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Abstract In addition to the robustness against inertia uncertainty and external
disturbances, the efficient and quick fault-tolerant property is expected by the
on-board attitude controller for any spacecraft mission. In comparison to the active
fault tolerant control methods, the passive fault-tolerant methods are simpler and
require less computation time and power. The finite-time sliding mode using the
terminal sliding mode has been proven the efficacy to address the attitude control
related issues, but in most of the cases, fault-tolerant issues were not taken into
account. The objective of the chapter here is to propose a passive fault-tolerant con-
trol by using the finite-time sliding mode control. Firstly, an extensive review has
been given to discuss the application of terminal sliding mode and its variants for
the attitude control problem. Then, in control design, a non-singular fast terminal
sliding mode has been integrated together with the adaptive control, and an adaptive
non-singular fast terminal sliding mode control has been designed. In most of the
finite time fault-tolerant designed using terminal sliding modes, the controllers gains
are remain to constant; which can be cause for chattering. Therefore, to limit the
chattering effect, and to avoid the need of upper bounds of uncertainty and external
disturbances, adaptive estimate laws have been designed to estimate the controller’s
gains. Finite time stability has been analyzed by the Lyapunov theorem. Further, to
show the fault-tolerance effectiveness of the proposed control law in attitude stabi-
lization and tracking, various simulation results have been presented. The proposed
control law is quick, and robust enough to negate the effects of external disturbances,
mass inertia uncertainty, and actuator faults.
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1 Introduction

Attitude control system (ACS) is an important module in the spacecraft mission
design, and in the success of mission, the ACS design plays a vital role. To maintain
the efficient performance of ACS, the on-board attitude controller should show the
robustness against inertia uncertainty, external disturbances, and actuator fault; and
additionally, it is also expected by the attitude controller to ensure the proper attitude
stabilization or attitude tracking error reduction, in finite-time.

Sliding mode control (SMC) has considerably used to provide the solution for
manynon-linear problems (Utkin 1977; John et al. 1993). In this series, in the eighties,
SMC application started for the spacecraft attitude control (Vadali 1986). In this
continuation , recently, some other works for the rigid spacecraft attitude control have
been reported by using the SMC (Yeh 2010; Lu et al. 2013). In these applications of
SMC for attitude control design, the sliding surface is of linear structure. The major
limitation of SMC is the asymptotic convergence of the system states to equilibrium,
and it is due to the linear sliding surface. In conclusion, the SMC attitude control
will control the attitude in infinite time.

In the eighties, a new and interesting theory the finite time control (FTC) has been
developed (Haimo 1986). In the FTC, it is possible that the system states converge
to the respective equilibrium in finite time. Inspired by the FTC theory, researchers
have developed the terminal sliding mode (TSM) theory (Venkataraman 1991; Yu
and Man 1996; Man and Yu 1997; Tang 1998). In TSM, contrary to the SMC, the
sliding surface is the non-linear combination of system states; which ensures the
finite time convergence to equilibrium. The application of TSM theory to design
the spacecraft attitude control first appeared in Erdong and Zhaowei (2008). The
originally proposed TSM suffers with the two drawbacks: one is the singularity in
control for some initial condition, and the other is the slower convergence speed
when the system states start remotely from the equilibrium. Hence, schemes NTSM
(Feng et al. 2002) and FTSM (Yu and Man 2002) have been developed to solve the
problem of singularity and convergence speed, respectively. By using the NTSM and
FTSM, attitude control laws have been designed inDing et al. (2009), Li et al. (2011),
Lu and Xia (2013) and Tiwari et al. (2010), Zou and Kumar (2011), respectively. To
design a control that solves the singularity and the finite time convergence together,
non-singular fast terminal slidingmode (NSFTSM) has been developed in Yang et al.
(2011). Inspired by NSFTSM Yang et al. (2011), for the attitude stabilization and
tracking cases, control laws have been presented in Tiwari et al. (2012) and Tiwari
et al. (2014), respectively. In these all the afore-mentioned finite time attitude control
references, the actuator fault condition has not been taken into account.

Through the technological advancement, tremendous improvements have been
made in the attitude actuators design and their implementation techniques. However,
to design a fully autonomous space mission, it is important that the on-board ACS
should be able to defeat the actuator fault in finite-time with high speed and efficacy.
It is worth mentioning that fault tolerance should be done in finite- time with high
speed; otherwise in some specific space missions designed specially for military
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applications, the ACSmay not be able to maintain the control performance all round.
Mainly, the fault tolerant control are categorized in two methods, the active and
passive. The active fault tolerant control methods are equipped with fault diagnosis
and detection (FDD). The FDD role is to detect and identify the actuator faults;
and then to re-configure the controllers to compensate the faults effects. Therefore,
obviously that the series of computation and decision steps are required in active
fault tolerant method. So, the ACS with active fault tolerant method require more
time to complete the online computations; but the long computation time could
delay the timely control action, and the control performance may deteriorated to the
level that can lead to the catastrophic failures. In contrary to the active methods,
the passive fault tolerant control is equipped with the only one controller, and with
this controller, both the lumped uncertainty and the actuator faults and saturation are
handled. Numerous efforts by taking different control techniques have been reported
for the design of passive fault tolerant controllers (Bustan et al. 2013) (and other
references mentioned in Bustan et al.).

