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Abstract This work studies the problem of robust output feedback stabilization of
a Magnetic Levitation System using Higher Order Sliding Mode Control (HOSMC)
strategy. The traditional (first order) slidingmode control (SMC) design tool provides
for a systematic approach to solving the problem of stabilization and maintaining a
predefined (user specified) consistent performance of a minimum-phase nonlinear
system in the face of modeling imprecision and parametric uncertainties. Recently
reported variants of SMC commonly known as Higher Order Sliding Mode Control
schemes have gained substantial attention since these provide for a better transient
performance together with robustness properties. In this work, we focus on design of
an output feedback controller that robustly stabilizes a Magnetic Levitation System
with an added objective of achieving an improvement in the transient performance.
The proposed control scheme incorporates a higher-order sliding mode controller
(HOSMC) to solve the robust semi-global stabilization problem in presence of a
class of somewhat unknown disturbances and parametric uncertainties. The state
feedback control design is extended to output feedback by including a high gain
observer that estimates the unmeasured states. It is shown that by suitable choice
of observer gains, the output feedback controller recovers the performance of state
feedback and achieves semi-global stabilization over a domain of interest. A detailed
analysis of the closed-loop system is given highlighting the various factors that lead
to improvement in transient performance, robustness properties and elimination of
chattering. Simulation results are included and a performance comparison is given
for the traditional SMC and HOSMC designs employing the first and second order
sliding modes in the controller structure.
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1 Introduction

Output feedback control schemes have long been considered as the preferred and
useful design tools for stabilization of control systems. This work focuses on design
of an output feedback controller that robustly stabilizes a minimum-phase nonlinear
system with an added objective of achieving an improvement in the transient per-
formance. The proposed control scheme incorporates a Higher-Order Sliding Mode
Controller (HOSMC) together with a High-Gain Observer (HGO) (Hassan 2008;
Atassi and Hassan 1999) to solve the robust output feedback stabilization problem.
It is usually required that the controller be able to stabilize the system over a large
set of initial conditions, and assure robustness and asymptotic error convergence in
presence of somewhat unknown disturbances and parametric uncertainties. Sliding
Model Control (SMC) scheme is regarded as one of the most significant control
design tools that addresses these requirements effectively (Guldner and Utkin 1999;
Edwards and Spurgeon 1998). The variants of SMC, known as Higher Order Sliding
Mode Controllers (Pukdeboon 2012; Levant 2001) provide for an improved error
convergence, better robustness properties and elimination of chattering in control
designs for minimum phase nonlinear systems (Rhif and Zohra 2012; Rhif 2012;
Pridor Gitizadeh et al. 2000; Levant 2010).

We consider the problem of robust feedback stabilization of a Magnetic Levita-
tion System, which is widely regarded as a benchmark system for testing various
control techniques (Milica Naumovic and Boban 2008; Levine and Ponsart 1996).
The system’s mathematical model results in a set of coupled nonlinear differential
equations which require special treatment (Woodson and Melcher 1968). Further-
more, such systems usually require use of a high gain feedback for achieving the
task of stabilization and tracking of the system’s output to some desired references,
making the control synthesis relatively difficult.

The novelty of this work lies in the application of an HOSMC based Output Feed-
back Controller which uses an HGO for estimation of system states. This provides
us with the leverage of the robust control and control of the convergence speed of
the system states. The rest of the chapter is organized as follows: we start with a
mathematical description of the magnetic levitation system and formulate the stabi-
lization problem for this system. The following section summarizes some previous
work related to the same problem. In Sect. 3, we present control design, first utilizing
a first-order SMC, and then incorporating a second-order and third-order SMC struc-
tures. In the later part of this section, we extend the state feedback design to output
feedback using an HGO. We present performance analysis and simulation results of
the proposed control designs in Sect. 4. Finally, Sect. 5 draws the conclusions.
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Fig. 1 A 3D view of magnetic levitation system

1.1 The Magnetic Levitation System

We undertake the problem of robust feedback stabilization of a benchmark nonlinear
Magnetic Levitation System. A schematic of the system is shown in Fig. 1, where
a ferromagnetic ball is required to be precisely levitated using a current controlled
electromagnet with position feedback from an optical sensor.

The system is described by the following nonlinear differential equations:

ẋ = f (x) + g(x)u (1)

where

x =
⎡
⎣

x1
x2
x3

⎤
⎦ , f (x) =

⎡
⎢⎢⎣

x2

g − k
m x2 − Loax23

2m(a+x1)2

1
L(x1)

[
−Rx3 + Loax2x3

(a+x1)2

]

⎤
⎥⎥⎦ , g(x) =

⎡
⎣

0
0
1

L(x1)

⎤
⎦

where the states are x1 = y (position), x2 = ẏ (velocity), x3 = i (current) and
u = v (control input). Other parameters include m as the ball mass, y the measured
position, g being the gravitational acceleration coefficient, k as the viscous friction
coefficient, L1, L0, a are positive constants referred to as the inductance parameters
of electromagnet and R is the overall equivalent resistance of the current path. The
term L(x1) and the steady state current value, with r as the desired reference (height)
are given as:

L(x1) = L1 + Lo

1 + x1
a

; Iss = 2mg(a + r)2

Loa
(2)

The control objective is to regulate the system output to the desired height while
also stabilizing the closed-loop system in the presence of parametric uncertainties.
The complexdynamicalmodel of the systemalongwith the requirement of robustness
under physical uncertainties make the control design task even more challenging.
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2 Previous Work

Many researchers, in the past few decades have considered this problemusing various
nonlinear control design techniques e.g. Back-stepping, Feedback Linearization, and
Extended Kalman Filter. This section presents a review of their work.

