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Abstract Hybrid phase synchronization is a new type of synchronization of a pair of
chaotic systems called themaster and slave systems. In hybrid phase synchronization,
the odd numbered states of themaster and slave systems are completely synchronized
(CS), while their even numbered states are anti-synchronized (AS). The hybrid phase
synchronization has applications in secure communications and cryptosystems. This
work derives a new result for the hybrid phase synchronization of identical chaotic
systems using slidingmode control. Themain result has been proved using Lyapunov
stability theory. Sliding mode control (SMC) is well-known as a robust approach and
useful for controller design in systems with parameter uncertainties. As an applica-
tion of this general result, a sliding mode controller is derived for the hybrid phase
synchronization of the identical 3-D Vaidyanathan chaotic systems (2014). MAT-
LAB simulations have been provided to illustrate the Vaidyanathan system and the
hybrid synchronizer results for the identical Vaidyanathan systems.

1 Introduction

Chaotic behaviour is an important feature, which is observed in some nonlinear
dynamical systems. Chaotic behaviour was suspected well over hundred years ago
in the study of three bodies problem, but it was established only a few decades ago
in the study of 3-D weather models (Lorenz 1963).

A chaotic system is usually characterized by its extreme sensitivity of behavior to
initial conditions. Small changes in an initial state will make a very large difference
in the behavior of the system at future states.
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The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the maximal Lyapunov exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

In 1963, Lorenz found out that a very small difference in the initial conditions of
his 3-D deterministic weather model led to large changes in the phase space (Lorenz
1963). This was followed by the discoveries of many well-known paradigms of 3-D
chaotic systems in the literature (Rössler 1976; Arneodo et al. 1981; Sprott 1994;
Chen and Ueta 1999; Lü and Chen 2002; Liu et al. 2004; Cai and Tan 2007; Chen
and Lee 2004; Tigan and Opris 2008; Zhou et al. 2008; Sundarapandian and Pehlivan
2012; Vaidyanathan 2013a, b, 2014).

Chaotic systems have several applications in science and engineering. Some
important applications can be mentioned as cryptosystems (Usama et al. 2010;
Rhouma andBelghith 2011), secure communications (Murali andLakshmanan 1998;
Feki 2003; Zaher and Abu-Rezq 2011), chemical reactions (Petrov et al. 1993; Gas-
pard 1999), oscillators (Kengne et al. 2012; Sharma et al. 2012), lasers (Yuan et al.
2014; Li et al. 2014), biology (Das et al. 2014; Kyriazis 1991), ecology (Suérez 1999;
Gibson and Wilson 2013), robotics (Nehmzow and Walker 2005; Volos et al. 2013;
Mondal and Mahanta 2014), cardiology (Qu 2011; Witte and Witte 1991), neural
networks (Kaslik and Sivasundaram 2012; Huang et al. 2012; Lian and Chen 2011),
finance (Sprott 2004; Guégan 2009), etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

The master-slave or drive-response formalism is used in most of the chaos syn-
chronization approaches. If a particular chaotic system is called the master or drive
system and another chaotic system is called the slave or response system, then the
goal of chaos synchronization is to use the output of the master system to control the
slave system so that the output of the slave system tracks the output of the master
system asymptotically.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s (Pecora and Carroll 1990; Carroll and Pecora
1991). The active control method (Ucar et al. 2007; Liu et al. 2007; Sundarapan-
dian 2010; Vaidyanathan 2012c; Wang and Liu 2006; Rafikov and Balthazar 2007)
is commonly used when the system parameters are available for measurement and
the adaptive control method (Wu et al. 2008; Huang 2008; Lin 2008; Sarasu and
Sundarapandian 2012a, b, c) is commonly used when some or all the system para-
meters are not available for measurement and estimates for unknown parameters of
the systems.

Other popular methods for chaos synchronization are the sampled-data feedback
method (Xiao et al. 2014; Zhang and Zhou 2012; Li et al. 2011; Gan and Liang
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2012), time-delay feedback method (Shahverdiev and Shore 2009; Jiang et al. 2004;
Chen et al. 2014; Shahverdiev et al. 2009), backstepping method (Njah et al. 2010;
Tu et al. 2014; Zhang et al. 2004; Vaidyanathan 2012a), etc.

Complete synchronization (Vaidyanathan and Rajagopal 2011a; Rasappan and
Vaidyanathan 2012a; Suresh andSundarapandian 2013) is characterized by the equal-
ity of state variables evolving in time, while anti-synchronization (Vaidyanathan
2011; Vaidyanathan and Sampath 2012; Vaidyanathan 2012b) is characterized by
the disappearance of the sum of relevant state variables evolving in time.