Inspired by the finite time convergence property of TSM and its variants (NTSM,
FTSM, NFTSM), recently, they have been introduced as a qualified passive fault tol-
erant method for the spacecraft attitude. In Hu et al. (2012), TSM has been applied to
compensate the effects of actuator effectiveness loss, inertia uncertainty, and external
disturbances. However, the chosen sliding surface sufferswith the same limitations as
with the originally proposed TSM. The NTSM based fault tolerant control appeared
in Hu et al. (2013), Lu et al. (2013). In Hu et al. (2013), finite-time attitude stabi-
lization law under actuator misalignment is addressed. In reference Lu et al. (2013),
attitude tracking performance is checked under the actuator fault and effectiveness
loss. In these references, the controller gains are remain constant; and gains values
are linked with the upper bounds of uncertainty and external disturbance. More than
that, to enhance the fault tolerant control quality, recently, the FTSM control and
the adaptive control appeared together. In Hu et al. (2012), authors developed the
adaptive law updated finite-time controller using FTSM, and applied for the reac-
tion wheel fault tolerance. However, the control law may suffer with limitations of
singularity and unbound increment in control gains estimate. In this series, authors
of Xiao et al. (2013) have developed the attitude tracking compensation controller,
and shown the performance under actuator fault, actuator misalignment, and exter-
nal disturbances. Though, the recommended controller may cause the singularity
problem. In Zhang et al. (2013), by using FTSM, authors have developed the finite-
time fault tolerant control; it is shown that together the nominal controller and the
adaptive compensation control is successfully accomplished the attitude tracking in
the presence of actuator fault and actuator misalignment. In this work also, while
discussing the stability proof, the error quaternion vector e �= 0 is considered, but
this is not the case always possible. For example, if one of the error quaternion will
start or attain value zero, condition ||er−1|| ≤ �3 will not be fulfilled for r ∈ (0, 1).

It is noticed that by using TSM and its variants, finite time fault tolerant control
is in its early stage; and in the selection of sliding surface, method to decide the
controller’s gains, and consideration of the different types of faults, are the major
areas of improvements in proposing the solution. Our endeavor here is to develop
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a control law for the control of rigid spacecraft in the presence of actuator fault,
actuator effectiveness loss, external disturbances, uncertain mass inertia parameters.
In the control development, the nominal control component is derived by using a
non-singular fast terminal sliding mode (NSFTSM) surface. Additionally, to negate
the actuator fault and external disturbances as well inertia uncertainty, the nominal
controller is supported by the adaptive control component. The closed loop finite
time stability has been proved using the Lyapunov stability theory.

The structure of the chapter is as follows: The rigid spacecraft attitude mathe-
matical modeling for stabilization and tracking are discussed in Sect. 2. In Sect. 3 of
the chapter discusses the control objective and the proposed fault -tolerant control
design with the finite-time stability proof. In Sect. 4, simulation results are illustrated
with extensive discussion. Finally, conclusion is given in Sect. 5.

2 System Description

In any spacemission, attitude stabilization and tracking are themain aimofACS.This
section discusses the mathematical model for the attitude stabilization as well as for
the attitude tracking of a rigid spacecraft. Unit quaternion, due to non-trigonometric
expression and non-singularity computation (Wertz 1978), are extensively used para-
meter to represent the kinematics of a rigid spacecraft; that is why the attitude kine-
matics is described here by using the unit quaternion.

2.1 Mathematical Model for Attitude Stabilization

Rigid spacecraft attitude control is described by the kinematics and dynamics equa-
tions (Wertz 1978). The attitude kinematics representation using the unit quaternion
is given as follows.

q̄ = [qT
v q4]T . (1)

where qv = [q1 q2 q3]T = ε sin θ
2 and q4 = cos θ

2 are the vector and the scalar
components of the unit quaternion respectively, where θ ∈ � is the rotation angle
about the eigen axis, which is given by the unit vector ε = [

ε1 ε2 ε3
]T . The scalar

and the vector components of unit quaternion satisfies the constraint

qT
v qv + q24 = 1. (2)

The kinematics equations are given as

q̇v = 1

2
(q4I3 + qv

×)ω
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q̇4 = −1

2
qT

v ω, (3)

where I3 is the 3 × 3 identity matrix, ω ∈ �3 is the the body angular velocity
vector measured with respect to the inertial frame expressed in the body frame. The
notation q×

v represents the following skew-symmetric matrix generated by the vector
qv = [q1 q2 q3]T

qv
× =

⎡

⎣
0 −q3 q2
q3 0 −q1

−q2 q1 0

⎤

⎦

The dynamics equation for a rigid body spacecraft is given by

ω̇ = J−1(−ω×Jω + D Δ(t) u(t) + d(t)) (4)

where J = J0+δJ is the inertiamatrix of spacecraft, where J0 ∈ �3×3 and δJ ∈ �3×3

are the nominal component and the uncertain components respectively, u(t) ∈ �n

is the control input generated by n actuators, D ∈ R3×n is the actuator distribution
matrix, and d(t) ∈ �3 is the bounded external disturbance torque acting on the body,
Δ(t) = diag(Δ1, Δ2, Δ3, ..., Δn) ∈ �n×n is the actuator effectiveness matrix with
0 ≤ Δi ≤ 1. Important to note that Δi = 1 means that particular actuator is fully
healthy, and Δi = 0 means particular actuator is lost its strength completely, and
if Δi < 1, then particular actuator is partially functioning. The notation ω× is a
skew-symmetric matrix generated by ω.

