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Foreword

In control theory of linear and nonlinear dynamical systems, sliding mode control
(SMC) is a nonlinear control method. The sliding mode control method alters the
dynamics of a given dynamical system (linear or nonlinear) by applying a dis-
continuous control signal that forces the system to “slide” along a cross-section
(manifold) of the system’s normal behaviour.

Sliding mode control (SMC) is a special class of variable-structure systems
(VSS). In sliding mode control method, the state feedback control law is not a
continuous function of time. Instead, the state feedback control law can switch from
one continuous structure to another based on the current position in the state space.

Variable-structure systems (VSS) and the associated sliding mode behavior was
first investigated in the early 1950s in the USSR and seminal papers on SMC were
first published by Profs. S.V. Emelyanov (1967) and V.I. Utkin (1968). The early
research on VSS dealt with single-input and single-output (SISO) systems. In recent
years, the majority of research in SMC deals with multi-input and multi-output
(MIMO) systems.

For over 50 years, the sliding mode control (SMC) has been extensively studied
and widely used in many scientific and industrial applications due to its simplicity
and robustness against parameter variations and disturbances.

The design procedure of the sliding mode control (SMC) consists of two major
steps, (A) Reaching phase and (B) Sliding-mode phase. In the reaching phase, the
control system state is driven from any initial state to reach the sliding manifold in
finite time. In the sliding-mode phase, the system is confined into the sliding motion
on the sliding manifold. The stability results associated with the sliding mode
control are established using the direct method of the Lyapunov stability theory.

Hence, the sliding mode control scheme involves (1) the selection of a hyper-
surface or a manifold (i.e. the sliding manifold) such that the system trajectory
exhibits desirable behavior when confined to this sliding manifold and (2) finding
feedback gains so that the system trajectory intersects and stays on the sliding
manifold.
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The merits of sliding mode control (SMC) are robustness against disturbances
and parameter variations, reduced-order system design, and simple control struc-
ture. Some of the key technical problems associated with sliding mode control
(SMC) are chattering, matched and unmatched uncertainties, unmodeled dynamics,
etc. Many new approaches have been developed in the last decade to address these
problems.

Important types of sliding mode control (SMC) are classical sliding mode
control, integral sliding mode control, second-order sliding mode control, and
higher order sliding mode control. The new SMC approaches show promising
dynamical properties such as finite time convergence and chattering alleviation.

Sliding mode control has applications in several branches of Engineering like
Mechanical Engineering, Robotics, Electrical Engineering, Control Systems, Chaos
Theory, Network Engineering, etc.

One of the key objectives in the recent research on sliding mode control (SMC)
is to make it more intelligent. Soft computing (SC) techniques include neural
networks (NN), fuzzy logic (FL), and evolutionary algorithms like genetic algo-
rithms (GA), etc. The integration of sliding mode control and soft computing
alleviates the shortcomings associated with the classical SMC techniques.

It has been a long road for the sliding mode control (SMC) from early VSS
investigations in the 1950s to the present-day investigations and applications. In
this book, Dr. Ahmad Taher Azar and Dr. Quanmin Zhu have collected and edited
contributions of well-known researchers and experts in the field of sliding mode
control theory in order to provide a comprehensive view of the recent research
trends in sliding mode control theory. Their efforts have been very successful.
Therefore, it has been a great pleasure for me to write the Foreword for this book.

Sundarapandian Vaidyanathan
Professor and Dean, R & D Centre

Vel Tech University
Chennai

Tamil Nadu, India
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Preface

Sliding mode control, also known as variable structure control, is an important
robust control approach and has attractive features to keep systems insensitive to
uncertainties on the sliding surface. For the class of systems to which it applies,
sliding mode controller design provides a systematic approach to the problem of
maintaining stability and consistent performance in the face of modeling impreci-
sion. On the other hand, by allowing tradeoffs between modeling and performance
to be quantified in a simple fashion, it can illuminate the whole design process.
Sliding mode schemes have become one of the most exciting research topics in
several fields such as electric drives and actuators, power systems, aerospace
vehicles, robotic manipulators, biomedical systems, etc. In its earlier approach, an
infinite frequency control switching was required to maintain the trajectories on a
prescribed sliding surface and then eventually to enforce the orbit tending to the
equilibrium point along the sliding surface. However, in practice the system states
do not really locate on the designed sliding surface after reaching it due to
numerically discretizing errors, signal noise, as well as structural uncertainties in the
dynamical equations. Since the controller was fast switched during operation, the
system underwent oscillation crossing the sliding plane. Around the sliding surface
is often irritated by high frequency and small amplitude oscillations known as
chattering. The phenomenon of chattering is a major drawback of SMC, which
makes the control power unnecessarily large. To eliminate chattering, some
methods are being developed.

This book consists of 21 contributed chapters by subject experts specialized in
the various topics addressed in this book. The special chapters have been brought
out in this book after a rigorous review process. Special importance was given to
chapters offering practical solutions and novel methods for recent research prob-
lems in the main areas of this book. The objective of this book is to present recent
theoretical developments in sliding mode control and estimation techniques as well
as practical solutions to real-world control engineering problems using sliding mode
methods. The contributed chapters provide new ideas and approaches, clearly
indicating the advances made in problem statements, methodologies, or applica-
tions with respect to the existing results. The book is not only a valuable title on the
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publishing market, but is also a successful synthesis of sliding mode control in the
world literature.

As the editors, we hope that the chapters in this book will stimulate further
research in sliding mode control methods for use in real-world applications. We
hope that this book, covering so many different aspects, will be of value to all
readers.

We would like to thank also the reviewers for their diligence in reviewing the
chapters.

Special thanks go to Springer publisher, especially for the tireless work of the
series editor “Studies in Computational Intelligence,” Dr. Thomas Ditzinger.

Benha, Egypt Ahmad Taher Azar
Bristol, UK Quanmin Zhu
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Adaptive Sliding Mode Control of the Furuta
Pendulum

Ahmad Taher Azar and Fernando E. Serrano

Abstract In this chapter an adaptive sliding mode controller for the Furuta pendulum
is proposed. The Furuta pendulum is a class of underactuated mechanical systems
commonly used in many control systems laboratories due to its complex stabiliza-
tion which allows the analysis and design of different nonlinear and multivariable
controllers that are useful in some fields such as aerospace and robotics. Sliding
mode control has been extensively used in the control of mechanical systems as an
alternative to other nonlinear control strategies such as backstepping, passivity based
control etc. The design and implementation of an adaptive sliding mode controller
for this kind of system is explained in this chapter, along with other sliding mode
controller variations such as second order sliding mode (SOSMC) and PD plus slid-
ing mode control (PD + SMC) in order to compare their performance under different
system conditions. These control techniques are developed using the Lyapunov sta-
bility theorem and the variable structure design procedure to obtain asymptotically
stable system trajectories. In this chapter the adaptive sliding mode consist of a slid-
ing mode control law with an adaptive gain that makes the controller more flexible
and reliable than other sliding mode control (SMC) algorithms and nonlinear con-
trol strategies. The adaptive sliding mode control (ASMC) of the Furuta pendulum,
and the other SMC strategies shown in this chapter, are derived according to the
Furuta’s pendulum dynamic equations making the sliding variables, position errors
and velocity errors reach the zero value in a specified reaching time. The main reason
of deriving two well known sliding mode control strategy apart from the proposed
control strategy of this chapter (adaptive sliding mode control) is for comparison
purposes and to evince the advantages and disadvantages of adaptive sliding mode
control over other sliding mode control strategies for the stabilization of the Furuta
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2 A.T. Azar and F.E. Serrano

pendulum. A chattering analysis of the three SMC variations is done, to examine
the response of the system, and to test the performance of the ASMC in comparison
with the other control strategies explained in this chapter.

1 Introduction

In this chapter an adaptive sliding mode control of the Furuta pendulum is proposed.
The Furuta pendulum is a class of underactuated mechanical system used in labora-
tories to test different kinds of control strategies that are implemented in aerospace,
mechanical and robotics applications. A mechanical system is underactuated when
the number of actuators is less than the degrees of freedom of the system, for this
reason, the research on the control of this kind of systems is extensively studied.

There are different kinds of control strategies for the Furuta pendulum found
in literature, these approaches take in count the complexity of the dynamic model
considering that is coupled and nonlinear. In Ramirez-Neria et al. 2013 an active
disturbance rejection control (ADRC) is proposed for the tracking of a Furuta pen-
dulum, specially, when there are disturbances on the system; the ADRC cancels the
effects of the disturbance on the system by an on line estimation of the controller
parameters. In Hera et al. (2009), the stabilization of a Furuta pendulum applying an
efficient control law to obtain the desired trajectory tracking is corroborated by the
respective phase portraits. Some authors propose the parameter identification of the
model (Garcia-Alarcon et al. 2012) implementing a least square algorithm; becom-
ing an important technique that can be used in adaptive control strategies. Another
significant control approach is implemented by Fu and Lin (2005) where a back-
stepping controller is applied for the stabilization of the Furuta pendulum where a
linearized model of the pendulum is used to stabilizes this mechanical system around
the equilibrium point.

Sliding mode control SMC has been extensively implemented in different kinds of
systems, including mechanical, power systems, etc. this is a kind of variable structure
controllers VSC that is becoming very popular in the control systems community due
to its disturbance rejection properties yielded by external disturbance or unmodeled
dynamics (Shtessel et al. 2014). It consist on stabilizing the system by selecting an
appropriate sliding manifold until these variables reach the origin in a determined
convergence time; during the last decades the SMC control strategy has evolved,
from first order SMC to higher order sliding mode control HOSMC (Kunusch et al.
2012), which has been implemented in recent years due to its chattering avoidance
properties (Bartolini and Ferrara 1996). Due to the discontinous control action of the
SMC, sometimes the chattering effect is found in the system producing unwanted
system responses. Chattering basically is a high frequency oscillations in the control
input that can yield instability and unwanted system response, due to the chattering
avoidance properties of the HOSMC and their disturbance rejection (Utkin 2008),
this control technique has replaced the classical sliding mode approach.
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In order to solve the chattering problem, some SMC techniques have been pro-
posed to deal with this effect, like the twisting and super twisting algorithms (Fridman
2012), even when they are first generation algorithms, they have some advantages and
disadvantages when they are implemented in the control of underactuated mechanical
systems. Even when the previous algorithms are commonly implemented, a second
order sliding mode control SOSMC for the stabilization of the Furuta pendulum is
proposed in Sect. 2 where an specially design control algorithm is implemented in
the control and tracking of this mechanism (Moreno 2012). This approach is devel-
oped in this section to provide a different point of view on how to deal with this
kind of problem and because this is the theoretical background for the development
of other control algorithms, including adaptive sliding mode control (Ferrara and
Capisani 2012). In Sect. 3 the derivation and application of a proportional derivative
plus sliding mode control (PD + SMC) for the stabilization of a Furuta pendulum is
explained to show the advantages and disadvantages of this hybrid control strategy
over SOSMC and compare it with the adaptive sliding mode control strategy pro-
posed in this article. The reason because these two sliding mode control approaches
are explained in this chapter, is because it is necessary to compare these two sliding
mode control strategy with the main contribution of this chapter, in which the sta-
bilization of the Furuta pendulum by an adaptive sliding mode control strategy for
the Furuta pendulum is proposed to be compared and analyzed with other sliding
mode control approaches and to understand the theoretical background of adaptive
sliding mode controllers for mechanical underactuated systems. The derivation of
the adaptive sliding mode control ASMC strategy for the Furuta pendulum is shown
in Sect. 4, where an adaptive gain control strategy is obtained (Fei and Wu 2013; Liu
et al. 2013; Chen et al. 2014) exploiting the advantage of a classical sliding mode
controller with the on line tuning of a variable parameter controller. ASMC has been
demonstrated to be an effective control strategy for similar mechanical systems (Yao
and Tomizuka 1994) and other mechanical devices (Jing 2009; Li et al. 2011) where
the improved parameter adjustment make this strategy ideal for the control and sta-
bilization of this underactuated mechanical systems. In Sect. 5 a chattering analysis
of the three control approaches shown in this chapter is done to find the oscillation
period yielded by the discontinuous control law, then some conclusions are obtained
from this controller’s comparison. In Sect. 6 a discussion about the performance of
the three approaches explained in this chapter are analyzed to explain the advantages,
disadvantages and characteristic of the proposed control technique; finally, in Sect. 7
the conclusions of this chapter are shown to summarize the results obtained in this
chapter.

2 Second Order Sliding Mode Control of the Furuta Pendulum

In this section the derivations of a second order sliding mode control (SOSMC) is
shown to stabilizes the Furuta pendulum. The main idea of this control approach
is to find a suitable control law which stabilizes the system reducing the chattering



4 A.T. Azar and F.E. Serrano

effects and making the sliding manifold to reach the origin in finite time (Bartolini
et al. 1998). SOSMC has been extensively implemented in the control of different
kind of mechanisms, where the dynamic model of the system is considered to develop
an appropriate switching control law (Su and Leung 1992; Zhihong et al. 1994; Gracia
et al. 2014) therefore it has became in an attractive strategy for the control of the
Furuta pendulum.

Apart from the chattering avoidance nature of the SOSMC, another advantage
of the SOSMC is the disturbance rejection properties of this approach, making it
a suitable choice for the control of mechanical systems, (Punta 2006; Chang 2013;
Estrada and Plestan 2013), considering that the Furuta pendulum is an underactuated
system (Nersesov et al. 2010), generating exponentially stable sliding manifolds to
reach the origin in a prescribed time. The SOSMC strategy allows the design of
appropriate sliding manifolds which converge to zero in a defined time, for MIMO
and coupled dynamic systems (Bartolini and Ferrara 1996) making this approach
ideal for the control of the Furuta pendulum.

Higher order sliding mode control HOSMC (Levant 2005) has demonstrated
its effectiveness in the control of different kinds of systems (Rundell et al. 1996;
Shkolnikov et al. 2001; Fossas and Ras 2002), for this reason a SOSMC is designed
to stabilizes the Furuta pendulum with specific initial conditions implementing a
Lyapunov approach to obtain a suitable control law. This control strategy is designed
considering the dynamics of the Furuta pendulum (Fridman 2012) instead of imple-
menting well known SOSMC control algorithms such as the twisting and the super
twisting algorithms (Moreno 2012). The SOSMC strategy is done by designing a
control algorithm for arbitrary order SMC (Levant 2005; Fridman 2012) and test the
stability of the SOSMC by the Lyapunov theorem. The stabilization of the Furuta
pendulum is not a trivial task, even when different nonlinear control techniques are
proposed by some authors (Fu and Lin 2005; Ramirez-Neria et al. 2013) an ideal
control law that improves the system performance and reduces the tracking error with
smaller oscillations in the system that can be harmful for the mechanical system. It
is important to avoid these unwanted effects on the system considering an appropri-
ate second order sliding mode control law which decreases the deterioration of the
system performance, then a stabilizing control law that makes the sliding variables
and its first derivative to reach the origin in finite time is chosen for the stabilization
of this underactuated mechanical system.

The first subsection of this chapter is intended to explain the dynamic equations
of the Furuta pendulum that are determined by the respective kinematics equations
and the Euler–Lagrange formulation of this mechanical system. This model is imple-
mented in the rest of this chapter to derive the sliding mode controllers explained in
the following sections. In Sect. 2.2 the design of a second order sliding mode con-
troller for the Furuta pendulum is explained where this control strategy is designed
according to the system dynamics of the model while keeping the tracking error
as small as possible and driving the sliding variable to zero in finite time. Finally
in Sect. 2.3 an illustrative example of this control approach is done visualizing the
system performance and analyzing the controlled variables behavior; such as the
angular position, velocity and tracking error of this mechanical system.
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The intention in this section is to compare the SOSMC algorithm with the proposed
strategy of this chapter, then the discussion and analysis of this control approach are
explained in Sects. 5 and 6.

2.1 Dynamic Model of the Furuta Pendulum

The Furuta pendulum is an underactuated mechanism which consists of a rotary base
with a pendulum connected to a arm. The angle of the rotary base is denoted as φ and
the angle of the pendulum is denoted as θ . This mechanism is a perfect example of
underactuated nonlinear mechanical system that is implemented in the development
and design of different kind of nonlinear architectures for several kinds of applications
such as aeronautics, aerospace, robotics and other areas in the control systems field.
This mechanism works by rotating the base of the pendulum and then the arm rotates
according to the interaction of the pendulum and base of the arm. As it is explained
in the introduction of this section the stabilization of this mechanical system is a
difficult task, so in this section it is proved that a suitable second order sliding mode
control for the stabilization of this system is possible, while considering the system
dynamics of the model. The dynamical model shown in this section has two angles,
that must be controlled efficiently in order to keep the base and pendulum positions
in the desired values. This mathematical model is necessary for the design of efficient
sliding mode techniques where in order to design the proposed control strategy the
linearization of the model is essential to develop the adaptive gain SMC technique.
The design of a second order sliding mode controller for the Furuta pendulum leads
the path to the development of other sliding mode controller variations, so an efficient
control system design is important in this section to improve the performance of the
controlled system, therefore well defined dynamical systems equations lead to an
efficient design of the sliding mode control strategies that are developed in this and
the following sections.

In Fig. 1 the Furuta pendulum configuration is depicted showing the respective
rotational angles; meanwhile, in Fig. 2 a CAD model of the Furuta pendulum is
depicted for a clear understanding of the model.

The dynamic equations of the Furuta pendulum are given by (Fu and Lin 2005;
Hera et al. 2009; Garcia-Alarcon et al. 2012; Ramirez-Neria et al. 2013):

(p1 + p2sin2(θ))φ̈ + p3cos(θ)θ̈ + 2p2sin(θ)cos(θ)θ̇ φ̇ − p3sin(θ)θ̇2 = τφ (1)

p3cos(θ)φ̈ + (p2 + p5)θ̈ − p2sin(θ)cos(θ)φ̇2 − p4sin(θ) = 0 (2)

where:

p1 = (M + m p)�
2
a (3)

p2 = (M + (1/4)m p)�
2
p (4)

p3 = (M + (1/2)m p)�p�a (5)
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Fig. 1 Furuta pendulum
system

x

y

z

h

1

2

Fig. 2 CAD drawing of the
furuta pendulum

p4 = (M + (1/2)m p)�pg (6)

p5 = (1/12)m p�
2
p (7)

where �a is the length of the arm, �p is the length of the pendulum, m p is the
pendulum mass, M is the mass of the bob at the end of the pendulum and g is the
gravity constant.

Now, to establish the dynamic equations in the standard form it is necessary to
define the next vector q = [φ, θ ]T = [q1, q2]T, then the dynamic equations are
represented by:

D(q)q̈ + C(q, q̇)q̇ + g(q) =
[
τφ

0

]
(8)

defining the following state variables:
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x1 = q

x2 = q̇

The following state space representation is obtained:

ẋ1 = x2

ẋ2 = −D−1(x1)C(x1, x2)x2 − D−1(x1)g(x1) + D−1(x1)

[
1 0
0 0

]
τ

where τ , the inertia matrix, coriolis matrix and gravity vector are defined as:

D(q) =
[
(p1 + p2sin2(q2)) p3cos(q2)

p3cos(q2) p2 + p5

]
(9)

C(q, q̇) =
[

2p2sin(q2)cos(q2)q̇2 −p3sin(q2)q̇2
p2sin(q2)cos(q2)q̇1 0

]
(10)

g(q) =
[

0
−p4sin(q2)

]
(11)

τ =
[
τφ

τθ

]
(12)

where D(q) is the inertia matrix, C(q, q̇) is the coriolis matrix and g(q) is the gravity
vector. With these equations, the SMC can be derived in this and the following
sections, stablishing a theoretical background for the development of the sliding
mode controllers because they are settled on the dynamic equations of the Furuta
pendulum. In the next subsection a SOSMC is derived for the stabilization of the
Furuta pendulum, where its performance is analyzed and compared in the following
sections.

2.2 Second Order Sliding Mode Control of the Furuta Pendulum

In this section a SOSMC is designed for the stabilization of the Furuta pendulum.
Second order sliding mode control has been proved to be an effective control strategy
for different kind of mechanical systems (Punta 2006), therefore an appropriate con-
trol algorithm is developed considering the dynamics of the model (Fridman 2012).

The second order sliding mode controller for this mechanism is designed to
ensure that the sliding variables and their derivatives reach the origin in finite time
σ = σ̇ = 0, in order to calculate this convergence time the reader should check
Sect. 6. The convergence of the sliding variables of the system ensures that the con-
trolled variables of the model, angular positions and velocities, reach and keep the
desired values in steady state. Second order sliding mode control (SOSMC) and
higher order sliding mode control (HOSMC) are appropriate control strategies for
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this kind of mechanical systems, due to the chattering avoidance properties, distur-
bance rejection and robustness to unmodelled dynamics, therefore an appropriate
SOSMC strategy is implemented in the stabilization of this underactuated mech-
anism to keep the controlled variables in the desired values by moving the joint
positions from their initial conditions to the final position of the pendulum and base.
Despite of the control of the Furuta pendulum with other nonlinear control tech-
niques such as backstepping or robust control, second order sliding mode control
remains acceptable for the control and stabilization of different kind of mechanism
due to the performance enhancement properties such as robustness and disturbance
rejection properties, for these reasons, a higher order sliding mode controller is pro-
posed in this section instead of well known sliding mode control algorithms such
as the twisting and super twisting. The implementation of well defined dynamical
equations of the Furuta pendulum by the Euler Lagrange formulation is an important
fact that must be considered in the design of an efficient second order sliding mode
controller that yields an efficient trajectory tracking by minimizing the system errors.
Another important fact shown in this subsection is the design of an appropriate slid-
ing mode control strategy that reduces chattering and avoids the saturation of the
system actuator, so this SOSMC strategy suppress these effects on the system.

In order to design the desired SOSMC, the first step is the design of the sliding
manifold that in this case is given by:

σ = ė + Φe (13)

where σ is the sliding manifold, q is the position vector, qd is the desired position
vector, Φ is a �2×2 positive definite matrix and:

e = qd(t) − q(t) (14)

Then in order to design the required controller the variable φ must be defined
before deriving the control law (Bartolini et al. 1998; Levant 2005; Fridman 2012):

φ = σ̇ + βi |σ | 1
2 sign(σ ) (15)

Then the established control law is given by (Fridman 2012):

u = −σ + αsign(φ) = τ (16)

where α > 0 is a positive constant. Before proving the stability of the system the
following property must be explained:

Definition 1 An n-degrees of freedom mechanical system has the following prop-
erty:

σ T
(

1

2
Ḋ(q) − C(q, q̇)

)
σ = 0 (17)

where σ ∈ �n .
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In order to test the stability of the system with the proposed control law, the
following theorem is necessary to assure the convergence of the states and sliding
manifold of the system

Theorem 1 The second order sliding mode controller assures the stability of the
system if the defined Lyapunov function indicates that the system is asymptotically
stable.

Proof Define the following Lyapunov function with the established sliding manifold:

V (σ ) = 1

2
σ T D(q)σ (18)

where D(q) is the inertia matrix of the system. Then the derivative of the Lyapunov
function yields:

V̇ (σ ) = σ T D(q)σ̇ + 1

2
σ T Ḋ(q)σ (19)

The term D(q)σ̇ can be described as:

D(q)σ̇ = −τ + ξ − C(q, q̇)σ (20)

where
ξ = D(q)(q̈d + Φ ė) + C(q, q̇)(q̇d + Φe) + g(q) (21)

Definition 2 The term ξ has the following property (Liu 1999; Xiang and Siow
2004)

ξ ≤ α1 + α2 ‖e‖ + α3 ‖ė‖ + α4 ‖e‖ ‖ė‖ (22)

where α1,α2,α3, and α4 are positive constants. Then applying (20) and Definition 1
the Lyapunov function derivative becomes in:

V̇ (σ ) = −σ T τ + σ T ξ (23)

Then applying the norm and Definition 2, the Lyapunov function derivative becomes:

V̇ (σ ) ≤ −
∥∥∥σ T

∥∥∥ ‖τ‖ +
∥∥∥σ T

∥∥∥ ‖ξ‖ (24)

Therefore asymptotically stability is assured due to the upper bound of ‖ξ‖, explained
in Definition 2, implementing the SOSMC.

With these conditions the stability of the SOSMC is assured in the stabilization of
the Furuta pendulum. In the next subsection an illustrative example of the stabilization
of the Furuta pendulum by a SOSMC is shown, the system is tested under certain
initial conditions to analyze the performance of the measured variables and the sliding
manifold.
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2.3 Example 1

In this section an example of the stabilization of a Furuta pendulum by a SOSMC
is shown to test the performance of the system under specified initial conditions
(π/2, 0). The purposes of the second order sliding mode control is to make the
sliding variables and their derivatives to reach the origin in a finite time σ = σ̇ = 0
in order to make the controlled variables such as angular position and velocity reach
the desired final value in steady state when a disturbance is applied on the model. In
this example the idea is to illustrate the theoretical background of the second order
sliding mode controller when it is implemented in the control and stabilization of
the Furuta pendulum by a mathematical model of the system. In this example the
simulation results of the Furuta pendulum controlled by a second order sliding mode
controller is shown, depicting the angular position trajectories, the angular velocities,
the phase portraits, the tracking errors and the control input. With these simulation
results the performance of the Furuta pendulum, represented by a mathematical
model, show the system variables performance and evinces important conclusions
on the stabilization of this underactuated system with specified initial conditions.

The Furuta pendulum parameters are given in Table 1 The gains of the SOSMC
are given by:

α = 0.01 (25)

Φ =
[

1000 0
0 1000

]
(26)

β =
[

0.7 0
0 0.7

]
(27)

The simulations where done in M AT L AB® and Sim Mechanics® and the results
are depicted in Figs. 3 and 4

In Figs. 3 and 4 the angle position for φ and its angular velocity respectively, show
how these variables reach the final positions in a considerable time. As it is noticed,
even when there are some oscillations, these variables reaches the zero position. These
results confirm that is possible to stabilize an underactuated mechanical system, in
this case the Furuta pendulum, by a second order sliding mode controller. As it is

Table 1 Furuta pendulum
parameters

Parameter Values

�a 0.15 m

ma 0.298 Kg

�p 0.26 m

m p 0.032 m

J 0.0007688 Kg.m2

g 9.81 m/s2
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Fig. 3 Angular position for φ

Fig. 4 Angular velocity for φ

explained later in this section, these results are obtained due to the performance of
the sliding variables and their derivatives. In the following sections an analysis of the
oscillation or chattering is done to find the oscillation characteristics and compare it
with other control strategies.

In Figs. 5 and 6 the variables for the position and angular velocity of θ are shown.
Even when stabilizes the Furuta pendulum variable θ is not an easy task, in this
example the angular rotation and velocity of the pendulum are stabilized satisfactorily
due to the performance of the sliding mode variables and their derivatives. As can
be noticed, these variable reach zero in a specified time, even when there are some
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Fig. 5 Angular position for θ

Fig. 6 Angular velocity for θ

oscillations the system reach the origin in steady state, proving that the SOSMC is
effective.

In Figs. 7 and 8 the phase portrait of φ and θ are shown depicting the phase trajec-
tories of the measured variables. It can be noticed how the trajectories of the system
reach the equilibrium points, proving that the system is stable under these conditions.
The limit cycles generated by the periodic orbits of the system are stabilized by the
second order sliding mode control that avoids instabilities and the control system
drives the state trajectories of the system until they reach the desired final values
ensuring the asymptotical stability of the system as proved theoretically in the previ-
ous section. This fact is very important for the chattering analysis, because the limit
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Fig. 7 Phase portrait of φ

Fig. 8 Phase portrait for θ

cycles yielded by the periodic oscillations provides crucial information that can be
analyzed by Poincare maps as explained in Sect. 5 to calculate the oscillation period.

In Figs. 9 and 10 the error signals for φ and θ are shown respectively. The results
depicted in these figures, shown that a very small tracking error for both variables
is obtained and they reach very small values in steady state. While keeping the
tracking errors as small as possible, the trajectory tracking of the two controlled
variables of the system is done effectively by the second order sliding mode control.
As it is explained before, the tracking error is reduced to zero in steady state by the
convergence of the sliding variables in finite time, proving that this control strategy
is suitable for the trajectory tracking of this underactuated mechanical system.
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Fig. 9 Error of φ

Fig. 10 Error of θ

The input torque that controls joint 1 φ is shown in Fig. 11 where a considerable
control effort is necessary to stabilizes the measured variables in a considerable time.
It is important to notice the oscillations yielded by the control switching function
and the necessary control effort applied by actuator 1 φ in order to keep the joint
in the desired position. As it is expected, even when the sliding mode control law
reduces chattering, it is still present, therefore it is necessary to analyze this effect
for comparison with the other strategies explained in this chapter.

In Figs. 12 and 13 the sliding variables for σ1 and σ2 are shown. The sliding
variables reach the origin in a specified time assuring that the state variables achieve
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Fig. 11 Torque for input 1

Fig. 12 Sliding variable 1

the zero value in steady state. This fact is very important since the stabilization of the
control variables such as the position and velocity depends on the convergence of the
sliding mode variable, so as it is shown theoretically the selection of an appropriate
control law algorithm is crucial for the efficiency of the SOSMC to stabilize the
Furuta pendulum.

In this section the design of a second order sliding mode controller for the Furuta
pendulum is shown, a higher order sliding mode control law is implemented to make
the state variables to reach the desired steady state value. A convenient control law
is proposed instead of applying classical second order sliding mode approaches such
as the twisting or super twisting algorithms. The objective of the SOSMC design is
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Fig. 13 Sliding variable 2

to elucidate different SMC strategies for the control and stabilization of the Furuta
pendulum before deriving the adaptive sliding mode controller for this mechanism,
then the performance of the three control strategies are proven in order to evaluate
the chattering effects on the system. In the next section a variation of SMC control
is explained, in order to continue with the evaluation of different approaches before
deriving the proposed strategy of this chapter.

3 Proportional Derivative Plus Sliding Mode Control
of the Furuta Pendulum

In this section the derivation of a PD + sliding mode controller is shown to prove that
is an efficient alternative for the control of underactuated systems such as the Furuta
pendulum. Proportional derivative control (PD) has been proved to be an effective
and simple control architecture for mechanical systems, for this reason, a combined
control strategy along with a sliding mode controller is shown in this section. The
main idea in this section is to show that the Furuta pendulum can be stabilized by
this control law, even when this controller is simple. A combined linear control law,
given by the PD part of the controller, and a nonlinear part, given by the sliding mode
controller (Ouyang et al. 2014) make the system variables to reach the desired values
while the sliding surface reach the origin in a defined time interval.

Descentralized PD controllers are very popular in the control of different kind of
mechanical system; including robotic arms, parallel robots, “etc”, due to the sim-
plicity of their tuning parameters this kind of controllers at least ensure the local
stability of the controlled system. Even when this kind of controllers are very popu-
lar and simple they have some disadvantages such a poor disturbance rejection and
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robustness; for this reason in order to improve the properties of the PD controller
sometimes it is necessary to combine this control strategy with a nonlinear control
law. There are some control strategies found in literature in which the PD controller
is combined with nonlinear control to improve the system performance, for example
in Xiang and Siow (2004) a combined PD + nonlinear + neural network control is
implemented for the stabilization of a robotic arm, the hybrid control law improves
the system performance in which the trajectory tracking of a two links robotic arm is
done by following a desired trajectory. In Liu (1999) another PD controller variation
is implemented in the control of a two links robotic arm, where a nonlinear part
is added to the proportional derivative controller for the trajectory tracking of this
mechanism, this descentralized control strategy make the system variables to follow
the desired trajectories when disturbance are applied to the system. Then finally,
a PD + sliding mode controller for the trajectory tracking of a robotic system is
explained in Ouyang et al. (2014), where the controller properties are improved by
adding a nonlinear discontinuous function to the combined control law. Therefore
based on the previous cases a suitable PD + sliding mode controller is suggested in
this section for the stabilization of the Furuta pendulum, considering the similarities
of the properties of some mechanical systems with the Furuta pendulum, the control
approach presented in this section is not only suitable for the control of this underac-
tuated system, it allows the tracking of the mechanical system properties efficiently
while keeping the tracking error as small as possible, with small chattering effect
and control effort.

In the following sections the design of a PD + sliding mode controller is explained,
where a proposed sliding surface is defined to ensure that the system is stable, proved
by an appropriate selection of a Lyapunov function (Liu 1999; Xiang and Siow 2004).
Then, an example of the stabilization of a Furuta pendulum is shown to illustrate
the implementation of this control law in this underactuated system, to analyze its
performance under a specified initial condition. The idea of this section is to provide
an alternative to the adaptive sliding mode control of the Furuta pendulum, that is
analyzed and compared in Sect. 5, then some conclusions are obtained according to
the chattering analysis of these controllers.

3.1 Derivation of the PD + Sliding Mode Controller

In this section the derivation of a proportional derivative plus sliding mode controller
for the Furuta pendulum is developed. A stabilizing PD + sliding mode controller
has been proved to be effective in the control of different kind of mechanical systems,
considering that this is an underactuated mechanical model, the control of this sys-
tem by PD + SMC is appropriate due to the combined advantages and properties of
this control strategy. The development of this control technique consists in designing
an appropriate sliding manifold considering the dynamical system properties of the
model that are common in many mechanical systems. Chattering avoidance is one
of the properties of the model that is required in order to avoid the instability and
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system variables deterioration; this controller is very effective in order to cancel this
unwanted effect. Even when this technique is efficient in cancelling the chattering
effects in the system, this phenomenon is still present but with smaller negative results
than classical sliding mode controllers. Therefore, the analysis of this phenomenon
on the system is shown later in this chapter for comparison purposes with the other
sliding mode controllers explained in this chapter. The intention of this section is
to evince a combined sliding mode controller technique to understand and compare
with the main controller derived in this chapter, then some interesting conclusions
are obtained from all of these sliding mode control approaches, so all of these control
strategies are developed to show different alternatives and as a preview and compari-
son with the proposed adaptive sliding mode controller explained in the next section.
A complete analysis of this controller with the respective simulation is shown in
this section in order to clarify the theoretical background of this control approach by
deriving the PD + SMC strategy and show an illustrative example in order to verify
the performance of this controller.

The first step in the derivation of the PD + SMC for the Furuta pendulum, is to
define the following error signal (Liu 1999; Ouyang et al. 2014):

e = qd − q (28)

where based on the error signal the sliding surface r is given by:

r = ė + Φe (29)

where Φ is a positive definite matrix. Then the PD + sliding mode control for the
Furuta pendulum is given by (Liu 1999; Ouyang et al. 2014):

τ = kcr + k1sign(r) (30)

where kc and k1 are positive definite matrices for the PD and the sliding mode parts
of the control law respectively. The stability properties of this control law will be
examined later according to the Lyapunov stability theorem.

Substituting r in the dynamic system of the Furuta pendulum yields:

D(q)ṙ + C(q, q̇)r = −τ + ξ (31)

where
ξ = D(q)(q̈d + Φ ė) + C(q, q̇)(q̇d + Φe) + g(q) (32)

As explained in the previous section, ξ has a property that is very important for
the analysis of the stability of the closed loop system as described in Definition 2.

Definition 3 An n-degrees of freedom mechanical system has the following prop-
erties according to the dynamical systems characteristics:
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μmin I < D(q) < μmax I (33)

and
‖C(q)‖ ≤ CH (34)

‖g(q)‖ ≤ Cg (35)

where μmax > μmin > 0 and CH , Cg > 0

Definitions 2 and 3 are very important in order to prove the stability of the sys-
tems, according to the dynamical systems of the Furuta pendulum. Now, with these
properties and the dynamical system characteristics, the stability of the systems with
the specified control law is done as explained in the following theorem.

Theorem 2 The PD + sliding mode controller ensure the stability of the system if
the defined Lyapunov function indicates that the system is asymptotically stable.

Proof Consider the following Lyapunov function

V (r) = 1

2
r T D(q)r (36)

The derivative of the Lyapunov function is given by:

V̇ (r) = r T D(q)ṙ + 1

2
r T Ḋ(q)r (37)

where
D(q)ṙ = −τ + ξ − C(q, q̇)r (38)

Then by applying Definition 1 and (38) the derivative of the Lyapunov function
becomes in:

V̇ (r) = −r T τ + r T ξ (39)

Then applying the norm on both sides of (39) and substituting the control law τφ

yields:

V̇ (r) ≤ −
∥∥∥r T

∥∥∥ ‖kcr + k1sign(r)‖ +
∥∥∥r T

∥∥∥ ‖ξ‖ (40)

Converting this inequality in:

V̇ (r) ≤ −kcmin

∥∥∥r T
∥∥∥ ‖r‖ − k1min

∥∥∥r T
∥∥∥ ‖sign(r)‖ +

∥∥∥r T
∥∥∥ ‖ξ‖ (41)

where kcmin = mini∈nkc with kcmin > 0 and k1min = mini∈nk1 with k1min > 0 (Liu
1999; Xiang and Siow 2004).

Using the properties explained in Definition 2 and 3 the Lyapunov function indi-
cates that the system, representing the Furuta pendulum, is asymptotically stable
with the specified PD + sliding mode control law.
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In the next section an illustrative example of the control of the Furuta pendulum
with a PD + sliding mode control is done to prove the validity of the theoretical
background demonstrated in this subsection.

3.2 Example 2

In this section an illustrative example of the control of the Furuta pendulum by a
proportional derivative plus sliding mode control is shown to clarify the application
of this controller to this underactuated mechanical system. Even when the control
of underactuated systems is difficult, it is shown theoreticaly and by an illustrative
example that is possible to stabilize this mechanism by selecting an appropriate con-
trol law algorithm. In this example the angle trajectories and velocities are depicted
to prove that these variables are stable and reach the desired values in steady state.
The phase portraits shown in this section, verify the asymptotical stability of the
system while minimizing the tracking error of the model.

In this example the stabilization of a Furuta pendulum with a PD + sliding mode
control is shown with appropriate parameter selection. The parameters of the Furuta
pendulum are specified in Table 1 with (π/2, 0) as the initial conditions of the system.
The gains of the PD + SMC are given as follow:

kc =
[

0.7 0
0 0.7

]
(42)

k1 =
[

0.01 0
0 0.01

]
(43)

Φ =
[

90 0
0 90

]
(44)

The simulations were done in M AT L AB® and Sim Mechanics® where the
specified parameters are used in all the simulation process. In Fig. 14 the angle
trajectory φ is depicted, where as it is noticed the trajectory of this variable reaches the
specified value in steady state, proving that PD + sliding mode controller stabilizes
the system with the desired performance. In Fig. 15, the angular velocity for the
variable φ is shown, where this variable reaches the zero value in a specified value as
the corresponding variable is stabilized. As it is noticed these variables reaches the
expected values in finite time, this result is achieved due to the appropriate sliding
mode manifold is selected in order to stabilize the controlled variables.

In Fig. 16 the angular trajectory for the pendulum angle θ is shown, where this
angle reach the value of zero in steady state as defined by the controller and sys-
tem specifications, so the PD + sliding mode controller of the Furuta stabilizes this
variable in the required time keeping the two controlled variables in the desired
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Fig. 14 Angle position for φ

Fig. 15 Angular velocity for φ

mechanism positions. In Fig. 17 the angular velocity of the controlled variable θ is
shown, where this variable reaches the zero value in steady state as defined by the
controller and system specifications. With these results the stability of all the con-
trolled variables is ensured by the implementation of a PD + sliding mode controller,
keeping the Furuta pendulum stable when external disturbances are applied in the
system. As it is proven theoretically, the appropriated sliding manifold selection is
very important in order to stabilize these variables, reaching and keeping the desired
values in finite time.

The respective phase portraits for φ and θ are shown in Figs. 18 and 19. As it
is noticed, the two phase portraits show that these variables are stable, according
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Fig. 16 Angle position for θ

Fig. 17 Angular velocity for θ

to their respective phase trajectories. The two limit cycles depicted in these figures
show that the oscillations follow a prescribed trajectory until the variables reach the
desired values when a disturbance is applied on the system. The phase portraits show
that the limit cycles yielded by the periodic oscillations are stable, proving that the
PD + sliding mode control law meets the required specifications according to the
stabilization of the state variables of the system.

In Fig. 20 the respective input torque for joint 1 (base) is shown. As it is noticed the
control effort for the joint is reasonable so it is not necessary to saturate the actuator.
The torque input applied to the base joint behaves in an oscillatory manner as it is
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Fig. 18 Phase portrait of φ

Fig. 19 Phase portrait of θ

expected generating some oscillations until the system variables reach the desired
values in steady state.

The corresponding oscillation analysis of the variables and the torque inputs is
done in Sect. 5 where the chattering effect is evaluated according to the oscillation
frequencies of this and the other SMC strategies explained in this chapter.

In Figs. 21 and 22 the respective sliding variables of the PD + sliding mode
controller are shown, where the two variables converge to zero in a determined time.
Ensuring that the sliding variables reach the origin in an expected time allowing the
system to reach the specified steady state values with a considerable small control
effort generated by the switching control law.
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Fig. 20 Input torque 1

Fig. 21 Sliding variable 1

The error signals for φ and θ are shown in Figs. 23 and 24 respectively, where
the PD + sliding mode controller makes the error signal to reach the zero value in
an expected time, proving the efficiency of this controller to stabilizes mechanical
systems of different kind.

In this section a PD + sliding mode controller for the control and stabilization of
the Furuta pendulum is explained, to prove their suitability in the control of this kind
of underactuated mechanical system. This control approach is advantageous because
it combines the simplicity of a proportional derivative controller and the efficiency of
a nonlinear sliding mode control making this strategy ideal for the stabilization of this
kind of mechanism. The stability of the PD + SMC is corroborated by the selection of
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Fig. 22 Sliding variable 2

Fig. 23 Error signal for φ

an appropriate Lyapunov function and this fact is confirmed by a numerical example
and simulation of the Furuta pendulum with this control strategy.

As it is confirmed in this chapter, all the variables are stabilized according with
the system design specifications and initial condition of the model; reaching the
expected value in steady state. This system behavior is illustrated in the phase plot of
each variable, where the state trajectories reach the specified point in these diagrams,
so this control strategy yields stable limit cycle oscillations when a disturbance is
applied to the system.

As it is noticed in Example 2, the control effort generated by the controller output
is significantly small to keep the controlled variables in the equilibrium point of the
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Fig. 24 Error signal for θ

system. The tracking error of this mechanism reach the desired final value, keeping
the controlled variables in the desired trajectory even when disturbances are present
in the model, proving that this control strategy is efficient in the trajectory tracking
of the Furuta pendulum.

In the next section, the proposed control strategy of this chapter is developed,
an adaptive sliding mode controller ASMC for the stabilization and control of the
Furuta pendulum is designed, where the performance of this model is analyzed when
an ASMC is implemented in the control of this kind of underactuated system. All the
SMC strategies are compared and analyzed in Sects. 5 and 6 to obtain the respective
conclusions of this work.

4 Adaptive Sliding Mode Control of the Furuta Pendulum

In this section the main control technique of this chapter is explained, an adaptive
sliding mode control for the stabilization of the Furuta pendulum (ASMC). Adaptive
sliding mode control is a control approach that has been implemented extensively in
different kinds of applications due to the flexibility of the sliding mode parameters
(Chang 2013; Cheng and Guo 2010); this is a very useful control approach used
in different kinds of systems such as electrical (Liu et al. 2013; Chen et al. 2014)
and mechanical systems (Fei and Wu 2013) yielding the desired performance when
disturbances are applied to the system.

An adaptive gain SMC is implemented for the stabilization of the Furuta pendulum
considering the system dynamics of the model and its stability properties to keep
the mechanism trajectory in the desired position. Another property of this control
approach is that the chattering effect is minimized and then, the oscillations of the
system are cancelled by the controller characteristics.
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Adaptive sliding mode control is a control technique that consists in the imple-
mentation of an adaptive gain parameter obtained according to the Lyapunov stability
theorem along with a sliding mode controller to ensure the asymptotical stability of
the system. The design procedure for this kind of controller consists in designing a
feasible controller that reaches the sliding manifold in finite time while stabilizing
the state variables for the trajectory tracking. The advantage of this control strate-
gies is that the effects yielded by perturbation and disturbances are suppressed by
the adaptive control along with the sliding controller action. For this reason, this
control technique is appropriate for the control and stabilization of different kind
of mechanical system, obtaining a very robust controller that adjusts its parame-
ters in real time moving and keeping the state variables in the desired trajectory.
The control law of this controller is designed by combining an adaptive part with a
sliding mode controller that makes the Furuta pendulum variables reach the desired
values in steady state while keeping the system in the sliding manifold to obtain
an asymptotically stable system. Another advantage of this controller is the chatter-
ing suppresion effects yielded by the adaptive sliding mode controller, so the action
produced by the discontinuos sliding mode controller algorithm is cancelled by the
effect of the adaptive gain of the system. Taking in count that the parameters of the
mechanical system such as the gravitational, coriolis and inertia matrices change
in time an adaptive sliding mode controller is suitable for this kind of mechanism
(Yao and Tomizuka 1994) making a flexible control strategy that vary the controller
parameters in real time while ensuring the asymptotical stability of the system. This
control strategy has another advantage that is related to the smaller control effort
that is necessary in order to stabilizes the system variables while keeping the sliding
variables in the origin, this is a desirable property that means that it is not necessary
to saturate the actuator due to higher values of the control action. The adaptive sliding
mode controller is proved to be a strong control strategy that is applied in the control
and stabilization of the Furuta pendulum as demonstrated in this section, the sliding
mode control strategies developed in this chapter proved that are effective and they
are the fundamental control approaches for the stabilization of the Furuta pendulum.
The SMC approaches shown in this chapter are developed to shown the fundamentals
of adaptive sliding mode control for the stabilization of the Furuta pendulum and
for comparison purposes with the proposed control approach of this chapter, that
even when these control strategies are effective in the control of this underactuated
system, they lack of important properties that adaptive sliding mode control has for
the stabilization of the Furuta pendulum; for this reason the comparison and analysis
of these control strategies are shown in Sects. 5 and 6.

In the following sections the development of an ASMC for the Furuta pendulum
is derived and explained as the proposed control strategy of this chapter and then the
system performance is corroborated with an illustrative example of the ASMC for
the Furuta pendulum with specified initial conditions. The proposed control strategy
is compared later in the following sections according to the chattering effects on the
system and other characteristics of the control system.
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4.1 Derivation of the Adaptive Sliding Mode Controller of the
Furuta Pendulum

Adaptive sliding mode has successfully proved that is an efficient control technique
for different kinds of systems (Yu and Ozguner 2006) therefore this control approach
has better disturbance rejection properties than classical SMC, for this reason this
control strategy is convenient for the control of underactuated mechanical systems
as explained in this section. Adaptive sliding mode control is suitable for the control
of underactuated mechanical systems due to its robustness and disturbance rejection
properties when unmodelled dynamics and disturbance are present in the system,
this controller updates its adaptive gain online improving the performance of the
controller and therefore the asymptotical stability of the system is ensured by this
control strategy. The derivation of this adaptive gain is done by the Lyapunov stability
theorem in order to ensure the stability of the system and the sliding variables con-
vergence for a better trajectory tracking of the system. The objective of this chapter is
to proved that a feasible adaptive sliding mode controller can be designed in order to
improve the disturbance rejection and chattering avoidance properties of the Furuta
pendulum by ensuring the stability of the system with a small control effort and
reducing the chattering effects on the system.

Before deriving the ASMC for the Furuta pendulum, an important property for
mechanical systems is described as follow: Consider the dynamics equation of the
Furuta pendulum as described in (8), then this system is linearly parametrizable as
described in the next equation (Liu 1999; Xiang and Siow 2004).

D̂(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) = Y (q, q̇, q̇r , q̈r )ψ (45)

where D̂(q), Ĉ(q, q̇), ĝ(q) are the estimated dynamical systems matrices and vector
respectively and ψ is the parameter of the dynamical system model that is adjusted
by the adaptive control law. Then q̇r is defined as:

q̇r = q̇d + Φq̃ (46)

where q̃ = qd(t) − q(t), q(t) is the position vector of the Furuta pendulum, qd(t) is
the desired position vector and Φ is a positive definite matrix.

Based on the previous variables, the sliding surface is defined as:

S = q̇r − q̇ = ˙̃q + Φq̃ (47)

where the derivative of S is given by:

Ṡ = q̈r − q̈ = ¨̃q + Φ ˙̃q (48)

The proposed control law for the stabilization of the Furuta pendulum is (Xiang
and Siow 2004; Fei and Wu 2013; Liu et al. 2013; Chen et al. 2014):
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τ = D̂(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) − kd S − k1sign(S) (49)

Then using the linear parametrization property of the Furuta pendulum dynamics,
(49) is converted to:

τ = Y (q, q̇, q̇r , q̈r )ψ − kd S − k1sign(S) (50)

where kd and k1 are constant positive definite matrices. The following theorem
ensures asymptotical stability of the system with the proposed adaptive sliding mode
control law and it is necessary in order to find the adaptive parameter of the system.

Theorem 3 The adaptive sliding mode controller ensures the stability of the system
if the defined Lyapunov function indicates that the system is asymptotically stable.

Proof Consider the following Lyapunov function:

V (S, ψ) = 1

2
ST D(q)S + 1

2
ψT Γ −1ψ (51)

where Γ is a positive definite adaptive gain matrix. Then the derivative of the
Lyapunov function is given by:

V̇ (S, ψ) = ST D(q)Ṡ + 1

2
ST Ḋ(q)S + ψ̇T Γ −1ψ (52)

Then with
D(q)Ṡ = −τ + ξ − C(q, q̇)S (53)

where

ξ = D(q)(q̈d + Φ ˙̃q) + C(q, q̇)(q̇d + Φq̃) + g(q)

ξ = D(q)q̈r + C(q, q̇)q̇r + g(q) (54)

Then V̇ (S, ψ) becomes in

V̇ (S, ψ) = −ST τ − ST C(q, q̇)S + ST ξ + 1

2
ST Ḋ(q)S + ψ̇T Γ −1ψ (55)

Then considering the estimation of the parameter ξ

ξ = Y (q, q̇, q̇r , q̈r )ψ (56)

and rearrenge to apply Definition 1, V̇ (S, ψ) becomes in:

V̇ (S, ψ) = −Sτ + ψ̇T Γ −1ψ + ST Y (q, q̇, q̇r , q̈r )ψ (57)
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Then in order to stabilize the system the updating law of the variable parameter
must be:

ψ̇T = −ST Y (q, q̇, q̇r , q̈r )Γ (58)

Therefore the derivative of the Lyapunov function becomes in:

V̇ (S, ψ) ≤ − |S| ‖τ‖ (59)

So the system is asymptotically stable with the updating law of the adaptive
parameter ψ . This completes the proof of the theorem.

In the next section an example of the stabilization of the Furuta pendulum by an
ASMC is shown to illustrate the system performance.

4.2 Example 3

In this section an illustrative example of the control and stabilization of the Furuta
pendulum by an ASMC is shown. The main idea of this example is to illustrate
the system performance by a numerical simulation, where the system is tested with
specified initial conditions and trajectories. Then the results obtained for the angular
positions, velocities, phase portraits, tracking errors and input torques are analyzed
to obtain the respective conclusions of the system performance. In this section is
proved that the sliding mode controller with adaptive gain meets the requirement
of the stabilization and tracking error reduction by an appropriate adaptive control
law with a well defined updating gain algorithm. The theoretical background of
the adaptive sliding mode controller for the stabilization of the Furuta pendulum is
corroborated in this example by selecting the appropriate controller parameters for
the adaptive gain, in order to stabilize the system by the on line adaptation of the
adaptive gain.

The controller parameters are:

k1 =
[

0.0000001 0
0 0.0000001

]
(60)

kd =
[

7 0
0 7

]
(61)

The adaptive gain evolution is shown later in this section and the initial con-
dition of the model is (π, 0). The simulations were done in M AT L AB® and
Sim Mechanics® where the specified parameters are used in all the simulation
process. In Figs. 25 and 26 the angular position and velocity of the base φ are shown
respectively, where as it is noticed these variables reach the desired final values in
steady state, with no oscillations in comparison with the previous SMC alternatives.
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Fig. 25 Angle position for φ

Fig. 26 Angular velocity for φ

The positions and angular velocities of the base are stabilized as it is defined by the
adaptive control law, this requirement is met due to the convergence of the sliding
variables in finite time. In comparison with the previous sliding mode control strate-
gies, the trajectory tracking of these variables evince less oscillations, and a better
system performance.

In Figs. 27 and 28 the angular position and velocity of the pendulum θ are shown
respectively where the desired final values in steady state of the system are reached in
a determined time when a disturbance is applied on the system. Practically there are
no oscillations on the pendulum parameters, and then this proves that the proposed
ASMC is an effective technique for the stabilization of this underactuated mechanical
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Fig. 27 Angle position for θ

Fig. 28 Angular velocity for θ

system. These variables reach the desired position due to the convergence of the
sliding variables, and in comparison with the other control strategies, the adaptive
sliding mode controller for the stabilization of the Furuta pendulum shows a better
performance in the stabilization of these variables due to a small chattering, that can
be considered as oscillations of the system, and less control effort.

The input torque for the joint actuator is shown in Fig. 29, where the necessary
control effort is necessary to be applied to stabilizes the controlled variables of
the system. As explained before, it can be noticed that practically there are not
oscillations on this control input, so this undesirable effect is eliminated by the
adaptive characteristic of this adaptive gain system.
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Fig. 29 Input torque 1

Fig. 30 Sliding variable 1

In Figs. 30 and 31 the respective sliding variables are shown, where as it is noticed
these variables reach the origin in a considerable time, yielding the convergence of
the controlled variable in finite time. These facts corroborates the theory behind this
control strategy implemented in the control of the Furuta pendulum, where the sliding
manifold must be reached in finite time to ensure the stability of the system.

In Fig. 32 the norm of the adaptive gain ‖ψ‖ is depicted in this figure. As can
be noticed, the evolution of the adaptive gain goes from the initial value to the final
value of this parameter until the system variables and the adaptive gain reach the
desired value in finite time.
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Fig. 31 Sliding variable 2

Fig. 32 Norm of the adaptive gain ‖ψ‖

Finally in Figs. 33 and 34, the error signals of the model reach the zero value in
finite time as specified in the ASMC design, so the controlled variables φ and θ are
stabilized in finite time while keeping the tracking error about the zero.

In this section the proposed control strategy of this chapter is shown, for the
stabilization and control of the Furuta pendulum, keeping the tracking error of the
controlled variable about zero. This objective was proved theoretically and corro-
borated later by a simulation example. The adaptive gain of ASMC improves the
performance of the system considerably in comparison with the control strategies
developed in the previous sections, and as it is confirmed in the following section the
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Fig. 33 Error of φ

Fig. 34 Error of θ

performance and chattering avoidance properties of the proposed controller is better
than the other two control alternatives explained in this chapter.

The main objective of this chapter is to analyze and develop different sliding
mode control strategies, from the classical to new kinds of SMC variations to find the
theoretical basis of well known sliding mode control algorithms and compare them
with novel SMC strategies for the control of underactuated mechanical systems.

In this section the adaptive sliding mode controller is developed exploiting the
linear parametrization of the system, that is an important properties of different
kinds of mechanical systems, and it is a contrasting characteristic of the ASMC in
comparison with the other algorithms explained in this chapter. The adaptive gain
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increases the disturbance rejection properties of the system so the system is more
robust in comparison with the other algorithms explained in this chapter.
In the next section a chattering analysis of the three SMC approaches is clearly
explained to test the system performance when one of these techniques is imple-
mented for the control and stabilization of the Furuta pendulum, then some impor-
tant conclusions are obtained in the design of an appropriate control strategy for this
mechanical system.

5 Chattering Analysis

In this section a chattering analysis of the SMC developed in this chapter is done.
Chattering is basically a high frequency oscillation effect yielded by the switching
inputs of the sliding mode control law. This unwanted effect deteriorates the system
performance and could lead to the instability of the system. One way to avoid this
effect is by designing appropriated control strategies such as the second order sliding
mode control (Bartolini et al. 1998) or high order sliding mode control instead of
implementing classical sliding mode controller strategies. Another way to solve
this problem is by selecting appropriate sliding mode control laws that reduce this
unwanted effect such as implementing second order sliding mode algorithms like the
twisting and super twisting algorithms (Fridman 2012).

The chattering oscillations yielded by the chattering effect have been studied
by different authors and basically there are two methods that can be implemented
to analyze this effect; the describing function analysis (Boiko and Fridman 2005;
Boiko et al. 2007, 2008) and the Poincare map analysis (Boiko et al. 2008; Haddad
and Chellaboina 2014) where the frequency, period and stability of the limit cycle
oscillations yielded by chattering can be analyzed.

The purpose of this section is to find the period and frequency of the limit cycle
oscillations generated by chattering in each of the SMC explained in this section.
In the previous sections the performance of the system was proved analytically and
corroborated by examples; therefore there is a clear idea of the limit cycle properties
yielded by chattering in the input of the mechanical system, so the intention here is
to show an analytical procedure to find the oscillation periods by Poincare maps.

In order to define the Poincare maps, the first step is to transform the dynamical
system (8) of the Furuta pendulum to state space by linearizing the model

ẋ = Ax + Bτ (62)

Y = Cx (63)
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where

A =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1
0 −p3 p4

p1 p2+p1 p5−p2
3

0 0

0 p1 p4

p1 p2+p1 p5−p2
3

0 0

⎤
⎥⎥⎥⎦ (64)

B =

⎡
⎢⎢⎢⎣

0 0
0 0

p2+p5

p1 p2+p1 p5−p2
3

−p3

p1 p2+p1 p5−p2
3p3

p1 p2+p1 p5−p2
3

p1

p1 p2+p1 p5−p2
3

⎤
⎥⎥⎥⎦ (65)

C = I4×4 (66)

where I4×4 is an identity matrix. Now defining the solution of the linear system in a
specified point by (Haddad and Chellaboina 2014):

s(t, p) = x(o)et +
t∫

0

e(t−λ)A B(λ)τ (λ)dλ (67)

Define the function:

ζ(x)
�=

{
ζ̂ > 0 : S(ζ̂ , x) ∈ Sand S(t, x) /∈ S, 0 < t < ζ̂

}
(68)

Then the Poincare map is given by:

P(x)
�= s(ζ(x), x) (69)

Finally, from the Poincare map shown in (70) a dynamic system in discrete time
is obtained as shown in (71)

z(k + 1) = P(z(k)) (70)

Therefore proving the stability of the discrete function shown in (71) the stability
of the periodic orbit can be determined in a fixed point x = p since the period is
T = ζ(p) and consequently p = P(p) (Haddad and Chellaboina 2014).

Then making the Poincare map

P(z(k)) = 0 (71)

With t = T , then the smaller positive period T obtained from this equation is
the resulting period of the chattering oscillations. Making the Poincare map for each
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Table 2 Period and
frequency of the chattering
oscillations

Example Chattering Chattering

period (s) frequency (rad/s)

1 3.10 2.02

2 5.10 1.23

3 8.10 0.77

example of this chapter the following periods and chattering oscillation frequencies
are obtained:

In Table 2 the chattering period and frequency is shown, as can be noticed, the
frequency of the oscillations of Example 3 is the smallest of the three examples
corroborating that the adaptive sliding mode controller avoids the chattering effects
better than the other two approaches as it is seen in the simulation results. It is impor-
tant to notice, that the PD + sliding mode controller implemented in Example 2
yield a small chattering frequency in comparison with the second order sliding mode
controller of Example 1, so this combined control strategy yields better results than
the approach shown in Sect. 2. With this analysis the results obtained by simulation
were proved by an analytical method, therefore the proposed adaptive sliding mode
controller for the Furuta pendulum yields better results than the other control strate-
gies as it is corroborated in Sect. 4 due to the chattering avoidance properties of this
controller.

6 Discussion

In this chapter, three control strategies are shown for the control and stabilization of
the Furuta pendulum. A SOSMC, a PD + SMC; and the proposed control strategy
of this paper, the ASMC for the Furuta pendulum is shown. In order to verify the
performance and properties of each controller there are two important properties
that must be considered to evaluate the system performance; these parameters are
the convergence time, chattering period and frequency.

The converge time can be computed considering the Lyapunov function V as
follow (Shtessel et al. 2014):

tr ≤ 2V
1
2 (0)

α
(72)

where α is a positive constant and tr is the upper bound of the convergence time.
All the sliding mode controllers for the stabilization of the Furuta pendulum reach
the sliding manifold with this convergence time, so all the alternatives shown in
this chapter meet the requirement to control this underactuated mechanical system.
This is an important property that must be considered in the design of sliding mode
controller for coupled nonlinear systems because it ensures the stability and converge
of the controlled variables in finite time and keeping the desired final value in steady
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state. All the simulation experiments shown in this chapter reach the sliding manifold
in a defined convergence time, proving that these control strategies are suitable for the
stabilization of the Furuta pendulum and similar mechanical underactuated systems.
The main purpose of this chapter is to show the design and analysis of an adaptive
sliding mode controller for the Furuta pendulum, but some control alternatives were
developed to show the evolution and comparisons of the proposed control strategy
with similar control techniques. The second order or higher order sliding mode
control was chosen because of its chattering avoidance properties while ensuring the
convergence of the sliding mode variables in finite time, even when this alternative
has been extensively used in different kind of mechanical systems (Nersesov et al.
2010; Chang 2013) it has some disadvantages in comparison with other sliding mode
control variations. Instead of implementing an classical sliding mode algorithm, such
as the twisting and super twisting algorithms, in this example a higher order sliding
mode control law was implemented in order to make the system variables to reach
the sliding manifold in a defined time.

A proportional derivative + sliding mode controller for the Furuta pendulum
yields better results than the conventional second order sliding mode controller, due
to the best controller characteristics of the linear PD control law and the nonlinear
sliding mode control, reaching the sliding manifold in a finite time ensuring the
convergence of the controlled variables in steady state and keeping these variables
in the final value as it is defined by the designer.

The adaptive sliding mode controller for the Furuta pendulum shown in this
chapter is designed taking in count the mechanical system properties of the model,
designing the required adaptive gain sliding mode control law to make the sliding
surface to reach zero in finite time, this condition is met due to the adaptive gain
was designed by the Lyapunov stability conditions making it suitable for the control
of this kind of underactuated mechanism. Therefore it was proven that an effective
adaptive sliding mode technique can be implemented for this kind of mechanical sys-
tems with the desired stability conditions for the model, where the sliding manifold
reaches the origin in a determined time as expected.

Chattering is the second effect that is analyzed in this chapter, where as it is
explained before this unwanted effect can deteriorate the system performance. Even
when high order sliding mode control strategy has improved the chattering avoid-
ance properties of control systems, this unwanted effect is still found, then as the
chattering analysis show in the previous section, this effect is found in the system,
but it is not so harmful as it is found in other kinds of classical sliding mode control
implementations. The proportional derivative plus sliding mode controller for the
Furuta pendulum, has better chattering avoidance properties in comparison with the
second order sliding mode control due to improvement of a standard SMC with a PD
control law, even when it is a simple control strategy, this combined SMC strategy
has better chattering avoidance and tracking error properties. The proposed adaptive
sliding mode control strategy for the stabilization of the Furuta pendulum is proved
to stabilizes this mechanical system decreasing the chattering effects on the system
due to the adaptive gain of the controller that makes it more robust and reliable in
comparison with the previous control strategies shown in this chapter, for this reason,
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this strategy is proved to be superior to the previous control approaches, where the
stability, small chattering and convergence of the sliding manifold in finite time make
it the best alternative for the control of this kind of underactuated system.

7 Conclusions

In this chapter the design of an adaptive sliding mode controller for the stabilization
of the Furuta pendulum is shown. Apart from this control approach, the stabilization
of this mechanism by a second order sliding mode controller and a proportional
derivative plus sliding mode controller are derived for comparison purposes and to
explain the fundamentals of the proposed control technique. The second order sliding
mode controller for this mechanism is explained due to its disturbance rejection
properties making this control strategy ideal for the stabilization of this kind of
mechanism; a higher order sliding mode control law design is proposed instead of
standard SMC algorithms such as the twisting and super twisting algorithms. This
fact allows the design of a chattering avoidance control technique where this effect
is decreased by the selection of an appropriate control law that makes the system
stable and makes the controlled variables, such as positions and velocities, to reach
the desired values in steady state. The second sliding mode approach shown in this
chapter deals with the design of a proportional derivative plus sliding mode controller
for the Furuta pendulum, where this combined control structure stabilizes the system
due to the linear PD action and the nonlinear sliding mode control, decreasing the
chattering effects on the system and making the sliding variables to reach the origin in
finite time. This control approach is more reliable and convenient for the stabilization
of this underactuated mechanism due to its chattering avoidances, small tracking error
and because it drives the positions and velocities of the system to reach and keep the
desired values in steady state.

The adaptive sliding mode controller for the Furuta pendulum was designed
according to the stability properties of the system ensuring that the adaptive gain
of the controller meets the Lyapunov stability theorem requirements. As it is proved
analytically and confirmed by a simulation example, this strategy is more convenient
in comparison with the other control approaches explained in this chapter, due to
its disturbance rejection properties, chattering avoidance and smaller tracking error
than the other control approaches explained in this chapter.

For future research, other sliding mode control variations suitable for this kind
of underactuated mechanical systems, such as integral sliding mode control and dis-
turbance rejection control, will be investigated due to the importance of this control
approach in several fields such as aeronautic, aerospace, robotics, mechatronics sys-
tems. Another issue to be considered in future research is the robustness analysis of
the system considering the chattering avoidance properties and other characteristics
of underactuated systems when different control approaches, such as passivity based
or backstepping control are implemented.
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Optimal Sliding and Decoupled Sliding Mode
Tracking Control by Multi-objective Particle
Swarm Optimization and Genetic Algorithms

M. Taherkhorsandi, K.K. Castillo-Villar, M.J. Mahmoodabadi, F. Janaghaei
and S.M. Mortazavi Yazdi

Abstract The objective of this chapter is to present an optimal robust control
approach based upon smart multi-objective optimization algorithms for systems with
challenging dynamic equations in order to minimize the control inputs and track-
ing and position error. To this end, an optimal sliding and decoupled sliding mode
control technique based on three multi-objective optimization algorithms, that is,
multi-objective periodic CDPSO, modified NSGAII and Sigma method is presented
to control two dynamic systems including biped robots and ball and beam systems.
The control of biped robots is one of the most challenging topics in the field of robot-
ics because the stability of the biped robots is usually provided laboriously regarding
the heavily nonlinear dynamic equations of them. On the other hand, the ball and
beam system is one of the most popular laboratory models used widely to chal-
lenge the control techniques. Sliding mode control (SMC) is a nonlinear controller
with characteristics of robustness and invariance to model parametric uncertainties
and nonlinearity in the dynamic equations. Hence, optimal sliding mode tracking
control tuned by multi-objective optimization algorithms is utilized in this study
to present a controller having exclusive qualities, such as robust performance and
optimal control inputs. To design an optimal control approach, multi-objective parti-
cle swarm optimization (PSO) called multi-objective periodic CDPSO introduced by
authors in their previous research and two notable smart multi-objective optimization
algorithms, i.e. modified NSGAII and the Sigma method are employed to ascertain
the optimal parameters of the control approach with regard to the design criteria.
In comparison, genetic algorithm optimization operates based upon reproduction,
crossover and mutation; however particle swarm optimization functions by means of
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a convergence and divergence operator, a periodic leader selection method, and an
adaptive elimination technique. When the multi-objective optimization algorithms
are applied to the design of the controller, there is a trade-off between the tracking
error and control inputs. By means of optimal points of the Pareto front obtained
from the multi-objective optimization algorithms, plenty of opportunity is provided
to engineers to design the control approach. Contrasting the Pareto front obtained by
multi-objective periodic CDPSO with two noteworthy multi-objective optimization
algorithms i.e. modified NSGAII and Sigma method dramatizes the excellent per-
formance of multi-objective periodic CDPSO in the design of the control method.
Finally, the optimal sliding mode tracking control tuned by CDPSO is applied to the
control of a biped robot walking in the lateral plane on slope and the ball and beam
system. The results and analysis prove the efficiency of the control approach with
regard to providing optimal control inputs and low tracking and position errors.

1 Introduction

Two-legged robots named biped robots are the most similar kind of robots to human.
As a unique advantage of this robot in comparison to other robots, they can be used
in any situation where working of a human is unsafe or hazardous (Cha et al. 2011;
Dehghani et al. 2013; Ding et al. 2013; Feng et al. 2013; Lee et al. 2014). One impor-
tant challenging characteristic of this robot is having the dynamic equations which
are nonlinear and demanding to control. To this end, it is crucial to employ a nonlin-
ear controller which is robust with regard to disturbances and uncertainty in order to
provide stable walking for biped robots (Andalib Sahnehsaraei et al. 2013). In this
regard, sliding mode control is an effectual control method in terms of providing
low tracking error in contrast to PID control (Lu et al. 2011) and linear feedback
control (Basin et al. 2012). Owing to its exclusive benefits, a number of researchers
have applied it to a variety of problems with challenging dynamic equations and suc-
cessful application of it has been reported. For instance, Nizar et al. applied the
sliding mode controllers for the time delay systems (Nizar et al. 2013). Han
et al. proposed the sliding mode control of T-S fuzzy descriptor systems with time-
delay (Han et al. 2012). Yakut applied an intelligent sliding mode controller with
moving sliding surface for overhead cranes (Yakut 2014). Eker utilized the second-
order sliding mode controller with PI sliding surface for an electromechanical plant
(Eker 2012). Sira-Ramirez et al. proposed a robust input-output sliding mode con-
trol for the buck converter (Sira-Ramirez et al. 2013). Bayramoglu and Komurcugil
used time-varying sliding-coefficient-based terminal sliding mode control methods
for a class of fourth-order nonlinear systems (Bayramoglu and Komurcugil 2013).
Li et al. proposed a sliding mode controller for uncertain chaotic systems with input
nonlinearity (Li et al. 2012). Yin et al. designed a sliding mode controller for a class
of fractional-order chaotic systems (Yin et al. 2012). Zhang et al. applied the second-
order terminal sliding mode controller for a hypersonic vehicle in cruising flight
with sliding mode disturbance observer (Zhang et al. 2013). Moreover, it is reliable
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and efficient when it is applied for the control of robots (Hu et al. 2012; Sun et al.
2011). In illustration, Nikkhah et al. utilized a robust sliding mode tracking control
algorithm for a biped robot modeled as a five-link planar robot with four actuators
following a human-like gait trajectory in the sagittal plane (Nikkhah et al. 2007). Lin
et al. proposed a hybrid control approach based upon the sliding mode method and a
recurrent cerebellar model articulation controller to control biped robots (Lin et al.
2007). Moreover, the Taylor linearization approach was used to enhance the learning
ability of the recurrent cerebellar model articulation controller. Since chattering is
a crucial unresolved issue in designing sliding mode controllers, some researchers
have tried to reduce the amount of chattering in actuators (Mondal and Mahanta
2013a; Pourmahmood Aghababa and Akbari 2012; Ramos et al. 2013; Cerman and
Husek 2012; Lin et al. 2011; Singla et al. 2014). In particular, Shahriari kahkeshi et
al. constructed smooth sliding mode control for a class of high-order nonlinear sys-
tems having no prior knowledge about uncertainty (Shahriari kahkeshi et al. 2013).
They could eliminate the chattering problem completely via proposing a scheme
which involves an adaptive fuzzy wavelet neural controller to construct equivalent
control term and an adaptive proportional-integral (A-PI) controller for applying
switching term to deliver smooth control input. Adhikary and Mahanta proposed
an integral backstepping sliding mode control approach to control underactuated
systems (Adhikary and Mahanta 2013). Rejecting matched and mismatched uncer-
tainties, providing a chattering free control law, and using less control effort than
the sliding mode controller were reported as the most important advantages of the
proposed controller. Liu used Lie-group differential algebraic equation method to
design a sliding mode controller through adding a compensated control force which
resulted in steering rapidly and enforcing continuously the state trajectory on the
sliding surface (Liu 2014). The proposed control methodology is chattering-free for
a class of regulator problems and finite-time tracking problems of nonlinear systems.
Mondal and Mahanta used the derivative of the control input in the proposed control
law to design an adaptive integral higher order sliding mode controller for uncertain
systems (Mondal and Mahanta 2013b). The actual control signal gained through
integrating the derivative control signal is chattering free and smooth.

