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Abstract The high complexity and nonlinearity of power systems, together with
their almost continuously time-varying nature, have presented a big challenge for
control engineers, for decades. The disadvantages of the linear controllers/models,
such as being dependent on the operating condition, sensibility to the disturbance such
as parametric variations or faults can be overcome by using appropriate nonlinear
control techniques. Sliding-mode control technique has been extensively used when
a robust control scheme is required. This chapter presents the transient stabilization
with voltage regulation analysis of a synchronous power generator driven by steam
turbine and connected to an infinite bus. The aim is to obtain high performance for the
terminal voltage and the rotor speed simultaneously under a large sudden fault and
a wide range of operating conditions. The methodology adopted is based on sliding
mode control technique. First, a nonlinear sliding mode observer for the synchronous
machine damper currents is proposed. Next, the control laws of the complete ninth
order model of a power system, which takes into account the stator dynamics as
well as the damper effects, are developed. They are shown to be asymptotically
stable in the context of Lyapunov theory. Finally, the effectiveness of the proposed
combined observer-controller for the transient stabilization and voltage regulation is
demonstrated.

Nomenculture

vd , vq Direct and quadrature axis stator terminal voltage components,
respectively

v f d Excitation control input
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vt Terminal voltage
id , iq Direct and quadrature axis stator current components, respectively

i f d Field winding Current
ikd , i kq Direct and quadrature axis damper winding current components,

respectively
λd , λq Direct and quadrature axis flux linkages, respectively

Rs Stator resistance
R f d Field resistance

Rkd , Rkq Damper winding resistances
Ld , Lq Direct and quadrature self inductances, respectively

L f d Rotor self inductance
Lkd , Lkq Direct and quadrature damper winding self inductances, respec-

tively
Lmd , Lmq Direct and quadrature magnetizing inductances, respectively

ω Angular speed of the generator
δ Rotor angle of the generator

Tm Mechanical torque
Te Electromagnetic torque
D Damping constant
H Inertia constant
a Phase angle of infinite bus voltage

V ∝ Infinite bus voltage
Le Inductance of the transmission line
Re Resistance of the transmission line

1 Introduction

Nowadays, electric power systems have evolved through continuing growth in inter-
connections, use of new technologies and controls. They are operating more and more
closely to their limit stability in highly stressed conditions. To maintain a high degree
of reliability and security, different forms of system instability must be considered
in the design of controllers.

Stability is a condition of equilibrium between opposing forces. Depending on the
network topology, system operating condition and the form of disturbance, different
sets of opposing forces may experience sustained imbalance leading to different
forms of instability. Figure 1 identifies the categories and subcategories of the power
system stability problem. The classification of power system stability is generally
based on the physical nature of the resulting mode of instability, the size of the
disturbance considered, the devices, processes, and the time span (Kundur 1994).

The reliability of the power supply implies much more than merely being available.
Ideally, the loads must be fed at constant voltage and frequency at all times. However,
small or large disturbances such as power changes or short circuits may transpire.
One of the most vital operation demands is maintaining good stability and transient
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Fig. 1 Classification of power system stability

performance of the terminal voltage, rotor speed and the power transfer to the network
(Guo et al. 2001; Jiawei et al. 2014). This requirement should be achieved by an
adequate control of the system.

Traditionally, excitation controllers, which are mainly designed by using linear
control theory, are used to regulate the terminal voltage at a specified value and
ensure the stability under small and large disturbances. The principal conventional
excitation controller is the automatic voltage regulator (AVR). Many different AVR
models have been developed to represent the various types used in a power system.
The IEEE defined several AVR types, the main one of which (Type 1) is shown in
Fig. 2. The modern AVR employing conventional, fixed parameter compensators,
whilst capable of providing good steady state voltage regulation and fast dynamic
response to disturbances, suffers from considerable variations in voltage control
performance as the generator operating change. Several forms of adaptive control
have been investigated to address the problem of performance variation (Ghazizadeh
and Hughes 1998).

Adversely, the generator automatic voltage regulator which reacts only to the volt-
age error weakens the damping introduced by damper windings. This detrimental
effect of the AVR can be compensated using supplementary control loop which is
the power system stabilizer (PSS). The structure of the PSS is given in Fig. 3. These
stabilizers introduced additional system damping signals derived from the machine
speed or power through the excitation system in order to improve the damping of
power swings (Ghandakly and Farhoud 1992). Conventional fixed parameter stabi-
lizers work reasonably well over medium range of operating conditions. However
may diminish as the generator load changes or the network configuration is altered
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by faults or other switching conditions which lead to deterioration in the stabilizer
performance. Remarkable efforts have been devoted to the design of appropriate
PSS; various methods, such as root locus, eigenvalue techniques, pole placement,
adaptive control, etc. have been used. But in all these methods, model uncertainties
cannot be considered explicitly at the design stage (Zhao and Jiang 1995).