2.2 Mathematical Model for Attitude Tracking

Todefine the attitude kinematics and dynamics equation for tracking control problem,
the relative attitude error between reference frame and a desired reference frame is
required to be established. The error quaternion qe = [qT

ev, qe4]T ∈ � × �3 and the
angular velocity error ωe ∈ �3 are measured from body fixed reference frame to the
desired reference frame, and the defining equations are as follows

qev = qd4qv − q×
dvqv − q4qdv

qe4 = qT
dvqv + q4qdv

ωe = ω − Cωd, (5)

where qev = [qe1 qe2 qe3]T and qe4 are the vector and scalar components of
the error quaternion, respectively, qdv = [qd1 qd2 qd3]T ∈ �3, qd4 ∈ �,
and ωd = [ωd1 ωd2 ωd3]T ∈ �3 are the desired attitude frame vector quater-
nion, scalar quaternion, and angular velocity, respectively. Both qe and qd =
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[qd1 qd2 qd3 qd4]T satisfy the constraint qT
evqev + q2e4 = 1 and qT

dvqdv + q2d4 = 1;
respectively. C = (q2e4 − 2qT

ev)I + 2qevqT
ev − 2qe4q×

ev ∈ �3×3 with ||C|| = 1 and
Ċ = −ω× C represents the rotation matrix between body fixed reference frame and
desired reference frame.

Then, using (5), the attitude kinematics and the dynamics equation for the tracking
problem could be written as

q̇ev = 1

2
(qe4I + q×

ev)ωe

q̇e4 = −1

2
qT

evωe (6)

ω̇e = J−1 (
(−ωe + Cωd)×J(ωe + Cωd) + J(ω×

e Cωd − Cω̇d) + D Δ(t) u(t) + d(t)
)
.

(7)

3 Fault Tolerant Control Design

In this section, first the control objective is defined, and then the control designmethod
is developed by using a non-singular fast terminal sliding mode. To compensate the
effects of actuator fault, external disturbances, and inertia matrix uncertainty, an
adaptive control component is applied with nominal control. The proposed fault-
tolerant control design will be completed in following three steps

1. Selection of sliding surface
2. Control structure
3. Stability proof both in reaching phase and in sliding phase.

3.1 Control Objective

The control objective is to design a robust fault tolerant controller that to ensure the
finite time attitude control in presence of external disturbance, inertia uncertainty,
loss of actuator effectiveness, and any fault. Mathematical representation for the
control objective is

⎧
⎨

⎩

lim
t→tf

(qv − qd) = 0

lim
t→tf

Ω = 0,
(8)

where Ω = (ω − ωd) ∈ �3.
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In the fore coming control design to achieve the afore-mentioned control objective,
the following assumptions are made.

Assumption 1 The body frame quaternion q and angular velocityω are measurable,
and available for feedback.

Assumption 2 The desired reference attitude frame angular velocity ωd and its first
time derivative ω̇d are bounded.

Assumption 3 Spacecraft mass inertia matrix nominal component J0 and the
uncertain component δJ are bounded; though the bound limits are not known in
advance.

Assumption 4 The control input is not unlimited, and constrainedby the limitu(t) ≤
umax .

Assumption 5 External disturbance d(t) is bounded, and the bound limit is not
known in advance.

3.2 Control Design

The detailed design steps are as under

Step 1: Sliding surface design
In contrary to the published finite-time fault tolerant control, here the sliding

surface is chosen that to avoid the singularity and to get quick convergence speed.
Therefore, using the angular velocity error and the quaternion error information the
sliding surface selected is

σe = sigα(ωe) + M1sigα(qev) + M2(qev) (9)

here, σe ∈ �3 is the sliding surface chosen, α ∈ (1, 2), M1 = diag(m11, m12, m13),
M2 = diag(m21, m22, m23) with mij ∈ � for i = 1, 2 and j = 1, 2, 3, and for any
vector y ∈ �3, the notation sigα(y) = [|y1|αsign(y1) |y2|αsign(y2) |y3|αsign(y3)].

Now, evaluating

Jσ̇e = αdiag(|ωe|α−1)Jω̇e

+ J

2
(M1αdiag(|qev|)α−1 + M2)(qe4I3 + q×

ev)ωe (10)

Applying (7) in (10), we have

Jσ̇e = αdiag(|ωe|α−1)
(
(−ωe + Cωd)×Jo(ωe + Cωd) + Jo(ω

×
e Cωd − Cω̇d)

+ D Δ(t) u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ)
)

+ Jo

2
(M1αdiag(|qev|)α−1

+ M2)(qe4I3 + q×
ev)ωe (11)
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where L(qe, ωe, ωd, ω̇d, δJ) = (−ωe+Cωd)×δJ(ωe+Cωd)+δJ(ω×
e Cωd −Cω̇d)+

δJ
2α (M1αdiag(|qev|)α−1+M2)(qe4I3+q×

ev)sig2−α(ωe) represents the uncertain terms
due to inertia matrix uncertainty.