Designing the parameters of control approaches is an interesting and challenging
issue in industry and academia. Multi-objective optimization algorithms are appropri-
ate approaches to gain these parameters via considering both tracking error and con-
trol effort. In particular, the genetic algorithm and particle swarm optimization are two
notable effectual optimization algorithms to gain optimal solutions (Castillo-Villar
et al. 2012, 2014; Martínez-Soto et al. 2013; Elshazly et al. 2013; Aziz et al. 2013).
In the literature, particle swarm optimization has been successfully used to augment
the performance of type-1 and type-2 fuzzy control (Martínez-Soto et al. 2013), frac-
tional fuzzy control (Pan et al. 2012), PID control (Jadhav and Vadirajacharya 2012),
constrained multivariable predictive controllers (Júnior 2014), and other controllers
(Lari et al. 2014). PSO, first introduced by Kennedy and Eberhart, is one of the
modern smart heuristic algorithms (Kennedy and Eberhart 1995). It is a robust opti-
mization algorithm developed via simulation of simplified social systems to solve
nonlinear optimization problems (Angeline 1998). Successful applications of this
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robust optimization algorithm have been reported not only in the area of control
theory but also in a wide variety field of research. For instance, in Wang and Jun
Zheng (2012), a new particle swarm optimization algorithm was applied to optimum
design of the armored vehicle scheme. In Yildiz and Solanki (2012), multi-objective
optimization of vehicle crashworthiness was performed using a new particle swarm
based approach. In Kim and Son (2012), a probability matrix based particle swarm
optimization was applied for the capacitated vehicle routing problem. In Belmecheri
et al. (2013), the particle swarm optimization algorithm was used for a vehicle rout-
ing problem with heterogeneous fleet, mixed backhauls, and time windows. In Nejat
et al. (2014), the optimization of the airfoil shape was performed using the improved
multi-objective territorial particle swarm algorithm with the objective of improving
stall characteristics. In Hart and Vlahopoulos (2010), an integrated multidiscipli-
nary particle swarm optimization approach was introduced for conceptual design of
ships. In Aparecida de Pina et al. (2011), the particle swarm optimization algorithm
was applied to the design of steel catenary risers in a lazy-wave configuration. In
Nwankwor et al. (2013), hybrid differential evolution and particle swarm optimiza-
tion were utilized for optimal well placement. In Zhang et al. (2013), the sequential
quadratic programming particle swarm optimization was applied for wind power sys-
tem operations considering emissions. In Zheng and Wu (2012), Power optimization
of gas pipelines was performed with aid of an improved particle swarm optimization
algorithm. In Biswas et al. (2013), constriction factor based particle swarm optimiza-
tion was introduced for analyzing tuned reactive power dispatch. Short calculation
time and more stable convergence are two important characteristics of the PSO tech-
nique (Eberhart and Shi 1998; Yoshida et al. 2000). Depending on the case study,
PSO can show better performance than genetic algorithm optimization (Lin and
Lin 2012). Appropriate performance of PSO in combination with genetic algorithm
optimization has been reported in the literature as a hybrid optimization algorithm
(Mousa et al. 2012; Kuo et al. 2012). Furthermore, PSO is an effectual algorithm to
solve multi-objective problems (Carvalho and Pozo 2012). The techniques, a self-
adaptive diversity control strategy (Wang and Tang 2012), chaotic local search (Jia
et al. 2011), and migration of some particles from one complex to another have
been employed to prevent from premature convergence of PSO (Gang et al. 2012).
Lately, several methods have been proposed to develop the PSO algorithm to deal
with multi-objective optimization problems. To this end, dynamic neighborhood PSO
(Hu and Eberhart 2002), dominated tree (Fieldsend and Singh 2002), Sigma method
(Mostaghim and Teich 2003), vector evaluated PSO (Parsopoulos et al. 2004), etc.
were introduced to solve the multi-objective optimization problems. The principal
difference among these methods is the leader selection technique.

In the present chapter, multi-objective periodic CDPSO introduced in authors’
previous works (Mahmoodabadi et al. 2011, 2012a) and two prominent smart evo-
lutionary algorithms (Mostaghim and Teich 2003; Atashkari et al. 2007) are used to
eliminate the tedious trial-and-error process and design the optimal nonlinear sliding
mode tracking control. This controller is applied to a biped robot modeled and walk-
ing in the lateral plane on slope (Mahmoodabadi et al. 2014a, b). The outline of the
rest of this chapter is as follows: Sect. 2 discusses the multi-objective particle swarm
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optimization including the convergence and divergence operators, the periodic leader
selection approach, and the adaptive elimination technique. Section 3 involves the
control approach where Canonical and Non-canonical forms of both sliding mode
control and decoupled sliding mode control are discussed. The dynamic model of
the biped robot and the Pareto design of sliding mode control of the biped robot
based on multi-objective periodic CDPSO, modified NSGAII and sigma method are
presented in Sect. 4. Section 5 includes the dynamic model of the Ball and Beam
system and the Pareto design of decoupled sliding mode control for the Ball and
Beam system using multi-objective periodic CDPSO, modified NSGAII and sigma
method. Section 6 presents the conclusions of this study.

2 Multi-objective Particle Swarm Optimization

In this chapter, multi-objective periodic CDPSO is used to address the problem
of the proper selection of parameters of sliding mode control. Indeed, this opti-
mization method was successfully employed to acquire the Pareto frontiers of non-
commensurable objective functions in the design of linear state feedback controllers
(Mahmoodabadi et al. 2011) and the suspension system for a vehicle vibration model
(Mahmoodabadi et al. 2012b). This method is a combination of the particle swarm
optimization, convergence and divergence operators. Moreover, a new leader selec-
tion method is applied to produce a set of Pareto optimal solutions which has good
diversity and distribution. The archive is pruned in this algorithm by implementing an
adaptive elimination technique. The algorithm was named multi-objective periodic
CDPSO. PSO, convergence divergence operator, periodic leader selection method
and adaptive elimination technique are described concisely, as follows:

2.1 Particle Swarm Optimization

PSO is a population-based evolutionary algorithm and is inspired by the simulation
of social behavior (Kennedy and Eberhart 1995). Although PSO had been initially
employed to balance weights in neural networks (Eberhart et al. 1996), it became a
very popular global optimizer, mostly in the problems where the decision variables
were real numbers (Engelbrecht 2002, 2005). Each candidate solution in PSO is
associated with a velocity (Kennedy and Eberhart 1995; Ratnaweera and Halgamuge
2004), and it is assumed that the particles will move toward better solution areas.
Mathematically, the particles are functioning based upon the following equations.

�xi (t + 1) = �xi (t) + �vi (t + 1) (1)

�vi (t + 1) = W �vi (t) + C1r1(�x pbesti − �xi (t)) + C2r2(�xgbest − �xi (t)) (2)



48 M. Taherkhorsandi et al.

In which, �xi (t) and �vi (t) stand for the position and velocity of particle i at the time
step (iteration) t. r1, r2 ∈ [0, 1] denote random values. C1 stands for the cognitive
learning feature and represents the attraction that a particle has toward its own success.
C2stands for the social learning feature and represents the attraction that a particle
has toward the success of the entire swarm. It was obtained that the best solutions
were gained when C1 is linearly decreased and C2 is linearly increased over the
iterations (Ratnaweera and Halgamuge 2004). W stands for the inertia weight and
controls the impact of the previous history of velocities on the current velocity of
particle i. Based on experimental results, PSO functioning improves when the inertia
weight diminishes linearly over iterations (Kennedy and Eberhart 1995). Moreover,
�x pbesti is the personal best position of the particle i and �xgbest represents the position
of the best particle of the whole swarm.

2.2 The Convergence Operator

In the present chapter, the convergence formula, which contains four parent particles
proposed in Mahmoodabadi et al. (2011, 2012a) is employed. Let ρ ∈ [0, 1] be a
random number. If ρ ≤ PConvergence (PConvergence is convergence probability), then
one of the following operators should be operated to generate the new particle position
�xi (t + 1) from the old particle position �xi(t):

If fitness �xi(t) is smaller than fitness �xj (t) and fitness �xk(t) then:

�xi (t + 1) = �xgbest + σ1

( �xgbest

�xi (t)

)
(2�xi (t) − �x j (t) − �xk(t)) (3)

If fitness �xj(t) is smaller than fitness �xi (t) and fitness �xk(t) then:

�xi (t + 1) = �xgbest + σ2

( �xgbest

�xi (t)

)
(2�x j (t) − �xi (t) − �xk(t)) (4)

If fitness �xk(t) is smaller than fitness �xj (t) and fitness �xi(t) then:

�xi (t + 1) = �xgbest + σ3

( �xgbest

�xi(t)

)
(2�xk(t) − �xj(t) − �xi(t)) (5)

In which, particles �xj(t) and �xk(t) are chosen from swarm by a uniform selection
approach. σ1, σ2, and σ3 are arbitrary numbers chosen from [0, 1] and �xgbest stands for
the position of the best particle of the entire swarm. After calculating Eqs. (3), (4) or
(5), the superior one between �xi(t) and �xi(t+1) should be selected. If ρ ≥ PConvergence,
then no convergence operation is operated for �xi (t).
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2.3 The Divergence Operator

The divergence operator provides a feasible leap on some selected particles. Let
ϑ ∈ [0, 1] be an arbitrary number. If ϑ ≤ PDivergence, (PDivergence is divergence
probability) and particle �xi (t) was not improved by the convergence operator, the
following divergence operator is operated to create a new particle.

�xi (t + 1) = Norm rand(�xi (t), SD) (6)

Norm rand(�xi (t) , SD) creates arbitrary numbers from the normal distribution with
mean parameter �xi (t) and standard deviation parameter SD (SD is a positive constant).
If particle �xi (t) was augmented by convergence operator or ϑ ≥ PDivergence, then
no divergence operation is operated. More features of this operator are discussed in
Mahmoodabadi et al. (2011, 2012a).

2.4 The Periodic Leader Selection Approach

This methodology is based on the density measures. A neighborhood radius
Rneighborhood is defined for leaders and if their Euclidean distance (measured in the
objective domain) is less than Rneighborhood, two leaders are neighbors. In this respect,
the number of neighbors of each leader is computed in the objective function area.
The particle with fewer neighbors is preferred as the leader; even though, the leader
position and its density will change after several iterations. Hence, the leader selec-
tion operation should be repeated and a new leader must be ascertained. Thus, the
maximum iteration is divided into several equal periods and each period has the
same iteration T. The relation among maximum iteration, number of periods and T
satisfies Eq. (7):

maximum iteration = number of periods × T (7)

In each period, the leader selection operation could be performed, and the non-
dominated solution which has fewer neighbors is preferred as the leader. Moreover,
if a particle dominates the leader in the start of the iteration in a period, then this
particle will be regarded as a new leader.

2.5 The Adaptive Elimination Technique

This approach is employed to prune the archive; and in this approach, the archive’s
members have an elimination radius which equals εelimination. If the Euclidean dis-
tance (in the objective function space) between two particles is less than εelimination,
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then one of them will be omitted. The following equation is used to determine the
value of εelimination named adaptive εelimination:

εelimination = t

ζ × maximum iteration
(8)

In which, ζ is a positive constant, t is the current iteration number, and maximum itera-
tion presents the maximum number of permissible iterations (Mahmoodabadi et al.
2011, 2012a).

3 The Control Approach

Sliding Mode Control (SMC) is an effective control methodology for nonlinear sys-
tems. One of the main advantages of SMC is that the uncertainties and external dis-
turbances of the system can be handled under the invariance characteristics of sliding
conditions. Nevertheless, the SMC technique can be applied only to the systems with
the canonical form. In this respect, the basic idea of Decoupled Sliding Mode Control
(DSMC) is proposed to design a controller for systems with the non-canonical form.
However, for the optimum design of DSMC, it is difficult to determine the parame-
ters of the sliding surface. This problem could be solved by using the evolutionary
optimization techniques. Fleming and Purshouse (2002) is an appropriate reference
to overview the application of the evolutionary algorithms in the field of the design
of controllers. In particular, the design of controllers in Fonseca and Fleming (1994)
and Sanchez et al. (2007) was formulated as a multi-objective optimization problem
and solved using Genetic Algorithms (GAs). Furthermore, in Javadi-Moghaddam
and Bagheri (2010), the GA was utilized to select the parameters of SMC for an
underwater remotely operated vehicle. In Ker-Wei and Shang-Chang (2006), the
sliding mode control configurations were designed for an alternating current servo
motor while a Particle Swarm Optimization (PSO) algorithm was used to select the
parameters of the controller. Also, PSO was applied to tune the linear control gains
in Gaing (2004); Qiao et al. (2006). These works have shown that PSO is a fast and
reliable tool to design the optimal controllers, and also can outperform other evolu-
tionary algorithms. In Chen et al. (2009), three parameters associated with the control
law of the sliding mode controller for the inverted pendulum system were properly
chosen by a modified PSO algorithm. Wai et al. proposed a total sliding-model-based
particle swarm optimization approach to design a controller for the linear induction
motor (Wai et al. 2007). More recently, in Gosh et al. (2011), an ecologically inspired
direct search method was applied to solve the optimal control problems with Bezier
parameterization. Moreover, in Tang et al. (2011), a controllable probabilistic par-
ticle swarm optimization (CPPSO) algorithm was applied to design a memoryless
feedback controller.
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3.1 Canonical and Non-canonical Forms

Consider a forth-order nonlinear system, which could be represented by the following
canonical form.

ẋ1 = x3

ẋ2 = x4

ẋ3 = f1 (x) + b1 (x) u1 (9)

ẋ4 = f2 (x) + b2 (x) u2

where x = [
x1 x2 x3 x4

]T is the state vector, f1 (x), f2 (x), b1 (x), and b2 (x) are
nonlinear functions. u1 and u2 are control inputs.

This type of forth-order systems with the canonical form could be controlled
by using many kinds of techniques, such as fuzzy control, proportional–integral–
derivative (PID) control, sliding mode control, etc. In fact, the control laws u1 and
u2 can be easily designed to control the system introduced by Eq. (9). However,
for some nonlinear models such as the ball and beam system, the system dynamic
equations are not in the canonical form. The state space model of a system with the
non-canonical form is presented, as follows.

ẋ1 = x3

ẋ2 = x4

ẋ3 = f1 (x) + b1 (x) u (10)

ẋ4 = f2 (x) + b2 (x) u

where x = [
x1 x2 x3 x4

]T stands for the state vector, f1 (x), f2 (x), b1 (x), and
b2 (x) are nonlinear functions. u is a control input. The control techniques mentioned
above could control only one of the subsystems in Eq. (10). In other words, these
methodologies cannot simultaneously control both subsystems by only one control
input u. Hence, the idea of decoupling is employed to design a control law u to control
the whole system. In the following sections, the general concepts of the sliding mode
control and decoupled sliding mode control are briefly presented.

3.2 Sliding Mode Control for Canonical Forms

The basic concepts of sliding mode control are presented in Wang and Jun Zheng
(2012). By regarding the dynamical system introduced according Eq. (9) and hav-
ing desired trajectories x1d (t) and x2d (t), the errors are defined as e1 (t) =
x1 (t) − x1d (t) and e2 (t) = x2 (t) − x2d (t). After a reaching phase, the sliding
mode controller forces the system to track the following sliding surfaces.
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s1 (x) = ė2 + λ1e1 = x3 − x3d + λ1 (x1 − x1d) = 0

s2 (x) = ė2 + λ2e2 = x4 − x4d + λ2 (x2 − x2d) = 0 (11)

where x3d (t) = ẋ1d (t), x4d (t) = ẋ2d (t), and sliding constants λ1 and λ2 are strictly
positive. In the steady state conditions, the system follows the desired trajectories
when S1 (x (t1reach)) = 0 and S2 (x (t2reach)) = 0. t1reach and t2reach represent
reaching times. Hence, suitable control actions based on sliding surfaces introduced
by Eq. (11) would be achieved. Lyapunov functions could be chosen as Eq. (12).

V1 = 1
2 S2

1 (x)

V2 = 1
2 S2

2 (x)
(12)

with the following controller actions:

u1 = û1 − K1 sign (S1(x)b1(x)) and K1 > 0

u2 = û2 − K2 sign (S2(x)b2(x)) and K2 > 0 (13)

where K1 and K2 are the design parameters or functions of x (t) such that K1 =
K1 (x) and K2 = K2 (x). signrepresents sign function. û1 and û2 would be obtained
using Eq. (14).

û1 = −b−1
1 (x) ( f1 (x) − ẍ1d + λ1ė1)

û2 = −b−1
2 (x) ( f2 (x) − ẍ2d + λ2ė2) (14)

Derivations of Lyapunov functions introduced via Eq. (12) are written in the following
forms:

V̇1 ≤ −η1 |S1 (x)|
V̇2 ≤ −η2 |S2 (x)| (15)

where K1 > η1 and K2 > η2. Hence, V̇1 and V̇2 are negative definite in the switch-
ing surfaces. Moreover, if x1 (t = 0) �= x1d (t = 0) and x2 (t = 0) �= x2d (t = 0),
Eq. (15) shows that S1 (x) = 0 and S2 (x) = 0 will be reached in the finite times
t1reach and t2reach , respectively.

It is clear that with starting from initial conditions, trajectories reach the manifold
S1 (x) = 0 and S2 (x) = 0 in the finite times and slide toward the origins of the error
phase planes according to Eq. (11). But, function sign in Eq. (13) causes the high
frequency switching near the sliding surfaces. Thus, in order to reduce this chattering
phenomenon, the sign function is replaced with the saturation function as follows.
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u1 = û1 − K1 sat (S1(x)b1(x)φ1) and K1 > 0

u2 = û2 − K2 sat (S2(x)b2(x)φ2) and K2 > 0 (16)

which sat is the saturation function.φ1 represents the inverse of the width of boundary
layer for S1. φ2 represents the inverse of the width of boundary layer for S2.

3.3 Decoupled Sliding Mode Control for Non-canonical Forms

The sliding mode control technique described in the previous section could not be
applied to a system with the form of Eq. (10), which is not in the canonical form
and includes the coupled subsystems. The basic idea of the decoupled sliding mode
control is the design of a control law such that the single input u simultaneously
controls several subsystems to accomplish the desired performance. To achieve this
goal, the following sliding surfaces are defined.

S1(x) = λ1(x2 − x2d − z) + x4 − x4d = 0 (17)

S2(x) = λ2(x1 − x1d) + x3 − x3d = 0 (18)

where variable Z is used to transfer S2 to S1. Furthermore, its value is proportional to
S2 and its range is proper to x2. Comparing Eq. (17) with (11) shows that the control
objectives for the subsystem are x2 = x2d + z and x4 = x4d . On the other hand,
Eq. (18) means that the control objectives are x1 = x1d and x3 = x3d . Now, let the
control law for Eq. (17) be the sliding mode control with a boundary layer which is
similar to Eq. (16):

u1 = û1 − G f 1 sat (S1(x)b1(x)Gs1) and G f 1, Gs1 > 0 (19)

with û1 = −b−1
1 (x) ( f1(x) − ẍ2d + λ1x4 − λ1 ẋ2d) (20)

Sliding constant λ1 is strictly positive. Now, let the control law for Eq. (18) be another
sliding mode controller with a boundary layer as follows.

z = G f 2 sat (S2(x)Gs2) , and 0 < G f 2 < 1 (21)

Note that in (21), z is a decaying oscillation signal due to 0 < G f 2 < 1. Moreover,
in Eq. (17), if S1 = 0, then x2 = x2d + z and x4 = x4d .

Therefore, the control sequence is as follows. When S2 → 0, then z → 0 in
Eq. (17), and it forces Eq. (19) to generate a controller action for reducing S2; as S2
decreases, z decreases too. Hence, at the limit S2 → 0 with x1 → x1d , then z → 0
with x2 → x2d , so S1 → 0, and the goal will be achieved.
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4 Biped Robot

4.1 The Dynamic Model of the Biped Robot

The robot is modeled in the lateral plane by using a three-link-planar model. Figure 1
shows the model of the robot. The first link is anchored to the ground surface, while
the third link moves freely along the lateral plane and the second link represents the
head, arms and trunk. Four characteristics of mass, length, inertia and the center of
gravity are used to define each link. Anthropometric parameters are obtained from
Winter (1990) for a humanoid model which is 171 cm in height and 74 kg in weight
and are illustrated in Table 1. The distance between two legs of the model (2d2) is
equal to 32.7 cm.
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Fig. 1 The parameters of the robot based on the anthropometric table

Table 1 The anthropometric
parameters of the model

First link Second link Third link Unit

Mass m1 = 13.75 m2 = 46.5 m3 = 13.75 kg

Inertia I1 = 1.4 I2 = 3.25 I3 = 1.4 kg m2

Length l1 = 0.91 l2 = 0.8 l3 = 0.91 m

CG h1 = 0.50 h2 = 0.27 h3 = 0.50 m
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The Newton-Euler method is employed to gain the dynamic equations of the
model (Mahmoodabadi et al. 2014a, b). The dynamic equations of the model for θ1,
θ2 and θ3 are (Fig. 2):

I1θ̈1 = u1 − u2 + h1m1g sin θ1 + l1 sin θ1 g (m2 + m3) + h1m1
(−h1θ̈1

)
+ l1m2 [ − θ̈1l1 + θ̈2{d2 sin(θ2 − θ1) − h2 cos (θ2 − θ1)} + θ̇

2
2{d2 cos(θ2 − θ1)

+ h2 sin(θ2 − θ1)}] + l1m3[−θ̈1l1 + �θ2{2d2 sin(θ2 − θ1) − θ3 (l2 − h3) cos (θ3 − θ1)

+ θ̇
2
2 2d2 cos (θ2 − θ1) + θ̇

2
3 (l3 − h3) sin(θ3 − θ1)] (22)

I2θ̈2 = u2 − u3 + m2d2g cos θ2 + m2h2g sin θ2 + 2m3d2g cos θ2

− θ̈1 [cos(θ2 − θ1)m2h2l1 − sin(θ2 − θ1)m32d2l1 − sin(θ2 − θ1)m2d2l1]

+ θ̇
2
1[sin(θ1 − θ2)m2l1h2 − cos(θ2 − θ1)2m3d2l1 − cos(θ2 − θ1)m2d2l1]

+ θ̈2[−m2d2
2 − 4m3d2

2 − m2h2
2] + θ̈3[2m3d2(l3 − h3) sin(θ2 − θ3)]

− θ̇
2
3[2m3d2(l3 − h3) cos(θ2 − θ3)] (23)

I3θ̈3 = (l3 − h3) m3g sin θ3 + u3 − m3 (l3 − h3) l1 cos(θ3 − θ1) θ̈1

+ m3 (l3 − h3) l1 sin(θ1 − θ3) θ̇
2
1 + 2d2m3 (l3 − h3) sin(θ2 − θ3) θ̈2

+ 2d2m3 (l3 − h3) cos(θ3 − θ2) θ̈2 − m3(l3 − h3)
2
θ̈3 (24)
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Fig. 2 The angles of the robot



56 M. Taherkhorsandi et al.

The walking of biped robot in the lateral plane is periodic, and it can be divided into
two phases (Mahmoodabadi et al. 2014a, b). These two phases are Double Support
Phase (DSP) and Single Support Phase (SSP). DSP term is used for situations where
the biped robot has two isolated contact surfaces with the floor. Indeed, this situation
happens when the biped robot is supported by both feet. The time of this phase is
regarded as 20 percent of the whole time. SSP term is employed for situations where
the biped robot has only one contact surface with the floor. This situation occurs when
the biped robot is supported with only one foot. According to Fig. 3, the biped robot
passes DSP and SSP, respectively. The swing foot trajectory which has the first-order
continuity is generated, and it maintains the ZMP on the inside of the support polygon.
Then, the inverse kinematic is utilized to obtain the desired trajectories of the joints.
The desired trajectories should have first-order and second-order continuity. The
first-order derivative continuity guarantees smoothness of the joint velocity, while
the second order continuity guarantees smoothness of the acceleration or torque on
the joints (Mahmoodabadi et al. 2014a, b).
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Fig. 3 The stick diagram of the biped robot walking in the lateral on slope
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Fig. 4 Cart table model

If the biped robot’s joint velocities augment, the dynamic forces will dominate
the static forces. The faster the movements, the more dominate these dynamic forces
will be. ZMP can be regarded as the dynamical equivalent of the Floor projection
of the Center Of Mass (FCOM). The ZMP criterion does take dynamic forces, as
well as static forces, into consideration. In order to achieve a dynamically stable gait,
ZMP should be within on the inside of the support polygon at every time instance.
The support polygon in DSP is the area between both feet. The support polygon i.e.
xZMP in this problem ranges from −11.5 to 44.2 cm in the DSP and ranges from
−11.5 to 11.5 cm in the SSP (Mahmoodabadi et al. 2014a, b). The cart-table model
is used to compute the ZMP. Figure 4 illustrates the simplified model of the biped
robot, which consists of a running cart on a mass-less table. The cart has mass m,
and its position (x, z) corresponds to the equivalent center of the mass of the biped
robot. The center of reference frame is considered in the middle of the stance foot.
Moreover, the table is assumed to have the same support polygon as the biped robot.
The torque around point p can be written as (Mahmoodabadi et al. 2014a, b):

τ = −mg (xCoM − p) + mẍCoMzCoM (25)

g is the gravitational acceleration downwards. Now, using the ZMP definition: torque
must be zero and, thus xZMP = p, we have:

xZMP = p = xCoM − ẍCoM

g
zCoM (26)
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Fig. 5 Zero moment point on the inside of support polygon

The robot tracks the desired trajectories and maintains the ZMP on the inside of the
support polygon, simultaneously (Fig. 5).

4.2 Sliding Mode Control for the Biped Robot

The sliding mode controller has been successfully employed to control the robots
(Jing and Wuan 2006). Islam et al. applied multiple model/control-based sliding
mode control to a 2-DOF robot manipulator (Islam and Liu 2011). Xiuping et al.
controlled a biped robot in the double support phase by sliding mode control (Xiuping
and Qiong 2004). Moosavian et al. controlled the biped robot in the sagittal plane with
aid of sliding mode control and utilized the fuzzy system to regulate major control
parameters (Moosavian et al. 2007). In the present chapter, there are six controlling
coefficients, three sliding surfaces (si), and three equivalent control inputs(ueqi),
which must be chosen appropriately. The linear dynamic equations are utilized to
obtain the equivalent control inputs ueqi and i = 1, 2, 3 (appendix). Since the problem
has three system states, the sliding surfaces and control inputs can be written, as
follows:

si (ei, t) =
(

d

dt
+ λi

)n−1

ei = 0 i = 1, 2 and 3 (27)

ui = ueqi − kisat (�) i = 1, 2 and 3 (28)
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4.3 The Pareto Design of Sliding Mode Control
for the Biped Robot

The objective of the sliding mode control method is to define asymptotically sta-
ble surfaces in such a manner that all system trajectories converge to these surfaces
and slide along them until reaching the origin at their intersection (Utkin 1978).
However, the heuristic sliding parameters are required to be chosen properly. Hence,
the multi-objective periodic CDPSO (Mahmoodabadi et al. 2011, 2012a), Sigma
method (Mostaghim and Teich 2003), and modified NSGAII (Atashkari et al. 2007)
are utilized to ascertain the proper parameters and eliminate the tedious and repetitive
trial-and-error process. The performance of a controlled closed loop system is usu-
ally evaluated by a variety of goals (Toscana 2005; Wolovich 1994). In this chapter,
normalized summation of angles errors and normalized summation of control effort
are regarded as the objective functions. These objective functions have to be min-
imized simultaneously. The vector [k1, k2, k3, λ1, λ2, λ3] is the vector of selective
parameters of sliding mode control. k1, k2 and, k3 are positive constants. λ1, λ2 and,
λ3 are coefficients of the sliding surfaces. The normalized summation of angles errors
and normalized summation of control effort are functions of this vector’s compo-
nents. That is to say, we can make changes in the normalized summation of angles
errors and normalized summation of control effort by choosing various values for
the selective parameters. This is noticeably an optimization problem with two objec-
tive functions (normalized summation of angles errors and normalized summation
of control effort) and six decision variables (k1, k2, k3, λ1, λ2, λ3). The regions of
the selective parameters are:
k1, k2, k3 : Positive constants 0 ≤ k1, k2, k3 ≤ 10
λ1, λ2, λ3 : Coefficients of the sliding surfaces 100 ≤ λ1, λ2, λ3 ≤ 1000

The parameters of the multi-objective periodic CDPSO algorithm are selected as
follows. In each period, the inertia weight W is linearly decreased from W1 = 0.9 to
W2 = 0.4, C1 is linearly decreased from C1i = 2.5 to C1f = 0.5, and C2 is linearly
increased from C2i = 0.5 to C2f = 2.5, over time. The related variables used in
the convergence and divergence operators are: PConvergence = 0.1, PDivergence = 0.1,
and SD = xmax−xmin

2 . The term v” is limited to the range of [−vave,+vave], in which
vave = xmax−xmin

2 . While the velocity violates this range, it will be multiplied by a
random number between [0, 1]. Furthermore, the positive constant for εelimination is
ζ = 300 and the neighborhood radius for the leader selection is Rneighborhood = 0.04.
The number of iterations in a period equals T = 7, the swarm size is 50 and the
maximum iteration equals 150. The Pareto front of multi-objective periodic CDPSO
(Mahmoodabadi et al. 2011, 2012a) for this issue is shown in Fig. 6, and multi-
objective periodic CDPSO’s feasibility and efficiency is assessed in comparison
with Sigma method (Mostaghim and Teich 2003) and modified NSGAII (Atashkari
et al. 2007).

Although the functioning of these algorithms is competitively appropriate in the
present chapter, the most interesting result is that the multi-objective periodic CDPSO
algorithm has more uniformity and diversity. In Fig. 6, points A and C stand for the
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Fig. 6 The obtained Pareto fronts obtained by using Sigma method (Mostaghim and Teich
2003), modified NSGAII (Atashkari et al. 2007), and multi-objective periodic CDPSO
(Mahmoodabadi et al. 2011, 2012a) for optimal control design of the biped robot

best normalized summation of angles errors and normalized summation of control
effort, respectively. According to this figure, all the optimum design points in the
Pareto front are non-dominated and can be selected by the designer as optimal slid-
ing mode tracking controllers. Furthermore, choosing a better value for any objec-
tive function in the Pareto front causes a worse value for another objective. The
corresponding decision variables (vector of sliding mode tracking controllers) of the
Pareto front shown in Fig. 6 are the best possible design points. In this regard, if any
other set of decision variables is chosen, the corresponding values of the pair of those
objective functions will place an inferior point in Pareto front. Indeed, the inferior
area in the space of the two objective functions is top/right side of Fig. 6. Hence, there
are some crucial optimal design facts between these two objective functions which
have been ascertained by the Pareto optimum design approach. Point B in Fig. 6
demonstrates important optimal design facts; in fact, it can be the trade-off optimum
choice when considering minimum values of both of the normalized summation
of angles errors and normalized summation of control effort. Design variables and
objective functions according to theoptimum design points A, B, and C are illustrated
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in Table 2. The real tracking trajectories of the optimum design points A, B, and C
are shown in Figs. 7, 8 and 9. The tracking error of the optimum design points A, B,
and C are shown in Figs. 10, 11 and 12. In addition, Figs. 13, 14 and 15 illustrate the
sliding surfaces of the optimum design points A, B, and C.

Table 2 The objective functions and their associated design variables for the optimum points of
Fig. 6

Optimum design point A B C

Normalized summation of angles errors 5.18 × 10−2 2.44 × 10−1 8.72 × 10−1

Normalized summation of control effort 8.69 × 10−1 2.61 × 10−1 8.30 × 10−3

Design variable k1 7.04 × 10−2 3.71 × 100 1.98 × 100

Design variable k2 3.54 × 10−5 6.69 × 10−5 7.75 × 10−2

Design variable k3 6.53 × 10−3 1.59 × 10−3 8.24 × 10−1

Design variable λ1 5.76 × 102 2.24 × 102 1.00 × 102

Design variable λ2 5.98 × 102 2.60 × 102 1.01 × 102

Design variable λ3 6.02 × 102 2.54 × 102 1.00 × 102
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Fig. 7 The tracking trajectory θ1of the optimum design points A, B, and C shown in the Pareto
front (Fig. 6)
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Fig. 9 The tracking trajectory θ3 of the optimum design points A, B, and C shown in the Pareto
front (Fig. 6)
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Fig. 10 The tracking error of θ1 for the optimum design points A, B, and C shown in the Pareto
front (Fig. 6)
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front (Fig. 6)
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Fig. 12 The tracking error of θ3 for the optimum design points A, B, and C shown in the Pareto
front (Fig. 6)
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Fig. 13 The sliding surface S1 of the optimum design points A, B, and C shown in the Pareto front
(Fig. 6)
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5 The Ball and Beam System

5.1 The Dynamic Model of the Ball and Beam System

The ball and beam system is one of the most enduringly popular and important
laboratory models for teaching control systems engineering (Fig. 16). The ball and
beam is widely used to challenge the control techniques since it is very simple to
understand as a system, its open loop system is unstable, and the control techniques
of studying it include many important classical and modern design methods.

As shown in Fig. 16, a steel ball is rolling on the top of a long beam. The beam is
mounted on the output shaft of an electrical motor and the beam can be tilted about
its center axis by applying an electrical control signal to the motor amplifier. The
control goal is to regulate the position of the ball on the beam by changing the angle
of the beam. This is a difficult control task because the ball does not stay in one place
on the beam and moves with acceleration that is approximately proportional to the
tilt of the beam. In the control terminology, the open loop system is unstable because
the system output (the ball position) increases without limit for a fixed input (beam
angle). Feedback control must be used to stabilize the system and keep the ball in a
desired position on the beam. In other words, the goal of the control approach is to
control the torque u applied at the pivot of the beam, such that the ball can roll on the
beam and track a desired trajectory. Hence, the torque causes a change in the angle
of the beam and a movement in the position of the ball. By using of the Lagrangian
method, the equations of motion are obtained as follows.

(
Ib + msr2

)
θ̈ + 2msrṙ θ̇ + ms gr cos θ = u (29)

r̈ + 5

7

(
g sin θ −r θ̇

2
)

= 0 (30)

Beam

Ball

Beam Angle (θ )

Ball Position ( r)

motor

Fig. 16 The schematic model of the ball and beam system
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where u is the torque applied to the beam, Ib = mba2

12 is beam’s moment of inertia,
mb = 1 kg is mass of beam, a = 1 m is the length of the beam , θ is the angle of
the beam, ms = 0.05 kg is the mass of the ball, Is is the ball’s moment of inertia
(Is = 2

5

(
msr2

s

)
), rs = 0.01 m is the radius of the sphere, r stands for the position

of the ball. If the states are defined as follows,

x1 = θ , x2 = θ̇ , x3 = r , x4 = ṙ

Then, the state-space equations would be written as Eq. (31).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −ms x3(2x4x2−g cos(x1))

ms x2
3+Ib

+ u
ms x2

3+Ib

ẋ3 = x4

ẋ4 = − 5
7

(
g sin (x1) − x3x2

2

)
(31)

5.2 Decoupled Sliding Mode Control for the Ball
and Beam System

The optimal decoupled sliding mode controller has been successfully employed by
researchers to control the ball and beam system. Alfaro-Cid et al. used the genetic
algorithm to design the decoupled sliding mode controllers (Alfaro-Cid et al. 2005).
Chang et al. designed optimal fuzzy sliding-mode control for the ball and beam sys-
tem using fuzzy ant colony optimization (Chang et al. 2012). In Mahmoodabadi et al.
(2012a), a multi-objective genetic algorithm was applied to Pareto design of decou-
pled sliding-mode controllers for nonlinear systems. In (Andalib Sahnehsaraei et al.
2013), multi-objective particle swarm optimization was utilized to design the decou-
pled sliding mode controller for an inverted pendulum system. Mahmoodabadi et al.
proposed an online optimal decoupled sliding mode controller using the moving least
squares and particle swarm optimization (Mahmoodabadi et al. 2014c). Regarding
the DSMC of the ball and beam system in this chapter, the sliding surfaces can be
written as follows:

S1 = c1 (θ −z) + θ̇ = c1 (x1 − z) + x2 (32)

S2 = c2r + r = c2x3 + x4 (33)

which

z = sat (
S2

ϕ2
)zu 0 < zu < 1 (34)
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By using the decoupled sliding mode control strategy, we have:

Ṡ1 = c1x2 − c1 ż + f1 + b1u1 (35)

which
⎧⎨
⎩

ż = 0 i f
∣∣∣ S2
ϕ2

∣∣∣ ≥ 1

ż = zu
ϕ2

Ṡ2 i f
∣∣∣ S2
ϕ2

∣∣∣ < 1
(36)

Furthermore

Ṡ2 = c2 ẋ3 + ẋ4 = c2 x4 + f2 + b2 u (37)

û would be achieved if Ṡ1 = 0,

⎧⎨
⎩

Ṡ1 = c1 x2 − c1 zu
ϕ2

(c2x4 + f2 + b2u) + f1 + b1u = 0 i f
(

S2
ϕ2

)
< 1

Ṡ1 = c1 x2 + f1 + b1u = 0 i f
(

S2
ϕ2

)
≥ 1

(38)
Therefore

⎧⎨
⎩

û = −1
b1− c1zu

ϕ2
b2

[
f1 + c1 x2 − c1zu

ϕ2
( f2 + c2x4)

]
i f

(
S2
ϕ2

)
< 1

û = −1
b1

( f1 + c1 x2) i f
(

S2
ϕ2

)
≥ 1

(39)
and

u = û − k sat

(
S1 b1 (x)

ϕ1

)
(40)

5.3 The Pareto Design of Decoupled Sliding Mode Control
for the Ball and Beam System

In this section, the CDPSO approach is employed to select the parameters of DSMC
for the ball and beam system with respect to two objective functions. To compare the
performance of the optimizer technique, the optimization process is also performed
via Sigma method (Mostaghim and Teich 2003) and modified NSGAII (Atashkari
et al. 2007). The performance of a controlled closed-loop system is evaluated by
various goals. In this chapter, the normalized integral of the absolute value of the ball
distance and the normalized integral of the absolute value of the beam are considered
as the objective functions. In other words, the objective functions and constrains are
as follows:
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Constraint: max (abs (u)) ≤ 40 N m
Objective functions:

f1 = Normalized (∫ |r (t) |dt) and f2 = Normalized (∫ |θ (t) |dt)

These objective functions have to be minimized simultaneously. When solving the
optimization problem, the population size and maximum iteration are set at 50 and
150, respectively. Vector [c1, c2, ϕ1, ϕ2, k, zu] is the vector of the selective
parameters (design variables) of the decoupled sliding mode control.

In this chapter, we are concerned with choosing values for the selective parameters
to minimize the objective functions. Clearly, this is an optimization problem with
two object functions and six decision variables.

Now, it is supposed that the initial values for the states of the ball and beam system
are as follows.

(
x1 = π

3
, x2 = 0 , x3 = 0.1 , x4 = 0

)
(41)

The regions of the selective parameters are:

1 ≤ c1 ≤ 100, 0.3 ≤ c2 ≤ 10, 1 ≤ ϕ1 ≤ 100, 0.01 ≤ ϕ2 ≤ 1, 0 ≤ k ≤ 10, 0.1 ≤ zu ≤ 1

The parameters of the multi-objective periodic CDPSO algorithm are chosen as
follows. In each period, the inertia weight W is linearly decreased from W1 = 0.9 to
W2 = 0.4, C1 is linearly decreased from C1i = 2.5 to C1f = 0.5, and C2 is linearly
increased from C2i = 0.5 to C2f = 2.5, over time. The related variables used in
the convergence and divergence operators are: PConvergence = 0.1, PDivergence = 0.1,
and SD = xmax−xmin

2 . The term v” is limited to the range of [−vave,+vave], in which
vave = xmax−xmin

2 . While the velocity violates this range, it will be multiplied by a
random number between [0, 1]. Furthermore, the positive constant for εelimination is
ζ = 300 and the neighborhood radius for leader selection is Rneighborhood = 0.04. The
number of iterations in a period is equal to T = 7, the swarm size is 50 and the max-
imum iteration is equal to 150. The Pareto front of multi-objective periodic CDPSO
(Mahmoodabadi et al. 2011, 2012a) for this problem is shown in Fig. 17, and multi-
objective periodic CDPSO’s feasibility and efficiency are assessed in comparison
with Sigma method (Mostaghim and Teich 2003) and modified NSGAII (Atashkari
et al. 2007).

In Fig. 17, points A and C stand for the best normalized integral of the absolute
value of the ball distance and the normalized integral of the absolute value of
the beam angle, respectively. According to this figure, the multi-objective periodic
CDPSO algorithm has more uniformity and diversity in comparison to Sigma method
(Mostaghim and Teich 2003) and modified NSGAII (Atashkari et al. 2007). More-
over, all the optimum design points in the Pareto front are non-dominated and can be
chosen by the designer as optimal decoupled sliding mode controllers. It is noticeable
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Fig. 17 The obtained Pareto fronts by using Sigma method (Mostaghim and Teich 2003), modified
NSGAII (Atashkari et al. 2007), and multi-objective periodic CDPSO (Mahmoodabadi et al. 2011,
2012a) for optimal control design of the ball and beam system

Table 3 The objective functions and their associated design variables for the optimum points of
Fig. 17

c1 c2 ϕ1 ϕ2 k zu f1 f2

Point A 5.8655 1.7532 20.2309 0.9514 0.6817 0.8729 0.0353 0.8561

Point B 30.648 1.9889 43.0080 0.2075 0.7272 0.7370 0.2919 0.1832

Point C 4.8042 1.6336 32.0405 0.9434 0.0266 0.4044 0.8143 0.0975

that choosing a better value for any objective function in the Pareto front causes a
worse value for another objective function. Point B in Fig. 17 demonstrates important
optimal design facts. This point can be the trade-off optimum choice when consid-
ering minimum values of both of the normalized integral of the absolute value of the
ball distance and the normalized integral of the absolute value of the beam angle.
Design variables and objective functions according to the optimum design points A,
B, and C are illustrated in Table 3. The response time of the ball and beam system
for the optimum design points A, B, and C are shown in Figs. 18, 19 and 20.
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Fig. 18 The time response of the beam angle for the optimum design points A, B, and C shown in
the Pareto front (Fig. 17)
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the Pareto front (Fig. 17)
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points A, B, and C shown in the Pareto front (Fig. 17)

6 Conclusions

This chapter described two optimal control problems. First, the optimal sliding mode
tracking control was introduced for a biped robot stepping in the lateral plane on
slope. Both single support phase and double support phase were considered to take
the ZMP on the inside of the support polygon. Second, the optimal decoupled sliding
mode control was introduced for a ball and beam system. To this end, the multi-
objective periodic CDPSO algorithm was used to acquire the Pareto front of the
non-commensurable objective functions in the design of the SMC and DSMC. Two
conflicting objective functions for the biped robot are the normalized summation
of angles errors and normalized summation of control effort. Also, the conflicting
objective functions for the ball and beam system are the normalized integral of the
absolute value of the ball position and the normalized integral of the absolute value of
the beam angle. After applying multi-objective periodic CDPSO, modified NSGAII
and Sigma method to the design of an optimal controller for these problems, the
Pareto fronts of multi-objective periodic CDPSO were compared with the Pareto
fronts of modified NSGAII and Sigma method. The Pareto fronts of multi-objective
periodic CDPSO were much more scattered than the other two algorithms. Hence,
the designer has the ample opportunity to select the finest points. Finally, three points
of each Pareto front of multi-objective periodic CDPSO were selected to compute
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the parameters of the SMC and DSMC. The results demonstrated the efficacy of
multi-objective periodic CDPSO in the design of the SMC and DSMC for problems
with challenging dynamic equations.
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Appendix

The equivalent sliding mode control inputs for the biped robot are as follows

ueq1 = −0.2260855175 θ̇2 − 5.376931543 θ3 + 0.5609845516t3 − 24.77733929t

+ 11.04563973 + 0.3042022263θ̇3 − 52.53069026θ1

− 23.33466928λ2θ̇2 − 2.116394625λ3θ̇3 − 61.09883670λ1θ̇1

+ 1.093385806θ̇1 − 2.335441469λ3 − 5.878003190λ2

− 16.56389463λ1 − 14.61433450θ2 − 1.029058915λ2t2

+ 5.282969124 λ2t + 11.12677748t2 − 0.3123798467λ3t2

+ 1.744755729λ3t − 3.024392417λ1t2 + 15.22583011λ1t

ueq2 = 2.127074613
(

10−10
)

θ̇2 + 3.014817654θ3 − 0.1832721690t3

− 7.435154298t + 0.06684314392θ̇3 + 0.6081082555θ1

− 12.97075008λ2θ̇2 − 2.116394625λ3θ̇3 − 6.759058956λ1θ̇1

+ 1.093385810θ̇1 − 2.335441469λ3 − 3.267331946λ2

− 1.832380883λ1 − 14.19340124θ2 − 0.5720100787λ2t2

+ 2.936577819λ2t + 3.182845520t2 + 9.317127676

− 0.3123798467λ3t2 + 1.744755729λ3t − 0.3345734183λ1t2

+ 1.684357492λ1t

ueq3 = −3.400956231
(

10−11
)

θ̇2 + 3.029347274θ3 − 0.2748341166t3

− 3.658549547t + 11.95619521 + 1.750512761
(

10−10
)

θ̇3

+ 0.1293520741θ1 − 2.497500599λ2θ̇2 − 3.630907800λ3θ̇3

+ 3.604860241λ1θ̇1 + 0.2233967865θ̇1 − 4.006706757 λ3

− 0.6291204009 λ2 + 0.9772776114λ1 + 1.33021167t2

− 0.01647731197θ2 − 0.1101397764 λ2t2 + 0.5654341356λ2t

− 0.8983311722 λ1t − 0.5359219913 λ3t2 + 2.993320390 λ3t

+ 0.1784405819λ1t2
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Abstract This chapter presents a control approach for robotic manipulators based
on a discrete-time sliding mode control which has received much less coverage in
the literature with respect to continuous time sliding-mode strategies. This is due to
its major drawback, consisting in the presence of a sector, of width depending on the
available bound on system uncertainties, where robustness is lost because the sliding
mode condition cannot be exactly imposed. For this reason, only ultimate bound-
edness of trajectories can be guaranteed, and the larger the uncertainties affecting
the system are, the wider is the bound on trajectories which can be guaranteed. As a
possible solution to this problem, in this chapter a discontinuous control law has been
proposed, employing a controller inside the sector based on an estimation, as accu-
rate as possible, of the overall effect of uncertainties affecting the system. Different
solutions for obtaining this estimate have been considered and the achievable per-
formances have be compared using experimental data. The first approach consists
in estimating the uncertain terms by a well established method which is an adap-
tive on-line procedure for autoregressive modeling of non-stationary multivariable
time series by means of a Kalman filtering. In the second solution, radial basis neural
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networks are used to perform the estimation of the uncertainties affecting the system.
The proposed control system is evaluated on the ERICC robot arm. Experimental evi-
dence shows satisfactory trajectory tracking performances and noticeable robustness
in the presence of model inaccuracies and payload perturbations.

1 Introduction

Robotic manipulators are highly nonlinear and uncertain dynamic systems which,
being commonly used in industrial tasks, are expected to maintain good dynamic
performance in face of unmodeled dynamics and uncertainties (Dixon 2007; Marton
and Lantos 2011; Corradini et al. 2012). Indeed, the design of ideal controllers for
such systems is a challenge for control engineers because of the nonlinearities and
the coupling effects typical of robotic systems. A number of different approaches
have been followed in order to cope with this problem, such as, for instance, feed-
back linearization (Abdallah et al. 1991; Melhem and Wang 2009; Li and Su 2013),
model predictive control (Copot et al. 2012; Nikdel et al. 2014), and sliding mode
control (Islam and Liu 2011; Capisani and Ferrara 2012; Corradini et al 2009, 2010).
In general, control approaches not accounting for neglected dynamics and uncertain-
ties can make the performance of the system, in terms of convergence, quite poor.
As discussed in Capisani et al. (2007), global feedback linearization is possible in
theory, but is difficult to achieve in practice as a consequence of uncertainties coming
from incomplete knowledge of the kinematics and dynamics, from joint and link flex-
ibility, actuator dynamics, friction, sensor noise, and unknown loads. This imposes
the coupling of the inverse dynamics approach with robust control methodologies
(Abdallah et al. 1991). It is well known that sliding mode methods provide noticeable
robustness and invariance properties to matched uncertainties (Utkin 1992; Zinober
1994), and are computational simpler with respect to other robust control approaches.
Recent literature contains a number of results about Sliding Mode Control (SMC)
of manipulators, in some cases coupled with fuzzy control and/or neuro-fuzzy tech-
niques (Wai and Muthusamy 2013; Han and Lee 2013; Chen 2008; Corradini et al.
2012). The largest part of these papers, however, uses the continuous-time dynamic
model of the manipulator for design, leaving not addressed the issue of digitalization
of the control law. Digital control systems are currently receiving considerable credit
as a consequence of the recent advances in digital microprocessor technology, and
relevant interest is currently growing in the design of controllers based on the digital
model of the system. Nevertheless, the discrete time counterpart of sliding mode con-
trol design has received only a limited attention (Corradini et al. 2013; Ignaciuk and
Bartoszewicz 2011; Veselic et al. 2010; Cimini et al. 2013; Lin et al. 2013; Xu 2013;
Raspa et al. 2013; Milosavljevic et al. 2013; Furuta 1993; Corradini et al. 2012).
Indeed, compared with continuous time sliding-mode strategies, the design problem
in discrete-time has received much less coverage in the literature. This is due to its
major drawback, consisting in the presence of a sector, of width depending on the
available bound on uncertainties, where robustness is lost because the sliding mode
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condition cannot be exactly imposed. For this reason, only ultimate boundedness of
trajectories can be guaranteed, and the larger the uncertainties affecting the system
are, the wider is the bound on trajectories which can be guaranteed.

Therefore the main contribution of this chapter is to investigate, on a real indus-
trial manipulator, a possible solution to this problem. In particular a discontinuous
control law has been proposed, employing a controller inside the sector based on an
estimation, as accurate as possible, of the overall effect of uncertainties affecting the
system. In this chapter, different solutions for obtaining this estimate have been con-
sidered, and the achievable performances have been compared using experimental
data.

The first approach consists in estimating the uncertain terms by a well established
method which is an adaptive on-line procedure for autoregressive (AR) modeling of
non-stationary multivariable time series by means of a Kalman filtering (KF) (Arnold
et al. 1998).

In the second solution, Neural networks (NNs) are used to perform the estimation
of the uncertainties affecting the system. It is well known in fact, that the learning abil-
ity of neural networks has been widely utilized in robotics to make controllers learn
nonlinear characteristics of robots through experimental data, without a prior knowl-
edge of their parameters and structure. Early NN-based control schemes for robotic
manipulators produced good simulations or even experimental results (Ozaki et al.
1991; Ishiguro et al. 1992). More recently, stable neural network control schemes
have been investigated, such as nonlinearly parameterized NN-based adaptive con-
trol (Ge et al. 2013; Chaoui and Sicard 2012) and linearly parameterized NN-based
adaptive control (Sun et al. 2001; Sanner and Slotine 1995) for robotic manipulators.
All these results proved that the stable NN-based control have the potential to deal
with the difficulties for the control of robotic manipulators with unmodeled dynamics
and uncertainties. The two books (Ge et al. 1998; Lewis et al. 1999) provide a good
review of neural networks for the control of robotic manipulators.

An identification procedure is proposed in this chapter to estimate the uncertainties
affecting the system using Radial Basis Function Networks (RBFNs). These networks
have been widely used for nonlinear system identification (Yassin et al. 2011; Ko
2012; D’Amico et al. 2001; Ciabattoni et al. 2012, 2014) because of their ability
to approximate complex nonlinear mappings from input-output data, of their simple
topological structure allowing to avoid lengthy calculations (Giantomassi et al. 2011),
and because of the chance they offer to reveal how learning proceeds in an explicit
manner (Sundararajan et al. 2002).

The chapter is organized as follows. Algorithms to estimate uncertainties affecting
the system are described in Sect. 2. In Sect. 3 details on the considered control are
discussed. Results on robot arm experimental tests are reported in Sect. 4. The paper
ends with comments on the performance of the proposed controller.
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2 Uncertainty Estimators

In this section, different solutions to obtain an estimation of the uncertainties affect-
ing the systems are proposed. In particular in Sect. 2.1 an adaptive AR model is
considered while neural networks (NNs) are introduced in Sect. 2.2.

2.1 Adaptive AR Model

An Autoregressive (AR) model is considered in this subsection with the aim to
estimate the uncertainties affecting the robotic manipulator. AR models belong to the
family of equation error models, do not consider any input and are thus used to model
time series (Box et al. 1994; Arnold et al. 1998). A scalar AR process of order d is
given by:

y(k) = a1(k) y(k − 1) + a2(k) y(k − 2) + · · · + ad(k) y(k − d) + e(k), (1)

where e(k) is a sequence of independent and normal distributed random variables
with zero expectation and variance of σ 2

q (i.d. ∼N (0, σ 2
q )). This variable can be

interpreted as the uncertainty of the next signal value prediction by regressing the
previous observations with the AR coefficients (prediction error) (Guidorzi 2003;
Arnold et al. 1998). If the scalar values y(k), e(k) and ai (k), i = 1, . . . , d are
replaced by vectors and matrices respectively, the AR process given in (1) results:

y(k) = A1(k) y(k − 1) + A2(k) y(k − 2) + · · · + Ad(k) y(k − d) + e(k), (2)

where y(·) and e(·) have dimension p of the modeled output space. Matrices Ai (k),
i = 1, . . . , d are square and with the same dimension of y(·). Typically, models
in the forms (1) and (2) allow computing, at any time, a one-step ahead prediction
of the output on the basis of the observations performed until that moment. Since
the equation error is modeled by a white process and the output measurements are
known until time sample k − 1, the optimal predictor, characterized by whiteness
and minimal variance of the prediction error, is obtained substituting the left term of
(2) with its estimated expression, obtaining:

ŷ(k) = A1(k) y(k − 1) + A2(k) y(k − 2) + · · · + Ad(k) y(k − d) + e(k). (3)

It is important to note that predictor (3) does not rely on previous predictions (the
prediction is a simple regression of observed output samples) and thus is free from
stability constraints (Åström and Eykhoff 1971; Ljung 1999).

The computation of the models parameters, given by scalars elements ai (k),
i = 1, . . . , d in expression (1) and by the elements of matrices Ai (k), i = 1, . . . , d in
(2) and (3), can be seen as an optimization problem (the selection of the “best” model
in the considered class) or, from another point of view, as a way of “tuning” the model
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on the data. Considering the non-stationarity of the signals which are samples from
times-series the AR model is tuned by an on-line recursive and adaptive learning
algorithm, as a Kalman Filter, instead of the classical approaches of least-squares,
forward-backward or Yule-Walker that use off-line batch computation (Ljung 1999;
Giantomassi 2012).

To make use of Kalman filter algorithm for parameter estimation of (3) a state
space representation of the AR process with stochastic (time-varying) coefficients is
given. The multivariable case is addressed developing a state-space representation of
the model (3). This is achieved by rearranging the elements of coefficients matrices
Ai (k), i = 1, . . . , d in vector form using the vex-operator, which stacks the columns
of a matrix on top of each other. Then, consider the following notation:

a(k) = vec((A1(k), . . . , Ad(k))T )

υ(k) = ( yT (k − 1), yT (k − 2), . . . , yT (k − d))T (4)

C(k) = Ip ⊗ υT (k)

where the symbol ⊗ denotes the Kronecker-product of matrices, d the dimension of
the vector process regression and Ip the identity matrix of dimension p. An appro-
priate state-space representation of the multivariate AR model (3) with stochastic
coefficients is given by:

a(k + 1) = a(k) + v(k)

υ(k) = C(k)a(k) + e(k), (5)

where v(k) ∼ N (0, Q(k)) and e(k) ∼ N (0, R(k)). Thus the Kalman filter equations
for the defined parameter estimation problem are introduced substituting the term
a(k + 1) in (5) with its estimation to be compute i.e. â(k + 1) :

P(k + 1|k) = P(k) + Q(k)

K (k + 1) = P(k + 1|k)C(k)[C(k)P(k + 1|k)CT (k) + R(k)]
â(k + 1) = a(k) + K (k + 1)[υ(k) − C(k)a(k)]
P(k + 1) = [I − K (k + 1)C(k)]P(k + 1|k). (6)

2.2 Radial Basis Function Network

A RBFN with input pattern � ∈ R
m and an output ψ̂ ∈ R

n implements a mapping
fr : Rm → R

n according to

ψ̂ = fr (�) = κ0 +
nr∑

i=1

κiφ (‖� − ci‖) , (7)
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where φ(·) is a given function from R
+ to R

n , κi ∈ R
n , i = 0, 1, . . . , nr are the

weights or parameters, ci ∈ R
m , i = 1, 2, . . . , nr , are the radial basis functions

centers (called also units or neurons) and nr is the number of centers (Chen et al.
1991). The RBFN is used for the estimation of the uncertainties affecting the robotic
manipulator. The uncertainty dynamics can be taken into account through the network
input pattern �, that is composed of a proper set of system input and output samples
acquired in a finite set of past time instants (Haykin 1999) as specified in (27).

For the non-linearity φ(·), a function of the distance di between the current input
� and the centre ci , the following gaussian function is considered:

φ(di ) = exp
(
−d2

i /β2
)

, i = 1, 2, . . . , nr (8)

where di = ‖� − ci‖ and the real constant β is a scaling or “width” parameter (Chen
et al. 1991).

2.2.1 Orthogonal Least Squares Algorithm

By providing a set of network input pattern �(k) and the corresponding desired
output ψ(k) to be approximated by the net, for k = 1, 2, . . . , D, the centers ci ,
i = 1, 2, . . . , nr are generally chosen from the data set {�(k)}D

k=1. The Orthogonal
Least Squares (OLS) algorithm (Chen et al. 1991) is an efficient method for selecting
centers from the data set obtaining adequate and parsimonious RBFN thus reducing
computational complexity and numerical ill-conditioning. To apply this method, the
RBFN needs to be expressed by (7) as a linear regression model:

ψ(k) =
M∑

i=1

γi (k)δi + ε(k) (9)

where M := nr + 1, ψ(k) is the desired output to be approximated by the net,
ε(k) := ψ(k)−ψ̂(k) is the error signal, δi := κi−1 are the parameters to be estimated,
γi (k) := φ(‖�(k) − ci‖) are given fixed function of �(k) where the centers ci have
to be fixed and γ1(k) = 1. The error signal ε(k) is assumed to be uncorrelated with
γi (k). The OLS method, is considered for the selection of centers ci from the data
set {�(k)}D

k=1, with a reduced number M of γi (·). These significant regressors γi (k),
i = 1, 2, . . . , M can be selected using the OLS algorithm operating in a forward
regression way (Chen et al. 1991).

Arranging (9) for k = 1, 2, . . . , D in the following matrix form:

Ψ = Γ Δ + E (10)

where Ψ := [ψ(1) . . . ψ(D)]T , Δ := [δ1 . . . δM ]T , E := [ε(1) . . . ε(D)]T and
Γ := [

γ 1 . . . γ M

]
with γ i := [

γi (1) γi (2) . . . γi (D)
]T , i = 1, 2, . . . , M the OLS
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method involves the transformation of the set of γ i into a set of orthogonal basis
vectors, zi , i = 1, 2, . . . , M , where the space spanned by the set of orthogonal
basis vectors zi , i = 1, 2, . . . , M , is the same space spanned by the set of γ i ,
i = 1, 2, . . . , M , and (10) can be rewritten as

Ψ = Zh + E, (11)

with Z = [z1, z2, . . . , zM ]. This algorithm makes it possible to calculate the indi-
vidual contribution to the desired output energy from each basis vector. Because zi

and z j are orthogonal for i �= j , the sum of squares or energy of Ψ (k) is

Ψ T Ψ =
M∑

i=1

h2
i zT

i zi + ET E, (12)

and this relation suggests to consider as the error reduction ratio due to zi the
following quantity:

[err ]i := h2
i zT

i zi

/(
Ψ T Ψ

)
, i = 1, 2, . . . , M. (13)

The regressors selection procedure terminates at the Ms th step when

1 −
Ms∑
j=1

[err ] j < 
 (14)

where 0 < 
 < 1 is a chosen tolerance. This gives rise to a model containing only Ms

significant regressors. The orthogonal property makes the whole selection procedure
simple and efficient and the tolerance 
 is an important parameter in balancing the
accuracy and the complexity of the final network.

2.2.2 K -Means Clustering Algorithm

The OLS method can be employed as a forward regression procedure (Chen et al.
1991) to select a suitable set of centers ns ≤ nr , from a large initial set of candidates,
for the RBFN fr : Rm → R

n . In the developed solution the initial set of centers is
obtained using the k-means unsupervised clustering algorithm that starting from a
reasonable high number of centers randomly chosen in the input space, moves them
in the most significative regions of the input space (Chen et al. 1991).

The k-means clustering algorithm is given by the sequential execution of the
following steps:

1 Initialize the cluster centers c j , j = 1, 2, . . . , nc. This centers are randomly chosen
from the input data set {�(k)}D

k=1.
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2 Group all the inputs of the data set {�(k)}D
k=1 in the sets Ω j , j = 1, 2, . . . , nc,

where Ω j is the set of input vectors �(·) closest to the cluster center c j , i.e.
Ω j := {�(·) ∈ {�(k)}D

k=1| ‖�(k) − c j‖ = minD
i=1 ‖�(k) − ci‖}.

3 For all j = 1, 2, . . . , nc do c j = 1
M j

∑
�∈Ω j

�(k), where M j is the number of input

vectors �(k) ∈ Ω j .
4 If there is no change in the cluster assignments of step 3 from one iteration to the

next the algorithm is stopped otherwise go back to step 2.

2.2.3 “Width” of the Radial Basis Functions

Once the centers have been selected, the normalization parameter β2 of Eq. (8), that
represents a measure of the spread of the data associated with each centre, has to be
determined. No rigorous method exists to calculate this parameter. In the developed
solution an Akaike-type criteria (Chen et al. 1991) is proposed for choosing the
normalization parameter obtaining a good compromise between estimate accuracy
and network complexity (Haykin 1999). Akaike-type criteria which compromises
between the performance and the number of parameters has the following form:

AI C(χ) = N log(σ 2
ε ) + Msχ (15)

whereχ is the critical value of the chi-squared distribution with one degree of freedom
and for a given level of significance, N is the number of data set, σ 2

ε is the variance
of the net estimate residuals and Ms is the number of significant regressors. The
procedure terminates when AI C(χ) reaches its minimum.

3 Control Design

3.1 Preliminaries

From the Euler-Lagrangian formulation, the equations of motion of a robot manip-
ulator can be written as (Siciliano et al. 2009)

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + G(q) = τ (16)

where q ∈ R
n is the vector of generalized coordinates (rotational joint configura-

tions), B(q) ∈ R
n×n is the inertia matrix, C(q, q̇)q̇ ∈ R

n represents centrifugal and
Coriolis torques, Fv ∈ R

n×n is the diagonal matrix of the viscous friction coeffi-
cients, G(q) ∈ R

n is the vector of gravitational torques and τ ∈ R
n is the vector of

torques acting at the joints. As well known, the robot model (16) is characterized by
the structural properties given in Siciliano et al. (2009). Introducing the state vector
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x = [
x1 . . . xn xn+1 . . . x2n

]T = [
qT q̇T

]T
, the control input u = τ , and consider-

ing possible uncertainties affecting model (16), this latter can be expressed as:

ẋ = f c(x) + gc(x)u

= f 0
c(x) + Δ f c(x) + (g0

c(x) + Δgc(x))u (17)

where Δ f c(x), Δgc(x) depend on the uncertainties, while the nominal model is
given by f 0

c(x), g0
c(x):

f 0
c(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn+1
...

x2n

f1(x)
...

fn(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; g0
c(x) =

⎡
⎢⎢⎣

0n×n

g1,1(x) · · · g1,n(x)

· · · · · · · · ·
gn,1(x) · · · gn,n(x)

⎤
⎥⎥⎦ (18)

Note that all the terms present in (17), (18) can be easily computed from (16).

Assumption 1 In view of the existence of physical bounds on achievable positions
and velocities by the robot arm, it is assumed that the uncertain terms Δ f c(x),
Δgc(x) are norm bounded.

A planar two-link manipulator with revolution joints (Siciliano et al. 2009) will be
considered in this paper, in order to illustrate the feasibility of the proposed control
algorithm. Therefore the variable q is q = [q2 q3]T , where q2, q3 denote the joint
displacements of the two considered rotational joints 2 and 3 of Fig. 1. The arm
dynamics is described by (16) with n = 2 and the detailed model can be found in
Nicosia and Tomei (1990), Siciliano et al. (2009).

3.2 Sliding Mode Controller Design

In this section, the development of an estimation-based discrete-time sliding mode
control law is described, aimed at solving the trajectory tracking problem in the joint
space of the considered planar two-link manipulator.

Control design will be carried out in the discrete time framework, and discretiza-
tion after control design (performed in the continuous-time framework) will be
avoided, in accordance to the discussion reported in Young et al. (1999). In this
sense, the design approach used belongs to the so called ‘classical’ sliding mode
design techniques in the framework of discrete-time sliding modes (Furuta 1993;
Gao et al. 1995). In this context, several approaches are available in literature for
the discretization of a linear plant using Zero Order Hold (ZOH) method (Wang et
al. 2008, 2009, 2010), showing that inherent properties of SMC are not maintained
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Fig. 1 ERICC manipulator

after discretization. However, due to the presence of strong non linearities in the robot
model, a simpler approach has to be preferred for the plant discretization, using the
Euler method. Finally, consider that the plant discretization method is likely not
to seriously affect closed loop performances, since the control design is performed
directly in the discrete time domain (Young et al. 1999).

Considering a sampling time Tc, and discretizing the uncertain model (17) by
Euler method, one has:

{
qs(k + 1) = qs(k) + Tc q̇s(k)

q̇s(k + 1) = q̇s(k) + Tc f (k) + Tc g(k)u(k) + n(k)
(19)

with:

qs(k) = [x1(kTc) x2(kTc)]T , q̇s(k) = [x3(kTc) x4(kTc)]T .

Moreover:

f (k) = [ f1(k) f2(k)]T , g(k) =
[

g1,1(k) g1,2(k)

g2,1(k) g2,2(k)

]

[see (18) for n = 2], where with some abuse of notation we have written fi (k) =
fi (x(kTc)), i = 1, 2, gi, j (k) = gi, j (x(kTc)), i, j = 1, 2. Finally, n(k) is given by:

n(k) = Tc(Δ f (k) + Δg(k)u(k)) (20)

with

Δ f (k) = Δ f c(x(kTc)), Δg(k) = Δgc(x(kTc).
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Assumption 2 It is assumed that g(k) and g(k) + Δg(k) are invertible matrices
∀ x(kTc), ∀k for the chosen Tc.

Remark 1 According to Assumption 1, the matrix g(k) and the uncertain terms
Δ f (k) and Δg(k) are bounded by known constants:

||g(k)|| ≤ gM ; ||Δ f (k)|| ≤ ρ f ;

||Δg(k)|| ≤ ρg; ||g(k) + Δg(k)|| ≥ gmin .

The control law ensuring the robust tracking of a reference variable qd(k) =
[x1,d(kTc) x2,d(kTc)]T by the sampled position qs(k) = [x1(kTc) x2(kTc)]T will be
described in the following.

Define the discrete-time tracking error as π(k) = [π1(kTc) π2(kTc)]T = qs(k)−
qd(k), and consider the following discrete-time variable:

s(k) = π(k + 1) − 
π(k) (21)

with eig(
) = λi , i = 1, 2 such that |λi | < 1. Using (19), it can be shown that:

s(k) = (I − 
)qs(k) + Tc q̇s(k) − qd(k + 1) + 
qd(k) (22)

Remark 2 Note that s(k) is always computable at the time instant k. In fact, from (19)
the term qs(k + 1) present in (21) can be replaced by qs(k + 1) = qs(k) + Tc q̇s(k),
producing (22).

Moreover, consider the following sliding surface:

σ (k) = s(k) − αs(k − 1) = 0; 0 < |α| < 1. (23)

Theorem 1 Consider the arm model (19) and Remark 1. A quasi-sliding motion on
the surface (23) is enforced by the control law u(k) = ueq(k) + un(k), with

T 2
c g(k)ueq(k) = − (I − 
)qs(k) − Tc(2I − 
)q̇s(k)

− T 2
c f (k) − 
qd(k + 1) + qd(k + 2) + αs(k) (24)

and

un(k) =

⎧⎪⎪⎨
⎪⎪⎩

θ (||σ̃ (k)|| − ρs) ·
[

1√
2

1√
2

]
i f ||σ̃ (k)|| − ρs > 0

−[g(k)T 2
c ]−1n̂(k) otherwise

(25)

with 0 < |θ | < 1, 0 < |α| < 1 and:
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σ̃ (k) = σ (k)

T 2
C (gM + ρg)

; ρs = ρ f + ρgUM

gmin
(26)

where UM is the maximum input torque supplied by joint actuators, i.e. ||u|| ≤ UM .
The approximation n̂(k) of n(k), can be performed or by the AR model (3) with
ŷ(k) := n̂(k) ∈ R

2 or by a neural network fr : R6 → R
2 of the form (7) with the

output ψ̂(k) := n̂(k) ∈ R
2 and the input pattern � ∈ R

6 defined as

�(k) := [qs(k) un(k − 1) n(k − 1)]. (27)

The desired output of the AR model or the NN has the form n(k) ∈ R
2 given by

Eq. (20).

Proof Inserting (24) in σ (k + 1) gives:

σ (k + 1) = T 2
C g(k)un(k) + TC n(k). (28)

The imposition of the condition ||σ (k + 1)|| < ||σ (k)|| produces, considering (20)
and (28):

∣∣∣∣[g(k) + Δg(k)
] · [

un(k) + d(k)
]∣∣∣∣ <

||σ (k)||
T 2

c
(29)

with d(k) given by:

d(k) = [
g(k) + Δg(k)

]−1 [
Δ f (k) + Δg(k)ueq(k)

]
. (30)

Condition (29) is fulfilled if:

||un(k) + d(k)|| < ||σ̃ (k)||. (31)

Unlikely continuous-time sliding modes, for discrete-time systems the plant cannot
be permanently restricted to the designed surface. What can be ensured is the fol-
lowing decreasing condition ||σ (k + 1)|| < ||σ (k)||, which unfortunately cannot be
ensured ∀k but can be guaranteed outside a given region. In fact, it is easy to verify
that condition (31) is guaranteed by un(k) given in (25) when ||σ̃ (k)|| > ρs . On
the contrary, when ||σ̃ (k)|| ≤ ρs , i.e. inside the sector, the sliding mode condition
cannot be imposed exactly and an estimation n̂(k) of n(k) is used, given by the AR
model of Eq. (3) or a neural network of the form (7). Replacing n(k) by n̂(k) in
(28), and setting σ (k + 1) = 0, control law (25) is obtained, for ||σ̃ (k)|| ≤ ρs . The
previous developments can be summarized as follows: the variable σ (k) tends to
the region ||σ̃ (k)|| ≤ ρs because of the choice of un(k) given in (25). Once such
region is entered, it approximately holds σ (k + 1) � 0 in view of the approximation
capability of AR models and NNs.
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4 Experimental Implementation

The proposed controller has been implemented on an ERICC robot arm (Fig. 1),
built by Barras Provence (France). The robot is installed in the Robotics Laboratory
at the Dipartimento di Ingegneria dell’Informazione, of the Università Politecnica
delle Marche. In Fig. 1 is shown the robot with labels indicating the three base joints.
Other two joints (not indicated in Fig. 1) are for wrist movements. In this section, the
experimental setup and results are discussed.

4.1 Experimental Setup

The considered robot has five degrees of freedom but for the sake of simplicity
only links 2 and 3 have been utilized in the experiments. Anyway, the developed
experimental validation over a real planar robot can give the feasibility of this indus-
trial application. The two considered rotational joints 2 and 3 are actuated by two dc
motors with reduction gears. Position measurements are obtained by means of poten-
tiometers and velocity measurements by tachometers. The ERICC command module
consists of a power supply module, which provides the servo power for the system;
a joint interface module, which contains the hardware to drive the motors and pro-
vides sensor feedback from each joint; and a processor module to run user developed
software. In order to implement complex control algorithms, a new controller is used
in this setup in place of the original ERICC processor module. This system, includ-
ing hardware and software, combines an experimental apparatus with an easy-to-use
software platform based on a dSPACE controller board (http://www.dspaceinc.com
2011). In particular the control law is implemented on a dSPACE DS1102 real-time
controller board. A sampling time of 0.01 s has been used.

4.2 Structure and Validation of Implemented Estimators

Training and testing phases of considered AR models and NNs have been performed
off-line with data acquired on a set of planned trajectories chosen with different
shapes and considering different payload configurations for the robot. In particular an
AR model and a RBFN are designed to estimate uncertainties n(k) = [n2(k) n3(k)]T

of controlled links 2 and 3. As measure of the performance of the proposed estimation
algorithms residuals have been calculated, e(·) = n(·) − n̂(·) = [e2(·) e3(·)]T , and
whiteness test on the estimation errors ei (·), i = 2, 3 (residuals) has been used for
validation (Ljung 1999). The whiteness of residuals is evaluated by computing the
sample covariances
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R̂K
ei

(τ ) = 1

K

K∑
k=1

ei (k)ei (k + τ), i = 2, 3 (32)

with τ = 1, . . . , S. If ei (·), i = 2, 3 are white-noise sequences, then the quantities

ζ
K ,S
i = K

(R̂K
ei

(0))2

S∑
τ=1

(R̂K
ei

(τ ))2, i = 2, 3 (33)

will have, asymptotically, a chi-square distribution χ2(S) (Ljung 1999). The indepen-
dence between residuals can be verified by testing whether ζ

K ,S
i < χ2

�(S), i = 2, 3,

the � level of the χ2(S)-distribution, for a significant choice of �. Typical choices of
� range from 0.05 to 0.005.

The order of the AR model is chosen by the Minimum Description Length (MDL)
test (Ljung 1999). In Fig. 2 the AR model order for the uncertain terms n2(k) and
n3(k) is chosen as d = 15.

For the AR model tests are made to tune the covariance matrices of the process
and measurements noise. In the considered experimental tests the numeric values of
these parameters are P(0) = 0.4, σ 2

q (0) = 0.1 and σ 2
r,i (0) = 0.0001, i = 1, . . . , pd.

The set of experimental data used to train the NNs is given by the pairs (�(k), n(k)),
k = 1, 2, . . ., where n(k) and �(k)have the form specified in Eqs. (20) and (27),
respectively. These data sets are used to train the nets offline by the OLS-based
algorithm of Sect. 2.2 (Chen et al. 1991; Antonini et al. 2006). Data have been also
normalized in order to have the same range. The complexity of RBFNs (i.e. the
number of centers), has been chosen to match the approximation capability of nets to a
low nets complexity which is necessary for the implementation of the control scheme.
The number of centers has been chosen to obtain a good trade off among the time
complexity of learning, computation efforts of the resulting NN control schemes and
the accuracy of predictions for obtaining satisfactory control performance. Therefore,
hidden layers of these nets are chosen with a number of 19 centers.

Fig. 2 MDL test for the AR model of the uncertain terms ni (k), i = 2, 3. The minimum is
highlighted by the circle
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Fig. 3 Residuals obtained by the estimation performed by the network a e2(·); b e3(·)

A sample of the performed estimation tests is given in Figs. 3 and 4 for the estima-
tion of the uncertainty n(k). Residuals of the performed estimation shown in Fig. 3a,
b confirm that the implemented NN is accurate, in particular the Mean Square of the
Error (MSE) is 1.27 × 10−4 and 1.52 × 10−4 for joint 2 and 3, respectively.