To deal with a high complexity and nonlinearity of power systems, together with
their almost continuously time-varying nature, different techniques have been inves-
tigated in aim to:

• Tackle the problem of transient stability by considering nonlinear models of power
systems.
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• Overcome the drawbacks of the linear controllers via design of nonlinear con-
trollers.

The main features of those controllers are summarized as follows:

• Independence of the equilibrium point and taking into account the important non-
linearities of the power system model.

• Robustness The designed controller must be insensible to all kinds of perturbations
such as parametric variations or faults and the non-modeled dynamics.

• Dynamics performance and Tracking Terminal voltage, rotor speed and rotor angle
converge to their references with accuracy and rapidity.

• Enhancing the transient stability Damping of all types of oscillations (local and
inter area).

Several control approaches have been applied. As a summary, the main strategies
are outlined as follows:

1.1 Feedback linearization

The essence of this technique is to first transform a nonlinear system into a linear on by
a nonlinear feedback, and then uses the well-known linear design techniques to com-
plete the controller design (Isidori 1995). Nevertheless these control designs require
the exact cancellation of nonlinear terms. With parametric uncertainties present in
the system, the cancellation is no longer applied. This constitutes an important draw-
back in the implementation of such controllers in the presence of model uncertainties
and/or external disturbances, thus affecting the robustness of the closed loop system
(Gao et al. 1992; King et al. 1994). Several adaptive versions of the feedback lin-
earizing controls are then developed in (Jain et al. 1994; Tan and Wang 1998).

1.2 Passivity based control

The control based on the passivity has been the subject of several investigations.
The aim of the method is to make the system passive closed loop (Byrnes et al.
1991; Kokotovic 1992; Ortega et al. 1998). This approach is limited to physical sys-
tems described by equations of motion Euler-Lagrange. The major problem with this
approach is that the performance of the closed loop system depends on the knowl-
edge of the model parameters used to define terms of energy dissipation. Therefore,
the performance is not satisfactory if terms of energy, which are used to ensure the
asymptotic stability of the controlled system dissipation, are used to ensure the pas-
sivity for all operating conditions (Nickllasson et al. 1997). References (Ortega et al.
1998) and (Galaz et al. 2003) present an application of this technique.
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1.3 Robust control

To cope with parametric uncertainties in power systems, many robust voltage reg-
ulators have been proposed using the theory of linear robust control such as H ∞
(Ahmed et al. 1996) and the L ∞ stability theory (Guo et al. 2001; Jiawei et al.
2014). In (Ohtsuk 1992), several types of uncertainties and changes in variables are
taken into account in the design of H ∞ controller. The maximum effects of these
disturbances are minimized. The use of this type of control for electric power sys-
tem is investigated in (Xi et al. 2002) and (Wang et al. 2003). The disadvantage
of these regulators is excessive gain values, which makes it difficult their practical
achievements.

1.4 Adaptive control

It should be noted that the model of a process, even relatively complex, is never
perfect. This type of approach applies to systems whose dynamics are known but
whose parameters are poorly identified or unknown or even slowly varying in time
(Astrom and Wittenmark 1995). The weakness of this type of controller resides
essentially in the fact that the dynamics of the estimator is not considered in the
design process. The relatively slow convergence of the adaptation may result in
some cases irreversible instability of the loop (Narendra and Balakrishnan 1997).
In (Khorrami et al. 1994; Ghandakly and Dai 2000; Shen et al. 2003; Jiao et al.
2005; Wu and Malik 2006), regulators of power system are based on adaptive
control.

1.5 Backstepping technique

This approach widely detailed by Krstic and Kokotovic Kanellakopolus in (Krstić
et al. 1995) provides solutions to the aforementioned problems. Indeed, the back-
stepping, whose basic idea is to synthesize the control law in a recursive manner, is
less restrictive compared to the control non-linear state feedback which cancels the
nonlinearities that might be useful. Unlike the adaptive controllers, based on certain
equivalence, which separate the design of the controller and the terms of adaptation,
adaptive backstepping has emerged as an alternative. In adaptive backstepping, the
control law takes into account the dynamic adaptation. These last two and the Lya-
punov function which guarantees the stability and performance of the overall system
are designed simultaneously. This technique has been successfully applied for power
system in (Karimi and Feliachi 2008; Ouassaid et al. 2008, 2010).
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1.6 Intelligent control

New approaches have been proposed for power stability such as fuzzy logic control
(Mrad et al. 2000; Abbadi et al. 2013), neurocontrol (Shamsollahi and Malik 1997;
Park et al. 2003; Venayagamoorthy et al. 2003; Mohagheghi et al. 2007) and algorithm
genetic (Alkhatib and Duveau 2013). Combinations of the above techniques are also
proposed in order to exploit the advantages of each method. These solutions are
efficient, but they increase the cost and complexity of the control system (Segal et al.
2000; Wang 2013).

1.7 Sliding mode control

This method is a very interesting technique. It dates back to the 70 s with the work
of Utkin (Utkin 1977). It is a robust control to the parametric uncertainties and
neglected dynamics. Nevertheless, the problems of chattering inherent in this type of
discontinuous control appear quickly. Note that the chattering may excite the high-
frequency dynamics neglected sometimes leading to instability. Methods to reduce
this phenomenon have been developed (Slotine and Li 1991). This technique was
applied to electric power systems in (Morales et al. 2001; Colbia-Vega et al. 2008;
Huerta et al. 2010).