Step 2: Control structure
To achieve the desired control objective (8), the proposed control structure is given

as follows

u(t) = unom(t) + uada(t) (12)

where

unom(t) = D†
(
(ωe + Cωd)×Jo(ωe + Cωd) − Jo(ω

×
e Cωd − Cω̇d)

− Jo

2α
(M1αdiag(|qev|α−1) + M2)(qe4I3 + q×

ev)sig2−αωe

)
(13)

and

uada(t) =
{

D†(−k̂1σe − k̂2sigγ (σe)), if ||σe|| ≥ ε

0, if ||σe|| < ε,
(14)

where D† = DT (D DT )−1 is a right-pseudo inverse of actuator distribution matrix
D, k̂1 and k̂2 are the estimates of controller gains k1 and k2, respectively.

The adaptive estimate laws proposed here are as follows

˙̂k1 =
{

α η||ωα−1
e ||∞ ||σe||2, if ||σe|| ≥ ε

0, if ||σe|| < ε,
(15)

˙̂k2 =
{

α θ ||ωα−1
e ||∞ ||σe||γ+1

γ+1, if ||σe|| ≥ ε

0, if ||σe|| < ε,
(16)

where, η ∈ �, θ ∈ �, ε ∈ � are the design parameters, and ||σe||γ+1
γ+1 = [|σe1|γ+1 +

|σe2|γ+1 + |σe3|γ+1]γ+1.

Remark 1 The nominal component of the proposed controller is evaluated by apply-
ing the invariance principle. Obviously, the nominal control expression, (13) have
two termswith the fractional power, but both powers are nonnegative and hence there
is no point of singularity.

Remark 2 Tonegate the effects of inertia uncertainty and external disturbance, and to
accelerate the convergence speed in reaching phase, an adaptive control component
is added with the nominal control. In most of the published fault tolerant control,
the controller’s gains are static, and are decided on the basis of uncertainty and
disturbance upper bounds, but practically it is difficult to know the bounds in advance.
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Therefore, here to estimate the gains values, adaptive estimate laws are proposed.
From (15) and (16), it is notable that the adaptive estimate laws depend on only the
system states, and not to the uncertainty, disturbance, and actuator faults. Further, to
reject the possibility of unbound growth in the controller’s gains, dead zone technique
has been applied. It is evident from (14), (15), and (16), that both the adaptive control
and the adaptive gains will not be updated once the attitude states reach into the
desired boundary.

Remark 3 In the proposed adaptive laws, parameters η and θ are working to regulate
the estimate speed. Higher the values of η and θ , higher the convergence speed for
σe = 0 is obtained.

Step 3: Stability Analysis
The finite time stability check of closed loop system (6)–(7) is completed in

two steps. In first step, the reaching phase stability is proved, and in second step
the sliding phase stability is proved. Before the stability discussion, the following
lemma, discussing the finite-time stability is useful.

Lemma 1 (Yu et al. 2005) An extended Lyapunov description of finite-time stability
with faster finite time convergence can be given as

V̇(x) + λ1V(x) + λ2Vm(x) ≤ 0 (17)

and the convergence time can be given as

t ≤ 1

λ1(1 − m)
ln

λ1V1−m(x0) + λ2

λ2
(18)

where λ1 > 0, λ2 > 0, and m ∈ (0, 1).

Reaching phase stability

Theorem 1 With the controller (12), the attitude states of (6)–(7) will be able to
reach the neighborhood of σe = 0 in finite time.

Proof Select the Lyapunov function

V1 = 1

2
σ T

e Jσe + 1

2η
k̄21 + 1

2θ
k̄22 (19)

where, k̄1 = k̂1 − k1 and k̄2 = k̂2 − k2, and V1 satisfies

1

2
λmin(J)||σe||2 ≤ 1

2
λmax(J)||σe||2 (20)
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Taking the first time derivative V1, and applying (11) leads to

V̇1 = σ T
e

(
α diag(|ωe|α−1)

(
(−ωe + Cωd)×Jo(ωe + Cωd) + Jo(ω

×
e Cωd

− Cω̇d) + D u(t) + D (Δ − I4)u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ)
))

+ 1

η
(k̂1 − k1)

˙̂k1 + 1

θ
(k̂2 − k2)

˙̂k2 (21)

Further, defining L̄ = D (Δ − I4)u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ), and then it
could be written that

||L̄|| ≤ ||L̄||1 ≤ ||D (Δ − I4)u(t)||1 + ||d(t)||1 + ||L||1 (22)

and then substituting (12)–(16), (22); and (21) yields

V̇1 = σ T
e αdiag(|ωe|α−1)

(
− k̂1σe − k̂2sigγ (σe) + L̄

)

+α(k̂1 − k1)|| |ωα−1
e | ||∞ ||σe||2 + α(k̂2 − k2)||ωα−1

e ||∞||||σe||γ+1
γ+1

≤ −αk̂1|||ωe|α−1||∞ ||σe||2 − αk̂2|||ωe|α−1||∞ ||σe||γ+1
γ+1 + α||L̄|| |||ωe|α−1||∞||σ T

e ||
+α(k̂1 − k1)||ωα−1

e ||∞||σe||2 + α(k̂2 − k2)||ωα−1
e ||∞|| ||σe||γ+1

γ+1

≤ −αk1|||ωe|α−1||∞||||σe||2 − αk2|||ωe|α−1||∞ || ||σe||γ+1
γ+1

+α||L̄|| |||ωe|α−1||∞ ||σ T
e || (23)

