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Abstract. Brain functions such as learning and memory rely on synap-
tic plasticity. Many studies have shown that synaptic plasticity can be
driven by the timings between pre- and postsynaptic spikes, also known
as spike-timing-dependent plasticity (STDP). In most of the modeling
studies exploring STDP functions, presynaptic spikes have been postu-
lated to be Poisson (random) spikes and postsynaptic neurons have been
described using an integrate-and-fire model, for simplicity. However, ex-
perimental data suggest this is not necessarily true. In this study, we
investigated how STDP worked in synaptic competition if more neuro-
physiologically realistic properties for pre- and postsynaptic dynamics
were incorporated; presynaptic (input) spikes obeyed a gamma process
and the postsynaptic neuron was a multi-timescale adaptive threshold
model. Our results showed that STDP strengthened specific combina-
tions of pre- and postsynaptic properties; regular spiking neurons favored
regular input spikes whereas random spiking neurons did random ones,
suggesting neural information coding utilizes both the properties.

Keywords: Synaptic plasticity, synaptic competition, interspike
intervals, adaptive spike threshold.

1 Introduction

Synaptic plasticity is a physical change in synapses that embeds learning and
memories in neural circuits. A significant neural activity encoding such a cogni-
tive function is transformed into a configuration of synaptic strengths, suggest-
ing that the activity patterns strengthening synapses should be the method by
which neural information is coded. Many experimental studies have reported that
synapses undergo changes depending on the relative timings between pre- and
postsynaptic spikes, which is called spike-timing-dependent plasticity (STDP)
[1, 2]. To understand the functional roles of STDP, many computational models
have been proposed thus far [3, 4]. According to those studies, STDP regulates
the firing rate of postsynaptic neurons, bringing about competition between
synapses, and detecting coherent neural activities. Most of those studies, how-
ever, have hypothesised that input spikes mediated by STDP synapses were Pois-
son (random) spikes and that the spike generation mechanism is well described
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by the simple leaky integrate-and-fire (LIF) model. However, experimental and
theoretical studies have shown that these hypotheses do not necessarily explain
the mechanism [5–8]. Considering the significance of pre- and postsynaptic spike
timings in STDP, an important issue is to investigate its functional roles in the
case of more realistic temporal structures of synaptic inputs and spike generation
mechanisms.

To address this issue, we incorporated more neurophysiologically realistic fea-
tures into a computational model for synaptic competition by STDP [3]. In our
model, interspike intervals (ISIs) of presynaptic spikes obey gamma distributions
with various values of shape parameter. This implementation enables us to gen-
erate a wide spectrum of spike trains, from Poisson to periodic by changing the
shape parameter. In addition, we adapted a multi-timescale adaptive threshold
(MAT) model, not merely an LIF model, as the postsynaptic neuron because
the MAT model is capable of mimicking the spiking activity of a real cortical
neuron much more precisely than any other neuron model [9]. We investigated
how the interplay between the pre- and postsynaptic features affects synaptic
competition through STDP and what the most effective combination of these
features to strengthen synapses is, which could act as the method of encoding
for various cognitive functions.

2 Methods

In our model, a single postsynaptic neuron received synaptic inputs from 1,000
excitatory synapses and 200 inhibitory ones. We here focused on synaptic com-
petition among only excitatory synapses and therefore fixed strengths (conduc-
tances) of the inhibitory synapses and the firing rate of inhibitory inputs.

2.1 Postsynaptic Neuron Model

The dynamics of the postsynaptic neuron was modeled by the MAT model [9]
that was proven to most precisely reproduce the spiking activity of a cortical
neuron. The membrane potential V of the MAT model obeyed the following
linear differential equation:

τm
dV

dt
= −(V − Erest) + Isyn, (1)

where τm and Erest are the membrane time constant and the resting membrane
potential, respectively. Isyn is the sum of synaptic currents mentioned below.
When the membrane potential V reached the time-varying threshold θ(t), the
neuron is supposed to emit a neuronal spike without the resetting used in an
LIF model. The time course of θ(t) was described by

θ(t) = θ∞ +
∑

tspki <t

(
α1e

−(t−tspki )/τ1 + α2e
−(t−tspki )/τ2

)
, (2)
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where θ∞, αn and τn (τ1 < τ2) are the constant component, amplitudes of
time-varying components, and the time constant, respectively. Each time-varying
component of θ(t) increased instantaneously at every spike timing tspki by αn and
then exponentially decayed. As the MAT neuron evoked spikes faster than the
time-varying components decayed, the adaptive spike threshold was gradually
increased and then its neuronal spiking slowed down. In particular, the time-
varying component with the time constant of 100 to 200 ms was responsible for
this spike frequency adaptation seen in a ‘regular-spiking’ neuron, the majority
of excitatory cortical neurons.