In hybrid synchronization of the master and slave systems, the odd numbered
states of the two systems are completely synchronized while the even numbered
states are anti-synchronized so that the complete synchronization (CS) and anti-
synchronization (AS) co-exist in the synchronization process. Thus, the hybrid syn-
chronization (Vaidyanathan and Rajagopal 2011b; Sundarapandian and Karthikeyan
2012; Karthikeyan and Sundarapandian 2014; Rasappan and Vaidyanathan 2012b)
is an important type of synchronization of chaotic systems, which has applications
in secure communication devices.

This research work is organized as follows. Section2 gives a basic introduc-
tion into sliding mode control and chaos synchronization. Section3 discusses the
problem statement for the synchronization of two identical chaotic systems and our
design methodology. Section4 contains the main result of this work, namely, sliding
controller design for the global chaos synchronization of identical chaotic systems.
Section5 summarizes the qualitative properties of the Vaidyanathan chaotic system
(Vaidyanathan 2014). In Sect. 6, we describe the sliding mode controller design for
the global chaos synchronization of identical Vaidyanathan systems. MATLAB sim-
ulations are shown to validate and illustrate the sliding mode controller design for
the synchronization of the Vaidyanathan systems. Section7 contains a summary of
the main results derived in this research work.

2 Sliding Mode Control and Chaos Synchronization

In control theory, the sliding mode control approach is recognized as an efficient tool
for designing robust controllers for linear or nonlinear control systems operating
under uncertainty conditions (Perruquetti and Barbot 2002; Utkin 1992).

Slidingmode controlmethod has amajor advantage of low sensitivity to parameter
variations in the plant and disturbances affecting the plant, which eliminates the
necessity of exact modeling of the plant.

In the slidingmode control theory, the control dynamics has two sequentialmodes,
viz. (i) the reaching mode, and (ii) the sliding mode. Basically, a sliding mode con-
troller (SMC) design consists of two parts: hyperplane (or sliding surface) design
and controller design.

A hyperplane is first designed via the pole-placement approach in the modern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall control system is ensured by the sliding condition and by a sta-
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ble hyperplane. Slidingmode control theory has been used to dealwithmany research
problems of control literature (Feng et al. 2014; Ouyang et al. 2014; Bidarvatan et al.
2014; Lu et al. 2014; Zhang et al. 2014; Hamayun et al. 2013).

3 Problem Statement

This section gives a problem statement of global hybrid-phase synchronization of a
pair of identical chaotic systems called the master and slave systems.

The master system is taken as the chaotic system

ẋ = Ax + f (x), (1)

where x ∈ IRn is the state of the system, A is the n × n matrix of system parameters
and f is a vector field that contains the nonlinear parts of the system and satisfies
f (0) = 0.
The slave system is taken as the controlled chaotic system

ẏ = Ay + f (y) + u, (2)

where y ∈ IRn is the state of the system, and u is the controller to be determined.
The hybrid synchronization error is defined by

ei =
{

yi − xi if i is odd

yi + xi if i is even
(3)

Differentiating (3) and simplifying, the error dynamics is obtained as

ė = Ae + η(x, y) + u (4)

The design problem is to determine a feedback control u so that the error dynamics
(4) is globally asymptotically stable at the origin for all initial conditions e(0) ∈ IRn .

For the SMC design for the hybrid phase synchronization of the systems (1) and
(2), the control u is taken as

u(t) = −η(x, y) + Bv(t), (5)

where B is an (n × 1) column vector chosen such that (A, B) is controllable.
Upon substituting (5) into (4), the closed-loop error system is obtained as

ė(t) = Ae(t) + Bv(t), (6)

which is a linear time-invariant control system with a single input v.
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Hence, by the use of the nonlinear control law (5), original problem of hybrid
phase synchronization of identical chaotic systems (1) and (2) has been converted
into an equivalent problem of globally stabilizing the error dynamics (6).

4 Sliding Controller Design for Hybrid Phase Synchronization

This section derives the main result, viz. sliding controller design for the hybrid
phase synchronization of the identical chaotic systems (1) and (2). After applying
the control (5) with (A, B) a controllable pair, it is supposed that the nonlinear error
dynamics (4) has been simplified as the linear error dynamics (6).