The Back-stepping method Mahmoud (2003), and Wai and Lee (2008), provides
a nonlinear design tool for recursive design of control law based on Lyapunov the-
ory. Researchers of these works have used back-stepping technique together with an
adaptive observer to design controller for stabilization of the magnetic levitation sys-
tem. Stabilization of the closed-loop system is achieved by incorporating a Lyapunov
function whose derivative is rendered negative definite by the control law to achieve
stability. In the proposed adaptive control method, a filter mechanism is incorporated
with the back-stepping controller to cope with the problem of the finite escape time
terms occurring due to repeated differentiations in back-stepping design procedure.
Moreover, the observer is designed in such a way to cater for system uncertainties,
to solve the trouble of chattering phenomena caused by the sign function in back-
stepping and adaptive controller law. The results show that the parameter estimation
error converges only locally using Lyapunov methods and to ensure stability of the
overall closed-loop system the Lyapunov function is extended with a term penalizing
the estimation error. This work shows that the stability was not global because the
parameter estimation for control coefficients show to be only locally convergent.

Trumper et al. (1997) used feedback linearization technique to design a suitable
controller that stabilizes the system at a desired operating point. The researcher
suggests that for applications where large excursions or disturbance forces are not
anticipated, a simple linear controller based on a linearized plant model may suffice.
This model is derived by writing the states and inputs in terms of operating point,
the operating points of the state variables are chosen and evaluating Jacobians at the
operating point to get the linearized second-order magnetic suspension system. A
major setback of this method is that the model is valid only for small perturbations
about the operating point and as the systemmoves away, quality of this approximation
decreases and the performance degrades. The proposed method shows remarkable
performance for the single DOF system described described in this work, however
only locally since it uses a linearized (i.e. requires accurate) plant model and any
modeling errors in actuator input lead to sustained oscillations.

Another way to approach the problem is described by Levis (2003), by designing
an ideal LQR controller and then extending the design towards robust control using
the Lyapunov redesign method. The system is first represented in a simpler form
using a transform and the feedback loop is completed by a standard LQR controller,
designed by solving the Riccati equation, without taking uncertainties into account.
Using Lyapunov analysis it is shown that the controller is able to stabilize the system
but the result is only local as certain limits have to be put on the current input and no
variations from the nominal model are allowed. To cater this, a robust controller is
designed based on lyapunov redesign by adding an extra term to the linear controller
to overcome matched disturbances. An upper bound on the disturbance term is taken
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and using the augmented controller a Lyapunov analysis is performed. The control
input is taken to render the Lyapunov function negative definite using on a smooth
switching controller based on Lyapunov redesign. The controller gain is taken greater
than the bound on overall system subject to disturbances, to ensure the convergence
of steady state error to zero. A comparison with the linear controller depicts that
the later strategy is able to handle small parametric variations while resulting in
semi-global asymptotic stability of the closed-loop system.

Henley John (2007) proposed a stabilizing controller structure based on feed-
back linearization in an Extended Kalman Filter (EKF) framework for a single-axis
magnetic levitation device. For implementation of the controller, a discrete Extended
KalmanFilter provides the system states’ estimates. TheEKF is based on the standard
predict-correct format where the current state estimate and covariance are propagated
forward until the next measurement occurs. Then, the Kalman Gain is computed and
the state estimate and covariance are updated using appropriate initial conditions on
object velocity and input current. The process noise and the sensor noise is taken as
a zero mean Gaussian white-noise. The key feature of this method is that the Kalman
Filter gain is chosen such that it minimizes the state estimation error. Then using
the standard feedback linearizing method a state feedback controller, based on esti-
mated states form the EKF, is used to stabilize the system using the pole placement
method. Although this controller formulation is near optimal, it is robust enough that
parameter changes and un-modeled plant dynamics do not effect the results.

3 Control Design

This section presents the development of robust stabilizing control for the problem
under consideration, by utilizing a first-order SMC initially, and then incorporating
a second-order and third-order SMC structures. In the later part of this section, we
extend the SMC and HOSMC based state feedback design to output feedback using
an HGO.

In order to proceed with systematic control design, we first transform the system
into strict feedback normal form by using a suitable state transformation of the form

z = T (x) (3)

in which T is such that T is invertible; i.e. it must have an inverse map T −1(.) such
that x = T −1(z) for all z ∈ T (D), where D is the domain of T. From (Hassan 2002),
the system(1) can be represented in feedback linearizable form if and only if there
is a domain Do ⊂ D such that:

1. For the system (1), the matrix G(x) = [g(x) ad f g(x) ad2
f g(x)] is full rank for

all x ∈ Do

2. The distribution D = spang(x), ad f g(x) is involutive in Do
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It can be verified that G(x) = [g(x) ad f g(x) ad2
f g(x)] has rank 3, and the

vector represented as D = span{g(x), ad f g(x)} is involutive, because [g, ad f g]
becomes a null vector and distribution D has rank 2. The foregoing calculation is
valid in the domain {D = a + x1 > 0 and x3 > 0}. The system has relative degree
3 (equivalent to the rank of G(x)), hence it is full-state linearizable. Therefore, T (x)
can be written as follows:

T (x) =
⎡
⎣

h(x)

L f h(x)

L2
f h(x)

⎤
⎦ =

⎡
⎢⎣

x1
x2

g − k
m x2 − Loax23

2m(a+x1)2

⎤
⎥⎦ (4)

Using (4) above, system (1) can now be re-written as:

ż1 = z2
ż2 = z3 (5)

ż3 = − k

m
z3 + Lo L1ax2x23

mL(x1)(a + x1)3
+ Loa Rx23

mL(x1)(a + x1)2
− Loax3

mL(x1)(a + x1)2
u

The nominal system parameter values are given in Table1.

