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Abstract Anti-synchronization is an important type of synchronization of a pair
of chaotic systems called the master and slave systems. The anti-synchronization
characterizes the asymptotic vanishing of the sum of the states of the master and
slave systems. In other words, anti-synchronization of master and slave system is
said to occur when the states of the synchronized systems have the same absolute
values but opposite signs. Anti-synchronization has applications in science and
engineering. This work derives a general result for the anti-synchronization of
identical chaotic systems using sliding mode control. The main result has been
proved using Lyapunov stability theory. Sliding mode control (SMC) is well-known
as a robust approach and useful for controller design in systems with parameter
uncertainties. Next, as an application of the main result, anti-synchronizing con-
troller has been designed for Vaidyanathan–Madhavan chaotic systems (2013). The
Lyapunov exponents of the Vaidyanathan–Madhavan chaotic system are found as
L1 = 3.2226, L2 = 0 and L3 = −30.3406 and the Lyapunov dimension of the
novel chaotic system is found as DL = 2.1095. The maximal Lyapunov exponent
of the Vaidyanathan–Madhavan chaotic system is L1 = 3.2226. As an application
of the general result derived in this work, a sliding mode controller is derived for
the anti-synchronization of the identical Vaidyanathan–Madhavan chaotic systems.
MATLAB simulations have been provided to illustrate the qualitative properties of
the novel 3-D chaotic system and the anti-synchronizer results for the identical novel
3-D chaotic systems.

S. Vaidyanathan (B)

Research and Development Centre, Vel Tech University,
Avadi, Chennai 600062, Tamil Nadu, India
e-mail: sundarvtu@gmail.com

A.T. Azar
Faculty of Computers and Information, Benha University, Banha, Egypt
e-mail: ahmad_t_azar@ieee.org

© Springer International Publishing Switzerland 2015
A.T. Azar and Q. Zhu (eds.), Advances and Applications in Sliding Mode Control systems,
Studies in Computational Intelligence 576, DOI 10.1007/978-3-319-11173-5_19

527



528 S. Vaidyanathan and A.T. Azar

1 Introduction

Chaos is an interesting phenomenon of nonlinear dynamical systems. Chaotic sys-
tems are nonlinear dynamical systems which are sensitive to initial conditions, topo-
logically mixing and with dense periodic orbits. Sensitivity to initial conditions of
chaotic systems is popularly known as the butterfly effect. Small changes in an initial
state will make a very large difference in the behavior of the system at future states.
Chaotic behaviour was suspected well over hundred years ago in the study of three
bodies problem, but it was established only a few decades ago in the study of 3-D
weather models (Lorenz 1963).

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the maximal Lyapunov exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Since the discovery of Lorenz system in 1963, there is a great deal of interest in
the chaos literature in finding new chaotic systems. Some well-known paradigms of
3-D chaotic systems in the literature are (Arneodo et al. 1981; Cai and Tan 2007;
Chen and Ueta 1999; Chen and Lee 2004; Li 2008; Liu et al. 2004; Lü and Chen
2002; Rössler 1976; Sprott 1994; Sundarapandian and Pehlivan 2012; Tigan and
Opris 2008; Vaidyanathan 2013a, b, 2014; Zhou et al. 2008; Zhu et al. 2010).

Chaotic systems have several important applications in science and engineering
such as oscillators (Kengne et al. 2012; Sharma et al. 2012), lasers (Li et al. 2014;
Yuan et al. 2014), chemical reactions (Gaspard 1999; Petrov et al. 1993), cryptosys-
tems (Rhouma and Belghith 2011; Usama et al. 2010), secure communications (Feki
2003; Murali and Lakshmanan 1998; Zaher and Abu-Rezq 2011), biology (Das et al.
2014; Kyriazis 1991), ecology (Gibson and Wilson 2013; Suérez 1999), robotics
(Mondal and Mahanta 2014; Nehmzow and Walker 2005; Volos et al. 2013),
cardiology (Qu 2011; Witte and Witte 1991), neural networks (Huang et al. 2012;
Kaslik and Sivasundaram 2012; Lian and Chen 2011), finance (Guégan 2009; Sprott
2004), etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) which has the goal of using the output of the master system to
control the slave system so that the output of the slave system tracks the output of the
master system asymptotically. Thus, if x(t) and y(t) denote the states of the master
and slave systems, then the design goal of complete synchronization (CS) problem
is to satisfy the condition
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lim
t→∞ ‖x(t) − y(t)‖ = 0, ∀x(0), y(0) ∈ IRn (1)

