to C9 gather stocks/companies more sensitive to possible defaults
and characterized by highest volatility levels, as well as by higher VaR values.
Clusters C5 and C6, are of dubious interpretation, and refers to borderline sit-
uations with respect to those highlighted for both the groups C1 to C4, and C7
to C9. For what is concerning the VaR–SOM with α = 95% (Fig.1c), the lower
number of clusters probably depends on the variation in the confidence level.
Now clusters C1 and C2 enclose German firms mainly projected at the inter-
national level and with lower VaR values, cluster C3 and C4 contain German
stocks with middle–high levels of exposure, while C5 groups stocks with highest
loss probability.

Moving to LGC–SOM, the visual inspection of the map needs to be coupled
to the analysis of the regression coefficients that the procedure associates to
every pair (node, stock), and a fortiori to the values of the related F–statistics.
In this case, the analysis reveals that in three clusters of five (C1, C2 and C3)
the nodes exhibit Linear Granger Causality (LGC) towards the input space;
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in the remaining clusters the LGC assumption has been either weakly (C4) or
hardly (C5) rejected. From an economical perspective, the former information is
quite important, because it can be read in a forecasting key, that is the patterns
associated to the map nodes can be helpful to forecast the behaviour of related
stocks in the input space. However, it is difficult to get an interpretation key for
the results corresponding to nodes in clusters C4 and C5.

4 Conclusion

In this work we discussed an enhancement of Self Organizing Maps (SOM),
thought to improve the capability of the original algorithm to exploit meaningful
patterns from financial data. The main issue, in fact, is that similarity measures
do not take enough into account the intrinsic complexity of this kind of data.

According to this rationale, we introduced Financial SOM (FinSOM) as a
family of SOM whose members modify the original SOM algorithm by evaluating
the similarity (and hence the proximity) among inputs and neurons by way of
functions with more economic soundness. In particular, we introduced a risk–
oriented SOM based on Value at Risk (VaR–SOM), and a SOM based on Linear
Granger Causality (LGC–SOM).

Financial SOM have been compared to standard SOM in an application on
stocks data from the German market, observed in the period: October 2012-
December 2013. By comparison to the classical SOM, FinSOM seem to provide
more meaningful economic taxonomies. This seems particularly true in the case
of VaR–SOM, that offer a quite intuitive intepretation of the generated clusters.

Clearly the results are sensitive to the parameters in use, and this can be a
not negligible issue. Despite our general impression that FinSOM can be effective
tools to inspect financial data, and to exploit significant patterns, future research
must be oriented in search of further improvements of the technique. Towards
this direction we think there is great room for improvements, due to the wide
basin from which functions to replace standard metrics can be drawn.
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