3.1 First Order Sliding Mode Control

We start with development of first-order sliding mode controller for System (5). The
task is to design a feedback control law to stabilize the system at a desired reference.

The controller is designed such that firstly the system trajectories reach a bound-
ary/manifold (surface) near origin in finite time to ensure a semi-global bounded
solution and once the trajectory reaches the manifold, it cannot leave it. This phase
is called “reaching phase” as shown in Fig. 2.

Consider the system represented as

ż = f (z) + g(z)u (6)

Table 1 Nominal system
parameters

m 0.1kg

k 0.01 N/m/s

g 9.81 m/s2

a 0.05 m

Lo 0.01 H

L1 0.02 H

R 1 �
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Fig. 2 A typical trajectory
of sliding mode control

To start with, we define a Sliding manifold (s) in terms of the system dynamics
i.e.

s = z3 + a2z2 + a1(z1 − r) = 0 (7)

where r is the desired reference (height). The Control Law for the SMC is based on
the constraint

s ≡ 0 (8)

The first task is to design the controller in such a way to bring the trajectory to this
manifold s ≡ 0 in finite time. The variable s satisfies the equation

ṡ = a1z2 + a2z3 + f (z) + g(z)u (9)

let f and g satisfy the inequality

∣∣∣∣
(a1z2 + a2z3) + f (z)

g(z)

∣∣∣∣ ≤ ρ(z) ∀z ∈ �n (10)

for some known function ρ(z).
To guarantee that the trajectory reaches the manifold we take an energy Lyapunov

function

V = 1

2
s2 ⇒ V̇ = sṡ < 0 (11)

as the Lyapunov function candidate for the system. We get

V̇ = sṡ = s(a2z3 + a1z2 + f (z)) + g(z)su (12)

We take control input to be composed of two parts, i.e.

u = ueq + ν (13)

where ueq is taken to cancel all nonlinear part from the above equation and ν is
based on the switching controller to make the controller negative definite inside the
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boundary layer, i.e.

ueq = 1

g(z)
(− f (z) − a2z3 − a1z2) (14)

and the nonlinear functions are defined as

1

g(z)
= mL(x1)(a + x1)2

Loax3
(15)

f (z) = − k

m
z3 + Lo L1ax2x23

mL(x1)(a + x1)3
+ Loa Rx23

mL(x1)(a + x1)2
(16)

We take

ν = −γ sat

(
s

ε

)
(17)

where γ is a positive class K function such that γ ≥ ρ(z) + βo, βo > 0, and sat is
the nonlinear saturation function. Under nominal system parameters the gain γ is
chosen by using

∣∣∣∣
(a1z2 + a2z3) + f (z)

g(z)

∣∣∣∣ ≤ ((z2 + z3)m − kz3)L(x1)(a + x1)3 + Loax23 (x2L1 + R(a + x1))

mLoax3L(x1)(a + x1)

(18)

sat

(
s

ε

)
=

⎧⎨
⎩

sign(s) if |s| > 1(
s
ε

)
if |s| ≤ 1

(19)

sign(s) =

⎧⎪⎨
⎪⎩

1 if |s| > 0

0 if |s| = 0

−1 if |s| < 0

(20)

Using the parametric values given in Table. 1 results in ρ(z) ≤ 6.27. With this
controller, the Lyapunov function becomes

V̇ ≤ g(z)|s|ρ(z)−g(z)s(ρ+βo)sat

(
s

ε

)
≤ −g(z)βo|s| ≤ −goβo|s| ; |g(z)| ≤ go

where go > 0. Therefore, under the influence of the controller the trajectory reaches
the sliding manifold (s = 0) in finite time and once on the manifold it cannot leave
it as V̇ is negative definite. This motion is called the reaching phase followed by
a sliding phase during which the motion is confined to the manifold. This control
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law ν = −γ sat
( s

ε

)
is called the continuous sliding mode control where ε is the

maximum bound of the sliding manifold on either side of origin in the sliding phase.
To check the controller robustness in presence of parametric uncertainties, outside

and inside the boundary layer, we define the system parameters within a range i.e.
0.009 < Lo ≤ 0.01, 0.01 < L1 ≤ 0.02, 0.1 < m ≤ 0.11, 0.9 < R ≤ 1.1.
Under these conditions, let f̂ (z) and ĝ(z) be the nominal models of f (z) and g(z),
respectively. Taking

u = −[(a1z2 + a2z3) + f̂ (z)]
ĝ(z)

+ ν

results in

ṡ = a1(z2 + z3) +
[
1 − g(z)

ĝ(z)

]
+ f (z) − g(z)

ĝ(z)
f̂ (z) + g(z)ν = δ(z) + g(z)ν

where δ is the perturbation term which satisfies the inequality

∣∣∣∣
δ(z)

g(z)

∣∣∣∣ ≤ ρ(z) (21)

we can take

ν = −γ sat

(
s

ε

)
(22)

where γ ≥ ρ(z) + βo, βo > 0. Since ρ is an upper bound on the perturbation term,
it is likely to be smaller than an upper bound on the whole function.