Anti-synchronization (AS) is an important type of synchronization of a pair of
chaotic systems called the master and slave systems. The anti-synchronization char-
acterizes the asymptotic vanishing of the sum of the states of the master and slave
systems. In other words, anti-synchronization of master and slave system is said to
occur when the states of the synchronized systems have the same absolute values
but opposite signs. Thus, if x(t) and y(t) denote the states of the master and slave
systems, then the design goal of anti-synchronization problem (AS) is to satisfy the
condition

lim
t→∞ ‖x(t) + y(t)‖ = 0, ∀x(0), y(0) ∈ IRn (2)

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s (Carroll and Pecora 1991; Pecora and Carroll
1990). The active control method (Liu et al. 2007; Rafikov and Balthazar 2007;
Sundarapandian 2010; Ucar et al. 2007; Vaidyanathan 2012c; Wang and Liu 2006)
is commonly used when the system parameters are available for measurement and
the adaptive control method (Wu et al. 2008; Huang 2008; Lin 2008; Sarasu and
Sundarapandian 2012a, b, c) is commonly used when some or all the system para-
meters are not available for measurement and estimates for unknown parameters of
the systems.

Other popular methods for chaos synchronization are the sampled-data feedback
method (Gan and Liang 2012; Li et al. 2011; Xiao et al. 2014; Zhang and Zhou
2012), time-delay feedback method (Chen et al. 2014; Jiang et al. 2004; Shahverdiev
et al. 2009; Shahverdiev and Shore 2009), backstepping method (Njah et al. 2010;
Tu et al. 2014; Vaidyanathan 2012a; Zhang et al. 2004), etc.

Complete synchronization (Rasappan and Vaidyanathan 2012; Suresh and Sun-
darapandian2013;Vaidyanathan andRajagopal 2011) is characterizedby the equality
of state variables evolving in time, while anti-synchronization (Vaidyanathan 2011,
2012b; Vaidyanathan and Sampath 2012) is characterized by the disappearance of
the sum of relevant state variables evolving in time.

This research work is organized as follows. Section2 gives a brief introduc-
tion about sliding mode control. Section3 discusses the problem statement for the
anti-synchronization of two identical chaotic systems and our design methodology.
Section4 contains the main result of this work, namely, sliding controller design
for the global anti-synchronization of identical chaotic systems. Our sliding mode
control law is designed by considering constant-plus-proportional sliding law. The
main result for the global anti-synchronization of chaotic systems is established using
Lyapunov stability theory.

Section5 introduces the Vaidyanathan–Madhavan chaotic system (Vaidyanathan
and Madhavan 2013), which is a seven-term novel 3-D chaotic system with three
quadratic nonlinearities. Section details the qualitative properties of the
Vaidyanathan–Madhavan 3-D chaotic system. The Lyapunov exponents of the
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Vaidyanathan–Madhavan chaotic system are found as L1 = 3.2226, L2 = 0 and
L3 = −30.3406 and the Lyapunov dimension of the novel chaotic system is found
as DL = 2.1095. The maximal Lyapunov exponent of the Vaidyanathan–Madhavan
chaotic system is L1 = 3.2226.

In Sect. 7, we describe the sliding mode controller design for the global anti-
synchronization of identical Vaidyanathan–Madhavan chaotic systems. MATLAB
simulations are shown to validate and illustrate the slidingmode controller design for
the anti-synchronization of the Vaidyanathan–Madhavan chaotic systems. Section8
contains a summary of the main results derived in this research work.

2 Sliding Mode Control and Chaos Anti-synchronization

In control theory, the sliding mode control approach is recognized as an efficient tool
for designing robust controllers for linear or nonlinear control systems operating
under uncertainty conditions (Perruquetti and Barbot 2002; Utkin 1992).

The started steps of sliding mode control theory originated in the early 1950s and
thiswas initiated byS.V. Emel’yanov asVariable Structure Control (Itkis 1976;Utkin
1978; Zinober 1993). Variable structure control (VSC) is a form of discontinuous
nonlinear control and this method alters the dynamics of a nonlinear system by
application of a high-frequency switching control.