In reaching phase (σe �= 0), it is easy to show that ωe = 0 is not an attractor
(Appendix). Therefore, (23) can be rewritten in the following two forms:

V̇1 ≤ −2α|||ωe|α−1||∞
λmax(J)

(
k1 − ||L̄||

||σe||
)

V1 −
( 2

λmax(J)

) γ+1
2

αk2|||ωe|α−1||∞V
γ+1
2

1

(24)

V̇1 ≤ −2αk1|||ωe|α−1||∞
λmax(J)

V1−
( 2

λmax(J)

) γ+1
2

α|||ωe|α−1||∞
(

k2−||L̄|| ||σe||
||σe||γ+1

γ+1

)
V

γ+1
2

1

(25)

The stability analysis of (24) and (25) are completed in two scenario.

1. Scenario1 (d(t) = 0), δJ = 0, Δ = I4)

In this scenario, both (24) and (25) are simplified to V̇1 + �1V1 + �2V
γ+1
2

1 ,

where �1 = 2αk1|||ωe|α−1||∞
λmax(J)

, �2 =
(

2
λmax(J)

) γ+1
2

αk2|||ωe|α−1||∞, and therefore,
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convergence to σe = 0 is ensured in finite time

t1 ≤ 1

�1(1 − γ )/2
ln

�1V (1−γ )/2
2 (σe(0)) + �2

�2
. (26)

2. Scenario2 (d(t) �= 0), δJ �= 0, Δ �= I4)
Following the analysis given in Yu et al. (2005), from (24) and (25) it is obvious

that, if k1 − ||L̄||
||σe|| > 0 and k2 − ||L̄|| ||σe||

||σe||γ+1
γ+1

> 0 is ensured, then (24) and (25)

structure will take the faster finite time stability condition (17) of Lemma 1, and

the region ||σe|| <
||L̄||
k1

and ||σe|| <
( ||L̄||

k2

)1/γ
will be achieved in finite time,

respectively. This completes the proof.

Sliding phase stability

Theorem 2 After the attitude trajectory of system (6)–(7) reach to the neighborhood
of σe = 0, the tracking error in attitude states will converge to zero in finite time.

Proof Once the attitude states of (6)–(7) reach to σe = 0, we have

sigα(ωe) + M1 sigα(qev) + M2 qev = 0

ωe ≤ −M
1
α

1 qev − M
1
α

1 sig
1
α qev (27)

Define another Lyapunov function

V2 = qT
evqev. (28)

Evaluating the first time derivative of (28), give

V̇2 = 2qT
evq̇ev

= qT
ev(qe4I + q×

ev)ωe. (29)

Applying the inequality (27), and using the fact ||(qe4I + q×
ev)|| ≤ 1, the above

expression results

V̇2 ≤ qT
ev(−M1/α

1 (qev) − M1/α
2 sig1/α(qev)) (30)

≤ −M1/α
1 V2 − M1/α

2 V (α+1)/2α
2

≤ −λ1V2 − λ2V (α+1)/2α
2

where λ1 and λ2 are the minimum eigen values of M1/α
1 and M1/α

2 , respectively.
Therefore,

V̇2 + λ1V2 + λ2V (α+1)/2α
2 ≤ 0 (31)
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The above Eq. (31) satisfies the finite time stability criteria (17), and hence, once
the attitude trajectory falls on to the sliding surface, then the quaternion error will
converge to zero in finite time

t2 ≤ 1

λ1(α − 1)/2α
ln

λ1V (α−1)/2α
2 (σe(t1)) + λ2

λ2
, (32)

where t1 is the time to cross the reaching phase and to enter into the neighborhood
region of σe = 0. Subsequently, by (6), it is proved that ωe = 0. This completes the
proof.

Remark 4 From (32), it is obvious that M1 and M2 both have significant effect on
the convergence speed. However, the nominal control component (13) is also linked
with M1 and M2. Therefore, it is desired that while deciding M1 and M2, both the
convergence speed and the control input level should be monitored.

4 Simulation and Result Discussion

In this section, to verify the effectiveness of the proposed controlmethod, simulations
are conducted and the outcomes are presented with extensive discussion. The pro-
posed controller effectiveness demonstration completes in two steps. In the first step,
a small spacecraft attitude stabilization performance for the pure condition (d(t) = 0,
δJ = 0,Δ = 0), and the practical condition (d(t) �= 0, δJ �= 0,Δ �= 0) is checked. In
the second step, a practical spacecraft is taken, and its attitude tracking performance
is demonstrated for practical conditions. Other than the structural difference and type
of control, the both simulation steps differs on certain other grounds. In stabilization
example, number of actuators are four, and in tracking example three actuators are
applied. Additionally, in the tracking example, both the additive fault and actuator
effectiveness loss are applied.