Almost all the mentioned above controllers for EPS consider reduced order mod-
els, taking into account the generator mechanical dynamics only. In the most of those
studies, the nonlinear model used was a reduced third order model of the synchro-
nous machine. In (Loukianov et al. 2004; Cabrera-Vazquez et al. 2007) sliding mode
controllers for infinite machine bus systems have been designed considering the
mechanical rotor, and electrical stator dynamics. Likewise, In (Akhrif et al. 1999),
the feedback linearization technique was used to improve the system’s stability and
to obtain good post-fault voltage regulation. It is based on a 7 order model of the
synchronous machine which takes into account the damper windings effects. How-
ever the authors assumed that the damper currents are available for measurement. In
fact, the technology for direct damper current measurement is not fully developed
yet. Because, damper windings are metal bars placed in slots in the pole faces and
connected together at each end.

Thanks to the mentioned assumption, implementation of a controller based
on a complete 7th order model of power synchronous machine requires infor-
mation about the entire states of the power system. As a result, the estimation problem
of damper currents of synchronous generator arises. For this purpose, a nonlinear
observer for damper currents is developed, based on the sliding mode technique
(Ouassaid et al. 2012).

The rest of this chapter is organized as follows: In Sect. 2, a mathematical model
of a power system is introduced. It is based on a detailed 9th order model of a sys-
tem which consists of a steam turbine and Single Machine Infinite Bus (SMIB) and
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takes into account the stator dynamics as well as the damper winding effects and
practical limitation on controls. A nonlinear observer for damper winding currents is
developed in Sect. 3. Then, in Sect. 4, a sliding mode controller is constructed based
on a time-varying sliding surface to control the rotor speed and terminal voltage,
simultaneously, in order to enhance the transient stability and to ensure good post-
fault voltage regulation for power system. Section 5 presents a number of numerical
simulations results of the proposed observer-based nonlinear controller. Finally, con-
clusions are given in Sect. 6.

2 Power System Model

The system to be controlled is shown in Fig. 4. It consists of synchronous generator
driven by steam turbine and connected to an infinite bus via a transmission line. The
synchronous generator is described by a 7th order nonlinear mathematical model
which comprises three stator windings, one field winding and two damper windings.

The synchronous machine equations in terms of the Park’s d-q axis are expressed
(Fig. 5) as follows (Cheng and Hsu 1992; Anderson and Fouad 1994):

Armature windings

vd = −Rsid − ωλq + dλd

dt
(1)

vq = −Rsiq + ωλd + dλq

dt
(2)

where

λd = −Ldid + Lmd(i f d + ikd) (3)

λq = −Lqiq + Lmqikq (4)

Fig. 4 Block diagram of the power system with observer based-controller
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Fig. 5 Synchronous machine in Park’s d-q axis

Field winding

v f d = Rsi f d − Lmd
did

dt
+ L f d

di f d

dt
+ Lmd

dikd

dt
(5)

Damper windings

0 = Rkdikd − Lmd
did

dt
+ Lmd

di f d

dt
+ Lkd

dikd

dt
(6)

0 = Rkqikq − Lmq
did

dt
+ Lkq

dikq

dt
(7)

Mechanical equations

dδ

dt
= ω − 1 (8)

2H
dω

dt
= Tm − Te − Dω (9)

The electromagnetic torque is

Te = (
Lq − Ld

)
id iq + Lm f d i f d iq + Lmdikd iq − Lmqid ikq (10)

The equation of transmission network in the Park’s coordinates is

vd = Reid + Le
did

dt
− ωLeiq + V ∞ cos(δ − a) (11)

vq = Reiq + Le
diq

dt
+ ωLeid − V ∞ sin(δ − a) (12)
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where Re is the external resistance and Le inductance. In state space form, the
resulting system by combining Eqs. (1)–(12) is highly nonlinear not only in the
state but in the input and output as well (Akhrif et al. 1999). By considering
x = [id , i f d , iq , ikd , ikq , ω, δ, Pm, Xe]T the vector of state variables, the math-
ematical model of the generator system, in per unit, has the following form:
Electrical equations:

dx1

dt
= x1a11 + a12x2 + a13x3x6 + a14x4 + a15x6x5 + a16 cos(−x7 + σ) + b1u f d

(13)

dx2

dt
= a21x1 + a22x2 + a23x3x6 + a24x4 + a25x6x5 + a26 cos(−x7 + σ) + b2u f d

(14)

dx3

dt
= a31x1x6 + a32x2x6 + a33x3 + a34x4x6 + a35x5 + a36 sin(−x7 + σ) (15)

dx4

dt
= a41x1 + a42x2 + a43x3x6 + a44x4 + a45x6x5 + a46 cos(−x7 + σ) + b3u f d

(16)

dx5

dt
= a51x1x6 + a52x2x6 + a53x3 + a54x4x6 + a55x5 + a56 sin(−x7 + σ) (17)