Slidingmode controlmethod has amajor advantage of low sensitivity to parameter
variations in the plant and disturbances affecting the plant, which eliminates the
necessity of exact modeling of the plant.

In the slidingmode control theory, the control dynamics has two sequentialmodes,
viz. (i) the reaching mode, and (ii) the sliding mode. Basically, a sliding mode con-
troller (SMC) design consists of two parts: hyperplane (or sliding surface) design
and controller design.

A hyperplane is first designed via the pole-placement approach in the modern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall control system is ensured by the sliding condition and by a
stable hyperplane. Sliding mode control theory has been used to deal with many
research problems of control literature (Bidarvatan et al. 2014; Feng et al. 2014;
Hamayun et al. 2013; Lu et al. 2014; Ouyang et al. 2014; Zhang et al. 2014).

3 Problem Statement

This section gives a problem statement of global anti-synchronization of a pair of
identical chaotic systems called the master and slave systems.

The master system is taken as the chaotic system

ẋ = Ax + f (x), (3)
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where x ∈ IRn is the state of the system, A is the n × n matrix of system parameters
and f is a vector field that contains the nonlinear parts of the system and satisfies
f (0) = 0.
The slave system is taken as the controlled chaotic system

ẏ = Ay + f (y) + u, (4)

where y ∈ IRn is the state of the system, and u is the controller to be determined.
The anti-synchronization error between the master and slave systems is defined

by
e = y + x (5)

Differentiating (5) and simplifying, the error dynamics is obtained as

ė = Ae + η(x, y) + u (6)

where

η(x, y) = f (x) + f (y) (7)

The design problem is to determine a feedback control u so that the anti-
synchronization error dynamics (6) is globally asymptotically stable at the origin
for all initial conditions e(0) ∈ IRn .

For the SMC design for the global anti-synchronization of the systems (3) and
(4), the control u is taken as

u(t) = −η(x, y) + Bv(t), (8)

where B is an (n × 1) column vector chosen such that (A, B) is controllable.
Upon substituting (8) into (6), the closed-loop error system is obtained as

ė(t) = Ae(t) + Bv(t), (9)

which is a linear time-invariant control system with a single input v.
Hence, by the use of the nonlinear control law (8), original problem of global

anti-synchronization of identical chaotic systems (3) and (4) has been converted into
an equivalent problem of globally stabilizing the error dynamics (9).

4 Sliding Controller Design for Global Anti-synchronization

This section derives the main result, viz. sliding controller design for the global
anti-synchronization of the identical chaotic systems (3) and (4). After applying the
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control (8) with (A, B) a controllable pair, it is supposed that the nonlinear error
dynamics (6) has been simplified as the linear error dynamics (9).

In the sliding controller design, the sliding variable is first defined as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (10)

where C is an (1 × n) row vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ IRn : s(e) = Ce = 0} (11)

If a slidingmotion occurs on S, then the slidingmode conditionsmust be satisfied,
which are given by

s ≡ 0 and ṡ = C Ae + C Bv = 0 (12)

It is assumed that the row vector C is chosen so that C B �= 0.
The sliding motion is affected by the so-called equivalent control given by

veq(t) = −(C B)−1C Ae(t) (13)

As a consequence, the equivalent dynamics in the sliding phase is defined by

ė =
[

I − B(C B)−1C
]

Ae = Ee, (14)

where

E =
[

I − B(C B)−1C
]

A (15)

It can be easily verified that E is independent of the control and has at most
(n − 1) nonzero eigenvalues, depending on the chosen switching surface, while the
associated eigenvectors belong to ker(C).

Since (A, B) is controllable, the matrices B and C can be chosen so that E has
any desired (n − 1) stable eigenvalues.

Thus, the dynamics in the sliding mode is globally asymptotically stable.
Finally, for the sliding mode controller (SMC) design, the constant plus propor-

tional rate reaching law is used, which is given by

ṡ = −β sgn(s) − αs (16)

where sgn(·) denotes the sign function and the gains α > 0, β > 0 are found so that
the sliding condition is satisfied and the sliding motion will occur.

From the Eqs. (12) and (16), sliding control v is found as
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C Ae + C Bv = −β sgn(s) − αs (17)

Since s = Ce, the Eq. (17) can be simplified to get

v = −(C B)−1 [
C(α I + A)e + β sgn(s)

]
(18)

Next, the main result of this section is established as follows.