∣∣∣∣
(a1z2 + a2z3) + f̂ (z)

ĝ(z)

∣∣∣∣ ≤ ((z2 + z3)m̂ − kz3)L̂(x1)(a + x1)3 + L̂oax23 (x2 L̂1 + R̂(a + x1))

m̂ L̂oax3 L̂(x1)(a + x1)

(23)

Taking the parametric values as the upper bound on limits, we get ρ(z) ≤ 7.27. To
analyze the performance of this continuous sliding mode controller in the reaching
phase,we take aLyapunov functionV = 1

2 s2 whose derivative satisfies the inequality

V̇ ≤ −goβo|s|

when |s| ≥ ε outside the boundary layer {|s| ≤ ε}. So until reaching the boundary
layer in finite time, |s(t)| will be strictly decreasing and remains inside this set
afterwards. Inside the boundary layer, we have

z2 = −a1(z1 − r) − z3 + s

where |s| ≤ ε. The derivative of V1 = 1
2 z21 satisfies
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V̇1 = −a1(z
2
1−z1r)−z1z3+z1s ≤ −a1z21−z1z3+z1ε ≤ −(1−θ)a1z21 ∀z1 ≥ ε

a1θ

where 0 < θ < 1 . Thus the trajectory reaches the set �ε = {|z1| ≤ ε
a1θ

, |s| ≤ ε}
in finite time. So we get ultimate boundedness with an ultimate bound that can be
reduced by decreasing ε. Inside the boundary layer |s| ≤ ε the control reduces to
the linear feedback law u = −γ

( s
ε

)
and the closed loop system can be stabilized by

suitable choice of gain γ , to be large enough to overcome the bound ρ. Inside the
boundary layer, the closed loop system given as

ż1 = z2
ż2 = z3

ż3 = f (z) − g(z)
(
γ

s

ε

)

has a unique equilibrium point at (x̄1, 0, Iss), where x̄1 satisfies the equation

ż3 = −kmz3Loaε + RLoaεx23 + Loaγ s Iss − kmz3εL1(a + x̄1)

and for small ε can be approximated by

x̄1 ≈ Loa

kL1

(
Iss + γ s

ε

)

introducing a change of variables to shift to origin results in,

y1 = z1 − z̄1 ẏ1 = y2
y2 = z2 ẏ2 = y3
y3 = z3

ẏ3 = − k

m
y3 + Loa Rx23

mL(x̄1)(a + x̄1)2
+ Loaγ x3(z3 + a2z2 + a1(z1 − r))

mεL(x̄1)(a + x̄1)2

≈ −
( k

m
y3 − LoaIssγ

mεL1(a + y1 + z̄1)2

)
y23 − σ(y1)

where

σ(y1) = − Iss Loaγ y1x3
mεL1(a + y1 + z̄1)2

Consider the Lyapunov function

Ṽ =
y1∫

o

σ(s)d(s) − 1

2
y23
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where Ṽ is positive definite (|Ṽ | is radially unbounded) for y3 >
LoaIssγ z3

mL1ε
and its

derivative satisfies
˙̃V = σ(y1) + y3 ẏ3 ≤ LoaIssγ

mL1ε
y23 < 0

Using LaSalle’s Invariance Principle we can show that the equilibrium point
(x̄1, 0, Iss) is asymptotically stable and attracts every trajectory in �ε . For better
accuracy, we choose ε as small as possible, however we should keep in mind that
choosing too small a value may result in chattering. With a suitable choice of ε

close to zero, the controller achieves ultimate boundedness as all trajectories starting
off the manifold |s| ≤ ε reach it in finite time and stay there onwards. By suitable
choice of ε → 0 and a high enough controller gain γ the proposed controller yields
semi-global asymptotic stabilization.

3.2 Higher Order Sliding Control

We now focus our attention to development of stabilizing controllers for the system
under consideration that use Higher Order Sliding Modes. This approach has gained
substantial attention recently due to its ability to yield in better transient performance,
superior robustness properties and removal of chattering when compared to a first-
order SMC. The formulation of controller (Korovin and Emeryanov 1996) is as
follows:

Consider an uncertain single-input nonlinear system

ẋ = f (x, t, u), s = s(t, x) t ≥ 0 (24)

with x ∈ X ⊆ �n as the state vector, u ∈ U ⊂ � being the control input and the time
varying non-linear function f (x, t, u) : [0,+∞) × �n × U → �n is a sufficiently
smooth uncertain vector field and s(x, t) : [0,+∞) → � is the function as defined
in (7). The relative degree r of the system is defined such that u explicitly appears in
only the rth derivative of s and d

du sr �= 0 at the given point. The task is to achieve
the constraint s ≡ 0 in finite time and stay there using a discontinuous feedback
control. Since s, ṡ, s̈, . . . , sr−1 are continuous functions, the corresponding motion
corresponds to an r-sliding mode (Levant 2001).

The term Higher Order Sliding Mode specifies a movement on the discontinuity
set of the dynamic system in Filippov’s sense (i.e. it consists of Filippov’s trajectories
of the discontinuous dynamic system) (Levant 1999). The controller Sliding Order
indicates the dynamic smoothness degree in the vicinity of themode i.e. it is a number
of total continuous derivatives of the manifold (s) (including s0) in the vicinity of
sliding mode. Therefore the r th order sliding mode is determined by the following
equalities:
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s = ṡ = s̈ = · · · sr−1 = 0 ; 0 < Km ≤ ∂

∂u
sr ≤ KM (25)

for some positive constants Km and KM . This forms an r-dimensional condition on
the state of the dynamic system and any motion satisfying (25) is called an r-sliding
mode with respect to the essential constraint s ≡ 0 (Fridman and Levant 2002).

3.2.1 Two Sliding Controller

We start with defining the sliding variable s as the regulated output of the system (5).
The second order sliding mode approach provides for the finite time stabilization of
the output s and its time derivative ṡ by characterizing a discontinuous control input
(u) for the system (Perruquetti 2010).

Considering y1 = s, it canbeen shown that, the secondorder slidingmodeproblem
is equivalent to thefinite time stabilizationproblem for the followinguncertain second
order system: {

ẏ1 = y2
ẏ2 = ϕ(t, y) + γ (t, y)u

(26)

where it is considered that only the information about sign of y2 is available (Fridman
and Levant 2002). The nominal functions ϕ(t, y) and γ (t, y) are defined as:

{
|ϕ(t, y)| <  ; > 0

0 < �m < γ < �M < 1
(27)

∀y ∈ Y ⊆ �2, such that the system (26) is bounded and stable.