4.1 Step 1: Spacecraft Attitude Stabilization

The considered spacecraft parameters are referred from Hu et al. (2012). The
nominal component and the uncertain component of spacecraft inertia matrix are
Jo = [20 0 0.9; 0 17 0; 0.9 0 15] and δJ = diag[3, 2, 1][1+ e−0.1t + 2Υ (t − 10)−
4Υ (t − 20)], respectively, where Υ (x) = 1 for x ≥ 0, else Υ (x) = 0. The space-
craft attitude is controlled with four reaction wheels with torque constraint limit
|u(t)| ≤ 0.2N-m; the distribution matrix for reaction wheels is
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D =
⎡

⎣
−1 0 0 1/

√
3

0 −1 0 1/
√
3

0 0 −1 1/
√
3

⎤

⎦ .

For the simulations, rigid spacecraft mathematical model discussed in (6)–(7) is
used. The initial conditions of the body frame quaternion and the body frame angular
velocity are taken as qv(0) = [0.3 − 0.2 − 0.3 0.8832]T and ω(0) = [0 0 0]T ,
respectively. The desired frame is characterizedwith qd(0) = [0 0 0 1]T andωd(0) =
[0 0 0]T .

Further, to check the robustness against external disturbances, and to investigate
the proposed controller effectiveness against actuator faults, the following mathe-
matical model for the external disturbance and the actuator fault, respectively, are
taken (Hu et al. 2012).

External disturbance:

d(t) = (||ω||2 + 0.005)[sin 0.8t cos 0.5t cos 0.3t]T N − m (33)

Actuator effectiveness:

Δ1 =
{
1, if t ≤ 2.4 s.

0.45 + 0.15 rand(ti) + 0.1sin(0.5t + π/3), if t > 2.4 s.

Δ2 =
{
1, if t ≤ 5.0 s.

0.50 + 0.15 rand(ti) + 0.1sin(0.5t + 2π/3), if t > 5.0 s.

Δ3 =
{
1, if t ≤ 10.0 s.

0.40 + 0.15 rand(ti) + 0.1sin(0.5t + π), if t > 10.0 s.

Δ4 =
{
1, if t ≤ 15.0 s.

0, if t > 15.0 s.
(34)

The controller settings used for the stabilization are mentioned in Table1.

4.1.1 Interpretation and Discussion with Comparative Comments
on Stabilization Performance

Case 1: Stabilization performance for pure condition

For the pure condition, simulation results are shown in Figs. 1, 2 and 3. The top and
bottom frames of Fig. 1a illustrate that the error quaternion and the angular velocity
error vectors, respectively, reduces to zero in finite time. Figure1b illustrates the
steady precision of the error quaternion and angular velocity error vectors. Figure2
depicts the time evolution of the NSFTSM vector and the control input; in which the
bottom frame of Fig. 2a illustrates that the control input is continuous. The steady
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Table 1 Controller parameters

Step 1 Attitude stabilization M1 =
diag(0.080, 0.080, 0.080)

M2 =
diag(0.152, 0.152, 0.152)

α = 1.1 γ = 0.47

k1(0) = 1.5 k2(0) = 0.20

η = 30 φ = 25

Step 2 Attitude tracking M1 =
diag(0.07, 0.07, 0.07)

M2 =
diag(2.90, 2.90, 2.90)

α = 1.1 γ = 0.49

k1(0) = 0.80 k2(0) = 0.02

η = 60 φ = 56
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Fig. 1 Stabilization performance Case 1: quaternion and angular velocity pattern under pure con-
dition. a Quaternion and angular velocity. b Steady precision

precision of NSFTSM vector and control input are illustrated in Fig. 2b. Figure3
illustrates the estimates of control gains.

As illustrated in Figs. 1 and 2 and mentioned in Table2, the proposed controller
needs time 5.8s to guarantee that the NSFTSM vector entered into the band
|σe| ≤ 5e − 3; and further, total time 18.15s is required to satisfy the condition
(|qev|, |Ω|) ≤ 2e − 2. Additionally, it is revealed that the steady precision for the
error quaternion vector, the angular velocity error vector, and the NSFTSM vector
are ensured in the range |qev| ≤ 1.35e − 7, |Ω| ≤ 1.07e − 5, |σe| < 3.41e − 6,
respectively.
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Fig. 2 Stabilization performance Case 1: sliding vectors and control input pattern under pure
condition. a Sliding vectors and control input. b Steady precision
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Fig. 3 Stabilization performance Case 1: estimate of control gains

Case 2: Stabilization performance for practical condition
Further, the spacecraft stabilization performance is verified with inertia uncertainty,
external disturbance (33), and loss of actuator effectiveness (34). The simulation
results are illustrated in Figs. 4 and 6. In Fig. 4a, the finite time convergence of the
quaternion and the angular velocity to the desired level, respectively, are portrayed.



396 P.M. Tiwari et al.

Table 2 Controller performance summary

Controller Control type Steady precision Convergence time

(in s) for

σe qev Ω |σe| < (|qei|, |Ωi|) <

5e-3 (2e-2,2e-2)

(12): Case 1 Stabilization ±3.41e-6 ±1.35e-7 ±1.07e-5 5.8 18.15

(12): Case 2 Stabilization ±2.62e-5 ±6.26e-5 ±5.26e-5 8.05 20.9

(22)(Hu et al. 2012): Case 2 Stabilization ±9.83e-4 ±3.11e-5 ±9.51e-4 36.81 35.42

(12) Tracking ±6.62e-4 ±8.80e-4 3.66e-5 14.81 13.15

(13)(Lu et al. 2013) Tracking ±2.74e-5 ±6.25e-4 ±3.35e-5 30.34 29.06
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Fig. 4 Stabilization performance Case 2: quaternion and angular velocity pattern under uncertainty,
disturbance, actuator fault. a Quaternion and angular velocity. b Steady precision

It is verified that even with the presence of uncertainty, external disturbance, and
actuator effectiveness loss, the controller successfully ensure to achieve the desired
objective.