Theorem 1 A sliding mode control law that achieves global anti-synchronization
between the identical chaotic systems (3) and (4) for all initial conditions x(0), y(0)
in IRn is given by the equation

u(t) = −η(x(t), y(t)) + Bv(t), (19)

where v is defined by (18), B is an (n × 1) vector such that (A, B) is controllable,
C is an (1 × n) vector such that C B �= 0 and that the matrix E defined by Eq. (15)
has (n − 1) stable eigenvalues.

Proof The proof is carried out using Lyapunov stability theory (Khalil 2001).
Substituting the sliding control law (19) into the error dynamics (6) leads to

ė = Ae + Bv (20)

Substituting for v from (18) into (20), the error dynamics is obtained as

ė = Ae − B(C B)−1 [
C(α I + A)e + β sgn(s)

]
(21)

The global asymptotic stability of the error system (21) is proved by taking the
candidate Lyapunov function

V (e) = 1

2
s2(e), (22)

which is a non-negative definite function on IRn .
It is noted that

V (e) = 0 ⇐⇒ s(e) = 0 (23)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (24)

By the choice of E , the dynamics in the sliding mode given by (14) is globally
asymptotically stable.

When s(e) �= 0, V (e) > 0.
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Also, when s(e) �= 0, differentiating V along the error dynamics (21) or the
equivalent dynamics (16), the following dynamics is obtained:

V̇ = sṡ = −βs sgn(s) − αs2 < 0 (25)

Hence, by Lyapunov stability theory (Khalil 2001), it is concluded that the error
dynamics (21) is globally asymptotically stable for all initial conditions e(0) ∈ IRn .

This completes the proof. ��

5 Vaidyanathan–Madhavan 3-D Chaotic System

This section describes the equations and phase portraits of Vaidyanathan–Madhavan
3-D chaotic system (Vaidyanathan and Madhavan 2013).

The Vaidyanathan–Madhavan chaotic system is a described by the 3-D dynamics

ẋ1 = a(x2 − x1) + x2x3,
ẋ2 = bx1 + cx1x3,
ẋ3 = −dx3 − x1x2 − x21 ,

(26)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
The system (26) is a seven-term polynomial chaotic system with three quadratic

nonlinearities.
The system (26) depicts a strange chaotic attractor when the constant parameter

values are taken as

a = 22, b = 400, c = 50, d = 0.5 (27)

For simulations, the initial values of the Vaidyanathan–Madhavan chaotic system
(26) are taken as

x1(0) = 0.6, x2(0) = 1.8, x3(0) = 1.2 (28)

The novel 3-D chaotic system (26) exhibits a 2-scroll chaotic attractor. Figure1
describes the 2-scroll chaotic attractor of the Vaidyanathan–Madhavan chaotic sys-
tem (26) in 3-D view.

Figure2 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x1, x2)-plane. In the projection
on the (x1, x2)-plane, a 2-scroll chaotic attractor is clearly seen.

Figure3 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x2, x3)-plane. In the projection
on the (x2, x3)-plane, a 2-scroll chaotic attractor is clearly seen.
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Fig. 1 Strange attractor of the Vaidyanathan–Madhavan chaotic system in IR3
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Fig. 2 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x1, x2)-plane

Figure4 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x1, x3)-plane. In the projection
on the (x1, x3)-plane, a 2-scroll chaotic attractor is clearly seen.
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Fig. 3 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x2, x3)-plane
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Fig. 4 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x1, x3)-plane

6 Analysis of the Vaidyanathan–Madhavan Chaotic System

This section gives the qualitative properties of the Vaidyanathan–Madhavan 3-D
chaotic system (2013).

6.1 Symmetry and Invariance

The Vaidyanathan system (26) is invariant under the coordinates transformation
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(x1, x2, x3) → (−x1,−x2, x3). (29)

The transformation (29) persists for all values of the system parameters. Thus,
the Vaidyanathan system (26) has rotation symmetry about the x3-axis.

Hence, it follows that any non-trivial trajectory of the system (26) must have a
twin trajectory.

It is easy to check that the x3-axis is invariant for the flow of the Vaidyanathan
system (26). Hence, all orbits of the system (26) starting from the x3 axis stay in the
x3 axis for all values of time.