In Fig. 4a, b the sample covariances of residuals e2(·) and e3(·) are reported; the
whiteness test passes with � = 0.005.

4.3 Experimental Results

Experimental results have been collected for trajectory tracking tasks performed in
the robot joint space. The parameters of the discrete-time SMC law for both joints,
are reported in Table 1.

A set of experimental results is reported in Figs. 6 through 15, obtained for the
robot following the reference trajectories depicted in Fig. 5. In these figures, the
performance produced by the proposed solutions for the uncertainties compensation
in the SMC are illustrated for the robot following the reference trajectories of Fig. 5
with and without a payload.
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Fig. 4 Sample covariance of the residuals obtained by the estimation performed by the network
a e2(·); b e3(·). The whiteness test passes with � = 0.005

Table 1 SMC parameters for
both joints

Param. Value

ρs 0.0859

minq ||g(k) + Δg(k)|| 10.3385

θq2 0.1624

θq3 0.5019

eig(
) [0.92 0.91]T

α 0.95

Figures 6, 7, 8 and 9 show the performance when the robot is without a payload.
In particular in Figs. 6 and 7 performance of the RBFN based SMC are shown. The
tracking error of the RBFN based SMC is shown in Fig. 6. The voltage control inputs
from the dSPACE controller board are depicted in Fig. 7.

The performance using the adaptive AR based SMC are shown in Figs. 8 and 9.
The tracking errors are shown in Fig. 8 and voltage control inputs are shown in Fig. 9.

Figures 10 and 11 show the performance of the proposed control solutions when
the reference robot motion trajectories are the same as before (see Fig. 5) and the
robot moves a payload of 2 Kg. For the RBFN based SMC the tracking errors are
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Fig. 5 Reference trajectories used for experiments: a joint 2; b joint 3

Fig. 6 Results for the robot without a payload controlled by the RBFN based SMC—Tracking
errors: a joint 2; b joint 3
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Fig. 7 Results for the robot without a payload controlled by the RBFN based SMC—Control
inputs: a joint 2; b joint 3

Fig. 8 Results for the robot without a payload controlled by the adaptive AR based SMC—Tracking
errors: a joint 2; b joint 3
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Fig. 9 Results for the robot without a payload controlled by the adaptive AR based SMC—Control
inputs: a joint 2; b joint 3

Fig. 10 Results for the robot with a payload of 2 Kg controlled by the RBFN based SMC—Tracking
errors: a joint 2; b joint 3
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Fig. 11 Results for the robot with a payload of 2 Kg controlled by the RBFN based SMC—Control
inputs: a joint 2; b joint 3

Fig. 12 Results for the robot with a payload of 2 Kg controlled by the adaptive AR based SMC—
Tracking errors: a joint 2; b joint 3
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Fig. 13 Results for the robot with a payload of 2 Kg controlled by the adaptive AR based SMC—
Control inputs: a joint 2; b joint 3

Table 2 Performance
comparison—Figs. 6, 7, 8, 9,
10, 11, 12 and 13

Joint Controllers No payload Payload

deg deg

q2 RBFN-based SMC 5.73 6.60

adaptive AR-based SMC 6.86 7.16

standard SMC 14.15 16.69

q3 RBFN-based SMC 7.47 9.89

adaptive AR-based SMC 12.65 13.69

standard SMC 15.60 19.76

displayed in Fig. 10 and the voltage control inputs from the dSPACE controller board
are depicted in Fig. 11.

Figures 12 and 13 show the performance of the adaptive AR based SMC; the track-
ing errors are displayed in Fig. 12 and the voltage control inputs from the dSPACE
controller board are depicted in Fig. 13.
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Fig. 14 Results for the robot without a payload—Norm of the sliding surface: dashed line denotes
the threshold ρs , continuous line denotes the norm of the sliding surface ||σ̃ (k)|| [see Eq. (26); a
standard SMC; b RBFN based SMC. c adaptive AR based SMC
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Fig. 15 Results for the robot with a payload—Norm of the sliding surface: dashed line denotes
the threshold ρs , continuous line denotes the norm of the sliding surface ||σ̃ (k)|| [see Eq. (26)]; a
standard SMC; b RBFN based SMC. c adaptive AR based SMC
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Comparing with the performance of a robot controller based on a standard discrete-
time SMC, i.e. without any approximation inside the sector, (considering for the
robot the same task as in Fig. 5), the proposed AR model-based and NN-based SMC
produces smaller tracking errors as reported in Table 2. In this table, to summarize
the experimental results of Figs. 6, 7, 8, 9, 10, 11, 12 and 13, the IAE criterion is
used, i.e. the integral of the absolute value of the tracking errors:

I AE =
Tt∫

0

|πi (t)| dt (34)

where i = 1, 2 and Tt is test time.
Figures 14 and 15 report the norm of the sliding surfaces ||σ̃ (k)|| [see Eq. (26)],

for the experimental tests of Figs. 6, 7, 8, 9, 10, 11, 12 and 13.
Compared with the standard SM controller (see Figs. 14a and 15a) it is evident

that the NN-based SMC (Figs. 14b and 15b) and the AR model-based SMC (Figs. 14c
and 15c) causes the sliding surface to decrease and to remain remarkably below the
sector threshold of width ρs [see Eq. (26)]. In particular the RBFN-based SMC shows
better performance with respect to the AR model-based SMC.

5 Concluding Remarks

In this chapter, the control of a planar robotic manipulator has been addressed by a
robust discrete-time SMC algorithm. Its major drawback, consisting in the presence
of a sector, of width depending on the available bound on system uncertainties, where
robustness is lost because the sliding mode condition cannot be exactly imposed has
been solved employing a controller inside the sector based on an estimation, as
accurate as possible, of the overall effect of uncertainties affecting the system. Two
different solutions for obtaining this estimate have been considered: an adaptive
on-line procedure for autoregressive modeling of non-stationary multivariable time
series by means of a Kalman filtering and a radial basis function neural network.
The proposed control law has been tested on a ERICC robot arm. Experimental
evidence shows good trajectory tracking performance as well as robustness in the
presence of model inaccuracies and payload perturbations. The developed controller
based on neural networks provided improved tracking performance with respect to
the standard discrete-time SMC law and to the adaptive AR model based SMC.
As future research activity an online learning algorithm for the neural network is
under investigation as well as a method to improve the run-time performance for the
real-time implementation of the learning algorithm.
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A Robust Adaptive Self-tuning Sliding Mode
Control for a Hybrid Actuator in Camless
Internal Combustion Engines

Benedikt Haus, Paolo Mercorelli and Nils Werner

Abstract This contribution deals with an adaptive sliding mode control for a hybrid
actuator consisting of a piezo, a mechanicacal and a hydraulic part that can be used
for camless engine motor applications. The control structure comprises a feedfor-
ward controller and a sliding mode controller. The general approach of this actuator
is to use the advantages of both systems, the high precision of the piezoelectric actu-
ator and the force of the hydraulic part. In fact, piezoelectric actuators (PEAs) are
commonly used for precise positioning, despite PEAs present nonlinearities, such
as hysteresis, saturations, and creep. A sliding mode control is proposed and for
deriving the structure of such a controller a Lyapunov approach is used. An adap-
tive self-tuning algorithm is realised. The conceived sliding mode control takes the
hydraulic actuator in a resonance operating point which corresponds to the rotational
speed of the engine. When the engine speed changes, the sliding mode controller
adapts its parameter in a way that the resonance frequency of the controlled hydraulic
part of the actuator changes and corresponds to the working frequency of the engine.
The resulting controller is therefor totally self-tuning and robust with respect to the
model parameter variation. Asymptotic tracking is shown using Lyapunov approach.
Moreover, the proposed technique avoids a switching function for the calculation
of the equivalent signal of the sliding mode controller. In this way the chattering
problem is completely avoided. Simulations with real data of a camless engine are
presented.
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1 Introduction

Recently, a lot of attention has been given to variable engine valve control because it
can lessen the pumping losses and improve torque performance over a wider range of
working conditions than a conventional spark-ignition engine. Thus, it improves the
whole efficiency of the engine. The main reason is that variable valve timing permits
the control of internal exhaust gas recirculation, so, as already mentioned, making
fuel economy better and lower NOx emissions. Combined with microprocessor con-
trol, very important functions of the motor management can be controlled well by
hybrid actuators. For moving distances between 5 and 8 mm there are many types
of actuators with different benefits. Besides mechanical and hydraulic variable valve
train options, electromagnetic valve actuators have been proposed in the past. Recent
works mark technical progress in this area, in particular, (Tai and Tsao 2003; Hoff-
mann and Stefanopoulou 2001; Peterson and Stefanopoulou 2003). Theoretically,
electromagnetic valve actuators offer the highest potential to improve fuel economy
due to their control flexibility. In real applications, however, the electromagnetic
valve actuators developed so far mostly suffer from high power consumption. A
new general orientation is to use electromagnetic actuators such as very recently
described in Mercorelli (2012a, b). This kind of actuators presents a high value of
inductance which can generate some problems of the electromagnetic compatibility
with the environment. Moreover, a high value of inductance represents an inertial
aspect in the control system, in particular for some kinds of control strategies such as
sliding mode control. Sliding mode control is one of the most used control strategy
thanks to its robustness against model uncertainties and signal noise. For instance,
in Ran et al. (2012) it was shown that for a sewage treatment system, which nor-
mally is a system with large internal parameter perturbation and strong external
disturbance, the controlled system using sliding mode control with the help of linear
matrix inequalities toolbox has good robustness properties. In automotive context
sliding mode is often used, too. This choice is motivated by the well-known robust-
ness features of the sliding mode control approach, which are particularly appropriate
dealing with the automotive context. For instance in Jie et al. (2008) an application
of sliding mode control combining a fuzzy controller for longitudinal brake control
of hybrid electric vehicles is proposed. This kind of approach, despite the presence
of external disturbance and model uncertainties, represents a compensation control
to achieve good tracking performance. In Ferrara and Vecchio (2008) the proposed
approach produces a considerable reduction of the chattering phenomenon, which
can determine undesired mechanical wear in the actuators. In Loukianov et al. (2008)
sliding mode control techniques form a stabilising controller for an internal combus-
tion engine with a throttle driven by a DC motor. This approach enables the inherent
non-linearities of the engine to be compensated and high-level external disturbances
to be rejected. Innovative and alternative concepts in the conception of actuators are
required to reduce the losses and drawbacks while keeping high actuator dynamics
which is characterized by high values of velocity and generated force. An origi-
nal approach to control an electromagnetic actuator has recently been proposed in



A Robust Adaptive Self-tuning Sliding Mode Control for a Hybrid … 109

Jou et al. (2012): a non-conventional electromagnetic actuator together with a fuzzy
controller to overcome the problem of the unknown parameters of the model and
achieve precision positioning by friction compensation. Somewhat earlier (Gan and
Cheung 2003), a precision manufacturing system was developed based on the vari-
able reluctance principle. This work included an effective nonlinear control method
based on a cascade structure. The aim of this paper is showing

• A new hybrid actuator for camless engines
• A model of this hybrid actuator
• Sliding mode based controller for a holding valve to realise soft landing
• Self-tuning of the proposed sliding mode parameters based on the resonance

principle

Typically, in the technical literature, soft landing for moving masses in general is
defined in relation to its landing velocity which should be no more than a value which
depends on the specific application. In the considered application a landing velocity
not greater than 1 m/s is considered. The theoretical literature in the field of sliding
mode control points to possible applications in mechanical systems and actuators
for trajectory tracking (e.g., Corradini et al. 2004). The applications in Betin et al.
(2006) show very interesting results for position control in induction machines in
term of robustness, across a wide range of mechanical configurations. More recently,
there has been a notable interest in applications of sliding mode control for actua-
tors. For example, in Jian-Xin and Abidi (2008), Xinkai and Hisayama (2008) and
Pan (2008) position controls using a sliding mode technique are proposed for vari-
ous different actuator structures. The robustness of this approach against parameter
uncertainties is demonstrated. In more recent publications, intelligent control designs
have been proposed for electromagnetic systems—for example, the development of
a robust adaptive sliding mode controller (She et al. 2011) and the proposal of a
cascade controller which could be used in a maglev train (Lee and Duan 2011). In
sliding mode control one of the most important issues is the adaptation of the para-
meters of the controller. This topic is the most recent one and the most important
in the application field. In Alanisa et al. (2014) real-time discrete adaptive output
trajectory tracking for induction motors in the presence of bounded disturbances
is proposed. A controller is designed which combines discrete-time block control
and sliding modes techniques. Good results in terms of tracking and robustness for
an adaptive sliding mode strategy with the help of neural networks are shown. In
Yang et al. (2013), the authors proposed a multiobjective optimal design and energy
compensation control to achieve soft landing. The landing velocity can be greatly
reduced by adjusting the duty cycle of the landing current. It is notable that the trend
in controlling electromagnetic actuators with fast dynamics is to keep the system
from using switching modalities which can be attributed to two main factors. The
first is electromagnetic compatibility. In fact, switching signals can generate danger-
ous interferences. In particular, to achieve a soft landing, a high switching frequency
is required near the landing point. For these reasons, approaches such as those in
Nguyen et al. (2007) or Betin et al. (2006) are not suitable for the target applica-
tion. The second is that if there is high inductance in the electrical circuit in which
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the switching signals are involved, it is known to be difficult to switch the current
quickly. This kind of problem has been considered in recent literature. In particular,
in sliding mode control the phenomena associated with a high switching frequency
are referred to as chattering. In Levant (2010) and Levant and Fridman (2010) a
detailed analysis of the chattering phenomena and how to avoid them is done. Chat-
tering phenomena are dangerous but it was proven in Levant (2010) that they can
be eliminated by proper use of high-order sliding modes. Moreover, in Levant and
Fridman (2010) it is shown that, for some sliding magnitudes in higher orders of the
homogeneous sliding modes, the chattering effect is not amplified in the presence
of actuators. In general, a high switching frequency should be used to achieve a
soft landing. A detailed analysis of this issue was presented in Mercorelli (2012a),
along with a control strategy for the proposed design. Notably, in that paper, though
another kind of actuator was considered, an alternative approach to dealing with the
switching mode was suggested. In particular, a pre-action current was injected to
prepare the actuator and to “slide” in the final part of the trajectory tracking phase.
In investigations related to that study, it became clear that an important prerequisite
for obtaining good control performance and soft landing would be more robustness
against noise and uncertainties in general. Because of the structural complexity of
the hybrid actuator the proposed controller consists of a feedforward structure that
consists of a quasi discrete inversion of the piezoelectric and mechanical part of
the actuator. The second part of the controller consists of a sliding mode structure
which guarantees asymptotical tracking convergence, robustness, efficiency in term
of energy consumption and soft landing. The proposed technique avoids a switching
function for the calculation of the equivalent signal of the sliding mode controller. In
this way the chattering problem is completely avoided. To derive the sliding mode
structure a Lyapunov approach is used. The conceived sliding mode control takes the
hydraulic actuator in a resonance working point which corresponds to the running
frequency of the engine. When the engine frequency changes, the sliding controller
adapts its parameter in a way that the resonance frequency of the controlled actuator
changes and corresponds to the working frequency of the engine. In this sense, the
sliding mode based controller is totally self-tuning. The control strategy consists of
a sliding structure to take the hydraulic part of the actuator around a unique reso-
nant operating frequency. This condition is an optimal condition in terms of energy
consumption of the whole actuator. In fact, the hydraulic part of the the actuator is
the part dedicated to power the valve in order to actually move it. The sliding mode
controller is realised by a holding valve collocated on the back hydraulic line of the
hydraulic part related to the upper compartment of the servo valve in order to realize
the break phase which is needed for a soft landing. The paper is divided into the
following sections. Section 2 is devoted to the general specification of the considered
problem. In Sect. 3 a description of the proposed hybrid actuator is given together
with the piezoelectric, mechanic and hydraulic part of the actuator. In particular this
section is dedicated to the description of the model in which the Preisach dynamic
model of the piezo actuator with the above mentioned nonlinearities is considered.
Moreover the description of the mechanical part of the actuator, which basically
consists of the hydraulic transmission ratio and the hydraulic part, which is the final
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part of the actuator is given. In Sect. 4 the control law is presented which consists of
a combination of a feedforward and a sliding based controller. Section 5 is devoted to
the description of an innovative adaptive self-tuning parameter of the obtained con-
troller. In Sect. 6 tracking and energy simulation results using real data of an actuator
are presented. Moreover, energy considerations based on the simulation results are
drawn. The conclusions close the paper.

The main nomenclature
Vin(t): input voltage
Vz(t): internal piezo voltage
i(t): piezo input current
R0: input resistance in the piezo model
Ra : parasite resistance in the piezo model
Ca : parasite capacitance in the piezo model
Cz : internal capacitance in the piezo model
x p(t): internal position of the piezo part
x1(t): position of the piezo mass
x2(t): position of the servo piston
xV (t): position of the valve
vV (t): velocity of the valve
H(x p(t), Vin(t)): hysteresis characteristic of the piezo
Mp/3: moving piezo mass
Kx : internal spring constant of the piezo
K : spring constant acting on the piezo
D: damping constant acting on the piezo
Doil : damping constant of the oil chamber acting on the piezo
MSK : mass of the servo piston
KSK : spring constant acting on the servo piston
DSK : damping constant acting on the servo piston
Qth(t): volumetric flow of the hydraulic part
VH : steady-state factor of the model of the hydraulic part of the actuator
A1: surface of the conic hydraulic transmission from the piezo side
A2: surface of the conic hydraulic transmission ratio from the servo piston side
AV P : surface of the valve piston
AL : effective surface which characterises internal hydraulic leakage
Ts : sampling time
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2 General Specifications and Tracking Problem in Camless
Engines

Figure 1 shows the principle of the engine valves to be controlled. The intake valve
allows air and fuel to rush into the cylinder so combustion can take place. The
exhaust valve releases the spent fuel and air mixture from the cylinder. Clearly, the
timing of the valve opening and closing strongly influences the engine efficiency

Fig. 1 New structure of the engine
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and fuel economy. The optimal choice of the opening and closing timing depends on
the simultaneous operation conditions of the engine. In conventional spark-ignition
engines the valves are driven by the camshaft and their timing is fixed by the engine
speed. In general the use of electromagnetic as well as of a hybrid valve actuators
decouples the valve timing from the engine speed and ensures fully timing variability.
If, for instancef a frequency of around 6,000 rpm is considered and a distance of
10 mm must be covered, then a time interval of about 4 ms for opening and closing
of the valve is required. This is one of the worst practical cases in which high
accelerations up to 4,500 m/s2 have to be achieved, even in case of large disturbances
due to the strong cylinder gas force acting against the exhaust valve opening.

Figure 1 shows the phase diagram of the positions of an engine intake and exhaust
valves. In this figure the intake and the exhaust valve position profiles are indicated.
Figure 1 demonstrates the new engine structure with, evidently, four piezo actuators.

3 General Structure of the Hybrid Actuator and Its Model

Figure 2 shows the whole hybrid structure of the actuator. In particular, on the left
side of the diagram the piezo part which is in contact with a piston of surface equal
to A1 is visible. Through a conic structure filled with oil, the piston of surface A1
transfers the movement to the mechanical servo piston with surface equal to A2.
It should be noted that A1 � A2. This ratio allows to realize a favorable position
transfer from the piezo part to the mechanical part. Thus, the short strokes of the

Fig. 2 Scheme of the whole hybrid piezo hydraulic actuator
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Fig. 3 Control scheme of the whole hybrid piezo hydraulic actuator

piezo part correspond to longer strokes of the mechanical servo part. In particular,
the stroke is multiplied by W = A1

A2
≈ 100 and, consequently, the force is reduced

with the same factor. It is to notice that the piezo actuator at the elongation equal
to 0 mm can produce around 30,000 N and at 0.12 mm a force of 10,000 N. In the
diagram of Fig. 2 the T-A connection links the couple of valves with the tank and
the P-B connection links the couple of valves with the pump. In order to clarify
the functioning of this part of the actuator we can explain the opening phase of the
valves. Observing the position of Figs. 2 and 3 it is possible to see that connections
T-A and P-B are maximally open and the couple of valves are closed because point
B is under pressure. When the piezo exerts force, the mechanical servo valve moves
and begins to close these connections. When the mechanical servo valve is in the
middle position, both connections (T-A and P-B) are closed and connections A-P
and B-T begin to open. At this position also both motor valves begin to open because
point A is under pressure.

Figure 2 shows in detail a part of the hybrid structure which consists of a piezo actu-
ator combined with a mechanical part. These two parts are connected by a hydraulic
transmission ratio to adapt the stroke length. The proposed nonlinearity model for
the PEA is quite similar to the sandwich models presented in Adriaens et al. (2000)
and Yu and Lee (2005).
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Fig. 4 Scheme of the electrical part of the piezo actuator

3.1 Mathematical Model of the Actuator

Figure 4 shows the equivalent circuit for a PEA with the I-layer nonlinearities of
hysteresis and creep, in which two I-layers are combined together as Ca and Ra .
The I-layer capacitor, Ca , is an ordinary one, which might be varied slightly with
some factors, but here it would be assumed constant first for simplicity. The I-layer
resistor, Ra , however, is really an extraordinary one with a significant nonlinearity.
The resistance is either fairly large, say Ra > 106 �, when the voltage ‖Va‖ < Vh , or
is fairly small, say Ra < 1,000, when ‖Va‖ > Vh . In Yu and Lee (2005), the threshold
voltage, Vh , is defined as the hysteresis voltage of a PEA. Yu and Lee (2005) gave this
definition due to the observation that there is a significant difference and an abrupt
change in resistance across this threshold voltage and it is this resistance difference
and change across Vh that introduces the nonlinearities of hysteresis and creep in a
PEA. The hysteresis effect could be seen as a function of input Vin(t) and output y(t)
as follows: H(y(t), Vin(t)). According to this model, if Vh = 0, then the hysteresis
will disappear, and if Ra = ∞ when ‖Va‖ < Vh , then the creep will also disappear.
In Mercorelli and Werner (2014) a detailed analysis on the hysteresis effect and its
identification with measurement validation was presented. Based on this proposed
sandwich model and the equivalent circuit as shown in Fig. 4, we can further derive
the state model as follows:

V̇a(t) = −
( 1

Ra
+ 1

Ro

) Va(t)

Ca
− Vz(t)

Ca Ro
+ Vin(t)

Ca Ro
(1)

V̇z(t) = Q̇b

Cz
+ 1

Cz

(
− Va(t)

Ro
− Vz(t)

Ro
+ Vin(t)

Ro

)
, (2)
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where Qb = Dy Fz(t) is the “back electric charge force” (back-ecf) in a PEA, see
Yu and Lee (2005). According to Yu and Lee (2005) and the notation of Fig. 3, it is
possible to write:

Fz(t) = Mp/3ẍ(t) + Dẋ(t) + K x(t) + Kx x(t). (3)

K and D are the elasticity and the friction constant of the spring which is antagonist
to the piezo effect and is incorporated in the PEA. Cz is the total capacitance of the
PEA and Ro is the contact resistance. For further details on this model see Yu and
Lee (2005). Considering the whole system described in Fig. 3 with the assumption
of incompressibility of the oil, the whole mechanical system can be represented by
a spring mass structure as shown in the conceptual scheme of Fig. 3.

In this system the following notation is adopted. Kx is the elasticity constant
factor of the PEA. In the technical literature, factor Dx Kx = Tem is known with
the name “transformer ratio” and states the most important characteristic of the
electromechanical transducer. MSK is the sum of the mass of the piston with the
oil and the moving actuator and Mv is the mass of the valve. Mp/3 is, in our case,
the moving mass of the piezo structure which is a fraction of whole piezo mass.
The value of this fraction is given by the constructor of the piezo device and it is
determined by experimental measurements. KSK and DSK are the characteristics of
the antagonist spring to the mechanical servo valve, see Fig. 3. Doil is the friction
constant of the oil. Moreover, according to Yu and Lee (2005), motion x p(t) of the
piezo is:

x p(t) = Dx Vz(t). (4)

According to diagram of Fig. 4, it is possible to state:

Vz = Vin(t) − R0i(t) − H(x p(t), Vin(t)), (5)

where R0 is the connection resistance and i(t) is the input current as shown in Fig. 4.
For a piezo actuator, in the technical literature, factor Dx Kx = Tem is known

as the “transformer ratio” and states the the most important characteristic of the
electromechanical transducer in which Kx is the elasticity constant factor of the PEA
and Dx is the parameter which is responsible to transform voltage into movement.
In fact, another well-known physical relation is = F1 = Dx Kx Vz which represents
the piezo force in which Vz is the internal voltage. Ideally, Vz = Vin where Vin is
the input voltage.

Considering the whole system with the assumption of compressibility of the oil,
the whole mechanical system can be represented by a spring mass structure as shown
in the conceptual scheme of Fig. 5. If this model is considered with the assumption

A1 = A2, (6)
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Fig. 5 Model of the piezo mechanical part of the actuator

then:

MP K · ẍ1(t) = Vz(t)Dx Kx − KF L1 · (x1(t) − xc(t))

− (Kx + K ) · x1(t) − Dẋ1(t), (7)

together with

0 = 0 − KF L1 · (xc(t) − x1(t)) − KF L2 · (xc(t) − x2(t)), (8)

in which mOil = 0 is considered, and

MSK · ẍ2(t) = KF L2 · (x2(t) − xc(t)) − KSK · x2(t) − DSK · ẋ2(t). (9)

Considering Eq. (8), the following expression is obtained:

xc(t) = KF L1 · x1(t) + KF L2 · x2(t)

KF L1 + KF L2
, (10)

and substituting Eq. (10) in Eq. (9), the following expression is obtained:

MSK · ẍ2(t) = −KF L2 · x2(t) − KSK · x2(t) − DSK · ẋ2(t)

+ KF L2 · KF L1 · x1(t) + KF L2 · x2(t)

KF L1 + KF L2
. (11)

If a matrix representation of these two differential equations is considered, the system
can be transformed into a linear state space representation



118 B. Haus et al.

ẋ(t) = Ax(t) + BVz(t) (12)

y(t) = Cx(t) + DVz(t) (13)

with

x(t) =

⎡
⎢⎢⎣

x1(t)
ẋ1(t)
x2(t)
ẋ2(t)

⎤
⎥⎥⎦ (14)

A =

⎡
⎢⎢⎣

0 1 0 0
A21 − D

MP K
A23 0

0 0 0 1
A41 0 A43 − DSK

MSK

⎤
⎥⎥⎦ , (15)

A21 =
K 2

F L1
KF L1+KF L2

− K − Kx − KF L1

MP K
(16)

A23 = KF L1 KF L2

(KF L1 + KF L2)MP K
(17)

A41 = KF L1 KF L2

(KF L1 + KF L2)MSK
(18)

A43 =
K 2

F L2
KF L1+KF L2

− KSK − KF L2

MSK
(19)

B = A1

A2

⎡
⎢⎢⎣

0
Dx Kx
MP K

0
0

⎤
⎥⎥⎦ , (20)

C = [
0 0 1 0

]
, (21)

D = 0, (22)

in which in (20) the effect of the two different surfaces is considered.
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Fig. 6 Block diagram structure of the hydraulic part of the actuator

3.2 Hydraulic Part of the Actuator

In Fig. 6 a nonlinear possible model often utilised in practical applications is pre-
sented. The model was presented in Murrenhoff (2002) but in a linear approximation
form which is very often used in industrial applications.

In Fig. 6 a more general representation of the hydraulic part of the actuator is
visible. In Fig. 6 the following notation is adopted:

h → ṗ(t) = VH Np
(

p(t), Qth(t) − Q̃th(t)
)

(23)

and

g → v̇V (t) = − kv

MV
Nv(vV (t)) + 1

MV
F(t) (24)

Moreover, in Fig. 6 some parameters are visible. VH represents the steady state fac-
tors of the hydraulic part of the model and establishes the static connection between
the pressure and the volumetric flow. Parameter AV P is the surface of the moving part
(valve piston). The other parameter which characterises the hydraulic-mechanical
model is AL . In fact, parameter AL is a characteristic value of the velocity-dependent
internal leakage. AL is not a real surface, but an equivalent surface that quantifies
the flow losses through the valve piston.

Observing Fig. 6 and considering that Qth is the volumetric flow involved in the
hydraulic actuator, the following mathematical models are derived:

⎧⎨
⎩

ẋV (t) = vv(t)
v̇V (t) = − kv

MV
Nv(vV (t)) + 1

MV
F(t)

ṗ(t) = VH Np
(

p(t), Qth(t) − Q̃th(t)
) (25)
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Fig. 7 Schematic of the hydraulic part with AL

and
{

F(t) = AV P p(t)
Q̃th(t) = (AV P + AL)vV (t),

(26)

where parameter MV represents the mass of the moving part (valve piston+valve),
kv is the friction factor which states the mechanical losses due to the movement,
Np

(
p(t), Qth(t) − (AV P + AL)Nl(vV (t))

)
is a nonlinear function which states

the mathematical connection between state vV (t) (velocity of the valve piston) and
input Qth . Nv(vV (t)) and Nl(vV (t)) are nonlinear functions of the velocity valve
piston which state friction and volumetric flow leakage losses respectively. VH is the
steady-state parameter between p(t) and Q̃th(t) − Qth(t) where Q̃th(t) represents
the leakage volumetric flow.

4 Combining Feedforward and Sliding Mode Control

The mathematical description of the system in the above sections indicates that the
considered system consist of nine states variables in a cascade form. This considera-
tion shows that the system can present a relevant phase delay between the controlling
piezo input voltage and the final position of the valve to be controlled. It is known
that typically in such kind of hybrid systems, in order to minimize the phase delay a
feedforward controller is used. The strategy adopted in the proposed control system
consist of a feedforward controller combined with a feedback one. The feedback
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Fig. 8 Control scheme structure

controller is realized using basically a sliding mode control strategy. The feedfor-
ward controller works to compensate the phase delay of the piezo and the mechanical
part of the actuator which consists of the hydraulic transmission ratio together with
the servo piston and its antagonist spring. The sliding mode controller is applied to
a hydraulic valve which is located at the return hydraulic on the upper part of the
valve chamber to realise a soft landing of the valve. Figure 8 shows the conceptual
scheme of the adopted control system.

4.1 Sliding Mode Control Using a Hydraulic Valve

The sliding structure presented in this section is a typical one and is similar to
that presented in Lee et al. (2010). Considering Fig. 6 and Eq. (25), the following
representation can be derived:

⎧⎪⎨
⎪⎩

ẋV (t) = vv(t)

v̇V (t) = − kv

MV
Nv(vV (t)) + 1

MV
AV P p(t)

ṗ(t) = VH Np
(

p(t), Qth(t) − (AV P + AL)Nl(vV (t))
)
,

(27)
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Considering that the dynamics of the hydraulic part of this system is much faster
than the mechanical one, and that VH is the steady-state parameter between p(t) and
Q̃th(t) − Qth(t), then it follows that:

p(t) = VH Qth(t) − VH (AV P + AL)Nv(vV (t)). (28)

Finally considering the second equation of (27) together with (28) it follows that

{
ẋV (t) = vv(t),

v̇V (t) = − kv

MV
Nv(vV (t)) + AV P

MV

(
VH Qth(t) − VH (AV P + AL)Nl(vV (t))

)
.

(29)

Let

[
ẋV (t)
v̇V (t)

]
=

[
vV (t)

− kv

MV
Nv(vV (t)) − VH (AV P + AL)Nl(vV (t))

]

+
[

0
AV P
MV

VH

]
Qth(t), (30)

then we can write Eq. (30) in a more compact form as follows

ẋH (t) = f(xH (t)) + BH Qth(t), (31)

where field

f(xH (t)) =
[

vV (t)
− kv

MV
Nv(vV (t)) − VH (AV P + AL)Nl(vV (t))

]
, (32)

and

BH =
[

0
AV P
MV

VH

]
, xH (t) =

[
xV (t)
vV (t)

]
. (33)

Proposition 1 Let’s consider the system ẋH (t) = f(xH (t))+ BH Qth(t), a possible
stabilizing control law with weighting matrix G is

Qth(kTs) = Qth((k − 1)Ts) + (
GBH Ts

)−1
(
ηTss(kTs)

)
. (34)

Proof The following sliding function is defined:

s(t) = G
(
xHd (t) − x(t)

)
, (35)
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where G = [
λ1 λ2

]
, and xHd (t) represents the vector of the desired trajectories

(valve position and velocity).

s(t) = [
λ1 λ2

] [
xV d(t) − xV (t)
vV d(t) − vV (t)

]
, (36)

thus

s(t) = λ1

(
xV d(t) − xV (t)

)
+ λ2

(
vV d(t) − vV (t)

)
. (37)

It is reasonable, but not necessary to weight both errors equally: λ1 = λ2 = 1. If the
following Lyapunov function is defined:

V (s) = s2(t)

2
, (38)

then it follows that:

V̇ (s) = s(t)ṡ(t). (39)

In order to find the stability of the solution s(t) = 0, it is possible to choose the
following function:

V̇ (s) = −ηs2(t), (40)

with η > 0. Comparing (39) with (40), the following relationship is obtained:

s(t)ṡ(t) = −ηs2(t), (41)

and finally

s(t)
(
ṡ(t) + ηs(t)

) = 0. (42)

The non-trivial solution follows from the condition

ṡ(t) + ηs(t) = 0. (43)

From (35) it follows:

ṡ(t) = G
(
ẋHd (t) − ẋH (t)

) = GẋHd (t) − GẋH (t). (44)

The main idea is to find a ueq(t), an equivalent input, and after that a Qth(t), such
that ẋH (t) = ẋHd (t).



124 B. Haus et al.

For that, from (31) it follows that:

ẋH (t) = ẋHd (t) = f(xHd (t)) + BH Qth(t), (45)

and from (44) the following relationship is obtained:

ṡ(t) = GẋHd (t) − Gf(xHd (t)) − GBH Qth(t) = GBH
(
ueq(t) − Qth(t)

)
, (46)

where ueq(t) is the equivalent input which, in our case, assumes the following
expression:

ueq(t) = (
GBH

)−1G
(

ẋHd (t) − f(xHd (t))
)
. (47)

After inserting (46) in (43) the following relationship is obtained:

GBH
(
ueq(t) − Qth(t)

) + ηs(t) = 0, (48)

and in particular

Qth(t) = ueq(t) + (
GBH

)−1
ηs(t). (49)

From the description of the hydraulic model it is a difficult job to calculate ueq(t).
If Eq. (46) is rewritten in a discrete form using explicit Euler approximation, then it
follows:

s((k + 1)Ts) − s(kTs)

Ts
= GBH

(
ueq(kTs) − Qth(kTs)

)
. (50)

If Eq. (49) is also rewritten in a discrete form, then

Qth(kTs) = ueq(kTs) + (
GBH

)−1
ηs(kTs). (51)

Equation (50) can be also rewritten as

ueq(kTs) = Qin(kTs) + (
GBH

)−1 s((k + 1)Ts) − s(kTs)

Ts
. (52)

Equation (52) can be estimated to one-step backward in the following way:

ueq((k − 1)Ts) = Qin((k − 1)Ts) + (
GBH

)−1 s(kTs) − s((k − 1)Ts)

Ts
. (53)

Because of function ueq(t) is a continuous one, we can write

ueq(kTs) ≈ ueq((k − 1)Ts). (54)
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Considering Eq. (54), then Eq. (53) becomes

ueq(kTs) = Qin((k − 1)Ts) + (
GBH

)−1 s(kTs) − s((k − 1)Ts)

Ts
. (55)

Inserting (55) into (51) gives

Qth(kTs) = Qth((k−1)Ts)+
(
GBH

)−1
(
ηs(kTs)+ s(kTs) − s((k − 1)Ts)

Ts

)
, (56)

and finally

Qth(kTs) = Qth((k − 1)Ts) + (
GBH Ts

)−1
(
ηTss(kTs) + s(kTs) − s((k − 1)Ts)

)
.

(57)
The controller stated by Eq. (57) can be seen basically as a integral action on

the error which is represented by the sliding function s(t). In fact, according to the
Lyapunov analysis it is obtained that

lim
k→∞

s(kTs) = 0 (58)

and thus, it exists a k such that for k > k

s(kTs) ≈ s((k − 1)Ts). (59)

So after a transient period Eq. (57) can be rewritten as follows:

Qth(kTs) = Qth((k − 1)Ts) + (
GBH Ts

)−1
(
ηTss(kTs)

)
. (60)

Equation (60) states an integral action with a gain η. �

5 Resonance Condition for a Robust Self-tuning of the Sliding
Mode Control

One of the most important issues in sliding mode control approach is the adaptive self-
tuning of its parameters. As explained in the introduction, there are many approaches
to realise this specification. In this paper a resonance condition of the hydraulic part
of the actuator is proposed. The idea is, as already explained, to maintain this part
of the actuator in a resonance condition at the frequency of the engine changing
adaptively parameter η of the obtained sliding control law of Eq. (57). The hydraulic
part is the most important part in terms of energy of the hybrid actuator. Therefore the
efficiency of the whole controlled actuator can obtain a benefit from this resonance
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condition. To analyse the resonance condition of the hydraulic part of the actuator let
us take into consideration the following fundamental background. It is known that if
the following transfer function is considered

F(s) = 1
1
ω2

n
s2 + 2ζ

ωn
s + 1

, (61)

with

s = jω, (62)

then

F( jω) = 1
−ω2

ω2
n

− 2 jζω
ωn

+ 1
. (63)

Considering

|F( jω)| = 1√
(1 − ω2

ω2
n
)2 + 4ζ2ω2

ω2
n

, (64)

in which

u = ω

ωn
, (65)

then

|F( jω)| = 1√
(1 − u2)2 + 4ζ2u2

. (66)

If

D = (1 − u2)2 + 4ζ2u2, (67)

then

max
ω

|F( jω)| = min
u

D (68)

and to find this maximum it follows that

0 = −4(1 − u2)u + 8ζ2u. (69)
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From (69) it follows that

u R = ±
√

1 − 2ζ2 (70)

and

ωR = ωn

√
1 − 2ζ2. (71)

It is know that ωR exists for 0 ≤ ζ ≤ 1√
2

.

In general, if a linear system, characterized by transfer function G(s), is controlled
in closed loop, the following transfer function is obtained:

W (s) = G R(s)G(s)

1 + G R(s)G(s)
, (72)

in which G R(s) represents the transfer function of a possible linear controller. Con-
sidering that in the frequency range of the engine, the valve velocity remains between
0 and 5 m/s and the nonlinearity effects, which are basically represented by the losses,
are very small with respect to the input effect. Moreover, this controller plays a deci-
sive role in the region of the soft landing in which the velocity is very small and it
is possible to consider the following linear system as an approximated model of the
hydraulic part of the actuator:

G(s) = XV (s)

Qth(s)
=

VH
MV AV P

s
, (73)

in which XV (s) and Qth represent the valve position and the volumetric flow. The
following proposition states the adaptive law of the proposed Sliding Mode Control.

Proposition 2 Let’s consider the following transfer function

G(s) = XV (s)

Qth(s)
= K

s
, (74)

where

K = VH

MV AV P
(75)

is a constant originating from Eq. (30), G(s) represents the approximated model of
the hydraulic part of the model. If the following I controller is considered

G R(s) = K I
1

s
, (76)
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then η of Eq. (40) results to be

η = λ2Tsω
2
R . (77)

Proof The closed-loop transfer function (72) can now be written as

XV (s)

XV d(s)
= K I

1
s K 1

s

1 + K I
1
s K 1

s

(78)

or

XV (s)

XV d(s)
= 1

1
K I K s2 + 1

. (79)

Equating the coefficients of that with Eq. (61) gives

ωn = √
K I K (80)

and, ideally,

ζ = 0 (81)

and thus

ωR = ωn

√
1 − 2ζ2 = ωn (82)

where ωR is the dominant frequency of the speed of the combustion engine. This is
the resonance condition.

ωR = √
K I K , (83)

so

K I = ω2
R

K
. (84)

Considering Eq. (75) the following equation is obtained:

K I = ω2
R

MV AV P

VH
. (85)

If Eq. (60) is rewritten as follows:

Qth(kTs) − Qth((k − 1)Ts)

Ts
= (

GBH Ts
)−1

(
ηs(kTs)

)
, (86)
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then, substituting GBH = λ2 K from Eq. (75) in (86) it results:

K I =
(
λ2

VH

MV AV P
Ts

)−1
η (87)

To conclude, if Eq. (85) is combined with (87), then the following robust adaptive
law is derived:

η = λ2Tsω
2
R (88)

�

Remark 1 Equation (88) states an interesting and effective robust adaptive self-
tuning controller. The robustness is stated by the independence of the parameters
of the model. The factor λ2 in η is cancelled out in the controller equation (57).
However, together with λ1, it remains as a weighting factor for the position error
and the velocity error (see Fig. 15). It is possible to justify and to interpret Eq. (88)
just by thinking that the proportionality of parameter η with respect to the engine
revolution cylces are due to the necessity to adapt the controller to the velocity.
The proportionality with respect to parameter Ts is due to the necessity to adapt
the controller to the delay of the sampling rate. The wider the sampling rate is, the
stronger the action of the controller is.

6 Simulation Results

The designed sliding mode controller (Fig. 15) was tested using the complete model
including both the plant and the feedforward controller (see 3).

The disturbance force caused by exhaust gas after the combustion is implemented
like a step followed by an exponential drop right at the beginning of the valve opening
period. Technically speaking, as soon as the valve has opened even a very small slit
the pressure drops fast.

The desired valve trajectory (Fig. 10) is generated as a gaussian curve and thus as
an exponential function. This makes it possible to calculate derivates symbolically
instead of numerically.

xVdesired(t) = He−( mt+a
apt )2

(89)

where H ist the valve lift height, mt is a periodical ramp from 0◦ to 720◦ and a
is a constant phase delay (−360◦). apt is the aperture of the gaussian curve and is
proportional to its full width at half maximum (with a factor of 1

2
√

ln 2
).



130 B. Haus et al.

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
0

0.002

0.004

0.006

0.008

0.01

V
al

ve
 p

os
iti

on
 (

m
)

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
0

20

40

60

80

100

Time (sec.)

F
or

ce
 (

N
)

Valve position
Disturbance force

Fig. 9 Timing of the modeled disturbance relative to the valve trajectory

Fig. 10 Trajectory generation

Due to the nature of the exponential function the derivatives of the trajectory can
be expressed as a polynomial multiplied by the original trajectory:

ẋVdesired(t) = −2m
mt + a

apt2 · He( mt+a
apt )2

(90)

This helps to avoid noisy numerical derivatives, at least for the desired trajectory,
and improves several aspects of the feedforward control. Further derivatives can be
calculated likewise.

Without any feedback controller, the valve trajectory is almost acceptable for low
engine speeds (Fig. 12). This indicates that the implemented feedforward control is a
somewhat successful inversion of the plant. There is some high-frequency oscillation
that is caused by the hysteresis of the piezo actuator (setting Vh = 0 makes it
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Fig. 11 First derivative of the valve position: Valve velocity. Note that b = apt2
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Fig. 12 Obtained valve position without a feedback controller at 2,000 rpm

disappear, see 3.1). It does not bother us too much at 2,000 rpm, but at 8,000 rpm
(Fig. 13) undesired resonance effects cause the valve to open between cycles, which
is completely unacceptable.

Futhermore, the closing velocity is always too high (about 1.5 m/s). One goal of
this contribution is to lower it to achieve soft landing in order to protect the valves
and reduce noise.
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Fig. 13 Obtained valve position without a feedback controller at 8,000 rpm

Fig. 14 Calculation of the controller parameter exploiting resonance effects (88)

Fig. 15 Sliding mode controller
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It will be shown hereinafter that such a soft landing can be achieved by controlling
the volumetric flow as described in 4.

The main controller parameter Eta is calculated using the rotational speed of the
engine and Ts (88). The goal is to choose an η that alters the resonance frequency of
the system online matching the current rotational speed to obtain amplification.
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Fig. 16 Obtained controlled valve position at 2,000 rpm (η = 0.55)
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Fig. 17 Obtained controlled valve position at 8,000 rpm (η = 8.77)
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Fig. 18 Obtained controlled valve velocity at 8,000 rpm (η = 8.77)

The volumetric flow controller (implementing 57) is shown in Fig. 15. In this
simulation λ1 and λ2 are 1, so the position error and the velocity error are weighted
the same.

The obtained controlled valve position (Figs. 16 and 17) closely follows the desired
trajectory.

The valve velocity is looking fine, too. The valve is landing softly in the valve
seat.

7 Conclusions and Future Work

A new structure of a hybrid actuator for camless engine control is presented and an
adaptive sliding mode together with a feedforward control is proposed for trajectory
tracking and soft landing of the intake and exhaust valves. The adaptive sliding mode
control is obtained considering the resonance condition of the hydraulic part of the
actuator which is synchronized using a sliding based controller with the number
of cycles of the engine. Simulation results show a clear improvement in terms of
efficiency of the actuator and in the meantime a very good tracking error and soft
landing of the valves. Asymptotic tracking is shown using Lyapunov approach. Future
investigations of the sliding mode control approach in the context of this kind of
actuator should consider to develop sliding control laws without using the hydraulic
valve. Instead, the sliding mode control law should be implemented as a software-
only trajectory governor without the help of supplementary hardware structures.
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Sliding Mode Control of Class of Linear
Uncertain Saturated Systems

Bourhen Torchani, Anis Sellami and Germain Garcia

Abstract This chapter proposes a new design approach of continuous sliding mode
control of linear systems in presence of uncertainty and saturation. The saturation
constraint is reported on inputs vector and it is subject to constant limitations in
amplitude. The uncertainty is being norm bounded reported on both dynamic and
control matrices. In general, sliding mode control strategy consists on two essential
phases. The design of the sliding surface is the first phase which is formulated as a
pole assignment of linear uncertain and saturated system in a specific region through
convex optimization. The solution to this problem is therefore numerically tractable
via linear matrix inequalities (LMI) optimization. The controller design is the second
phase of the sliding mode control design, which leads to the development of a con-
tinuous and non-linear control law. This nonlinear control law is build by choosing
switched feedback gain capable of forcing the plant state trajectory to the sliding
surface and maintaining a sliding mode condition. To give provider of robustness
of the proposed nonlinear control, an approximation on the trajectory deviation of
the uncertain saturated system compared to the ideal behavior is proposed. Finally,
the validity and the applicability of this approach are illustrated by a multivariable
numerical example of a robot pick and place.

1 Introduction

The control of dynamical systems in presence of uncertainties and disturbances is
a common problem to deal with when considering real plants. The effect of these
uncertainties on the system dynamics should be carefully taken into account in the
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controller design phase since they can worsen the performance or even cause system
instability. For this reason, during recent years, the problem of controlling dynam-
ical systems in presence of heavy uncertainty conditions has become an important
subject of research. Many considerable progresses have been attained in robust con-
trol techniques. Let’s quote the sliding mode control, the nonlinear adaptive control,
predictive control model and many others. All these techniques are capable of guar-
anteeing the attainment of the control objectives in spite of modeling errors and
uncertainties affecting the controlled plant.

Among the existing methodologies, the sliding mode control technique turns
out to be characterized by high simplicity and robustness. This controller utilizes
discontinuous control laws to drive the system state trajectory onto a specified surface
in the state space, the so-called sliding or switching surface, and to keep the system
state on this manifold for all the subsequent times. The main advantages of this
approach are two: first, while the system is on the sliding manifold it behaves as a
reduced order system with respect to the original plant and, second, the dynamic of the
system while in sliding mode is insensitive to model uncertainties and disturbances.
The variable structure control VSC (Abiri and Rashidi 2009; Afshari et al. 2009;
Dorling and Zinober 1986; Emel’yanov 1967; Itkis 1976; Utkin 1977; Zinober 1994),
is a nonlinear control strategy and is characterized by a sliding mode. The VSC was
first proposed and elaborated by several researchers from the former Russia, starting
from the sixties (Emel’yanov 1970; Emel’yanov and Taran 1962; Utkin 1974). The
ideas did not appear outside of Russia until the seventies when a book by (Itkis 1976)
and a survey paper by (Utkin 1977) were published in English. Since then, sliding
mode control has developed into a general design control method applicable to a
wide range of system types including nonlinear systems, MIMO systems, discrete
time models and infinite dimensional systems.

The uncertainties are one of the most important problems in robust control design.
This requires us to look for a control strategy able to surmount this problem. The
purpose of this chapter is to describe the performance of sliding mode control when
applied to uncertain systems. The motivation for exploring uncertain systems is the
fact that model identification of real world systems introduces parameter errors.
Hence, models contain uncertain parameters which are often know to lie within
upper and lower bounds. A whole body of literature has arisen in recent years con-
cerned with the stabilization of systems having uncertain parameters lying within
know bounds (Bartolini and Zolezzi 1996; Edwards and Spurgeon 1998; Isidori
1999; Krstic et al. 1995; Young et al. 1999). Indeed, the VSC with sliding mode has
exceptional invariance proprieties with respect to the classes of matched uncertainties
(Arzelier et al. 1993; Ryan and Corless 1984; Sarcheshmah and Seifi 2009; Sellami
et al. 2007). The plant uncertainties are required to lie in the image of the initial
function for all values of t and x. this requirement is the so-called matching condition
(Edwards and Spurgeon 1998; Perruquetti and Barbot 2002; Slotine and Li 1991;
Utkin 1977). Assuming that the matching conditions are satisfied, it is possible to
lump the total plant uncertainty into a single vector. However, the so-called matched
uncertainties, has no effect on the dynamics because they lie within the range space of
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the input distribution matrix. The sliding mode control is not completely insensitive
to some classes of uncertainties like unmatched types, but it has a significant amount
of robustness.

Since a long time, the attention of the control engineers is attracted towards the
problem of saturation. Though often ignored, as happens in classical control theory, it
cannot be avoided in practice. From practical perspective, one of the key problems in
feedback control systems is that the signal u(t), generated by the control law, cannot
be implemented due to physical constraints. A common example of such constraint
is input saturation, which imposes limitations on the amplitude of the control input.
The phenomenon of amplitude saturation in actuators is due to inherent physical
limitations of devices. In some applications this problem is crucial, especially in
combination with nonlinear control, which tends to be aggressive in seeking the
desired tracking performance and can cause the instability of the system. These
problems lead to an inevitable physical limitations and severe deterioration of closed
loop system performance. Towards dealing with the problem of saturation, a sufficient
condition guaranteeing the satisfaction of a bound constraint on the magnitude of
the control signal is derived. In this way, the saturation is prevented and guarantees
that the control signal will not exceed its maximum allowable value. Many rigorous
design of control put into consideration this type of problem and are available to
provide guarantee properties on systems stability. Let us quote, the anti-windup
design (Hippe 2006; Gomes et al. 2004), and many other methods which consider
saturation function conditions (Corradini and Orlando 2007; Haijun et al. 2004; Klai
1994; Torchani et al. 2009; Reinelt 2001).

The present work introduces the problem of sliding mode control design of linear
systems affected by two major constraints: Presence of unmatched uncertainties and
saturation on the entries. The considered class of unmatched uncertainties is norm
bounded type and reported both on the dynamic and control matrices. The saturation
constraint is a constant limitation in the magnitude of the control vector. The sliding
surface design is treated as a problem of root clustering in LMI region (Woodham
and Zinober 1986) and gives a chattering free control law. The development and
the robustness analysis take into account the constraint of saturation in the different
steps. This chapter is organised as follows: In the beginning, we present the saturation
structure reported on the control vector and its implementation in the system. Then
we give a short introduction to the sliding mode control and the uncertainty. We will
then present a design of robust saturated sliding mode control. To show the robustness
of this control, an approximation of the trajectory deviation of the uncertain system
compared to the ideal behavior is presented. Finally, we consider a multivariable
example of robot “pick and place” to validate the theoretical concepts of this work.



140 B. Torchani et al.

Fig. 1 Structure of the saturation constraint

2 Problem Statement

2.1 Saturation Structure

The control vector is subject to constant limitations in amplitude. It is defined by

u(t) ∈ � ⊂ �m =
{

u(t) ∈ �m/ − ui
m ≤ ui (t) ≤ ui

M ; ui
m , ui

M > 0 ∀ i = 1 . . . m
}

(1)

Assumption 1 The form of the linear control of static feedback state is u(t) = kx(t)
where k ∈ �m×n .

In what follows, we give the structure of the saturation.

Then, the control can saturate in the following form

u(t) = sat (kx(t)) (2)

where

sat (kx(t)) =
[
sat (kx(t))1, . . . , sat (kx(t))m

]T
(3)

and the saturation function form is given by

sat (kx(t))i =
⎧⎨
⎩

ui
M if (kx(t))i > ui

M
(kx(t))i if −ui

m ≤ (kx(t))i ≤ ui
M−ui

m if (kx(t))i < −ui
m

, ∀i = 1, . . . , m (4)
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The term of saturation sat (kx(t)) can be written as follows

sat (kx(t)) = �(ς(x(t)))kx(t) (5)

where the elements ς i (x(t)) of the diagonal matrix � (ς (x(t))) are defined by

ς i (x(t)) =

⎧⎪⎪⎨
⎪⎪⎩

ui
M

(kx(t))i if (kx(t))i > ui
M

1 if −ui
m ≤ (kx(t))i ≤ ui

M

− ui
m

(kx(t))i if (kx(t))i < −ui
m

, ∀i = 1, . . . , m (6)

and
0 < ς i (x(t)) ≤ 1 (7)

2.2 Presentation of the Uncertain Saturated System

The uncertain saturated system is given by the following expression

{
ẋ(t) = (A + �A)x(t) + (B + �B)�(ς(x(t)))u(t)
y(t) = Cx(t)

(8)

where A ∈ �n×n, B ∈ �n×m, x(t) ∈ �n and u(t) ∈ �m . and

⌊
�A �B

⌋ = D1∇
⌊

E1 E2
⌋

(9)

D ∈ �n×d , E1 ∈ �e×n and E2 ∈ �e×m are constant matrices characterizing the
structure of uncertainty, and ∇ ∈ �d×e is an uncertain matrix such as

∇ ∈ Fbn =
{
∇ ∈ �d×e/∇T ∇ ≤ Iee

}
(10)

where ∇T and Iee are, respectively, the transposed of ∇ and the identity matrix (e×e).
We take

f (x(t)) = �Ax(t) (11)

and
g(x(t), u(t)) = �Bu(t) (12)

Knowing that

‖ f (x(t))‖ ≤ k f ‖x(t)‖ + kd (13)

‖g(x(t), u(t))‖ ≤ kg ‖u(t)‖ + α(x(t)) (14)
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Assumption 2 The pair (A, B) is controllable, B has full rank m and n > m.

To simplify, we consider �(ς(x(t))) = �(x) and we can write

{
ẋ = (A + �A)x + (B + �B)�(x)u
y = Cx

(15)

3 Design of the Sliding Surface

3.1 Hyper-Plan Design Procedure

In this section we present the existence of the sliding mode. The canonical form
used for VSC design can be extended to uncertain saturated systems to select the
matrix F. Existence of a sliding (Edwards and Spurgeon 1998; Itkis 1976; Utkin
1992, 1977) requires stability f the state trajectory to the sliding surface S(x) = 0
at least in a neighborhood of { x | S(x) = 0}, the system state must approach the
surface at least asymptotically. The largest such neighborhood is called the region of
attraction. The method given by Filippov is one possible technique for determining
the system motion in the sliding mode as outlined in the previous section. A more
straightforward technique easily applicable to multi-input systems is the equivalent
control method, as proposed in (Drazenovic 1969; Utkin 1992, 1977). This method
of equivalent control can be used to determine the system motion restricted to the
switching surface S and the analytical nature of this ethos makes it a powerful tool
for both analysis and design purposes.

We consider the system (15). The condition of the sliding mode is verified, if the
state variables achieves and remains on the sliding surface or switching surfaces S.
these surfaces are defined by the intersection of the hyper-plans passing by the origin
of the space of state defined by:

S =
m⋂

j=1

S j =
{

x ∈ �n : F j x = 0, j = 1 to m
}

(16)

where S is the null space (or Kernel) of F and tR is the time for which the sliding
mode is reached.

Then, for any t ≤ tR , the trajectory in sliding mode is on the surface

S = Fx = 0 (17)

To determine the dynamics of the uncertain system we shall adopt the method of the
equivalent control vector ueq , presented in what follows.
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While differentiating (17), we obtain

Ṡ = Fẋ = 0 (18)

Using (15), we obtain

Ṡ = F(A + �A)x + F(B + �B)�(x)u = 0 (19)

We pose u = ueq and if (F B)−1 exists. Then, the control law ueq to achieve
Ṡ = 0 is

ueq = −(F(B + �B)�(x))−1 F(A + �A)x (20)

The form of the equivalent control is given by

ueq = −K x (21)

with
K = (F(B + �B)�(x))−1 F(A + �A) (22)

While introducing ueq in (15), we obtain

ẋ = (A + �A)x − (B + �B)�(x)((C(B + �B)�(x))−1C)(A + �A)x (23)

ẋ = (In − (B + �B)�(x))((C(B + �B)�(x))−1C)(A + �A)x (24)

The dynamics of the system in the sliding mode can be written by

ẋ = (In − (B + �B)�(x))((F(B + �B)�(x))−1 F)(A + �A)x (25)

The new dynamic matrix is given by

Aeq = (In − (B + �B)�(x))((C(B + �B)�(x))−1C)(A + �A) (26)

with Aeq describes the motion on the sliding surface which is independent of the
actual value of the control and depends only on the choice of the matrix F, the
structure of the saturation and the uncertainties �A and �B.

The basic form used for the design of the variable structure control VSC can be
expanded to the systems with saturation constraint for the choosing of the gain matrix
C, which gives a good stable dynamics in the sliding mode.

The following part shows the existence of the sliding mode.

Remark 1 There exists an n × n orthogonal transformation matrix T knowing that
T B = [

0 B2
]′, where B2 ∈ �m×m is non-singular.
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Note that the choice of an orthogonal matrix T avoids inverting T when trans-
forming back to the original system. The transformed state variable vector is defined
as

y = T x (27)

The transformed variable is shared according to:

yT = [
yT

1 yT
2

]
(28)

with {
y1 ∈ �n−m

y2 ∈ �n (29)

Remark 2 The sliding mode is invariant in such transformation that is ueq

and Aeq are always unchanged.

The state equation becomes

ẏ = T (A + �A) T T y + T (B + �B) �(y)u (30)

and
ẏ = T AT T y + T �AT T y + T B�(y)u + T �B�(y)u (31)

with

T AT T =
[

A11 A12
A21 A22

]
, T �AT T = T D∇E1T T =

[
D1∇E11 D1∇E12
D2∇E11 D2∇E12

]
(32)

and

T B =
[

0
B2

]
, T �B = T D∇E2 =

[
0
D2∇E2

]
(33)

The transformed system is shared and can be given by the following expression

{
ẏ1 = A11 y1 + A12 y2 + D1∇E11 y1 D1∇E12 y2
ẏ2 = A21 y1 + A22 y2 + B2�(y)u + D2∇E11 y1 + D2∇E12 y2 + D2∇E2�(y)u

(34)
The structures of the uncertainties are replaced by f (y) and g(y, �(y)u).

we obtain
{

ẏ1 = A11 y1 + A12 y2 + f (y1, y2)

ẏ2 = A21 y1 + A22 y2 + B2�(y)u + g(y1, y2, �(y)u)
(35)

with {
f (y1, y2) = D1∇E11 y1 + D1∇E12 y2
g (y1, y2, �(y)u) = D2∇E11 y1 + D2∇E12 y2 + D2∇E2�(y)u

(36)
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f and g represent the uncertainty in the system and satisfy the following conditions.

Condition 1 The norm of the uncertainty on the dynamic matrix is bounded and
given by

‖ f (y1, y2)‖ ≤ k f

√
‖y1‖2 + ‖y2‖2 (37)

where
k f = ‖D1‖

∥∥[ E11 E12
]∥∥ = σ (D1) σ

([
E11 E12

])
(38)

Condition 2 The norm of the uncertainty on the control matrix is bounded, given
by

‖g (y1, y2, �(y)u)‖ ≤ α (y1, y2) + kg ‖�(y)u‖ (39)

with
kg = ‖D2‖ ‖E2‖ (40)

and

α (y1, y2) = kα

√
‖y1‖2 + ‖y2‖2 (41)

where
kα = ‖D2‖

∥∥[ E11 E12
]∥∥ = σ (D2) σ

([
E11 E12

])
(42)

‖·‖ and σ̄ (.) denote respectively the 2-norm, and the largest singular value. The
defining sliding condition is

F1 y1 + F2 y2 = 0 (43)

with
FT T = [

F1 F2
]

(44)

Remark 3 FB is non-singular implies that F2 must be non-singular too.

The sliding condition is
y2 = −F−1

2 F1 y1 = −Gy1 (45)

and
G = F−1

2 F1 (46)

G being an m×(n−m) matrix and the order of the uncertain system is (n−m). Then,
in the sliding mode, the equivalent system must satisfy not only the n-dimentional
state dynamics, but also the m algebraic equations given by S(x) = 0. The use of both
constraints reduces the system dynamics from an nth order model to an (n − m)th
order model. The sliding mode is governed by

{
ẏ1 = A11 y1 + A21 y2 + f̃ (y1, y2)

y2 = −Gy1
(47)
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y2 becomes a state feedback control.
The closed loop system will then have the dynamics ẏ1 = [A11 − A12G + D1∇

(E1 − E2G)] y1 and the design of a stable sliding mode requires the selection of a
matrix G knowing that A11 − A12G + D1∇(E1 − E2G) has (n − m) left-half plan
eigenvalues. If the gain G has been determined, F is given by

F = [
G Im

]
T (48)

3.2 Pole Assignment of a Reduced System

To determine the gain G and the matrix F, LMI method seems to us very effective.
Moreover, in order to improve the performances of the system response, we can use
the root clustering approach in LMI region, which enables us to obtain a good result.
For that, we propose to choose all the eigenvalues of the matrix A11 − A12G +
D1∇(E1 − E2G) in the region defined by a disc of center q and radius r of the
complex plan.

Let (A11 − A12G) = �1 and D1∇(E1 − E2G) = � Ã, then (42) is stable and its
eigenvalues are localised in the disc, if the two following inequalities are verified:

(�1 + � Ã + q I )T P(�1 + � Ã + q I ) − r2 P < 0 (49)

P = PT > 0 (50)

The Schur complement is given by the following lemma

Lemma 1 Let Q(x) = Q(x)T , R(x) = R(x)T and S(x) denote for n × n matrices
and suppose that P and R commute.

The following LMI are equivalent
(

Q(x) S(x)

S(x)T R(x)

)
> 0 (51)

R(x) > 0, Q(x) − S(x)R(x)−1S(x) > 0 (52)

Let’s pose S = P−1 and into pre and post multiplying by

(
S 0
0 I

)
, we obtain:

( −r2S S�T
1 + q S + S� ÃT

�1S + q S + � ÃS −S

)
< 0 (53)
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We take F S = R, (52) can be written as

( −r2S S AT
11 − RT AT

12 + q S
A11S − A12 R + q S −S

)

+
(

0
D1

)
∇ (

E1S − E2 R 0
) + (

0 DT
1

)∇T
(

(E1S − E2 R)T

0

)
< 0

(54)

Let Y, H, E1 and E2 are appropriate matrices and Y is symmetric. The inequality

Y + H∇(E1 − E2G) + (E1 − E2G)T ∇T H T < 0 (55)

is verified for ∇ satisfying ∇∇T ≤ Iee and there is a scalar ε > 0, with

ε−1 H H T + Y + ε(E1 − E2G)T (E1 − E2G) < 0 (56)

Then we can rewrite the LMI (49) as (56)

(
−r2S − (E1ST − E2 RT )

T
(−ε I )(E1S − E2 R) S AT

11 − RT AT
12 + q S

A11S − A12 R + q S −S + 1
ε

D1 DT
1

)
< 0

(57)
This carries us to write the following result.

Theorem 1 The system is stable and its eigenvalues are localised in the disc of
center −q and radius r, if there is a constant α = 1

ε
> 0, a matrix R and a symmetric

matrix positive S knowing that

⎛
⎝ −r2S S AT

11 − RT AT
12 + q S (E1ST − E2 RT )

T

A11S − A12 R + q S −S + αD1 DT
1 0

E1S − E2 R 0 −α I

⎞
⎠ < 0 (58)

The stabilizing gain is given by G = RS−1.

Once the matrix F is determined, the existent problem has been solved. Attention
must be turned to solving the reaching problem.

4 Control Law Design

The controller design is the second phase of the sliding control design procedure
mentioned earlier. The problem is to choose switched feedback gains capable of
forcing the plant state trajectory to the switching surface and maintaining a sliding
mode condition. The assumption is that the sliding surface has already been designed.
In the considered case, the control is an m-vector u.
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In this part we are interested in the reaching problem. In fact, the controller design
procedure consists of two steps. First, to reach the sliding surface and ensure that
trajectories are directed towards the switching surface, this involves the selection of
a nonlinear feedback control function u which ensures that trajectories are directed
towards the switching surface from any point in the state space. However, in order to
account for the presence of modeling imprecision and disturbances, the control law
has to be discontinuous across S. since the implementation of the associated control
switching is imperfect, this leads to chattering, which is undesirable in practice, since
it involves high control activity and may excite high frequency dynamics neglected
in course of modeling.

Thus, in a second step, the discontinuous control law u is suitably smoothed to
achieve an optimal trade-off between control bandwidth and tracking precision. The
first step achieves robustness for parametric uncertainty; the second step achieves
robustness to high-frequency unmodeled dynamics. An ideal sliding mode exists only
when the state trajectory x of the controlled plant agrees with the desired trajectory at
every t ≥ t1 for some t1. This may require infinitely fast switching. In real systems, a
switched controller has imperfections which limit switching to a finite frequency. The
representative point then oscillates within a neighborhood of the switching surface.
This oscillation, called chattering.

The general form of the used strategy control is the following

u = uL + uN (59)

where uL and uN are the linear and non linear control law parts. The first part of
the control is to make the derivative of the sliding surface equal zero to stay on the
sliding surface, same the equivalent control. The second part is to compensate the
deviations from the sliding surface to reach the sliding surface.

Also, it can be given by

u = Lx + ρ(x, u)
N x

‖Mx‖ + δ
(60)

with
uL = Lx (61)

uN = ρ(x, u)
N x

‖Mx‖ + δ
(62)

where L, N and M are appropriate matrices, with K er(N ) = K er(M) = K er(C).
ρ(x, u) is a design function expressed from the structure of the saturation and the
structure of the bounded norm uncertainties, affecting simultaneously the dynamic
and the control matrices. δ is a smoothing parameter to reduce the effect of chattering
phenomenon.

The necessity of using smoothing parameter, is that in real life applications, it is
not reasonable to assume that the control signal time evolution can switch at infinite
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frequency, while it is more realistic, due to the inertias of the actuators and sensors,
and the presence of noise and exogenous disturbances, to assume that it commute at
a very high finite frequency.

The control oscillation frequency turns out to be almost unpredictable. An
interesting class of smoothing functions, characterized by a time-varying parame-
ters, was proposed in (Slotine and Li 1991), the most recent and interesting approach
for the elimination of chattering is represented by the second order sliding mode
methodology (Bartolini et al. 1998b; Levant 1993).

The saturated control law is given by the following form

u = �(x)Lx + ρ(x, �(x)u)
N x

‖Mx‖ + δ
(63)

4.1 Design of the Linear Control Low U L

Proposing a second linear transformation T2 : �n → �n , given by

z = T2 y = T2T x (64)

knowing that z = [
zT

1 zT
2

]
, with z1 ∈ �n−m and z2 ∈ �m .

The transformation matrix T2 is non-singular and given by

T2 =
[

In−m 0
G Im

]
(65)

with

T −1
2 =

[
In−m 0
−G Im

]
(66)

The new state variables are then
{

z1 = y1
z2 = Gy1 + y2

(67)

After transformation the uncertain saturated system is given by the following expres-
sion {

ż1 = ∑
1 z1 + ∑

2 z2 + f̃ (z1, z2)

ż2 = ∑
3 z1 + ∑

4 z2 + B2�(z)u + g̃(z1, z2, �(z)u)
(68)
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where

�1 = A11 − A12G

�2 = A12 (69)

�3 = G�1 + A21 − A22G

�4 = G A12 + A22

f̃ (z1, z2) = D1∇ (E11 − E12G) z1 + D1∇E12z2 (70)

g̃(z1, z2, �(z)u) = (D2∇(E11 − E12G))z1 + D2∇E12z2 + G f̃ (z1, z2) + D2∇E2�(z)u
(71)

f̃ and g̃ satisfy Conditions 1 and 2, and we have the following conditions.

Condition 3 The norm of the uncertainty on the dynamic matrix is bounded and
given by ∥∥∥ f̃ (z1, z2)

∥∥∥ ≤ k f̃

√
‖z1‖2 + ‖z2 − Gz1‖2 (72)

Condition 4 The norm of the uncertainty on the control matrix is bounded and given
by

‖g̃ (z1, z2, �(z)u)‖ ≤ α̃ (z1, z2) + kg̃ ‖�(z)u‖ (73)

where kg = kg and

α̃ (z1, z2) = (
kα + k f σ (G)

)√‖z1‖2 + ‖z2 − Gz1‖2 (74)

Remark 4 We can write α̃ (z1, z2) as follows

α̃(z1, z2) = kα

√
‖z1‖2 + ‖z2 − Gz1‖2 + k f σ(G)

√
‖z1‖2 + ‖z2 − Gz1‖2 (75)

The constants kα and k f are previously given according to D1, D2, E11 and E12.

The new sliding condition is
z2 = 0 (76)

The linear part of control law u = uL impose the below condition

ż2 = 0 (77)

what gives
�3z1 + �4z2 + B2�(z)uL = 0 (78)
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and
uL(z) = −(B2�(z))−1 (�3z1 + �4z2) (79)

Furthermore
uL(z) = −(B2�(z))−1 (�3z1 + (

�4 − �∗
4

)
z2
)

(80)

where �∗
4 = diag {μi } ∈ �m×m is any design matrix with stable eigenvalues, with

Re(μi ) < 0 for i = 1 to m.
Transforming back into x-space we obtain

uL = −(B2�(x))−1 [�3
(
�4 − �∗

4

)]
T2T x (81)

with
L = −(B2�(x))−1 [�3

(
�4 − �∗

4

) ]
T2T (82)

Once the linear part of the control is obtained, the nonlinear part is determined in
what follows.

4.2 Design of the Nonlinear Control Low U N

The general nonlinear form of the control law is given by

uN
(

z1, z2, �(z)uL
)

= −ρ
(

z1, z2, �(z)uL
) B−1

2 �(z)P2z2

‖P2z2‖ (83)

Consider the Lyapunov equation with

V2(z2) = 1

2
zT

2 P2z2 (84)

P2 denotes the positive defined unique solution of the following equation

P2�
∗
4 + �∗

4 P2 + Im = 0 (85)

Then P2z2 = 0 if and only if z2 = 0 we have

uN
(

z1, z2, �(z)uL
)

= −ρ
(

z1, z2, �(z)uL
) B−1

2 �(z)P2z2

‖P2z2‖ + δ
(86)

Differentiating Lyapunov equation

V̇2(z2) = zT
2 P2 B2�(z)uN + zT

2 P2�
∗
4 z2 (87)
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while using

P2�
∗
4 = −

(
Im

2

)
(88)

we obtain

V̇2(z2) = −1

2
‖z2‖2 + zT

2 P2 B2�(z)uN (89)

After some intermediate calculations

zT
2 P2 B2�(ς(x))uN = −ρ(z1, z2)

‖P2z2‖2

‖P2z2‖ + δ
(90)

we obtain
V̇2(z2) < 0 (91)

The structure of the uncertainty ρ(z1, z2, �(z)uL), is given by

ρ(z1, z2, �(z)uL) = (1 − kg)
−1γ1(((z1, z2, �(z)uL) + kg

∥∥∥�(z)uL
∥∥∥) + γ2) (92)

Transforming back into x-space, we obtain

ρ(x, �(x)uL) = γ4(((γ ‖T2T x‖) + γ3

∥∥∥�(x)uL
∥∥∥) + γ2) (93)

with
γ4 = (

1 − kg
)−1

γ1
γ3 = kg

γ2 > 0
γ1 > 1

γ = kα + k f σ(G)

(94)

From (86), matrices M and N according to the variable of state are given by

N = −�(x)B−1
2

[
0 P2

]
T2T (95)

and
M = [

0 P2
]

T2T (96)
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5 Robustness Analysis

• If δ = 0: The control law will be discontinuous and guaranteed to reach the
sliding surface S in a finished time. However, it results a phenomenon of very
severe chattering, especially during the practical applications.

• If δ > 0: To get solution for reaching phenomenon, the continuous control ensures
that the trajectory is in the specified region defined by ellipsoids, where the system
is sliding, and therefore z2 = 0.