3.2.2 Twisting Algorithm

The Twisting Algorithm is the basic 2-sliding controller (Punta 2006). This algo-
rithm features the twisting of sliding trajectory infinite times around the origin of
the 2-sliding plane y1Oy2. The method is called ‘Twisting Controller’ because the
trajectories perform an infinite number of rotations while converging to the origin
along with the vibration magnitudes decays along the axes and the rotation times
decreasing in geometric progression (Levant 1999).

The controller, based on the constraint (s = ṡ = 0), is able to stabilize the dynamic
system while achieving semi-global asymptotic output regulation. The control algo-
rithm is defined by the following control law (Floquet and Barbot 2007) in which
the condition on |u| provides for |u| ≤ 1:

u̇(t) =

⎧⎪⎨
⎪⎩

−u ; |u| > 1

−Vmsign(y1) ; (y1)(y2) < 0 and |u| ≤ 1

−VM sign(y1) ; (y1)(y2) > 0 and |u| ≤ 1

(28)
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The corresponding sufficient conditions to ensure the elimination of reaching
phase and finite time convergence to the sliding manifold are:

{
VM > Vm ; Vm > 4�m

so

VM > 2+VM
�M

; Vm > 
�M

(29)

where so is the max allowed value for manifold s. The results for the controller are
discussed in Analysis and Results section and it is shown that this controller results
in much better transient phase response as compared to the First Order SMC but due
to large relative degree of the system chattering is not completely removed when
used to control the nonlinear system.

3.2.3 Three Sliding Controller

For the Magnetic Levitation System with relative degree ρ = 3, the 2-sliding con-
troller described above does not completely eliminate chattering. As mentioned in
Levant (2010), Korovin and Emeryanov (1996), the main drawbacks of the previ-
ously described methods are that when the relative degree ρ of the control variable s
is higher than one, the control methods, to completely remove chattering, generally
require the knowledge of up to (ρ − 1) derivatives of s. For systems with ρ = 3,
the usually unavailable quantities ṡ and s̈ need to be measured or estimated using an
observer (e.g. High-Gain Observer, sliding differentiator) for controller design that
completely removes chattering. The 2-sliding controller when applied to a higher
relative degree system does not eliminate chattering.

For systems with relative degree higher than 2, the recommended practice is to
use a 3-sliding controller (3rd order SMC) to completely eliminate chattering under
the constraints described in (29) (Levant 2010). The 3-sliding controller is designed
as follows:

Let p be a positive number. Denoting

J1,r = |s|(r−1)/r

Ji,r =
(
|s|p/r + |ṡ|p/(r−1) + · · · + |s(i−1)|p/(r−i+1)

)(r−i)/p
, i = 1, . . . , r − 1

Jr−1,r =
(
|s|p/r + |ṡ|p/(r−1) + · · · + |s(r−2)|p/2

)1/p

ψ0,r = s

ψ1,r = ṡ + β1 J1,r sign(s)

ψi,r = s(i) + βi Ji,r sign(ψi−1,r ), i = 1, . . . , r − 1

where β1, . . . , βr − 1 are positive numbers.
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3.2.4 Theorem 1

If the system (26) has relative degree r with respect to the output function s and
the condition (25) on ∂

∂u sr is satisfied, then with properly choosing the parameters
β1, . . . , βr − 1 the controller defined by

u = −αsign

[
ψr−1,r (s, ṡ, . . . , s(r−1))

]
(30)

assures the appearance of r-sliding mode s ≡ 0 while attracting all trajectories in
finite time.

The parametersβ1, . . . , βr −1 are chosen to be sufficiently large in the indexorder-
ing. Each choice specifies a family of controller applicable to all systems expressed
as (26) with relative degree r . The parameter α > 0 depends on the choice of positive
constants Km and KM . Coefficients of Ji,r can be chosen as any positive numbers
and α needs to be negative when ∂

∂u sr < 0.
There can be infinite many choices for βi . A tested example for βi for r = 3 is

provided in Fridman and Levant (2002). The 3-sliding controller is given as

ν = −αsign

(
s̈ + 2

(|ṡ|3 + s2
) 1
6 sign

(
ṡ + |s| 23 sign(s)

))
(31)

The idea is that a 1-sliding mode is established on the smooth parts of the discon-
tinuity set� of (31) described by the differential equationψr−1,r = 0. The resulting
movement takes place in some close boundary of the � satisfying ψr−2,r = 0,
transfers in finite time into some vicinity of the subset satisfying ψr−3,r = 0 and
so on. While the trajectory reaches the r-sliding set, set � shrinks to origin in the
coordinates s, ṡ, . . . , s(r−1) (Levant 2012).

This controller placed in (13) makes the overall control input for the system.
The parameter α is a positive constant i.e. α > 0. For our system we take α = 20
with tolerance τ = 10−3 and Euler?s method for integration. The overall 3-sliding
controller for the system becomes:

u = −mL(x1)(a + x1)2

Loax3

(
k

m
z3 − Lo L1ax2x23

mL(x1)(a + x1)3
− Loa Rx23

mL(x1)(a + x1)2
− a2z3

−a1z2 − αsign

(
s̈ + 2

(|ṡ|3 + s2
) 1
6 sign

(
ṡ + |s| 23 sign(s)

)))
(32)

Amaximumof r th order accuracy is attainablewith the abovementioned 3-sliding
controller and with proper choice of parameters β1, . . . , βr −1 the convergence time
is reduced approximately κ(α) times where 0 < κ ≤ 1.