Mechanical equations:

dx6

dt
= a61x6 + a62

x8

x6
− a62Te (18)

dx7

dt
= ωR(x6 − 1) (19)

Turbine dynamics (Hill and Wang 2000):

dx8

dt
= a81x8 + a82x9 (20)

Turbine valve control (Hill and Wang 2000):

dx9

dt
= a91x9 + a92x6 + b4ug (21)

where, u f d the excitation control input, ug the input power of control system. The
parameters ai j and bi are described as follow

a11 = −(Rs + Re)(L f d Lkd − L2
md )ωR D−1

d a41 = −(Rs + Re)(L f d Lmd − L2
md )ωR D−1

d
a12 = −R f d (Lmq Lkd − L2

md )ωR D−1
d a42 = R f d ((Ld + Le)Lmd − L2

md )ωR D−1
d

a13 = (Lq + Le)(Lmd Lkd − L2
md )ωR D−1

d a45 = −Lmd (Lmq .L f d − L2
md )ωR D−1

d
a15 = −Lmq (L f d Lkd − L2

md )ωR D−1
d a43 = (Lq + Le)(Lmd Ld − L2

md )ωR D−1
d

a14 = Rkd ((Ld + Le)Lmd − L2
md )ωR D−1

d a44 = −Rkd ((Ld + Le)L f d − L2
md )ωR D−1

d
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a16 = −V ∞((Ld + Le)Lkd − L2
md )ωR D−1

d a46 = −V ∞(Lmd .L f d + L2
md )ωR D−1

d
b1 = (Lmd Lkd − L2

md )ωR D−1
d a51 = −(Ld + Le)LmqωR D−1

q

a21 = −(Rs + Re)(Lmd Lkd − L2
md )ωR D−1

d a52 = Lmd LmqωR D−1
q

a22 = −R f d ((Ld + Le)Lkd − L2
md )ωR D−1

d a53 = −(Rs + Re)LmqωR D−1
q

a23 = (Lq + Le)(Lmd Lkd − L2
md )ωR D−1

d a54 = Lmd LmqωR D−1
q

a24 = Rkd ((Ld + Le)Lmd − L2
md )ωR D−1

d a55 = −Rkq (Lq + Le)ωR D−1
q

a25 = −Lmq (Lmd Lkd − L2
md )ωR D−1

d a56 = −V ∞LmqωR D−1
d

a26 = −V ∞(Lmd Lkd − L2
md )ωR D−1

d a61 = −D(2H)−1

b2 = ((Ld + L f d )Lkd − L2
md )ωR D−1

d a62 = (2H)−1

a31 = −(Ld + Le)LkqωR D−1
q a81 = −(Tm)−1

a32 = Lmd LkqωR D−1
q a82 = Km(Tm)−1

a33 = −(Rs + Re)LkqωR D−1
q a91 = −(Tg)−1

a34 = Lmd LkqωR D−1
q a92 = −Kg(Tg RωR)−1

a35 = −Lmq .RkqωR D−1
q b4 = Kg(Tg)−1

a36 = V ∞LkqωR D−1
q

b3 = ((Ld + Le)Lmd − L2
md )ωR D−1

d

Here we have denoted

Dd = (Ld + Le)L f d Lkd − L2
md(Ld + L f d + Lkd) + 2L3

md

Dq = (Lq + Le)Lkq − L2
mq

The machine terminal voltage is calculated from Park components vd and vq as
follows (Anderson and Fouad 1994; Akhrif et al. 1999):

vt =
(
v2

d + v2
q

) 1
2

(22)

with

vd = c11x1 + c12x2 + c13x3x6 + c14x4 + c15x5x6 + c16 cos(−x7 + σ) + c17u f d

(23)

vq = c21x1x6 + c22x2x6 + c23x3 + c24x4x6 + c25x5 + c26 sin(−x7 + σ) (24)

where ci j are coefficients which depend on the coefficients ai j , on the infinite bus
phase voltage V ∞ and the transmission line parameters Re and Le. They are described
as follow

c11 = Re + a11Leω
−1
R c17 = b1Leω

−1
R

c12 = a12 Leω
−1
R c21 = Le + a31Leω

−1
R

c13 = Le(a13ω
−1
R − 1) c22 = a32 Leω

−1
R

c14 = a14Leω
−1
R c23 = a33Leω

−1
R + Re

c15 = a15Leω
−1
R c24 = a34Leω

−1
R
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c16 = V ∞ + a16Leω
−1
R c25 = a35Leω

−1
R

c26 = V ∞ + a36Leω
−1
R

Available states for synchronous generator are the stator phase currents id and iq ,
voltages at the terminals of the machine vd and vq , field current i f d . It is also assumed
that the angular speed ω and the power angle δ are available for measurement (De
Mello 1994). In the next section the construction an observer of the damper currents
ikd and ikq will be given.