2.2 Synaptic Currents

The synaptic inputs consisted of both excitatory and inhibitory inputs

Isyn =

1000∑

j=1

gexj (Eex − V ) +

200∑

k=1

gink (Ein − V ), (3)

where gexj , gink , Eex and Ein are the conductance of the j-th excitatory synapse,
the conductance of the k-th inhibitory synapse, the reversal potential of ex-
citatory synapses, and reversal potential of inhibitory synapses, respectively.
Changes in gexj and gink obeyed the simple first-order kinetics; they instanta-
neously increased at a presynaptic spike timing and then decayed exponentially.
The peak conductance of gexj engaged in the spike-timing-dependent plasticity
defined by pre- and postsynaptic spike pairs and the additive rule [3].

2.3 Presynaptic Spike Trains

The (i + 1)-th spike timing ti+1 is generated by adding an ISI, Ti, to the pre-
vious timing ti, namely, ti+1 = ti + Ti. The ISI Ti was drawn from the gamma
distribution

Ti ∼ p(t; k, λ) =
λktk−1e−λt

Γ (k)
, (4)

where k, λ and Γ (k) are a shape parameter, a rate parameter, and a gamma
function, respectively. The mean of ISIs, T̄ , is T̄ = k

λ . The shape parameter k
defines the shape of the distribution. If k = 1, the p(t; 1, λ) is equivalent to the
exponential distribution with a rate parameter λ. For a larger k, the distribution
takes a symmetric shape, like a normal distribution, and consequently such a
spike train exhibits nearly periodic firing. A spike train was generated by the ISI
distribution independently of other spike trains.

2.4 Numerical Simulations

In order to examine how synaptic competition is affected by the interplay be-
tween the features of input spikes and postsynaptic dynamics, we compared
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different combinations of the pre- and postsynaptic features. Typically, the in-
put spikes were generated by the gamma distribution with k = 1 or with k = 2
whereas the LIF or the MAT model were implemented as the postsynaptic neu-
ron. In the last investigation, 1,000 excitatory synapses were divided into 10 sub-
groups (100 synapses per a subgroup). Synapses in a subgroup delivered spike
trains generated by the gamma distribution with an identical shape parameter;
the parameter for the i-th group was set to k = i.

The parameters of the MAT model were: τm = 20ms, θ∞ = −58mV, τ1 =
20ms, τ2 = 200ms, α1 = 20mV, and α2 = 3mV. The other parameters were the
same as those in a previous study [3].

3 Results

For various input firing rates, we conducted numerical simulations using our com-
putational model until the distribution of synaptic strengths reached a stationary
state. We here focused on this stationary distribution of synaptic strengths and
the firing characteristics of the postsynaptic neuron in the stationary state.

3.1 Dependence on Postsynaptic Dynamics

First, we examined the synaptic competition mediated by the MAT model. Fig-
ure 1 shows the stationary distributions of synaptic strengths for various input
firing rates and the spike statistics of the postsynaptic neuron in the station-
ary state. As shown in Fig. 1a–d, all the distributions exhibited bimodal shapes
in which there existed a population of strengthened synapses (around 1) and
that of weakened synapses (around 0). As the input firing rate was increased,
the population of strengthened synapses became smaller, whereas that of the
weakened ones became larger. Fig. 1e indicates that the postsynaptic firing rate
was smaller than the case of an LIF model (10–15Hz) and that coefficients of
variation (Cv) of postsynaptic ISIs were also much smaller than the previous
ones (∼ 0.9) [3]. The obtained spike statistics looked different from those of an
LIF model, which can be attributed to the spike generation mechanism of the
MAT model. However, we found that synapses competed with each other in a
manner similar to that found in a previous study [3].

3.2 Dependence on Temporal Structures of Input Spike Trains

Next, to see how synaptic competition was affected by spike trains obeying
a gamma process, such spike trains were fed into the LIF and MAT neuron
models. Spike trains were generated by the gamma distribution with k = 2. The
rate parameter was adjusted so that the means of ISIs were kept to the inverse
of a preset input firing rate. Moreover, in this case, stationary distributions of
synaptic strengths exhibited bimodal shapes similar to Fig. 1a–d (not shown). As
shown in Fig. 2a and b, the firing rates of both models saturated with an increase
in the input firing rate. The Cv of the LIF neuron decreased in comparison with
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Fig. 1. Synaptic competition and activity regulation when the MAT model received
Poisson spike trains (k = 1). a. Stationary distributions of synaptic strengths for the
input firing rate of 10 spikes/s. The abscissa axis indicates the normalised synaptic
conductance. b, c, and d are similar to a, but for 20 spikes/s, 30 spikes/s and 40
spikes/s, respectively. e. Dependencies of postsynaptic firing rates and coefficients of
variation (Cv) on input firing rates.
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Fig. 2. Activity regulation for input spike trains obeying the gamma process. a. De-
pendencies of the postsynaptic firing rates and Cv on the input firing rates when the
LIF model received spike trains generated by the gamma distribution with k = 2. b.
Similar to a, but in the case that the postsynaptic neuron is the MAT model.
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Fig. 3. Synaptic competition between synapses delivering spike trains with different
ISI distributions. The abscissa axis represents a subgroup index, which corresponds
to a value of the shape parameter for the subgroup. The ordinate axis indicates an
averaged strength of synapses within a subgroup. The symbols and the error bars are
the means and standard deviations of the averaged strengths for 10 trials. The cases
of different input firing rates were examined, but the input firing rate was identical to
all the synapses in a trial. a. and b. illustrate the case for an LIF model and for the
MAT model, respectively.