To analyze the controller performance for reaching phase (to guarantee that the
trajectory reaches the manifold in finite time) we follow a similar procedure as for
First Order Sliding Controller. Considering a Lyapunov function candidate:
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V = 1

2
s2 ⇒ V̇ = sṡ

Under the influence of the above mentioned 3-sliding controller, we get

V̇ ≤ −α|s||ν| ≤ −αλ|s| ;α > 0

whereλ is a positive classK function such thatλ = μ+ω,ω > 0 and |ν| ≤ μ,μ > 0
is calculated as follows: replacing the sign function by its approximation i.e.

sign(s) = |s|
s

results in

|ν| =

∣∣∣∣s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 23 |s|
s

∣∣∣[
ṡ+|s| 23 |s|

s

]
∣∣∣∣

s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 23 |s|
s

∣∣∣[
ṡ+|s| 23 |s|

s

]

using the Triangle Inequity, Preservation of division and Idempotence properties of
absolute numbers we get

|ν| ≤

∣∣∣∣s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 23
∣∣∣∣∣∣ṡ+|s| 23
∣∣∣

∣∣∣∣

s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 23
∣∣∣

ṡ+|s| 23
(33)

we know that
(|ṡ|3 + s2

) 1
6 > 0, using Triangle Inequity and further solving the

inequity, we get

|ν| ≤ |s̈| +
∣∣∣(ṡ + s2

) 1
6

∣∣∣ ≤ |s̈| ≤ W ; W > 0

which makes the Lyapunov function derivative negative definite, i.e.

V̇ < −αW |s| ;α > 0 and W > 0

Therefore, under the influence of the controller the trajectory reaches the sliding
manifold (s = 0) in finite time and once on the manifold it cannot leave it as V̇ is
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negative definite. So until reaching the boundary layer in finite time, |s(t)| is strictly
decreasing and remains inside this set afterwards.

Inside the boundary layer (inside the set �ε) a similar analysis can be carried
out as in first order sliding mode controller (applying a change of variables and
using Invariance Principle) to show that the application of the controller results in an
asymptotically stable origin. The results for the controller are discussed in Analysis
Section where it is shown that the 3-sliding controller results in much improved
performance as compared to the First and Second Order SMC.

3.3 Output Feedback

In this section, we extend the state feedback design to output feedback by using a
High Gain Observer (HGO) (Esfandiari and Hassan 1992; Atassi and Hassan 1999).
Towards that end, we consider the observer as given by the following set of equations:

⎧⎪⎪⎨
⎪⎪⎩

ˆ̇ξ1 = ξ̂2 + h1(y − ξ̂1)

ˆ̇ξ2 = h2(y − ξ̂1)

ˆ̇ξ3 = h3(y − ξ̂1)

(34)

in which the observer gains are chosen as follows:

⎡
⎣

h1
h2
h3

⎤
⎦ =

⎡
⎣

2/ε
1/ε2

1/ε3

⎤
⎦ (35)

where ε is a design parameter. It is well established that by incorporating an HGO,
one can recover the performance of the state feedback controller by a suitable choice
of observer gains. This is achieved by choosing the design parameter ε sufficiently
small which renders the estimation error (ξ̂ − ξ) to zero as ε approaches zero.
However, this process results in a large overshoot for a very limited time in the initial
transient phase before the estimation error sharply decays to zero. This overshooting
phenomenon is called peaking and is usually overcome by saturating the observer
for a very brief initial interval during operation.

The output feedback controller incorporating theHGO (34) for 3-sliding feedback
controller is given as:

u = −mL(x1)(a + x1)2

Loax3

(
k

m
ẑ3 − Lo L1ax2x23

mL(x1)(a + x1)3
− Loa Rx23

mL(x1)(a + x1)2
− a2 ẑ3

−a1 ẑ2 − αsign

(
¨̂s + 2

(| ˙̂s|3 + ŝ2
) 1
6 sign

( ˙̂s + |ŝ| 23 sign(ŝ)
)))

(36)
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This output feedback controller is applied to the original nonlinear system
represented in strict feedback normal form. The inclusion of HGO recovers the
performance of the full state feedback controller and, by suitable choice of gains,
allows the output feedback to achieve semi-global asymptotic stabilization over a
domain of interest.

3.3.1 Theorem 2

Consider the closed loop system comprising of the plant (5) and the output feedback
controller (36). Suppose the origin of the closed loop system under state feedback
control (32) is asymptotically stable and R is its region of attraction. Let S be any
compact subset in the interior of R and Q be any compact subset of Rρ . Then

• There exists ε∗
1 > 0 such that for every 0 < ε ≤ ε∗

1 , the solutions of the closed
loop system (under state feedback X (t) and under output feedback (x̂(t))), starting
in S × Q, are bounded for all t > 0.

• Given any μ > 0, there exists ε∗
2 > 0 and T2 > 0, both dependent on μ, such that,

for every for every 0 < ε ≤ ε∗
2 , the solutions of the closed loop system, starting

in S × Q, satisfy

||X (t)|| ≤ μ ||x̂(t)|| ≤ μ ∀ t ≥ T2

• Given any μ > 0, there exists ε∗
3 > 0, dependent on μ, such that, for every for

every 0 < ε ≤ ε∗
3 , the solutions of the closed loop system, starting in S × Q,

satisfy
||X (t) − Xr (t)|| ≤ μ ∀ t ≥ 0

where Xr is the solution of system under (32) starting at X (0).
• If the origin of system under (32) is exponentially stable and that f (z) is continu-
ously differentiable in some neighborhood of X = 0, then there exists ε∗

4 > 0 such
that, for every 0 < ε ≤ ε∗

4 , the origin of the closed loop system is exponentially
stable and S × Q is a subset of its region of attraction.