We give then the following results:

Theorem 2 The continuous nonlinear control structure u = uL + ucN defined in
(60):

(i) Ensure that the sliding subspace S is bounded by 1 given by:

S ⊂ 1 =
{[

z1∈�n−m z2∈ �m] /V2 (z2) = 1

2
zT

2 P2z2 ≤ ε1

}
(97)

where

ε1 =
(

δ

γ4 − 1

)2

× 1

2λmin (P2)
(98)

(ii) Drive an arbitrary initial state (z1 (t0) , z2 (t0)) = (
z0

1, z0
2

) ∈ 1 to the sliding
subspace 1 in a time TR satisfying the following condition

TR ≤ 1

γ2

√
2z0T

2 P2z0
2 − √

2ε1√
λmin (P2)

(99)

Theorem 3 If

k f ≤
(

2
√

1 + ‖G‖2 ‖P1‖
)−1

(100)

with
(z1(t0), z2(t0)) = (z0

1, z0
2) ∈ 1 (101)

Then

(i) Every trajectory z1 must ultimately enter and remain within the ellipsoid
2 (ε2):

2 = {
z1∈ �n−m/V1 (z1) ≤ ε2

}
(102)

with

ε2 = ε + 1

2

(
1

2
− k f

√
1 + ‖G‖2 ‖P1‖

)2

‖P1‖3 (kd + kn)2 (103)
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and
kn = √

2ε1

(∥∥∥ε2 P− 1
2

∥∥∥ + k f

∥∥∥P− 1
2

∥∥∥) (104)

where ε > 0 is arbitrary small.
(ii) The uncertain system (8) will approximate the prescribed dynamic behavior

z1m = e�1(t−t0)z0
1 in the sense that every deviation �z1 = z1 − z1m of the

motion z1 from the ideal sliding motion z1m will be bounded with respect to the
ellipsoid:

3 = {
�z1 ∈ �n−m/V1 (�z1) ≤ ε3

}
(105)

where

ε3 =

⎧⎪⎪⎨
⎪⎪⎩

2 ‖P1‖3
(

k f

√
1 + ‖G‖2

∥∥∥∥P
− 1

2
1

∥∥∥∥
∥∥∥∥P

− 1
2

1 z0
1

∥∥∥∥ + kn

)2

ifz0
1 /∈ 2

2 ‖P1‖3
(

k f

√
1 + ‖G‖2

∥∥∥∥P
− 1

2
1

∥∥∥∥√
2ε1 + kn

)2

ifz0
1 ∈ 2

(106)

Proof of Theorem 2
Knowing that u = uL + ucN , then

{
ż1 = �1z1 + �2z2 + f̃ (z1, z2)

ż2 = �∗
4 z2 + B2�(z)ucN + g̃

(
z1, z2, �(z)uL

) (107)

The most important task is to design a switched control that will drive the plant state
to the switching surface and maintain it on the surface upon interception. A Lyapunov
approach is used to characterize this task. The Lyapunov method is usually used to
determine the stability properties of an equilibrium point without solving the state
equation.

Let V(x) be a continuously differentiable scalar function defined in a domain that
contains the origin. This method is to assure that the function is positive definite
when it is negative and function is negative definite if it is positive. In that way the
stability is assured.

Differentiating the Lyapunov function and substituting (107), we obtain

V̇2 (z2) = 1

2
żT

2 P2z2 + 1

2
zT

2 P2 ż2 (108)

We replace (107) in (108)

V̇2 (z2) =1

2

(
�∗

4 z2 + B2�(z)ucN + g̃
(

z1, z2, �(z)uL
))T

P2z2 + 1

2
zT

2 P2

(
�∗

4 z2 + B2�(z)ucN

+g̃
(

z1, z2, �(z)uL
))

(109)
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After some calculations

V̇2 (z2) = zT
2 P2 B2�(z)ucN + zT

2 P2 g̃
(

z1, z2, �(z)uL
)

+ zT
2 P2�

∗
4 z2 (110)

V̇2 (z2) = zT
2 P2 B2�(z)ucN + zT

2 P2 g̃
(

z1, z2, �(z)uL
)

− zT
2

(
Im

2

)
z2 (111)

V̇2 (z2) = −1

2
‖z2‖2 + zT

2 P2 B2�(z)ucN + zT
2 P2 g̃

(
z1, z2, �(z)uL

)
(112)

We have

zT
2 P2 B2�(z)ucN = −ρ

(
z1, z2, �(z)uL

) ‖P2z2‖2

‖P2z2‖ + δ
(113)

Considering ∥∥∥ f̃ (z1, z2)

∥∥∥ ≤ k f̃

√
‖z1‖2 + ‖z2 − Fz1‖2 (114)

∥∥∥g̃
(

z1, z2, �(z)uL
)∥∥∥ ≤ α̃ (z1, z2) + kg̃

∥∥∥�(z)uL
∥∥∥ (115)

g̃ Can be expressed in the following way

∥∥∥g̃
(

z1, z2, �(z)uL
)∥∥∥ ≤ α̃ (z1, z2) (116)

Using

ρ
(

x, �(x)uL
)

= γ4

(
α̃ + γ3

∥∥∥�(x)uL
∥∥∥ + γ2

)
(117)

we obtain the follow expression

zT
2 P2 ‖g̃‖ ≤ α̃ (z1, z2) ‖P2z2‖ = 1

γ4
ρ
(

z1, z2, �(x)uL
)

‖P2z2‖ (118)

−
(
γ3

∥∥∥�(X)uL
∥∥∥ + γ2

)
‖P2z2‖

Afterwards

V̇2 (z2) ≤ −1

2
‖z2‖2 + zT

2 P2 B2�(x)ucN + 1

γ4
ρ
(

z1, z2, �(x)uL
)

‖P2z2‖ (119)

−
(
γ3

∥∥∥�(x)uL
∥∥∥ + γ2

)
‖P2z2‖
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V̇2 (z2) ≤ −1

2
‖z2‖2 − ρ

(
z1, z2, �(z)uL

) ‖P2z2‖2

‖P2z2‖ + δ
(120)

+ 1

γ4
ρ
(

z1, z2, �(z)uL
)

‖P2z2‖ −
(
γ3

∥∥∥�(z)uL
∥∥∥ + γ2

)
‖P2z2‖

and we obtain the relation

V̇2 (z2) ≤ −1

2
‖z2‖2 −

(
γ3

∥∥∥�(z)uL
∥∥∥ + γ2

)
‖P2z2‖ (121)

− ρ
(

z1, z2, �(z)uL
)

‖P2z2‖
( ‖P2z2‖

‖P2z2‖ + δ
− 1

γ4

)

from where
γ4 ‖P2z2‖ − ‖P2z2‖ − δ > 0 (122)

‖P2z2‖ (γ4 − 1) − δ > 0 (123)

‖P2z2‖ >
δ

γ4 − 1
(124)

with γ4 = (
1 − kg

)−1
γ1, then

V̇2 (z2) < 0 (125)

This condition will be satisfied if

V2 (z2) >

(
δ

γ4 − 1

)2

× 1

2λmin (P2)
= ε1 (126)

We conclude that the sliding subspace S is included in the 1 subspace defined
previously.

If (z1(t0), z2(t0)) = (z0
1, z0

2) /∈ 1, then the relation can be expressed

V̇2 (z2) ≤ −‖P2‖−1 V2 (z2) − γ2
√

2λmin (P2) V2 (z2) (127)

λmin (.) represents the minimal eigenvalue of (.). By using the following mathemat-
ical propriety.

Propriety 1: Let Ẋ ≤ −aX − b
√

X . The time T01, is necessary so that X changes

from X0 to X1, satisfies the condition
∥∥∥ f̃ (z1, z2)

∥∥∥ ≤ k f̃

√
‖z1‖2 + ‖z2 − Gz1‖2,

with the form

T01 ≤ 2

a
ln

(
a
√

X0 + b

a
√

X1 + b

)
≤ 2

b

(√
X0 − √

X1

)
(128)
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The variable of state z2 ∈ �m satisfies the condition

V2 (z2) = 1

2
zT

2 P2z2 ≤ ε1 (129)

in the subspace 1, where ε1 given previously. We can obtain the necessary time to
reach space 1

TR ≤ 1

γ2

√
2V2 (z2 (t0)) − √

2V2 (z2 (t0 + TR))√
λmin (P2)

(130)

TR ≤ 1

γ2

√
2z0

2 P2z0
2 − √

2ε1√
λmin (P2)

(131)

So we conclude that the continuous law control u = uL + ucN does not allow
reaching the sliding mode exactly, the switching function is not cancelled (z2 �= 0)

but it is bounded.
with

V2 (z2) ≤ ε1 =
(

δ

γ4 − 1

)2 1

2λmin (P2)
(132)

Geometrically the sliding surface S is included in 1 called ellipsoid limited by ε1
Therefore attainability is done in a finished time, whose maximum value given by
T01 is ensured in subspace 1.

Proof of Theorem 3
In presence of uncertainties, the dynamics of the system in the subspace 1 is

given by {
ż1 = �1z1 + �2z2 + f̃ (z1, z2)

z1(t0) = z0
1

(133)

Differentiating Lyapunov equation V1 (z1)

V̇1 (z1) = 1

2
żT

1 P1z1 + 1

2
zT

1 P1 ż1 (134)

and using (133)

V̇1 (z1) = 1

2

(
(�1z1)

T + (�2z2)
T + f̃ (z1z2)

)
P1z1 (135)

+ 1

2
zT

1 P1

(
�1z1 + �2z2 + f̃ (z1z2)

)
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V̇1 (z1) = 1

2
zT

1

(
�T

1 P1 + P1�1

)
z1 + zT

1 P1�2z2 (136)

+ zT
1 P1 f̃ (z1z2)

V̇1 (z1) = 1

2
zT

1 (−In−m) z1 + zT
1 P1�2z2 + zT

1 P1 f̃ (z1z2) (137)

V̇1 (z1) = −1

2
‖z1‖2 + zT

1 P1�2z2 + zT
1 P1 f̃ (z1z2) (138)

Then the Condition 3 on the function f̃ (z1z2), leads us to write the following trans-
formations

∥∥∥ f̃ (z1z2)

∥∥∥ ≤ k f̃

√
‖z1‖2 + ‖z2 − Gz1‖2 ≤ k f̃

(
‖z1‖

√
1 + ‖G‖2 + ‖z2‖

)

(139)

‖z2‖ =
∥∥∥∥P

1
2

2 P
1
2

2

∥∥∥∥ =
∥∥∥∥P

1
2

2

∥∥∥∥
∥∥∥∥P

1
2

2 z2

∥∥∥∥ =
∥∥∥∥P

1
2

2

∥∥∥∥
√

2V2 (z2) ≤
∥∥∥∥P

1
2

2

∥∥∥∥
√

2ε1 (140)

So we can express partly

zT
1 P1 f̃ (z1z2) ≤ k f̃ ‖P1‖ ‖z1‖2

√
1 + ‖G‖2 + k f̃ ‖P1‖ ‖z1‖

∥∥∥∥P
1
2

2

∥∥∥∥
√

2ε1 (141)

zT
1 P1�2z2 ≤ ‖P1‖ ‖z1‖

∥∥∥∥�2 P
1
2

2

∥∥∥∥
√

2ε1 (142)

Substituting (141) and (142) in (139), we obtain

V1 (z1) ≤ −
(

1

2
‖z1‖ − ‖P1‖

(
k f̃ ‖z1‖

√
1 + ‖G‖2 + kn

))
‖z1‖ (143)

So if

V1 (z1) > ε1 − ε = 1

2

(
1

2
− k f̃ ‖P1‖

√
1 + ‖G‖2

)−2

‖P1‖3 k2
n (144)

then
V̇1 (z1) < 0 (145)

k f is verified in the Condition 3 and (i), which signifies that the trajectory z1 must
definitely enter and remain in ellipsoid 2 (ε2) independent from t0

(ii) �z1 = z1 − z1m is the deviation of the system behavior compared to ideal
dynamic movement in sliding mode, z1m = e�1(t−t0)z0

1 for f̃ = 0
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�z1 = z1 − z1m (146)

�ż1 = ż1 − ż1m (147)

= �1z1 + f̃ (z1z2) − �1z1m

= �1�z1 f̃ (z1z2)

Let the Lyapunov function

V1 (�z1) = 1

2
(�z1, P1,�z1) = 1

2
�zT

1 P1�z1 (148)

and the derivative

V̇1 (�z1) = 1

2
�żT

1 P1�z1 + 1

2
�zT

1 P1�ż1 (149)

V̇1 (�z1) = 1

2

(
(�1�z1)

T + (�2z2)
T + f̃ (z1z2)

)
P1�z1 (150)

+ 1

2
�zT

1 P1

(
�1�z1 + �2z2 + f̃ (z1z2)

)

V̇1 (�z1) = 1

2
�zT

1

(
�T

1 P1 + P1�1

)
�z1 + �zT

1 P1�2z2 (151)

+ �zT
1 P1 f̃ (z1z2)

V̇1 (�z1) = 1

2
�zT

1 (−In−m)�z1 + �zT
1 P1�2z2 + �zT

1 P1 f̃ (z1z2) (152)

V̇1 (�z1) = −1

2
‖�z1‖2 + �zT

1 P1�2z2 + �zT
1 P1 f̃ (z1z2) (153)

According to (143) and (153), we obtain

�zT
1 P1 f̃ (z1z2) ≤ k f̃ ‖P1‖ ‖�z1‖2

(∥∥∥∥P
1
2

1

∥∥∥∥
∥∥∥∥P

1
2

1 �z1

∥∥∥∥
√

1 + ‖G‖2 +
∥∥∥∥P

− 1
2

2

∥∥∥∥
√

2ε1

)

(154)
Also we can express

�zT
1 P1�2z2 ≤ ‖P1‖ ‖�z1‖

∥∥∥∥�2 P
1
2

2

∥∥∥∥
√

2ε1 (155)
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Replacing in (154), we obtain

V1 (�z1) ≤ 1

2
‖�z1‖2 + ‖P1‖

(
k f̃

∥∥∥∥P
1
2

1

∥∥∥∥
∥∥∥∥P

1
2

1 �z1

∥∥∥∥
√

1 + ‖G‖2 + kn

)
‖�z1‖

(156)
If k f̃ verifies the Condition 3 so the condition (i) is verified too. Consequently, every
trajectory z1 definitely enters and remains in the ellipsoid 2 (ε2) independent from
t0

2 = {
z1 ∈ �n−m/V1 (z1) ≤ ε2

}
(157)

We have

V1 (z1) = 1

2
zT

1 P1z1 ≤ ε2 (158)

zT
1 P1z1 = zT

1 P
1
2

1 P
1
2

1 z1 =
∥∥∥∥P

1
2

1 z1

∥∥∥∥
2

≤ 2ε2 (159)

∥∥∥∥P
1
2

1 (z1)

∥∥∥∥ ≤ 2ε2 (160)

From where

V1(z1) =
{

V 0
1 (z1) if z0

1 /∈ 2

ε2 if z0
1 ∈ 2

(161)

and ∥∥∥∥P
1
2

1 z1

∥∥∥∥ =
⎧⎨
⎩
∥∥∥∥P

1
2

1 z0
1

∥∥∥∥ if z0
1 /∈ 2√

2ε2 if z0
1 ∈ 2

(162)

Using (161) and (162), we obtain (ii).

6 Numerical Application

We study the system of the robot “pick and place robot”. We realize simulations in
presence of the norm bounded uncertainties, which allows us to judge the robustness
control towards the parametric variations. The real system contains some uncertain-
ties reported on the weight of the arm of the robot m2, thus we can add a weight of
the load m3, which can be expressed by:

0K g ≤ �m2 ≤ m3max = 0.1K g (163)
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The norm bounded uncertainty, can be written as the following

m2 = m2 + �m2 (164)

The state matrices in presence of uncertainties, are described by

Ainc =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 −k1(

1
m1+m2

+ �1) 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −k2(

1
m2

+ �2)

⎤
⎥⎥⎥⎥⎥⎥⎦

(165)

Binc =
[

0 0 0 0 0 1
m2

+ �4

0 0 1
m1+m2

+ �3 0 0 0

]T

(166)

Also, we can write
Ainc = A + D1∇E1 (167)

and
Binc = B + D2∇E2 (168)

with

E1 =
[

0 0 −k1 0 0 0
0 0 0 0 0 −k2

]
, E2 =

[
1 0
0 1

]
(169)

D1 = D2 =
[

0 0 0 0 0 −m3max
m2(m2+m3max )

0 0 −m3max
(m1+m2)(m1+m2+m3max )

0 0 0

]T

(170)

and
0 ≤ ∇ ≤ 1 (171)

The simulations are done with the numerical values of the system parameters, as
follows: m1 = m2 = 1Kg, 0Kg ≤ m3 ≤ 0.1Kg, k1 = k2 = 0.1Kgs−1 and we have

x0 = [
0 0.4 0 0 0.7 0

]T (172)

− 5 ≤ u(t) ≤ 5 (173)
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Different matrices are presented

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 −0.05 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −0.1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0.5 0
0 0
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(174)

D1 = D2 =
[

0 0 0 0 0 −0.0909
0 0 −0.0238 0 0 0

]T

(175)

E1 =
[

0 0 −0.1 0 0 0
0 0 0 0 0 −0.1

]
, E2 =

[
1 0
0 1

]
(176)

The simulations given by Figs. 2, 3 and 4 are carried out to show the behaviour
of the multivariable system with uncertainties and saturation constraint. Figures 2
and 3 present respectively the evolution of state variables and control law from
different initial conditions. Figure 4 show the evolution of the switching surface.
These simulations show that the control effectively corrects the deviation between
the certain and uncertain system behaviour in the presence of uncertainty. Also, it is
clear that the response of the state trajectories and control are almost confused and
the deviation is very small, which judges the robustness of the control towards these
parametric perturbations as shown in Fig. 2. Also, these simulations show a typical
stable sliding mode convergence of the system in the two cases. The control law is
very smooth and not showing a chattering phenomenon as illustrated in Fig. 3. This
gives an idea onto the performance of the approach proposed to resolve the problem
of chattering.

The control input is saturated and always inferior to its maximal value. The evo-
lution of the sliding surface norm is displayed in Fig. 4, which proves that the control
law enables to reach the sliding surface, in both certain and uncertain cases. In addi-
tion, we can notice that the convergence is done in a relatively short time.

For the class of systems to which it applies, sliding controller design provides a
systematic approach to the problem of maintaining stability and consistent perfor-
mance in the face of modelling imprecision.

7 Conclusion

In this chapter, a sliding mode control design approach for linear saturated systems
affected by norm bounded uncertainty has been proposed. The saturation constraint
is reported on inputs vector and uncertainty being norm bounded reported on both
dynamic and control matrices. The two design parts of the variable structure control
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Fig. 2 Evolution of state variables

Fig. 3 Evolution of control law of the closed loop saturated system

methodology have been exposed. In the first step, the design of the sliding surface is
formulated as a pole assignment of a reduced system. In the second step, a nonlinear
saturated control scheme is introduced. It totally eliminates the undesirable chattering
phenomenon and ensures a stable sliding mode motion. Numerical application is
presented to show the applicability, the efficiency, and the robustness of the proposed
control.
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Fig. 4 Evolution of the switching surface
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Sliding Mode Control Scheme of Variable
Speed Wind Energy Conversion System
Based on the PMSG for Utility Network
Connection

Youssef Errami, Mohammed Ouassaid, Mohamed Cherkaoui and Mohamed
Maaroufi

Abstract The study of a Variable Speed Wind Energy Conversion System
(VS-WECS) based on Permanent Magnet Synchronous Generator (PMSG) and inter-
connected to the electric network is presented. The system includes a wind turbine,
a PMSG, two converters and an intermediate DC link capacitor. The effectiveness
of the WECS can be greatly improved by using an appropriate control. Furthermore,
the system has strong nonlinear multivariable with many uncertain factors and dis-
turbances. Accordingly, the proposed control law combines Sliding Mode Variable
Structure Control (SM-VSC) and Maximum Power Point Tracking (MPPT) control
strategy to maximize the generated power from Wind Turbine Generator (WTG).
Considering the variation of wind speed, the grid-side converter injects the generated
power into the AC network, regulates DC-link voltage and it is used to achieve unity
power factor, whereas the PMSG side converter is used to achieve Maximum Power
Point Tracking (MPPT). Both converters used the sliding mode control scheme con-
sidering the variation of wind speed. The employed control strategy can regulate both
the reactive and active power independently by quadrature and direct current compo-
nents, respectively. With fluctuating wind, the controller is capable to maximize wind
energy capturing. This work explores a sliding mode control approach to achieve
power efficiency maximization of a WECS and to enhance system robustness to
parameter variations. The performance of the system has been demonstrated under
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varying wind conditions. A comparison of simulation results based on SMC and
PI controller is provided. The system is built using Matlab/Simulink environment.
Simulation results show the effectiveness of the proposed control scheme.

1 Introduction

During the last few decades, the progress in the use of renewable green energy
resources is becoming the key solution to the environment contamination caused by
the traditional energy sources and to the serious energy crisis (Tseng et al. 2014;
Chou et al. 2014). Thus, power generation systems based on renewable energy are
making more and more contributions to the total energy production all over the
world (He et al. 2014; Guo et al. 2014). On the other hand, among available renew-
able energy technologies, wind energy source is the most promising options, as it
is omnipresent, environmentally friendly, and freely available (Chen et al. 2013a).
Compared to other types, wind energy system is regarded as an important renewable
green energy resource, mainly as a consequence of its high reliability and cost effec-
tiveness. So, wind energy conversion, has become a fast increasing energy source
in the global market (Ma et al. 2014; She et al. 2013). In addition, it is predicted
that the wind power system could be supplying 29.1 % of the world energy by 2030
and higher later on (Meng et al. 2013). Consequently, this increasing trend must be
accompanied by continuous technological advance and optimization, leading to bet-
ter options concerning integration to the electric network, reductions in expenses, and
improvements concerning turbine performance and dependability in the electricity
deliverance (Che et al. 2014; Wang et al. 2014; Nguyen et al. 2014).

In addition, wind energy source could be utilized by mechanically converting it to
electrical energy using wind turbine (WT). During the last two decades, various WT
concepts have been developed into wind power technologies and led to significant
augmentation of wind power capacity. Wind turbine systems can be classified into
two main types: fixed speed and variable speed. The fixed velocity system operates
almost at constant speed even in variable wind speed which allows direct connection
of the generator to the electric network. Recently, fixed speed wind energy conversion
systems, due to poor power quality, poor energy capture and stress in mechanical parts
have given way to variable velocity systems (Meng et al. 2013). Furthermore, variable
speed wind generation system has distinct advantages over fixed-speed generation
system, such as lower mechanical stress, operation at maximum power point, less
power fluctuation and increased energy capture (Chen et al. 2013a; Li et al. 2012). So,
to design reliable and effective systems to utilize this energy, variable speed wind
generation systems are better then fixed velocity systems. This is due to the fact
that variable velocity systems can accomplish reliability at all wind speeds and the
maximum efficiency, improved electric network disturbance rejection characteristics,
and the reduction of the flicker problem (Patil and Bhosle 2013; Melo et al. 2014; Li
et al. 2013).
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In the field of wind energy generation technology, Permanent Magnet Synchronous
Generator (PMSG) and Doubly Fed Induction Generators (DFIG) are emerging as
the preferred equipment which is used to transform the wind power into electrical
energy (Nian et al. 2014; Zhang et al. 2013; She et al. 2013; Tong et al. 2013; Chen
et al. 2013b). At present, one of the troubles associated with VS-WECS is the exis-
tence of gearbox coupling the generator to the wind turbine and which causes prob-
lems. So, the gearbox suffers from faults and requires regular maintenance (Cheng
et al. 2009; Najafi et al. 2013). In contrast, PMSG with higher numbers of poles
has been used to eliminate the need for gearbox which can be translated into higher
generation efficiency (Orlando et al. 2013). Besides, wind power generation based
on the PMSG has gained increasing popularity due to several advantages, including
its higher power density and better controllability, the elimination of a dc excitation
system, low maintenance requirements, higher efficiency compared to other kinds
of generators and low energy loss (Alizadeh et al. 2013; Xia et al. 2013; Alshibani
et al. 2014; Zhang et al. 2014). Besides, the performance of PMSG equipment has
been improving and the price has been decreasing recently (Yaramasu et al. 2013).
Therefore, it has been considered a promising candidate for new designs in Wind
Energy Conversion Systems (WECS). With those advantages, PMSGs are attracting
great attention and interests all over the world. So, some of them have become com-
mercially accessible, for example, Enercon E70 (2.5 MW), Vestas V112 (3.0 MW)
and Goldwind 1.5 MW series products (Cárdenas et al. 2013; Yaramasu et al. 2013).

To control the PMSG based WECS, power electronic converter systems are com-
monly adopted as the interface between the WECS and the power grid (Blaabjerg
et al. 2013; Ma et al. 2013). They give the ease for integrating the WECS units to
achieve high performance and efficiency when connected to the electric network
(Cespedes et al. 2014). Thus, the wind power converters have various power rating
coverages of the WECS (Blaabjerg et al. 2013), as shown in Fig. 1. Then, under
variable speed operation, the power converters are used to transfer the PMSG output
power in the form of variable frequency and variable voltage to the fixed frequency
also fixed voltage electric network (Vazquez et al. 2014; Ma et al. 2014). Several

1980 1985 1990 1995 2000 2005 2011 2018(E)

10 MW
D 190 m

7- 8 MW
D 164 m

5 MW
D 124 m

2 MW
D 80 m600 KW

D 50 m
500 KW
D 40 m100 KW

D 20 m50 KW
D 15 m

Fig. 1 Evolutions of wind turbine dimension and the corresponding capacity coverage by power
electronics converters seen from 1980 to 2018 (estimated)
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power converter configurations were presented in the literature for PMSG based
WECS (Nuno et al. 2014; Li et al. 2013; Xia et al. 2013).

Figure 2 shows the schematic diagram of a typical WECS connected to an electric
network. The power electronic conversion system consists of a back-to-back PWM
power converter which is composed of a PMSG side converter, a grid-side converter
and a dc link. The capacitor decoupling, offers the opportunity of separate control
for each power converter. The generator side converter works as a rectifier and it is
used to control the torque, the speed or power for PMSG (Chen et al. 2013b; Giraldo
et al. 2013; Xin et al. 2013). The grid side converter works as an inverter. The main
role of the inverter is to remain the dc-link voltage constant and to synchronize the
ac power generated by the WECS with the electric network (Alizadeh et al. 2013;
Zhang et al. 2014). Besides, the inverter should have the capability of adjusting active
and reactive power that the WECS exchange with the power grid and achieve unity
power factor of the system (Nguyen et al. 2013).

On the other hand, to increase the annual energy yield of wind energy conversion
system (WECS), Maximum Power Point Tracking (MPPT) control is necessary at
below the rated wind velocity. The MPPT technique enables operation of the turbine
system at its maximum wind power coefficient over a wide range of wind veloc-
ities. Consequently, maximum power can be extracted from available wind power
by adjusting the rotational velocity of the PMSG according to the varying in wind
speed (Chen et al. 2013c; He et al. 2013; Elkhatib et al. 2014). In addition, it is vital
to control and limit the converted mechanical power during higher wind velocities
and when the turbine output is above the nominal power (Alizadeh et al. 2013; Melo
et al. 2014). The power limitation may be done either by pitch control, stall control,
or active stall (Polinder et al. 2007; Spruce et al. 2013). Figure 2 shows the general
control structure for modern WECS.
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With high penetration of wind power resources in the modern electric network, the
power quality from WECS is attracting great attention and interests all over the world
(Nguyen et al. 2013). The recent development has been focused mainly on control
methodologies for maximum electrical power production (Karthikeya et al. 2014).
Accordingly, various control methods have been proposed. Conventional design of
WECS control systems is based on Vector Control with d–q decoupling (Xin et al.
2013; Alepuz et al. 2013; Shariatpanah et al. 2013). The control strategy involves rel-
atively complex transformation of currents, voltages and control outputs. Also, the
standard design methods consist of properly tuned proportional integral (PI) con-
trollers. Thus, the performance highly relies on the modification of the PI parameters
(Chen et al. 2013a; Giraldo et al. 2013; Corradini et al. 2013). So, this technique
requires accurate information of WECS parameters. Consequently, the performance
is degraded when the actual system parameters differ from those values used in the
control system. In addition, VC requires complex reference transformation. Due to
the advantages of simple structure and low dependency on the parameters, direct
control techniques such as Direct Power Control (DPC) and Direct Torque Control
(DTC) were widely used into the WECS (Rajaei et al. 2013; Zhang et al. 2013;
Harrouz et al. 2013). They are an alternative to the VC control for WECS because
they reduce the complexity of the VC strategy and minimize the employ of genera-
tor parameters. The voltage vectors are selected directly according to the differences
between the reference and actual value of torque and stator flux or between active and
reactive power. Consequently, the converter switching states were selected from an
optimal switching table. Besides, DPC and DTC do not necessitate coordinate trans-
formations, specific modulations and current regulators. But, there are high ripples
in flux/torque or reactive/active powers at stable state and the switching frequency
is variable with operating point due to the employ of predefined switching table and
hysteresis regulator (Rajaei et al. 2013). Also, its performance deteriorates during
very low speed operation.

For WECS integration into power network and, because the VC and direct con-
trol techniques show a limited performances, especially against uncertainties and
cannot follow the changes in WECS parameters (Leonhard 1990), Sliding Mode
Control approach (SMC) can be used. It has low sensitivity with respect to uncer-
tainty, dynamic performance and good robustness (Slotine and Li 1991; Utkin 1993;
Utkin et al. 1999; Sabanovic et al. 2002; Evangelista et al. 2013a). It is one of the
powerful control approaches for systems with unknown trouble and uncertainties
(Li et al. 2013a, b). Besides, SMC is insensitive to parameter variations of systems.
Thus, SMC is suitable for wind power applications (Evangelista et al. 2013a, b; Huang
et al. 2013; Susperregui et al. 2013) propose sliding mode control to maximize the
energy production of a WECS. Subudhi et al. (2012), Xiao et al. (2013) propose a
pitch control based siding mode approach to control the extracted power above the
rated wind speed. Xiao et al. (2011), Martinez et al. (2013) introduce sliding mode
regulator to control the WECS for fault conditions. Chen et al. (2013), Bouaziz and
Bacha (2013), Guzman et al. (2013) present a sliding mode control methodology of
power converters.
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Among the main research subjects in the WECS field, there is the study of novel
control methodologies which can maintain MPPT despite the effects of the para-
meter variations of system, uncertainties in both the electrical and the aerodynamic
models and variations of wind speed. In this context, this chapter presents proposes
a nonlinear power control strategy for a grid connected VS-WECS topology based
on Permanent Magnet Synchronous Generator (PMSG). The schematic diagram of
proposed system is shown in Fig. 3. The system under consideration employs WECS
based PMSG with a back-to-back voltage source converter (VSC). The generator side
converter is employed to control the speed of the PMSG with MPPT. The grid-side
converter is used in order to control the DC link voltage and to regulate the power
factor during wind variations. This work explores a sliding mode control approach
to achieve power efficiency maximization of a WECS and to enhance system robust-
ness to parameter variations. Also, a pitch control scheme for WECS is proposed so
as to prevent wind turbine damage from excessive wind velocity.

The rest part of the study is organized as follows. In Sect. 2, the models of the
wind turbine system and the PMSG are developed. SMC strategy for WECS is
proposed, designed, and analyzed in Sect. 3. Section 4 presents the simulation results
to demonstrate the performance of the proposed SMC strategy. Finally, the conclusion
is made in Sect. 5.

2 Modelling Description of WECS

The block diagram of proposed WECS is shown in Fig. 3. So, it is seen that the
system consists of different components including: wind turbine, PMSG, voltage
source converter, and controllers. The wind turbine is used to capture the wind energy
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that is converted to the electricity by PMSG with variable frequency. Consequently,
the generated voltages are rectified by a rectifier and an inverter. The extracted power
will be transferred to the grid through a filter.

2.1 Wind Turbine

Wind turbine is used to convert the wind power to a mechanical power. The power
generated by a wind turbine can be written as Chen et al. (2013a):

PT urbine = 1

2
ρ ACP (λ, β)ν3 (1)

where, PT urbine is the mechanical power of the turbine in watts, ρis the air density
(typically 1.225 kg/m3), A is the area swept by the rotor blades (in m2), CP is the
power performance coefficient of the turbine, v is the wind velocity (in m/s), β is
the turbine blade pitch angle, and λ is the Tip Speed Ratio (TSR). Thus, if the air
density, swept area and wind speed are constants, the output aerodynamic power is
determined by the power performance coefficient of wind turbine system.

The wind turbine mechanical torque output Tm given as:

Tm = 1

2
ρ ACP (λ, β)ν3 1

ωm
(2)

In addition, CP is influenced by the tip-speed ratio λ which is defined as the ratio
between the rotor blade tip and the speed of the wind, and is given by Errami et al.
(2013):

λ = ωm R

v
(3)

where ωm and R are the rotor angular speed (in rad/sec) and the radius of the swept
area by turbine blades (in m), respectively. The computation of the power perfor-
mance coefficient CP requires the use of the information of blade geometry and blade
element theory. Consequently, these complex issues are usually empirical considered
and a generic equation is used so as to model the power performance coefficient
CP (λ, β) based on the modeling turbine system characteristics described in Errami
et al. (2013) as:

CP = 1

2
(
116

λi
− 0.4β − 5)e

−( 21
λi

)

1

λi
= 1

λ + 0.08β
− 0.035

β3 + 1
(4)

where β is the blade pitch angle (in degrees). CP is a nonlinear function of both
blade pitch angle (β) and the tip speed ratio (λ).
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The CP (λ, β) characteristics, for various values of the pitch angle β , are illus-
trated in Fig. 4. The maximum value of CP , that is CP max = 0.41, is achieved for
λopt = 8.1 and for β = 0. According to Fig. 4, there is one specific λ at which
the turbine is most efficient. This optimal value of CP occurs in different values of
λ. Consequently, if β is fixed, there is an optimal value λopt at which the turbine
system follows the CP max to capture the maximum power up to the rated velocity
by adjusting rotor speed. Besides, if wind speed is supposed constant, CP value will
be dependent on rotor velocity of the wind turbine. Accordingly, for a given wind
velocity, there is an optimal value for rotor velocity which maximizes the power
supplied by the wind. If the PMSG velocity can always be controlled to make the
turbine operate under optimum tip-speed-ratio λopt during wind velocity variations,
then the power coefficient reaches its maximum value CP max. That is equally saying,
the turbine system realizes Maximum Power Point Tracking (MPPT) function (Chen
et al. 2013c).

Then, for a given wind velocity the system can operate at the peak of the P(ωm)

curve and the maximum power is extracted continuously from the wind. Conse-
quently, the curve connecting the peaks of these curves will generate the maximum
output power and will follow the path for maximum power operation. That is illus-
trated in Fig. 5.

When the rotor velocity is adjusted to maintain its optimal value, the maximum
power can be gained as:

PT urbine = 1

2
ρACPmaxν

3 (5)



Sliding Mode Control of Scheme of Variable Speed Wind Energy … 175

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

6

Wind generator speed (rd/s)

P
ow

er
 (

W
)

Maximum power point

Vn
V4

V3

V2
V1

Fig. 5 Wind generator power curves at various wind speed

2.2 Mathematical Model of the PMSG

The PMSG dynamic model is given in a rotative frame (dq) where the d axis is aligned
with the rotor flux. So, the generator model in the d-q frame can be described by the
following equations. The electrical equations of the PMSG are shown in (6), (7)and
(8), the torque equation in (9) and the mechanical equation in (10) (Shariatpanah
et al. 2013).

vgq = Rgiq + ωeφd + d

dt
φq (6)

vgd = Rgid − ωeφq + d

dt
φd (7)

The quadratic and direct magnetic flux are given by:

φq = Lqiq

φd = Ldid + ψ f (8)

Te = 3

2
pn

[
ψ f iq + (

Ld − Lq
)

id iq
]

(9)

J
dωm

dt
= Te − Tm − Fωm (10)
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The electrical rotating speed of the PMSG, ωe is defined as:

ωe = pnωm (11)

where
vgq , vgd stator voltage in the dq frame;
iq , id stator current in the dq frame;
Lq , Ld inductances of the generator on the q and d axis;
Rg stator resistance;
ψ f permanent magnetic flux;
ωe electrical rotating speed of the PMSG;
pn machine pole pairs;
J total moment of inertia of the system (turbine-generator);
F viscous friction coefficient;
Tm mechanical torque developed by the turbine.

Thus,
diq

dt
= 1

Lq
(vgq − Rgiq − ωe Ldid − ωeψ f ) (12)

did

dt
= 1

Ld
(vgd − Rgid + ωe Lqiq) (13)

If the PMSG is assumed to have equal d-axis, q-axis in inductances (Lq = Ld = Ls),
the expression for the electromagnetic torque can be described as:

Te = 3

2
pn

[
ψ f iq

]
(14)

3 Control Strategy of the WECS

3.1 Adopted MPPT Control Algorithm

The reference velocity of the PMSG corresponding to the maximum power extractable
from the wind turbine system at a given wind speed is retrieved by the MPPT tech-
nique. This algorithm is operated when the wind speed is below the threshold. Then,
for each instantaneous wind velocity, the PMSG optimal rotational speed ωm−opt

can be computed on the basis of the following expression (Zhang et al. 2014):

ωm−opt = vλopt

R
(15)
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Each wind turbine can produce maximum power by (5). Therefore, the maximum
mechanical output power of the turbine system is given as follows:

PT urbine_ max = 1

2
ρ ACP max

(
Rωm−opt

λopt

)3

(16)

Accordingly, we can get the maximum power PT urbine_ max by regulating the turbine
velocity in different wind speed under rated power of the WECS. In addition, if the
speed of generator can always be controlled in order to make turbine system work
under optimum tip speed ratio λopt , regardless of the wind velocity, then the power
coefficient reaches its maximum value CP max (Kuschke et al. 2014). The PMPPT

curve is defined as function of ωm−opt , the speed referred to the generator side:

PMPPT = Kω3
m−opt (17)

K = 1

2
ρ ACP max

(
R

λopt

)3

(18)

K depends on the blade aerodynamics and wind turbine parameters. The MPPT
controller system computes this optimal speed ωm−opt and an optimum value of tip
speed ratio λopt can be maintained. Thus, maximum wind power of the turbine can be
captured. Depending on the wind velocity, the MPPT algorithm regulates the electric
output power, bringing the turbine system operating points onto the “maximum power
point,” like in Fig. 5 (Errami et al. 2013).

3.2 Pitch Angle Control System

At wind velocities below the rated power area, the wind turbine system regulator
maintains the power performance coefficient CP of the turbine at its maximum.
But, at higher wind velocities, the power coefficient decreases to limit the turbine
speed. So, most high power wind turbine systems are equipped with pitch control
to achieve power limitation, and where wind speed is low or medium, the pitch
angle is controlled to allow turbine system to operate at its optimum condition. On
the contrary for high wind speeds, the pitch control is active and it is designed to
prevent wind turbine system damage from excessive wind speed (Polinder et al.
2007). This means that, when the wind speed reaches the rated value, the pitch angle
controller enters in operation to decrease the performance coefficient of power. The
angle of blades β, will increase until the wind turbine system is at the rated velocity.
Figure 6 illustrates the schematic diagram of the implemented turbine blade pitch
angle controller. Pg is the generated power.
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3.3 Sliding Mode Control (SMC) and MPPT Algorithm
for Generator Side converter

The generator side converter controls the PMSG rotational speed to produce the max-
imum power extractable from the wind turbine system. Thus, the generator side three
phase converter is used as a rectifier and it is used to keep the PMSG velocity at an
optimal value obtained from the MPPT algorithm. This controller makes the WECS
working at highest efficiency. The proposed control strategy for the generator side
converter is based on SMC methodology. The adopted MPPT algorithm generates
ωm_opt , the reference speed. On the other hand, it is deduced from equations (10)
and (14) that the generator velocity can be controlled by regulating the q-axis stator
current component (iqr ).

According to the theory of SMC, the error of PMSG speed is selected as sliding
surface:

Sω = ωm_opt − ωm (19)

ωm_opt is generated by a MPPT controller.
Consequently:

d Sω

dt
= dωm_opt

dt
− dωm

dt
(20)

Using (10), the time derivative of Sω can be calculated as:

d Sω

dt
= dωm_opt

dt
− 1

J
(Te − Tm − Fωm) (21)

When the trajectory of PMSG speed coincides with the sliding surface (Evangelista
et al. 2013a),

Sω = d Sω

dt
= 0 (22)

In order to obtain commutation around the sliding surface, each component of the
control algorithm is proposed to be calculated as the addition of two terms (Evange-
lista et al. 2013b):
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uc = ueq + un (23)

where ueq is the equivalent control concept of a sliding surface. It is the continuous
control that allows the continuance of the state trajectory on the sliding surface. The
expression for the equivalent control term is obtained from the equation formed by
equalling to zero the first time derivative of Sω. As a result, during the sliding mode
and in permanent regime, ueq is calculated from the expression:

d Sω

dt
= 0 (24)

Although, un is used so as to guarantee the attractiveness of the variable to be con-
trolled towards the commutation sliding mode surface. So, it maintains the state on
the sliding surface in the presence of the parametric variations and external distur-
bances for all subsequent time. Also, the system state slides on the sliding surface
until it reaches the equilibrium point. Then it is restricted to the surface

un = kωsgn(Sω) (25)

where kω is a positive constant, which is the gain of the sliding mode regulator. un

keeps the system dynamic on the sliding surface Sω = 0 for all the time.
Moreover, SMC is a discontinuous control. So as to reduce the chattering, the

continuous function as exposed in (26) where sgn(Sω) is a sign function defined as
(Xiao et al. 2011):

sgn(Sω) =
⎧⎨
⎩

1 Sω � ε
Sω

ε
ε ≥ |Sω|

−1 −ε � Sω

(26)

where ε the width of the boundary layer. It is a small positive number and it should
be chosen attentively, otherwise the dynamic quality of the system will be reduced.

On the other hand, to ensure the PMSG speed convergence to the optimal velocity
and to reduce the copper loss by setting the d axis current to be zero, current refer-
ences are derived. Based on equations (10), (14), (19), (22), (23), (24) and (25), the
following equation for the system of speed can be obtained:

iqr = 2

3pnψ f
(Tm + J

dωm_opt

dt
+ Fωm + Jkωsgn(Sω)) (27)

where kω � 0.
idr = 0 (28)

In addition, from (21) the following equation can be deduced:
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Sω
d Sω

dt
= Sω

dωm_opt

dt
− Sω

J
(Te − Tm − Fωm)

= −kωSωsgn(Sω) + Sω

J
(Tm − 3

2
pnψ f iq + Fωm + Jkωsgn(Sω) + J

dωm_opt

dt
)

(29)

Then, to regulate the currents components id and iq to their references, it is necessary
to define the sliding surfaces, as follows:

Sd = idr − id (30)

Sq = iqr − iq (31)

Substituting (12) and (13) into above equations gives:

d Sd

dt
= didr

dt
− did

dt
= − 1

Ls
(vgd − Rgid + Lsωeiq) (32)

d Sq

dt
= diqr

dt
− diq

dt

= diqr

dt
− 1

Ls
(vgq − Rgiq − Lsωeid − ωeψ f ) (33)

when the sliding mode occurs on the sliding mode surfaces:

Sq = d Sq

dt
= 0 (34)

Sd = d Sd

dt
= 0 (35)

Consequently, the control voltages of q axis and d axis are defined by:

vqr = Rgiq + Lsωeid + ωeψ f + Ls
diqr

dt
+ Lskqsgn(Sq) (36)

vdr = Rgid − Lsωeiq + Lskdsgn(Sd) (37)

where kq � 0 and kd � 0.
In addition:

Sd
d Sd

dt
= Sd

[
− 1

Ls
(vgd − Rgid + Lsωeiq)

]

= −kd Sdsgn(Sd) + Sd

Ls

[−vgd + Rgid − Lsωeiq + Lskdsgn(Sd)
]

(38)
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Sq
d Sq

dt
= Sq

[
diqr

dt
− diq

dt

]

= −kq Sq sgn(Sq ) + Sq

Ls

[
Ls

diqr

dt
− vgq + Rgiq + Lsωeid + ωeψ f + Lskq sgn(Sq )

]

(39)

Theorem 1 If the dynamic sliding mode control laws are designed as (27), (28),
(36) and (37), therefore the global asymptotical stability is ensured.

Proof The proof of the theorem 1 will be carried out using the Lyapunov theory of
stability. To determine the required condition for the existence of the sliding mode,
it is fundamental to design the Lyapunov function. So, the Lyapunov function can
be chosen as (Evangelista et al. 2013b):

ϒ1 = 1

2
S2
ω + 1

2
S2

q + 1

2
S2

d (40)

From Lyapunov theory of stability, to ensure controller stability and convergence of
the state trajectory to the sliding mode, ϒ1 can be derived that (Huang et al. 2013),

dϒ1

dt
≺ 0 (41)

According to the definition of ϒ1, the time derivative of ϒ1 can be calculated as:

dϒ1

dt
= Sω

d Sω

dt
+ Sd

d Sd

dt
+ Sq

d Sq

dt
(42)

Using Equations (29), (38) and (39), we can rewrite (42) as:

dϒ1

dt
= −kωSωsgn(Sω) + Sω

J
(Tm − 3

2
pnψ f iq + Fωm + Jkωsgn(Sω) + J

dωm_opt

dt
)

− kd Sd sgn(Sd ) + Sd

Ls

[−vgd + Rgid − Lsωeiq + Lskd sgn(Sd )
]

− kq Sq sgn(Sq ) + Sq

Ls

[
Ls

diqr

dt
− vgq + Rgiq + Lsωeid + ωeψ f + Lskq sgn(Sq )

]

(43)

Substituting (27), (36) and (37) into above equation gives:

dϒ1

dt
= −kωSωsgn(Sω) − kd Sdsgn(Sd) − kq Sqsgn(Sq) (44)

As a result:
dϒ1

dt
= −kω |Sω| − kd |Sd | − kq

∣∣Sq
∣∣ ≺ 0 (45)
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Accordingly, the global asymptotical stability is ensured and the velocity control
tracking is achieved.

Finally, PWM is used to generate the control signal to implement the SMC for
the PMSG. The double closed-loop control diagram for generator side converter is
shown as Fig. 7.

3.4 Grid Side Controller Methodology with SMC

The grid side converter (GSC) works as an inverter. The main function of the GSC is
to keep constant dc bus voltage, regulates the reactive and active power flowing into
the grid and to provide grid synchronization. So, it can regulate the grid side power
factor during wind variation. Besides, there are many strategies used to control GSC
(Yaramasu et al. 2013; Blaabjerg et al. 2013; Ma et al. 2013). In this study, Pulse Width
Modulation (PWM) associated with SMC is used in order to control the converter.
Double-loop structure is used: the inner control loops regulates q-axis current and
d-axis current, but outer voltage loop regulates the dc-link voltage via controlling
the output power. The schematic diagram of the GSC based on the proposed control
strategy is shown by Fig. 7.

The voltage balance across the inductor L f and R f is given by:

⎡
⎣ ea

eb

ec

⎤
⎦ = R f

⎡
⎣ ia

ib

ic

⎤
⎦ + L f

d

dt

⎡
⎣ ia

ib

ic

⎤
⎦ +

⎡
⎣ va

vb

vc

⎤
⎦ (46)
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where
ea, eb, ec voltages at the inverter system output;
va, vb, vc grid voltage components;
ia, ib, ic line currents;
L f filter inductance;
R f filter resistance.

Transferring equation (46) in the rotating dq reference frame gives:

did− f

dt
= 1

L f
(ed − R f id− f + ωL f iq− f − vd) (47)

diq− f

dt
= 1

L f
(eq − R f iq− f − ωL f id− f − vq) (48)

where
ed , eq inverter d-axis and q-axis voltage components;
vd , vq grid voltage components in the d-axis and q-axis;
id− f , iq− f d-axis current and q-axis current of grid.
ω network angular frequency

The network angular frequency is computed by a Phase Locked Loop (PLL).
The instantaneous powers are given by:

P = 3

2
(vdid− f + vqiq− f ) (49)

Q = 3

2
(vdiq− f − vqid− f ) (50)

Thus, the DC-link system equation can be given by:

C
dUdc

dt
= 3

2
(

vd

Udc
id− f + vq

Udc
iq− f ) − idc (51)

where
Udc dc-link voltage;
idc grid side transmission line current;
C dc-link capacitor.

If the grid voltage space vector
→
u is oriented on d-axis, then:

vd = V and vq = 0 (52)

Therefore, using Eq. (52), we can rewrite Eqs. (47–48) as:
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L f
did− f

dt
= ed − R f id− f + ωL f iq− f − V (53)

L f
diq− f

dt
= eq − R f iq− f − ωL f id− f (54)

Also, the active power and reactive power can be expressed as:

P = 3

2
V id− f (55)

Q = 3

2
V iq− f (56)

As a result, reactive and active power control can be achieved by controlling quadra-
ture and direct grid current components, respectively. So, the q-axis current reference
is set to zero for unity power factor, but the d-axis current is determined by dc-bus
voltage controller to control the converter output active power. The GSC controller is
implemented based on the electric network current d-q components, as it is depicted
in Fig. 7. The control method consists of a two closed loop controls to regulate the
reactive power and the dc link voltage independently. Then, the fast dynamic is asso-
ciated with the line current control, in the inner loop, where the SMC is adopted to
track the line current control. Moreover, in the outer loop, slow dynamic is associated
with the dc-bus control. The outer control loop uses the Proportional Integral (PI)
controller to generate the reference source current idr− f and regulate the DC voltage,
although the reference signal of the q-axis current iqr− f is produced by the reactive
power Qr according to (56).

We adopt the following surfaces for id− f and iq− f :

Sd− f = idr− f − id− f (57)

Sq− f = iqr− f − iq− f (58)

where idr− f and iqr− f are the desired value of d-axis current and q-axis current,
respectively. Also, idr− f is produced by the loop of DC-bus control and the reference
signal of the q-axis current iqr− f , is directly given from the second loop outside of
the controller and it sets to zero to reach unity power factor control.

Using equations (53) and (54), the time derivatives of Sd− f and Sq− f can be
calculated as:

d Sd− f

dt
= didr− f

dt
− did− f

dt
= didr− f

dt
− 1

L f
(ed − R f id− f +ωL f iq− f −V ) (59)

d Sq− f

dt
= diqr− f

dt
− diq− f

dt
= diqr− f

dt
− 1

L f
(eq − R f iq− f − ωL f id− f ) (60)
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when the sliding mode takes place on the sliding mode surface, then:

Sd− f = d Sd− f

dt
= 0 (61)

Sq− f = d Sq− f

dt
= 0 (62)

Combining (53), (54) and (57)–(62) the controls voltage of d axis and q axis are
defined by:

vdr− f = L f
didr− f

dt
+ R f id− f − L f ωiq− f + V + L f kd− f sgn(Sd− f ) (63)

vqr− f = R f iq− f + L f ωid− f + L f kq− f sgn(Sq− f ) (64)

where kd− f � 0 and kq− f � 0.
Besides, from (59) and (60), the following equations can be deduced:

Sd− f
d Sd− f

dt
= Sd− f

[
didr− f

dt
− 1

L f
(ed − R f id− f + L f ωiq− f − V )

]

= −kd− f Sd− f sgn(Sd− f )

+ Sd− f

L f

[
L f

didr− f

dt
− ed + R f id− f − L f ωiq− f + V + kd− f L f sgn(Sd− f )

]

(65)

Sq− f
d Sq− f

dt
= Sq− f

[
−diq− f

dt

]

= −kq− f Sq− f sgn(Sq− f )

+ Sq− f

L f

[−eq + R f iq− f + L f ωid− f + kq− f L f sgn(Sq− f )
]

(66)

Theorem 2 If the Dynamic sliding mode control laws are designed as (63) and (64)
therefore the global asymptotical stability is ensured.

Proof The proof of the Theorem 2 will be carried out using the Lyapunov theory of
stability. To determine the required condition for the existence of the sliding mode,
it is fundamental to design the Lyapunov function. So, the Lyapunov function can
be chosen as:

ϒ2 = 1

2
S2

d− f + 1

2
S2

q− f (67)

From Lyapunov theory of stability, to ensure controller stability and convergence of
the state trajectory to the sliding mode,ϒ2 can be derived that,
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dϒ2

dt
≺ 0 (68)

By differentiating the Lyapunov function (67), we obtain:

dϒ2

dt
= Sd− f

d Sd− f

dt
+ Sq− f

d Sq− f

dt
(69)

Based on equations (65) and (66), it can be obtained:

dϒ2

dt
= −kd− f Sd− f sgn(Sd− f )

+ Sd− f

L f

[
L f

didr− f

dt
− ed + R f id− f − L f ωiq− f + V + kd− f L f sgn(Sd− f )

]

− kq− f Sq− f sgn(Sq− f ) + Sq− f

L f

[−eq + R f iq− f + L f ωid− f + kq− f L f sgn(Sq− f )
]

(70)

Substituting (63) and (64) into above equation gives:

dϒ2

dt
= −kd− f Sd− f sgn(Sd− f ) − kq− f Sq− f sgn(Sq− f ) (71)

Therefore:
dϒ2

dt
= −kd− f

∣∣Sd− f
∣∣ − kq− f

∣∣Sq− f
∣∣ ≺ 0 (72)

As a result, the asymptotic stability in the current loop is guaranteed and the dc-bus
voltage control tracking is achieved. Finally, PWM is used to produce the control
signal. The structure of the dc-link voltage and current controllers for grid-side
converter, for the WECS, is illustrated in Fig. 7.

4 Simulation Result Analysis

This paragraph presents the simulated responses of the WECS under varying wind
conditions. In this example simulation, Matlab/Simulink simulations were carried
out for a 2 MW PMSG variable speed wind energy conversion system to verify
the feasibility of the proposed method. The parameters of the system are given in
the Tables 1 and 2. Besides, during the simulation, for the PMSG side converter
control, the d axis command current component, idr , is set to zero; while, for the
grid side inverter system, Qref , is set to zero. On the other hand, the DC link voltage
reference and the grid frequency value are Udc−r =1500 V and 50 Hz, respectively.
The topology of the studied WECS based on PMSG connected electric network is
depicted in Fig. 7. The grid voltage phase lock loop (PLL) system is implemented
to track the fundamental phase and frequency. On the other hand, this paragraph is
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divided into two parts, that is, Sect. 4.1 demonstrates the satisfactory performance
of the WECS under varying wind conditions, while Sect. 4.2 reflects the robustness
of both the rectifier and inverter control systems against electrical and mechanical
parameter deviations.

4.1 WECS Characteristics with SMC Approach

The WECS response under SMC strategy is illustrated by Figs. 8, 9, 10 and 11.
Figures 8 and 9 show, respectively, the wind speed profile, the simulation results
of pitch angle, coefficients of power conversion C p, tip speed ratio, rotor angular
velocity of the PMSG and total power generated of WECS. The rated wind speed
considered in the simulation is vn =12.4 m/s. Then, it can be seen, that when the
wind velocity increases, the rotor angular speed increases proportionally too with a
limitation, the power coefficient will drop to maintain the rated output power. Then,
at the wind velocities less than the rated rotor velocity, the pitch angle is fixed at 0◦
and the power performance coefficient of the turbine is fixed at its maximum value,
around 0.41. The speed of PMSG is controlled in order to make the turbine system
operates under its optimum tip speed ratio λopt = 8.1, regardless of the wind speed.
So, the PMSG velocity is regulated at an optimal value obtained from the MPPT
algorithm. Thus, this control makes the wind turbine working at highest efficiency.
On the contrary, for high wind speeds and if ν is greater than the rated velocity νn ,
the operation of the pitch angle control is actuated and the pitch angle β is increased.
Then, the pitch control is used to maintain the PMSG power at rated power and it is
designed to prevent damage from excessive wind velocity. So, the power performance
coefficient of the turbine decreases to limit the rotor speed. Consequently, extracted
power is optimized with MPPT algorithm and keeps at his nominal value when the
wind speed exceeds the nominal value. Figure 9c shows the power extracted. As can
be seen, if the wind velocity is up the rated wind speed, the power extracted reaches
its maximum level. Figure 9b illustrates the waveforms of the mechanical velocity
of the PMSG tracks the optimum velocity obtained from MPPT algorithm so as to
guarantee the maximum power conversion at the optimal tip speed ratio. Then, it
is clearly shown that the PMSG speed tracks the reference velocity closely. As the
WECS successfully operates with MPPT (λ = λopt ), the primary control objective
is adequately attained, and the PMSG power finely follows the maximum value.
Figure 10a depicts the simulation result of reactive power. As can be seen, the WECS
supplies grid system with a purely active power. The fulfilment of the second control
objective can be appreciated in Fig. 10b, where the WECS dc link voltage and the
external referenceUdc−r are depicted together. The dc link voltage is regulated toward
its reference of 1,500 V. This proves the effectiveness of the established controller
systems. Figure 11 illustrates the variation and a closer observation of three phase
current and voltage of grid. Besides, the frequency is controlled and maintained at
50 Hz through a Phase Lock Loop (PLL) process. It is obvious that the grid voltage
is in phase with the current since the reference of reactive current is set to zero. So,
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Fig. 8 Waveforms of WECS characteristics with SMC(Part 1). a Instantaneous wind speeds (m/s).
b Pitch angles β (in degree). c Coefficients of power conversion C p

unity power factor of wind energy conversion system is achieved approximatively
and is independent of the variation of the wind velocity but only on the reactive
power reference (Qref ). Consequently, the simulation results demonstrate that the
SMC strategy shows very good dynamic and steady state performance and works
very well.
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Fig. 9 Waveforms of WECS characteristics with SMC(Part 2). a Tip speed ratio. b Speed of PMSG
(rd/s). c Power generated (W)

4.2 Robustness of the SMC Controller Under Electric
and Mechanic Parameter Variations of WECS

In order to prove the robustness of the proposed controllers, model uncertainties were
included considering the parametric uncertainties. Besides, these variations were also
used in a percentage scale that takes the respective nominal values as references. An
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Fig. 10 Waveforms of WECS characteristics with SMC(part 3). a Total reactive power (VAR).
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increase was considered in the stator resistor, the magnetising inductance and the
total moment of inertia of the system values. So, the robustness in face of parame-
ter variations was tested for the cases when the parameter that used in Sect. 4.1 is
perturbed 50 % from its nominal value. Moreover, in order to establish a basis for
performance comparisons, we also implemented a traditional linear control scheme
based on Proportional Integral (PI) control scheme. The results are compared in
Figs. 12, 13, 14 and 15. With the similar control parameter values and grid voltage
condition as used in Sect. 4.1, superscripts ‘A’ and ‘B’ in Figs. 12 and 13 refer to
present section (affected by parameter variations) and to waveforms corresponding
to Sect. 4.1 (with nominal parameters), respectively. Figure 12 shows the compari-
son of the generator speed between the SMC method and PI strategy. In Fig. 13, the
curves describe the test of sensitivity in face of parameter deviations for the coef-
ficient of power. The responses of both control strategies shown in Figs. 14 and 15
verify the parametric robustness of the proposed scheme for the dc link voltage. As it
is shown in the simulation result, the SMC strategy gives lower overshoot and faster
response. The result indicates that the SMC control has faster velocity response and
shorter settling time. Furthermore, it can be concluded that the proposed nonlinear
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Fig. 11 The waveforms of three phase current and voltage of GRID

sliding mode control is rather robust against parameter variations than its PI coun-
terpart. Consequently, the robustness of proposed SMC to the parameter deviations
is convincingly verified.
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5 Conclusion

This chapter deals with a control strategy of the variable speed wind energy conver-
sion system based on the PMSG and connected to the power network. A structure
of back to back PWM is presented. The Sliding Mode Control approach (SMC) is
used to implement the Maximum Power Point Tracking, DC link voltage regulation
and unity power factor control under varying wind conditions. The employed con-
trol strategy can regulate both the total reactive and active power independently. The
detailed derivation for the control laws has been provided and the conditions for the
existence of the sliding mode are found by applying Lyapunov stability theory. The
WECS robustness and performances under the studied control strategy are discussed.
The robustness in the presence of parametric uncertainties was tested for the cases
when the parameters are perturbed 50 % from its nominal value. A comparison of
simulation results based on SMC and PI controller is provided, where the proposed
nonlinear sliding mode control is rather robust against parameter variations than its
PI counterpart. Besides the SMC strategy gives lower overshoot and faster response.
The simulation results show the effectiveness of the proposed sliding mode control.

Appendix

Table 1 Parameters of the power synchronous generator

Parameter Value

Pr rated power 2 (MW)

ωm rated mechanical speed 2.57 (rd/s)

Rstator resistance 0.008 (�)

Ls stator d-axis inductance 0.0003 (H)

ψ f permanent magnet flux 3.86 (wb)

pn pole pairs 60

Table 2 Parameters of the turbine

Parameter Value

ρ the air density 1.08 kg/m3

A area swept by blades 4775.94 m2

vn base wind speed 12.4 m/s



Sliding Mode Control of Scheme of Variable Speed Wind Energy … 197

References

Alepuz, S., Calle, A., Busquets-Monge, S., Kouro, S.: Use of stored energy in PMSG rotor inertia
for low-voltage ride-through in back-to-back npc converter-based wind power systems. IEEE
Trans. Indus. Electr. 60(5), 1787–1796 (2013)

Alizadeh, O., Yazdani, A.: A strategy for real power control in a direct-drive PMSG-based wind
energy conversion system. IEEE Trans. Power Delivery 28(3), 1297–1305 (2013)

Alshibani, S., Agelidis, V.G., Dutta, R.: Lifetime cost assessment of permanent magnet synchronous
generators for MW level wind turbines. IEEE Trans. Sustain. Energy 5(1), 10–17 (2014)

Blaabjerg, F., Ma, K.: Future on power electronics for wind turbine systems. IEEE J. Emerg. Sel.
Topics Power Electr. 1(3), 139–152 (2013)

Bouaziz, B., Bacha, F.: Direct power control of grid-connected converters using sliding mode con-
troller. In: IEEE International Conference on Electrical Engineering and Software Applications
(ICEESA), pp. 1–6 (2013)

Cárdenas, R., Peña, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of
DFIGs in wind energy applications. IEEE Trans. Ind. Electr. 60(7), 2776–2798 (2013)

Cespedes, M., Sun, J.: Impedance modeling and analysis of grid-connected voltage-source convert-
ers. IEEE Trans. Power Electr. 29(3), 1254–1261 (2014)

Che, H., Levi, Emil, Jones, Martin, Duran, Mario J., Hew, Wooi-Ping, Abd, Nasrudin, Rahim, :
Operation of a Six-Phase Induction Machine Using Series-Connected Machine-Side Converters.
IEEE Transactions On Industrial Electronics 61(1), 164–176 (2014)

Chen, B., Ong, F., Minghao, Z.: Terminal sliding-mode control scheme for grid-side PWM converter
of DFIG-based wind power system. In: IEEE Conference of the Industrial Electronics Society
(IECON), pp. 8014–8018 (2013)

Chen, H., David, N., Aliprantis, D.C.: Analysis of permanent-magnet synchronous generator with
vienna rectifier for wind energy conversion system. IEEE Trans. Sustain. Energy 4(1), 154–163
(2013)

Chen, J., Jie, C., Chunying, G.: New overall power control strategy for variable-speed fixed-pitch
wind turbines within the whole wind velocity range. In: IEEE Transactions On Industrial Elec-
tronics, Vol. 60, No. 7, pp. 2652–2660 (2013a)

Chen, J., Jie, C., Chunying, G.: On optimizing the aerodynamic load acting on the turbine shaft of
PMSG-based direct-drive wind energy conversion system. In: IEEE Transactions on Industrial
Electronics, vol 99 (2013b)

Chen, J., Jie, C.M., Chunying, G.: On optimizing the transient load of variable-speed wind energy
conversion system during the MPP tracking process. In: IEEE Transactions On Industrial Elec-
tronics, Vol. 99, pp. 1–9 (2013c)

Cheng, K.W.E., Lin J.K., Bao, Y.J., Xue, X.D.: ReView of the wind energy generating system. In:
International Conference on Advances in Power System Control, Operation and Management
(APSCOM 2009), pp. 1–7, (2009)

Chou, S., Chia-Tse, L., Hsin-Cheng, K., Po-Tai, C.: A low-voltage ride-through method with trans-
former flux compensation capability of renewable power grid-side converters. In: IEEE Transac-
tions On Power Electronics, Vol. 29, No. 4, pp. 1710–1719 (2014)

Corradini, M.L., Ippoliti, G., Orlando, G.: Robust control of variable-speed wind turbines based on
an aerodynamic torque observer. IEEE Trans. Control Syst. Technol. 21(4), 1199–1206 (2013)

Elkhatib, K., Aitouche, A., Ghorbani, R., Bayart, M.: Fuzzy Scheduler fault-tolerant control for
wind energy conversion systems. IEEE Trans. Control Syst. Technol. 22(1), 119–131 (2014)

Errami, Y., Ouassaid, M., Maaroufi, M.: A MPPT vector control of electric network connected
wind energy conversion system employing PM synchronous generator. In: IEEE International
Renewable and Sustainable Energy Conference (IRSEC), pp. 228–233 (2013)

Evangelista, C., Fernando, V., Paul, P.: Active and reactive power control for wind turbine based
on a MIMO 2-sliding mode algorithm with variable gains. In: IEEE Transactions On Energy
Conversion, Vol. 28, No. 3, pp. 682–689 (2013b)



198 Y. Errami et al.

Evangelista, C., Puleston, P., Valenciaga, F., Fridman, L.M.: Lyapunov-designed super-twisting
sliding mode control for wind energy conversion optimization. IEEE Trans. Indust. Electr. 60(2),
538–545 (2013)

Giraldo, E., Garces, A.: An Adaptive control strategy for a wind energy conversion system based
on PWM-CSC and PMSG. IEEE Trans. Power Syst. textbf99, 1–8 (2013)

Guo, X., Zhang, X., Wang, B., Guerrero, J.M.: Asymmetrical grid fault ride-through strategy of
three-phase grid-connected inverter considering network impedance impact in low-voltage grid.
IEEE Trans. Power Electr. 29(3), 1064–1068 (2014)

Guzman, R., de Luís G., Vicuña, Antonio, C., José, M., Miguel, C., Jaume, M.: Active damping
control for a three phase grid- connected inverter using sliding mode control. In: IEEE Conference
of the Industrial Electronics Society (IECON), pp. 382 (2013)–387.

Harrouz, A., Benatiallah, A., Moulay Ali, A., Harrouz, O.: Control of machine PMSG dedicated to
the conversion of wind power off-grid. In: IEEE International Conference on Power Engineering,
Energy and Electrical Drives Istanbul, pp. 1729–1733 (2013)

He, J., Li, Y.W., Blaabjerg, F., Wang, X.: Active harmonic filtering using current-controlled, grid-
connected dg units with closed-loop power contro. IEEE Trans. Power Electr. 29(2), 642–653
(2014)

He, L., Li, Y., Harley, R.G.: Adaptive multi-mode power control of a direct-drive PM wind generation
system in a microgrid. IEEE J. Emerg. Sel. Topics Power Electr. 1(4), 217–225 (2013)

Huang, N., He, J., Nabeel, A., Demerdash, O.: Sliding Mode observer based position self-sensing
control of a direct-drive PMSG wind turbine system fed by NPC converters. In: IEEE International
Electric Machines Drives Conference (IEMDC), pp. 919–925 (2013)

Karthikeya, B.R., Schütt, R.J.: Overview of wind park control strategies. IEEE Trans. Sustain.
Energy 99, 1–7 (2014)

Kuschke, M., Strunz, K.: Energy-efficient dynamic drive control for wind power conversion with
PMSG: modeling and application of transfer function analysis. IEEE J. Emerg. Sel. Top. Power
Electron. 2(1), 35–46 (2014)

Leonhard, W.: Control of Electric Drives. Springer, London (1990)
Li, R., Dianguo, X.: Parallel operation of full power converters in permanent-magnet direct-drive

wind power generation system. IEEE Trans. Industr. Electron. 60(4), 1619–1629 (2013)
Li, S., Du, H., Yu, X.: Discrete-time terminal sliding mode control systems based on Euler’s dis-

cretization. IEEE Trans. Autom. Control, 99 (2013a)
Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for

PMSM speed regulation system. IEEE Trans. Indust. Inform. 9(4) 1879–1891 (2013b)
Li, S., Haskew, T.A., Swatloski, R.P., Gathings, W.: Optimal and direct-current vector control of

direct-driven PMSG wind turbines. IEEE Trans. Power Electr. 27(5), 2325–2337 (2012)
Ma, K., Blaabjerg, F.: Modulation methods for neutral-point-clamped wind power converter achiev-

ing loss and thermal redistribution under low-voltage ride-through. IEEE Trans. Indus. Electr.
61(2), 835–845 (2014)

Ma, K., Marco, L., Frede, B.: Comparison of multi-MW converters considering the determining
factors in wind power application. IEEE Energy Conversion Congress and Exposition (ECCE),
pp. 4754–4761 (2013)

Martinez, M.I., Susperregui, A., Tapia, G.: Sliding-mode control of a wind turbine-driven double-
fed induction generator under non-ideal grid voltages. IET Renew. Power Gener. 7(4), 370–379
(2013)

Melo, D.F.R., Chang-Chien, L.-R.: Synergistic control between hydrogen storage system and off-
shore wind farm for grid operation. IEEE Trans. Sustain. Energy 5(1), 18–27 (2014)

Meng, W., Yang, Q., Ying, Y., Sun, Y., Yang, Z., Sun, Y.: Adaptive power capture control of variable-
speed wind energy conversion systems with guaranteed transient and steady-state performance.
IEEE Trans. Energy Convers, 28(3), 716–725 (2013)

Najafi, P., Rajaei, A., Mohamadian, M., Varjani, A.Y.: Vienna rectifier and B4 inverter as PM WECS
grid interface. In: IEEE Conference on Electrical Engineering (ICEE), pp. 1–5 (2013)



Sliding Mode Control of Scheme of Variable Speed Wind Energy … 199

Nguyen, T.H., Lee, D.-C., Kim, C.-K.: A series-connected topology of a diode rectifier and a
voltage-source converter for an HVDC transmission system. IEEE Trans. Power Electron. 29(4),
1579–1584 (2014)

Nguyen, T., Lee, D.-C.: Advanced fault ride-through technique for PMSG wind turbine systems
using line-side converter as STATCOM. IEEE Trans. Indust. Electr. 60(7), 2842–2850 (2013)

Nian, H., Song, Y.: Direct power control of doubly fed induction generator under distorted grid
voltage. IEEE Trans. Power Electr. 29(2), 894–905 (2014)

Nuno, M.A.F., Marques, António J.C.: A Fault-tolerant direct controlled PMSG drive for wind
energy conversion systems. IEEE Trans. Indust. Electr. 61(2), 821–834 (2014)

Orlando, N.A., Liserre, M., Mastromauro, R.A., Dell’Aquila, A.: A survey of control issues in
PMSG-based small wind-turbine systems. IEEE Trans. Indust. Inf. 9(3), 1211–1221 (2013)

Patil, N.S., Bhosle, Y.N.: A review on wind turbine generator topologies. In: IEEE International
Conference on Power, Energy and Control (ICPEC), pp. 625–629 (2013)

Polinder, H., Bang, D., R.P.J.O.M., van Rooij, McDonald, A.S., Mueller, M.A.: 10 MW wind
turbine direct-drive generator design with pitch or active speed stall control. In: IEEE International
Conference On Electric Machines & Drives(IEMDC’07), Vol. 2, pp. 1390–1395 (2007)

Rajaei, A.H., Mohamadian, M., Varjani, A.Y.: Vienna-rectifier-based direct torque control of PMSG
for wind energy application. IEEE Trans. Indust. Electr. 60(7), 2919–2929 (2013)

Sabanovic, K.J., Sabanovic, N.: Sliding modes applications in power electronics and electrical
drives in Variable Structure Systems. Towards the 21st Century, vol. 274. Springer, New York,
pp. 223–251. (2002)

Shariatpanah, H., Fadaeinedjad, R., Rashidinejad, M.: A new model for PMSG-based wind turbine
with yaw control. IEEE Trans. Energy Convers. 28(4), 929–937 (2013)

She, X., Huang, A.Q., Wang, F., Burgos, R.: Wind energy system with integrated functions of active
power transfer, reactive power compensation, and voltage conversion. IEEE Trans. Indust. Electr.
60(10), 4512–4524 (2013)

Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)
Spruce, C.J., Judith, K.T.: Tower vibration control of active stall wind turbines. IEEE Trans. Control

Syst. Technol. 21(4), 1049–1066 (2013)
Subudhi, B., Pedda, S.O.: Sliding Mode Approach to Torque and Pitch Control for a Wind Energy

System. IEEE India Conference (INDICON), pp. 244–250 (2012)
Susperregui, A., Martinez, M.I., Tapia, G., Vechiu, I.: Second-order sliding-mode controller design

and tuning for grid synchronisation and power control of a wind turbine-driven doubly fed induc-
tion generator. IET Renew. Power Gener. 7(5), 540–551 (2013)

Li, T., Zou, X., Shushuai F., Yu., C., Yong, K., Huang, Q., Huang, Y.: SRF-PLL-Based Sensor-
less Vector Control Using Predictive Dead-beat Algorithm for Direct Driven Permanent Magnet
Synchronous Generator (PMSG), p. 99. IEEE Trans. Power Electron. (2013)

Tseng, K., Huang, C.-C.: High step-up high-efficiency interleaved converter with voltage multiplier
module for renewable energy system. IEEE Trans. Indust. Electr. 61(3), 1311–1319 (2014)

Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press,
Boca Raton, FL, USA (1999)

Utkin, V.I.: Sliding mode control design principles and applications to electrical drives. IEEE Trans.
Indust. Electr. 40(1), 23–36 (1993)

Vazquez, S., Sanchez, J.A., Reyes, M.R., Leon, J.I., Carrasco, J.M.: Adaptive vectorial filter for
grid synchronization of power converters under unbalanced and/or distorted grid conditions. IEEE
Trans. Indust. Electr. 61(3), 1355–1367 (2014)

Wang, L., Thi, M.S.-N.: Stability enhancement of large-scale integration of wind, solar, and marine-
current power generation fed to an SG-based power system through an LCC-HVDC link. IEEE
Trans. Sustain. Energy 5(1), 160–170 (2014)

Xia, C., Wang, Z., Shi, T., Song, Z.: A novel cascaded boost chopper for the wind energy conversion
system based on the permanent magnet synchronous generator. IEEE Trans. Energy Convers.
28(3), 512–522 (2013)



200 Y. Errami et al.

Xiao, L., Shoudao, H., Lei, Z., Xu, Q., Huang, K.: Sliding mode SVM-DPC for grid-side converter
of D-PMSG under asymmetrical faults. In: IEEE International Conference on Electrical Machines
and Systems (ICEMS), pp. 1–6 (2011)

Xiao, S., Geng, Y., Hua, G.:Individual pitch control design of wind turbines for load reduction using
sliding mode method. In: IEEE International Energy Conversion Congress and Exhibition ECCE
Asia Downunder (ECCE Asia), pp. 227–232 (2013)

Xin, W., Cao, M., Li, Q., Chai, L., Qin, B.: Control of direct-drive permanent-magnet wind power
system grid-connected using back-to-back PWM converter. In: IEEE International Conference
on Intelligent System Design and Engineering Applications, pp. 478–481 (2013)

Yaramasu, V., Bin, W.: Predictive Control of Three-Level Boost Converter and NPC Inverter for High
Power PMSG-Based Medium Voltage Wind Energy Conversion Systems. In: IEEE Transactions
on Power Electronics, p. 99 (2013)

Yaramasu, V., Wu, B., Rivera, M., Rodriguez, J.: A new power conversion system for megawatt
PMSG wind turbines using four-level converters and a simple control scheme based on two-step
model predictive strategy—Part II: simulation and experimental analysis. IEEE J. Emerg. Select.
Topics Power Electr. pp. 99 (2013)

Zhang, Y., Hu, J., Zhu, J.: Three vectors based predictive direct power control of doubly fed induction
generator for wind energy applications. In: IEEE Transactions on Power Electronics pp. 99 (2013)

Zhang, Z., Zhao, V., Wei, Q., Qu, L.: A Discrete-Time direct-torque and flux control for direct-drive
PMSG wind turbines. In: IEEE Industry Applications Society Annual Meeting, pp. 1–8 (2013)

Zhang, Z., Zhao, Y., Qiao, W., Qu, L.: A space-vector modulated sensorless direct-torque control for
direct-drive PMSG wind turbines. In: IEEE Transactions on Industry Applications, p. 99 (2014)



Super-Twisting Air/Fuel Ratio Control for Spark
Ignition Engines

Jorge Rivera, Javier Espinoza-Jurado and Alexander Loukianov

Abstract In this work, a model-based controller for the air to fuel ratio (represented
by λ) is designed for spark ignition (SI) engines in order to rise the fuel consumption
efficiency and to reduce the emission of pollutant gases to the atmosphere. The pro-
posed control method is based on an isothermal mean value engine model (MVEM)
developed by Elbert Hendricks and in the super-twisting sliding mode control algo-
rithm that results to be robust to matched perturbations and alleviates the chattering
problem. The dynamics for λ depends on the time derivative of the control input,
i.e., the injected fuel mass flow (ṁ f i ). This term is estimated by means of the well-
known robust sliding mode differentiator which is feedback to the control algorithm.
To solve the time-delay measurement problem (due to combustion process and the
transportation of gases) at the Universal Exhaust Gas Oxygen (UEGO) sensor, the
delay represented with an exponential function in the frequency domain is approx-
imated by means of a Padé method which yields to a transfer function. Then, this
transfer function is taken to a state space representation in order to design an observer
based on the super-twisting sliding mode algorithm, where the real λ factor is finally
determined by the equivalent control method and used for feedback. Digital simu-
lations were carried on, where the proposed control scheme is simulated with two
observers based on a second and third order Padé approximations. Also, the proposed
controller is simulated without an observer, where λ is directly taken from the UEGO
sensor. Simulations predict a better output behavior in the case of a controller based
observer design, and in particular, the observer based on the third order approxi-
mation provides the best results. Therefore, the controller based on the third order
observer is chosen for parametric uncertainties and noise measurement simulation,
where the air to fuel ratio still performs well.
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1 Introduction

One of the main control challenges for SI engines is the preservation of the stoi-
chiometric value (14.67 for gasoline fuel) in the air to fuel (AFR) mixture, in order
to keep an efficient fuel management, good output torque, and a more complete
combustion (Pulkrabek 2004). Modern SI engines are equipped with electronic fuel
injection (EFI) systems, making them more efficient than mechanical options (car-
buretors and mechanical fuel injection systems) that facilitates the implementation
of modern control algorithms (Guzzella and Onder 2010). The measurement of the
AFR in the EFI systems is made by an UEGO sensor that measures the λ factor (that
is equal to 1 when the engine is running into a stoichiometric value) in the cylinder
by measuring the present oxygen at the exhaust gases.