3 Sliding Mode Observer for the Damper Winding Currents

The state space representation of the electrical dynamics of the power system model
(13)–(17) is given as

d

dt

⎡

⎣
x1
x2
x3

⎤

⎦ = F11

⎡

⎣
x1
x2
x3

⎤

⎦ + F12

[
x4
x5

]
+

⎡

⎣
b1
b2
0

⎤

⎦ u f d + H1(t) (25)

d

dt

[
x4
x5

]
= F21

⎡

⎣
x1
x2
x3

⎤

⎦ + F22

[
x4
x5

]
+

[
b3
0

]
u f d + H2(t) (26)

where

H1(t) = [a16 cos(−x7 + σ), a26 cos(−x7 + σ), a36 sin(−x7 + σ)]T

H2(t) = [a46 cos(−x7 + σ), a56 sin(−x7 + σ)]T

F11 =
⎡

⎣
a11 a12 a13x6
a21 a22 a23x6
a31x6 a32x6 a33

⎤

⎦

F21 =
[

a41 a42 a43x6
a51x6 a52x6 a53

]

F12 =
⎡

⎣
a14 a15x6
a24 a25x6
a34x6 a35

⎤

⎦

F22 =
[

a44 a45x6
a54x6 a55

]
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Considering the switching surface S as follows

S(t) =
⎡

⎣
x̂1 − x1
x̂2 − x2
x̂3 − x3

⎤

⎦ ≡
⎡

⎣
z1
z2
z3

⎤

⎦ = 0 (27)

Hence, a sliding mode observer for (25) is defined as

d

dt

⎡

⎣
x̂1
x̂2
x̂3

⎤

⎦ = F11

⎡

⎣
x̂1
x̂2
x̂3

⎤

⎦ + F12

[
x̂4
x̂5

]
+

⎡

⎣
b1
b2
0

⎤

⎦ u f d + H1(t) + K

⎡

⎣
sgn(x̂1 − x1)

sgn(x̂2 − x2)

sgn(x̂3 − x3)

⎤

⎦

(28)

where x̂1, x̂2 and x̂3 are the observed values of id , i f d and iq , K is the switching gain,
and sgn is the sign function.

Furthermore, the damper current observer is given from (26) as

d

dt

[
x̂4
x̂5

]
= F21

⎡

⎣
x̂1
x̂2
x̂3

⎤

⎦ + F22

[
x̂4
x̂5

]
+

[
b3
0

]
u f d + H2(t) (29)

where x̂4 and x̂5 are the observed values of ikd and ikq .
Subtracting (25) from (28), the error dynamics can be written in the following

form

d

dt

⎡

⎣
z1
z2
z3

⎤

⎦ = F11

⎡

⎣
z1
z2
z3

⎤

⎦ + F12

[
x̃4
x̃5

]
+ K

⎡

⎣
sgnz1
sgnz2
sgnz3

⎤

⎦ (30)

where x̃4and x̃5 are the estimation errors of the damper currents x4 and x5.
The switching gain is defined as

K = min

⎧
⎨

⎩

−a11 |z1| − (a12z2 + a13ωz3 + a14 x̃4 + a15ωx̃5) sgnz1
−a22 |z2| − (a21z1 + a23ωz3 + a24 x̃4 + a25ωx̃5) sgnz2
−a33 |z3| − (a31ωz1 + a32ωz2 + a34ωx̃4 + a35 x̃5) sgnz3

⎫
⎬

⎭
− ξ (31)

where ξ is a positive small value.

Theorem 1 The globally asymptotic stability of (30) is guaranteed, if the switching
gain is given by (31).

Proof The stability of the overall structure is guaranteed through the stability of the
direct axis and quadrature axis currents x1, x2, and field current x3 observer. The
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Lyapunov function of the sliding mode observer for damper currents is chosen as

Vobs = 1

2
ST �S (32)

where � is an identity positive matrix. Consequently, the derivative of the Lyapunov
function is

dVobs

dt
= ST �

d S

dt

=
⎡

⎣
z1
z2
z3

⎤

⎦

T

�

⎛

⎝F11

⎡

⎣
z1
z2
z3

⎤

⎦ + F12

[
x̃4
x̃5

]
+ K

⎡

⎣
sgnz1
sgnz2
sgnz3

⎤

⎦

⎞

⎠

= G1 + G2 + G3

(33)

where

G1 = a11z2
1 + a12z1z2 + a13ωz1z3 + a14z1 x̃4 + a15ωz1 x̃5 + K |z1|

G2 = a21z1z2 + a22z2
2 + a23ωz2z3 + a24z2 x̃4 + a25ωz2 x̃5 + K |z2|

G3 = a31ωz1z3 + a32ωz2z3 + a33z2
3 + a34ωz3 x̃4 + a35z3 x̃5 + K |z3|

Using the designed switching gain in (31), both G1, G2 and G3 are negatives.
Therefore, V̇obs is a negative definite, and the sliding mode condition is satisfied
(Slotine and Li 1991). Furthermore the global asymptotic stability of the observer is
guaranteed.