3.3.2 Proof

The proof follows the general outline as given in [Hassan (2002), Sect. 14.5.2] with
appropriatemodifications as per the problem under consideration. In particular, proof
of the theorem establishes that the output feedback controller recovers the perfor-
mance of the state feedback controller for sufficiently small ε. The performance
recovery is evident in itself in three points. Firstly, recovery of exponential stability.
Second, recovery of region of attraction in the sense that we can recover any compact
set in its interior. Third, the solution X (t) under output feedback reaches the solution
under state feedback as ε tends to zero.
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Remark 1 It is well known that if the state feedback controller achieves the state
feedback controller achieves global or semi-global asymptotic stabilization with
local exponential stability, then for sufficiently small ε, the output feedback controller
achieves semi-global stabilization with local exponential stability.

4 Performance Analysis

In this section a detailed analysis of the First Order Sliding Mode Controller and the
Higher Order Sliding Controllers is carried out and simulation results are shown to
demonstrate the performance of different controllers.

4.1 First Order Sliding Mode Controller

The controller ν = −γ sat
( s

ε

)
is called the First Order Sliding Mode Control.

• Transient Performance/Reaching Phase: The First Order SMC behaves poorly
in the reaching phase and the system trajectory exhibits large overshoots before
reaching the sliding manifold as shown in Fig. 3. But the controller (Fig. 4) guar-
antees that the trajectory reaches the sliding manifold (s = 0) in finite time and
once on the manifold it cannot leave it as V̇ is negative definite.

• Sliding Phase: Inside the boundary layer |s| ≤ ε the control reduces to the linear
feedback law ν = −γ sat

( s
ε

)
and the closed loop system can be stabilized by

suitable choice of the gain γ , to be large enough to overcome the max bound ρ

of the perturbation term ueq i.e. γ > ρ + βo, βo > 0. The parameter ε is a small
constant i.e. 0 < ε ≤ 1 defined as the maximum bound of the sliding manifold on
either side of origin. So we get ultimate boundedness with an ultimate bound that

Fig. 3 First order sliding mode control results
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Fig. 4 Control input for sliding mode control

Fig. 5 Sliding phase results For ε = 0.001(chattering)

can be reduced by decreasing ε i.e. ε → 0.

• Chattering Analysis and Stability: The controller is a Continuous Sliding Mode
Controller using the sat approximation of the discontinuous sign function i.e.
ν = −γ sat

( s
ε

)
to cater the “chattering” introduced in the system due to switching

delay between the sign of s, which causes unwanted oscillations in the system as
shown in Fig. 5. The value of ε needs to be carefully selected because when ε

is reduced to zero, the continuous sliding controller approaches a discontinuous
sliding controller, i.e. as ε → 0 ⇒ sat (s) → sign(s) and chattering starts to
appear in the system and for the system with input defined as:

u = ν = Ri = i

it causes a continuous drawl of current from the source. So, with a proper choice
of ε close to zero, the controller achieves ultimate boundedness as all trajectories
starting off the manifold |s| ≤ ε reach it in finite time and stay there onwards.
Then by choice of a high enough controller gain γ the controller achieves semi-
global asymptotic stability for the system. The simulation values for the controller
ε = 0.01 and γ = 10 are based on the same constraints discussed above for
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Fig. 6 Sliding phase results For ε = 0.01(chattering removed)

γ and ε, assuring a reasonable reaching phase time and chattering removal as
shown in Fig. 6.

4.2 Higher Order Sliding Mode Controller

As discussed earlier, themain problem is thatwhen the relative degreeρ of the control
variable (s) is greater than one, the controlmethods, to completely remove chattering,
generally require the knowledge of up to (ρ − 1) derivatives of s. For the current
system with relative degree ρ = 3, the usually unavailable quantities ṡ and s̈ need
to be incorporated for a controller design that completely removes chattering. Using
the 2-sliding controller (Fig. 7) for the system also does not completely eliminate
chattering as shown in Fig. 8, and the recommended practice is to use a 3-sliding
controller.

Fig. 7 Output under 2-sliding controller
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Fig. 8 Control input for 2-sliding controller

Fig. 9 Output under 3-sliding controller with varying ε

• Reaching Phase Elimination Time: Using the 2-sliding Twisting Controller and
3-sliding Controller the time required for the system trajectory to reach the sliding
surface (s) is considerably reduced as compared to first order sliding mode con-
trol results (Levant 2012). With proper choice of parameters β1, . . . , βr − 1 the
convergence time is reduced approximately κ(α) times where 0 < κ ≤ 1 under
the constraints defined in (29–30). This is evident from the simulation results that
the 3-sliding controller results in much faster global finite time convergence to the
origin and the overall control is bounded as shown in Fig. 9.

• Implementation of the 3-sliding Controller: The 3-sliding controller implementa-
tion requires the availability of the sliding manifold and the knowledge of up to
(ρ−1) derivatives i.e. s, ṡ and s̈ at all times. The usually unavailable quantities s, ṡ
and s̈ need to be incorporated for the controller design that completely removes
chattering. With the introduction of these variables as auxiliary variables in the
control design procedure, the controller effectively takes care of the discontinuities
in the sliding variable (s) and removes the vibrations (harmonics) that may arise
due to its higher derivatives, as in the case of first order sliding mode controller. As
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Fig. 10 Control input for 3-sliding controller

a result the controller is a much smooth and bounded function of time in Lipschitz
sense rather than a bounded but “infinite switching frequency/relay” controller, as
shown in Fig. 10.

• Stability: The 3-sliding controller results are comparable with a full-state back-
stepping controller, both very different in design parameters (differential inequali-
ties instead of parametric uncertainties) and resulting performance (Levant 1999).
Offeringmuch higher accuracy and finite time convergence for complex non-linear
systems, (systems with finite escape time) the proposed 3-sliding controller fea-
tures a globally asymptotically stable closed loop system and in some cases locally
exponentially stable systems. It is evident from Fig. 9 that the closed loop non-
linear system (5) is stabilized and output is successfully regulated to the desired
reference.