As mentioned in Table2, and illustrated in the top and the bottom frame of Fig. 4,
(|qev|, |Ω|) ≤ 2e − 2 is achieved in 20.9 s. Figure5 top frame exhibits the time
evolution of NSFTSM vector, and it is verifiable that in time 8.05 s, |σe| ≤ 5e −
3 is established. Figure5 bottom frame illustrates that the control input pattern is
within the imposed limitation |u| ≤ 0.2N-m; and no sign of chattering is appeared.
The steady precision performance is shown in Figs. 4b and 5b. Figure6 illustrates
the estimates of control gains; as expected, the estimate of control gains are attained
the higher values than their counterparts of pure condition.
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Fig. 5 Stabilization performanceCase 2: sliding vectors and control input pattern under uncertainty,
disturbance, actuator fault. a Sliding vectors and control input. b Steady precision
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Interestingly, in the pure conditions’ control input patterns, the fourth reaction
wheel output always satisfy |u| < 0.2N-m, and attain never to the maximum limit
(|u| = 0.2N-m). In contrary, for the practical case, the all four reaction wheels output
need to attain to the maximum limit. Additionally, in the practical case, the reaction
wheels maximum control output is to be required to apply for the longer duration.
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Fig. 7 Controller (22) (Hu et al. 2012) stabilization performance: quaternion and angular velocity
pattern under uncertainty, disturbance, actuator fault. a Quaternion and angular velocity. b Steady
precision

0 20 40 60 80 100 120 140 160 180 200200
−0.4

−0.2

0

0.2

0.4

time (sec)

σ e

0 20 40 60 80 100 120 140 160 180 200200
−0.2

−0.1

0

0.1

0.2

time (sec)

u

u1

u2

u
3

u4

σ
e1

σ
e2

σ
e3

60 80 100 120 140 160 180 200200

−5

0

5

10

x 10
−4

time (sec)

60 80 100 120 140 160 180 200200
−0.1

0

0.1

0.2

time (sec)

u
σ e

(a) (b)

Fig. 8 Controller (22) (Hu et al. 2012) stabilization performance: sliding vectors and control input
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For the comparative analysis, the proposed controller stabilization performance is
compared with the controller (22) (Hu et al. 2012). Simulation results to the similar
condition are shown in Figs. 7 and 8. The salient points of the proposed controller are
the non-singularity, faster convergence speed, and the adaptive law estimated gains.
Particularly, the proposed controller ensured to satisfy the criterion |σe| ≤ 5e-3 and
(|qei|, |Ωi|) < (2e-2, 2e-2) for i = 1, 2, 3 in time 8.05 and 20.9s. respectively; but
the controller (22) (Hu et al. 2012) takes 36.81 and 35.42 s. respectively, to satisfy the
similar criterion. The steady precision level are almost same for both controller, but
the the proposed controller is more quicker in fault tolerant, and it doesn’t demand
the uncertainty or disturbance bounds to decide the controller’s gains.

4.2 Step 2: Spacecraft Attitude Tracking

Further, to examine the tracking performance of controller (12), simulations are con-
ductedon the spacecraftmodelmentioned inLuet al. (2013). Thenominal component
and the uncertain component of inertia matrix are Jo = [800.027 0 0; 0 839.93 0;
0 0 289.93] and δJ = diag[100, 100, 50], respectively. In contrast to stabilization
Step, in tracking case the spacecraft attitude is controlled with three reaction
wheels only, and the wheels are constrained with torque limit u(t) = 30N-m.
The initial conditions of the body frame quaternion and angular velocity are the
same as it taken in Step 1 simulations. The initial conditions for the desired
frame quaternion and angular velocity are qd(0) = [0 0 0 1]T and ωd(t) =
0.05[sin(π t\100) sin(2π t\100) sin(3π t\100)]T , respectively. In this simulation
step, in addition to the actuator effectiveness loss the additive fault possibility is
also included, and therefore the dynamics of rigid spacecraft is modified to

Jω̇e = (−ωe + Cωd)×J(ωe + Cωd) + J(ω×
e Cωd − Cω̇d)

+ (D Δ(t) u(t) + E(t)) + d(t). (35)

where E(t) = [e1 e2 e3]T is the additive fault.
The mathematical model considered for the external disturbance, the actuator

effectiveness loss, and the additive fault are as follows
Disturbance:

d(t) = [0.1 sin 0.1t 0.2 sin 0.2t 0.3 sin 0.3t]T (36)

Actuator Effectiveness:

Δ1 =
{
1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + π/3), if t > 10 s.
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Δ2 =
{
1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + 2π/3), if t > 10 s.

Δ3 =
{
1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + π), if t > 10 s.
(37)

Additive fault:

ei =

⎧
⎪⎨

⎪⎩

0, if t < 15 s.