6.2 Equilibria

The equilibrium points of the Vaidyanathan–Madhavan system (26) are obtained by
solving the nonlinear equations

f1(x) = a(x2 − x1) + x2x3 = 0
f2(x) = bx1 + cx1x3 = 0
f3(x) = −dx3 − x1x2 − x21 = 0

(30)

We take the parameter values as in the chaotic case, viz.

a = 22, b = 400, c = 50, d = 0.5 (31)

Solving the nonlinear system of Eqs. (30) with the parameter values (31), we
obtain three equilibrium points of the Vaidyanathan–Madhavan system (26) as

E0 =
⎡
⎣
0
0
0

⎤
⎦ , E1 =

⎡
⎣

1.2472
1.9599

−8.0000

⎤
⎦ and E2 =

⎡
⎣

−1.2472
−1.9599
−8.0000

⎤
⎦ . (32)

The Jacobian matrix of the Vaidyanathan system (26) at (x�
1, x�

2, x�
3) is obtained

as

J (x�) =
⎡
⎢⎣

−22 22 + x�
3 x�

2

400 + 50x�
3 0 50x�

1

−x�
2 − 2x�

1 −x�
1 −0.5

⎤
⎥⎦ (33)

The Jacobian matrix at E0 is obtained as

J0 = J (E0) =

⎡
⎢⎢⎢⎣

−22 22 0

400 0 0

0 0 −0.5

⎤
⎥⎥⎥⎦ (34)
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The matrix J0 has the eigenvalues

λ1 = −0.5, λ2 = −105.451, λ3 = 83.451 (35)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian matrix at E1 is obtained as

J1 = J (E1) =
⎡
⎢⎣

−22 14 1.9599

0 0 62.36

−4.4543 −1.2472 −0.5

⎤
⎥⎦ (36)

The matrix J1 has the eigenvalues

λ1 = −26.7022, λ2,3 = 2.1011 ± 14.3283i (37)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian matrix at E2 is obtained as

J2 = J (E2) =
⎡
⎢⎣

−22 14 −1.9599

0 0 −62.36

4.4543 1.2472 −0.5

⎤
⎥⎦ (38)

The matrix J2 has the eigenvalues

λ1 = −26.7022, λ2,3 = 2.1011 ± 14.3283i (39)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
Hence, E0, E1, E2 are all unstable equilibrium points of the Vaidyanathan–

Madhavan chaotic system (26), where E0 is a saddle point and E1, E2 are saddle-
focus points.

6.3 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the Vaidyanathan–Madhavan system as in (28) and
the parameter values of the Vaidyanathan–Madhavan system as (27).

Then the Lyapunov exponents of the Vaidyanathan system (26) are numerically
obtained as

L1 = 3.3226, L2 = 0, L3 = −30.3406 (40)

Thus, the maximal Lyapunov exponent of the Vaidyanathan–Madhavan system
(26) is L1 = 3.3226.
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Fig. 5 Dynamics of the lyapunov exponents of the Vaidyanathan–Madhavan system

Since L1 + L2 + L3 = −27.018 < 0, the system (26) is dissipative.
Also, the Lyapunov dimension of the system (26) is obtained as

DL = 2 + L1 + L2

|L3| = 2.1095 (41)

Figure5 depicts the dynamics of the Lyapunov exponents of the Vaidyanathan–
Madhavan system (26).

7 Anti-synchronization of Vaidyanathan–Madhavan
Chaotic Systems via SMC

This section details the construction of an anti-synchronizer for identical
Vaidyanathan–Madhavan chaotic systems via sliding mode control method.

The master system is taken as the Vaidyanathan–Madhavan system given by
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ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx1 + cx1x3
ẋ3 = −dx3 − x1x2 − x21

(42)

where a, b, c, d are constant, positive parameters.
The slave system is also taken as the Vaidyanathan–Madhavan system with con-

trollers attached and given by

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = by1 + cy1y3 + u2

ẏ3 = −dy3 − y1y2 − y21 + u3

(43)

where u1, u2, u3 are sliding controllers to be found.
The anti-synchronization error is defined by

e = y + x (44)

Then the error dynamics is obtained as

ė1 = a(e2 − e1) + y2y3 + x2x3 + u1

ė2 = be1 + c(y1y3 + x1x3) + u2

ė3 = −de3 − y1y2 − x1x2 − y21 − x21 + u3

(45)