Currently, there exist many works for the AFR control, in which different types
of mathematical models for the SI engine are implemented. The models ranging
from simple, as those presented in Yildiz et al. (2008) and Muske (2006) where
linearized models are used, reducing the complexity of the system by neglecting some
dynamics in the process; to more complex models like the one used in Benvenuti
and Benedetto (2003) where all the cylinders are modeled in an individual fashion,
adding difficulty when comes to design a controller. There are other works like
(Bastian 1994) where look-up tables containing the amount of air for a given engine
speed and inlet manifold pressure in order to inject the exact quantity of fuel. The
problem is that the look-up tables must be updated when engine is modified.

In this work, an isothermal mean value engine model (MVEM) developed by
Hendricks (1990, 1992, 1996, 2000, 2001) is considered for the AFR control. This
model is an intermediate option to the above mentioned models. It is well know that
MVEM is a control oriented model, that neglects discrete cycles of the engine and
assumes that all processes and effects are spread out over the engine cycle.

The main control problems to solve for the AFR are the rejection to internal and
external perturbations due to environmental circumstances, sensor failures, the wall
wetting fuel dynamics, among others. An important issue to take into account is the
delay in the λ measurement, which is basically the time between the fuel injection
and the burned gases reaching the UEGO sensor. There are several well established
control techniques that have been applied for the AFR control problem in the SI
engine. In Guzzella and Onder (2010) based in a linearized model of the engine, a
H-infinity control to ensure robustness to parametric uncertainties of the engine and
to the time delay from the UEGO sensor is designed. The drawback is that results
a high order controller that is only valid around an operating point. Soft comput-
ing techniques has also been adopted as in Zhai et al. (2011), where an artificial
neural network is used and adapted on line in order to deal with nonlinearities and
parameter uncertainties. One disadvantage of this strategy is that the engine remains
open-loop for about 2 s that correspond to the time that the neural network takes for
initial adaptation, generating in that way a large transient peak in the rate of injected
fuel at the beginning of the process. In the work presented in Tang et al. (2010), a
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global linearized control strategy is compared with a classical sliding mode design
without considering time delays measurements from λ sensor. In this research it is
shown the advantage of using classical sliding mode controller against the global
linearized controller due to its robustness property in presence of matched uncer-
tainties and disturbances. However, the main disadvantage with the use of classical
sliding modes is the chattering problem that adversely affects the performance of
any dynamical system.

On the other hand, the sliding mode control is a popular technique among control
engineer practitioners due to the fact that introduces robustness to unknown bounded
perturbations that belong to the control sub-space; moreover, the residual dynamic
under the sliding regime, i.e., the sliding mode dynamics, can easily be stabilized with
a proper choice of the sliding surface. A proof of their good performance in motion
control systems can be found in the book by Utkin et al. (1999). One drawback of
this technique are small oscillations of finite frequency at the output tracking signal
that is known as chattering. The control signal is characterized by a discontinuous
control action with an ideal infinite frequency that leads to the chattering problem.
This problem is harmful because it leads to low control accuracy; high wear of
moving mechanical parts and high heat losses in power circuits (Levant 2010). The
chattering phenomenon can be caused by the deliberate use of classical sliding mode
control technique. When fast dynamics are neglected in the mathematical model
such phenomenon can appear. Another situation responsible for chattering is due to
implementation issues of the sliding mode control signal in digital devices operating
with a finite sampling frequency, where the switching frequency of the control signal
cannot be fully implemented (Rivera et al. 2011).

In order to overcome the chattering phenomenon, the higher-order sliding mode
(HOSM) concept was introduced by Levant (2003). Let us consider a smooth
dynamic system with an output function S of class C r−1 closed by some static
or dynamic discontinuous feedback as in Levant (2007). Then, the calculated time
derivatives S, Ṡ, . . . , Sr−1, are continuous functions of the system state, where the
set S = · · · S = · · · = Sr−1 = 0 is non-empty and consists locally of Filippov
trajectories (Filippov 1988). The motion on the set above mentioned is said to exist
in r -sliding mode or r th order sliding mode. The r th derivative Sr is considered to
be discontinuous or non-existent. Therefore the high-order sliding mode removes
the relative-degree restriction and can practically eliminate the chattering problem.
There are several algorithms to realize HOSM. In particular, the 2nd order slid-
ing mode controllers are used to zero outputs with relative degree two or to avoid
chattering while zeroing outputs with relative degree one. Among 2nd order algo-
rithms one can find the sub-optimal controller, the terminal sliding mode controllers,
the twisting controller and the super-twisting controller. In particular, the twisting
algorithm forces the sliding variable S of relative degree two in to the 2-sliding
set, requiring knowledge of Ṡ. The super-twisting algorithm does not require Ṡ, but
the sliding variable has relative degree one. Hence the super-twisting algorithm is
nowadays preferable over the classical siding mode, since it eliminates the chattering
phenomenon.
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In this work we are interested to contribute to the control problem of the AFR in
SI engines by exploiting sliding mode control techniques for improving the robust
performance of SI engines. Based on a MVEM (Hendricks et al. 1996) a HOSM
controller is designed for maintaining the stoichiometric value equal to one in a
SI engine. The HOSM technique is based on a super-twisting algorithm (Levant
2003; Utkin 2013; Fridman and Iriarte 2005). To estimate the intrinsic delays (due to
exhaust gas transportation and combustion process) in the λ measurements provided
by the UEGO sensor, it is necessary to model them properly. To do this, a Padé
approximation (Kosiba et al. 2006; Probst et al. 2009; Liu et al. 2009) is used for
representing the time delay in the frequency domain with a transfer function, where
a state space representation is finally obtained. Then based on second and third order
approximations, HOSM observers are designed for λ.

The remaining of this work is organized as follows. Section 2 reviews the mean
value engine model and the time delay of the UEGO sensor. Section 3 deals with the
control law and observer designs for controlling the AFR ratio. A simulation study
is carried on in Sect. 4, and finally some comments conclude the work in Sect. 5.

2 Mean Value Engine Models

The mean value engine model (MVEM) proposed by Hendricks, is an intermediate
between large cyclic simulation models and the simplistic phenomenological transfer
function models, making it a compact model, easy to adapt for EFI, turbocharged,
diesel, and emission control systems. The MVEMs for the SI engine primarily consist
of 3 subsystems explained in Hendricks and Sorenson (1990), Hendricks et al. (1996,
2000):

• The intake manifold filling dynamics
• The fuel mass flow rate
• The crank shaft speed

2.1 The Intake Manifold Filling Dynamics

The intake manifold filling dynamics are based on an isothermal one, where the
temperature exchange between the ambient temperature and the intake manifold
temperature occurs slowly, therefore both temperatures are assumed to be the same.
The intake manifold filling dynamics are segmented in three equations: (1) the
intake manifold pressure, (2) the throttle air mass flow and (3) the intake port air
mass flow.
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2.1.1 Intake Manifold Pressure

The intake manifold is the volume between the throttle valve and the intake valve
of the cylinder. The state equation for the intake manifold is obtained by applying
conservation mass to the intake manifold volume mman

ṁman = ṁat − ṁap (1)

where ṁat is the air mass flow to the throttle valve and ṁap is the air mass flow to
the intake valve. The pressure in the intake manifold pman can be related to mman

using the ideal gas equation

pman Vm = mman RTm (2)

with R as the ideal gas constant, Tm is the air temperature in the manifold, Vm is
the intake manifold volume. Taking the time derivate of (2) and using (1), the intake
manifold pressure equation is obtained as

ṗman = RTm

Vm
(−ṁap + ṁat ) (3)

2.1.2 Throttle Air Mass Flow

This part of the model is based on the isentropic flow equation for a converging-
diverging nozzle, this equation its detailed in Hendricks et al. (2000)

ṁat = ṁat1

√
Pa

Tm
β1(α)β2(Pr ) + ṁat0 (4)

were ṁat1 and ṁat0 are constant parameters, Pa is the ambient pressure, α is the
angle of the throttle plate and β1(α) is the ratio of the throttle throat diameter to the
throttle plate shaft diameter

β1(α) = 1 − cos(α) − α2
0

2
(5)

where α0 is the close angle throttle plate. Function β1(α) is useful only when the
throttle plate has a circular shape, in other case it must be found another equation that
can describe it in an appropriated fashion. Expression β2(Pr ) is the isentropic flow

β2(Pr ) =
{

1 Pr < Pc√
1 − ( Pr−Pc

1−Pc )2 Pr ≥ Pc
(6)

where Pr = pman/Pa and Pc is the critical pressure (turbulent flow).
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2.1.3 Intake Port Air Mass Flow

The air mass flow at the intake port can be obtained from a speed density equation:

ṁap =
√

Tm

Ta

Vd

120RTm
ev pmanne (7)

ev pman = si Pman − yi

where Ta is the ambient temperature, Vd is the engine displacement, ev is the vol-
umetric efficiency, si is the intake manifold slope and yi is the manifold intercept
pressure.

2.2 The Fuel Mass Flow Rate

According to the experiments reported in Hendricks and Sorenson (1990) and
Hendricks and Vesterholm (1992). The equations that describe the fuel mass flow
rate ṁ f into the cylinder are as follows:

ṁ f v = (1 − X f )ṁ f i

m̈ f f = 1

τ f
(−ṁ f f + X f ṁ f i )

ṁ f = ṁ f v + ṁ f f (8)

where m f f is the mass of the fuel film adhered to the manifold wall, ṁ f i is the fuel
flow rate from the injector, X f is the fraction of injected fuel that remains as fuel
film, τ f is the fuel evaporation time constant, ṁ f v is the portion of fuel that enters
to the cylinder valve. The fraction in the fuel film X f is approximated in Hendricks
et al. (1996)

X f = X1 − X2
ṁap

ṁap,max
(9)

where ṁap,max its the maximum air mass flow for the engine.

2.3 The Crankshaft Speed

The crank shaft state equation is derived using straight forward energy conservation
considerations. Energy is inserted into the crank shaft via the fuel flow. Losses in
pumping and friction dissipate rotational energy while some of the energy available
goes into the load.
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ṅ = − 1

I n
(Pf + Pp + Pb) + 1

I n
Huηi ṁ f (t − Δτd) (10)

where n is the crankshaft speed, I its the inertial moment of the crankshaft; Pf , Pp,
and Pb are the power losses by friction, pumping and load respectively, Hu is the fuel
burn value, ηi is the thermal efficiency, and ṁ f is the mass fuel rate into the cylinder
with a torque time delay Δτd . The fiction and pumping losses in the engine can be
expressed as polynomials of the crankshaft speed and the intake manifold pressure:

Pf (n) + Pp(n, pman) = n(a0 + a1n + a2n2) + n(a3 + a4n) (11)

and Pb = kbn3 where kb its the load factor. The thermal efficiency ηi can be expressed
as:

ηi (θ, λ, n, pman) = η1(θ, n, pman)ηi (λ, n)η1(n)ηi (pman) (12)

where

ηi (θ) = Θ0 + Θ1(θ − θmbt )

− Θ2(θ − θmbt )
2

ηi (n) = ηi0 − ηi1nηi3

ηi (pman) = ρ0 + ρ1 pman + ρ2 p2
man

ηi (λ) =
{

Λ0 + Λ1λ + Λ2λ
2 if λ ≤ 1

Λ3 + Λ4λ + Λ5λ
2 if λ > 1

(13)

with θmbt as the maximum brake torque and Λi (i = 0, . . . , 5) as constant parameters.
Figure 1 show the interconnection between MVEMs state equations.

2.4 λ Sensor Model

The λ factor (normalized AFR) is defined by the equation

λ = ṁap

Lthṁ f
(14)

where Lth is the desire stoichimetric value. The UEGO λ sensor has a linear response
in a range of values which represent a lean, rich or stoichiometric mixture of the
engine (Vigild et al. 1999). The sensor is approximated by a first order system:

Λm(s)

Λexh(s)
= 1

sτλ + 1
(15)



208 J. Rivera et al.

Fig. 1 MVEM block diagram

where Λm(s) = L {λm(t)} and Λexh(s) = L {λexh(t)}, with L as the Laplace
operator. λm is the λ measurement given by the sensor, λexh represents the λ value
available at the sensor and τλ as the time constant of the sensor that can depend on the
temperature in the exhaust pipe (Vigild et al. 1999). Meanwhile the relation between
λexh and λ is of the following form:

Λexh(s) = e−τd sΛ(s) (16)

where Λ(s) = L {λ(t)} and τd is a time delay that is due by three factors:

(1) τd1 is the time delay due to the fuel injection and the time valve opening

τd1 = 60Δθ1

360◦n
(17)

where Δθ1 is the crank angle between injection and intake valve opening.
(2) τd2 is the time delay due to the combustion to the intake valve opening and to

the exhaust valve opening
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τd2 = 60Δθ2

360◦n
(18)

where Δθ2 is the crank angle between the intake valve opening and the exhaust
valve opening.

(3) τd3 is the time delay due to the transportation of the exhaust matter from the
exhaust valve to the sensor

τd3 = ρexhlexh Aexh

ṁap
=

pexh

RTexh
lexh Aexh

ṁap
(19)

where ρexh and pexh are the air density and pressure in the exhaust manifold
respectively, Aehx is the cross section of the exhaust pipe, lexh is the distance
between the exhaust valve and the λ sensor and Texh is the exhaust gas temper-
ature.

3 Control Design

The control problem consists in forcing the output λ to track a desired lambda factor
(λr = 1) with time delay output measurements of λ, where the input controlled
variable is ṁ f i . To tackle this problem, a high order sliding mode control technique
based in the super-twisting algorithm is used (Levant 2003). The designed control
law depends on the time derivative of control input ṁ f i . This term is estimated by
using a robust exact differentiation via sliding mode technique. On the other hand, to
solve the time delay problem from the measurement of the UEGO sensor, an observer
based solution is implemented by means of a high order sliding mode methodology.
For that, the delay is approximated by means of Padé method in the frequency domain
with transfer functions, then it is transformed to a state space representation without
delay.

3.1 Super-Twisting Sliding Mode Control of Normalized AFR

Let us define the output error as

z = λ − λr (20)

where λr is the reference signal for λ. The dynamic error equation for (20) can be
represented in the general form

ż = f (x, u, u̇) (21)
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with x = (n, λ, ṁat , ṁ f f )
T , u = ṁ f i and f (x, u, u̇) as

f (x, u, u̇) = −

⎛
⎜⎜⎝evVdn

120Vi
+

(1 − X)u̇ + 1

τ f
(−ṁ f f + Xu)

(1 − X)u + ṁ f f

⎞
⎟⎟⎠ λ

+ evVdn

120Vi

(
ṁat

Lth((1 − X)u + ṁ f f )

)
− λ̇r . (22)

Now a new control input v is introduced as v = f (x, u, u̇), that simplifies (21) as
follows:

ż = v (23)

by choosing the sliding function as z, then v is selected as a super-twisting algorithm
(Levant 2003)

v = −k1|z|1/2sign(z) + v1

v̇1 = −k2sign(z) (24)

with properly chosen constants k1 > 0 and k2 > 0 (Perruquetti and Barbot 2002), z
will decay to zero in finite-time. From the relation v = f (x, u, u̇) and by making use
of the implicit function theorem (Khalil 2002) one determines the following control
law

u =

(
1

τ f
λ − v − evVdn

120Vi
λ

)
ṁ f f + evVdn

120Vi Lth
ṁat − (1 − X)u̇λ

v(1 − X) + evVdn

120Vi
λ(1 − X) + 1

τ f
X

(25)

It is worth noting that control (25) depends on the time derivative of the control itself.
By differentiating (25) one retrieves u̇. Then this signal is fedback to reconstruct
control law (25) as in Castillo-Toledo and Lopez Cuevas (2009). The time derivative
u̇ is determined with the following robust sliding mode differentiator:

ξ̇0 = y0

ξ̇1 = −κ2γasign(ξ0 − u) (26)

y0 = ξ1 − κ1γ
1/2
a |ξ0 − u|1/2sign(ξ0 − u)

where û = ξ0 and ˙̂u = ξ1 and κ1, κ2 and γa are positive constant design parameters
(Levant 1998). With a bounded and free noise signal u, this differentiator ensures
finite–time convergence of the following equalities
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Fig. 2 Block diagram of the
proposed control algorithm

ξ0 = u, ξ1 = u̇, (27)

with initial accuracies

|ξ0(t0) − u(t0)| ≤ μ0(t0)

|ξ1(t0) − u̇(t0)| ≤ μ1(t0) (28)

where μ0 > 0 and μ1 > 0. It means that the solution of system (26) is Lyapunov
stable satisfying (27) for t ≥ t0 + ts . Finally Fig. 2 illustrates a block diagram of the
proposed control algorithm.

3.2 Observer Design for Normalized AFR (λ)

The observer design is based on an j order Padé approximation of the time-delay in
the frequency domain (Fournodavlos and Nestoridis 2013; Vigild et al. 1999). The
Padé approximation of the exponential function that represents the time delay in the
frequency domain is now represented as a transfer function with real coefficients as
in the following general form:

y(s)

u(s)
= e−sτd ≈

∑ j
i=0 Ni (−s)i

∑ j
i=0 Di (s)i

=
∑ j

i=0
(2 j − i)!
i !( j − i)! (−sτd)i

∑ j
i=0

(2 j − i)!
i !( j − i)! (sτd)i

. (29)

The general state space representation of the Padé approximation is given by the
following equations:

⎡
⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
...

ẋ j−1
ẋ j

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −D0
1 0 . . . 0 −D2
...

...
...

...

0 0 . . . 1 −D j−2
0 0 . . . 0 −D j−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

x j−1
x j

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

N j − D j N0
N j−1 − D j−1 N1

...

N2 − D2 N j−1
N1 − D1 N j

⎤
⎥⎥⎥⎥⎥⎦

u
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y = [
0 0 . . . 0 1

]
⎡
⎢⎢⎢⎢⎢⎣

x1
x2
...

x j−1
x j

⎤
⎥⎥⎥⎥⎥⎦

+ [−1 j
]

u. (30)

The engine time delay τd is modeled as in Vigild et al. (1999)

τd = ξ

no
= 0.187kr pm.s

no
(31)

where no is an operational average value of the engine speed.
In the following, two HOSM observers are designed for j = 2, 3, with the purpose

of comparing the accuracy of the approximation and the effects when closing the loop.

3.2.1 Second-Order Observer Design for Normalized AFR (λ)

The second-order Padé approximation is given by the transfer function

e−τd s = Λexh(s)

Λ(s)
≈

12
τ 2

d
− 6

τd
s + s2

12
τ 2

d
+ 6

τd
s + s2

. (32)

The corresponding state space representation results to be

λ̇1 = −12

τ 2
d

λ2

λ̇2 = λ1 − 6

τd
λ2 − 12

τd
λ

λexh = λ2 + λ. (33)

In order to represent the time response provided by the UEGO sensor (denoted as
λm), the following first order system is proposed (Vigild et al. 1999):

λ̇m = − 1

τλ

λm + 1

τλ

λ2 + 1

τλ

λ

yλ = λm . (34)

The observer is proposed of the following form

˙̂
λ1 = −12

τ 2
d

λ̂2
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˙̂
λ2 = λ̂1 − 6

τd
λ̂2 + kλν

˙̂
λm = − 1

τλ

λ̂m + 1

τλ

λ̂2 − ν

ŷλ = λ̂m . (35)

where ν is the injected signal to the observer that will be defined in the following
lines. Now the estimation errors are introduced as λ̃1 = λ1 − λ̂1, λ̃2 = λ2 − λ̂2 and
λ̃m = λm − λ̂m . The dynamics of the estimation errors result as follows:

˙̃
λ1 = −12

τ 2
d

λ̃2

˙̃
λ2 = λ̃1 − 6

τd
λ̃2 − 12

τd
λ − kλν

˙̃
λm = − 1

τλ

λ̃m + 1

τλ

λ̃2 + 1

τλ

λ + ν

ỹλ = λ̃m . (36)

One can choose the sliding function as λ̃m and the observer injected signal according
to a super-twisting sliding mode algorithm (Levant 2003):

ν = −σ1|λ̃m |1/2sign(λ̃m) + ν1

ν̇1 = −σ2sign(λ̃m). (37)

With a proper choice of positive observer gains σ1 and σ2, the finite-time convergence
of λ̃m to 0 is feasible. Then by applying the equivalent control method (Utkin et al.

1999) one can determine the equivalent injected signal from ˙̃
λm = 0 as follows:

νeq = − 1

τλ

(λ̃2 + λ). (38)

If kλ is chosen equal to −τλ/τd , then the sliding mode dynamics for the estimation
errors result as follows:

⎡
⎢⎣

˙̃
λ1

˙̃
λ2

⎤
⎥⎦ =

⎡
⎢⎢⎣

0 − 12

τ 2
d

1 − 7

τd

⎤
⎥⎥⎦

⎡
⎣λ̃1

λ̃2

⎤
⎦ +

⎡
⎢⎣

0

−13

τd

⎤
⎥⎦ λ. (39)
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By assuming that λ is constant, the steady-state solution for (39) is given by

λ̃1,SS = 13

τd
λ

λ̃2,SS = 0 (40)

thus, according to (38), lim
t→∞ νeq(t) = −λ/τλ. Therefore λ is estimated as

λ̂ = −τλν1. (41)

3.2.2 Third-Order Observer Design for Normalized AFR (λ)

The third-order Padé approximation is given by the transfer function

e−τd s = Λexh(s)

Λ(s)
≈

120
τ 3

d
− 60

τ 2
d

s + 12
τd

s2 − s3

120
τ 3

d
+ 60

τ 2
d

s + 12
τd

s2 + s3
(42)

where the corresponding state space equations are:

λ̇1 = −120

τ 3
d

λ3 + 240

τ 3
d

λ

λ̇2 = λ1 − 60

τ 2
d

λ3

λ̇3 = λ2 − 12

τd
λ3 + 24

τd
λ

λexh = λ3 − λ. (43)

The model of the time response of the UEGO sensor is given by the following
equations:

λ̇m = − 1

τλ

λm + 1

τλ

λ3 − 1

τλ

λ

yλ = λm . (44)

The third-order observer is proposed of the following form:

˙̂
λ1 = −120

τ 3
d

λ̂3 + kλ1

˙̂
λ2 = λ̂1 − 60

τ 2
d

λ̂3
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˙̂
λ3 = λ̂2 − 12

τd
λ̂3 + kλ2

˙̂
λm = − 1

τλ

λ̂m + 1

τλ

λ̂3 − ν

ŷλ = λ̂m . (45)

The estimation errors are introduced as λ̃1 = λ1 − λ̂1, λ̃2 = λ2 − λ̂2, λ̃3 = λ3 − λ̂3
and λ̃m = λm − λ̂m . The dynamics of the estimation errors result as follows:

˙̃
λ1 = −120

τ 3
d

λ̃3 + 240

τ 3
d

λ − kλ1ν

˙̃
λ2 = λ̃1 − 60

τ 2
d

λ̃3

˙̃
λ3 = λ̃2 − 12

τd
λ̃3 + 24

τd
λ − kλ2ν

˙̃
λm = − 1

τλ

λ̃m + 1

τλ

λ̃3 − 1

τλ

λ + ν

ỹλ = λ̃m . (46)

The sliding function is chosen as λ̃m and the observer injected signal according to a
super-twisting sliding mode algorithm (Levant 2003) as follows:

ν = −σ3|λ̃m |1/2sign(λ̃m) + ν1

ν̇1 = −σ4sign(λ̃m). (47)

With a proper choice of the positive observer gains σ3 and σ4, the finite-time conver-
gence of λ̃m to 0 is again feasible. Then by applying the equivalent control method

(Utkin et al. 1999) one determines the equivalent injected signal from ˙̃
λm = 0 of the

following form:

νeq = − 1

τλ

(λ̃3 − λ). (48)

If kλ1 is chosen equal to −120τλ/τ
3
d and kλ2 as −12τλ/τd then the sliding mode

dynamics for the estimation errors result as follows:

⎡
⎢⎢⎢⎢⎢⎣

˙̃
λ1

˙̃
λ2

˙̃
λ3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 240

τ 3
d

1 0 − 60

τ 2
d

0 1 − 24

τd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

λ̃1

λ̃2

λ̃3

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

360

τ 3
d

0

36

τd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

λ. (49)
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Fig. 3 Block diagram of the
proposed observer-based
control scheme

By assuming that λ is constant, the steady–state solution for (39) is given by

λ̃1,SS = 90

τ 2
d

λ

λ̃2,SS = 0

λ̃3,SS = 3

2
λ (50)

thus, according to (48), lim
t→∞ νeq(t) = −λ/τλ. Therefore λ is estimated as

λ̂ = −2τλν1. (51)

Finally Fig. 3 shows the proposed observer-based control scheme for the AFR
ratio control.

4 Simulations

Simulations are carried out considering the parameters reported in
Hendricks et al. (1996) for a 1.27 l British Leyland engine where it is assumed
an optimal spark timing. The nominal values for the engine are shown in Table 1.
Moreover, the inertia I is described as I = Iac(π/30)21000 where Iac = 0.49 kg/m2
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Table 1 Engine nominal values

Parameter Value Parameter Value

R 287.09 × 10−5 bar m3/kgK Vm 0.0017 m3

Tm 293 K Pa 1.013 bar

ṁat1 5.9403 ṁat0 0

α0 10◦ Pc 0.4125

Vd 0.001275m3 Hu 4.3 × 104

si 0.961 yi 0.07

X1 0.65 X2 0.27

ṁap,max 0.0597 X1 0.65

X2 0.27 a0 1.673

a1 0.272 a2 0.0135

a3 −0.969 a4 0.206

kb 0.22 kW/krpm3 Θ0 0.7

Θ1 0.0240 Θ2 0.00048

(θ − θmbt ) 27.5◦ ηi0 ηi0

ηi1 −0.2187 ηi2 −0.360

ρ0 0.9301 ρ1 0.2154

ρ2 1657 Λ0 −1.299

Λ1 3.599 Λ2 −1.332

Λ3 −0.0205 Λ4 1.741

Λ5 −0.745 Lth 14.67

Table 2 Design parameters Parameter Value

Controller k1 −0.8

k2 −0.0001

Observer σ1 −12

σ2 −0.8

σ3 −10

σ4 −0.8

Differentiator κ2 −0.4

κ1 0.00001

is the load moment inertia, the time delays for ṁ f (τ f ) and λ (τλ) are 60/8n and
0.187/n respectively. The proposed design parameter values are shown in Table 2.

In order to reproduce more accurately the drive of the throttle valve α, the accel-
eration step commands were passed by a first order filter with a time constant of 0.3 s
before entering the engine.
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Fig. 4 Throttle valve steps [degree vs s]

4.1 Comparison of Three Control Schemes

A comparison among three controls schemes: (1) control with observer based on a
second order Padé approximation; (2) control with observer based on a third order
Padé approximation; (3) control without observer. The throttle valve angle is initiated
at a value of 40◦ and remains constant for t ∈ [0, 10) s, then increases to 50◦ at time
10s and remains constant until 20 s, then at this time value decreases to 30◦ and keeps
constant for t ∈ (20, 30) s, finally increases from 30◦ to 40◦ remaining constant for
subsequent time, Fig. 4 shows the profile of throttle valve angle signal. Figure 5
illustrates the λ response without observer, meanwhile Fig. 6 shows a comparison
between the response of λ with the second order and third-order observers.

It can be appreciated a similar behavior in all cases, but in the case of without
observer a noise is present in steady-state, this noise is filtered out when using
observers for the estimation of λ, where the observer based on third order Padé
approximation yields to more accurate results as shown in Fig. 6b.

Figures 7 and 8 show the responses of the second and third order observers respec-
tively. Meanwhile in Fig. 9a, b illustrate the magnitude of the estimation errors for
the second and third order observers respectively. In both pair of graphics can be
appreciated similar results.

Finally Table 3 shows a quantitative analysis of simulations by presenting the
precision error Pe (relative error of the output variable, calculated as the difference
between the average steady-state control output and the reference value, divided by
the reference value) in steady state among the three control schemes. With
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Fig. 5 λ factor response without observer, λ(solid) and λr (pointed) [λ vs s]
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(b)

Fig. 6 a λ factor comparison between control schemes with second order observer (grey) and third
order observer (black) [λ vs s]. b Zoom of the above graphic

Pe = 100|Sr − Vm |/Sr (52)

where Sr the imposed reference and Vm the average of the output controlled variable
in steady state.
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Fig. 7 λ estimation by the 2nd order observer, λ̂ (solid) and λ (dashed) [λ vs s]

0 5 10 15 20 25 30 35 40
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Fig. 8 λ estimation by the 3rd order observer, λ̂ (solid) and λ (dashed) [λ vs s]

4.2 Proposed Control Scheme

Based on previous results, the control scheme that performs better is the one with
the third-order observer, due to the fact that presents a better estimation of λ and
a better tracking of λr than the second order observer based controller and the one
without observer. Hence the third order observer based controller is simulated with
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Fig. 9 a Comparison of the magnitude of the estimation error for the second and third order
observers, |λ̃| for the second order observer (grey) and |λ̃| for the third order observer (black) [|λ̃|
vs s]. b Zoom of the above graphic

Table 3 Control schemes comparison

Pe

Obs. Without 2nd order 3rd order

α

30◦ 0.045 % 0.02 % 0.006 %

40◦ 0.026 % 0.008 % 0.002 %

50◦ 0.02 % 0.0042 % 0.003 %

parametric uncertainties by assigning a nominal value of 0.6 to ev and 0.0014 m3 to
Vd . Moreover, a high frequency noise of ±0.05 was added to the measurement output
of the UEGO sensor in order to simulate an old sensor. The throttle valve angle α

starts at 25◦ and remains constant for t ∈ [0, 10)s, then the angle is increased to 35◦,
to 55◦ and to 65◦ remaining constant in each interval at the time instants of 10, 15
and 20 s respectively. Then the angle is decreased to 55◦, 35◦ and to 25◦ remaining
constant in each interval at the time instants of 30, 35 and 40 s respectively. The
throttle valve angle signal is shown in Fig. 10. The output signal, i.e., λ is shown in
Fig. 11 where can appreciated that the proposed controller still performs well under
parametric uncertainties and measurement noise. The engine velocity signal n and
the volumetric efficiency are shown in Figs. 12 and 13 respectively where both signal
have similar profiles with respect to the throttle valve angle. The control input signal,
i.e., the injected fuel ṁ f i is shown in Fig. 14.
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Fig. 10 Throttle valve angle [degree vs s]
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Fig. 11 λ factor in presence of perturbations [λ vs s]
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Fig. 12 Engine rotational speed [rpm vs s]
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Fig. 13 Volumetric efficiency [ev vs s]
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Fig. 14 Control input signal (ṁ f i ) [kg/s vs s]

5 Conclusion

In this work the sliding mode control technique was successfully applied to the con-
trol of SI engines. The super-twisting sliding mode control approach was applied in
order to track the desired amount of fuel under variations of α, i.e., to maintain a
stoichiometric value in the engine. Since the resulting control law depends on the
derivative of the control input, a robust sliding mode differentiator was applied to
the control input and then this signal was feedback to the control law itself. This
control strategy significantly simplifies the control design. Measurements given by
the UEGO sensor are a delayed version of λ. This delay was approximated in the
frequency domain by Padé method, and then transformed to a state space representa-
tion, where two super-twisting observers were designed based on a second and third
order Padé approximations. The overall performance of the proposed algorithm was
verified by means of numeric simulations where the control schemes based observer
designs have demonstrated a better performance in steady state for the output λ when
compared with the control scheme without an observer design. In particular the con-
troller based on the third order observer presented a better performance in transient
responses and in fuel consumption. Therefore, the latter controller was simulated
under parametric uncertainties in the volumetric efficiency and the displacement
from the engine as well, moreover a high frequency noise was added to the output
measurements in order to simulate an old UEGO sensor. The simulation predicts a
good performance for the proposed control scheme, obtaining a smooth control input
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signal response (ṁ f i ) under adverse conditions. Some interesting issues remain to
be investigated, such as the adaptation of plant parameters and/or the adaptation of
controller gains.
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Robust Output Feedback Stabilization
of a Magnetic Levitation System Using Higher
Order Sliding Mode Control Strategy

Muhammad Ahsan and Attaullah Y. Memon

Abstract This work studies the problem of robust output feedback stabilization of
a Magnetic Levitation System using Higher Order Sliding Mode Control (HOSMC)
strategy. The traditional (first order) sliding mode control (SMC) design tool provides
for a systematic approach to solving the problem of stabilization and maintaining a
predefined (user specified) consistent performance of a minimum-phase nonlinear
system in the face of modeling imprecision and parametric uncertainties. Recently
reported variants of SMC commonly known as Higher Order Sliding Mode Control
schemes have gained substantial attention since these provide for a better transient
performance together with robustness properties. In this work, we focus on design of
an output feedback controller that robustly stabilizes a Magnetic Levitation System
with an added objective of achieving an improvement in the transient performance.
The proposed control scheme incorporates a higher-order sliding mode controller
(HOSMC) to solve the robust semi-global stabilization problem in presence of a
class of somewhat unknown disturbances and parametric uncertainties. The state
feedback control design is extended to output feedback by including a high gain
observer that estimates the unmeasured states. It is shown that by suitable choice
of observer gains, the output feedback controller recovers the performance of state
feedback and achieves semi-global stabilization over a domain of interest. A detailed
analysis of the closed-loop system is given highlighting the various factors that lead
to improvement in transient performance, robustness properties and elimination of
chattering. Simulation results are included and a performance comparison is given
for the traditional SMC and HOSMC designs employing the first and second order
sliding modes in the controller structure.
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1 Introduction

Output feedback control schemes have long been considered as the preferred and
useful design tools for stabilization of control systems. This work focuses on design
of an output feedback controller that robustly stabilizes a minimum-phase nonlinear
system with an added objective of achieving an improvement in the transient per-
formance. The proposed control scheme incorporates a Higher-Order Sliding Mode
Controller (HOSMC) together with a High-Gain Observer (HGO) (Hassan 2008;
Atassi and Hassan 1999) to solve the robust output feedback stabilization problem.
It is usually required that the controller be able to stabilize the system over a large
set of initial conditions, and assure robustness and asymptotic error convergence in
presence of somewhat unknown disturbances and parametric uncertainties. Sliding
Model Control (SMC) scheme is regarded as one of the most significant control
design tools that addresses these requirements effectively (Guldner and Utkin 1999;
Edwards and Spurgeon 1998). The variants of SMC, known as Higher Order Sliding
Mode Controllers (Pukdeboon 2012; Levant 2001) provide for an improved error
convergence, better robustness properties and elimination of chattering in control
designs for minimum phase nonlinear systems (Rhif and Zohra 2012; Rhif 2012;
Pridor Gitizadeh et al. 2000; Levant 2010).

We consider the problem of robust feedback stabilization of a Magnetic Levita-
tion System, which is widely regarded as a benchmark system for testing various
control techniques (Milica Naumovic and Boban 2008; Levine and Ponsart 1996).
The system’s mathematical model results in a set of coupled nonlinear differential
equations which require special treatment (Woodson and Melcher 1968). Further-
more, such systems usually require use of a high gain feedback for achieving the
task of stabilization and tracking of the system’s output to some desired references,
making the control synthesis relatively difficult.

The novelty of this work lies in the application of an HOSMC based Output Feed-
back Controller which uses an HGO for estimation of system states. This provides
us with the leverage of the robust control and control of the convergence speed of
the system states. The rest of the chapter is organized as follows: we start with a
mathematical description of the magnetic levitation system and formulate the stabi-
lization problem for this system. The following section summarizes some previous
work related to the same problem. In Sect. 3, we present control design, first utilizing
a first-order SMC, and then incorporating a second-order and third-order SMC struc-
tures. In the later part of this section, we extend the state feedback design to output
feedback using an HGO. We present performance analysis and simulation results of
the proposed control designs in Sect. 4. Finally, Sect. 5 draws the conclusions.
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Fig. 1 A 3D view of magnetic levitation system

1.1 The Magnetic Levitation System

We undertake the problem of robust feedback stabilization of a benchmark nonlinear
Magnetic Levitation System. A schematic of the system is shown in Fig. 1, where
a ferromagnetic ball is required to be precisely levitated using a current controlled
electromagnet with position feedback from an optical sensor.

The system is described by the following nonlinear differential equations:

ẋ = f (x) + g(x)u (1)

where

x =
⎡
⎣ x1

x2
x3

⎤
⎦ , f (x) =

⎡
⎢⎢⎣

x2

g − k
m x2 − Loax2

3
2m(a+x1)2

1
L(x1)

[
−Rx3 + Loax2x3

(a+x1)2

]

⎤
⎥⎥⎦ , g(x) =

⎡
⎣ 0

0
1

L(x1)

⎤
⎦

where the states are x1 = y (position), x2 = ẏ (velocity), x3 = i (current) and
u = v (control input). Other parameters include m as the ball mass, y the measured
position, g being the gravitational acceleration coefficient, k as the viscous friction
coefficient, L1, L0, a are positive constants referred to as the inductance parameters
of electromagnet and R is the overall equivalent resistance of the current path. The
term L(x1) and the steady state current value, with r as the desired reference (height)
are given as:

L(x1) = L1 + Lo

1 + x1
a

; Iss = 2mg(a + r)2

Loa
(2)

The control objective is to regulate the system output to the desired height while
also stabilizing the closed-loop system in the presence of parametric uncertainties.
The complex dynamical model of the system along with the requirement of robustness
under physical uncertainties make the control design task even more challenging.
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2 Previous Work

Many researchers, in the past few decades have considered this problem using various
nonlinear control design techniques e.g. Back-stepping, Feedback Linearization, and
Extended Kalman Filter. This section presents a review of their work.

The Back-stepping method Mahmoud (2003), and Wai and Lee (2008), provides
a nonlinear design tool for recursive design of control law based on Lyapunov the-
ory. Researchers of these works have used back-stepping technique together with an
adaptive observer to design controller for stabilization of the magnetic levitation sys-
tem. Stabilization of the closed-loop system is achieved by incorporating a Lyapunov
function whose derivative is rendered negative definite by the control law to achieve
stability. In the proposed adaptive control method, a filter mechanism is incorporated
with the back-stepping controller to cope with the problem of the finite escape time
terms occurring due to repeated differentiations in back-stepping design procedure.
Moreover, the observer is designed in such a way to cater for system uncertainties,
to solve the trouble of chattering phenomena caused by the sign function in back-
stepping and adaptive controller law. The results show that the parameter estimation
error converges only locally using Lyapunov methods and to ensure stability of the
overall closed-loop system the Lyapunov function is extended with a term penalizing
the estimation error. This work shows that the stability was not global because the
parameter estimation for control coefficients show to be only locally convergent.

Trumper et al. (1997) used feedback linearization technique to design a suitable
controller that stabilizes the system at a desired operating point. The researcher
suggests that for applications where large excursions or disturbance forces are not
anticipated, a simple linear controller based on a linearized plant model may suffice.
This model is derived by writing the states and inputs in terms of operating point,
the operating points of the state variables are chosen and evaluating Jacobians at the
operating point to get the linearized second-order magnetic suspension system. A
major setback of this method is that the model is valid only for small perturbations
about the operating point and as the system moves away, quality of this approximation
decreases and the performance degrades. The proposed method shows remarkable
performance for the single DOF system described described in this work, however
only locally since it uses a linearized (i.e. requires accurate) plant model and any
modeling errors in actuator input lead to sustained oscillations.

Another way to approach the problem is described by Levis (2003), by designing
an ideal LQR controller and then extending the design towards robust control using
the Lyapunov redesign method. The system is first represented in a simpler form
using a transform and the feedback loop is completed by a standard LQR controller,
designed by solving the Riccati equation, without taking uncertainties into account.
Using Lyapunov analysis it is shown that the controller is able to stabilize the system
but the result is only local as certain limits have to be put on the current input and no
variations from the nominal model are allowed. To cater this, a robust controller is
designed based on lyapunov redesign by adding an extra term to the linear controller
to overcome matched disturbances. An upper bound on the disturbance term is taken
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and using the augmented controller a Lyapunov analysis is performed. The control
input is taken to render the Lyapunov function negative definite using on a smooth
switching controller based on Lyapunov redesign. The controller gain is taken greater
than the bound on overall system subject to disturbances, to ensure the convergence
of steady state error to zero. A comparison with the linear controller depicts that
the later strategy is able to handle small parametric variations while resulting in
semi-global asymptotic stability of the closed-loop system.

Henley John (2007) proposed a stabilizing controller structure based on feed-
back linearization in an Extended Kalman Filter (EKF) framework for a single-axis
magnetic levitation device. For implementation of the controller, a discrete Extended
Kalman Filter provides the system states’ estimates. The EKF is based on the standard
predict-correct format where the current state estimate and covariance are propagated
forward until the next measurement occurs. Then, the Kalman Gain is computed and
the state estimate and covariance are updated using appropriate initial conditions on
object velocity and input current. The process noise and the sensor noise is taken as
a zero mean Gaussian white-noise. The key feature of this method is that the Kalman
Filter gain is chosen such that it minimizes the state estimation error. Then using
the standard feedback linearizing method a state feedback controller, based on esti-
mated states form the EKF, is used to stabilize the system using the pole placement
method. Although this controller formulation is near optimal, it is robust enough that
parameter changes and un-modeled plant dynamics do not effect the results.

3 Control Design

This section presents the development of robust stabilizing control for the problem
under consideration, by utilizing a first-order SMC initially, and then incorporating
a second-order and third-order SMC structures. In the later part of this section, we
extend the SMC and HOSMC based state feedback design to output feedback using
an HGO.

In order to proceed with systematic control design, we first transform the system
into strict feedback normal form by using a suitable state transformation of the form

z = T (x) (3)

in which T is such that T is invertible; i.e. it must have an inverse map T −1(.) such
that x = T −1(z) for all z ∈ T (D), where D is the domain of T. From (Hassan 2002),
the system (1) can be represented in feedback linearizable form if and only if there
is a domain Do ⊂ D such that:

1. For the system (1), the matrix G(x) = [g(x) ad f g(x) ad2
f g(x)] is full rank for

all x ∈ Do

2. The distribution D = spang(x), ad f g(x) is involutive in Do
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It can be verified that G(x) = [g(x) ad f g(x) ad2
f g(x)] has rank 3, and the

vector represented as D = span{g(x), ad f g(x)} is involutive, because [g, ad f g]
becomes a null vector and distribution D has rank 2. The foregoing calculation is
valid in the domain {D = a + x1 > 0 and x3 > 0}. The system has relative degree
3 (equivalent to the rank of G(x)), hence it is full-state linearizable. Therefore, T (x)
can be written as follows:

T (x) =
⎡
⎣ h(x)

L f h(x)

L2
f h(x)

⎤
⎦ =

⎡
⎢⎣

x1
x2

g − k
m x2 − Loax2

3
2m(a+x1)2

⎤
⎥⎦ (4)

Using (4) above, system (1) can now be re-written as:

ż1 = z2

ż2 = z3 (5)

ż3 = − k

m
z3 + Lo L1ax2x2

3

mL(x1)(a + x1)3 + Loa Rx2
3

mL(x1)(a + x1)2 − Loax3

mL(x1)(a + x1)2 u

The nominal system parameter values are given in Table 1.

3.1 First Order Sliding Mode Control

We start with development of first-order sliding mode controller for System (5). The
task is to design a feedback control law to stabilize the system at a desired reference.

The controller is designed such that firstly the system trajectories reach a bound-
ary/manifold (surface) near origin in finite time to ensure a semi-global bounded
solution and once the trajectory reaches the manifold, it cannot leave it. This phase
is called “reaching phase” as shown in Fig. 2.

Consider the system represented as

ż = f (z) + g(z)u (6)

Table 1 Nominal system
parameters

m 0.1kg

k 0.01 N/m/s

g 9.81 m/s2

a 0.05 m

Lo 0.01 H

L1 0.02 H

R 1 �
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Fig. 2 A typical trajectory
of sliding mode control

To start with, we define a Sliding manifold (s) in terms of the system dynamics
i.e.

s = z3 + a2z2 + a1(z1 − r) = 0 (7)

where r is the desired reference (height). The Control Law for the SMC is based on
the constraint

s ≡ 0 (8)

The first task is to design the controller in such a way to bring the trajectory to this
manifold s ≡ 0 in finite time. The variable s satisfies the equation

ṡ = a1z2 + a2z3 + f (z) + g(z)u (9)

let f and g satisfy the inequality

∣∣∣∣ (a1z2 + a2z3) + f (z)

g(z)

∣∣∣∣ ≤ ρ(z) ∀z ∈ �n (10)

for some known function ρ(z).
To guarantee that the trajectory reaches the manifold we take an energy Lyapunov

function

V = 1

2
s2 ⇒ V̇ = sṡ < 0 (11)

as the Lyapunov function candidate for the system. We get

V̇ = sṡ = s(a2z3 + a1z2 + f (z)) + g(z)su (12)

We take control input to be composed of two parts, i.e.

u = ueq + ν (13)

where ueq is taken to cancel all nonlinear part from the above equation and ν is
based on the switching controller to make the controller negative definite inside the
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boundary layer, i.e.

ueq = 1

g(z)
(− f (z) − a2z3 − a1z2) (14)

and the nonlinear functions are defined as

1

g(z)
= mL(x1)(a + x1)

2

Loax3
(15)

f (z) = − k

m
z3 + Lo L1ax2x2

3

mL(x1)(a + x1)3 + Loa Rx2
3

mL(x1)(a + x1)2 (16)

We take

ν = −γ sat

(
s

ε

)
(17)

where γ is a positive class K function such that γ ≥ ρ(z) + βo, βo > 0, and sat is
the nonlinear saturation function. Under nominal system parameters the gain γ is
chosen by using

∣∣∣∣ (a1z2 + a2z3) + f (z)

g(z)

∣∣∣∣ ≤ ((z2 + z3)m − kz3)L(x1)(a + x1)
3 + Loax2

3 (x2 L1 + R(a + x1))

mLoax3 L(x1)(a + x1)

(18)

sat

(
s

ε

)
=

⎧⎨
⎩

sign(s) if |s| > 1(
s
ε

)
if |s| ≤ 1

(19)

sign(s) =

⎧⎪⎨
⎪⎩

1 if |s| > 0

0 if |s| = 0

−1 if |s| < 0

(20)

Using the parametric values given in Table. 1 results in ρ(z) ≤ 6.27. With this
controller, the Lyapunov function becomes

V̇ ≤ g(z)|s|ρ(z)−g(z)s(ρ+βo)sat

(
s

ε

)
≤ −g(z)βo|s| ≤ −goβo|s| ; |g(z)| ≤ go

where go > 0. Therefore, under the influence of the controller the trajectory reaches
the sliding manifold (s = 0) in finite time and once on the manifold it cannot leave
it as V̇ is negative definite. This motion is called the reaching phase followed by
a sliding phase during which the motion is confined to the manifold. This control
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law ν = −γ sat
( s

ε

)
is called the continuous sliding mode control where ε is the

maximum bound of the sliding manifold on either side of origin in the sliding phase.
To check the controller robustness in presence of parametric uncertainties, outside

and inside the boundary layer, we define the system parameters within a range i.e.
0.009 < Lo ≤ 0.01, 0.01 < L1 ≤ 0.02, 0.1 < m ≤ 0.11, 0.9 < R ≤ 1.1.
Under these conditions, let f̂ (z) and ĝ(z) be the nominal models of f (z) and g(z),
respectively. Taking

u = −[(a1z2 + a2z3) + f̂ (z)]
ĝ(z)

+ ν

results in

ṡ = a1(z2 + z3) +
[

1 − g(z)

ĝ(z)

]
+ f (z) − g(z)

ĝ(z)
f̂ (z) + g(z)ν = δ(z) + g(z)ν

where δ is the perturbation term which satisfies the inequality

∣∣∣∣ δ(z)g(z)

∣∣∣∣ ≤ ρ(z) (21)

we can take

ν = −γ sat

(
s

ε

)
(22)

where γ ≥ ρ(z) + βo, βo > 0. Since ρ is an upper bound on the perturbation term,
it is likely to be smaller than an upper bound on the whole function.

∣∣∣∣ (a1z2 + a2z3) + f̂ (z)

ĝ(z)

∣∣∣∣ ≤ ((z2 + z3)m̂ − kz3)L̂(x1)(a + x1)
3 + L̂oax2

3 (x2 L̂1 + R̂(a + x1))

m̂ L̂oax3 L̂(x1)(a + x1)

(23)

Taking the parametric values as the upper bound on limits, we get ρ(z) ≤ 7.27. To
analyze the performance of this continuous sliding mode controller in the reaching
phase, we take a Lyapunov function V = 1

2 s2 whose derivative satisfies the inequality

V̇ ≤ −goβo|s|

when |s| ≥ ε outside the boundary layer {|s| ≤ ε}. So until reaching the boundary
layer in finite time, |s(t)| will be strictly decreasing and remains inside this set
afterwards. Inside the boundary layer, we have

z2 = −a1(z1 − r) − z3 + s

where |s| ≤ ε. The derivative of V1 = 1
2 z2

1 satisfies
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V̇1 = −a1(z
2
1−z1r)−z1z3+z1s ≤ −a1z2

1−z1z3+z1ε ≤ −(1−θ)a1z2
1 ∀z1 ≥ ε

a1θ

where 0 < θ < 1 . Thus the trajectory reaches the set �ε = {|z1| ≤ ε
a1θ

, |s| ≤ ε}
in finite time. So we get ultimate boundedness with an ultimate bound that can be
reduced by decreasing ε. Inside the boundary layer |s| ≤ ε the control reduces to
the linear feedback law u = −γ

( s
ε

)
and the closed loop system can be stabilized by

suitable choice of gain γ , to be large enough to overcome the bound ρ. Inside the
boundary layer, the closed loop system given as

ż1 = z2

ż2 = z3

ż3 = f (z) − g(z)
(
γ

s

ε

)

has a unique equilibrium point at (x̄1, 0, Iss), where x̄1 satisfies the equation

ż3 = −kmz3Loaε + RLoaεx2
3 + Loaγ s Iss − kmz3εL1(a + x̄1)

and for small ε can be approximated by

x̄1 ≈ Loa

kL1

(
Iss + γ s

ε

)

introducing a change of variables to shift to origin results in,

y1 = z1 − z̄1 ẏ1 = y2

y2 = z2 ẏ2 = y3

y3 = z3

ẏ3 = − k

m
y3 + Loa Rx2

3

mL(x̄1)(a + x̄1)2 + Loaγ x3(z3 + a2z2 + a1(z1 − r))

mεL(x̄1)(a + x̄1)2

≈ −
( k

m
y3 − LoaIssγ

mεL1(a + y1 + z̄1)2

)
y2

3 − σ(y1)

where

σ(y1) = − Iss Loaγ y1x3

mεL1(a + y1 + z̄1)2

Consider the Lyapunov function

Ṽ =
y1∫

o

σ(s)d(s) − 1

2
y2

3
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where Ṽ is positive definite (|Ṽ | is radially unbounded) for y3 >
LoaIssγ z3

mL1ε
and its

derivative satisfies
˙̃V = σ(y1) + y3 ẏ3 ≤ LoaIssγ

mL1ε
y2

3 < 0

Using LaSalle’s Invariance Principle we can show that the equilibrium point
(x̄1, 0, Iss) is asymptotically stable and attracts every trajectory in �ε . For better
accuracy, we choose ε as small as possible, however we should keep in mind that
choosing too small a value may result in chattering. With a suitable choice of ε

close to zero, the controller achieves ultimate boundedness as all trajectories starting
off the manifold |s| ≤ ε reach it in finite time and stay there onwards. By suitable
choice of ε → 0 and a high enough controller gain γ the proposed controller yields
semi-global asymptotic stabilization.

3.2 Higher Order Sliding Control

We now focus our attention to development of stabilizing controllers for the system
under consideration that use Higher Order Sliding Modes. This approach has gained
substantial attention recently due to its ability to yield in better transient performance,
superior robustness properties and removal of chattering when compared to a first-
order SMC. The formulation of controller (Korovin and Emeryanov 1996) is as
follows:

Consider an uncertain single-input nonlinear system

ẋ = f (x, t, u), s = s(t, x) t ≥ 0 (24)

with x ∈ X ⊆ �n as the state vector, u ∈ U ⊂ � being the control input and the time
varying non-linear function f (x, t, u) : [0,+∞) × �n × U → �n is a sufficiently
smooth uncertain vector field and s(x, t) : [0,+∞) → � is the function as defined
in (7). The relative degree r of the system is defined such that u explicitly appears in
only the rth derivative of s and d

du sr �= 0 at the given point. The task is to achieve
the constraint s ≡ 0 in finite time and stay there using a discontinuous feedback
control. Since s, ṡ, s̈, . . . , sr−1 are continuous functions, the corresponding motion
corresponds to an r-sliding mode (Levant 2001).

The term Higher Order Sliding Mode specifies a movement on the discontinuity
set of the dynamic system in Filippov’s sense (i.e. it consists of Filippov’s trajectories
of the discontinuous dynamic system) (Levant 1999). The controller Sliding Order
indicates the dynamic smoothness degree in the vicinity of the mode i.e. it is a number
of total continuous derivatives of the manifold (s) (including s0) in the vicinity of
sliding mode. Therefore the r th order sliding mode is determined by the following
equalities:
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s = ṡ = s̈ = · · · sr−1 = 0 ; 0 < Km ≤ ∂

∂u
sr ≤ KM (25)

for some positive constants Km and KM . This forms an r-dimensional condition on
the state of the dynamic system and any motion satisfying (25) is called an r-sliding
mode with respect to the essential constraint s ≡ 0 (Fridman and Levant 2002).

3.2.1 Two Sliding Controller

We start with defining the sliding variable s as the regulated output of the system (5).
The second order sliding mode approach provides for the finite time stabilization of
the output s and its time derivative ṡ by characterizing a discontinuous control input
(u) for the system (Perruquetti 2010).

Considering y1 = s, it can been shown that, the second order sliding mode problem
is equivalent to the finite time stabilization problem for the following uncertain second
order system: {

ẏ1 = y2

ẏ2 = ϕ(t, y) + γ (t, y)u
(26)

where it is considered that only the information about sign of y2 is available (Fridman
and Levant 2002). The nominal functions ϕ(t, y) and γ (t, y) are defined as:

{
|ϕ(t, y)| <  ; > 0

0 < �m < γ < �M < 1
(27)

∀y ∈ Y ⊆ �2, such that the system (26) is bounded and stable.

3.2.2 Twisting Algorithm

The Twisting Algorithm is the basic 2-sliding controller (Punta 2006). This algo-
rithm features the twisting of sliding trajectory infinite times around the origin of
the 2-sliding plane y1Oy2. The method is called ‘Twisting Controller’ because the
trajectories perform an infinite number of rotations while converging to the origin
along with the vibration magnitudes decays along the axes and the rotation times
decreasing in geometric progression (Levant 1999).

The controller, based on the constraint (s = ṡ = 0), is able to stabilize the dynamic
system while achieving semi-global asymptotic output regulation. The control algo-
rithm is defined by the following control law (Floquet and Barbot 2007) in which
the condition on |u| provides for |u| ≤ 1:

u̇(t) =

⎧⎪⎨
⎪⎩

−u ; |u| > 1

−Vmsign(y1) ; (y1)(y2) < 0 and |u| ≤ 1

−VM sign(y1) ; (y1)(y2) > 0 and |u| ≤ 1

(28)
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The corresponding sufficient conditions to ensure the elimination of reaching
phase and finite time convergence to the sliding manifold are:

{
VM > Vm ; Vm > 4�m

so

VM > 2+VM
�M

; Vm > 
�M

(29)

where so is the max allowed value for manifold s. The results for the controller are
discussed in Analysis and Results section and it is shown that this controller results
in much better transient phase response as compared to the First Order SMC but due
to large relative degree of the system chattering is not completely removed when
used to control the nonlinear system.

3.2.3 Three Sliding Controller

For the Magnetic Levitation System with relative degree ρ = 3, the 2-sliding con-
troller described above does not completely eliminate chattering. As mentioned in
Levant (2010), Korovin and Emeryanov (1996), the main drawbacks of the previ-
ously described methods are that when the relative degree ρ of the control variable s
is higher than one, the control methods, to completely remove chattering, generally
require the knowledge of up to (ρ − 1) derivatives of s. For systems with ρ = 3,
the usually unavailable quantities ṡ and s̈ need to be measured or estimated using an
observer (e.g. High-Gain Observer, sliding differentiator) for controller design that
completely removes chattering. The 2-sliding controller when applied to a higher
relative degree system does not eliminate chattering.

For systems with relative degree higher than 2, the recommended practice is to
use a 3-sliding controller (3rd order SMC) to completely eliminate chattering under
the constraints described in (29) (Levant 2010). The 3-sliding controller is designed
as follows:

Let p be a positive number. Denoting

J1,r = |s|(r−1)/r

Ji,r =
(
|s|p/r + |ṡ|p/(r−1) + · · · + |s(i−1)|p/(r−i+1)

)(r−i)/p
, i = 1, . . . , r − 1

Jr−1,r =
(
|s|p/r + |ṡ|p/(r−1) + · · · + |s(r−2)|p/2

)1/p

ψ0,r = s

ψ1,r = ṡ + β1 J1,r sign(s)

ψi,r = s(i) + βi Ji,r sign(ψi−1,r ), i = 1, . . . , r − 1

where β1, . . . , βr − 1 are positive numbers.
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3.2.4 Theorem 1

If the system (26) has relative degree r with respect to the output function s and
the condition (25) on ∂

∂u sr is satisfied, then with properly choosing the parameters
β1, . . . , βr − 1 the controller defined by

u = −αsign

[
ψr−1,r (s, ṡ, . . . , s(r−1))

]
(30)

assures the appearance of r-sliding mode s ≡ 0 while attracting all trajectories in
finite time.

The parameters β1, . . . , βr −1 are chosen to be sufficiently large in the index order-
ing. Each choice specifies a family of controller applicable to all systems expressed
as (26) with relative degree r . The parameter α > 0 depends on the choice of positive
constants Km and KM . Coefficients of Ji,r can be chosen as any positive numbers
and α needs to be negative when ∂

∂u sr < 0.
There can be infinite many choices for βi . A tested example for βi for r = 3 is

provided in Fridman and Levant (2002). The 3-sliding controller is given as

ν = −αsign

(
s̈ + 2

(|ṡ|3 + s2) 1
6 sign

(
ṡ + |s| 2

3 sign(s)
))

(31)

The idea is that a 1-sliding mode is established on the smooth parts of the discon-
tinuity set � of (31) described by the differential equation ψr−1,r = 0. The resulting
movement takes place in some close boundary of the � satisfying ψr−2,r = 0,
transfers in finite time into some vicinity of the subset satisfying ψr−3,r = 0 and
so on. While the trajectory reaches the r-sliding set, set � shrinks to origin in the
coordinates s, ṡ, . . . , s(r−1) (Levant 2012).

This controller placed in (13) makes the overall control input for the system.
The parameter α is a positive constant i.e. α > 0. For our system we take α = 20
with tolerance τ = 10−3 and Euler?s method for integration. The overall 3-sliding
controller for the system becomes:

u = −mL(x1)(a + x1)
2

Loax3

(
k

m
z3 − Lo L1ax2x2

3

mL(x1)(a + x1)3 − Loa Rx2
3

mL(x1)(a + x1)2 − a2z3

−a1z2 − αsign

(
s̈ + 2

(|ṡ|3 + s2) 1
6 sign

(
ṡ + |s| 2

3 sign(s)
)))

(32)

A maximum of r th order accuracy is attainable with the above mentioned 3-sliding
controller and with proper choice of parameters β1, . . . , βr −1 the convergence time
is reduced approximately κ(α) times where 0 < κ ≤ 1.

To analyze the controller performance for reaching phase (to guarantee that the
trajectory reaches the manifold in finite time) we follow a similar procedure as for
First Order Sliding Controller. Considering a Lyapunov function candidate:
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V = 1

2
s2 ⇒ V̇ = sṡ

Under the influence of the above mentioned 3-sliding controller, we get

V̇ ≤ −α|s||ν| ≤ −αλ|s| ;α > 0

where λ is a positive class K function such that λ = μ+ω,ω > 0 and |ν| ≤ μ,μ > 0
is calculated as follows: replacing the sign function by its approximation i.e.

sign(s) = |s|
s

results in

|ν| =

∣∣∣∣s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 2
3 |s|

s

∣∣∣[
ṡ+|s| 2

3 |s|
s

]
∣∣∣∣

s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 2
3 |s|

s

∣∣∣[
ṡ+|s| 2

3 |s|
s

]

using the Triangle Inequity, Preservation of division and Idempotence properties of
absolute numbers we get

|ν| ≤

∣∣∣∣s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 2
3

∣∣∣∣∣∣ṡ+|s| 2
3

∣∣∣
∣∣∣∣

s̈ + 2
(|ṡ|3 + s2

) 1
6

∣∣∣ṡ+|s| 2
3

∣∣∣
ṡ+|s| 2

3

(33)

we know that
(|ṡ|3 + s2

) 1
6 > 0, using Triangle Inequity and further solving the

inequity, we get

|ν| ≤ |s̈| +
∣∣∣(ṡ + s2) 1

6

∣∣∣ ≤ |s̈| ≤ W ; W > 0

which makes the Lyapunov function derivative negative definite, i.e.

V̇ < −αW |s| ;α > 0 and W > 0

Therefore, under the influence of the controller the trajectory reaches the sliding
manifold (s = 0) in finite time and once on the manifold it cannot leave it as V̇ is
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negative definite. So until reaching the boundary layer in finite time, |s(t)| is strictly
decreasing and remains inside this set afterwards.

Inside the boundary layer (inside the set �ε) a similar analysis can be carried
out as in first order sliding mode controller (applying a change of variables and
using Invariance Principle) to show that the application of the controller results in an
asymptotically stable origin. The results for the controller are discussed in Analysis
Section where it is shown that the 3-sliding controller results in much improved
performance as compared to the First and Second Order SMC.

3.3 Output Feedback

In this section, we extend the state feedback design to output feedback by using a
High Gain Observer (HGO) (Esfandiari and Hassan 1992; Atassi and Hassan 1999).
Towards that end, we consider the observer as given by the following set of equations:

⎧⎪⎪⎨
⎪⎪⎩

ˆ̇ξ1 = ξ̂2 + h1(y − ξ̂1)

ˆ̇ξ2 = h2(y − ξ̂1)

ˆ̇ξ3 = h3(y − ξ̂1)

(34)

in which the observer gains are chosen as follows:

⎡
⎣ h1

h2
h3

⎤
⎦ =

⎡
⎣ 2/ε

1/ε2

1/ε3

⎤
⎦ (35)

where ε is a design parameter. It is well established that by incorporating an HGO,
one can recover the performance of the state feedback controller by a suitable choice
of observer gains. This is achieved by choosing the design parameter ε sufficiently
small which renders the estimation error (ξ̂ − ξ) to zero as ε approaches zero.
However, this process results in a large overshoot for a very limited time in the initial
transient phase before the estimation error sharply decays to zero. This overshooting
phenomenon is called peaking and is usually overcome by saturating the observer
for a very brief initial interval during operation.

The output feedback controller incorporating the HGO (34) for 3-sliding feedback
controller is given as:

u = −mL(x1)(a + x1)
2

Loax3

(
k

m
ẑ3 − Lo L1ax2x2

3

mL(x1)(a + x1)3 − Loa Rx2
3

mL(x1)(a + x1)2 − a2 ẑ3

−a1 ẑ2 − αsign

(
¨̂s + 2

(| ˙̂s|3 + ŝ2) 1
6 sign

( ˙̂s + |ŝ| 2
3 sign(ŝ)

)))
(36)
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This output feedback controller is applied to the original nonlinear system
represented in strict feedback normal form. The inclusion of HGO recovers the
performance of the full state feedback controller and, by suitable choice of gains,
allows the output feedback to achieve semi-global asymptotic stabilization over a
domain of interest.

3.3.1 Theorem 2

Consider the closed loop system comprising of the plant (5) and the output feedback
controller (36). Suppose the origin of the closed loop system under state feedback
control (32) is asymptotically stable and R is its region of attraction. Let S be any
compact subset in the interior of R and Q be any compact subset of Rρ . Then

• There exists ε∗
1 > 0 such that for every 0 < ε ≤ ε∗

1 , the solutions of the closed
loop system (under state feedback X (t) and under output feedback (x̂(t))), starting
in S × Q, are bounded for all t > 0.

• Given any μ > 0, there exists ε∗
2 > 0 and T2 > 0, both dependent on μ, such that,

for every for every 0 < ε ≤ ε∗
2 , the solutions of the closed loop system, starting

in S × Q, satisfy

||X (t)|| ≤ μ ||x̂(t)|| ≤ μ ∀ t ≥ T2

• Given any μ > 0, there exists ε∗
3 > 0, dependent on μ, such that, for every for

every 0 < ε ≤ ε∗
3 , the solutions of the closed loop system, starting in S × Q,

satisfy
||X (t) − Xr (t)|| ≤ μ ∀ t ≥ 0

where Xr is the solution of system under (32) starting at X (0).
• If the origin of system under (32) is exponentially stable and that f (z) is continu-

ously differentiable in some neighborhood of X = 0, then there exists ε∗
4 > 0 such

that, for every 0 < ε ≤ ε∗
4 , the origin of the closed loop system is exponentially

stable and S × Q is a subset of its region of attraction.

3.3.2 Proof

The proof follows the general outline as given in [Hassan (2002), Sect. 14.5.2] with
appropriate modifications as per the problem under consideration. In particular, proof
of the theorem establishes that the output feedback controller recovers the perfor-
mance of the state feedback controller for sufficiently small ε. The performance
recovery is evident in itself in three points. Firstly, recovery of exponential stability.
Second, recovery of region of attraction in the sense that we can recover any compact
set in its interior. Third, the solution X (t) under output feedback reaches the solution
under state feedback as ε tends to zero.
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Remark 1 It is well known that if the state feedback controller achieves the state
feedback controller achieves global or semi-global asymptotic stabilization with
local exponential stability, then for sufficiently small ε, the output feedback controller
achieves semi-global stabilization with local exponential stability.

4 Performance Analysis

In this section a detailed analysis of the First Order Sliding Mode Controller and the
Higher Order Sliding Controllers is carried out and simulation results are shown to
demonstrate the performance of different controllers.

4.1 First Order Sliding Mode Controller

The controller ν = −γ sat
( s

ε

)
is called the First Order Sliding Mode Control.

• Transient Performance/Reaching Phase: The First Order SMC behaves poorly
in the reaching phase and the system trajectory exhibits large overshoots before
reaching the sliding manifold as shown in Fig. 3. But the controller (Fig. 4) guar-
antees that the trajectory reaches the sliding manifold (s = 0) in finite time and
once on the manifold it cannot leave it as V̇ is negative definite.

• Sliding Phase: Inside the boundary layer |s| ≤ ε the control reduces to the linear
feedback law ν = −γ sat

( s
ε

)
and the closed loop system can be stabilized by

suitable choice of the gain γ , to be large enough to overcome the max bound ρ

of the perturbation term ueq i.e. γ > ρ + βo, βo > 0. The parameter ε is a small
constant i.e. 0 < ε ≤ 1 defined as the maximum bound of the sliding manifold on
either side of origin. So we get ultimate boundedness with an ultimate bound that

Fig. 3 First order sliding mode control results
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Fig. 4 Control input for sliding mode control

Fig. 5 Sliding phase results For ε = 0.001(chattering)

can be reduced by decreasing ε i.e. ε → 0.

• Chattering Analysis and Stability: The controller is a Continuous Sliding Mode
Controller using the sat approximation of the discontinuous sign function i.e.
ν = −γ sat

( s
ε

)
to cater the “chattering” introduced in the system due to switching

delay between the sign of s, which causes unwanted oscillations in the system as
shown in Fig. 5. The value of ε needs to be carefully selected because when ε

is reduced to zero, the continuous sliding controller approaches a discontinuous
sliding controller, i.e. as ε → 0 ⇒ sat (s) → sign(s) and chattering starts to
appear in the system and for the system with input defined as:

u = ν = Ri = i

it causes a continuous drawl of current from the source. So, with a proper choice
of ε close to zero, the controller achieves ultimate boundedness as all trajectories
starting off the manifold |s| ≤ ε reach it in finite time and stay there onwards.
Then by choice of a high enough controller gain γ the controller achieves semi-
global asymptotic stability for the system. The simulation values for the controller
ε = 0.01 and γ = 10 are based on the same constraints discussed above for
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Fig. 6 Sliding phase results For ε = 0.01(chattering removed)

γ and ε, assuring a reasonable reaching phase time and chattering removal as
shown in Fig. 6.

4.2 Higher Order Sliding Mode Controller

As discussed earlier, the main problem is that when the relative degree ρ of the control
variable (s) is greater than one, the control methods, to completely remove chattering,
generally require the knowledge of up to (ρ − 1) derivatives of s. For the current
system with relative degree ρ = 3, the usually unavailable quantities ṡ and s̈ need
to be incorporated for a controller design that completely removes chattering. Using
the 2-sliding controller (Fig. 7) for the system also does not completely eliminate
chattering as shown in Fig. 8, and the recommended practice is to use a 3-sliding
controller.

Fig. 7 Output under 2-sliding controller
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Fig. 8 Control input for 2-sliding controller

Fig. 9 Output under 3-sliding controller with varying ε

• Reaching Phase Elimination Time: Using the 2-sliding Twisting Controller and
3-sliding Controller the time required for the system trajectory to reach the sliding
surface (s) is considerably reduced as compared to first order sliding mode con-
trol results (Levant 2012). With proper choice of parameters β1, . . . , βr − 1 the
convergence time is reduced approximately κ(α) times where 0 < κ ≤ 1 under
the constraints defined in (29–30). This is evident from the simulation results that
the 3-sliding controller results in much faster global finite time convergence to the
origin and the overall control is bounded as shown in Fig. 9.

• Implementation of the 3-sliding Controller: The 3-sliding controller implementa-
tion requires the availability of the sliding manifold and the knowledge of up to
(ρ−1) derivatives i.e. s, ṡ and s̈ at all times. The usually unavailable quantities s, ṡ
and s̈ need to be incorporated for the controller design that completely removes
chattering. With the introduction of these variables as auxiliary variables in the
control design procedure, the controller effectively takes care of the discontinuities
in the sliding variable (s) and removes the vibrations (harmonics) that may arise
due to its higher derivatives, as in the case of first order sliding mode controller. As
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Fig. 10 Control input for 3-sliding controller

a result the controller is a much smooth and bounded function of time in Lipschitz
sense rather than a bounded but “infinite switching frequency/relay” controller, as
shown in Fig. 10.