According to (31) by a proper selection of ξ , the influence of parametric uncer-
tainties of the SMIB can be much reduced. The switching gain must large enough to
satisfy the reaching condition of sliding mode. Hence the estimation error is confined
into the sliding hyperplane

d

dt

⎡

⎣
z1
z2
z3

⎤

⎦ =
⎡

⎣
z1
z2
z3

⎤

⎦ = 0 (34)

Nevertheless, if the switching gain is too large, the chattering noise may lead to
estimation errors. To avoid the chattering phenomena, the sign function is replaced
by the following continuous function

S(t)

|S(t)| + ς1

where ς1 is a positive constant.
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Stator and Field 
Currents Observer

Eq. (28)

Damper Currents 
Observer
Eq. (29) 

+

-

fdu

fdu
d̂i

q̂i

f̂di

di

qi

fdi

k̂di

k̂qi

Fig. 6 Block diagram of the sliding mode damper currents observer

4 Design of Sliding Mode Controllers

This section deals with a procedure for the design of power system controllers, in
order to improve the system’s stability and damping properties under large distur-
bances and variation in operating points. The first objective is the terminal voltage
regulation.

The dynamic of the terminal voltage (35), is obtained through the time derivative of
(22) using (23) and (24) where the damper currents are replaced by the observer (29)

dvt

dt
= 1

vt

(
vd

dvd

dt
+ vq

dvq

dt

)

= vq

vt

dvq

dt
+ c17

vd

vt

du f d

dt

+ vd

vt

⎡

⎢
⎣

c11
dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt
+ c14

dx̂4

dt

+c15x6
dx̂5

dt
+ c15 x̂5

dx6

dt
+ c16

dx7

dt
sin(−x7 + σ)

⎤

⎥
⎦ (35)

= c17
vd

vt

du f d

dt
+ f (x)

where

f (x) = vq

vt

dvq

dt
+ vd

vt

⎡

⎢
⎣

c11
dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt
+ c14

dx̂4

dt

+c15 x̂5
dx6

dt
+ c15x6

dx̂5

dt
+ c16

dx7

dt
sin(−x7 + σ)

⎤

⎥
⎦
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The tracking error between terminal voltage and its reference is given as

e1 = vt − v
re f
t (36)

Hence, its dynamic is derived, using (35), as follows:

de1

dt
= c17

vd

vt

du f d

dt
+ f (x) (37)

According to the (36), the proposed time-varying sliding surface is defined by

S1 = K1e1(t) (38)

where K1 is a positive constant feedback gain. The next step is to design a control
input which satisfies the sliding mode existence law. The control input have the
following structure

u(t) = ueq(t) + un(t) (39)

where ueq(t) is an equivalent control-input that determines the system’s behavior on
the sliding surface and un(t) is a non-linear switching input, which drives the state
to the sliding surface and maintains it on the sliding surface despite the presence of
the parameter variations and disturbances. The equivalent control-input is obtained
from the invariance condition and is given by the following condition (Utkin et al.
1999):

S1 = 0 and
d S1

dt
= 0 ⇒ u(t) = ueq(t)

From the above equation

Ṡ1 = K1c17
vd

vt

du f d

dt
+ K1 f (x) = 0 (40)

Therefore, the equivalent control-input is given as

ueq(t) = − vt

c17vd
f (x) (41)

By choosing the nonlinear switching input un(t) as follows

un(t) = −α1
vt

c17vd
sgn(e1) (42)
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where α1 is a positive constant. The control input is derived from (39), (41) and (42)
as follows:

u(t) = du f d

dt
= − vt

c17vd
( f (x) + α1sgn(e1)) (43)

Using the proposed control law (43), the reachability of sliding mode control of (37)
is guaranteed.

Now, the attention is focused to the rotor speed tracking objective. The sliding
mode-based rotor speed control methodology consists of three steps

Step 1: The rotor speed error is

e2 = x6 − ωre f (44)

where ωre f = 1 p.u. is the desired trajectory. The sliding surface is selected as
follow

S2 = K2e2(t) (45)

where K2 is a positive constant. By using (44) and (18), the derivative of the sliding
surface (45) is calculated as:

d S2

dt
= K2 (a61x6 + a62x8/x6 − a62Te) (46)

The x8 can be viewed as a virtual control in the above equation. To ensure the
Lyapunov stability criteria i.e. d S2

dt S2 ≺ 0 we define the nonlinear control input
x∗

8eq as

x∗
8eq = x6

a62
(a62Te − a61x6) (47)

The nonlinear switching input x∗
8n can be chosen as follows

x∗
8n = −α2

x6

a62
sgn(e2) (48)

where α2 is a positive constant.
Then, the stabilizing function of the mechanical power is obtained as

x∗
8 = x6

a62
(a62Te − a61x6 − α2sgn(e2)) (49)

When a fault occurs, large currents and torques are produced. This electrical per-
turbation may destabilize the operating conditions. Hence, it becomes necessary to
account for these uncertainties by designing a higher performance controller.
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In (49), as electromagnetic load Te is unknown, when fault occurs, it has to be
estimated adaptively. Thus, let us define

x̂∗
8 = x6

a62

(
a62T̂e − a61x6 − α2sgn(e2)

)
(50)

where
∧
Te is the estimated value of the electromagnetic load which should be deter-

mined later. Substituting (50) in (46), the rotor speed sliding surface dynamics
becomes

d S2

dt
= K2

(
−α2sgn(e2) − a62

∼
Te

)
(51)

where
∼
Te = Te − ∧

Te is the estimation error of electromagnetic load.