0.1 + 0.05sin(0.5π t), if t ≥ 15 s.

for i = 1, 2, 3

4.2.1 Interpretation and Discussion with Comparative Comments
on Tracking Performance

By applying the afore-mentioned external disturbance, inertia uncertainty, actuator
effectiveness loss, and additive fault, the simulation results for the attitude tracking
are shown in Figs. 9 10, 11, and 12.
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Fig. 9 Tracking performance: quaternion and angular velocity pattern under uncertainty, distur-
bance, actuator fault. a Quaternion and angular velocity. b Steady precision
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Fig. 11 Tracking performance: sliding vectors and control input pattern under uncertainty, distur-
bance, actuator fault. a Sliding vectors and control input. b Steady precision

The error quaternion and the angular velocity tracking errors are portrayed in
Fig. 9, it illustrates that the controller is successfully negates the odd effects, and
ensures the tracking performance in finite time.Additionally, asmentioned inTable2,
and illustrated in the top and the bottom frame of Fig. 9a, (|qev|, |Ω|) ≤ 2e − 2 is
achieved in 13.15 s. For the better lucidity, the quaternion tracking pattern is also
shown in Fig. 10, and this also approves the attitude tracking performance. The
NSFTSM and the control input time evolution are depicted in Fig. 11, it illustrates
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Fig. 12 Tracking performance: estimate of control gains

that NSFTSM vector reached into region |σe| < 5e − 3 in time 14.81 s, and the
control input is maintained within the defined constraint |u| ≤ 30N-m without any
sign of chattering. In steady region, the control input is limited within |u| ≤ 4N-m.
The steady precision for the error quaternion and the angular velocity error, and the
NSFTSM vector are shown in Figs. 9b and 11b, respectively; from these illustration
and Table2, it is noted that for attitude tracking, the proposed controller guarantee
the steady precision in |qev| < 8.80e − 4, |Ω| < 3.66e − 5, |σe| < 6.62e − 5.
Figure12 illustrates the estimate of control gains.

To compare the performance of the proposed controller (12), the simulation results
of the proposed controller and controller (13) (Lu et al. 2013) are scrutinized. The
simulation under same initial condition is conducted for the controller (13) (Lu et al.
2013); and the results are shown in Figs.13 and 14. As is mentioned in (Lu et al.
2013), the selected values for the gains are τi = σi = 50. With these gain values, it
is verified that finally the controller’s gains attained to the level of 104.

It is noticed that the proposed controller is to require lesser time to track the desired
attitude than to the controller (13) (Lu et al. 2013). In more detail, the controller
(13) (Lu et al. 2013) took 30.34 and 29.06s. to satisfy the criterion |σe| ≤ 5e-3
and (|qei|, |Ωi|) < (2e-2, 2e-2) for i = 1, 2, 3, respectively; in contrary, to satisfy
the same criterion, the proposed controller (12) is demanded 14.81 and 13.15s,
respectively. Though, the steady precision for error quaternion and angular velocity
error is slightly lower than to the controller (13) (Lu et al. 2013)(Refer to Table2),
yet it is acceptable and comes in high precision range. Additionally, in contrary to
the controller (13) (Lu et al. 2013), the proposed controller’s gains are not selected
on any conservative approach, and in fact are being estimated with the proposed
adaptive law; hence, even if any unwanted and unaccounted external disturbance
and uncertainty surfaced, then also the proposed controller is equipped with adaptive
laws to overcome its effect.
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Fig. 13 Controller (13) (Lu et al. 2013) tracking performance: quaternion and angular velocity
pattern under uncertainty, disturbance, actuator fault. a Quaternion and angular velocity. b Steady
precision
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5 Conclusion

Byusing theNSFTSM, a fault-tolerant control law for rigid spacecraft attitude control
has been proposed. The proposed control has two components, nominal and adaptive.
The adaptive component is designed with aims to ensure quick convergence speed
and to eliminate the advance requirements for uncertainty and external disturbance
upper bounds. Additionally, by the proposed control, the chattering is eliminated, and
the singularity is removed also. The finite-time stability is proved using the Lyapunov
stability theorem. The simulation results for attitude stabilization and tracking are
reported for two different example spacecraft, respectively, to illustrate the controller
efficacy. The shown results reveal that even in presence of inertia uncertainty, external
disturbance, and actuator saturation, the controller is able to ensure the fault tolerance,
and successfully stabilize and track the desired equilibrium and the desired attitude
frame, respectively. In both the stabilization and the tracking case, quick convergence
speed and high steady precision is noticed.

Though, the proposed controller gives the required performance for the system
considered; in the future control design, to give the most practical solution, actuator
dynamics and spacecraft structure flexibility may be include to.

Appendix

To show that ωe = 0 is not an attractor in reaching phase, apply (12), (13), (14) in
(7), and L̄ = 0, yields

ω̇e = 1

2α
(M1αdiag(|qev|α−1) + M2)(qe4I3 + q×

ev)sig2−αωe

−k
′
1σe − k

′
2sigγ σe (38)

where, k
′
1 = J−1

o k̂1 ∈ �3×3 and k
′
2 = J−1

o k̂2 ∈ �3×3.
Substituting ωe = 0, (38) gives

ω̇e = −k
′
1σe − k

′
2sigγ σe, (39)

from (39) it is obvious that ω̇e is not zero in reaching phase (σe �= 0). Hence, ωe = 0
is not an attractor in reaching phase.
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