• Stability: The 3-sliding controller results are comparable with a full-state back-
stepping controller, both very different in design parameters (differential inequali-
ties instead of parametric uncertainties) and resulting performance (Levant 1999).
Offering much higher accuracy and finite time convergence for complex non-linear
systems, (systems with finite escape time) the proposed 3-sliding controller fea-
tures a globally asymptotically stable closed loop system and in some cases locally
exponentially stable systems. It is evident from Fig. 9 that the closed loop non-
linear system (5) is stabilized and output is successfully regulated to the desired
reference.

• Chattering Removal: The above mentioned technique of including the higher deriv-
atives of the sliding manifold in the control design procedure also removes the
chattering effect from the system even under very small HGO gain ε values (see
for ε = 0.005 in Fig. 9). When we design the controller based on knowledge
of higher derivatives of the sliding variable (s) and cater for the higher deriv-
ative terms, the unwanted oscillations (chattering) introduced in the system are
considerably reduced. With the proper handling of HOSMC design constraints,
chattering is completely removed and we get a local 3-sliding controller rather than
the relay controller u = −γ sign(s) while achieving a 3rd order sliding precision
with respect to τ i.e. O(τ 3) (Levant 2010). The inclusion of HGO for estimation
of unmeasured system states in the design of output feedback controller does not
degrade the controller performance or stability. The sliding manifold (s) and its
derivatives vanish in finite time as shown in Fig. 11.
To show the controller efficiency and the performance recovery of the State
Feedback Controller using the Output Feedback controller based on High Gain
Observer, the observer convergence speed control parameter ε was varied from



Robust Output Feedback Stabilization of a Magnetic Levitation System … 249

Fig. 11 Sliding manifold and higher derivatives

Fig. 12 Output under constraint control input using 3-sliding controller

0.1 to 0.005 to show the difference in the performance recovery. Other simulation
parameters taken are: μ = 0.01, VM = 50, Vm = 15, �m = 0.5, �M = 1, a1 =
a2 = 1  = 2, so = Iss .

• Discontinuity Regularization/Constraint Control: The Transient phase overshoot
called peaking occurring due to the inclusion of HGO is reduced by putting some
constraint on control input (regularizing the discontinuity), as per limits, using sat
function (Fridman and Levant 2002), with the limits [−2.5 Iss]. Due to this, the
overshoot magnitudes are considerably reduced without degrading the controller
performance as shown in Fig. 12. The control input becomes:

u = sat

[
− mL(x1)(a + x1)

2

Loax3

(
k

m
ẑ3 − Lo L1ax2x2

3

mL(x1)(a + x1)3 − Loa Rx2
3

mL(x1)(a + x1)2

−a2 ẑ3 − a1 ẑ2 − αsign

(
¨̂s + 2

(| ˙̂s|3 + ŝ2) 1
6 sign

( ˙̂s + |ŝ| 2
3 sign(ŝ)

)))]
(37)
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Fig. 13 Output using 3-sliding controller under parametric uncertainties

Table 2 Varied system
parameters

m 0.11kg

k 0.011 N/m/s

g 9.81 m/s2

a 0.05 m

Lo 0.011 H

L1 0.02 H

R 1.1 �

• Robustness Under Parametric Variations: To verify the robustness properties of the
proposed 3-sliding controller, the system nominal parameters were perturbed by
10–20% while keeping the parameters of the controller unchanged. The controller,
to stabilize the system at desired reference, has to exert some extra effort but the
desired reference is achieved as shown in Fig. 13. The new control input, using
nominal system parameters becomes:

u = sat

(
1

ĝ(z)

( − f̂ (z) − a2 ẑ3 − a1 ẑ2 − ν
))

(38)

The new parameters for system are given in Table 2.

5 Conclusion

We focused on the problem of robust output feedback stabilization of a Magnetic
Levitation System using Higher Order Sliding Mode Control (HOSMC) strategy.
The traditional (first order) sliding mode control (SMC) design tool provides for
a systematic approach to solving the problem of stabilization and maintaining a
predefined (user specified) consistent performance of a minimum-phase nonlinear
system in the face of modeling imprecision and parametric uncertainties. Recently
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reported variants of SMC commonly known as Higher Order Sliding Mode Control
schemes have gained substantial attention since these provide for a better transient
performance together with robustness properties.

We proposed an output feedback controller that robustly stabilizes the closed-loop
system with an added objective of achieving an improvement in the transient per-
formance. The proposed control scheme incorporates a higher-order sliding mode
controller (HOSMC) to solve the robust semi-global stabilization problem in pres-
ence of a class of somewhat unknown disturbances and parametric uncertainties.
The state feedback control design is extended to output feedback by including a high
gain observer that estimates the unmeasured states. It is shown that by suitable choice
of observer gains, the output feedback controller recovers the performance of state
feedback and achieves semi-global stabilization over a domain of interest. A detailed
analysis of the closed-loop system was given highlighting the various factors that
lead to improvement in transient performance, robustness properties and elimination
of chattering. Simulation results were included and a performance comparison was
given for the traditional SMC and HOSMC designs employing the first, second and
third order sliding modes in the controller structure.

A detailed performance analysis showed that the first order SMC was able to
stabilize the system at the desired reference point. However, the transient performance
of the same was degraded and showed large overshoot, and a slower reaching phase
when compared to that of the second-order and third-order SMC, which showed
superior transient performance, along with better robustness properties and removal
of chattering.

5.1 Future Work

For future work the authors recommend the inclusion of some other observer design
technique e.g. an Exact Differentiator or the Internal Model based approach to handle
the output feedback control problem for the system. The concept can be extended to
Output Regulation of the nonlinear system using the robust HOSMC algorithm based
conventional/conditional compensator which may result in further improvement of
transient performance and ability to asymptotically track unknown references while
rejecting disturbance signals, both produced by some autonomous external system.
A natural extension of the HOSMC framework is the control of non-minimum phase
systems directly using high gain feedback or incorporate an extended high gain
observer and design output feedback control. The incorporation of higher order slid-
ing strategy in controller design opens new dimensions towards robust control design
and performance enhancement.
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Design and Application of Discrete Sliding
Mode Controller for TITO Process Control
Systems

A.A. Khandekar and B.M. Patre

Abstract Selection of the proper control system for the multi-variable systems with
time delay is a challenging task because of the interacting dynamic behaviour of sys-
tem variables. Till date most of the multi-variable processes are controlled using
proportional-integral-derivative (PID) controllers. The PID controllers for multi-
variable systems are either having centralized (full structured) or decentralized (diag-
onal) structure. The design procedure for centralized controllers is very complicated
as the loop controllers cannot be designed independently. The decentralized con-
troller design procedure either requires detuning or decoupling of the interactions.
The controllers designed with detuning do not perform well for larger interactions.
Thus decentralized PID controller with decoupler is the better choice with simple
design procedure. In the design procedure for decentralized controllers, initially the
decoupler is designed and decoupled subsystems are obtained. Then for each subsys-
tem, the single loop controller is designed and the control signal is applied through
decoupler to track the system variables. From the available literature, it can be seen
that most of the PID design methods are based on linearized reduced order models.
Due to model order reduction, the parametric uncertainty (plant-model mismatch) is
introduced, which is not taken into consideration in the design process. Hence the
designed PID controller is less robust and even may lead to instability especially in
presence of time delay in the system model. Sliding mode control (SMC) is one of
the robust control strategy with inherent property of invariance to parametric uncer-
tainty. The continuous time SMC can produce the best response only for very small
sampling time in implementation since the implementation sampling time is not
taken into account in its design procedure. The discrete time SMC uses the discrete
time model of the system and hence considers the sampling time in the design steps.
However, it produces chattering in the control signal because of big sampling steps.
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This limitation can be overcome by designing DSMC with convergent quasi-sliding
mode. In this chapter, the discrete convergent quasi-sliding mode is presented for
interacting two input two output (TITO) systems with time delay. The ideal decoupler
is designed to determine the non-interacting subsystem models for each loop. Then
each subsystem is reduced to all pole third order plus delay time (TOPDT) model
using four point fitting of frequency response. The separate DSMCs are designed for
each loop using discrete time state model of the corresponding reduced subsystem.
The control signals generated by the DSMCs are applied to the system through the
decoupler. The stability condition for the presented controller is derived using Lya-
punov stability approach. To validate the performance of the presented controller two
well studied systems are simulated. To show the effectiveness of the prosed strategy,
its performance is compared with the existing decentralized PID controllers.

1 Introduction

Many industrial chemical processes have multiple input multiple output (MIMO)
configuration with interactions among the variables. Also these systems have non-
linear dynamics with time delays. Generally the models obtained for these systems
are of the linearized form. The controller design methods reported in the literature can
be broadly classified as centralized (full structure) and decentralized (diagonal) con-
trollers (Maghade and Patre 2012). In case of centralized multi-variable controllers
the loop controllers interact with each other and hence the tuning for individual loop
controller can not be done independently which complicates the design procedure.
The decentralized controller has independent loop controllers and hence they can
be designed and/or tuned separately. The decentralized controllers can be designed
by detuning method (Luyben 1986), effective open loop process method (Xiong and
Cai 2006) or decoupler methods (Wang et al. 2000; Tavakoli et al. 2006; Nordfeldt
and Hagglund 2006).

In detuning methods, the interactions are ignored and the diagonal controllers are
designed for the diagonal elements in process transfer function matrix. The diagonal
controllers are then detuned by the detuning factor obtained from the interaction
measure like relative gain array (RGA). The only advantage of this method is its
simplicity. But it produces the loop performance highly affected by the interactions. In
effective open loop process method, the effective transfer functions of the individual
loops are obtained considering the interactions among the loops and the controllers
are independently designed for every loop. Even in this method, the performance may
be poor due to the effect of interactions since the interaction is considered in controller
design but they are not decoupled in the implementation. In decoupler methods, the
decoupler is designed to decouple the interactions and the decoupled subsystems are
formed. For every decoupled subsystem, the controller is designed independently
and is applied to the process through the decoupler. Hence the control signal is
outcome of controller plus decoupler system. This highly reduces the interactions in
the final output response. Several dynamic decoupler design methods are reported
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in the literature including that of (Wang et al. 2000; Tavakoli et al. 2006; Nordfeldt
and Hagglund 2006). The static decoupler also can be designed considering only
steady state interaction (Chen and Peng 2005) however it removes the interactions
only at steady state degrading the dynamic performance. The main advantage of
the decoupler method is that allows the use of the single input single output (SISO)
controller designed methods which adds great simplicity in the design procedure.

In most of the cases proportional-integral-derivative (PID) controllers are emplo-
yed due to their simplicity (Wang et al. 2000; Tavakoli et al. 2006; Nordfeldt and
Hagglund 2006). Generally PID controller design methods are based on reduced
ordered model (Astrom and Hagglund 1995; Wang et al. 1999; Malwatkar et al.
2009). However the performance of PID controllers is less effective for higher
order processes since the parametric uncertainty introduced due to plant-model mis-
match caused by modelling errors and linearization, model order reduction degrades
the overall system performance as these uncertainties are hardly considered in
the design of linear controllers like PID. During the past few decades, the robust
control system design for plant-model mismatch processes have received consid-
erable attention in control community. Among the established design approaches
for robust process control, sliding mode control (SMC) plays an important role
because it not only can stabilize certain and uncertain systems but also provide
the capability of disturbance rejection and insensitivity to parameter variations
(Utkin 1992; Camacho and Smith 2000). The continuous time sliding mode con-
trol (CSMC) has already received notable attention within the control community
because of the flexibility of implementation, a large class of continuous systems
are controlled by digital signal processors and high end micro-controllers. The
continuous-time controller produces a good performance only for very small sam-
pling period of actual implementation since it does not take into account the sam-
pling period in the design procedure (Garcia et al. 2005). To analyze the effect of
sampling time, discrete-time sliding mode control (DSMC) is studied in literature
(Milosavljevic 1985; Gao et al. 1995; Golo and Milosavljevi 2000). The DSMC con-
siders sampling period in the design phase and therefore can give better performance,
even if the sampling period is considerably large which is a common case in case
very slow systems like chemical processes.

Almost all process control systems have time delay in their dynamics and very
few SMC design methods have considered time delay in the design methodology. In
the literature, the linear matrix inequality technique was adopted for sliding mode
control method to handle a class of uncertain time-delay systems (Hu et al. 2000).
The approach has potential to deal with uncertainties and state delay, but the issue
of input delay was not considered as a whole. The feasibility of the sliding surface
combined with a predictor to compensate for the input delay of the system was
investigated in the work reported in (Chen and Peng 2005; Roh and Oh 1999, 2000).
Camacho et al. developed an internal model sliding mode controller with smith
predictor for chemical processes described by FOPDT dynamics (Camacho et al.
2007). Khandekar et al. (2013) proposed DSMC for the tracking of a general class
of higher order time delay systems. In this work, the delay was considered in the
system output.
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Thus, from the existing results in the literature it can be seen that designing a
controller for interacting TITO systems with time delay to have very less effect of
interaction and robust performance against parametric uncertainty is a difficult task.
Particularly for the systems with considerably large time delay, the linear controllers
like PID controller may not be capable of handling the parametric uncertainty. This
motivate the authors to design the robust discrete sliding mode controller to tackle
with this difficulty.

In this chapter a decentralized DSMC is proposed for two input two output (TITO)
systems, an ideal decoupler (Nordfeldt and Hagglund 2006) is used to decouple the
interactions. Then an optimal sliding surface combined with a delay ahead predictor
is used to design DSMC for the decoupled subsystems. A quadratic performance
index is minimized to design the optimal sliding surface. Stability condition of the
closed-loop system is derived using Lyapunov approach. Two well studied simulation
examples are considered to show the effectiveness of the proposed controller.

2 System Structure and Ideal Decoupler

The structure of the decentralized MIMO control system is as shown in Fig. 1.
Consider a MIMO system with a transfer function matrix

G(s) =

⎡
⎢⎢⎢⎣

G11(s) G12(s) · · · G1n(s)
G21(s) G22(s) · · · G2n(s)

...
...

...
...

Gn1(s) Gn2(s) · · · Gnn(s)

⎤
⎥⎥⎥⎦ (1)

and the decoupler of the form

D(s) =

⎡
⎢⎢⎢⎣

D11(s) D12(s) · · · D1n(s)
D21(s) D22(s) · · · D2n(s)

...
...

...
...

Dn1(s) Dn2(s) · · · Dnn(s)

⎤
⎥⎥⎥⎦ (2)

Fig. 1 Structure of the decentralized MIMO control system
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The decoupled multi-loop SISO structure is given by

Gd(s) = G(S)D(S), (3)

where,

Gd(s) =

⎡
⎢⎢⎢⎣

Gd11(s) 0 · · · 0
0 Gd22(s) · · · 0
...

...
...

...

0 0 · · · Gdnn(s)

⎤
⎥⎥⎥⎦

Decoupler in Eq. (3) can be represented with little modification in (Nordfeldt and
Hagglund 2006) as,

D(s) = Ad j[G(s)]K (s) (4)

where K (s) is a diagonal matrix. The elements kii (s) are obtained such that common
pole-zero, common dead time and smallest gain from i th column of Ad j[G(s)] are
removed and their inverse is included in kii (s).

Each decoupled subsystem Gdii (s) is reduced to third order plus delay time
(TOPDT) all pole structure using four point least square fitting of frequency response
of the decoupled subsystem to get (Malwatkar et al. 2009)

Giir (s) = b0i i

s3 + a1i i s2 + a2i i s + a3i i
e−tdii s (5)

The frequency response of the higher order subsystem and delay free part of reduced
TOPDT subsystem in Eq. (5) are equated at four different frequencies. The fre-
quencies where phase of the higher order system is −π/4, −π/2, −3π/4 and −π

are considered for frequency response fitting and the delay of the reduced TOPDT
model is obtained from the phase difference between higher order model and delay
free TOPDT model at the frequency where the phase of the higher order model is
−π/2.

For each subsystem with the transfer function in Eq. (5) the state model is obtained
in the form

ẋ(t) = Ax(t) + Bu(t − td),

y(t) = x1(t) (6)

where A ∈ �3×3, B ∈ �3×1, C ∈ �1×3 are the continuous time state space matrices,
x(t) is 3 × 1 state vector and u(t) and y(t) represent the control input and system
output respectively, while td is the delay time.

The continuous time state model in Eq. (6) is discretized to get discrete time state
model as
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x(k + 1) = Gx(k) + Hu(k − d),

y(k) = Cx(k) = x1(k) (7)

G ∈ �3×3, H ∈ �3×1, C ∈ �1×3 represent discrete time state space matrices, x(k)

is state vector. The term d is the number of delay samples. The matrices G and H in
Eq. (7) are computed as,

G = eAT ,

H =
⎡
⎣

T∫
0

eAt dt

⎤
⎦ B (8)

where T is the sampling period.

3 DSMC Design and Implementation

A continuous time sliding mode is a first order sliding mode if and only if the sliding
surface s(t) obeys the two conditions: s(t) = 0 and s(t)ṡ(t) < 0 when s(t) �= 0,
where s(t) is sliding surface. In CSMC, the controller output is updated continuously
and therefore the sliding function and its first time derivative have opposite sign,
which is the fundamental condition for the existence of sliding mode. The aim of the
SMC is to force the control system to move on the sliding surface s(t) = 0 with the
help of equivalent control and to maintain it on the sliding surface by discontinuous
switching control, till error converges to zero.

A first order discrete time approximation of the above mentioned fundamental
condition of CSMC is

s(k)[s(k + 1) − s(k)] < 0. (9)

The condition in Eq. (9) results in chattering due to the enlargement of sampling
step and hence this condition is necessary but not sufficient. The following condition
guaranties a convergent quasi sliding mode (Mihoub et al. 1991, 2009),

|s(k + 1)| < |s(k)|. (10)

3.1 Delay Ahead Predictor

To handle with uncertainty due to plant-model mismatch, the delay ahead predictor
is constructed by removing delay from the state model in Eq. (7) as (Chen and Peng
2005; Khandekar et al. 2012),
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x∗(k + 1) = Gx∗(k) + Hu(k),

y∗(k) = x∗
1 (k). (11)

To improve the accuracy of state prediction, especially in face with modelling errors
and unmeasured disturbances, the following corrections are made for actual imple-
mentation

x̂1(k + d|k) = x∗
1 (k) + yp(k) − x1(k)

x̂ j (k + d|k) = x∗
j (k), j = 2, 3. (12)

where yp(k) is the output of actual plant. The delay ahead predictor-corrector com-
bination in Eqs. (11) and (12) is analogous to the Smith predictor used for dead time
compensation for the transfer function model.

3.2 Equivalent and Switching Control Law of DSMC

The sliding surface is chosen as

s(k) = K
[
x∗(k) − xd

]
, (13)

where K = [k1 k2 k3] is the tuning parameter matrix and xd is the desired state
vector. The sliding surface at (k + 1)th sample is

s(k + 1) = K
[
x∗(k + 1) − xd

]
s(k + 1) = K Gx∗(k) + K Hu(k) − K xd . (14)

The equivalent control law that forces the system to reach the sliding surface is
obtained by equating s(k + 1) in Eq. (14) to zero and is given by,

ueq(k) = −(K H)−1[K Gx∗(k) − K xd ]. (15)

The robustness is ensured by the addition of a discontinuous term (sign of sliding
function s(k)) in the control law as

usw(k) = −ksws(k)sign(s(k)). (16)

to get total control law as
u(k) = ueq(k) + usw(k) (17)
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3.3 Stability Condition

To evaluate the stability condition of DSMC, direct Lyapunov stability analysis is
used. The positive definite Lyapunov function can be chosen as

V (k) = |s(k)| (18)

The Lyapunov function at instant k + 1 is

V (k + 1) = |s(k + 1)| (19)

which gives
�V (k) = |s(k + 1)| − |s(k)| (20)

For the system to be stable, right hand term in Eq. (20) must be a negative definite
function. This results into |s(k + 1)| < |s(k)| which is the reaching condition of
DSMC. From Eqs. (13)–(17), (20) we get,

�V (k) = |K Husw(k)| − |s(k)| (21)

which gives the stability condition as

|K Husw(k)| < |s(k)|,
|K Hksw| < 1 (22)

However, the discontinuous signum function produces chattering which can be
reduced by replacing term sign of s(k) by tanh function with boundary layer β.
Also, the delay ahead predicted state x∗(k) is replaced by corrected state x̂(k) to get
the final control law

u(k) = −(K H)−1[K Gx̂(k)] − ksws(k)tanh(s(k)/β). (23)

3.4 Optimization of Sliding Surface

To optimize the sliding surface, the tuning parameter matrix K in the sliding surface
is computed by minimizing the steady state quadratic performance index given by,

J =
∞∑

k=0

xT k Qx(k) + uT (k)Ru(k) (24)
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where Q is any 3 × 3 positive definite real symmetric matrix and R is any positive
constant of designer’s choice. Minimization of Eq. (24) results into (Ogata 2003)

K = 2R−1 H T (GT )−1[P − Q] (25)

where, P is another positive definite real symmetric matrix obtained by solving the
equation

P = Q + GT P[I + H R−1 H T P]−1G (26)

where I is an identity matrix of dimension 3 × 3. The sliding surface obtained thus
is optimal with respect to performance index in Eq. (24).

4 Simulation Examples

The performance of proposed controller is validated and compared with other con-
trollers for two well studied examples in the literature to show the effectiveness
of the proposed controller. The controller is designed and compared with the PID
controllers in the literature. MathworksTM MATLAB 7.0.1 is used for simulation.

4.1 Example: Wood Berry Distillation Column

Wood and Berry introduced the transfer function model of a pilot-scale distillation
column, which consists of an eight-tray plus re-boiler separating methanol and water
(Wood and Berry 1973). The Wood-Berry binary distillation column process is a
multi-variable system that has been studied extensively. The process has the transfer
function matrix as

G(s) =
[ 12.8

16.7s+1 e−s −18.9
21s+1 e−3s

6.6
10.9s+1 e−7s −19.4

14.4s+1 e−3s

]
.

The term K (s) in Eq. (4) is

K (s) =
[ −1

6.6 e3s 0
0 1

12.8 es

]
.

The decoupler determined using Eq. (4) is

D(s) =
[ 2.94

14.4s+1
1.477
21s+1 e−2s

1
10.9s+1 e−4s 1

16.7s+1

]
.
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The Decoupled subsystems are

Gd11(s) = 37.63

(16.7s + 1)(14.4s + 1)
e−s − 18.9

(21s + 1)(10.9s + 1)
e−7s,

Gd12(s) = 0,

Gd21(s) = 0,

and

Gd22(s) = 9.75

(10.9s + 1)(21s + 1)
e−9s − 19.4

(14.4s + 1)(16.7s + 1)
e−3s .

The reduced TOPDT models of Gd11(s) and Gd22(s) are

G11r (s) = 0.2196

s3 + 1.527s2 + 0.3214s + 0.01108
e−0.3s,

G22r (s) = −0.0472

s3 + 0.8915s2 + 0.1375s + 0.004767
e−0.4s .

The continuous time state model matrices for G11r (s) are

A11 =
⎡
⎣ 0 1 0

0 0 1
−0.01108 −0.3214 −1.5270

⎤
⎦ , B11 =

⎡
⎣ 0

0
0.2196

⎤
⎦ .

The discrete time state model matrices obtained using zero order hold discretization
for sampling period of 0.1 s are

G11 =
⎡
⎣ 1.0000 0.0999 0.0048

−0.0001 0.9985 0.0927
−0.0010 −0.0298 0.8569

⎤
⎦ , H11 =

⎡
⎣ 0.0000

0.0010
0.0204

⎤
⎦ .

The matrix Q and R in Eq. (24) are chosen as,

Q =
⎡
⎣ 0.1 0 0

0 1 0
0 0 1

⎤
⎦ , R = 1

The sliding surface parameter matrix K determined using Eq. (25), the switching
gain ksw in Eq. (23) and boundary layer constant β in tanh function are

K = [
0.2668 1.2516 0.8381

]
, ksw = 0.5, β = 0.1
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respectively. Similarly for for G22r (s) the continuous time state model matrices are

A22 =
⎡
⎣ 0 1 0

0 0 1
−0.0048 −0.1375 −0.8915

⎤
⎦ , B22 =

⎡
⎣ 0

0
−0.0472

⎤
⎦ .

The discrete time state model matrices for sampling period of 0.1 s are

G22 =
⎡
⎣ 1.0000 0.1000 0.0049

−0.0000 0.9993 0.0957
−0.0005 −0.0132 0.9141

⎤
⎦ , H22 =

⎡
⎣ 0.0000

−0.0002
−0.0045

⎤
⎦ .

The matrix Q and R in Eq. (24) are chosen as,

Q =
⎡
⎣ 0.1 0 0

0 50 0
0 0 10

⎤
⎦ , R = 1

The sliding surface parameter matrix K determined using Eq. (25), the switching
gain ksw in Eq. (23) and boundary layer constant β in tanh function are

K = [−0.2266 −5.4099 −5.5606
]
, ksw = 0.5, β = 0.1

respectively.
The proposed controller is compared with the Tawakoli et al. (2006) decentralized

PI controller, PI and PID controllers proposed by Maghade and Patre (2012). In
both control strategies the decoupler given in Tavakoli et al. (2006) is used to get
the decoupled subsystems. Then the decoupled subsystems are reduced to first order
plus delay time (FOPDT) model and controllers are designed using frequency domain
approach. The desired gain and phase margins are specified to obtain the controller
parameters. In this example gain and phase margin specification for designing these
controllers are chosen 3d B and 60◦ respectively.

The decoupler determined by Tavakoli et al. (2006) and Maghade and Patre (2012)
for the Wood Berry distillation column using methodology in Tavakoli et al. (2006) is,

DT (s) =
[

1 1.477(16s+1)
21s+1 e−2s

0.3402(14.4s+1)
10.9s+1 e−4s 1

]
.

The resulting decoupled subsystems are

Gd11T (s) = 12.8

(16.7s + 1)
e−s − 6.426

(21s + 1)(10.9s + 1)
e−7s,
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Gd12T (s) = 0,

Gd21T (s) = 0,

and

Gd22T (s) = 9.75(16.7s + 1)

(10.9s + 1)(21s + 1)
e−9s − 19.4

(14.4s + 1)
e−3s .

The reduced FOPDT models of the decoupled subsystems are

G11F O P DT (s) = 6.37

5.411s + 1
e−1.065s,

G22F O P DT (s) = −9.655

4.684s + 1
e−2.157s .

Tawakoli et al. (2006) decentralized PI controller is

GcT (s) =
[

0.41 + 0.074
s 0

0 −0.12 − 0.024
s

]
.

Maghade, Patre’s PI and PID controllers are,

GcM P I (s) =
[

0.4867 + 0.0881
s 0

0 −0.1567 − 0.0304
s

]
.

and

GcM P I D(s) =
⎡
⎣ 0.9733+ 0.0881

s +2.6887s
5.5252s+1 0

0
−0.3134− 0.0304

s −0.8070s
5.1499s+1

⎤
⎦ .

respectively.
To validate the performance proposed controller, unit step change is applied in the

set point of output y1 at time t = 0 and unit step change is applied in the set point of
output y1 at time 150. The system outputs y1 and y2 and the control inputs applied to
process v1 and v2 and sliding surface are shown in Figs. 2 and 3 respectively. From
Fig. 2 it can be seen that the proposed controller produces output responses with less
interaction and overshoot while the responses produced by the other controller are
highly oscillatory with large interactions. Figure 3 shows that the control signals
produced by the proposed controller are very smooth whereas the other controllers
are producing control efforts with sudden jerks which are harmful to the actuating
devices.

To evaluate the performance under parametric uncertainty, 20 % uncertainty is
introduced in gains, time constants and delays of all the transfer functions. The out-
put responses produced by proposed and other controllers are shown in Fig. 4 and



Design and Application of Discrete Sliding Mode Controller … 267

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

y 1

Proposed
Tawakoli et al.
Maghade, Patre PID
Maghade, Patre PI

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

2

Time

y 2

Proposed
Tawakoli et al.
Maghade, Patre PID
Maghade, Patre PI

(a)

(b)

Fig. 2 Output responses. a System output y1 b System output y2

the corresponding control signals are shown in Fig. 5. From Figs. 4 and 5, it can be
seen that under the effect of parametric uncertainty, the performance of the proposed
controller remains almost same whereas the other controllers produce highly oscil-
latory output responses with considerable interactions. The control efforts are also
highly oscillatory. This shows the robustness of the proposed controller.

4.2 Example: ISP Reactor

ISP reactor is another well studied example of TITO systems with considerable
interaction whose transfer function matrix is

G(s) =
[ 22.89

4.572s+1 e−0.2s −11.4
1.807s+1 e−0.4s

4.689
2.174s+1 e−0.2s 5.8

1.801s+1 e−0.4s

]
.
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Fig. 3 Control signals. a Control signal v1 b Control signal v2

The term K (s) in Eq. (4) is

K (s) =
[

e0.2s 0
0 e0.2s

]
.

The decoupler determined using Eq. (4) is

D(s) =
[ 5.8

1.801s+1 e−0.2s 11.64
1.807s+1 e−0.2s

−4.689
2.174s+1

22.89
4.572s+1

]
.

The Decoupled subsystems are

Gd11(s) = 132.762

(4.572s + 1)(1.801s + 1)
e−0.4s + 54.58

(1.807s + 1)(2.174s + 1)
e−0.4s,

Gd12(s) = 0,

Gd21(s) = 0,
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Fig. 4 Output responses under the effect of +20 % parametric uncertainty. a System output y1 b
System output y2

and

Gd22(s) = 132.762

(4.572s + 1)(1.801s + 1)
e−0.4s + 54.58

(1.807s + 1)(2.174s + 1)
e−0.4s,

Thus the decoupled subsystems Gd11(s) and Gd22(s) have same transfer function.
The resulting reduced TOPDT model is

G11r (s) = 142.1

s3 + 5.33s2 + 4.378s + 0.7639
e−0.5s,

The continuous time state model matrices for G11r (s)

A11 =
⎡
⎣ 0 1 0

0 0 1
−0.7639 −4.378 −5.33

⎤
⎦ , B11 =

⎡
⎣ 0

0
142.1

⎤
⎦ .

The discrete time state model matrices obtained using zero order hold discretization
for sampling period of 0.1 s are
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Fig. 5 Control signals under the effect of +20 v1 b Control signal v2

G11 =
⎡
⎣ 0.9999 0.0994 0.0042

−0.0032 0.9815 0.0770
−0.0588 −0.3401 0.5713

⎤
⎦ , H11 =

⎡
⎣ 0.0208

0.5973
10.9348

⎤
⎦ .

The matrix Q and R in Eq. (24) are chosen as,

Q =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , R = 1

The sliding surface parameter matrix K determined using Eq. (25), the switching
gain ksw in Eq. (23) and boundary layer constant β in tanh function are

K = [
0.0781 0.1215 0.0587

]
, ksw = 0.5, β = 0.1

respectively. Since G11r (s) and G22r (s) are equal, the controller for G22r (s) is same
as that for G11r (s)

The proposed controller is compared with the Maghade and Patre (2014) PID
controllers obtained using FOPDT and SOPDT reduced order models of decoupled
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subsystems. In both control strategies the decoupler given in Tavakoli et al. (2006) is
used to get the decoupled subsystems. Then the decoupled subsystems are reduced
into FOPDT and SOPDT models to design the decentralized PID controllers. Both
controllers are designed using dominant pole placement approach.

The decoupler determined by Maghade and Patre (2014) for the ISP reactor using
methodology in Tavakoli et al. (2006) is,

DM (s) =
[

e−0.2s 0.5086(4.572s+1)
1.807s+1 e−0.2s

−0.8085(1.801s+1)
2.174s+1 1

]
.

The resulting decoupled subsystems are

Gd11M (s) = 22.89

(4.572s + 1)
e−0.4s + 9.4110(1.801s + 1)

(1.807s + 1)(2.174s + 1)
e−0.4s,

Gd12M (s) = 0,

Gd21M (s) = 0,

and

Gd22M (s) = 5.8

(1.801s + 1)
e−0.4s + 2.3849(4.572s + 1)

(2.174s + 1)(1.807s + 1)
e−0.4s .

The reduced FOPDT models of the decoupled subsystems are

G11F O P DT (s) = 32.3003

3.4712s + 1
e−0.4107s,

G22F O P DT (s) = 8.1844

1.3595s + 1
e−0.4241s .

The reduced SOPDT models of the decoupled subsystems are

G11SO P DT (s) = e−0.1060s

0.1820s2 + 0.4794s + 0.0396
,

G22SO P DT (s) = e−0.1690s

0.0156s2 + 0.1333s + 0.1222
.

The decentralized PID controllers designed using FOPDT and SOPDT models are

GcM F O P DT (s) =
[

0.0006 + 0.0060
s − 0.0372s 0
0 0.0068 + 0.0449

s − 0.0383s

]
.

and
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Fig. 6 Output responses. a System output y1 b System output y2

GcM SO P DT (s) =
[

0.1092 + 0.0138
s + 0.2426s 0
0 0.0443 + 0.0588

s + 0.0853s

]
.

respectively. To validate the performance proposed controller, unit step change is
applied in the set point of output y1 at time t = 0 and unit step change is applied
in the set point of output y2 at time 30. The system outputs y1 and y2 and the
control inputs applied to process v1 and v2 and sliding surface are shown in Figs. 6
and 7 respectively. From Fig. 6 it can be seen that the proposed controller produces
output responses with less interaction and overshoot while the responses produced
by the other controllers have more overshoot and interactions. Figure 7 shows that
the control signals produced by the proposed controller very smooth whereas the
other controllers produce the control signals that have sudden jerks.

To evaluate the performance under parametric uncertainty, 20 % uncertainty is
introduced in gains, time constants and delays of all the transfer functions. The
output responses produced by proposed and other controllers are shown in Fig. 8 and
the corresponding control signals are shown in Fig. 9. From Figs. 8 and 9, it can be
seen that under the effect of parametric uncertainty, the performance of the proposed
controller remains almost same whereas the performance of other controllers are
degraded. This shows the robustness of the proposed controller.
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5 Discussions

In this section, the performance comparison of the proposed controller with the rep-
resentative PI/PID controllers on the basis of three important parameters; time delay,
parametric uncertainty and interaction is discussed. The time delay is a process para-
meter which makes closed loop responses oscillatory and leads to instability and
the parametric uncertainty deviates the closed loop system dynamics away from the
desired and again may lead to instability if the parametric uncertainty is significant.
The interaction among the system variables causes abrupt changes in control signals
and deviation of one variable from its set-point due to change in the other variable.
Thus for the interacting multi-variable control systems with time delay, a good con-
troller should compensate the time delay, should handle with the parametric uncer-
tainty and should avoid the abrupt changes in control signal in interacting behaviour.
Hence it is important the discuss the controller performances with reference to these
three effects.

In this chapter, two benchmark process models are considered for simulation
study to elaborate the effectiveness and advantages of the proposed controller over the
classical linear PI/PID controllers in presence of time delay and under the influence of
parametric uncertainty, interacting dynamic behaviour. The time delay in ISP reactor
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Fig. 8 Output responses under the effect of +20 % parametric uncertainty. a System output y1 b
System output y2

is very less as compared to Wood and Berry binary distillation column and hence it
can be seen that the PI/PID controllers are producing less oscillatory responses for
ISP reactor as compared to Wood and Berry binary distillation column. However,
the proposed DSMC is producing smooth responses for both the cases. This indicate
that the classical PI/PID controllers can not handle long delays and the DSMC with
delay ahead predictor-corrector can cope-up with the long delays.

If we compare the performances of proposed DSMC and PI/PID controllers with
reference to effect of parametric uncertainty, from simulation results it can be seen
that for both the examples, the output responses resulting from PI/PID controllers are
changing a lot and leading to instability. However, the performance of the proposed
DSMC is almost the same for nominal and uncertain conditions. This indicates
that the DSMC is more capable than PI/PID controllers in handling the parametric
uncertainty. This happens because of inherent property of sliding mode controllers
that they are insensitive to parametric uncertainties.

Again, if we compare the performances with respect to interactions, from the
control signals generated by all controllers in both simulation examples, it can be
seen that the DSMC produces very smooth changes in control signal during the step



Design and Application of Discrete Sliding Mode Controller … 275

0 10 20 30 40 50 60
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time

v 1

Proposed
Maghade SOPDT
Maghade FOPDT

0 10 20 30 40 50 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

v 2

Proposed
Maghade SOPDT
Maghade FOPDT

(a)

(b)

Fig. 9 Control signals under the effect of +20 % parametric uncertainty. a Control signal v1 b
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changes in set-points while PI/PID controllers produce abrupt changes which are
harmful to actuating devices.

In summary, from the simulation results presented in Sect. 4, it can be seen that pre-
sented controller produces far better performance as compared to PI/PID controllers
in terms of output responses and control signals. The output responses contain less
oscillations and interactions with very smooth control efforts. The comments from
the simulation results can be summarized as,

1. The ideal decoupler is the better choice of decoupling the variables as it reduces
the interaction to greater extent.

2. The DSMC designed using delay ahead predictor–corrector tackles the time delay
in very systematic manner and produces good responses.

3. The optimal sliding surface considered in design generates very smooth control
signal which put less jerks on actuating device.

4. The presented controller produces almost same responses for with and without
parametric uncertainty. This proves the robustness of the sliding mode control
strategy.
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6 Conclusion

In this chapter, a simple decentralized discrete sliding mode controller for the
multi-variable systems with time delay is presented. The ideal decoupler is used
to obtain the decoupled subsystems. The each decoupled subsystem is reduced into
all pole TOPDT model by fitting of frequency response at four different frequency
points. The individual DSMC is designed for each subsystem using a delay ahead
predictor and optimal sliding surface. The stability conditions are derived using Lya-
punov stability approach. The output of each DSMC is applied to the original system
through the decoupler. The two well studied examples in the literature are consid-
ered to validate the performance of proposed controller. The performance of the
proposed controller is compared with PI/PID controllers reported in the literature
under nominal plant conditions and also with introducing parametric uncertainty
in the system model. The simulation study shows that the proposed controller pro-
duces the responses with very small interactions and overshoots with smooth control
efforts. Also the performance of the proposed controller remains almost the same for
nominal plant model and uncertain plant model, which indicates its robustness. The
presented DSMC strategy is applicable to linearized all pole minimum phase models
and its extension for linear model with zeros and/or non-minimum phase dynamics,
non-linear models could be the direction for further work.
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Dynamic Fuzzy Sliding Mode Control
of Underwater Vehicles

G.V. Lakhekar and L.M. Waghmare

Abstract Anovel dynamic fuzzy slidingmode control (DFSMC) algorithm is devel-
oped for heading angle control of autonomous underwater vehicles (AUV’s) in hor-
izontal plane. At first, we design single input fuzzy sliding mode control (SIFSMC)
based on mamdani type fuzzy inference system. The SIFSMC offers significant
reduction in rule inferences and simplify the tuning of control parameters. Prac-
tically, it can be easily implemented by a look up table using a low cost advanced
processor. The control structure provides robustness under the influence of parameter
uncertainties and environmental disturbances. Next, we proposed fuzzy adaptation
techniques in SIFSMC algorithm to vary the base of input–output membership func-
tions of fuzzy inference engine. This adaptation law provides minimum reaching
time to track desired trajectory path and also eliminate chattering effects. So far,
the dynamics of AUV’s are highly nonlinear, time varying and hydrodynamic coef-
ficients of vehicle are difficult to be accurately estimated a prior, because of the
variations of these coefficients with different operating conditions. These types of
difficulties cause modeling inaccuracies of AUV’s dynamics. Therefore, Traditional
control techniques may not be able to handle these difficulties promptly and can’t
guarantee the desired tracking performance. On the other hand, sliding mode control
(SMC) is the suitable choice for control of AUV’s, because of its appreciable fea-
tures such as design simplicity with robustness to parameter uncertainty and external
disturbances. But, it has the inherent problem of chattering phenomenon which is
the high frequency oscillations of the controller output and another difficulty in the
calculation of equivalent control. Therefore, overall knowledge of the plant dynamics
is required for this purpose. These problems are suitably circumvented by combin-
ing basic principles of sliding mode and fuzzy logic controllers (FLC’s). With this
scheme, the stability and robustness of the FLC algorithm is ensured by the SMC
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law. By incorporating SMC in to fuzzy logic provides a possible solution to alleviate
the chattering phenomena and to achieve zero steady state error. However, the para-
meters of membership function can’t be adjusted to afford optimal control efforts
under the occurrence of uncertainties. Therefore, DFSMC is designed for regulating
heading angle in horizontal plane, under the influence of parametric uncertainties (as
added mass, hydrodynamic coefficients, lift and drag forces), highly coupled nonlin-
earities and environmental disturbances (like ocean currents and wave effects). This
chapter focuses on design of two supervisory fuzzy systems for tuning of boundary
layer and hitting gain which are the basic parameters of fuzzy sliding mode con-
trol (FSMC) algorithm. The proposed control algorithm is developed from fuzzy
inference module, which has single input as a sliding surface and single output as
control signal. The input–output membership functions are depends on base values
such as boundary layer, equivalent control and hitting gain. The idea behind this
control scheme is to update width of boundary layer and hitting gain, due to which
the supports of input–output fuzzy membership functions are varied with the help of
two fuzzy approximators. Simulation results shows that, the output tracking response
has minimum reaching time and tracking error in the approaching phase along with
chattering problem can also reduced. The performance of proposed control strategy
has been evaluated by comparison with conventional SMC and FSMC. A summary
of fuzzy adaptation schemes in FSMC algorithm are given for enhancing track-
ing performance of AUV’s. Finally, research directions for adopting optimal fuzzy
supervisory techniques in sliding mode based fuzzy algorithm are suggested.

1 Introduction

In recent years, underwater vehicles have beenwidely used for scientific inspection of
deep sea, long range survey, oceanographic mapping, underwater pipeline tracking,
exploitation of underwater resources and so on (Bessa et al. 2008; Guo et al. 2003).
While operating an unmanned underwater vehicle, correct positioning is important
so that the vehicle can move along the desired path as expected. Thus, equipped with
good measuring instruments, tracking sonar, acoustic telemetry modem and auto-
matic control systems, operator can then concentrate on their work without having to
worry about the position control. In addition that, underwater vehicles are difficult to
control, due to nonlinearity, time variance, unpredictable external disturbances such
as the environmental force generated by the sea current fluctuation and the difficulty
in accurately modeling the hydrodynamic effect. The well developed linear con-
trollers may fail in satisfying performance requirements, especially when changes in
the system and environment occur during the AUV operation. Therefore, it is highly
desirable to have a robust control system that has the capacities of learning and
adopting to the unknown nonlinear hydrodynamic effects, parameter uncertainties,
internal and external perturbations such as water current or sideslip effect. So that,
an adaptive PD controller for the dynamic positioning of undersea vehicles working
in close proximity of off-sure structures is introduced by Hoang and Kreuzer (2007).
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In order to deal with parametric uncertainty and highly nonlinearity in the AUV’s
dynamics, many researchers concentrated their interests on the applications of robust
control for underwater vehicles (Sebastian and Sotelo 2007).

SMC is commonly favored as a powerful robust control method for its indepen-
dence from parametric uncertainties and external disturbances under matching con-
ditions. It has been successfully applied for dynamic positioning and motion control
of underwater vehicles, because of its performance insensitivity tomodelmismatches
and disturbances. Yoerger and Slotine (1985) introduced the basic methodology of
using slidingmode control for AUV application, and later Yoerger and Slotine (1991)
developed an adaptive sliding mode control scheme in which a nonlinear system
model is used. They have investigated the effects of uncertainty of the hydrodynamic
coefficients and negligence of cross coupling terms. Goheen and Jefferys (1990)
have proposed multivariable self tuning controllers as an autopilot for underwater
vehicles to overcome model uncertainties while performing auto positioning and
station-keeping. Cristi et al. (1990) proposed an adaptive sliding mode controller for
AUV’s based on the dominant linear model and the bounds of the nonlinear dynamic
perturbations. Fossen and Sagatun (1991) designed a hybrid controller combining
an adaptive scheme and a sliding mode term for the motion control of a remotely
operated vehicle (ROV). Healey and Lienard (1993) suggested multivariable slid-
ing mode autopilot based on state feedback for the control of decoupled model of
underwater vehicles. Da Cunha et al. (1995) developed an adaptive control scheme
for dynamic positioning of a ROV, which is based on a sliding mode controller that
only used position measurements. Lam and Ura (1996) proposed nonlinear con-
troller along with switched control law for noncruising AUV in path following. Lee
et al. (1999) applied a discrete time quasi-sliding mode controller for an AUV with
uncertainties of system parameters and with a long sample interval. Choi and Yuh
(1996) have designed a multivariable adaptive control scheme based on bound esti-
mation for AUV. Walchko and Nechyba (2003) applied sliding mode control with
extended kalman filter estimation for Subjugator as a remotely operated underwater
vehicle. Hoang and Kreuzer (2008) proposed a robust adaptive sliding mode control
for dynamic of an ROV in which prior knowledge of bounds for uncertainties in
parameters was not required.

The main disadvantage of the SMC method is its dependence on system model.
On the other hand, even if the system model is known then implementation of SMC
is possible. In addition, if all the states to be stabilized and controlled then transform
the model into the canonical form. However, these conditions are not met for most
AUV models. In order to overcome this problem, researchers use fuzzy logic for
AUV’s control applications to form a smooth approximation of nonlinear mapping
from system input to output space. FLC is therefore well suited andmainly applied to
nonlinear control problems. (Kato et al., 1993) applied the fuzzy algorithm tomanage
the guidance and control of AUV in both attitude control and cable tracking. Smith et
al. (1994) proposed a fuzzy logic based autopilots for controlling and guiding a low
speed torpedo shaped vehicle. FLC is not depend on a dynamic model, thus allowing
for rapid development of a working design and less sensitivity to the plant variations.
(DeBitetto et al., 1995) applied fuzzy logic to the low speed ballast control problem
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for depth control of unmanned underwater vehicles (UUV’s). Kanakakis et al. (2004)
developed three levels of fuzzymodular control architecture for underwater vehicles,
which comprises of the sensor fusion module, the collision avoidance module and
the motion control module. Ishaque et al. (2010) proposed single input fuzzy logic
controller (SIFLC) for depth and pitch angle regulation of AUV’s, reduces the con-
ventional two-input FLC (CFLC) to a single input single output (SISO) controller.
The SIFLC offers significant reduction in rule inferences and simplify the tuning of
control parameters.

A merit of using fuzzy logic in control methodology is that the dynamics of
controlled systemneednot be fully known.But, rule base of fuzzy controller could not
give the guarantee for the stability and robustness of the control system (Azar 2010).
The fusion of fuzzy logic and sliding mode control gives the benefit from the both
side in nonlinear control technique. Kim and Lee (1995) proposed a fuzzy controller
with fuzzy sliding surface for reducing tracking error and eliminating chattering
problem due to that stability and robustness is improved. Song and Smith (2000)
introduced a sliding mode fuzzy controller that uses pontryagins maximum principle
for time optimal switching surface design and uses fuzzy logic to this surface. Guo
et al. (2003) applied a sliding mode fuzzy controller to motion control and line of
sight guidance of an AUV. Shi et al. (2008) designed to control the AUV’s pitch
motion under the disturbance of ocean current. Xin and Zaojian (2010) introduced
a new type of fuzzy sliding mode control with adaptive disturbance approximation
was proposed to deal with the trajectory regulation of underwater robot.

The parameters of FSMC algorithm such as sliding surface slope, boundary layer
width and hitting gain are adaptively tune by fuzzy supervisory systems for obtaining
better tracking response. A moving sliding surface was designed by Choi et al.
(1994) for fast convergence speedwith rotating or shifting sliding surface is adaptable
to arbitrary initial condition. Ha (1996) introduced a novel sliding mode control
with fuzzy logic tuning for accelerating the reaching phase and overcome from
the influence of unmodeled uncertainties, due to that robust tracking response is
enhanced. Temeltas (1998) employed fuzzy adapted slidingmode controller inwhich
slope of sliding surface and discontinuous gain are tuned by fuzzy logic. Lakhekar
(2012, 2013) presented fuzzy tuning technique used in SMC for rotating and shifting
sliding surface as well as varying approaching angle towards sliding surface, so that
reaching time and tracking error in approaching phase were significantly reduced.

Although combined SMC and FLC techniques have been widely used in various
control fields. But, this techniques seems to be much sparse and the studies of this
topic is sporadic. In that study, the improvement of their output response is possible
by using adaptive technique in control module. Balasuriya and Cong (2003) pro-
posed adaptive fuzzy controller can approximate the unknown system and sliding
mode approach provide strong robustness against model uncertainties and exter-
nal disturbances. Its parameters will be adapted online to utilize control energy
more efficiently. Kim and Shin, (2006) developed autopilot for depth control of
an underwater flight vehicle (UFV) based on adaptive fuzzy sliding mode control
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(AFSMC) with a fuzzy basis function expansion (FBFE) is employed. Sebastion et
al. (2007) address the kinematic variables controller based on pioneering algorithm,
is utilized in control of underactuated snorkel vehicle. In proposed methodology,
adaptive capabilities are provided by several fuzzy estimators, while robustness is
provided by the SMC law. Bessa et al. (2008) presented an adaptive fuzzy control
algorithm based on sliding mode for depth control of an ROV, which is employed for
uncertainty/disturbance compensation with completely eliminating chattering effect.
Later, Bessa et al. (2010) applied AFSMC for identification of external disturbances
to control the dynamic positioning of underwater vehicles with four controllable
degrees of freedom. Marzbanrad (2011) designed a robust adaptive fuzzy sliding
mode control (RAFSMC) algorithm for tracking control of ROV, in which sliding
mode is a powerful approach to compensate structured and unstructured uncertain-
ties. With fuzzy algorithm is used for on-line estimation of external disturbances as
well as unknown nonlinear terms of dynamic model of the ROV. Guo et al. (2012)
presented AFSMC to deal with the depth and heading regulation of spherical under-
water robots. Furthermore, the designed controller can’t only tolerate actuator stuck
faults, but also compensate the disturbances with constant components.

Rapid progress in underwater robotics is steadily affording scientist advanced
tools for ocean explorations and exploitation. However, much work remains to be
done before marine robots can roam the oceans freely, acquiring scientific data on
the temporal and spatial scales that are naturally imposed by the phenomena under
study. To meet these goals, robots must be equipped with systems to steer them
accurately and reliably in the harsh marine environment. For this reason, there has
been considerable interest over the last few years in the development of advanced
methods for marine vehicle motion control such as, point stabilization, trajectory
tracking, and path following control. In typical search or survey scenarios covering
large areas required route stability and good turning performance in the horizontal
plane of motion. Directional control is thus fundamental problem for the AUV’s
motion.

In path following control, linear control systemdesign forAUV in horizontal plane
is often impossible and difficult to achieve desired path trajectory, due to the dynamics
of AUV’s are highly nonlinear and the hydrodynamic coefficients of vehicle are
difficult to estimate accurately, because variations of these coefficients with different
operating conditions. This motivates to break traditional restricting conditions which
are usually added to the AUV’s motion behavior, while in maneuvering. In order to
deal with the unstructured uncertainties in the AUV’s dynamics, so that development
of the adaptive algorithm is required. Therefore, we proposedDFSMC for directional
control in long range survey. Here, two fuzzy approximators are employed to vary
the base of input/output membership functions of FSMC algorithm, so that reaching
time and chattering effects are minimized. The proposed adaptation algorithm is
capable to handle different operating conditions in sea environment.

The outline of this chapter can be summarized as follows: Sect. 2 describes
the dynamic model of AUV in horizontal plane. The design procedure of conven-
tional SMC included in Sect. 3. Then, Sect. 4 presented traditional FSMC algorithm
for steering control of AUV. While, In Sect. 5, DFSMC algorithm is proposed for
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regulating heading angle with updating indirectly width of boundary layer and hit-
ting gain.MATLAB/Simulink based numerical simulations for stabilizing horizontal
position of AUV presented in Sect. 6. Finally, conclusions are given in Sect. 7.

2 Dynamic Model of AUV in Horizontal Plane

Dynamical behavior of an AUV can be described in a common way through six
degree of freedom (DOF) nonlinear equations in the two co-ordinate frames.

M(ν)ν̇ + CD(ν)ν + g(η) + d = τ , η̇ = J(η)ν, (1)

where, η = [x, y, z,φ, θ,ψ]T is the position and orientation vector in earth fixed
frame, ν = [u, v,w, p, q, r]T is the velocity and angular rate vector in body-fixed
frame. M(ν) ∈ �6×6 the inertia matrix (including added mass), CD(ν) ∈ �6×6 is
the matrix of Coriolis, centripetal and damping term, g(η) ∈ �6 the gravitational
forces and moments vector, d denotes the disturbances, τ is the input torque vector
and J(η) is the transformation matrix defined as

J(η) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ 0
−sθ cθsφ cθcφ

1 sφtθ cφtθ
0 0 cφ −sφ

0 sφ/cθ cφ/cθ

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

where, s. = sin(.), c. = cos(.) and t. = tan(.). Underwater vehicles are generally
designed to have symmetric structure; therefore, it is reasonable to assume that the
body-fixed co-ordinate is located at the center of gravity with neutral buoyancy.
Furthermore, for AUVs, whose shape could be depicted as in Fig. 1 that having one
propeller and two stern planes and two rudders to control the vehicle. In horizontal
plane, we assume only yaw motion equation for AUV. For control system design
purposes, the vehicle was assumed to be commanded directly in thrust. In this case,
the simplified horizontal dynamics can be written in dimensional form as,
Yaw motion Equation:

I ṙ = CNνuν + CNν|ν|ν|ν| + CNrur + CNr|r|r|r| + CN ν̇ ν̇ + CNṙ ṙ + δr (3)

For small roll and pitch angles, we have that

ψ̇ = (sin(φ)q + cos(φ)r)/cos(θ) ≈ r (4)
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Fig. 1 Body-fixed frame and earth-fixed frame for AUV

Quadratic damping coefficients can be neglected, because of limited magnitude of
ν and r. In order to determine a horizontal plane dynamics equation of motion, all
unrelated terms (u, ν)will be set to zero, then simplified nonlinear equation of AUV.
A one-degree-of-freedom vehicle model is used herein to describe the horizontal
turning behavior of the AUV. The model includes drag, added mass, and thrust
moment for yaw motion,

I ṙ + br|r| = u + d (5)

where, I denotes the vehicles mass moment of inertia plus the added inertia of
the body about the body-fixed z-axis, r = ψ̇ represents the body-fixed rate for
heading direction, b denotes the square-law damping coefficient, u is the moment
generated by commanding differential thrust force on the left and right thrusters, ψ
is the heading angle required during horizontal turn and d represents the disturbance
caused by ocean currents, modeling errors and unmodeled dynamics. The line-of-
sight guidance procedure is illustrated in Fig. 2. With respect to the dynamic model,
the following physically motivated assumptions can be made:

Assumptions (1): The vehicle’s mass moment of inertia plus the added inertia of
the body about the body-fixed z-axis i.e. I is time varying and unknown, but it is
positive and bounded in between, i.e. 0 ≤ Imin ≤ I(t) ≤ Imax.

Assumptions (2): The square-law damping coefficient b is time varying and
unknown but it is bounded in between, i.e. bmin ≤ b(t) ≤ bmax.
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Fig. 2 Rotation of AUV over heading angle

Assumptions (3): The disturbance effect d(t) is time varying and unknown but it
is bounded by a known function of ψ, r and t, i.e. |d(t)| ≤ δ(t, ψ, r).

Here, the dynamics of an AUV are highly nonlinear and the hydrodynamic coef-
ficients of vehicle are difficult to be accurately identified, because of variations of
these coefficients with different operating environment. For the purpose of simplifi-
cations, in this paper, all unstructured uncertainties are assumed to be bounded by
known constant.

3 Sliding Mode Control

In this section, we state the general concepts of a SMC for steering control of under-
water vehicle in horizontal plane. SMC is well known for its robustness to modeling
errors and insensitivity to parameter variations and nonlinearity. Due to this property
of SMC that made it find many successful practical applications. The first step of
SMC design is to select a sliding surface that models the desired closed loop perfor-
mance in state variable space. In most of cases, the sliding surfaces were selected
as linear hyperplane that resulted in a PD type sliding surface. The second step is to
design a hitting control law such that the system state trajectories are forced towards
the sliding surface and stay on it.

The control problem is to synthesize a control law such that the state ψ traces the
desired trajectory ψd within the tolerance error bound defined by

‖ ψ − ψd ‖≤ γ1, ‖ ψ̇ − ψ̇d ‖≤ γ2, γ1 > 0, γ2 > 0 (6)
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It is assumed that ψd(t), ψ̇d(t) and ψ̈d(t) are well defined and bounded for all time t.
The error signal as e = ψ − ψd and let s(t) be a sliding surface defined in the state
space by the equation s(ψ; t) = 0.

s(ψ; t) =
(

d

dt
+ λ

)
e(t) = ė(t) + λe(t) (7)

Since, λ is a positive constant that determines the slope of the sliding surface.
The process of sliding mode control can be divided in to two phases, namely the
sliding phase with s(t) = 0 and ṡ(t) = 0 and the reaching phase with s(t) �= 0.
Corresponding to the two phases, two types of control law, that is, the continuous
control and discontinuous control can be derived separately. Based on the Lyapunov
theorem, the sliding surface reaching condition is s.ṡ < 0. If a control input u can
be chosen to satisfy this reaching condition, the control system will converge to the
origin of the phase plane. Generally, the sgn(s/φ) is well known and it is a constant
or a slow time varying function for practical physical system. It can also be found
that ṡ increases as u decreases and vice versa. If situation is s > 0, then the increasing
of u will result in s.ṡ decreasing. When the condition is s < 0, s.ṡ will decrease with
the decreasing of u. Based on this qualitative analysis, the control input u can be
designed in an attempt to satisfy the inequality s.ṡ < 0. Now, let the problem of
controlling the heading angle of AUV is governed by Eq. (5), be treated in Filippov’s
way.

The control input to get the state ψ to track a specific time varying desired state
ψd in the presence of model uncertainty on (−b/I)ψ̇|ψ̇| is made to satisfy the fol-
lowing sliding condition

1

2

d

dt
s2 ≤ η|s|, η ≥ 0 (8)

Let us define a control law composed by an equivalent control and a discontinuous
term.

u = bψ̇|ψ̇| − d + Iλ(ψ̇d − ψ̇) − Ksgn(s/φ) (9)

where, K is the hitting gain, its value should be selected as a positive real number
and sgn(.) is the signum function defined as

sgn(x) =
⎧⎨
⎩

−1 if x < 0
0 if x = 0
1 if x > 0

(10)

The discontinuous control term is included to account for the presence of modeling
errors and disturbances. It is discontinuous across the sliding surface s(t), which
leads to a serious and undesirable phenomenon, namely chattering. To avoid this
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phenomenon, a boundary layer is introduced with width. Hence, signum function
can be easily replaced by a saturation function sat(s/φ) that is expressed as follows

sat(s/φ) =
{

s/φ if |s/φ| ≤ 1
sgn(s/φ) otherwise

(11)

The control law is designed in such manner that, the output trajectory reaches to the
sliding surface and slide on it, under that condition it will move towards equilib-
rium point. The controller is developed by combining the variable structure systems
theory and Lyapunov design methods. It possesses the desirable properties of the
sliding mode systems while avoiding unnecessary discontinuity of the control and
thus, eliminates chattering effect by incorporating fuzzy logic in SMC algorithm,
such applications are termed as being indirect. They have the main objective of alle-
viating practical problems encountered in the implementation of SMC’s. Therefore,
use of combined fuzzy logic with SMCs is getting more and more popular. In the
FSMC approach, a special attention is paid to chattering elimination without sys-
tem performance degradation. Furthermore, the prior knowledge necessary about the
system dynamics for controller design is kept to a minimum.

4 Fuzzy Sliding Mode Control

The dynamic behavior of FLC is characterized by a set of linguistic rules based on
expert knowledge. From this set of rules, the inference mechanism of FLC will able
to provide appropriate fuzzy control action. Suppose the rules of fuzzy controller
are based on SMC, and then it is called the FSMC. In this section, we follow the
development established in Kim and Lee (1995) and show that a particular fuzzy
controller is an extension of an SMC with a boundary layer. The fuzzy control rules
can be represented as themapping of the input linguistic variable s to output linguistic
variable uf . Let the traditional FSMC algorithm designed in this article is constructed
from the following IF-THEN rules,

R1 : If s is NL then uf is BB

R2 : If s is NM then uf is B

R3 : If s is ZE then uf is M

R4 : If s is PM then uf is S

R5 : If s is PL then uf is SS

Equivalently, Ri: If s is F
′i
s then uf is F

′i
uf , i = 1, 2,…5.

where, NL is Negative Large, NM is Negative Medium, ZE is Zero, PM is Positive
Medium, PL is Positive Large, BB is Bigger, B is Big, M is Medium, S is Small and
SS is Smaller. NL, NM,…, S, SS are labels of fuzzy sets and their corresponding
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Fig. 3 Membership functions for input s

Fig. 4 Membership functions for output u with base values P0 : ueq,P1 : ueq + Kf /2,P2 :
ueq + Kf ,P3 : ueq + 2Kf , Ṕ1 : ueq − Kf /2, Ṕ2 : ueq − Kf , Ṕ3 : ueq − 2Kf

membership functions are depicted in Figs. 3 and 4, respectively. Let X and Y are
the input and output space of the fuzzy rules, respectively. For any arbitrary fuzzy
Fx in X, each rule Ri can determine a fuzzy set Fx * Ri in Y .

Use the sup-min compositional rule of inference and suppose Fx be a fuzzy sin-
gleton, then

μFx◦Ri(uf ) = min[μFi
s
(α),μFi

uf
(uf )] (12)

the deduced membership function F
′d
u of the consequence of all rules is,

μd
F̃d

uf
(uf ) = max[μF̃x◦Ri(uf ), . . .μF̃x◦Rs(uf )] (13)

where, the output variable in Eq. (13) is fuzzified output. For the defuzzifier, the
centroid defuzzification method is used to find the crisp output is given in Eq. (14).
Figure5 is the result of defuzzified output for a fuzzy input as sliding surface and
overall control equation of fuzzy sliding mode controller is given as

û =
∫

uf μd
F̃d

uf
(uf )duf∫

μd
F̃d

uf
(uf )duf

(14)
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Fig. 5 Result of
defuzzification of a fuzzy
controller

Then, a FSMC with variable sliding surface which satisfies the reaching condition
will be designed. The reaching condition is given as

sṡ ≤ −η|s| for η > 0 (15)

The crisp control signal from extended fuzzy controller is applied to the system
model for achieving stabilized response in vertical plane is given as follows

û = ueq − Kf sgn(s/φ) (16)

Here, fuzzy control is employed as low pass filter for smoothing the control input in
SMCdue to that chatteringproblem is prevented. In this technique,minimumrules are
designed to satisfy the sliding condition and also capable of adopting uncertainty in
themodel parameters. In the design of FSMC, FLC scheme have been used as a direct
controller, inwhich, the FLC is non-adaptive in nature. This type of FLC is called non-
adaptive if all of its parameters, i.e. scaling factors, membership functions and rules
are kept fixed during the operation of the controller. Here, an adaptive FLC is used to
fine tune scaling factors and varying support of input–output membership function
for improving the output trajectory performance. Therefore, FLC employed as a
supervisory control with the FSMC in proposed control algorithm. Here, an AFSMC
is designed for improving the output trajectory response in steering control of an
AUV model. The AFSMC algorithm is developed in two stages, which employed
fuzzy approximators for adaptation of input and output variables of fuzzy inference
system.

5 Dynamic Fuzzy Sliding Mode Control

In this section, we propose dynamic tuning methods for input–output linguistic vari-
ables of FSMC, through the information of error dynamics, that we call it DFSMC.
The motivation is that, we consider the values of boundary layer thickness and hit-
ting gain for adjusting the supports of input–output membership functions in fuzzy
inference engine of FSMC algorithm. The proposed control method based on two
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Fig. 6 Membership functions
of input variable as error
signal and output variable
as width of boundary layer

fuzzy approximators for varying boundary layer width and hitting gain, due to which
set point tracking response is enhanced with minimum chattering effect. Chattering
is a high frequency oscillation around the desired equilibrium point. It is undesirable
in practice, because it involves high control activity and can excite high frequency
dynamics ignored in the modeling of the system, which can be reduced somewhat
by introducing a bound region containing the switching surface to smooth the con-
trol behavior. So that, in first stage of design, fuzzy algorithm is developed to choose
boundary layer thickness depends on error dynamics for eliminating chattering effect.
Due to this first fuzzy approximator, supports of input fuzzy membership function
in FSMC algorithm are varying continuously.

The formulation of fuzzy rule for dynamic tuning of boundary layer thickness is
based on concepts that, width of the boundary layer indicates the ultimate bounded-
ness of system trajectories, we can arbitrarily adjust the steady state error by proper
selection of φ. However, a small φmight produce a boundary layer so thin that it risks
exciting high frequency dynamics. In this fuzzy adaptation, input error signal and
output boundary layer thickness are decomposed in to five fuzzy partitions as shown
in Fig. 6, which is expressed as Negative Big (NB), Negative Small (NS), Zero (ZE),
Positive Small (PS) and Positive Big (PB). The fuzzy logic rule base is designed as
follows

Rule(i) : Ifeis Fi
1 then φi isγi

where, Fi
1, i = 1, 2,…,m. are the labels of single input fuzzy set characterized by

membership functions and γi, i = 1, 2,…, m are the triangular membership functions.
The sliding inference rules are composed as in Table1. The defuzzification of the
output is accomplished by the method of centroid.

φ∗ =
∫

μc(γ).γ dγ∫
μc(γ) dγ

(17)

Table 1 Rule base for width
of boundary layer

Error (e) NB NS ZE PS PB

Width (φ) PS PB ZE NB NS



292 G.V. Lakhekar and L.M. Waghmare

Fig. 7 Block diagram of fuzzy inference module in FSMC algorithm

The crisp output variableφ∗ of fuzzy logic tuning scheme is used for varyingwidth of
boundary layer, due to which chattering problem is eliminated. Here, a single-input
fuzzy adaptation is used to continuously compute the width of boundary layer, with
the result that boundary layer thickness is time varying and tracking performance of
AUV under the heading angle control is enhanced. In the second stage of design, a
dynamic fuzzy logic tuning method is developed for estimating hitting gain. Due to
that, supports of the output membership function is adjusted through the informa-
tion of error dynamics. The output membership function of fuzzy inference system
composed of two factor such as equivalent control ueq and hitting gain Kf .

A supervisory fuzzy inference system is used to adaptively tune the hitting gain,
in order to improve the approaching angle towards sliding surface. The principal
of operation can be easily understood from the block diagram of fuzzy inference
system as shown in Fig. 7, in which dynamic tunings are used to update the sup-
ports of input–output membership functions. In path tracking application, however,
the system invariance properties are observed only during the sliding phase, but in
reaching phase, tracking may be hindered by disturbances or parameter variations.
The straightforward way to reduce tracking error and reaching time by increasing
hitting gain, which may causes chattering effect. The chattering can also be reduced
by using small boundary layer thickness. The selection of hitting gain value is based
on minimization of tracking error and reaching time, whenever the tracking error is
negative then choose the small gain value for desired performance of system and vice
versa. The sliding hyperplane highly depend upon dynamics of error and change in
error, so that consider an error as input variable to the fuzzy logicmodule for updating
hitting gain.

The fuzzy rules are designed such that, as the value of e is in large level then
required control effort is bigger, due to which speed of convergence is increased.
Therefore, shift the supports of output membership functions towards the right, for
providing large control forces. As the value of e is near to zero then the output
membership functions return back to the original type to prevent the happening of
overshoots and keep the tracking accuracy. In this stage, hitting gain is adapted from
the second fuzzy approximator due towhich supports of outputmembership functions
are indirectly tuned. This output membership function is the part of fuzzy inference
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Fig. 8 Membership functions of hitting gain

engine, which included in FSMC algorithm. The second fuzzy approximator plays
an important role in an indirect type of adaptation, which has error as input variable
and hitting gain is output variable.

By using above consideration, the general rule is composed as, if the error signal
in negative region then select small value of hitting gains and vice versa. Let e is the
error signal as the input linguistic variable of fuzzy logic is as shown in Fig. 6 and
the hitting control gain Kf be the output linguistic variable is as shown in Fig. 8, the
associated fuzzy sets for e and Kf are expressed as follows:

The error signal (e) as antecedent proposition can be expressed in to five fuzzy
partitions such asNegative Big (NB),Negative Small (NS), Zero (ZE), Positive Small
(PS) and Positive Big (PB). The hitting control gain Kf as consequent proposition
can be expressed in to three fuzzy partitions such as Small (S), Medium (M) and
Large (L). Then, fuzzy linguistic rule base can be design as follows:

Rule 1 : If e is NB then Kf is S

Rule 2 : If e is NS then Kf is S

Rule 3 : If e is ZE then Kf is M

Rule 4 : If e is PS then Kf is L

Rule 5 : If e is PB then Kf is L

In this study, centriod defuzzification method is adopted for estimation of hitting
control gain through fuzzy logic inference mechanism. Moreover, the stability of the
underwater vehicle in vertical plane can be analyzed by direct lyapunov function
approach, which uses DFSMC algorithm. In this investigation, each rule is applied
to common lyapunov function.

Select a lyapunov function as follows

V = 1

2

(
ψ2 + ψ̇2

)
(18)

which is obviously positive definite and differentiable. Then, it’s derivative can rep-
resented as
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V̇ = ψψ̇ + ψ̇ψ̈

= ψψ̇ + ψ̇
[
I−1 (−bψψ̇ + û

)]

= ψψ̇ + ψ̇
[
I−1 (−bψψ̇ + ueqfuzzy − Kfuzzy sgn(S/φ)

)]

= ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − Kfuzzy(e, ė,λ, |ψ|))]

For Rule (1): Kfuzzy = 10 and e = (ψ − ψd) = [−1.5, 1.5]

V̇ = ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − 10|ψ|)] ≤ 0

For Rule (2): Kfuzzy = 10 and e = (ψ − ψd) = [−1, 0]

V̇ = ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − 10|ψ|)] ≤ 0

For Rule (3): Kfuzzy = 40 and e = (ψ − ψd) = [−0.5, 0.5]

V̇ = ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − 40|ψ|)] ≤ 0

For Rule (4): Kfuzzy = 80 and e = (ψ − ψd) = [0, 1]

V̇ = ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − 80|ψ|)] ≤ 0

For Rule (5): Kfuzzy = 80 and e = (ψ − ψd) = [0.5, 1.5]

V̇ = ψψ̇ + ψ̇
[
I−1 (−bψψ̇ − 80|ψ|)] ≤ 0

Hence, all of the five rules in the FLC can lead to stabilize underwater vehicle and
completes the proof.

5.1 Summary of the Proposed Algorithm and Design Procedure

The control algorithm is summarized as follows

1. Determine a stable sliding mode surface from Eq. (7).
2. Calculate the equivalent control from given condition such as ṡ = 0.
3. Define the membership function for the input variable as sliding surface s and

output variable as FSMC output û.
4. Define rule base for FSMC algorithm.
5. û is the output of FLC which calculated via the defuzzification method.
6. Find the boundary layer thickness variation φ from fuzzy supervisory system

based on error dynamics.
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7. Find the Kf using another fuzzy supervisory systemwhich also depend on AUV’s
error dynamics.

8. Base values of Input–Output membership functions in FSMC algorithm are adap-
tively tuned by two fuzzy approximators.

9. Calculate the overall control signal applied to AUV in horizontal plane.

As our interests are focused mainly on the application of a fuzzy controller for
adopting base values of input–output membership functions of FSMC architecture.
The basic parameters of FSMC algorithm are tuned by using fuzzy logic approxi-
mators, due to which system performance is enhanced. Fuzzy self tuning of sliding
surface slope, boundary layer width and hitting gain are summarized in brief manner.

5.1.1 Fuzzy Self Tuning of Sliding Surface

A conventional time invariant (fixed) sliding surface has the fundamental disadvan-
tage that when the system states are in the reaching mode, the tracking error cannot
be controlled directly and hence the system becomes sensitive to the parameter vari-
ations. This sensitivity can be minimized or eliminated if the reaching mode duration
is shortened.Moreover, finding the optimum value of the slope requires tedious work
and usually, it is a complicated task. Thus, how to tune the slope of a sliding sur-
face is an important topic in the sliding mode controlled nonlinear systems. Several
methods exist (Liu et al. 2005; Yagiz and Haciogluy 2005; Hung et al. 2007; Yorgan-
cioglu and Komurcugil 2008; Amer et al. 2011) in literature aiming at to eliminate
the sensitivity during the reaching mode. The control performance of system using
SMC is highly depends on the slope of the sliding mode function with following
conditions are considered. When the value of λ becomes larger, the rise time will
become smaller, but at the same time, both overshoot and settling time will become
larger and vice versa. If the slopes are fixed, the control system may perform dif-
ferently for different control situations such a control system is difficult to cover all
the control situations in good performance. To solve the problem, it is desirable to
design a control law to adjust the slope of sliding mode function in real time. In
mechanical systems, the value of sliding surface slope is typically limited by three
factors such as the frequency of the lowest unmodeled structural mode, the largest
unmodeled time delay and the sampling rate.