Step 2: Since the mechanical power x8 is not our control input, the stabilizing error
between x8 and its desired trajectory x∗

8 is defined as

e3 = x∗
8 − x8 (52)

To stabilize the mechanical power x8, the new sliding surface is selected as

S3 = K3e3(t) (53)

where K3 is a positive constant. The derivative of S3 using (52) and (20) is given as

d S3

dt
= K3

(
a81x8 + a82x9 − dx∗

8

dt

)
(54)

By considering the steam valve opening x9 as a second virtual control, the equivalent
control x∗

9eq is obtained as the solution of the equation d S3(t)
dt = 0.

x∗
9eq = 1

a82

(
dx∗

8

dt
− a81x8

)
(55)

As a result, the stabilizing function of the steam valve opening x∗
9 the mechanical

power is computed as

x∗
9 = 1

a82

(
dx∗

8

dt
− a81x8 − α3sgn(e3)

)
(56)

where α3 is a positive constant. Substituting (56) in (54), the steam valve opening
sliding surface dynamics becomes

d S3

dt
= −α3 K3sgn(e3) (57)
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Step 3: Finally, the steam valve opening error is defined as

e4 = x9 − x∗
9 (58)

By defining a sliding surface S4(t) = K4e4(t), the derivative of S4 is calculated
by time-differentiation of (58) and using (21)

d S4

dt
= K4

(
a91x9 + a92x6 + b4ug − dx∗

9

dt

)
(59)

To assure the reaching condition d S4
dt S4 ≺ 0, the equivalent control ugeq(t) is

obtained as

ugeq = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6

)
(60)

Subsequently, the control law is written as

ug = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6 − α4sgn(e4)

)
(61)

Theorem 2 The dynamic sliding mode control laws (43) and (61) with stabilizing
functions (50) and (56) when applied to the single machine infinite power system,
guarantee the asymptotic convergence of the outputs vt and x6 = ω to their desired
values vtre f and ωre f =1, respectively.

Proof Consider the following positive definite Lyapunov function

Vcon = 1

2
S2

1 + 1

2
S2

2 + 1

2
S2

3 + 1

2
S2

4 + 1

2μ

∼
T 2

e (62)

By considering (40), (51), (57) and (59), the derivative of (62) can be derived as
follows:

V̇con = d S1

dt
S1 + d S2

dt
S2 + d S3

dt
S3 + d S4

dt
S4 + ∼

Te
1

μ

d
∼
Te

dt

= K1c17
vd

vt

du f d

dt
+ K1 f (x) + K2

(
−α2sgn(e2) − a62

∼
Te

)
(63)

− α3 K3sgn(e3)+K4

(
a91x9 + a92x6 + b4ug − dx∗

9

dt

)
+ ∼

Te
1

μ

d
∼
Te

dt



454 M. Ouassaid et al.

Substituting the control laws (43) and (61) in (63) gives

V̇con = −α1 K 2
1 e1sgn(e1) − α2 K 2

2 e2sgn(e2) − α3 K 2
3 e3sgn(e3)

− α4 K 2
4 e4sgn(e3) − K 2

2 a62
∼
Te e2

∼+Te
1

μ

d
∼
Te

dt
(64)

= −α1 K 2
1 |e1| − α2 K 2

2 |e2| − α3 K 2
3 |e3| − α4 K 2

4 |e4|

+
⎛

⎝ 1

μ

d
∼
Te

dt
− K 2

2 a62e2

⎞

⎠
∼
Te

By choosing the adaptive law (65), the time derivative of Vcon is strictly negative.

d
∼
Te

dt
= μa62 K 2

2 e2 (65)

Thus

dVcon

dt
= −α1 K 2

1 |e1| − α2 K 2
2 |e2| − α3 K 2

3 |e3| − α4 K 2
4 |e4|

= −
4∑

i=1

αi K 2
i |ei | < 0 (66)

From the above analysis, it is evident that the reaching condition of sliding mode is
guaranteed.