The error dynamics (45) can be expressed in matrix form as

ė = Ae + η(x, y) + u (46)

where

A =
⎡
⎢⎣

−a a 0

b 0 0

0 0 −d

⎤
⎥⎦ , η(x, y) =

⎡
⎢⎣

y2y3 + x2x3
c(y1y3 + x1x3)

−y1y2 − x1x2 − y21 − x21

⎤
⎥⎦ , u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦

(47)
The parameter values of a, b, c, d are taken as in the chaotic case, i.e.

a = 22, b = 400, c = 50, d = 0.5 (48)

First, the control u is set as

u = −η(x, y) + Bv, (49)

where B is chosen such that (A, B) is controllable.
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A simple choice for B is

B =
⎡
⎣
1
1
1

⎤
⎦ (50)

The sliding variable is picked as

s = Ce = [
1 2 −2

]
e = e1 + 2e2 − 2e3 (51)

The choice of the sliding variable indicated by (51) renders the sliding mode
dynamics globally asymptotically stable.

Next, we choose the SMC gains as

α = 6 and β = 0.2 (52)

Using the formula (18), the control v is obtained as

v(t) = −784e1 − 34e2 + 11e3 − 0.2 sgn(s) (53)

As a consequence of Theorem 1 (Sect. 4), the following result is obtained.

Theorem 2 The control law defined by (49), where v is defined by (53), renders the
Vaidyanathan systems (42) and (43) globally and asymptotically anti-synchronized
for all values of the initial states x(0), y(0) ∈ IR3.

For numerical simulations, the classical fourth-order Runge-Kutta method with
step-size h = 10−8 is used in the MATLAB software.

The parameter values are taken as in the chaotic case of the Vaidyanathan systems
(42) and (43), i.e.

a = 22, b = 400, c = 50, d = 0.5

The sliding mode gains are taken as α = 6 and β = 0.2.
The initial values of the master system (42) are taken as

x1(0) = 5.2, x2(0) = 2.7, x3(0) = −3.2

The initial values of the slave system (43) are taken as

y1(0) = 3.4, y2(0) = 3.1, y3(0) = −8.4

Figures. 6, 7 and 8 show the anti-synchronization of the Vaidyanathan systems
(42) and (43). Figure9 shows the time-history of the anti-synchronization errors
e1, e2 and e3.

In Fig. 6, it is seen that the odd states x1(t) and y1(t) are anti-synchronized in 1 s.
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Fig. 6 Anti-synchronization of the states x1 and y1
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Fig. 7 Anti-synchronization of the states x2 and y2

In Fig. 7, it is seen that the even states x2(t) and y2(t) are anti-synchronized in
1 s.

In Fig. 8, it is seen that the odd states x3(t) and y3(t) are anti-synchronized in 1 s.
Figure9 shows the time-history of the anti-synchronization errors e1, e2 and e3.

It is seen that the anti-synchronization errors converge to zero in 1 s.
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Fig. 8 Anti-synchronization of the states x3 and y3
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Fig. 9 Time-history of the anti-synchronization errors e1, e2, e3

8 Conclusions

A general result has been derived in this work for the anti-synchronization of iden-
tical chaotic systems using sliding mode control. The main result has been proved
using Lyapunov stability theory. Sliding mode control (SMC) is well-known as a
robust approach and useful for controller design in systems with parameter uncer-
tainties. Next, as an application of the main result, anti-synchronizing controller
has been designed for Vaidyanathan–Madhavan chaotic systems (2013). The Lya-
punov exponents of the Vaidyanathan–Madhavan chaotic system were found as



544 S. Vaidyanathan and A.T. Azar

L1 = 3.2226, L2 = 0 and L3 = −30.3406 and the Lyapunov dimension of the
novel chaotic system was found as DL = 2.1095. The maximal Lyapunov exponent
of the Vaidyanathan–Madhavan chaotic system was found as L1 = 3.2226. As an
application of the general result derived in this work, a sliding mode controller has
been derived for the anti-synchronization of the identical Vaidyanathan–Madhavan
chaotic systems. MATLAB simulations have been provided to illustrate the qualita-
tive properties of the novel 3-D chaotic system and the anti-synchronizer results for
the identical novel 3-D chaotic systems. As future research, adaptive sliding mode
controllers may be devised for the anti-synchronization of identical chaotic systems
with unknown system parameters.
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