• Chattering Removal:Theabovementioned techniqueof including thehigher deriv-
atives of the sliding manifold in the control design procedure also removes the
chattering effect from the system even under very small HGO gain ε values (see
for ε = 0.005 in Fig. 9). When we design the controller based on knowledge
of higher derivatives of the sliding variable (s) and cater for the higher deriv-
ative terms, the unwanted oscillations (chattering) introduced in the system are
considerably reduced. With the proper handling of HOSMC design constraints,
chattering is completely removed andwe get a local 3-sliding controller rather than
the relay controller u = −γ sign(s) while achieving a 3rd order sliding precision
with respect to τ i.e. O(τ 3) (Levant 2010). The inclusion of HGO for estimation
of unmeasured system states in the design of output feedback controller does not
degrade the controller performance or stability. The sliding manifold (s) and its
derivatives vanish in finite time as shown in Fig. 11.
To show the controller efficiency and the performance recovery of the State
Feedback Controller using the Output Feedback controller based on High Gain
Observer, the observer convergence speed control parameter ε was varied from
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Fig. 11 Sliding manifold and higher derivatives

Fig. 12 Output under constraint control input using 3-sliding controller

0.1 to 0.005 to show the difference in the performance recovery. Other simulation
parameters taken are: μ = 0.01, VM = 50, Vm = 15, �m = 0.5, �M = 1, a1 =
a2 = 1  = 2, so = Iss .

• Discontinuity Regularization/Constraint Control: The Transient phase overshoot
called peaking occurring due to the inclusion of HGO is reduced by putting some
constraint on control input (regularizing the discontinuity), as per limits, using sat
function (Fridman and Levant 2002), with the limits [−2.5 Iss]. Due to this, the
overshoot magnitudes are considerably reduced without degrading the controller
performance as shown in Fig. 12. The control input becomes:

u = sat

[
− mL(x1)(a + x1)2

Loax3

(
k

m
ẑ3 − Lo L1ax2x23

mL(x1)(a + x1)3
− Loa Rx23

mL(x1)(a + x1)2

−a2 ẑ3 − a1 ẑ2 − αsign

(
¨̂s + 2

(| ˙̂s|3 + ŝ2
) 1
6 sign

( ˙̂s + |ŝ| 23 sign(ŝ)
)))]

(37)
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Fig. 13 Output using 3-sliding controller under parametric uncertainties

Table 2 Varied system
parameters

m 0.11kg

k 0.011 N/m/s

g 9.81 m/s2

a 0.05 m

Lo 0.011 H

L1 0.02 H

R 1.1 �

• Robustness Under Parametric Variations:Toverify the robustness properties of the
proposed 3-sliding controller, the system nominal parameters were perturbed by
10–20%while keeping the parameters of the controller unchanged. The controller,
to stabilize the system at desired reference, has to exert some extra effort but the
desired reference is achieved as shown in Fig. 13. The new control input, using
nominal system parameters becomes:

u = sat

(
1

ĝ(z)

( − f̂ (z) − a2 ẑ3 − a1 ẑ2 − ν
))

(38)

The new parameters for system are given in Table2.

5 Conclusion

We focused on the problem of robust output feedback stabilization of a Magnetic
Levitation System using Higher Order Sliding Mode Control (HOSMC) strategy.
The traditional (first order) sliding mode control (SMC) design tool provides for
a systematic approach to solving the problem of stabilization and maintaining a
predefined (user specified) consistent performance of a minimum-phase nonlinear
system in the face of modeling imprecision and parametric uncertainties. Recently
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reported variants of SMC commonly known as Higher Order Sliding Mode Control
schemes have gained substantial attention since these provide for a better transient
performance together with robustness properties.

We proposed an output feedback controller that robustly stabilizes the closed-loop
system with an added objective of achieving an improvement in the transient per-
formance. The proposed control scheme incorporates a higher-order sliding mode
controller (HOSMC) to solve the robust semi-global stabilization problem in pres-
ence of a class of somewhat unknown disturbances and parametric uncertainties.
The state feedback control design is extended to output feedback by including a high
gain observer that estimates the unmeasured states. It is shown that by suitable choice
of observer gains, the output feedback controller recovers the performance of state
feedback and achieves semi-global stabilization over a domain of interest. A detailed
analysis of the closed-loop system was given highlighting the various factors that
lead to improvement in transient performance, robustness properties and elimination
of chattering. Simulation results were included and a performance comparison was
given for the traditional SMC and HOSMC designs employing the first, second and
third order sliding modes in the controller structure.

A detailed performance analysis showed that the first order SMC was able to
stabilize the systemat the desired reference point.However, the transient performance
of the same was degraded and showed large overshoot, and a slower reaching phase
when compared to that of the second-order and third-order SMC, which showed
superior transient performance, along with better robustness properties and removal
of chattering.

5.1 Future Work

For future work the authors recommend the inclusion of some other observer design
technique e.g. an Exact Differentiator or the InternalModel based approach to handle
the output feedback control problem for the system. The concept can be extended to
Output Regulation of the nonlinear system using the robust HOSMC algorithm based
conventional/conditional compensator which may result in further improvement of
transient performance and ability to asymptotically track unknown references while
rejecting disturbance signals, both produced by some autonomous external system.
A natural extension of the HOSMC framework is the control of non-minimum phase
systems directly using high gain feedback or incorporate an extended high gain
observer and design output feedback control. The incorporation of higher order slid-
ing strategy in controller design opens new dimensions towards robust control design
and performance enhancement.
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