Remark In order to eliminate the chattering, the discontinuous control components
in (43), (50), (56) and (61) can be replaced by a smooth sliding mode component to
yield

du f d

dt
= − vt

c17vd

(
f (x) + α1

S1(t)

|S1(t)| + τ2

)

x∗
8 = x6

a62

(
a62Te − a61x6 − α2

S2(t)

|S2(t)| + τ3

)

x∗
9 = 1

a82

(
dx∗

8

dt
− a81x8 − α3

S3(t)

|S3(t)| + τ4

)

ug = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6 − α4

S4(t)

|S4(t)| + τ5

)

where τi 
 0 is a small constant. This modification creates a small boundary layer
around the switching surface in which the system trajectory remains. Therefore, the
chattering problem can be reduced significantly (Utkin et al. 1999).
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5 Validation and Discussion

To verify the effectiveness of the developed observer based-controller, some simula-
tion works are carried out for the power system under severe disturbance conditions
which cause significant deviation in generator loading. Also, different operating
points load are considered. The performance of the nonlinear controller was tested
on the complete 9th order model of SMIB power system (202 MVA, 13.7 KV), includ-
ing all kinds of nonlinearities such as exciter ceilings, control signal limiters, etc.
and speed regulator. The parameter values used in the simulation are given in the
Tables 1, 2 and 3. The physical limits of the plant are

max
∣∣vfd

∣∣ = 10 p.u., and 0 ≤ Xe(t) ≤ 1

The system configuration is presented as shown in Fig. 7. The proposed sliding mode
observer is implemented based on the scheme shown in Fig. 6.

In order to verify the stability and asymptotic tracking performance of the pro-
posed control system, a symmetrical three-phase short circuit occurs closer to the
generator bus, at t = 10 s and removed by opening the barkers of the faulted line at
t = 10.1 s. The operating points considered are Pm = 0.6 p.u. and Pm = 0.9 p.u. The

Table 1 Parameters of the
transmission line in p.u.

Paramseter Value

Le, inductance of the transmission line 0.4

Re, resistance of the transmission line 0.02

Table 2 Parameters of the
synchronous generator in p.u

Parameter Value

Rs , stator resistance 1.096 10−3

R f d , field resistance 7.42 10−4

Rkd , direct damper winding resistance 13.1 10−3

Rkq , quadrature damper winding resistance 54 10−3

Ld , direct self-inductance 1.700

Lq quadrature self-inductances 1.640

L f d , rotor self inductance 1.650

Lkd , direct damper winding self inductance 1.605

Lkq , quadrature damper winding self 1.526

inductance

Lmd , direct magnetizing inductance 1.550

Lmq , quadrature magnetizing inductance 1.490

V ∝, infinite bus voltage 1

D, damping constant 0

H, inertia constant 2.37 s
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Table 3 Parameters of the
steam turbine and speed
governor

Parameter Value

Tt , time constant of the turbine 0.35 s

Kt , gain of the turbine 1

R regulation constant of the system 0.05

Tg , time constant of the speed governor 0.2 s

Kg , gain of the speed governor 1

Damper Currents
Observer

Sliding mode 
controller

control laws
Eqs  (43) and (61)

 stabilizing functions 
Eqs (50) and (56)

Excitation
System

Steam
Turbine 

ug

Pm

System state variables

ufd

vtref

ref

vt

SG

 Le

Infinite Bus

Re

System state variables

Fig. 7 Control system configuration

simulated results are given in Figs. 8 and 9. It is shown terminal voltage, rotor speed
and rotor angle of the power system, respectively. The results are compared with
those of the linear IEEE type 1 AVR+PSS and speed regulator. It is seen how dynam-
ics of the terminal voltage and rotor speed exhibit large overshoots during post-fault
state with the standard controller than with the nonlinear controller. It is evident that
the proposed combined observer-controller can quickly and accurately converge to
the desired terminal voltage and rotor speed for different operating points.

Robustness of the proposed observer-based controller is evaluated with respect to
the variation of system parameters and error model. The values of the transmission
line (Le, Re) and the inertia constant H increased by +20 and −20 % from their
original values, respectively. In addition to the abrupt and permanent variation of the
power system parameters a three-phase short-circuit is simulated at the terminal of
the generator. Figure 10 shows the performances of the terminal voltage and rotor
speed of the combined observer-controller. It can be seen that the designed control
scheme is not sensitive to the uncertainties of parameters and ensures the global
stability of the system with good performances in transient and steady states.
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Fig. 8 Performance results
of the proposed controller
under large sudden fault for
Pm = 0.6 p.u
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Fig. 9 Performance result of the proposed controller under large sudden fault for Pm = 0.9 p.u
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Fig. 10 Dynamic tracking performance control scheme under parameter perturbations

6 Conclusion

A nonlinear observer-controller has been developed and applied to the single machine
infinite-bus power system. The synchronous generator is based on the complete 7th
order model. The aim is to achieve both transient stability improvement and good
post-fault performance of the generator terminal voltage and frequency.

The sliding mode technique was adopted to construct a nonlinear observer of
damper currents winding. Then nonlinear control laws of terminal voltage and rotor
speed has been provided. Global and exponential stability of both the control laws
and the observer has been proven by applying Lyapunov stability theory.

Test results show the effectiveness of the proposed control strategy in improving
transient stability of system under large disturbances in comparison with conventional
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controllers (IEEE type 1 AVR+PSS). Also, the combined observer-controller is
independent of the operating point and possesses a great robustness to deal with
parameter uncertainties.
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