In the sliding controller design, the sliding variable is first defined as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (7)

where C is an (1 × n) row vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ IRn : s(e) = Ce = 0} (8)

If a slidingmotion occurs on S, then the slidingmode conditionsmust be satisfied,
which are given by

s ≡ 0 and ṡ = C Ae + C Bv = 0 (9)

It is assumed that the row vector C is chosen so that C B �= 0.
The sliding motion is affected by the so-called equivalent control given by

veq(t) = −(C B)−1C Ae(t) (10)

As a consequence, the equivalent dynamics in the sliding phase is defined by

ė =
[

I − B(C B)−1C
]

Ae = Ee, (11)

where

E =
[

I − B(C B)−1C
]

A (12)

It can be easily verified that E is independent of the control and has at most
(n − 1) nonzero eigenvalues, depending on the chosen switching surface, while the
associated eigenvectors belong to ker(C).

Since (A, B) is controllable, the matrices B and C can be chosen so that E has
any desired (n − 1) stable eigenvalues.
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Thus, the dynamics in the sliding mode is globally asymptotically stable.
Finally, for the sliding mode controller (SMC) design, the constant plus propor-

tional rate reaching law is used, which is given by

ṡ = −β sgn(s) − αs (13)

where sgn(·) denotes the sign function and the gains α > 0, β > 0 are found so that
the sliding condition is satisfied and the sliding motion will occur.

From the equations (9) and (13), sliding control v is found as

C Ae + C Bv = −β sgn(s) − αs (14)

Since s = Ce, the equation (14) can be simplified to get

v = −(C B)−1 [
C(α I + A)e + β sgn(s)

]
(15)

Next, the main result of this section is established as follows.

Theorem 1 A sliding mode control law that achieves hybrid phase synchroniza-
tion between the identical chaotic systems (1) and (2) for all initial conditions
x(0), y(0) ∈ IRn is given by the equation

u(t) = −η(x(t), y(t)) + Bv(t), (16)

where v is defined by (15), B is an (n × 1) vector such that (A, B) is controllable,
C is an (1 × n) vector such that C B �= 0 and that the matrix E defined by Eq. (12)
has (n − 1) stable eigenvalues.

Proof The proof is carried out using Lyapunov stability theory (Khalil 2001).
Substituting the sliding control law (16) into the error dynamics (4) leads to

ė = Ae + Bv (17)

Substituting for v from (15) into (17), the error dynamics is obtained as

ė = Ae − B(C B)−1 [
C(α I + A)e + β sgn(s)

]
(18)

The global asymptotic stability of the error system (18) is proved by taking the
candidate Lyapunov function

V (e) = 1

2
s2(e), (19)

which is a non-negative definite function on IRn .
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It is noted that

V (e) = 0 ⇐⇒ s(e) = 0 (20)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (21)

By the choice of E , the dynamics in the sliding mode given by (11) is globally
asymptotically stable.

When s(e) �= 0, V (e) > 0.
Also, when s(e) �= 0, differentiating V along the error dynamics (18) or the

equivalent dynamics (13), the following dynamics is obtained:

V̇ = sṡ = −βs sgn(s) − αs2 < 0 (22)

Hence, by Lyapunov stability theory (Khalil 2001), it is concluded that the error
dynamics (18) is globally asymptotically stable for all initial conditions e(0) ∈ IRn .

This completes the proof. ��

5 Analysis of the Vaidyanathan Chaotic System

This section gives details and qualitative properties of the Vaidyanathan chaotic
system (Vaidyanathan 2014), which is a novel eight-term 3-D polynomial system
with three quadratic nonlinearities.

The Vaidyanathan 3-D chaotic system is a polynomial system described by

ẋ1 = a(x2 − x1) + x2x3,
ẋ2 = bx1 + cx2 − x1x3,
ẋ3 = −dx3 + x21 ,

(23)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
TheVaidyanathan system (23) depicts a strange chaotic attractorwhen the constant

parameter values are taken as

a = 25, b = 33, c = 11, d = 6. (24)

For simulations, the initial values of the Vaidyanathan system (23) are taken as

x1(0) = 1.5, x2(0) = 3.2, x3(0) = 2.7 (25)
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Fig. 1 Strange attractor of the Vaidyanathan system in IR3

The Vaidyanathan 3-D chaotic system (23) exhibits a 3-scroll chaotic attractor.
Figure1 describes the 3-scroll chaotic attractor of the Vaidyanathan system (23) in
3-D view.

Figure2 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x1, x2)-plane. In the projection on the (x1, x2)-plane, a 3-scroll
chaotic attractor is clearly seen.