that in the case of Poisson spike trains (∼ 0.9) [3]. Similarly, the Cv of the
MAT model became smaller than that shown in Fig. 1e. Irrespective of neuron
models, spike trains could alter the spike statistics of the postsynaptic neuron,
but not its synaptic competition.

3.3 Extracted Combinations of Pre- and Postsynaptic Features

Finally, we investigated whether each of the neuron models showed a preferred
or favourite type of spike trains. In this simulation, the postsynaptic neuron
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(LIF or MAT) received different types of spike trains from different subgroups
of synapses; synapses in the i-th subgroup fed spikes generated by the gamma
distribution with k = i into the postsynaptic neuron. Figure 3 shows the synaptic
strengths averaged over synapses in each subgroup for various input firing rates.
For the LIF model (Fig. 3a), synapse strength in all the subgroups changed
equally when the input firing rate was 10 Hz. In the case of higher input firing
rates (20–40Hz), however, subgroups with the larger ks tended to be depressed,
compared with the subgroup of k = 1. In contrast, the tendency was quite
different for the MAT model (Fig. 3b). For the lower input firing rates (10 and
20Hz), synapses in subgroups with larger ks were strengthened. However, for
the larger input firing rate (40Hz), those subgroups were more depressed. Thus,
we found that the favoured spike trains depended on the neuron models and
the input firing rates.

4 Discussion

Most of previous computational studies have assumed that spikes were randomly
generated so that ISIs obeyed an exponential distribution. However, ISI distri-
butions of experimentally recorded spike trains exhibit asymmetric unimodal
shapes like Gamma distributions rather than exponential distributions. As for a
computational neuron model, although an LIF model has been frequently used
for simplicity, the model does not reproduce spiking activity of a real cortical
neuron, for example, a regular spiking neuron that show spike frequency adap-
tation. These properties would have a considerable impact on many aspects
of neuronal dynamics including activity-dependent neural network formation.
Therefore, we studied synaptic competition brought about by STDP when we
incorporated the more realistic properties of pre- and postsynaptic dynamics.

According to our results, as long as all synapses delivered spike trains with an
identical feature (an ISI distribution), synapses competed similarly to how they
did in a previous study [3] and stationary distributions of synaptic strengths
were bimodal, irrespective of the choice of postsynaptic neuron model, or ISI
distributions of input spikes. The bimodal shape emerged from the nature of the
pairwise additive STDP rule that makes an unstable point at an intermediate
strength [10], whereas the spike statistics of the postsynaptic neurons were in-
fluenced by the neuronal dynamics and the input ISI structures. For the case
of a mixture of differently structured spike trains (with different k), strength-
ened synapses relied on combinations of the postsynaptic neuron models and
the input ISI structures. Considering that spike trains mediated by strength-
ened synapses evoked postsynaptic spikes more effectively, we could determine
which types of spike trains were favoured by the postsynaptic neuron by observ-
ing which synapses were strengthened. The LIF neuron favoured random spike
trains for any input firing rate. In contrast, the MAT neuron favoured more reg-
ular spike trains (with a large k) for a lower input firing rate, but more random
spike trains (with a small k) for a higher input firing rate. Taken together, the
method of neural information encoding, by a configuration of synaptic strengths,
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is determined not only by presynaptic spike structures but also by postsynaptic
neuronal dynamics.

Previous studies have revealed that cortical neurons can be classified into sev-
eral neuron types from the viewpoints of the shapes of their ISI distributions, and
that the neuron-type distributions differ between cortical areas [5]. For example,
in motor-related areas, neurons exhibiting regular spike trains were dominant
over those exhibiting random spike trains, but the opposite was observed in the
prefrontal areas. From our results, the MAT model, which exhibited low Cv
spiking, favoured regular spike trains whereas the LIF, which exhibited high Cv
spiking, favoured random spike trains. This suggests that our results are consis-
tent with the previous analysis reported in [5]. Furthermore, this implies that
different functions processed in different cortical areas should utilise different
methods of neural information coding.

Here we assumed a stationary process for input spike trains, which might
limit the biological plausibility of our results, for example, the obtained Cv values
(Fig.2b) were much smaller than those of experimental spike data. Implementing
non-stationary inputs would improve them. Furthermore, if a cognitive function
is represented by a transient neural activity, it is necessary to take into account
such non-stationary dynamics. Even in that case, however, our results would
serve as the basis for related future studies.
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