The movement of sliding surface adapted to arbitrary initial conditions, which
was first introduced by Choi et al. (1994). Afterwards, Ha (1996) applied fuzzy
tuning to moving sliding surfaces for fast and robust tracking control for a class of
nonlinear systems. The fuzzy tuning approach is utilized for accelerating the reaching
phase and reducing the influence of unmodeled uncertainties, thus improving system
robustness. The fuzzy rule for tuning sliding surface slopes λi can be formulated with
the help following concepts. If large values ofλi are available the systemwill bemore
stable but the tracking accuracy may be degraded, because of a longer reaching time
of the representative point to the surface. Conversely, if small values of λi are chosen,
the convergence speed on the sliding surface itself will be slow, leading to longer
tracking times. In thisway fuzzy supervisory system is designed for obtaining optimal
value of sliding surface slope, due to which tracking performance is enhanced.
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5.1.2 Fuzzy Self Tuning of Boundary Layer Thickness

The chattering describes the phenomenon of finite frequency, finite amplitude oscilla-
tions appearing inmany slidingmode implementations. These oscillations are caused
by the high frequency switching of a SMC,which excites unmodeled dynamics in the
closed loop. As one way to alleviate this problem, a boundary layer around sliding
surface is typically used. In this case the selection of boundary layer thickness is a
crucial problem for trade off between tracking error and chattering. The parameter
tuning is usually done by trial-and-error method in practice causing significant effort
and time.

In order to attenuate the chattering problem, various methods (Hwang and
Tomizuka 1994; Erbatur et al. 1996; Choi et al. 1996; Lee et al. 2001) are describes
adaptive tuned boundary layer thickness by using fuzzy approximator. The value of
boundary layer thickness should be varying according to the chattering level in the
control signal in order to achieve the best performance possible. A variety of chat-
tering measures can be formulated for adjusting boundary layer thickness, due to
which smooth tracking performance is obtained. The main idea can be summarized
as below. When chattering occurs then width of boundary layer should be increased
to force the control input to be smoother. The boundary layer thickness should be
decreased if control activity is low. Low control activity can be identified by small
values of chattering variable.

The on line tuning of boundary layer thickness with the help of fuzzy approxi-
mator, based on |e| and |ė|. The boundary layer thickness is not fixed by an arbitrary
value but self tuned by some fuzzy rules, which are formulated by using following
conditions. if both |e| and |ė| have small values, namely, the states approach nearby
steady states, then rule decrease the thickness. Similarly, if |e| or |ė| has a large value,
namely, the states are far away from steady states, then rule increases the thickness
for alleviating the chattering problem. The determination of a suitable boundary layer
thickness which can achieve best performance still eliminating chattering effect, is
possible by fuzzy tuning approach.

5.1.3 Fuzzy Self Tuning of Hitting Gain

In SMC, auxiliary control effort should be designed to eliminate the effect of the
unpredictable perturbations. The auxiliary control effort is referred to as hitting con-
trol effort. The hitting control gain concerned with upper bound of uncertainties
and sign function. However, the upper bound of uncertainties, which is required in
the control law, is difficult to obtain precisely in advance for practical applications.
Several methods exist (Ryu and Park 2001; Liang and Su 2003; Wai and Su 2006;
Amer et al. 2011) in literature, which has significant advantage that, convergence
speed increased and reaching time is reduced. In path tracking systems, however, the
system invariance properties are observed only during the sliding phase. In reaching
phase, tracking may be hindered by disturbances or parameter variations.

The straightforward way to reduce tracking error and reaching time by increasing
hitting gain, which may causes chattering effect. The chattering can also be reduced
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by using small boundary layer thickness. The selection of hitting gain value is based
on minimization of tracking error and reaching time, whenever the tracking error is
negative then we have to choose small gain value for desired performance of system
and vice versa. The sliding hyperplane highly depend upon dynamics of error and
change in error so that we have to consider this variable as input to the fuzzy logic
module for updating hitting gain. By using above consideration, the general rule is
composed as, if sliding surface in negative region then select small value of hitting
gain and vice versa. In this way, hitting gain can be determined by using fuzzy logic
tuning approach.

6 Simulation Results

In this section, some simulation results are provided to demonstrate the effective-
ness and robustness of the proposed control technique. Heading angle control of an
AUV is chosen as an example for simulation purpose, which can be represented by
simplified nonlinear equation having one degree of freedom and described by Guo
et al. (2003). Here, the main objective is to control steering of underwater vehicle by
usingDFSMCmethod. This control technique is applicable to nonlinearAUVmodel,
because conventional linear control can’t handles nonlinearity, modeling error, para-
metric variation and disturbances.

In order to evaluate the control system performance, three different numerical
simulations were performed. The obtained results were presented from Figs. 9, 10,
11, 12 and 13. In the first case, it was considered that the model parameters, I and
b, were perfectly known. Regarding controller and model parameters, the following
valueswere chosen I = 24.13 kgf .m.s2, b = 32.50 kgf .m.s2 and d(t) = 0.25∗sin(t).
With other control parameters were considered as λ = 0.5, φ = 0.01 and kf = 5.
Figure9 gives the corresponding results for the tracking of ψd , considering that the
initial state coincides with the initial desired state. In a first test a piece-wise constant
reference position was used, which reports the actual and desired trajectory obtained
using the different approaches such as SMC, FSMC and DFSMC. With evidence
that, the output heading angle response of AUV, due to DFSMC is most desirable,
because it’sminimum reaching time, no overshoot and smooth tracking performance.

A tracking test using a sinusoidal reference profile has been also carried out.
Figure10 shows that the actual trajectory response of DFSMC converges to the
desired one after a very short transient compared to other approaches.

As observed in Fig. 11, even in the presence of external disturbances, a novel
DFSMC and FSMC are able to provide trajectory tracking with a small associated
error and no chattering at all. It can be also verified that the proposed control law
provides a smaller tracking errorwhen comparedwith the conventional SMCmethod.

The improved performance of DFSMC over SMC is due to its ability to recog-
nize and compensate the external disturbances, with better tracking response. In the
second simulation study, the parameters for the controller were chosen based on
the assumption that exact values are not known but with a maximal uncertainty of
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Fig. 9 Set point tracking response of AUV in horizontal plane

Fig. 10 Sinusoidal tracking response of AUV in horizontal plane

±20% over previous adopted values of AUV model parameters. The other control
parameters, as well as the disturbance force and the desired trajectory, were defined
as before. Figure12 shows the obtained results, in which proposed controller was
able to handle nonlinearity and parametric uncertainty, while output response under
the influence of parametric uncertainty due to SMC and FSMC depicts oscillations
and small variations respectively.

The phase portrait of AUV model under steering control is shown in Fig. 13, in
which reaching time of DFSMC method is better than FSMC and SMC, with no
chattering effect. From simulation results, it is clear that proposed DFSMC provide
desired tracking response with smooth control signal and minimum reaching time
during model uncertainties and disturbances in operating condition.
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Fig. 11 Response of AUV under the influence of disturbance

Fig. 12 Response of AUV under the influence of parametric uncertainty

As performance measure for a quantitative comparison, we use integral square of
error (ISE) which is defined as

ISE =
t∫

0

e2.dt (19)

In performance comparison, three conditions are considered as set point track-
ing, disturbance rejection and parameter variations. It is observed that, ISE values
for above mentioned conditions are considerably reduced in magnitude than other
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Fig. 13 Phase trajectory response of AUV model
Table 2 Performance comparison of controllers in terms of ISE

Case(I): Set point tracking

Heading angle (in Deg.) SMC FSMC DFSMC

40 0.3695 0.1250 0.0251

30 0.3812 0.1167 0.0234

50 0.3758 0.1271 0.0276

20 0.3541 0.1413 0.0213

Case(II): Disturbance and parameter variations

Under the influence Heading angle (in Deg.) SMC FSMC DFSMC

Disturbance 20 2.8121 0.3218 0.1589

Parameter variation 40 3.4813 1.2764 0.1242

techniques dealt within this chapter. The values of different errors for various control
strategies and under the influences of different conditions are tabulated in Table2.

Therefore, from the response curve and Table2, it is clear that DFSMC con-
trol algorithm gives better performance in terms of transient as well as steady state
responses.
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7 Conclusion and Future Work

7.1 Conclusion

This study has demonstrated the effectiveness and robustness of proposed control
algorithm for regulating heading angle of underwater vehicles in horizontal plane.
The fuzzy logic approximators were used for enhance the tracking performance
of AUV by adapting an input and output parameter as width of boundary layer
and hitting control gain of fuzzy inference engine. Due to first fuzzy approximator,
width of boundary layer is updated continuously for eliminating chattering effect.
The hitting control gain is adapted for tuning the supports of output membership
functions, due to which an optimum approaching angle towards sliding surface was
determined. By comparing the simulation results, we found that the performance
of the proposed DFSMC is superior to that of conventional SMC and FSMC. The
attractive features of the controller follow.

• The exactmathematical model and the estimation of upper bounds on uncertainties
of the AUV are not required in the controller design. The only necessary informa-
tion to design the controller is the qualitative knowledge of the AUV, such as it’s
operation ranges and the form of its nominal model.

• The fuzzy controller is design to learn and compensate nonlinearities and uncer-
tainties, thus allowing a reduction of the SMC’s switching gains. The problem
of chatter inherent in conventional SMC is therefore managed effectively while
ensuring sliding behavior, which implies that chatter is greatly alleviated without
sacrificing robustness.

• Two fuzzy supervisory systems are employed in proposed algorithm for updating
boundary layer width and hitting gain, due to which chattering problem, reaching
time and approaching angle towards sliding surface is effectively reduced.

• The stability of the fuzzy systems is guaranteed by means of the Lyapunov stabil-
ity criterion, which also gives guidelines in the design of the proposed DFSMC
scheme.

Moreover, the fuzzy adaptation is archived by simplified mamdani type single
input single output fuzzy inference module with minimum rule base. The single
input FLC offers significant reduction in rule inferences and simplify the tuning of
control parameters. Practically it can be easily implemented by a look-up table using
a low cost microprocessor due its piecewise linear control surface.

7.2 Future Work

Further research will be carried out in the field of nonlinear path following of AUV’s
for scientific inspection in under sea environment. The followingmethodologies have
scope to develop new control strategies.
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• An adaptive Type-2 FSMC can de design to tolerate actuator faults of AUV with
external disturbances and measurement noise.

• An alternative approach for fuzzy adaptation scheme can be developed with the
help of single layer neural network, which gives minimum computation time for
determine optimal values of control parameters.

• Adaptive neuro-fuzzy inference system (ANFIS) can be incorporated in FSMC
algorithm for collision avoidance and nonlinearmapping in under sea applications.

• This work can be expanded by applying adaptive fractional FSMC, robust fuzzy
terminal SMC and an adaptive fuzzy quasi continuous higher order SMC for
regulating various parameters of AUV’s.

• The guidance control can be design and tested with the help of navigation algo-
rithms based on forward looking sonar (FLS) images that permit us to obtain the
values of the trajectory tracking errors.

Futureworkwill address the problems of reducing controller complexity and eval-
uating its robustness against parameter uncertainty. The problem of precise tracking
of desired trajectory in presence of unknown sea currents also warrants further con-
sideration.
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An Indirect Adaptive Fuzzy Sliding
Mode Power System Stabilizer for Single
and Multi-machine Power Systems

Saoudi Kamel, Bouchama Ziyad and Harmas Mohamed Naguib

Abstract This chapter presents an indirect adaptive fuzzy sliding mode power sys-
tem stabilizer (AFSMPSS) that is used to damp out the low frequency oscillations in a
single machine infinite bus, local and inter-area oscillations in multi-machine power
systems. An adaptive fuzzy control integrates the sliding mode control (SMC) in the
design of the proposed controller. The fuzzy logic system is used to approximate
the unknown system function and by introducing proportional integral (PI) control
term in the design of sliding mode controller in order to eliminate the chattering phe-
nomenon. In addition, the parameters of the controller are optimized using particle
swarm optimization (PSO) approach. Based on the Lyapunov theory, the adaptation
laws are developed to make the controller adaptive take care of the changes due to the
different operating conditions occurring in the power system and guarantees stability
converge. The performance of the newly designed controller is evaluated in a single
machine infinite bus and two-area four machine power system under the different
types of disturbances in comparison with the indirect adaptive fuzzy PSS. Simulation
results show the effectiveness and robustness of the proposed stabilizer in damping
power system oscillations under various disturbances. Moreover, it is superior in the
comparison with other types of PSSs.

1 Introduction

Currently, the power systems wide-area is obliged to function with full power and
often in extreme cases of stability. The appearance of low frequency oscillations
due to various disturbances is able to induce with a rupture of synchronism of the
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generators coupled with the power system and can easily lead to a total collapse of
the power system. Also, the improvement of stability in damping of the inter-area
mode oscillations becomes more and more very important if an adequate answer is
not taken in the seconds or sometimes some cycles which follow.

Power system oscillations are damped by the introduction of a supplementary
signal to the excitation system called power system stabilizer (PSS). These stabilizers
improve the stability of power systems by creating electrical torques to the rotor,
in phase with speed variation to the synchronous machine, that damp out power
oscillations (Anderson and Fouad 1977; Kundur 1994). Conventional power system
stabilizers (CPSS) are one of the premiere PSSs composed by the use of some fixed
lag-lead compensators which are tuned using a linearized model of power system
in the specific operating point, shows a good control performance in the specific
operating point (Klein et al. 1991; Kundur et al. 1989; Larsen and Swann 1981).
But fixed-parameters of conventional stabilizer are difficult to obtain a good control
performance in case of changes in operating conditions such as change of load or
major disturbances.

Recently PSS design has undergone the advent of artificial intelligence such as
fuzzy logic controller (Bhati and Gupta 2013; El-Metwally et al. 1996; El-Metwally
and Malik 1995; Hassan et al. 1991; Hiyama 1994; Hussein et al. 2007; Lin 2013)
and artificial neural network (Abido and Abdel-Magid 1999; Changaroon et al. 2000;
Demirören 2003; Zeynelgil et al. 2002; Zhang et al. 1995) does not require a math-
ematical model of the system to be controlled, but fixed-parameters are difficult to
obtain a good control performance in case of changes in operating conditions such
as change of load or major disturbances. On the other hand, adaptive power system
stabilizers have been proposed (Chen and Malik 1995; Cuk-Supriyadi et al. 2014;
Karimi and Feliachi 2008; Kothan et al. 1996; Teh-Lu 1999; Wu and Malik 2006).
These stabilizers provide better dynamic performance over a wide range of operating
conditions, but they suffer from the major drawback of requiring parameter model
identification, state observation and feedback gain computation ‘on-line’.

This inadequacy is somewhat countered by the use of the merits of adaptive control
and artificial intelligences techniques in promising design of adaptive fuzzy power
system stabilizers (Bouchama and Harmas 2012; Elshafei et al. 2005; Hosseinzadeh
and Kalam 1999; Hussein et al. 2010, 2009; Saoudi et al. 2008) and adaptive neural
power system stabilizers (Fraile-Ardanuy and Zufiria 2007; Hosseini and Etemadi
2008; Liu et al. 2003; Radaideh et al. 2012; You et al. 2003). The main idea of
adaptive fuzzy control is as follows: first construct a fuzzy model to describe the
input/output behavior of the controlled system. A controller is designed based on
the fuzzy model and then the adaptive laws are derived to adjust the parameters of
the fuzzy modes on-line. However, these stabilizers do not make it possible to main-
tain good performances of continuation in the presence of external disturbances. On
the other hand, robust control provides an effective approach to dealing with uncer-
tainties introduced by variations of operating conditions. Among many techniques
available in the control literature, sliding mode control has been reported as one of
the most effective control methodologies for nonlinear power system applications
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(Al-Duwaish and Al-Hamouz 2011; Bandal and Bandyopadhyay 2007; Bandal et al.
2005; Cao et al. 1994; Colbia-Vega et al. 2008; Fernandez-Vargas and Ledwich 2010;
Ghazi et al. 2001; Huerta et al. 2010, 2011; Samarasinghe and Pahalawaththa 1997;
Rashidi et al. 2003; Saoudi and Harmas 2014; Saoudi et al. 2011, 2008) in improving
the power system stability due to its robust response characteristic.

In this chapter, a new indirect adaptive fuzzy sliding mode stabilizer (AFSMPSS)
is designed for enhancing the damping of oscillations in nonlinear single and multi-
machine power system using nonlinear models. The advantages application of the
proposed PSS is to counteract the problem of variations in the system parameters,
operating conditions, to improve the stability and robustness performance of the
control systems. The nonlinear model of the power system is constructed with the
differential equations with nonlinear parameters which are functions of the state
of the system. Some of these parameters of nonlinear function are not known and
others are not exact precise. i.e. it is not possible build a relatively exact mathematical
model of the system. In order to design the proposed indirect AFSMPSS, the fuzzy
logic system is used to approximate the unknown system function present in the
model of power system. Moreover, the chattering phenomenon was eliminated due
to the utilisation of proportional integral (PI) term control in the design of SMC.
The optimal control gains are obtained via a particle swarm optimization (PSO)
technique. Using Lyapunov stability theory, the adaptation laws are developed to
make the fuzzy sliding mode controller adaptive and the PI parameters can be tuned
on-line by adaptation law to take care of the changes due to the different operating
conditions occurring in the power system and guarantee stability converge.

The performance of the newly designed controller is evaluated in a single
machine infinite bus and two-area four machine power system under the different
types of disturbances in comparison with the indirect adaptive fuzzy PSS. Sim-
ulation results show the effectiveness and robustness of the proposed stabilizer in
enhancing damping power system oscillations under various disturbances. Moreover,
it is superior in the comparison with other types of PSSs.

The rest of the chapter is organized as follows: In Sect. 2, an indirect adaptive
fuzzy sliding mode control Based PSS Design for power system to enhance the
transient stability of the system is presented. In Sect. 3, the proposed control design
procedure is given. The optimal controller gains are obtained using a Particle Swarm
Optimization (PSO) search technique is given with the procedure in Sect. 4. In Sect. 5,
the simulation results that demonstrate the effectiveness of the proposed controller
are presented and compared with those of the adaptive fuzzy controller and the
conventional controllers using the single machine infinite bus and four machine two-
area bench-mark test power systems. Conclusion is stated in Sect. 6.
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2 Indirect Adaptive Fuzzy Sliding Mode Control
Based PSS Design

2.1 Power System Model

In order to design the power system controller proposed in this paper, the dynamics
model of generator can be expressed in a canonical form given in Slotine and Li
(1991), this is obtained using the speed variation x1 and instead of direct and quadra-
ture voltages the accelerating power x2 are used as a state variables, the system
model of synchronous machine is represented in the following nonlinear state-space
equations (Saoudi and Harmas 2014, Saoudi et al. 2011):

ẋ1 = ax2

aẋ2 = f (x1, x2) + g(x1, x2)u (1)

y = x1

where a = −1/2H, x1 = �ω = ω − ωs and x2 = �P = Pm − Pe, H is the
per unit machine inertia constant, ω is the rotor speed and ωs is the synchronous
speed are in per unit, Pm is the mechanical input power treated as a constant in the
excitation controller design, i.e., it is assumed that the governor action is slow enough
not to have any significant impact on the machine dynamics and Pe is the delivered
electrical power. x = [x1, x2]T ∈ R2 is a measurable state vector. The PSS output
u represents the controlling supplementary signal to be designed and y = �ω is the
output state while f and g are nonlinear functions which are assumed to be unknown.
(Eq. 1) represents the machine during a transient period after a major disturbance has
occurred in the system. The design of the sliding mode control is presented in the
following section.

2.2 Sliding Mode Control Design

The control objective is to force y in the system (Eq. 1) to track a given bounded
desired trajectory yd , under the constraint that all single involved must be bounded.
Then the control objective (Slotine and Li 1991; Wang 1996) is determine a feedback
control u = u(x |θ) and an adaptation law for adjusting the parameters vector θ , such
that:

The close loop system must be globally stable and robust in the sense that all
variables x(t), θ(t) and u(x |θ), must be uniformly bounded, i.e.,

∣∣x∣∣ ≤ Mx ≤
∞,

∣∣θ ∣∣ ≤ Mθ ≤ ∞ and |u| ≤ Mθ ≤ ∞ for all t ≥ 0, where Mx , Mθ and Mu are
parameters designer specified.

The traking error, e = y − yd , should be as small as possible under the constraint
in the previously objective.
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The elaboration of an indirect adaptive fuzzy sliding mode controller is presented
in the rest of this section (Saoudi and Harmas 2014; Saoudi et al. 2011) to achieve
the above control objectives is discussed.

Let the tracking error be defined as:

e = y − y
d

= [e, ė]T (2)

and a sliding surface defined as:

s(e) = k1e + ė = kT e (3)

where k = [k1, 1]T are the coefficients of the Hurwitzian polynomial h(λ) = λ+k1.
If the initial error vector e(0) = 0, then the tracking problem can be considered
as the state error vector e remaining on the sliding surface s(e) = 0 for all t > 0.
A sufficient condition to achieve this behavior is to select the control strategy such
that:

1

2

d

dt
(S2(e)) ≤ −η |s| η ≥ 0 (4)

From Eqs. (3) and (4), we have

ṡ = k1ė + f (x) + g(x)u − ÿd . (5)

If f and g are known, we can easily construct the sliding mode control u∗ = ueq −usw:

u∗ = 1

g(x)

[−k1ė − f (x) − η sgn(s) + ÿd
]

(6)

ueq = 1

g(x)

[−k1ė − f (x) + ÿd
]

(7)

usw = 1

g(x)

[
η sgn(s)

]
(8)

However, power system parameters for nonlinear functions are not well known and
imprecise; therefore it is difficult to implement the control law (Eq. 6) for unknown
nonlinear system model. Not only f and g are unknown but the switching-type control
term will cause chattering. An adaptive fuzzy sliding mode controller using fuzzy
logic system and PI control term is proposed to solve these problems.
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2.3 Fuzzy Logic System

The basis of the fuzzy logic systems (Wang 1993, 1996) consists of a collection of
fuzzy IF-THEN rules:

R(l) : IFx1 is Fl
1 and . . . andxn is Fl

n THEN y is Gl (9)

By using the strategy of singleton fuzzification, product inference and center
average defuzzification, the output value of the fuzzy system can be formulated

y
(
x
) =

M∑
l=1

θl

(
n∏

i=1
μFl

i
(xi )

)

M∑
l=1

(
n∏

i=1
μFl

i
(xi )

) (10)

where μFl
i
(xi ) is the membership function value of xi in Fl

i , θl is the centre of gravity
of the membership function of the output for the lth rule; (Eq. 10) can be rewritten
as:

y(x) =
M∑

l=1

θlξl(x) = θT ξ(x) (11)

where θ l = [
θ1 . . . θ M

]T and ξ(x) =
[
ξ

1
(x) . . . ξM (x)

]T
represents the fuzzy basis

functions defined

ξl
(
x
) =

n∏
i=1

μFl
i
(xi )

M∑
l=1

(
n∏

i=1
μFl

i
(xi )

) (12)

After this brief description, the following section explains the design of the adap-
tive fuzzy sliding mode control.

2.4 Indirect Adaptive Fuzzy Sliding Mode Control Design

If f and g were known, we could easily construct the sliding mode control u∗
introduced in the previous section, however, f and g are not known, we thus replace
f (x, t) and g(x, t) by the fuzzy estimates f̂ (x |θ f ), ĝ(x |θ g) which are in the form of
(Eq. 11) to which we append a proportional integral PI control term to suppress the
chattering action. The inputs and output of the latter are defined as (Ho and Cheng
2009; Ho et al. 2009).

u p = kph1 + ki h2 (13)
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where h1 = s, h2 = ∫
sdt, kp and ki are are PI control gains. Equation 13) can be

rewritten as
p̂(h|θ p) = θT

p ψ(h) (14)

θ p = [
kp, ki

]T ∈ R2 is an adjustable parameter vector, and ψT (h) = [h1, h2] ∈ R2

is a regressive vector. We use fuzzy logic systems to approximate the unknown
functions f (x), g(x) and design an adaptive PI control term eliminate chattering due
to sliding mode control. Hence, the control law becomes:

u = 1

ĝ(x |θ g)

[
−k1ė − f̂ (x |θ f ) − p̂(h|θ p) + ÿd

]
(15)

f̂ (x |θ f ) = θT
f ξ(x) (16)

ĝ(x |θ g) = θT
g ξ(x) (17)

In order to avoid the chattering problem, the switching term is replaced by a
PI control action which changes continuously and will lead to smooth out of the
chattering effect when the state is within a boundary layer |s| < Φ. The control
action is kept at the saturated value when the state is outside the boundary layer.
Hence, we set | p̂(h|θ p)| = η when |s| ≥ Φ, where Φ is the thickness of the
boundary layer.

Using the control law in (Eq. 15), then (Eq. 5) becomes:

ṡ = k1ė + f (x, t) + g(x, t)u − ÿd

= f (x, t) − f̂ (x |θ f ) + (g(x, t) − ĝ(x |θ g))u − p̂(h|θ p)
(18)

The next task, is to replace f̂ and ĝ by fuzzy logic systems represented in (Eqs. 16
and 17), p̂ is given by (Eq. 14) and to develop adequate adaptation laws for adjusting
the parameters vector θ f , θ g and θ p while seeking a zero tracking error. Using the
procedure suggested in Hussein et al. (2009), Hussein et al. (2010), the parameter
vectors of the fuzzy logic systems f̂ (x |θ f ) and ĝ(x |θ g) will be adapted according
to the following rules.

Theorem 1 Consider the control problem of the nonlinear system (Eq. 1). If the
control (Eq. 15) is used, the function f̂ , ĝ and p̂are estimated by (Eqs. 16 and 17)
and (Eq. 14), the parameters vector θ f , θ g and θ p are adjusted by the adaptive
control law (Eqs. 19–21), the closed-loop system signals will be bounded and the
tracking error will converge to zero asymptotically.
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θ̇ f = γ1sξ(x) (19)

θ̇g = γ2sξ(x)u (20)

θ̇p = γ3sψ(h) (21)

Proof Define the optimal parameters vector

θ∗
f = arg min

θ f ∈� f

(
sup

x∈Rn

∣∣∣ f̂ (x |θ f ) − f (x, t)
∣∣∣
)

(22)

θ∗
g = arg min

θg∈�g

(
sup

x∈Rn

∣∣∣ĝ(x |θ g) − g(x, t)
∣∣∣
)

(23)

θ∗
p = arg min

θ p∈�p

(
sup

h∈Rn

∣∣∣ p̂(h|θ p) − usw

∣∣∣
)

(24)

where � f , �g and �p are constraint sets for θ f , θ g and θ p, respectively. Define the
minimum approximation error:

ε = f (x, t) − f̂ (x |θ∗
f ) + (g(x, t) − ĝ(x |θ∗

g))u. (25)

Assumption 1 The parameters θ f , θ g and θ p belong to the constraint sets � f ,�g

and �p respectively, which are defined as

� f =
{
θ f ∈ Rn :

∥∥∥θ f

∥∥∥ ≤ M f

}
(26)

�g =
{
θ g ∈ Rn : 0 < ζ ≤

∥∥∥θ g

∥∥∥ ≤ Mg

}
(27)

�p =
{
θ p ∈ Rn :

∥∥∥θ p

∥∥∥ ≤ Mp

}
(28)

M f , ζ, Mg and Mp are positive constants designer specified for estimated parame-
ters’ bounds. Assuming that fuzzy θ f , θ g and PI control parameter θ p do not reach
the boundaries.

So, (Eq. 18) can be written as

ṡ = φT
f
ξ(x) + φT

g
ξ(x)u + θT

p ψ(h) − p̂(h|θ∗
p) + ε (29)

where φ
f

= θ∗
f − θ f , φg

= θ∗
g − θ g, φ p

= θ∗
p − θ p.

Now let us consider the Lyapunov function candidate

V = 1

2
s2 + 1

2γ1
φT

f
φ

f
+ 1

2γ2
φT

g
φ

g
+ 1

2γ3
φT

p
φ

p
(30)

The time derivative of V along the error trajectory (Eq. 29) is:
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V̇ = sṡ + 1

γ1
φT

f
φ̇

f
+ 1

γ2
φT

g
φ̇

g
+ 1

γ3
φT

p
φ̇

p

= s(φT
f
ξ(x) + φT

g
ξ(x)u − p̂(h|θ∗

p) + ε) + 1

γ1
φT

f φ̇ f + 1

γ2
φT

g φ̇g + 1

γ3
φT

p
φ̇

p

= sφT
f
ξ(x) + 1

γ1
φT

f φ̇ f + sφT
g
ξ(x)u + 1

γ2
φT

g φ̇g + sφT
p
ψ(h) + 1

γ3
φT

p
φ̇

p
− s p̂(h|θ∗

p) + sε

(31)

= 1

γ1
φT

f (γ1sξ(x) + φ̇ f ) + 1

γ2
φT

g (γ2sξ(x)u + φ̇g) + 1

γ3
φT

p
(sψ(h) + φ̇

p
) − s p̂(h|θ∗

p) + sε

≤ 1

γ1
φT

f (γ1sξ(x) + φ̇ f ) + 1

γ2
φT

g (γ2sξ(x)u + φ̇g) + 1

γ3
φT

p
(sψ(h) + φ̇

p
) − sη sgn(s) + sε

<
1

γ1
φT

f (γ1sξ(x) + φ̇ f ) + 1

γ2
φT

g (γ2sξ(x)u + φ̇g) + 1

γ3
φT

p
(sψ(h) + φ̇

p
) − |s| η + sε

where φ̇
f

= −θ̇ f , φ̇g
= −θ̇ g and φ̇

p
= −θ̇ p. Substitute (Eqs. 19–21) into (Eq. 31),

then we have
V̇ ≤ sε − |s| η ≤ 0 (32)

Since ε is being the minimum approximation error, (Eq. 32) is the best we can obtain.
Therefore all signals in the system are bounded. Obviously, e(t) will be bounded if
e(0) is bounded for all t. Since if the reference signal y

d
is bounded, then system

states x will be bounded. We need proving that s → 0 as t → ∞. Assuming that
|s| ≤ ηs then (Eq. 32) can be further simplified to

V̇ ≤ |s| |ε| − |s| η ≤ ηs |ε| − |s| η (33)

Integrating both sides of (33), we have

t∫
0

|s|dτ ≤ 1

η
(|V (0)| + |V (t)|) + ηs

η

t∫
0

|ε|dτ (34)

then we have s ∈ L1. From (Eq. 25), we know that s is bounded and every term
in (Eq. 27) is bounded. Hence, s, ṡ ∈ L∞, use of Barbalat’s lemma (Slotine and
Li 1991). We have s → 0 as t → ∞, the system is stable and the error will
asymptotically converge to zero.

3 Design Procedure

Let the inputs to the fuzzy logic system be x1 = �ω (speed variation), x2 = �P
(accelerating power), the procedure for designing an indirect AFSMPSS to damp
low frequency oscillations in uncertain dynamic power systems can be summarized
by the following steps:
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3.1 Off-Line Initial Processing

• Use the PSO to search the control gains k1 such that k1e + ė is a hurwitzian
polynomial and the values of PI control parameters kp and ki .

• Specify the learning coefficients γ1 = 2, γ2 = 20 and γ3 = 2.

3.2 Initial Fuzzy Controller Construction

• Define mi fuzzy sets Ali
i for linguistic variable xi , whose membership functions

μFli
i

uniformly cover the corresponding universe of discourse, where i = 1, 2 and
li = 1, . . . , mi . i.e. The input states x1 = �ω, x2 = �P and m1 = m2 = 7,
the membership functions are selected Gaussian membership functions which are
labelled Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero
(ZR), Positive Small (PS), Positive Medium (PM), Positive Big (PB), linguistic
variables respectively.

• Construct the fuzzy basis functions from the input membership functions
• Construct the fuzzy rule base of ĝ(x |θ g), which consist of m1 × m2 rules. Table 1

shows the fuzzy rules and forty nine initial parameter vector θ g . Since there is

enough information about f̂ (x |θ f ), the initial value of θ f is chosen to be zero.

R(l1,l2)
g : IF x1 is Al1

1 and x2 is Al2
2 THEN ĝ(x |θ g) is G(l1,l2) (35)

• Construct the fuzzy systems f̂ (x |θ f ) = θT
f ξ(x) and ĝ(x |θ g) = θT

g ξ(x).

3.3 On-Line Adaptation

• Apply the feedback control (Eq. 15) as power system stabilizer to damping of the
oscillations and improvement of the stability in the power system (Eq. 1).

• Use the adaptive laws (Eqs. 19–21) to adjust the parameters θ f , θ g and θ p.

The simplified schematic diagram of the proposed power system stabilizer and
the interconnection of these techniques are illustrated in Fig. 1.
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Fig. 1 The proposed indirect adaptive fuzzy sliding mode PSS

4 Optimal Parameters Settings of Controllers Gains

4.1 Overview of Particle Swarm Optimization

Similar to evolutionary algorithms, the particle swarm is one of the optimization
techniques process is stochastic in nature. It is developed by Eberhart (Kennedy and
Eberhart 1995, 2001). PSO is initialized with a population of candidate solutions.
This population is called a swarm. Each candidate solution in PSO is called a particle.
Each particle is treated as a point in the dimensional problem space. The i-th particle
is represented as position vector xi = (xi1, xi2, . . . xid) in d-dimensional space. The
movement of this particle is specified by the velocity vector vi = (vi1, vi2, . . . vid).
The fitness of each particle can be evaluated according to the objective function of
optimization problem. The personal best position found during the search by the
i-th particle memory of the best position as pi = (pi1, pi2, . . . pid). The position
of the best personal of the entire swarm is noted as the global best position pg =
(pg1, pg2, . . . pgd). The velocity and position of each particle are updated as follows:

vid = w.vid + c1rand(pid − xid) + c2rand(pgd − xid) (36)

xid = xid + vid (37)

where c1 and c2 are positive constants, and rand are randomly generated numbers in
the range [0, 1], w is a positive inertia parameter. The steps of the PSO algorithm are
(Abido 2002; Al-Awami et al. 2007; Mostafa et al. 2012):
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1. Formation of initial population and initial velocities randomly.
2. Calculating the value of each particle by fitness function.
3. Finding personal best and global best of all population
4. Update particle velocity according (Eq. 36).
5. Update particle position according (Eq. 37).
6. If the evaluation value of each particle is better than the previous pbest, the value

is set to pbest. If the best pbest is better than gbest, the value is set to gbest.
7. Repetition of steps 2–6 until determination criteria satisfies.

4.2 Parameters of PSSs and IAFSM Control Gains

The conventional (CPSS) stabilizer consisting of a stabilizer gain K P SS , washout
time constant Tw and lead-lag compensators with time constants T1, T2, T3, T4, and
a limiter is used for comparison. The stabilizer transfer function is given by:

UPSS = KPSS

(
sTW

1 + sTW

)(
1 + sT1

1 + sT2

) (
1 + sT3

1 + sT4

)
�ω (38)

In this structure, the washout time constants Tw and the time constants T2 and T4 are
usually prespecified. The controller gains K pss , the time constants T1 and T3 are to
be determined.

In the proposed IAFSM controller, the gains k1 of the sliding mode surface such
that k1e + ė is a hurwitzian polynomial and PI controller gains kp and ki , where the
first is proportional and the second proportional integral of the surface, all of these
gains are to be optimized.

4.3 Objective Function

The optimizing objective function is based on the integral time absolute error index
of the speed deviation of the synchronous generator. This fitness function is defined
by:

J =
n∑

i=2

t=t1∫
t=0

t |�ωi−1|dt (39)

where t1 the time is range of the simulation and �ωi−1 is the speed deviation of the
ith generator relative to the first generator.

The proposed approach employs the PSO to search for the optimal parameter
settings of the given controllers. The control parameters to be tuned through the
optimization algorithm are K pss, T1, T3, k1, kp and ki of each generator in the system,
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Table 1 The optimal parameters of the controllers gains for single machine

PSS SMC

K P SS T1 K1 K p Ki

19.8341 0.2084 5 2.8962 14.2279

Table 2 The optimal parameters of the controllers gains for multi-machine

PSS SMC

K P SS T1 T3 k1 K p Ki

Gen.1 19.4231 0.0343 4.0811 0.1301 0.05 3.3857

Gen.2 18.9118 0.0627 2.8886 0.0582 0.1104 3.0194

Gen.3 18.2757 0.0736 3.0712 0.0501 0.1278 2.7128

Gen.4 23.8428 0.0189 3.8402 0.1851 0.0945 3.0750

that to aim minimize the selected fitness objective function in order to improve the
system response in terms of the settling time and overshoots.

5 Results and Discussions

In this study, we will investigate the performance of the proposed indirect AFSMPSS
as it is applied to both single machine infinite-bus and multi-machine power systems
models. For the purpose of optimization of (39), to evaluate the objective function, the
system dynamic model considering a Three-phase fault is simulated. The objective
function J attains a finite value since the deviation in rotor speed is regulated to zero
and the obtained optimal parameters are shown in the Tables 1 and 2. The success of
the proposed PSS, with the single-machine infinite-bus case, motivates us to test its
capability on a multi-machine model. To assess the effectiveness and robustness of the
proposed individual design approach controllers under different kind of disturbance
conditions, The nonlinear simulation of the power system model is carried out under
the following severe faults cases considered are:
Case 1: Three-phase fault short circuit.
Case 2: Step change in the reference terminal voltage.

The performance of the proposed indirect adaptive fuzzy sliding mode PSS is
compared with the indirect adaptive fuzzy PSS, fixed parameter fuzzy PSS and
PSO-optimized conventional PSS.
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Fig. 2 Single machine infinite bus power system

Fig. 3 Speed deviation response for a three-phase short-circuit fault disturbance

5.1 Application to the Single Machine Infinite-Bus Model

A nonlinear power system model consisting of a single machine connected to a
infinite bus (SMIB) through a step-up transformer and double circuit of three phase
transmission lines is chosen for time domain simulation studies. Details of the system
data and the dynamics model of generator are given in Kundur (1994), Sauer and Pai
(1998). A diagram representation of the power system is shown in Fig. 2.
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Fig. 4 Speed deviation response for a step change voltage reference disturbance

Fig. 5 Two area four machine test power system

Case 1: Figure 3, shows system response under a three-phase fault occurring at t =
0.2 s with a duration of 0.06 s, for the fourth different controllers when the system is
simulated. It is obvious that indirect AFPSS has better damping of the speed deviation
than CPSS and FPSS; while the proposed indirect AFSMPSS has the best damping
of low frequency oscillations.
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Case 2: The result shown in the Fig. 4 was simulated that a 0.1 p.u step change in the
reference voltage of the generator occurred at 0.2 s. It can be clearly seen in this kind
of disturbance that the system response for proposed PSS exhibits superior damping
performance of oscillations in terms of overshooting and settling time.

5.2 Application to the Multi-machine Model

For the study in this chapter, the two-area four-machine test power system model
in Kundur (1994) shown in Fig. 5 is selected for evaluating the performance of the
designed PSSs using the proposed approach. This model consists of two fully sym-
metrical areas linked together by two transmission lines 220 km. Each area contains
two identical synchronous generators rated 20 KV/900 MVA. All generators are con-
nected through transformers to the 230 kV transmission line. All the generators are
equipped with identical speed governors and turbines, exciters and AVRs, and PSSs.
Under normal condition, the Area 1 transmits 400 MW active power to the Area 2.
This power system typically is used to study the low frequency electromechanical os-
cillations of a large interconnected system. The data corresponding to the machines,
transmission lines, and loads has been given in Kundur (1994). The set of non-linear
differential equations describing the dynamics of the ith machine in the above multi
machine system are presented in Kundur (1994), Sauer and Pai (1998).
Case 1: In this case, the performance of the proposed controller is evaluated by
applying a six-cycle three-phase fault short circuit at the middle of one of the trans-
mission lines between bus-7 and bus-8. The local and inter-area mode of oscillations
is shown in Fig. 6, with different PSSs. The proposed stabilizer provides very good
performance in the damping of oscillations in comparison to the indirect AFPSS,
FPSS and CPSS.
Case 2: The case was simulated that a 20 % pulse disturbance in the reference voltage
of Generator 1 for 200 ms has been applied. It can be concluded that the superiority
of the proposed PSS achieves the best damping of the local and inter-area mode of
oscillations effects as illustrated results in Fig. 7.

5.3 Discussion

The proposed indirect AFSMPSS is applied to both single machine infinite-bus and
multi-machine power systems models. For evaluating the performance, severe fault
disturbance and a voltage deviation are considered; In the first case test, three phase
fault to ground short circuit type is considered and the system response is compared
with the proposed controller and those obtained using a PSO optimized conventional
(CPSS), a fuzzy power system stabilizer (FPSS) and an indirect adaptive fuzzy power
system stabilizer (AFPSS). It is evident from the results in Fig. 3, for single machine
infinite bus and Fig. 6 for the interconnection multi-machine power systems that the



An Indirect Adaptive Fuzzy Sliding Mode Power System Stabilizer … 321

Fig. 6 System response to three-phase fault at the middle of one tie line applied between buses 7
and 8: a Local mode of oscillations, b Inter-area mode of oscillations
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(a)

(b)

Fig. 7 System response due to step change in voltage reference of generator 1: a Local mode of
oscillations, b Inter-area mode of oscillations



An Indirect Adaptive Fuzzy Sliding Mode Power System Stabilizer … 323

damping of the low frequency oscillations in both stabilizers the conventional CPSS
and fixed parameter FPSS requires more time and has more oscillations before the
speed deviation response is stabilized. The adaptive fuzzy controller improves the
damping of oscillations due to the self-learning capability in the change of operating
conditions. However, the superiority performance is clear with the proposed con-
troller. The proposed controller provides significantly better damping enhancement
in the power system oscillations. It is possible to observe that the overshoot and
settling time are reduced as well, this in the presence of external disturbance.

In the second test case, the performance of designed controllers was evaluated
in the presence of a step disturbance injected in reference voltage of the generator.
Figures 4 and 6 in both power systems, the system response with the conventional
CPSS and fuzzy FPSS have again more oscillations and large time to stabilize the
systems. In comparison with the adaptive fuzzy AFPSS, the robustness is achieved
by the designed AFSMPSS stabilizer than the AFPSS under generators parameters
variations with a quite good damping performance.

To further assess the performance and the effectiveness of the proposed PSS,
performance index

(
JP = ∑

t |�ωi−1|
)

is used to compare between the different
PSSs considered. It is worth mentioning that the lower value of this index, the better
is the system response in terms of overshooting and time-domain characteristics.
Tables 3 and 4 show the values of performance index for all cases of disturbances.
So, the proposed indirect AFSMPSS has clearly improved the system performance by
reducing the speed deviations under the following types of disturbances: three-phase
fault short circuit and step change in the reference voltage of generator which are all
rejected by the proposed stabilizer.

6 Conclusion

A new an indirect adaptive fuzzy sliding mode power system stabilizer for a single
machine infinite bus and multi-machine power system to damp oscillations has been
proposed in this paper, based on the fuzzy logic system to approximate the unknown
system function present in the model of power system and enhanced by a PI term
controller that eliminates chattering in the control signal. Controller gains are tuned
using PSO technique. An adaptation algorithm was derived based on the Lyapunov’s
direct method to cause the system follow a desired response. The effectiveness of
the proposed design stabilizers have been tested on a single machine infinite bus and
multi-machine power system under different system disturbances. The nonlinear time
domain simulation results show the robustness performance of the proposed stabilizer
and their ability to provide good quality damping of low frequency oscillations.
Moreover, this controller exhibit better performance to damp the multi-machine
power system with local and inter area modes of oscillations and improve greatly the
system stability compared to the other power system stabilizers. As a future work,
we intend to use a Type-2 fuzzy system to approximate system dynamics and design
nonlinear decentralized controllers.



324 S. Kamel et al.

Table 3 The performance index for single machine

CPSS FPSS AFPSS AFSMPSS

Case 1 0.18506 0.32192 0.14065 0.13138

Case 2 0.060966 0.18476 0.055257 0.053798

Table 4 The performance index for multi-machine

CPSS FPSS AFPSS AFSMPSS

Case 1 Gen2−1 0.044367 0.076493 0.044169 0.032748

Gen3−1 0.27498 0.38126 0.19403 0.071122

Case 2 Gen2−1 0.10415 0.130625 0.13793 0.097366

Gen3−1 0.16238 0.258294 0.154403 0.083119
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Higher Order Sliding Mode Control
of Uncertain Robot Manipulators

Neila Mezghani Ben Romdhane and Tarak Damak

Abstract This chapter deals with the tracking problem of robot manipulators. These
systems are described by highly nonlinear and coupled equations. Higher order slid-
ing mode controllers are then proposed to ensure stability and robustness of uncertain
robot manipulators. The motivation for using high order sliding mode mainly relies
on its appreciable features, such as high precision and elimination of chattering in
addition that ensures the same performance of conventional sliding mode like robust-
ness. In this chapter we propose two high order sliding mode controllers. The first
guarantees a continuous control eliminating the chattering phenomenon. Instead of
a regular control input, the derivative of the control input is used in the proposed
control law. The discontinuity in the controller is made to act on the time derivative
of the control input. The actual control signal obtained by integrating the derivative
control signal is smooth and chattering free. The second controller is an adaptive ver-
sion of high order sliding mode controller. The goal is to obtain a robust high order
sliding mode adaptive gain control law to respect to uncertainties and perturbations
without the knowledge of uncertainties/perturbations bound. The proposed controller
ensures robustness, precision and smoothness of the control signal. The stability and
the robustness of the proposed controllers can be easily verified by using the classical
Lyapunov criterion. The proposed controllers are tested to a three-degree-of-freedom
robot to prove their effectiveness.

1 Introduction

Control under uncertainty conditions is one of the main topics of the modern control
theory. Among the existing control techniques (Haddad and Hayakawa 2002; Zhou
et al. 2004; Yan et al. 2005), sliding mode control (Kachroo and Tomizuka 1996;
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Lu and Spurgeon 1997) is a powerful method to control nonlinear systems having
uncertainties and disturbances. The control laws are designed so that the systems
trajectory always reaches the sliding surface (Perruquetti and Barbot 2002). This
is known as the reaching phase. Once on the sliding surface, the control structure
is changed discontinuously to maintain the system on the sliding surface. At this
stage, the system is in the sliding phase. In this phase the system becomes totally
insensitive to parametric uncertainty and external disturbances. The control law may
be linear or nonlinear during the whole or parts of the control mission. Its structure
changes according to a preselected switching logic. The switch in the control structure
depends on the instantaneous values of the systems state along the trajectory. The high
frequency switching of the control causes the so-called chattering phenomenon which
is the main drawback of the sliding mode control. This phenomenon is extremely
dangerous to the actuator of electromechanical systems.

Several approaches are proposed to eliminate chattering. One such is to replace the
sign function in a small area of the surface by a smooth approximation, which is the
so-called boundary layer control (Kachroo and Tomizuka 1996). Then the chattering
is reduced but accuracy and robustness are deteriorated. Another technique uses the
observer design. This approach exploits a localization of the high frequency phe-
nomenon in the feedback loop by introducing a discontinuous feedback control loop
which is closed through an asymptotic observer of the plant (Young et al. 1999). Con-
sequently, it suppresses the high frequency oscillations of the control input (Young
et al. 1999). Recently, new approach has been proposed called higher order sliding
mode (Levant 2003; Plestan et al. 2008; Rhif 2012; Kamal and Bandyopadlyay 2012;
Beltran et al. 2009; Abouissa et al. 2013; Msaddek et al. 2013). Instead of influenc-
ing the first sliding surface time derivative, the sign function is acting on its higher
time derivative. Keeping the main advantage of standard sliding mode control, the
chattering effect is eliminated and higher order precision is provided (Perruquetti and
Barbot 2002). In the case of γ th order sliding mode control, the objective is to keep
the sliding variable and its γ − 1 first time derivatives to zero through discontinuous
function acting on the time γ th derivative of the sliding variable.

Several second order sliding modes control algorithms are introduced such as
twisting and super-twisting controllers, the suboptimal control algorithm, the con-
trol algorithm which prescribed convergence law and the quasi-continuous control
algorithm (Zhao et al. 2013). Many papers are available in the case of second order
sliding mode control (Hamerlain et al. 2005; Boiko et al. 2006; Bartolini et al. 2000;
Zhang et al. 2013). Arbitrary order sliding mode controllers have recently been pro-
posed in (Laghrouche et al. 2006, 2007; Levant 2001, 2005a; Defoort et al. 2009).
In 2001, the first arbitrary order sliding mode controller was proposed (Levant 2001)
by tuning only one gain parameter. Such controller allowed solving the finite-time
output stabilization and exact disturbance compensation problem for an output with
an arbitrary relative degree. There, its finite time convergence is proved by means
of geometrical (point-to-point transformation) method. However, the convergence
rate cannot be arbitrary selected. The main problem of the algorithms in (Levant
2001, 2005a, b) is parameter adjustment. Indeed, there is no explicit condition for
the gain tuning. Therefore, the convergence cannot easily be made arbitrary fast or
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slow. The approach given in (Laghrouche et al. 2006) proposes higher order sliding
mode based on linear quadratic approach. In spite of their advantages (constructive
approach, practical applicability), its major drawback is that the higher order sliding
mode control is only practical. The system trajectory reaches the small neighborhood
of the origin in finite time. Similar type of approach is used in (Plestan et al. 2008).
Based on the information of initial and final values for each state variable for the
control input the higher order controller is designed. In (Laghrouche et al. 2007), the
authors use the integral sliding mode control and guarantee the establishment of a
higher order sliding mode. The advantages of this algorithm are easy to implement
and guarantee the robustness of the system during the entire response. But it directly
depends on the initial conditions of the system and complex off-line computations
are needed before starting the control action. In 2007, a new type of arbitrary-order
controller (Levant 2007), which is γ th-sliding homogeneous, controller was pro-
posed. Considering all the above mentioned drawbacks, in 2009 (Defoort et al. 2009)
a new proposal of higher order sliding mode came into existence, which was based
on combined approach of geometrical homogeneity based linear controller (Bhat and
Bernstein 2005) and classical sliding mode technique. Since this controller is based
on geometrical homogeneity principle, it is again not possible to calculate exact time
of convergence. Also, the control of (Defoort et al. 2009) suffers from the undesired
phenomenon of chattering. In this chapter, another high order sliding mode control
is presented assuring the elimination of the chattering.

This chapter proposes two higher order sliding mode controls applied to robotic
manipulator in uncertainty conditions. The first proposed controller is inspired from
classical sliding mode control. The main attributes of this controller are robustness
and precision which are the basic properties of a higher order sliding mode controller.
Moreover, the chattering phenomenon, in the control input, is eliminated. Indeed, the
discontinuity is used in the derivative of the control, instead in the control. The second
controller is an adaptive high order sliding mode controller. This controller ensures
robustness and precision. The unknown upper bound of uncertainties is estimated
using an adaptive tuning law. Consequently, prior knowledge of the upper bound of
the system uncertainties is not required. Moreover, the chattering phenomenon, in
the control input, is eliminated.

The outline of this paper is as follows. Section 2 presents the state of the art of high
order sliding mode control. In Section 3, the second order sliding mode controller is
designed for uncertain robot manipulator. The controller eliminates the chattering in
the control input. Section 4 presents the adaptive second order sliding mode control
of robot manipulators. The Section 5 presents simulation results that demonstrate the
efficiency and advantages of the proposed controller. The discussion is presented in
Section 6. Section 7 concludes the paper.
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2 State of the Art of High Order Sliding Mode Control

Control of robotic system is vital due to wide range of their applications because
this system is multi-input, multi-output, nonlinear and uncertain. Consequently, it
is difficult to design accurately mathematical models for multiple degrees of free-
doms robot manipulators. Therefore, strong mathematical tools used in new control
methodologies to design a controller with acceptable performance. As it is obvious
stability is the minimum requirement in any control system, however the proof of
stability is not trivial especially in the case of nonlinear systems. One of the best
nonlinear robust to control of robot manipulator is sliding mode controller.

As known to all, the sliding mode control with the strong robustness for internal
parameters and external disturbances. In addition, the appropriate sliding surface
can be selected to reduce order for control system. However, due to the chattering
phenomena of sliding mode control, the high frequency oscillation of control system
brings challenge for the application of sliding mode control. On the other hand, the
choice of sliding surface strictly requires system relative degree to equal to1, which
limits the choice of sliding surface.

In order to solve the above problems, this chapter focuses on a new type of sliding
mode control, that is, higher order sliding mode control. The technology not only
retains advantage of strong robustness in the traditional sliding mode control, but
also enables discontinuous items transmit into the first order or higher order sliding
mode derivative to eliminate the chattering. Besides, the design of the controller
no longer must require relative degree to be 1. Therefore, it is greatly simplified to
design parameters of sliding mode surface.

In recent years, because arbitrary order sliding mode control technique not only
retains the traditional sliding mode control simple structure with strong robustness,
but also eliminates the chattering phenomenon in the traditional sliding mode, at the
same time, gets rid of the constraints of system relative degree. Therefore theoretical
research and engineering applications has caused widespread concern and has been
constant development.

Without losing generality, considering a state equation of single input nonlinear
system as

ẋ = f (x) + g(x)u (1)

y = s(x, t)

where, x ∈ Rn is system state variable, t is time, u is control input. Here, f (x), g(x)

and s(x, t) are smooth functions. The control objective is making output function
s ≡ 0.

Differentiate the output variables continuously, we can get every order derivative
of. According to the conception of system relative degree, there are two conditions.

i. Relative degree r = 1, if and only if ∂ ṡ
∂s �= 0,

ii. Relative degree r ≥ 2, if ∂s(i)

∂s = 0 (i = 1, 2, . . . r − 1), and ∂s(r)

∂s �= 0.
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In arbitrary order sliding mode control, its core idea is the discrete function acts on
higher order sliding mode surface, making

s(x, t) = ṡ(x, t) = s̈(x, t) = · · · = s(r−1)(x, t) = 0 (2)

Suppose the relative degree of system (1) equals to r , generally speaking, when

the control input u first time appears in r -order derivative of s, that is ∂s(r)

∂u �= 0,
then we take r -order derivative of s for output of system (1), s, ṡ, s̈, . . . , s(r−1)can
be obtained. They are continuous functions for all x and t . However, corresponding
discrete control law u acts on s(r). Selecting a new local coordinate, then

y = (y1, y2, ...yr ) = (s, ṡ, s̈, . . . , s(r−1)) (3)

So, the following expression can be obtained

s(r) = a(y, t) + b(y, t)u, b(y, t) �= 0 (4)

Therefore, high order sliding mode control is transformed to stability of r th order
dynamic system (2), (4). Through the Lie derivative calculation, it is very easy to
verify that

b = Lg Lr−1
f s = ds(r)

du
(5)

a = Lr
f s

Suppose η = (yr+1, yr+2, . . . , yn), then

η = ξ(t, s, ṡ, . . . , s(r−1), η) + χ(t, s, ṡ, . . . , s(r−1), η)u (6)

Now, Eqs. (3), (4) and (6) are transformed to Isidori-Brunowsky canonical form.
The sliding mode equivalent control is ueq = a(y,t)

b(y,t) (Utkin 1992). At present, the
aim of control is to design a discrete feedback control u = U (x, t), so that new
system converges into origin on the order sliding mode surface within limited time.
Therefore, in Eq. (4), both a(y, t) and b(y, t) are bounded function. There are positive
constants Km , KM and C so that

0 < Km < b(y, t) < KM (7)

a(y, t) < C

Theorem 1 (Levant 1998, 2003) Suppose the relative degree of nonlinear system
(1) to output function s(x, t) is r , and satisfying the condition (7), the arbitrary order
sliding mode controller has following expression
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u = −α sgn(ψr−1,r (s, ṡ, . . . , s(r−1))) (8)

where

ψ0,r = s

ψ1,r = ṡ + β1 N1,r sgn(s)

ψi,r = s(r) + βi Ni,r sgn(ψi−1,r ), i = 1, . . . , r − 1

N1,r = |s|(r−1)/r (9)

Ni,r = (|s|p/r + |ṡ|p/(r−1) + · · · + |s(i−1)|p/(r−i−1))(r−i)/p i = 1, . . . , r − 1

Nr−1,r = (|s| p
r + |ṡ| p

r−1 + · · · + |s(s(r−2))|p/2)1/p

Properly choose positive parameters β1, β2, . . . , βr−1, the system converges into
origin on the r order sliding mode surface within limited time. Finally, when s ≡ 0,
it achieves control object. The choice of positive parameters β1, β2, . . . , βr−1 is not
unique. Here, r ≤ 4 order sliding mode controller is given, which is also tested.

1.u = −α sgn(s)

2.u = −α sgn(ṡ + |s|1/2sgn(s))

3.u = −α sgn(s̈ + 2(|ṡ|3 + |s|02)1/6sgn(ṡ + |s|2/3sgn(s))) (10)

4.u = −α sgn{...
s + 3[|s̈|6 + |ṡ|4 + |s|3] 1

12 sgn[s̈ + (|ṡ|4 + |s|3)1/6

sgn(ṡ + 0.5|s| 3
4 sgn(s))]}

...

From the above Eq. (10) we can also see that, when r = 1, the controller is
traditional relay sliding mode control; when r = 2, in fact, the controller is super
twisting algorithm of second order sliding mode.

To get the differentiation of a given signal is always essential in automatic con-
trol systems. We often need derivative a variable or function. So there are a lot of
numerical algorithms for this issue. The same situation also appears in the design of
high order sliding mode controller (10) that needs to calculate the derivative values
of sliding mode variable.

Presentation above in the previous has been explained in detail the principles of
high order sliding mode control and sliding mode controller design method. This
part focuses on how to take use of high order sliding mode technique to solve the
differentiation of a given signal or variable function. And their simulation results are
verified.

Suppose given signal is f (t), now set a dynamic system as

ẋ = u (11)
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The control objectiveis to make the variable x follow given signal f (t), that is

x = f (t) (12)

Therefore, sliding mode surface is selected as

s = x − f (t) (13)

At this moment, according to the principle of sliding mode control, a proper
controller is designed. When the system enter into sliding mode, s = x − f (t) = 0.
Derivative of sliding mode surface (13),

ṡ = ẋ − ḟ (t) = u − ḟ (t) (14)

Because control input first time appears in the derivative of sliding mode surface
s, the relative degree of system is r = 1. It satisfies the requirement about relative
degree of second order sliding mode. So the super twisting algorithm (Fridman and
Levant 2002) is adopted. Thus,

u = −λ|x − f (t)1/2sgn(x − f (t)) + u1 (15)

u̇1 = −αsgn(x − f (t))

where, λ > 0, α > 0 are positive constant. Definite a function as �(α, λ, C) =
|�(t)|, C is Lipschitz constant about derivative of f (t). (t, �(t))is the solution of
equation of (16), the initial value are (0) = 0, �(0) = 1

̇ = −||1/2 + �

�̇ =
{

− 1
λ2 (a − C), −||1/2 + � > 0

− 1
λ2 (a + C), −||1/2 + � ≤ 0

(16)

Theorem 2 (Levant 1998) Let α > C > 0, λ > 0 function �(α, λ, C) < 1.
Then, provided f (t) has a derivative with Lipschitz’s constant C, the equality

u = ḟ (t) is fulfilled identically after finite time transient process. And the smaller
value of � assume, faster convergence; If �(α, λ, C) > 1, control input u will
not converge into ḟ (t). Observer parameters should meet the following sufficient
condition for convergence of the second order sliding mode control,

α > C

λ2 ≥ 4C
α + C

α − C
(17)

According to the principle of second order sliding mode, after a finite time, the
system will converge into the origin, that is,
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s(x, t) = ṡ(x, t) = 0 (18)

Then,
u = ḟ (t) (19)

Now, observer input is the estimation of derivative of given signal f (t) . Using a
sliding mode controller achieve differentiation of variable function.

Let input signal be presented in the form f (t) = f0(t) + n(t), where f0(t) is a
differentiable base signal f0(t), has a derivative with Lipschitz ‘s constant C > 0,
and n(t) is a noise, |n(t)| < ε. Then, there exists such a constant b > 0 depend on
(α − C)/λ2 and (α + C)/λ2 that after a finite time, the inequality |u(t) − ḟ0(t)| <

λbε1/2 holds (Levant 1998).
Through the first order sliding mode differentiator description of the working

principle, it will naturally think, whether can design a sliding mode differentiator to
obtain the arbitrary order derivative of given signal. Well, the design of high order
sliding mode controller (10) needs to know all sliding mode variables and their
corresponding differentiation.

Theorem 3 Design an arbitrary order sliding mode differentiator, which can be
used to estimate the derivative value of sliding mode variables, so as to achieve a
simplified numerical differential purpose as following.

ż0 = v0

v0 = −λ0|z0 − f (t)|n/(n+1)sgn(z0 − f (t)) + z1

ż1 = v1

v1 = −λ1|z1 − v0|(n−1)/nsgn(z1 − v0) + z2 (20)

...

żn−1 = vn−1

vn−1 = −λn−1|zn−1 − vn−2|1)/2sgn(zn−1 − vn−2) + zn

żn = −λnsgn(zn − vn−1)

The same with first order sliding mode differentiator, suppose given signal is
f (t), t ∈ [0,∞). It has been known that the n order derivative of f (t) has Lip-
schitz constant, recorded as L > 0. Now, the object of sliding mode differentiator is
estimating the value of f ′(t), f ′′(t), . . . , f n(t),in real time.

Arbitrary order sliding mode differentiator has the following recursive form as
Eq. (20).

It can be verified, when n = 1, it is first order differentiator. Suppose f0(t) is basic
value of given signal f (t), δ(t) is uncertain part, but bounded, satisfying |δ(t)| < ε,
then f (t) = f0 + δ(t).
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Theorem 4 (Levant 2003) If properly choose parameter λi (0 ≤ i ≤ n), the follow-
ing equalities are true in the absence of input noise after a finite time of a transient
process.

z0 = f0(t)

zi = vi = f (i)
0 (t), i = 1, . . . , n (21)

The Theorem 4 illustrates that arbitrary order sliding mode differentiator can use
differentiation zi (0 ≤ i ≤ n), to estimate any order derivative of input f (t) function
online within limited time.

Theorem 5 (Levant 2003) Let the input noise satisfy the inequality δ(t) = | f (t) −
f0(t)| ≤ ε. Then the following inequality are established in finite time for some pos-
itive constants μi , τi , depending exclusively on the parameters of the differentiator.

|zi − f i
0 (t)| ≤ μiε

(n−i+1)/(n+1) i = 0, . . . , n

|vi − f i+1
0 (t)| ≤ τiε

(n−1)/(n+1) i = 0, . . . , n − 1 (22)

By Theorem 5, we can see that the arbitrary order sliding mode differentiator has
robustness.

The arbitrary order sliding mode differentiator can accurately estimate any order
derivative of a given input. If this differentiator can be used in high order sliding
mode controller (10), any order derivative of sliding mode variable can be accu-
rately estimated avoiding the complicated calculation, which greatly simplifies the
controller design. Adopting the differentiator, consider s(t) in high order sliding
mode controller as given input for differentiator. Then the output of differentiator
zi (0 ≤ i ≤ n) can substitute any order derivative of s(t), that is

z0 = s

zi = s(i) i = 1, . . . , n (23)

The sliding mode controller (8) can written be

u = −α sgn(ψr−1,r (z0, z1, . . . , z(r−1))) (24)

The expression from this controller can also be clearly seen, with high order sliding
mode differentiator, the differentiation of arbitrary order sliding mode variable will
not be difficult to solve, which makes the high order sliding mode controller design
has been simplified greatly.
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3 Second Order Sliding Mode Control of Robot Manipulator

Robots manipulators are well-known as nonlinear systems including strong coupling
between their dynamics. These characteristics, in company with: (1) structured uncer-
tainties caused by model imprecision of link parameters, payload variation, etc., and
(2) unstructured uncertainties produced by un-modeled dynamics such as nonlinear
friction and external disturbances make the motion control of rigid-link manipulator
a complicated problem. Many controllers are proposed in the literature to solve this
problem like computed torque control, adaptive control and sliding mode control.

The sliding mode control is known to be a robust approach to solve the con-
trol problems of nonlinear systems. Robustness properties against various kinds
of uncertainties such as parameter perturbations and external disturbances can be
guaranteed. However, this control strategy has a main drawback: the well-known
chattering phenomenon. In order to reduce the chattering, the sign function can be
replaced by a smooth approximation. However, this technique induces deterioration
in accuracy and robustness. In last decade, another approach called higher order
sliding mode has been proposed and developed.it is the generalization of classical
sliding mode control and can be applied to control systems with arbitrary relative
degree respecting to the considered output. In High order sliding mode control, the
main objective is to obtain a finite time convergence in the non-empty manifold
S = {x ∈ X |s = ṡ = s̈ = · · · = s(r−1) = 0} by acting discontinuously on high
order derivatives of the sliding variable . Advantageous properties of high order slid-
ing mode control are: the chattering effect is eliminated, higher order precision is
provided whereas all the qualities of standard sliding mode are kept, and control law
is not limited by relative degree of the output.

3.1 Robot Manipulator Model

According to the Lagrange theory (Artega and Kelly 2004), the dynamic equation of
-joint robot manipulator can be described by

M(q)q̈ + C(q, q̇) + G(q) = τ + d(t) (25)

where q ∈ Rn is the vector of joint angles, M(q) ∈ Rn×n is the inertia matrix,
C(q, q̇) ∈ Rn is the Coriolis and Centrifugal terms, G(q) ∈ Rn is the gravitational
torque, τ ∈ Rn is the vector of the torque produced by actuators, and d(t) ∈ Rn is
the vector of bounded input disturbance, ‖d‖(t) < d1 where d1 > 0.

Assuming that the system described by (1) has parts which are known M0(q),

C0(q, q̇), G0(q) and unknwown �M(q),�C(q, q̇),�G(q), then

M(q) = M0(q) + �M(q) (26)
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C(q, q̇) = C0(q, q̇) + �C(q, q̇) (27)

G(q) = G0(q) + �G(q) (28)

From (26)–(28), (25) can be written in the following form

M0(q)q̈ + C0(q, q̇) + G0(q) = τ + ρ(t) (29)

where ρ(t) = −�M(q)q̈ − �C(q, q̇) − �G(q) + d(t).
The control objective is to ensure the tracking of the angular position to the desired

position in finite time, with robustness and without chattering.
Consider the robot manipulator model and define the desired trajectory as

Qd(t) = [qd(t) q̇d(t)]T (30)

where qd(t) ∈ Rn is the vector of desired joint angular and q̇d(t) is the vector of
desired angular velocities.
Define the tracking error vector as

e =
(

q − qd(t)
q̇ − q̇d(t)

)
=

(
e1
e2

)
(31)

The matrix form corresponding to the robot model (25), without disturbance, is

ė = Ae + F(q, q̇) + B(q)τ = f (e, τ ) (32)

where

A =
(

0 In

0 0

)
, F(q, q̇) =

(
0

−q̈d(t) − M(q)−1(C(q, q̇) + G(q))

)

B(q) =
(

0
M(q)−1

)

3.2 Second Order Sliding Mode Control

A sliding surface is chosen for the system (32), in the following form

S = Ce (33)

Such that C = (C ′ In) and C ′ = diag(c1, c2, . . . , cn).
Define the new system formed by y1 = S and y2 = Ṡ, then
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{
ẏ1 = y2

ẏ2 = ϕ(e) + ψ(e)τ̇
(34)

where ϕ(e) = C ∂ f (e,τ )
∂e ė and ψ(e) = C ∂ f (e,τ )

∂τ
.

In (9), the time derivative of the control input τ̇ would be designed to act on the
higher order derivative of the sliding surface. Hence, instead of the actual control τ ,
the time derivative control, τ̇ would be used as the control input. The new control
would be designed as a discontinuous signal, but its integral (the actual control τ )
would be continuous thereby eliminating the high frequency chattering.

Matrices ϕ(e) and ψ(e), in (34), consist of nominal parts ϕ̄(e) and ψ̄(e) which
are known apriori and uncertain parts �ϕ(e) and �ψ(e) which are unknown and we
suppose that are bounded. Thus we have

{
ϕ(e) = ϕ̄(e) + �ϕ(e)

ψ(e) = ψ̄(e) + �ψ(e)
(35)

Using (35), the r th order sliding mode system can be written as

{
ẏ1 = y2

ẏ2 = ϕ̄(e) + ψ̄(e)τ̇ + �P(e, t)
(36)

where �P(e, t) = �ϕ(e) + �ψ(e)τ̇ include all uncertain parameters and external
disturbance.

To determine a high order sliding mode control, a novel surface is defined for the
system (36) as

σ = y2 + Dy1 (37)

where D = diag(Di ), i = 1, . . . , n , such that σ satisfy

σ̇ = −N (σ + W sign(σ )) (38)

where N = diag(Ni ) and W = diag(Wi ), Ni > 0, Wi > 0, i = 1, . . . , n.

Differentiating (37) and using (36) and (38), the derivative of the control is expressed
as

τ̇ = −ψ̄(e)−1(ϕ̄(e) + Dy2 + N (σ + W sign(σ ))) (39)

where
Ni Wi > |�Pi (e, t)| (40)

Theorem 6 Consider the robot model (32), if the gains Ni and Wi fulfill the condition
(40) the control law (39) ensures the establishment of the 2nd order sliding mode
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in the sliding surface S, i.e. the trajectory of the system converges asymptotically to
zero.

Proof A Lyapunov function V is selected as

V = 1

2
σ 2σ (41)

Differentiating (41) and using (37) and (36), one obtain

V̇ = σ T σ̇ = ϕ̄(e)τ̇ + �P(e, t) + Dy2 (42)

Substituting (39) and simplifying, then

V̇ = σ T (−N (σ + W sign(σ )) + �P(e, t))

≤ −||σ T Nσ || −
n∑

i=1

σi Ni Wi sing(σi ) +
n∑

i=1

σi�Pi (e, t)

≤ −||σ T Nσ || −
n∑

i=1

|σi |(Ni Wi − |�Pi (e, t)|) (43)

Then, using (40) yields. V̇ < 0
Therefore, asymptotic convergence to a domain is guaranteed from any initial

condition.
As is evident from (39), τ̇ is discontinuous but after integration it yields a contin-

uous control law τ . Hence, the undesirable high frequency chattering of the control
signal is alleviated.

4 Adaptive Second Sliding Mode Control of Robot Manipulator

In practice, the upper bound of the system uncertainty is often unknown in advance
and hence the components of the vector uncertainty |�pi | are difficult to find. There-
fore, an adaptive tuning law is used to estimate Wi . Then the control law (39) can be
written as

τ̇ = −ψ̄(e)−1(ϕ̄(e) + Dy2 + Nσ + Ŵ1sign(σ )) (44)

where Ŵ1 = diag(Ŵ1i ), i = 1, . . . , n, Ŵ1i is the estimate of Wi .
Defining the adaption error as W̃1 = Ŵ1 − W1 . The adaptation law, to estimate

Ŵ1i , is inspired from the adaptive conventional sliding mode control of (Plestan et
al. 2010)

˙̂W 1i =
{

γi |σi |sign(|σi | − ε) i f Ŵ1i > μ

μ i f Ŵ1i < μ
(45)
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Lemma (Plestan et al. 2010)
For the nonlinear uncertain system (36) with the sliding variable σ dynamics (37)
controlled by (44), (45) the gain Ŵ1i has an upper-bound, i.e. there exists a positive
constant W ∗

1i so that
Ŵ1i ≤ W ∗

1i , ∀ t (46)

Theorem 7 If the control law (44), with the adaptation law (45), is applied to the
nonlinear uncertain system defined by (7), the error converges to zero in finite time.

Proof Consider the following Lyapunov function

V = 1

2
σ T σ + 1

2

∑n

1

1

γi
(Ŵ1i − W ∗

1i )
2 (47)

Differencing V and using the adaptation law (45) for Ŵ1i > μ, we obtain

V̇ = σ T σ̇ +
n∑

i=1

1

γ i
(Ŵ1i − W ∗

1i )
˙̂W 1i

= σ T σ̇ +
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= σ T (ẏ2 + Dẏ1) +
n∑
1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= σ T (ϕ̄(e) + ψ̄(e)−1τ̇ + ΔP(e, t)) +
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε) (48)

Substituting τ̇ by the expression defined by (44) and simplifying, we obtain

V̇ = −σ T Nσ − σ T Ŵ1sign(σ ) +
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= −
n∑

i=1

Niσ
2
i −

n∑
i=1

Ŵ1i |σi | +
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= −
n∑

i=1

Niσ
2
i −

n∑
i=1

Ŵ1i |σi | −
n∑

i=1

W ∗
1i |σi | +

n∑
i=1

Ŵ ∗
1i |σi |

+
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= −
n∑

i=1

Niσ
2
i −

n∑
i=1

W ∗
1i |σi | −

n∑
i=1

(Ŵ1i − W ∗
1i )|σi |
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+
n∑

i=1

(Ŵ1i − W ∗
1i )|σi |sign(|σi | − ε)

= −
n∑

i=1

Niσ
2
i −

n∑
i=1

W ∗
1i |σi | +

n∑
i=1

(Ŵ1i − W ∗
1i )|σi |(−1 + sign|(σi | − ε)) (49)

From Lemma, one has always Ŵ1i − W ∗
1i < 0 for all t > 0. It yields

V̇ < 0 (50)

For Ŵ1i < μ it is easy to proof that V̇ < 0.
Therefore, finite time convergence to a domain S = 0 is guaranteed from any

initial condition.
As is evident from (44), is discontinuous but integration τ̇ of yield a continuous

control law τ . Hence, the undesirable high frequency chattering of the control signal
is alleviated.

5 Simulation Results

The proposed higher order sliding mode control is applied to a three degree freedom
robot manipulator. The model of this robot is simulated by using MATLAB Simulink
platform with fixed step size of 0.001.