Figure3 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x2, x3)-plane. In the projection on the (x2, x3)-plane, a 3-scroll
chaotic attractor is clearly seen.

Figure4 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x1, x3)-plane. In the projection on the (x2, x3)-plane, a 3-scroll
chaotic attractor is clearly seen.

5.1 Symmetry and Invariance

The Vaidyanathan system (23) is invariant under the coordinates transformation

(x1, x2, x3) → (−x1,−x2, x3). (26)

The transformation (26) persists for all values of the system parameters. Thus,
the Vaidyanathan system (23) has rotation symmetry about the x3-axis.
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Fig. 2 2-D projection of the Vaidyanathan system in (x1, x2)-plane
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Fig. 4 2-D projection of the Vaidyanathan system in (x1, x3)-plane

Hence, it follows that any non-trivial trajectory of the system (23) must have a
twin trajectory.

It is easy to check that the x3-axis is invariant for the flow of the Vaidyanathan
system (23). Hence, all orbits of the system (23) starting from the x3 axis stay in the
x3 axis for all values of time.

5.2 Equilibria

For the parameter values in (24), the Vaidyanathan system (23) has three equilibrium
points given by

E1 =
⎡
⎣0
0
0

⎤
⎦ , E2 =

⎡
⎣14.9813

6.0015
37.4066

⎤
⎦ and E3 =

⎡
⎣−14.9813

−6.0015
37.4066

⎤
⎦ . (27)

The Jacobian matrix of the Vaidyanathan system (23) at (x�
1, x�

2, x�
3) is obtained

as
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J (x�) =

⎡
⎢⎢⎢⎣

−25 25 + x�
3 x�

2

33 − x�
3 11 −x�

1

2x�
1 0 −6

⎤
⎥⎥⎥⎦ (28)

The Jacobian matrix at E1 is obtained as

J1 = J (E1) =

⎡
⎢⎢⎢⎣

−25 25 0

33 11 0

0 0 −6

⎤
⎥⎥⎥⎦ (29)

The matrix J1 has the eigenvalues

λ1 = −40.8969, λ2 = −6, λ3 = 26.8969 (30)

This shows that the equilibrium point E1 is a saddle-point.
The Jacobian matrix at E2 is obtained as

J2 = J (E2) =

⎡
⎢⎢⎢⎣

−25 62.4066 6.0015

−4.4066 11 −14.9813

29.9626 0 −6

⎤
⎥⎥⎥⎦ (31)

The matrix J2 has the eigenvalues

λ1 = −40.5768, λ2,3 = 10.2884 ± 25.1648i (32)

This shows that the equilibrium point E2 is a saddle-focus.
The Jacobian matrix at E3 is obtained as

J3 = J (E3) =

⎡
⎢⎢⎢⎣

−25 62.4066 −6.0015

−4.4066 11 14.9813

−29.9626 0 −6

⎤
⎥⎥⎥⎦ (33)

The matrix J3 has the eigenvalues

λ1 = −40.5768, λ2,3 = 10.2884 ± 25.1648i (34)

This shows that the equilibrium point E3 is a saddle-focus.
Hence, all the three equilibria of the Vaidyanathan system (23) are unstable.
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5.3 Lyapunov Exponents and Lyapunov Dimension

For the parameter values as given by Eq. (24) and the initial state as given by Eq. (25),
the Lyapunov exponents of the Vaidyanathan system (23) are numerically obtained
as

L1 = 6.5023, L2 = 0, L3 = −26.4352 (35)

Thus, the maximal Lyapunov exponent of the Vaidyanathan system (23) is L1 =
6.5023.

Since L1 + L2 + L3 = −19.9329 < 0, the system (23) is dissipative.
Also, the Lyapunov dimension of the Vaidyanathan system (23) is obtained as

DL = 2 + L1 + L2

|L3| = 2.2467 (36)

which is fractional.
Figure5 depicts the dynamics of the Lyapunov exponents of the Vaidyanathan

system (23).
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6 SMC Design of Synchronization of Vaidyanathan
Chaotic Systems

This section details the construction of a hybrid synchronizer for identical
Vaidyanathan chaotic systems via sliding mode control method.

The master system is taken as the Vaidyanathan system given by

ẋ1 = a(x2 − x1) + x2x3

ẋ2 = bx1 + cx2 − x1x3

ẋ3 = −dx3 + x21

(37)

where a, b, c, d are constant, positive parameters.
The slave system is also taken as the Vaidyanathan system with controllers

attached and given by

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = by1 + cy2 − y1y3 + u2

ẏ3 = −dy3 + y21 + u3

(38)

where u1, u2, u3 are sliding controllers to be found.
The hybrid phase synchronization error is defined by

e1 = y1 − x1
e2 = y2 + x2
e3 = y3 − x3

(39)

Then the error dynamics is obtained as

ė1 = a(e2 − e1) − 2ax2 + y2y3 − x2x3 + u1

ė2 = be1 + ce2 + 2bx1 − y1y3 − x1x3 + u2

ė3 = −de3 + y21 − x21 + u3

(40)

The error dynamics (40) can be expressed in matrix form as

ė = Ae + η(x, y) + u (41)

where

A =
⎡
⎢⎣

−a a 0

b c 0

0 0 −d

⎤
⎥⎦ , η(x, y) =

⎡
⎢⎣

−2ax2 + y2y3 − x2x3
2bx1 − y1y3 + x1x3

y21 − x21

⎤
⎥⎦ , u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ (42)
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A hybrid synchronizing sliding controller can be designed by the procedure out-
lined in Sect. 5.

The parameter values of a, b, c, d are taken as in the chaotic case, i.e.

a = 25, b = 33, c = 11, d = 6. (43)

First, the control u is set as

u = −η(x, y) + Bv, (44)

where B is chosen such that (A, B) is controllable.
A simple choice for B is

B =
⎡
⎣1
1
1

⎤
⎦ (45)

The sliding variable is picked as

s = Ce = [
1 2 −1

]
e = e1 + 2e2 − e3 (46)

Then the matrix E defined by (12) has the eigenvalues

λ1 = −47, λ2 = −20, λ3 = 0 (47)

The choice of the sliding variable indicated by (46) renders the sliding mode
dynamics globally asymptotically stable.

Next, we choose the SMC gains as

α = 6, β = 0.2 (48)

Using the formula (15), the control v is obtained as

v(t) = −23.5e1 − 29.5e2 − 0.1 sgn(s) (49)

As a consequence of Theorem 1 (Sect. 4), the following result is obtained.

Theorem 2 The control law defined by (44), where v is defined by (49), renders
the Vaidyanathan systems (37) and (38) globally and asymptotically hybrid phase
synchronized for all values of the initial states x(0), y(0) ∈ IR3. ��

For numerical simulations, the classical fourth-order Runge-Kutta method with
step-size h = 10−8 is used in the MATLAB software.

The parameter values are taken as in the chaotic case of the Vaidyanathan systems
(37) and (38), i.e.
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a = 25, b = 33, c = 11, d = 6

The sliding mode gains are taken as

α = 6 and β = 0.2

The initial values of the master system (37) are taken as

x1(0) = 2.5, x2(0) = −3.7, x3(0) = −3.2

The initial values of the slave system (38) are taken as

y1(0) = 4.3, y2(0) = −1.6, y3(0) = 2.4

Figures6, 7 and 8 show the hybrid synchronization of the Vaidyanathan systems
(37) and (38).

In Fig. 6, it is seen that the odd states x1(t) and y1(t) are completely synchronized
in 0.5 s.

In Fig. 7, it is seen that the even states x2(t) and y2(t) are anti-synchronized in
0.5 s.

In Fig. 8, it is seen that the odd states x3(t) and y3(t) are completely synchronized
in 0.5 s.
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Fig. 6 Hybrid synchronization of the states x1 and y1
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Figure9 shows the time-history of the hybrid synchronization errors e1, e2 and
e3. It is seen that the hybrid synchronization errors converge to zero in 0.5 s. Thus,
the sliding controller for hybrid synchronization of identical Vaidyanathan systems
yields very fast convergence.

7 Conclusions

Hybrid phase synchronization is a new type of synchronization of a pair of chaotic
systems called the master and slave systems, where the odd states are completely
synchronized and the even states anti-synchronized. In this research work, a general
theorem has been developed for the hybrid phase synchronization of identical chaotic
systems via sliding mode controller. The main result was proved using Lyapunov
stability theory. As an application of our general result, a sliding mode controller
has been designed for the hybrid phase synchronization of identical Vaidyanathan
chaotic systems (2014). MATLAB simulations were shown to illustrate the qual-
itative properties of the Vaidyanathan system and the hybrid synchronizer results
for the identical Vaidyanathan systems. As future research, adaptive sliding mode
controllers may be devised for the hybrid chaos synchronization of identical chaotic
systems with unknown system parameters.
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