The robot model is defined by the following equation (Mezghani Ben Romdhane
and Damak 2011)

⎛
⎝M11 M12 M13

M12 M22 M23
M13 M32 M33

⎞
⎠

⎛
⎝q̈1

q̈2
q̈3

⎞
⎠ +

⎛
⎝C1

C2
C3

⎞
⎠ +

⎛
⎝G1

G2
G3

⎞
⎠ =

⎛
⎝τ1

τ2
τ3

⎞
⎠ +

⎛
⎝d1

d2
d3

⎞
⎠

where:

M11 = 2b1cosq2 + 2b2cos(q2 + q3) + 2b3cosq3 + a1

M12 = b1cosq2 + b2cos(q2 + q3) + 2b3cosq3 + a2

M22 = a2 + 2b3cosq3

M13 = b2cos(q2 + q3) + b3cosq3 + a3

M23 = a3 + b3cosq3

M23 = a3
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a1 = J1 + m1L2
c1 + J2 + m2(L2

1 + L2
c2) + J3 + m3(L2

1 + L2
2 + L2

c3)

a2 = J2 + m2L2
c2 + m3(L2

2 + L2
c3)

a3 = J3 + m3L2
c3

C1 = −b1q̇2(2q̇1 + q̇2)sinq2 − b2(2q̇1 + q̇2 + q̇3)(q̇2 + q̇3)sin(q2 + q3)

− b3q̇3(2q̇1 + q̇2 + q̇3)sinq3

C2 = −b1q̇2
1 sinq2 + b2q̇2

1 sin(q2 + q3) − b2(2q̇1 + q̇2 + q̇3) + q̇3sinq3

C3 = −b2q̇2
1 sin(q2 + q3) + b3(q̇1 + q̇2)

2sinq3

b1 = m2L1Lc2 + m3L1L2

b2 = m3L1Lc3

b3 = m3L2Lc3

G1 = k1cosq1 + k2cos(q1 + q2) + k3cos(q1 + q2 + q3)

G2 = k1cos(q1 + q2) + k3cos(q1 + q2 + q3)

G3 = k3cos(q1 + q2 + q3)

k1 = (m1Lc1 + m2L1 + m3L1)g

k2 = (m2Lc2 + m3L2)g

k3 = m3Lc3g

The nominal values of m1 , m2 and m3 are assumed to be (Mezghani Ben Romd-
hane and Damak 2011)

m10 = 0.5 Kg, m20 = 1 Kg, m30 = 0.2 Kg

and the other system parameters are assumed to be known (Mezghani Ben Romdhane
and Damak 2011)

J1 = 0.12 Kg m2 L1 = 0.5 m

J2 = 0.25 Kg m2 L2 = 0.5 m

J3 = 0.3 Kg m2 L1 = 0.25 m

Lc2 = 0.35 m Lc3 = 0.15 m

g = 9.81 m/s2
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Fig. 1 Variation of the mass m1

Fig. 2 Variation of the mass m2

We suppose that we have an uncertainty on masses of the order ± 10 % (Figs. 1, 2
and 3), and the disturbance vector is d(t) = [d1(t) d2(t) d3(t)]T where

d1(t) = 0.2 sin(3t) + 0.02 sin(26 π t)

d2(t) = 0.1 sin(3t) + 0.01 sin(26 π t)

d3(t) = 0.1 sin(3t) + 0.01 sin(26 π t)

The control objective is to design a robust control law such that the angular
positions q1, q2 and q3 and evolved from the following initial conditions

[q1(0) q2(0) q3(0)]T = [−0.2 − 0.2 − 0.4]T

[q̇1(0) q̇2(0) q̇3(0)]T = [0 0 0]T
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Fig. 3 Variation of the mass m3

track the desired angular positions qd1, qd2 and qd3, and defined as

qd1 = 1.25 − 7

5
exp(−t) + 7

20
exp(−4t)

qd2 = 1.25 − 7

5
exp(−t) + 7

20
exp(−4t)

qd3 = 1 − 7

5
exp(−t) + 7

20
exp(−4t)

After many simulations, the high order sliding mode is obtained for the follow-
ing parameter of the two sliding surfaces and the control: c1 = c2 = c3 = 2,

D1 = 10, D2 = 8, D3 = 15, N1 = 100, N2 = 10, N3 = 700, W1 = 10,

W2 = 60, W3 = 1.
Figures 4, 5 and 6 show the tracking error, the control input, the sliding surface

S and the state trajectory of each joint obtained by using the proposed high order
sliding mode controller. It is obvious that the proposed controller ensures finite time
convergence of tracking error of three joint and robustness. From control signal it is
clear that the control input has a negligible chattering especially in beginning, then
it is smooth having no chattering. A second order sliding mode is achieved on the
sliding surface S and its components reach zero in finite time. It is also chatterless.
The state trajectory of the system evolves without chattering.

The results of the sliding surface σ are presented in Fig. 7. The three sliding
surface converge to zero in finite time.

The sliding variable σ converges to zero in finite time. A first order sliding mode
control is then established on this surface. Because the discontinuity act on the first
derivative of σ , their components present the chattering phenomenon.

The proposed adaptive high order sliding mode control is also tested to the three
degree of freedom robot in the same conditions.
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Fig. 4 Tracking of the first joint

Fig. 5 Tracking of the second joint

The parameters of the two sliding surfaces, the control and the adaptation law
are: c1 = c2 = c3 = 2, N1 = 280, N2 = 250, N3 = 150, D1 = D2 = D3 =
15, γ1 = 20, γ2 = 10, γ3 = 20, ε = 0.01 et μ = 0.001.

Figures 8, 9, 10 show the tracking error, the control input, the sliding surface
and the state trajectory of each joint obtained by using the proposed adaptive high
order sliding mode controller. It is obvious that the proposed controller ensures
finite time convergence of tracking error of three joint and robustness. Because the
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Fig. 6 Tracking of the third joint

Fig. 7 Sliding surface σ

discontinuity is in the derivative of the control the signal control is smooth having
no chattering. A conventional sliding mode is ensured on the sliding mode surface
σ (Fig. 11); consequently, a second order sliding mode is guaranteed on the sliding
surface Si , i = 1, 2, 3, that reach zero in finite time. The state trajectories evolve
without chattering for the three joints.
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Fig. 8 Tracking of the first joint

Fig. 9 Tracking of the second joint

6 Discussion

In this chapter we have deal with the problem of robot manipulator control in presence
of uncertainty. We have distinguished two types of uncertainties:structured uncertain-
ties caused by model imprecision of link parameters, and unstructured uncertainties
produced by un-modeled dynamics such as external disturbances. Two main tech-
niques are suitable for the control of uncertain systems: the sliding mode control in
particular higher order sliding mode control and adaptive control.
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Fig. 10 Tracking of the third joint

Fig. 11 Sliding surface σ

First we have proposed a second order sliding mode control which is inspired
from the conventional sliding mode control. The discontinuity, instead of acting on
the first time derivative of the sliding variable, is acting on the second derivative
of this variable. And the sign function is used in the first derivative of the control
law then the control is obtained by integration. This latter is smooth compared to
the proposed control of (Defoort et al. 2009) where the sign function is used in the
control.This control has been tested to a three degree of freedom robot in presence of
uncertainties. The simulation results show the robustness and precision of this con-
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Fig. 12 Estimated parameter Ŵ11

Fig. 13 Estimated parameter Ŵ12

troller. The control signal is continuous with presence of negligible commutations.
But this controller depends on the upper bound of uncertainties.

In order to guarantee the stability of the high order sliding mode control the upper
bound of uncertainty must be estimated. Unfortunately, because of the complexity of
the structure of the uncertainties of robot manipulators, it is difficult to estimate this
bound. Then high control gain can be used when the upper bound of uncertainties is
unknown. But this gain can cause the chattering phenomenon at the sliding surface
and accordingly the deterioration of the system performances.

Adaptive control uses a parametric adaptation law providing an estimate of the
unknown parameters at each instant. This control is applicable to a wide range of
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Fig. 14 Estimated parameter Ŵ13

variation parameters, but it is insensitive to non-modeled dynamics and disturbances.
In this chapter we have proposed to use the adaptive control to improve the proposed
second order sliding mode control. Then adaptive second order sliding mode control
has been proposed. This controller is more robust. However, in the presence of large
uncertainty, the control is adjusted to have a very small tracking error. Therefore, the
effect of the uncertainty can be eliminated. Once second order sliding mode with
respect to S is established the proposed gain adaptation law (45) allows the gain
W1 declining. In other words, the gain W1 will be kept at the smallest level that
allows a given accuracy of S-stabilization. And this adaptation law allows getting an
adequate gain with respect to uncertainties/perturbations magnitude. The adaptive
second order sliding mode control presents good performances compared to the first
controller such as smoothness of the control signal and elimination of chattering.

7 Conclusion

In this paper, we have presented the design of the two robust high order sliding mode
control for the tracking problem of rigid robot manipulators. The first is inspired
from classical sliding mode control. The main feature of this controller is assuring
a smooth high order sliding mode control. The time derivative of the control acts on
the second derivative of the sliding surface. Therefore the obtained control law is
continuous and robust. The proposed controller guarantees a finite time convergence
of the tracking error. Also this controller has eliminated the chattering phenomenon
without losing robustness property and precision. To improve this controller and in
order to guarantee tracking with more robustness an adaptive high order sliding mode
control is proposed. The control gain is adjusted using an adaptive law to make the
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system robust to uncertainties and perturbations without knowledge of their upper
bound. Hence, the proposed controller is highly suitable for practical applications.
The stability of the controlled system is proved by using Lyapunov stability cri-
terion.Simulation results demonstrate the efficacy and advantage of the proposed
controllers. These controllers can be improved by using high order differentiator to
estimate the successive time derivative of the sliding variable. And the combination
of integral sliding mode control and adaptive high order sliding mode control can be
used in order to eliminate the reaching phase making the control more robust.
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Generalized H2 Sliding Mode Control
for a Class of (TS) Fuzzy Descriptor Systems
with Time-Varying Delay and Nonlinear
Perturbations

Mourad Kchaou and Ahmed Toumi

Abstract This chapter considers the development of robust performance control
based-on integral sliding-mode for descriptor system with nonlinearities and per-
turbations which consist on external disturbances and model uncertainties of great
possibility time-varying manner. Sliding-mode control (SMC) is one of robust con-
trol methodologies that deal with both linear and nonlinear systems. The most dis-
tinguishing feature of (SMC) is its robustness as well as in the case of invariant
control systems. Loosely speaking, the term “invariant” means that the system is
completely insensitive to parametric uncertainty and external disturbances. Another
type of advanced sliding mode control law is “integral sliding mode”. The integral
sliding mode control differs from the sliding mode control by the use of an integra-
tion term in the sliding variable (surface) design in addition to the linear term. In
this work the problem of sliding mode control (SMC) for a class of uncertain (TS)
fuzzy descriptor systems with time-varying delay is studied. An integral-type sliding
function is proposed and a delay-dependent criterion is developed in terms of linear
matrix inequality (LMI), which ensures the sliding mode dynamics to be robustly
admissible with generalized H2 disturbance rejection level. Moreover, a SMC law
is established to satisfy the reaching condition of the specified sliding surface for all
admissible uncertainties and time-varying delay. The developed results are tested on
two representative examples to illustrate the theoretical developments.

1 Introduction

Mathematically, a descriptor systemmodel is formulated as a set of coupled differen-
tial and algebraic equations, which include information on both static and dynamic
constraints of a real plant (Dai 1989). Descriptor systems have beenwidely studied in
the past two decades. This is, in part, because of descriptor form is useful to represent
and to handle systems such as mechanical systems, electric circuits, interconnected
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systems, social and economic, and biological systems, and in part, because of addi-
tional challenges that these systems present. For example, these systems may pos-
sess impulse behavior, which is quite different from the standard state-space systems
(Buzurovic and Debeljkovic 2010; Duan 2010; Muller 1997).

It is well known that in many physical, industrial and engineering systems, delays
occur due to the finite capabilities of information processing and data transmission
among various parts of the system. Delays could arise as well from inherent physical
phenomena like mass transport flow or recycling (Gu et al. 2003). Since delay cannot
be ignored, it offers many open research topics because it is often major sources of
undesirable system transient response or even instability and degradation in con-
trol performance. Design procedures of desired controllers, including state feedback
controllers, filters, and output feedback controllers, have been developed to deal with
time delay systems (Feng et al. 2005; Ma et al. 2008;Wu et al. 2009b; Xu et al. 2003;
Zhang et al. 2009; Zhou and Zheng 2009; Zhou and Fang 2009).

On the other hand, there are a lot of delay systems can be described by descriptor
representation. We call such systems: descriptor systems with time delay. It should
be pointed out that the stability problem for descriptor time-delay systems is much
more complicated than that for regular systems, because it is necessary to ensure
that they are not only stable, but also regular and impulse free. Many problems for
the class of descriptor delayed systems either in the continuous-time or discrete-time
have been tackled, and interesting results have been reported in the literature (Boukas
2007; Kchaou et al. 2013, 2014; Li et al. 2008; Ma et al. 2007; Wu et al. 2009a; Xu
et al. 2002; Yang and Zhang 2005).

Because most physical systems and processes in the real world are nonlinear,
many research efforts have been devoted to seeking an effective means of controlling
nonlinear systems. Among the many developments, there are growing interests in the
fuzzy control of complex nonlinear systems (Azar 2010, 2012; Takagi and Sugeno
1985). This is because of their capability to approximate very complex nonlinear
dynamics in a very natural manner. Recently, the (TS) fuzzy model (Takagi and
Sugeno 1985) has been extended to nonlinear descriptor systems with time delay and
various problems of analysis and synthesis have been studied (Gassara et al. 2013;
Kchaou et al. 2011; Lin et al. 2006; Su et al. 2009; Tian and Zhang 2008; Zhang et
al. 2009). We must point out that considerable attention and effort have been paid
to the challenging issue of analysis and synthesis of practical engineering systems
using the (TS) descriptor fuzzy approach. In (Schulte and Guelton 2006), the use of
this representation is justified to model and control design for a SCARA robot. This
model, is adopted inAguilera-gonzalez et al. (2013) to regulate the intake and exhaust
manifold pressures for four-cylinder diesel engine with Exhaust Gas Recirculation.
The guaranteed cost control for a practical overhead crane is investigated in Chen et
al. (2009). The dynamics of the system is exactly transformed into a fuzzy descriptor
model and then a fuzzy controller is designed under input/state constraints.

As the dual of the robust control problem, generalized H2 (L2 − L∞) control for
dynamic systems has been extensively investigated. Generalized H2 performance
has been well recognized to be most appropriate for systems with noise input, whose
stochastic information is not precisely known. The objective of this problem is to
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design a controller such that the resulting closed-loop system is stable and ensures
that the peak value of the controlled output is often required to be within a certain
range (Kchaou et al. 2011; Li et al. 2008; Wu and Wang 2008)

Due to its attractive features such as easy realization, fast response, good transient
response and invariance tomatched uncertainties, sliding-mode control (SMC), as the
most popular kind of variable-structure control (VSC), has become a very focused
topic for control engineers and it has been successfully applied to solving many
practical control problems (Chang 2012; Ding et al. 2011; Li et al. 2007; Wu et al.
2008). In SMC the design cycle consists of two stages. First, a sliding surface is
designed such that, when the system trajectories are restricted to the sliding surface,
the system meets the control objectives. During the second stage, a (possibly dis-
continuous) control is designed to drive and constrain the system trajectories to the
sliding surface, irrespectively of the disturbances acting on the system.

In contrast with conventional SMC, the system motion under integral sliding
mode has a dimension, which equals to that of the state space of the system. The
main advantages of using the integral sliding surface are that, once the system is in the
sliding mode, the effect of matched perturbation can be completely eliminated and
the robust stability problem of the closed-loop system becomes a standard feedback
controller design problem for a systemwith mismatched uncertainty and disturbance
(Chang 2012). Based on integral SMC strategy, many results have been developed to
control a various class of systems, such as, uncertain time-delay systems, stochastic
systems, and Markovian jump systems (Gao and Wu 2007; Seuret et al. 2009; Wu
and Ho 2010; Wu and Zheng 2009). However, to the author’s knowledge, there is
little related results reported on SMC of (TS) descriptor systems (Han et al. 2012).

In this chapter, we will investigate the integral SMC for (TS) fuzzy descriptor sys-
tems subject to time-varying delay, mismatched norm-bounded uncertainties, distur-
bances and matched nonlinear perturbation. We will design an appropriate integral
sliding surface function where the singular matrix E is taken into account. Sincemis-
match disturbances cannot be eliminated completely once a system is in the sliding
mode, the generalized H2 disturbance attenuation technique can reduce the effect of
the disturbance acting on a system to an acceptable level. In this work, we address the
following issues of sliding-mode control for delayed (TS) fuzzy descriptor systems:

1. we design a suitable integral sliding surface function by taking the singular matrix
into account, thus the resulting sliding mode dynamics is a full-order descriptor
time-delay system,

2. we derive sufficient LMI conditions under which the robust admissibility of the
sliding mode dynamics with generalized H2 performance is guaranteed,

3. we synthesize a SMC law to drive the system trajectories onto the predefined
switching surface.

This chapter is organized as follows. The description of (TS) fuzzy descriptor sys-
tems with time-varying delay and some preliminaries are given in Sect. 2. Section3
is divided into four parts. In Sect. 3.1, the integral sliding surface is designed. A
delay-dependent sufficient condition that ensure for sliding mode dynamics to be
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admissible with generalized H2 performance is developed in Sect. 3.2. Section3.3
is devoted to how to compute gain Ki in the switching surface function such that
the sliding mode dynamics is robustly admissible with generalized H2 performance.
The synthesizing of SMC law, by which the trajectories of the fuzzy descriptor sys-
tem can be driven onto the pre-specified switching surface, is presented in Sect. 3.4.
The feasibility of the proposed method is illustrated in Sect. 4 with two numerical
examples. Conclusions are given in Sect. 5.
Notations Throughout this paper, X ∈ R

n denotes the n—dimensional Euclid-
ean space, while X ∈ R

n×m refers to the set of all n × m real matrices. Notation
X > 0 (respectively, X ≥ 0) means that matrix X is real symmetric positive def-
inite (respectively, positive semi-definite). If not explicitly stated, all matrices are
assumed to have compatible dimensions for algebraic operations. L2 is the space
of integral vector over [0,∞). The L2 and L∞-norm over [0,∞) are defined as
||g||22 = ∫∞

0 gT (t)g(t)dt , and || f ||∞ = supt | f (t)|. Symbol (∗) stands for matrix
block induced by symmetry, sym(X) stands for X + X T .

2 System Description and Preliminaries

The (TS) dynamic model is a class of fuzzy systems described by fuzzy IF-THEN
rules, which locally represent linear input-output relations of nonlinear systems.

A continuous fuzzy descriptormodel with time delay and parametric uncertainties
can be described by:

Ri : If θ1(t) is Fi
1 and If θ2(t) is Fi

2 · · · If θs(t) is Fi
s , Then⎧⎪⎨

⎪⎩
Eẋ(t) = Ai (t)x(t) + Ahi (t)x(t − h(t)) + Bi

(
u(t) + fi (t, x(t))

)+ Bwi (t)w(t)

z(t) = Ci x(t) i = 1, 2, . . . , r

x(t) = ϕ(t), t ∈ [−hM , 0].
(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, w(t) ∈ R
w is the

external disturbance input, fi (t, x(t)) represents the system nonlinearity and any
model uncertainties in the system including external disturbances, z(t) ∈ R

s is
the controlled output, Fi

j ( j = 1 . . . s) are fuzzy sets, θ(t) = [θ1(t), . . . , θs(t)] is
the premise variable vector. It is assumed that the premise variables do not depend
on the input variables u(t), which is needed to avoid a complicated defuzzification
process of fuzzy controllers. Delay h(t) is time-varying and satisfies

0 ≤ h(t) ≤ hM , ḣ(t) ≤ hd . (2)

where hM is constant representing the bounds of the delay, hd is a positive constant.
ϕ(t) is a compatible vector-valued initial function in [−hM , 0] representing the initial
condition of the system.
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The systemdisturbance,w(t), is assumed to belong to L2[0,∞), that is,
∫∞
0 wT (t)

w(t)dt < ∞. This implies that the disturbance has finite energy. Matrix E ∈ R
n×n

may be singular with rank(E) = q ≤ n. Ai (t) = Ai + ΔAi (t), Ahi (t) = Ahi +
ΔAhi (t) and Bwi (t) = Bwi + ΔBwi (t) are time-varying system matrices. Ai , Ahi ,
Bi , Bwi and Ci are constant matrices with appropriate dimensions. The overall fuzzy
model is inferred as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Eẋ(t) =
r∑

i=1

μi (θ(t))
{

Ai (t)x(t) + Ahi (t)x(t − h(t)) + Bi
(
u(t) + fi (t, x(t))

)+ Bwi (t)w(t)
}

z(t) =
r∑

i=1

μi (θ(t))Ci x(t)

(3)
where μi (θ(t)) is the normalized membership function defined by

μi (θ(t)) =

s∏
j=1

Fi
j (θ j (t))

r∑
i=1

s∏
j=1

Fi
j (θ j (t))

, i = 1, 2, . . . , r

and Fi
j (θ j (t)) represents the membership degrees of θ j (t) in fuzzy set Fi

j . Note that
normalized membership μi (θ(t)) satisfies

μi (θ(t)) ≥ 0, i = 1, 2, . . . , r
r∑

i=1

μi (θ(t)) = 1. (4)

Without loss of generality, we introduce the following assumption for technical con-
venience. For brevity, we use in the sequel the following notation where μi stands
for μi (θ(t)).

1. ΔAi (t), ΔAhi (t) and ΔBwi (t) are the unmatched uncertainties satisfying

[ΔAi (t)ΔAhi (t)ΔBwi (t)] = Mi F(t)[Ni Nhi Nwi ], (5)

where Mi , Ni , Nhi and Nwi are known real constantmatrices and F(t) is unknown
time-varying matrix function satisfying FT (t)F(t) ≤ I .

2. Matrices Bi , i = 1, 2, . . . , r are assumed to satisfy B1 = B2, . . . , Br = B.
3. Matched nonlinearities fi (x) satisfies the inequality

fi (x) ≤ ηi (x) (6)

where ηi (x) is positive known vector-valued function.
4. Exogenous signal, w(t) is bounded.

First of all, we recall some definitions.
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Consider an unforced linear descriptor system with delay described by:

Eẋ(t) = Ax(t) + Ah x(t − h(t)), 0 ≤ h(t) ≤ hM

x(t) = ϕ(t), t ∈ [−hM , 0]. (7)

Definition 1 (Dai 1989)

1. System (7) is said to be regular if det
(

s E − A
)

�= 0.

2. System (7) is said to be impulse free if deg
(

det
(

s E − A
))

= rank(E).

3. System (7) is said to be admissible if it is regular, impulse-free and stable.

Descriptor time-delay system (7) may have an impulsive solution, however, the regu-
larity and non-impulse of (E, A) guarantee the existence and uniqueness of impulse-
free solution to (7) on [0,∞).

Definition 2 (Xu et al. 2002) The descriptor delay system (7) is said to be regular
and impulse free if the pair (E, A) is regular and impulse free. System (7) is said
asymptotically stable, if for any ε > 0 there exists a scalar δ(ε) > 0 such that for
any compatible initial condition, φ(t) with sup−hM <t≤0 ‖φ(t)‖ < δ(ε), the solution
x(t) of (7) satisfies ‖x(t)‖ < ε for t ≤ 0 and lim

t→0
x(t) = 0

Definition 3 Descriptor system (7) is said to be asymptotically stable with gener-
alized H2 performance if the open-loop system is asymptotically stable and under
the zero initial condition, the L2-L∞ norm of the open-loop transfer function Tzw(s)
from external disturbance w(t) to controlled output z(t) satisfies

||Tzw(s)||L2−L∞ = sup
0 �=w(t)∈L2

||z(t)||∞
||w(t)||2 < γ (8)

where γ is a given positive scalar.

Lemma 1 (Fridman 2000) If a functional V : Cn[−τ, 0] → R is continous and
x(t, Φ) is a solution to (7), we define

V̇ (Φ) = lim
h→0+ sup

1

h

(
V (x(t + h, Φ) − V (φ))

)

Denote the system parameters of (7) as

(E, A , Ah) =
([Iq 0

0 0

]
,

[
A11 A12
A21 A22

]
,

[
Ah11 Ah12
Ah21 Ah22

])

Assume that the descriptor system (7) is regular and impulse-free, A22 is invertible
and ρ(A−1

22 Ah22) < 1. Then, system (7) is stable if there exists positive numbers
α, μ, ν and a continuous function, V : Cn[−τ, 0] → R, such that
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μ‖Φ1(0)‖2 ≤ V (Φ) ≤ ν‖Φ‖2,
V̇ (xt ) ≤ −α‖xt‖2

where xt = x(t + θ) with θ ∈ [−τ, 0] and Φ = [
ΦT

1 ΦT
2

]T
with Φ1 ∈ R

q

Lemma 2 (Gu et al. 2003) For any constant matrix M > 0, any scalar hm and hM

with 0 < hm < hM , and vector function x(t) : [−hM , −hm] → R
n such that the

integrals concerned as well defined, then the following holds

− (hM − hm)

t−hm∫
t−hM

xT (s)Mx(s)ds ≤ −
t−hm∫

t−hM

xT (s)ds M

t−hm∫
t−hM

x(s)ds

Lemma 3 (Peterson 1987) Let M and N be real matrices with appropriate dimen-
sions. Then, for any Δ matrix satisfying ΔT Δ ≤ I and scalar ε > 0,

sym(MΔN ) ≤ εM MT + ε−1N T N (9)

3 Integral Sliding Mode Controller Design

SMCdesign involves two basic steps. The first one is to design an appropriate switch-
ing surface such the sliding mode dynamics restricted to the surface is admissible
with generalized H2 disturbance rejection level γ . In the second step a SMC law
is synthesized to guarantee that the sliding mode is reached and the system states
maintain in the sliding mode thereafter.

3.1 Integral Sliding Mode Surface

The integral sliding-mode control completely eliminating the matched-type non-
linearities and uncertainties of (3) while keeping s = 0. In this work, the following
integral sliding surface is considered:

s(x, t) = MEx(t) − M
(

Ex0 +
t∫

0

r∑
i=1

μi

{(
Ai + BKi

)
x(θ) + Ahi x(θ − h(θ))dθ

})

(10)

where Ki ∈ R
m×n is real matrix to be designed and M ∈ R

m×n is constant matrix
satisfying MB is nonsingular. According to SMC theory, when the system trajec-
tories reach onto the sliding surface, it follows that s(x, t) = 0 and ṡ(x, t) = 0.
Therefore, from ṡ(x, t) = 0, the equivalent control law can be established as
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us = −(MB)−1M
r∑

i=1

μi

{(
ΔAi (t) + BKi

)
x(t) + ΔAhi (t)x(t − h(t))) + Bwi (t)w(t)

}

−
r∑

i=1

μi fi (x(t)) (11)

Substituting (11) into (3), we obtain the following sliding mode dynamics:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Eẋ(t) =
r∑

i=1

μi

{
Ai (t)x(t) + Ahi (t)x(t − h(t)) + Bwi (t)w(t)

}

z(t) =
r∑

i=1

μi Ci x(t)

(12)

where M = I − B(MB)−1M and

Ai (t) = Ai + ΔAi (t), Ai = Ai + BKi , Ahi (t) = Ahi + ΔAhi (t),

Bwi (t) = Bwi + ΔBwi (t), Bwi = MBwi , Mi = MMi ,

(13)[
ΔAi (t) ΔAhi (t) ΔBwi (t)

] = Mi F(t)
[
Ni Nhi Nwi

]
.

3.2 Sliding Mode Dynamics Generalized H2 Analysis

In this subsection, we develop a delay-dependent sufficient condition which ensures
the admissibility of the sliding mode dynamics (12) with generalized H2 perfor-
mance.

3.2.1 Nominal Case

In what follows, we are presenting a delay-dependent sufficient condition such that
the nominal case of (12) (that is, ΔAi (t) = 0, ΔAhi (t) = 0 and ΔBwi (t) = 0) is
admissible with generalized H2 performance.
For brevity, we use in the sequel the following notation:

A =
r∑

i=1

μi Ai Ah =
r∑

i=1

μi Ahi Bw =
r∑

i=1

μi Bwi C =
r∑

i=1

μi Ci . (14)
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we obtain

{
Eẋ(t) = Ax(t) + Ah x(t − h(t)) + Bww(t)

z(t) = Cx(t)
(15)

Theorem 1 Let γ , hM and hd given positive scalars. Then fuzzy descriptor system
(12) is regular, impulse free and asymptotically stable with generalized H2 norm
bound γ , if there exist a non-singular matrix P, some matrices Q1 > 0, Q2 > 0,
S > 0, with appropriate dimensions such that the following set of LMIs holds:

ET P = PT E ≥ 0 (16)⎡
⎣Φi Bwi

√
hM Ai S

∗ −γ I
√

hM B
T
wi S

∗ ∗ −S

⎤
⎦ < 0 (17)

[−ET P CT
i∗ −γ I

]
< 0, (18)

where

Φi =

⎡
⎢⎢⎢⎢⎢⎣

Φ11i PT Ahi + 1

hM
ET SE 0

∗ −(1 − hd)Q1 − 2

hM
ET SE

1

hM
ET SE

∗ ∗ −Q2 − 1

hM
ET SE

⎤
⎥⎥⎥⎥⎥⎦

Φ11i = Q1 + Q2 + sym(PT Ai ) − 1

hM
ET SE

Ai = [
Ai Ahi 0

]T
, Bwi =

[
B

T
wi P 0 0

]T

Proof The proof of this theorem is divided into two parts. The first one is concerned
with the regularity and the impulse-free characterizations, and the second one treats
the stability property of system (15).
Since rank(E) = q ≤ n, there always exist two non singular matrices M and N ∈
R

n×n such that

E = MEN =
[

Iq 0
0 0

]
(19)
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Set

A = MAN =
[
A11 A12

A21 A22

]
, Ah = MAh N =

[
Ah11 Ah12

Ah21 Ah22

]
,

P = M−T P N =
[

P11 P12

P21 P22

]
.

(20)

Using the fact that P is non-singular, it is easy to see from (16) and (20) that P11 > 0,
P12 = 0 and P22 is also non-singular.
From (17), it is easy to verify that Φ11i < 0, and thus

sym(PT
A) − 1

hM
ET SE < 0 (21)

Pre- and post-multiplying (21) by N T and N , respectively, we obtain

[
� �

� sym(P
T
22A22)

]
< 0 (22)

where � will not be used in the following development. Hence, we can deduce that
A22 is non-singular. Therefore, according to Definition 1, singular time-delay system
(15) is regular and impulse free for any time-delay h(t) satisfying (2).
From (17), we conclude that

⎡
⎢⎣
sym(PT

A) + Q1 + Q2 − 1

hM
ET SE PT

Ah + 1

hM
ET SE

∗ −(1 − hd)Q1 − 2

hM
ET SE

⎤
⎥⎦ < 0

Pre- and post-multiplying the above inequality by

[
0 I 0 0
0 0 0 I

]

and it transpose, respectively, we obtain

[
sym

(
P

T
22A22

)
+ Q22

1 + Q22
2 PT

22Ah22

∗ −(1 − hd)Q22
1

]
< 0

which implies that

[
sym

(
P

T
22A22

)
+ Q22

1 PT
22Ah22

∗ −(1 − hd)Q22
1

]
< 0
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It follows from (1,1)-block thatA22 is invertible. Then, pre- and post multiplying the

above inequality by

[
−
(
Ah22

)T (
A22

)−T
I

]
< 0 and its transpose, respectively,

yields

((
A22

)−1(
Ah22

))T

Q22
1

((
A22

)−1(
Ah22

))
− (1 − hd)Q22

1 < 0

which shows that ρ
(((

A22

)−1(
Ah22

)))
< 1 holds.

Now, let us choose the following Lyapunov-Krasovskii functional as follows:

V (t) = V1(t) + V2(t) + V3(t)

V1(t) = xT (t)ET Px(t)

V2(t) =
t∫

t−h(t)

xT (s)Q1x(s)ds +
t∫

t−hM

xT (s)Q2x(s)ds

V3(t) =
0∫

−hM

t∫
t+θ

ẋ T (s)ET SEẋ(s)dsdθ

(23)

The derivative along the trajectories of (12) is expressed as

V̇1(t) = 2xT (t)PT
(
Ax(t) + Ah x(t − h(t))

)

V̇2(t) = xT (t)Q1x(t) − (1 − ḣ(t))xT (t − h(t))Q1x(t − h(t)) + xT (t)Q2x(t)

− xT (t − hM )Q2x(t − hM )

≤ xT (t)(Q1 + Q2)x(t) − (1 − hd )xT (t − h(t))Q1x(t − h(t))

− xT (t − hM )Q2x(t − hM )

V̇3(t) = hM ẋT (t)ET SEẋ(t) −
t∫

t−hM

ẋT (s)ET SEẋ(s)ds

= hM ẋT (t)ET SEẋ(t) −
t−h(t)∫

t−hM

ẋT (s)ET SEẋ(s)ds −
t∫

t−h(t)

ẋ T (s)ET SEẋ(s)ds

(24)

According to Lemma 2, we develop

V̇3(t) ≤ − 1

hM
γ1ET SEγ1 − 1

hM
γ2ET SEγ2 (25)
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where γ1 = x(t − h(t)) − x(t − hM ) and γ2 = x(t) − x(t − h(t)).
Considering (25), we get from (24)

V̇ (t) ≤ ξ T (t)Φ̄ξ(t) (26)

where ξ(t) = [
xT (t) xT (t − h(t)) xT (t − hM )

]T
.

From (17), it is easy to see that Φi < 0. Then we have

Φ̄ =
r∑

i=1

μiΦi < 0 (27)

Hence, V̇ (t) ≤ −λmin(−Φ̄)‖ξ1(t)‖2 which implies that nominal singular system
(12), with w(t) = 0, is asymptotically stable.
Next the the generalized H2 performance of system (12) is established under zero
initial conditions.
From (17) we can obtain

Ψi =
[
Φi Bwi

∗ −γ I

]
+ 1

hM

[
Ai

B
T
wi

]
S

[
Ai

B
T
wi

]T

< 0 (28)

Consider the following performance index:

J0 = V (t) − γ

t∫
0

wT (s)w(s)ds (29)

where V (t) is defined as in (23). For any non-zero w(s) ∈ L2, t > 0 and zero initial
state condition ϕ(t) = 0, t ∈ [−hM , 0], it is not difficult to achieve

J0 = V (t) − V (0) − γ

t∫
0

wT (s)w(s)ds =
t∫

0

V̇ (x(s)) − γwT (s)w(s)ds

(30)

Define ζ(t) = [
ξ T (t) wT (t)

]T
. According to the aforementioned method we get

V̇ (x(t)) − γwT (t)w(t) ≤
r∑

i=1

hiζ
T (t)Ψiζ(t) (31)

From (28) to (31), we conclude that J0 < 0.
Therefore, we can obtain the following inequality
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xT (t)ET Px(t) ≤ V (t) < γ

t∫
0

wT (s)w(s)ds (32)

On the other hand, from (18) it yields γ −1CT
i Ci − ET P < 0 which, in turn, leads

to

zT (t)z(t) ≤ γ xT (t)ET Px(t) ≤ γ V (t)

< γ 2

t∫
0

wT (s)w(s)ds ≤ γ 2

∞∫
0

wT (s)w(s)ds
(33)

Taking the maximum value of ||z(t)||2∞, we have ||z(t)||2∞ < γ 2||w(t)||22 for any
0 �= w(t) ∈ L2 which means that system (12) is delay-dependent asymptotically
stable with generalized H2 norm bound γ . This completes the proof. ��

3.2.2 Uncertain Case

Based on Theorem 1, we develop a delay-dependent criterion such that system (12)
with norm-bounded parameter uncertainties described in (13) is robustly admissible
with generalized H2 performance.

Theorem 2 Let γ , hM and hd given positive scalars. Then fuzzy descriptor system
(12) is regular, impulse free and asymptotically stable with generalized H2 norm
bound γ , if there exist a non-singular matrix P, some matrices Q1 > 0, Q2 > 0,
S > 0, with appropriate dimensions and positive scalars εi (i = 1, . . . , r) such that
the following set of LMIs holds:

ET P = PT E ≥ 0 (34)⎡
⎢⎢⎢⎢⎣

Φi Bwi
√

hM Ai S Mi εi Ni

∗ −γ I
√

hM B
T
wi S 0 εi Nwi

∗ ∗ −S 0 0
∗ ∗ ∗ −εi I 0
∗ ∗ ∗ ∗ −εi I

⎤
⎥⎥⎥⎥⎦ < 0 (35)

[−ET P CT
i∗ −γ I

]
< 0, (36)

where

Ni = [
N T

i N T
hi 0

]T
, Mi =

[
M

T
i P 0 0

]T
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Proof Replacing Ai , Ahi and Bwi by Ai (t), Ahi (t) and Bwi (t) in (16), respectively,
we can conclude that the uncertain sliding mode dynamics (12) is admissible with
generalized H2 performance.

Ψi + sym(Ni F(t)MT
i ) < 0 (37)

Then, according to Lemma 3, (35) holds using the Schur complement. ��

3.3 Sliding Mode Dynamics Generalized H2 Synthesis

Using the previous results we focus on this section to determine gain Ki in the
switching surface function in (10) such that sliding mode dynamics (12) is robustly
admissible with generalized H2 performance.

Theorem 3 Let hM , hd ,γ andσ given positive scalars. Then, sliding mode dynamics
(12) is robustly admissible with H2 performance γ , for any delay h(t) satisfying (2),
if there exist a non-singular matrix X, symmetric positive-definite matrices Q̃1, Q̃1,
S̃ and some positive scalars εi , i = 1, . . . , r such that the following LMIs hold:

E X = X T ET ≥ 0 (38)

ϒi =

⎡
⎢⎢⎢⎢⎣

Φ̃i B̃wi
√

hM Ãi M̃i εi Ñi

∗ −γ I
√

hM BT
wi 0 εi N T

wi
∗ ∗ σ 2 S̃ − σ sym(X) 0 0
∗ ∗ ∗ −εi I 0
∗ ∗ ∗ ∗ −εi I

⎤
⎥⎥⎥⎥⎦ < 0 (39)

Γi =
[−X T ET C̃T

i∗ −γ I

]
< 0, i, j = 1, . . . , r (40)

where

Φi =
⎡
⎣Φ1i Ahi X + E S̃ET 0

∗ −(1 − hd)Q̃1 − 2E S̃ET E S̃ET

∗ ∗ −Q̃2 − E S̃ET

⎤
⎦

Φ1i = sym(Ai X + B Fi ) + Q̃1 + Q̃2 − 1

hM
E S̃ET , C̃i = Ci X

(41)

Ãi = [
Ai X + B Fi Ahi X 0

]T
, B̃wi =

[
B

T
wi 0 0

]T

M̃i =
[

M
T
i 0 0

]T
, Ñi = [

Ni X Nhi X 0
]T

.

(42)
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The stabilising controller gains are given by Ki = Fi X−1

Proof Under the conditions of Theorem 3, a feasible solution satisfies condition
−σ sym(X) + σ 2 S̃ < 0 which implies that X is nonsingular.
On another hand, we note for any σ > 0 that

0 ≤ (X − σ S̃)T S̃−1(X − σ S̃) = X T S̃−1X − σ sym(X) + σ 2 S̃ (43)

which implies that

−X T S̃−1X ≤ −σ sym(X) + σ 2 S̃ (44)

Let P = X−1, Q̃l = X T Ql X (l = 1, 2) and S̃ = X T SX and Yi = Ki X
(i = 1, . . . , r).
Considering (44) and checking a congruence transformation to (38), (39) and (40)

by P , diag
{

P, P, I, I, I, I, I
}
and diag

{
P, I

}
, respectively, inequalities (34), (35)

and (36) hold. ��

3.4 SMC Law Synthesis

Now,weare in position to synthesize aSMClaw, bywhich the trajectories of the fuzzy
descriptor system with delay in (3) can be driven onto the pre-specified switching
surface s(t) = 0 and then are maintained there for all subsequent time.

Theorem 4 Consider the uncertain descriptor time-delay system (3). Suppose that
the switching surface function is given by (10), then the trajectories of system (3)
can be driven onto the switching surface s(t) = 0 by the following SMC law:

u(t) =
r∑

i=1

μi
(
Ki x(t) − αi

s(t)

‖s(t)‖
)

(45)

where

αi = λ + ηi (x) + ‖(MB
)−1MMi‖

(
‖Ni x(t)‖ + ‖Nhi x(t − h(t))‖ + ‖Nwiw(t)‖

)

+ ‖(MB
)−1MBwi‖‖w(t)‖ (46)

Proof Without loss of generality, we can chooseM = BT X0, where X0 is positive
definitematrix. SoMB = BT X0B is nonsingular. Consider the following Lyapunov
function:

Vs(t) = 1

2
sT (t)

(MB
)−1

s(t) (47)
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According to (10), we obtain

ṡ(t) = M
r∑

i=1

μi

{(
ΔAi (t) − BKi

)
x(t) + ΔAhi (t)x(t − h(t))) + Bwi (t)w(t)

+ B
(

u(t) + fi (x(t))
)}

(48)

Considering (48), the derivative of Vs(t) is expressed as

V̇s(t) = sT (t)
(MB

)−1
ṡ(t)

= sT (t)
(MB

)−1M
r∑

i=1

μi

{
ΔAi (t)x(t) + ΔAhi (t)x(t − h(t))) + Bwi (t)w(t)

}

+ sT (t)
(

u(t) +
r∑

i=1

μi
(

fi (x(t)) − Ki x(t)
))

≤‖s(t)‖
r∑

i=1

μi

{
‖(MB

)−1MMi‖
(
‖Ni x(t)‖ + ‖Nhi x(t − h(t))‖ + ‖Nwiw(t)‖

)

+ ‖(MB
)−1MBwi‖‖w(t)‖ + ηi (x)

}
+ sT (t)

(
u(t) −

r∑
i=1

μi Ki x(t)
)

(49)

Substituting (45) into (49), we get

V̇s(t) = − λ‖s(t)‖ < 0, ∀‖s(t)‖ �= 0 (50)

Then the system trajectories converges to the predefined sliding surface and is
restricted to the surface for all subsequent time, thereby completing the proof. ��
Remark 1 One popular solution to eliminate chattering is to approximate discon-

tinuous function
s(t)

‖s(t)‖ by some continuous and smooth functions. For example, it

could be replaced by
s(t)

ε + ‖s(t)‖ , where ε is a small positive scalar value.

However, due to the consequence of disturbances, the smooth control function cannot
provide finite-time convergence of the sliding variable to zero and the state variables
converge to domains in a vicinity of the origin. This smooth control law is known as
quasi-sliding mode control.

4 Numerical Examples

Example 1 To illustrate the merit and effectiveness of our results, we consider the
following nonlinear time delay system borrowed from (Zhang et al. 2009)
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(
1 + (a + δa(t)) cos(θ(t))

)
θ̈ (t) = − bθ̇3(t) + cθ(t) + (ch + δch(t))θ(t − h(t))

+ d
(
u(t) + fi (t, x(t))

)+ ew(t)
(51)

where the range of θ̇ (t) is assumed to satisfy |θ̇ (t)| < Φ, Φ = 2, ch = 0.8, u(t) is
the control input and w(t) is the disturbance input. For simulation purposes, we set
a = 1, b = e = 1, c = 1 and d = 1.
Defining x(t) = [

θ(t) θ̇(t) θ̈(t)
]
. System (51) can expressed as

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ ẋ(t) =

⎡
⎣0 1 0
0 0 1
c −bx22 −1 − a(t)cos(x1)

⎤
⎦ x(t) +

⎡
⎣ 0 0 0

0 0 0
ch(t) 0 0

⎤
⎦ x(t − h(t)) +

⎡
⎣00

d

⎤
⎦

+ d
(
u(t) + fi (t, x(t))

)+
⎡
⎣00

e

⎤
⎦w(t) (52)

Basedon the sector nonlinearity concept (Tanaka andWang2001), time-delay system
(51) can be expressed exactly by the following (TS) fuzzy descriptor model (Zhang
et al. 2009):

Eẋ(t) =
3∑

i=1

μi

{
Ai (t)x(t) + Ahi (t)x(t − h(t)) + B

(
u(t) + fi (t, x(t))

)+ Bwi (t)w(t)
}

z(t) =
3∑

i=1

μi Ci x(t)

(53)

where

E =
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣0 1 0
0 0 1
c −b(Φ2 + 2) a − 1

⎤
⎦ , A2 =

⎡
⎣0 1 0
0 0 1
c 0 −a − 1 − aΦ2

⎤
⎦ ,

A3 =
⎡
⎣0 1 0
0 0 1
c 0 a − 1

⎤
⎦ , Ahi =

⎡
⎣ 0 0 0
0 0 0
ch 0 0

⎤
⎦ , Bi =

⎡
⎣00

d

⎤
⎦ ,

Bwi =
⎡
⎣00

e

⎤
⎦ , Ci = [

0.5 0 0
]
, i = 1, 2, 3.

μ1 = x22 (t)

Φ2 + 2
, μ2 = 1 + cos(x1(t))

Φ2 + 2
, μ3 = Φ2 − x22 (t) + 1 − cos(x1(t))

Φ2 + 2

Assume that δa(t) = αΔ(t)a and δch(t) = αΔ(t)ch . The uncertain matrices in (5)
can be described as
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Fig. 1 States of the closed-loop system

Mi =
⎡
⎣00

α

⎤
⎦ , N1,3 = [

0 0 a
]
, N2 = [

0 0 −a(Φ2 + 1)
]

For computational simplicity, set M = [
0.3 0.2 1

]
. Then MB = 1 is nonsingular.

Set α = 0.25, γ = 0.1, σ = 1.1 and time-varying delay h(t) = 1.2 + 0.1sin(t). A
straightforward calculation gives hM = 1.3 and hd = 0.1.

Our aim is to design an SMC law u(t) as given in (45) such that the closed-loop
system is robustly stable with generalized H2 performance.
For aforementioned parameters, Theorem 3 produces a feasible solution to the cor-
responding LMIs with the following matrices

X =
⎡
⎣0.088069 −0.04124 0

−0.04124 0.03636 0
0.011769 −0.030176 0.037596

⎤
⎦ , K1 = [−2.2383 3.78 −2.0092

]
,

K2 = [−2.2206 −2.2258 4.1739
]
, K3 = [−2.2383 −2.22 −2.0092

]
,

(54)

In addition, we take for simulation purpose fi (t, x(t)) = 0.75sin(x1(t))x1(t),

(i = 1, 2, 3), the exogenous input w(t) = 0.5

1 + t2
and the uncertain matrix function

Δ(t) = sin(t). By setting λ = 0.5, the SMC law can be designed according to (45)–
(46) and the simulation results are depicted in Figs. 1, 2 and 3 with initial condition
x(0) = [

1.5 −0.5 1
]T . To prevent the control signals from chattering, we replace

sign s(t)
‖s(t)‖ with s(t)

0.05+‖s(t)‖ .
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Figure 1 plots the evolution of the system states and Fig. 2 depicts the control input
vector. The response of s(t) is given in Fig. 3. It is observed from Fig. 1 that the
state trajectories of the system all converge to the origin quickly. The system can
be stabilized by the proposed method and the reaching motion satisfies the sliding
reaching condition in spite of the time-varying delay, uncertainties and matched
input. Figure 4 shows the state trajectories of the closed-loop system without sliding
mode term. From this figure, we can see the effectiveness of the sliding mode term,
which is used to compensate the effect of unknown input.

Now, assume that fi (t, x(t)) = 0 and for time t ≥ 70 s model parameters a,
ch and also c abruptly change. For α = 0.4 and Δ(t) = 0.8 + 0.2sin(t), applying
control law (45) to the system, one gets the state trajectory evolutions shown in Fig. 5.
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Fig. 5 State trajectories for α = 0.4

However,when the control law is applied to the systemwithout slidingmode term, the
stability of the uncertain system can be degraded and the poor performance is shown
in Fig. 6. It is clear that the proposed SMC scheme effectively eliminates effects of
parameter uncertainties and guarantees the asymptotic stability of the closed-loop
systems. Regarding these results, we conclude that the proposed SMC law yields
a good performance and stabilizes the nonlinear system with time varying delay,
unknown parameters uncertainties and nonlinear input.

Example 2 Consider a single-link manipulator of mass m and languor l, which is
equipped with a DC motor as shown in Fig. 7. α is the angle of arm rotation. The
dynamic of the system is given by the third-order equation (Manceur et al. 2012).
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Fig. 6 State trajectories without a sliding mode term for α = 0.4

Fig. 7 single-link
manipulator

α

l

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(3) = f0(α, α̇, α(t − h(t))) + g0(α, α̇)u + w

f0(α, α̇, α(t − h(t))) = − R

L
α̈ −

( Kb N 2Kt

ml2L
+ g

l
cos(α)

)
α̇ − Rg

l L
sin(α) − 0.1

Rg

l L
α(t − h(t))

g0(α, α̇) = Kt N

ml2L
(55)

whereα(3), α̈, and α̇ are the time derivatives of the angle α.w represents the unknown
external disturbance. g, L , R, N , Kb, and Kt are, respectively, the gravity and the
motor parameters whose signification is given in Table1.

By the sector nonlinearity concept, cos(α), under the constraint |α| ≤ π

4
, can be

exactly represented as

cos(α) =
2∑

i=1

μi (α)bi (56)
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Table 1 Model parameters Left mass arm m = 2kg

Gravity g = 9.8m/s2

Longuor arm l = 0.5m

Resistance R = 1.5�

Inductance L = 0.15H

Constant EMF Kb = 0.2

Constant torque motor Kt = 0.3

Reduction ratio N = 60

where b1 = 1 and b2 = cos(
π

4
), μ1(α) = cos(α) − b2

1 − b2
and μ2(α) = 1 − μ1(α).

According to (56), dynamic equation (55) can be exactly transformed into following
fuzzy descriptor model.

Eẋ(t) =
2∑

i=1

μi

{
Ai x(t) + Ahi x(t − h(t)) + B

(
u + f (α)

)+ Bwi w(t)
}

z(t) =
3∑

i=1

μi Ci x(t)

(57)

where x(t) = [
α α̇ α̈ α(3)

]
and

E =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 (b + cb1) a 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 (b + cb2) a 1

⎤
⎥⎥⎦ , Bi =

⎡
⎢⎢⎣
0
0
0
d

⎤
⎥⎥⎦

Ahi =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

0.1e 0 0 0

⎤
⎥⎥⎦ , Bwi =

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ , Ci =

[
0.01 0 0 0
0 1 0 0

]
.

a = R

L
, b = Kb N 2Kt

ml2L
, c = g

l
, d = − Kt N

ml2L
, e = Rg

l L
, f (α) = e

d
sin(α).

Remark 2 From single-link manipulator dynamics (55), there are two nonlinear
terms cos(α) and sin(α)Therefore it needs 22 rules for traditional (TS) fuzzy system
to represent this system. To reduce the number of rules and thus the LMI number,
we consider only the first term to represent the (TS) model, whereas, the second is
regarded as nonlinear input.

For simulation purpose, we set M = [
0.1 0.1 −0.1 1/d

]
, σ = 0.9, time-varying

delay h(t) = 0.2 + 0.1sin(t), exogenous disturbance w = 4e−0.3t sin(t) and initial

condition x(0) =
[
−π

8
0.1 0 0

]T
. Theorem 3 produces a feasible solution with the
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following gains matrices

K1 = [
0.20635 12.869 0.30169 0.040583

]
,

K2 = [
0.20635 12.845 0.30169 0.040583

]
.

(58)

By Letting λ = 0.55 and ε = 0.05 the SMC law can be designed according to
(45)–(46) and the simulation results are depicted in Figs. 8, 9 and 10.

It is seen that the proposed sliding-mode controller can effectively cope with the
effect of time-delay and input non-linearity, and ensure the global asymptotic stability
of the overall closed-loop system. Although there are some notable variations in the
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Fig. 11 States response without SMC term

curves, which are caused by the effect of exogenous disturbance, these undesirable
effects are effectively attenuated. Figure11 charts the state trajectories when the
control law is applied without sliding mode term. Thus, the proposed SMC scheme
effectively eliminates the effect of input nonlinearity,

5 Conclusion

Complete results have been developed for robust control of a class of continuous
(TS) fuzzy descriptor systems with time-varying delay based-on integral sliding-
mode control in the presence of nonlinearities, external disturbances, and parameters
uncertainties. A new sliding function is proposed and a delay-dependent sufficient
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condition is derived to guarantee that sliding mode dynamics is robustly admissible
with generalized H2 disturbance rejection level. The integral sliding mode control
aims to eliminate the reaching phase in normal sliding mode in order to improve
the robustness of the system. Moreover, a SMC control law is designed such that
the reaching condition is satisfied and the chattering can be reduced. The existence
and the effectiveness of theoretical developments has been verified by two numerical
examples.
The future work could be associated with the following directions:

• extend the method to systems with multiple state delays.
• usingobserver-basedonSMCshouldbe considered for delayeddescriptor systems.
• propose a higher-order sliding-mode control for nonlinear descriptor systems,
• for numerical control, discrete-time sliding mode control should be developed for
various classes of discrete time descriptor systems.
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Rigid Spacecraft Fault-Tolerant Control Using
Adaptive Fast Terminal Sliding Mode

Pyare Mohan Tiwari, S. Janardhanan and Mashuq un-Nabi

Abstract In addition to the robustness against inertia uncertainty and external
disturbances, the efficient and quick fault-tolerant property is expected by the
on-board attitude controller for any spacecraft mission. In comparison to the active
fault tolerant control methods, the passive fault-tolerant methods are simpler and
require less computation time and power. The finite-time sliding mode using the
terminal sliding mode has been proven the efficacy to address the attitude control
related issues, but in most of the cases, fault-tolerant issues were not taken into
account. The objective of the chapter here is to propose a passive fault-tolerant con-
trol by using the finite-time sliding mode control. Firstly, an extensive review has
been given to discuss the application of terminal sliding mode and its variants for
the attitude control problem. Then, in control design, a non-singular fast terminal
sliding mode has been integrated together with the adaptive control, and an adaptive
non-singular fast terminal sliding mode control has been designed. In most of the
finite time fault-tolerant designed using terminal sliding modes, the controllers gains
are remain to constant; which can be cause for chattering. Therefore, to limit the
chattering effect, and to avoid the need of upper bounds of uncertainty and external
disturbances, adaptive estimate laws have been designed to estimate the controller’s
gains. Finite time stability has been analyzed by the Lyapunov theorem. Further, to
show the fault-tolerance effectiveness of the proposed control law in attitude stabi-
lization and tracking, various simulation results have been presented. The proposed
control law is quick, and robust enough to negate the effects of external disturbances,
mass inertia uncertainty, and actuator faults.
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1 Introduction

Attitude control system (ACS) is an important module in the spacecraft mission
design, and in the success of mission, the ACS design plays a vital role. To maintain
the efficient performance of ACS, the on-board attitude controller should show the
robustness against inertia uncertainty, external disturbances, and actuator fault; and
additionally, it is also expected by the attitude controller to ensure the proper attitude
stabilization or attitude tracking error reduction, in finite-time.

Sliding mode control (SMC) has considerably used to provide the solution for
many non-linear problems (Utkin 1977; John et al. 1993). In this series, in the eighties,
SMC application started for the spacecraft attitude control (Vadali 1986). In this
continuation , recently, some other works for the rigid spacecraft attitude control have
been reported by using the SMC (Yeh 2010; Lu et al. 2013). In these applications of
SMC for attitude control design, the sliding surface is of linear structure. The major
limitation of SMC is the asymptotic convergence of the system states to equilibrium,
and it is due to the linear sliding surface. In conclusion, the SMC attitude control
will control the attitude in infinite time.

In the eighties, a new and interesting theory the finite time control (FTC) has been
developed (Haimo 1986). In the FTC, it is possible that the system states converge
to the respective equilibrium in finite time. Inspired by the FTC theory, researchers
have developed the terminal sliding mode (TSM) theory (Venkataraman 1991; Yu
and Man 1996; Man and Yu 1997; Tang 1998). In TSM, contrary to the SMC, the
sliding surface is the non-linear combination of system states; which ensures the
finite time convergence to equilibrium. The application of TSM theory to design
the spacecraft attitude control first appeared in Erdong and Zhaowei (2008). The
originally proposed TSM suffers with the two drawbacks: one is the singularity in
control for some initial condition, and the other is the slower convergence speed
when the system states start remotely from the equilibrium. Hence, schemes NTSM
(Feng et al. 2002) and FTSM (Yu and Man 2002) have been developed to solve the
problem of singularity and convergence speed, respectively. By using the NTSM and
FTSM, attitude control laws have been designed in Ding et al. (2009), Li et al. (2011),
Lu and Xia (2013) and Tiwari et al. (2010), Zou and Kumar (2011), respectively. To
design a control that solves the singularity and the finite time convergence together,
non-singular fast terminal sliding mode (NSFTSM) has been developed in Yang et al.
(2011). Inspired by NSFTSM Yang et al. (2011), for the attitude stabilization and
tracking cases, control laws have been presented in Tiwari et al. (2012) and Tiwari
et al. (2014), respectively. In these all the afore-mentioned finite time attitude control
references, the actuator fault condition has not been taken into account.

Through the technological advancement, tremendous improvements have been
made in the attitude actuators design and their implementation techniques. However,
to design a fully autonomous space mission, it is important that the on-board ACS
should be able to defeat the actuator fault in finite-time with high speed and efficacy.
It is worth mentioning that fault tolerance should be done in finite- time with high
speed; otherwise in some specific space missions designed specially for military
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applications, the ACS may not be able to maintain the control performance all round.
Mainly, the fault tolerant control are categorized in two methods, the active and
passive. The active fault tolerant control methods are equipped with fault diagnosis
and detection (FDD). The FDD role is to detect and identify the actuator faults;
and then to re-configure the controllers to compensate the faults effects. Therefore,
obviously that the series of computation and decision steps are required in active
fault tolerant method. So, the ACS with active fault tolerant method require more
time to complete the online computations; but the long computation time could
delay the timely control action, and the control performance may deteriorated to the
level that can lead to the catastrophic failures. In contrary to the active methods,
the passive fault tolerant control is equipped with the only one controller, and with
this controller, both the lumped uncertainty and the actuator faults and saturation are
handled. Numerous efforts by taking different control techniques have been reported
for the design of passive fault tolerant controllers (Bustan et al. 2013) (and other
references mentioned in Bustan et al.).

Inspired by the finite time convergence property of TSM and its variants (NTSM,
FTSM, NFTSM), recently, they have been introduced as a qualified passive fault tol-
erant method for the spacecraft attitude. In Hu et al. (2012), TSM has been applied to
compensate the effects of actuator effectiveness loss, inertia uncertainty, and external
disturbances. However, the chosen sliding surface suffers with the same limitations as
with the originally proposed TSM. The NTSM based fault tolerant control appeared
in Hu et al. (2013), Lu et al. (2013). In Hu et al. (2013), finite-time attitude stabi-
lization law under actuator misalignment is addressed. In reference Lu et al. (2013),
attitude tracking performance is checked under the actuator fault and effectiveness
loss. In these references, the controller gains are remain constant; and gains values
are linked with the upper bounds of uncertainty and external disturbance. More than
that, to enhance the fault tolerant control quality, recently, the FTSM control and
the adaptive control appeared together. In Hu et al. (2012), authors developed the
adaptive law updated finite-time controller using FTSM, and applied for the reac-
tion wheel fault tolerance. However, the control law may suffer with limitations of
singularity and unbound increment in control gains estimate. In this series, authors
of Xiao et al. (2013) have developed the attitude tracking compensation controller,
and shown the performance under actuator fault, actuator misalignment, and exter-
nal disturbances. Though, the recommended controller may cause the singularity
problem. In Zhang et al. (2013), by using FTSM, authors have developed the finite-
time fault tolerant control; it is shown that together the nominal controller and the
adaptive compensation control is successfully accomplished the attitude tracking in
the presence of actuator fault and actuator misalignment. In this work also, while
discussing the stability proof, the error quaternion vector e �= 0 is considered, but
this is not the case always possible. For example, if one of the error quaternion will
start or attain value zero, condition ||er−1|| ≤ �3 will not be fulfilled for r ∈ (0, 1).

It is noticed that by using TSM and its variants, finite time fault tolerant control
is in its early stage; and in the selection of sliding surface, method to decide the
controller’s gains, and consideration of the different types of faults, are the major
areas of improvements in proposing the solution. Our endeavor here is to develop
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a control law for the control of rigid spacecraft in the presence of actuator fault,
actuator effectiveness loss, external disturbances, uncertain mass inertia parameters.
In the control development, the nominal control component is derived by using a
non-singular fast terminal sliding mode (NSFTSM) surface. Additionally, to negate
the actuator fault and external disturbances as well inertia uncertainty, the nominal
controller is supported by the adaptive control component. The closed loop finite
time stability has been proved using the Lyapunov stability theory.

The structure of the chapter is as follows: The rigid spacecraft attitude mathe-
matical modeling for stabilization and tracking are discussed in Sect. 2. In Sect. 3 of
the chapter discusses the control objective and the proposed fault -tolerant control
design with the finite-time stability proof. In Sect. 4, simulation results are illustrated
with extensive discussion. Finally, conclusion is given in Sect. 5.

2 System Description

In any space mission, attitude stabilization and tracking are the main aim of ACS. This
section discusses the mathematical model for the attitude stabilization as well as for
the attitude tracking of a rigid spacecraft. Unit quaternion, due to non-trigonometric
expression and non-singularity computation (Wertz 1978), are extensively used para-
meter to represent the kinematics of a rigid spacecraft; that is why the attitude kine-
matics is described here by using the unit quaternion.

2.1 Mathematical Model for Attitude Stabilization

Rigid spacecraft attitude control is described by the kinematics and dynamics equa-
tions (Wertz 1978). The attitude kinematics representation using the unit quaternion
is given as follows.

q̄ = [qT
v q4]T . (1)

where qv = [q1 q2 q3]T = ε sin θ
2 and q4 = cos θ

2 are the vector and the scalar
components of the unit quaternion respectively, where θ ∈ � is the rotation angle
about the eigen axis, which is given by the unit vector ε = [

ε1 ε2 ε3
]T . The scalar

and the vector components of unit quaternion satisfies the constraint

qT
v qv + q2

4 = 1. (2)

The kinematics equations are given as

q̇v = 1

2
(q4I3 + qv

×)ω
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q̇4 = −1

2
qT

v ω, (3)

where I3 is the 3 × 3 identity matrix, ω ∈ �3 is the the body angular velocity
vector measured with respect to the inertial frame expressed in the body frame. The
notation q×

v represents the following skew-symmetric matrix generated by the vector
qv = [q1 q2 q3]T

qv
× =

⎡
⎣ 0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤
⎦

The dynamics equation for a rigid body spacecraft is given by

ω̇ = J−1(−ω×Jω + D Δ(t) u(t) + d(t)) (4)

where J = J0+δJ is the inertia matrix of spacecraft, where J0 ∈ �3×3 and δJ ∈ �3×3

are the nominal component and the uncertain components respectively, u(t) ∈ �n

is the control input generated by n actuators, D ∈ R3×n is the actuator distribution
matrix, and d(t) ∈ �3 is the bounded external disturbance torque acting on the body,
Δ(t) = diag(Δ1, Δ2, Δ3, ..., Δn) ∈ �n×n is the actuator effectiveness matrix with
0 ≤ Δi ≤ 1. Important to note that Δi = 1 means that particular actuator is fully
healthy, and Δi = 0 means particular actuator is lost its strength completely, and
if Δi < 1, then particular actuator is partially functioning. The notation ω× is a
skew-symmetric matrix generated by ω.

2.2 Mathematical Model for Attitude Tracking

To define the attitude kinematics and dynamics equation for tracking control problem,
the relative attitude error between reference frame and a desired reference frame is
required to be established. The error quaternion qe = [qT

ev, qe4]T ∈ � × �3 and the
angular velocity error ωe ∈ �3 are measured from body fixed reference frame to the
desired reference frame, and the defining equations are as follows

qev = qd4qv − q×
dvqv − q4qdv

qe4 = qT
dvqv + q4qdv

ωe = ω − Cωd, (5)

where qev = [qe1 qe2 qe3]T and qe4 are the vector and scalar components of
the error quaternion, respectively, qdv = [qd1 qd2 qd3]T ∈ �3, qd4 ∈ �,
and ωd = [ωd1 ωd2 ωd3]T ∈ �3 are the desired attitude frame vector quater-
nion, scalar quaternion, and angular velocity, respectively. Both qe and qd =
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[qd1 qd2 qd3 qd4]T satisfy the constraint qT
evqev + q2

e4 = 1 and qT
dvqdv + q2

d4 = 1;
respectively. C = (q2

e4 − 2qT
ev)I + 2qevqT

ev − 2qe4q×
ev ∈ �3×3 with ||C|| = 1 and

Ċ = −ω× C represents the rotation matrix between body fixed reference frame and
desired reference frame.

Then, using (5), the attitude kinematics and the dynamics equation for the tracking
problem could be written as

q̇ev = 1

2
(qe4I + q×

ev)ωe

q̇e4 = −1

2
qT

evωe (6)

ω̇e = J−1 (
(−ωe + Cωd)×J(ωe + Cωd) + J(ω×

e Cωd − Cω̇d) + D Δ(t) u(t) + d(t)
)
.

(7)

3 Fault Tolerant Control Design

In this section, first the control objective is defined, and then the control design method
is developed by using a non-singular fast terminal sliding mode. To compensate the
effects of actuator fault, external disturbances, and inertia matrix uncertainty, an
adaptive control component is applied with nominal control. The proposed fault-
tolerant control design will be completed in following three steps

1. Selection of sliding surface
2. Control structure
3. Stability proof both in reaching phase and in sliding phase.

3.1 Control Objective

The control objective is to design a robust fault tolerant controller that to ensure the
finite time attitude control in presence of external disturbance, inertia uncertainty,
loss of actuator effectiveness, and any fault. Mathematical representation for the
control objective is

⎧⎨
⎩

lim
t→tf

(qv − qd) = 0

lim
t→tf

Ω = 0,
(8)

where Ω = (ω − ωd) ∈ �3.
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In the fore coming control design to achieve the afore-mentioned control objective,
the following assumptions are made.

Assumption 1 The body frame quaternion q and angular velocity ω are measurable,
and available for feedback.

Assumption 2 The desired reference attitude frame angular velocity ωd and its first
time derivative ω̇d are bounded.

Assumption 3 Spacecraft mass inertia matrix nominal component J0 and the
uncertain component δJ are bounded; though the bound limits are not known in
advance.

Assumption 4 The control input is not unlimited, and constrained by the limit u(t) ≤
umax .

Assumption 5 External disturbance d(t) is bounded, and the bound limit is not
known in advance.

3.2 Control Design

The detailed design steps are as under

Step 1: Sliding surface design
In contrary to the published finite-time fault tolerant control, here the sliding

surface is chosen that to avoid the singularity and to get quick convergence speed.
Therefore, using the angular velocity error and the quaternion error information the
sliding surface selected is

σe = sigα(ωe) + M1sigα(qev) + M2(qev) (9)

here, σe ∈ �3 is the sliding surface chosen, α ∈ (1, 2), M1 = diag(m11, m12, m13),
M2 = diag(m21, m22, m23) with mij ∈ � for i = 1, 2 and j = 1, 2, 3, and for any
vector y ∈ �3, the notation sigα(y) = [|y1|αsign(y1) |y2|αsign(y2) |y3|αsign(y3)].

Now, evaluating

Jσ̇e = αdiag(|ωe|α−1)Jω̇e

+ J

2
(M1αdiag(|qev|)α−1 + M2)(qe4I3 + q×

ev)ωe (10)

Applying (7) in (10), we have

Jσ̇e = αdiag(|ωe|α−1)
(
(−ωe + Cωd)×Jo(ωe + Cωd) + Jo(ω

×
e Cωd − Cω̇d)

+ D Δ(t) u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ)
)

+ Jo

2
(M1αdiag(|qev|)α−1

+ M2)(qe4I3 + q×
ev)ωe (11)
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where L(qe, ωe, ωd, ω̇d, δJ) = (−ωe+Cωd)×δJ(ωe+Cωd)+δJ(ω×
e Cωd −Cω̇d)+

δJ
2α

(M1αdiag(|qev|)α−1 +M2)(qe4I3 +q×
ev)sig2−α(ωe) represents the uncertain terms

due to inertia matrix uncertainty.

Step 2: Control structure
To achieve the desired control objective (8), the proposed control structure is given

as follows

u(t) = unom(t) + uada(t) (12)

where

unom(t) = D†
(
(ωe + Cωd)×Jo(ωe + Cωd) − Jo(ω

×
e Cωd − Cω̇d)

− Jo

2α
(M1αdiag(|qev|α−1) + M2)(qe4I3 + q×

ev)sig2−αωe

)
(13)

and

uada(t) =
{

D†(−k̂1σe − k̂2sigγ (σe)), if ||σe|| ≥ ε

0, if ||σe|| < ε,
(14)

where D† = DT (D DT )−1 is a right-pseudo inverse of actuator distribution matrix
D, k̂1 and k̂2 are the estimates of controller gains k1 and k2, respectively.

The adaptive estimate laws proposed here are as follows

˙̂k1 =
{

α η||ωα−1
e ||∞ ||σe||2, if ||σe|| ≥ ε

0, if ||σe|| < ε,
(15)

˙̂k2 =
{

α θ ||ωα−1
e ||∞ ||σe||γ+1

γ+1, if ||σe|| ≥ ε

0, if ||σe|| < ε,
(16)

where, η ∈ �, θ ∈ �, ε ∈ � are the design parameters, and ||σe||γ+1
γ+1 = [|σe1|γ+1 +

|σe2|γ+1 + |σe3|γ+1]γ+1.

Remark 1 The nominal component of the proposed controller is evaluated by apply-
ing the invariance principle. Obviously, the nominal control expression, (13) have
two terms with the fractional power, but both powers are nonnegative and hence there
is no point of singularity.

Remark 2 To negate the effects of inertia uncertainty and external disturbance, and to
accelerate the convergence speed in reaching phase, an adaptive control component
is added with the nominal control. In most of the published fault tolerant control,
the controller’s gains are static, and are decided on the basis of uncertainty and
disturbance upper bounds, but practically it is difficult to know the bounds in advance.
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Therefore, here to estimate the gains values, adaptive estimate laws are proposed.
From (15) and (16), it is notable that the adaptive estimate laws depend on only the
system states, and not to the uncertainty, disturbance, and actuator faults. Further, to
reject the possibility of unbound growth in the controller’s gains, dead zone technique
has been applied. It is evident from (14), (15), and (16), that both the adaptive control
and the adaptive gains will not be updated once the attitude states reach into the
desired boundary.

Remark 3 In the proposed adaptive laws, parameters η and θ are working to regulate
the estimate speed. Higher the values of η and θ , higher the convergence speed for
σe = 0 is obtained.

Step 3: Stability Analysis
The finite time stability check of closed loop system (6)–(7) is completed in

two steps. In first step, the reaching phase stability is proved, and in second step
the sliding phase stability is proved. Before the stability discussion, the following
lemma, discussing the finite-time stability is useful.

Lemma 1 (Yu et al. 2005) An extended Lyapunov description of finite-time stability
with faster finite time convergence can be given as

V̇(x) + λ1V(x) + λ2Vm(x) ≤ 0 (17)

and the convergence time can be given as

t ≤ 1

λ1(1 − m)
ln

λ1V1−m(x0) + λ2

λ2
(18)

where λ1 > 0, λ2 > 0, and m ∈ (0, 1).

Reaching phase stability

Theorem 1 With the controller (12), the attitude states of (6)–(7) will be able to
reach the neighborhood of σe = 0 in finite time.

Proof Select the Lyapunov function

V1 = 1

2
σ T

e Jσe + 1

2η
k̄2

1 + 1

2θ
k̄2

2 (19)

where, k̄1 = k̂1 − k1 and k̄2 = k̂2 − k2, and V1 satisfies

1

2
λmin(J)||σe||2 ≤ 1

2
λmax(J)||σe||2 (20)
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Taking the first time derivative V1, and applying (11) leads to

V̇1 = σ T
e

(
α diag(|ωe|α−1)

(
(−ωe + Cωd)×Jo(ωe + Cωd) + Jo(ω

×
e Cωd

− Cω̇d) + D u(t) + D (Δ − I4)u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ)
))

+ 1

η
(k̂1 − k1)

˙̂k1 + 1

θ
(k̂2 − k2)

˙̂k2 (21)

Further, defining L̄ = D (Δ − I4)u(t) + d(t) + L(qe, ωe, ωd, ω̇d, δJ), and then it
could be written that

||L̄|| ≤ ||L̄||1 ≤ ||D (Δ − I4)u(t)||1 + ||d(t)||1 + ||L||1 (22)

and then substituting (12)–(16), (22); and (21) yields

V̇1 = σ T
e αdiag(|ωe|α−1)

(
− k̂1σe − k̂2sigγ (σe) + L̄

)

+α(k̂1 − k1)|| |ωα−1
e | ||∞ ||σe||2 + α(k̂2 − k2)||ωα−1

e ||∞||||σe||γ+1
γ+1

≤ −αk̂1|||ωe|α−1||∞ ||σe||2 − αk̂2|||ωe|α−1||∞ ||σe||γ+1
γ+1 + α||L̄|| |||ωe|α−1||∞||σ T

e ||
+α(k̂1 − k1)||ωα−1

e ||∞||σe||2 + α(k̂2 − k2)||ωα−1
e ||∞|| ||σe||γ+1

γ+1

≤ −αk1|||ωe|α−1||∞||||σe||2 − αk2|||ωe|α−1||∞ || ||σe||γ+1
γ+1

+α||L̄|| |||ωe|α−1||∞ ||σ T
e || (23)

In reaching phase (σe �= 0), it is easy to show that ωe = 0 is not an attractor
(Appendix). Therefore, (23) can be rewritten in the following two forms:

V̇1 ≤ −2α|||ωe|α−1||∞
λmax(J)

(
k1 − ||L̄||

||σe||
)

V1 −
( 2

λmax(J)

) γ+1
2

αk2|||ωe|α−1||∞V
γ+1

2
1

(24)

V̇1 ≤ −2αk1|||ωe|α−1||∞
λmax(J)

V1−
( 2

λmax(J)

) γ+1
2

α|||ωe|α−1||∞
(

k2−||L̄|| ||σe||
||σe||γ+1

γ+1

)
V

γ+1
2

1

(25)

The stability analysis of (24) and (25) are completed in two scenario.

1. Scenario1 (d(t) = 0), δJ = 0, Δ = I4)

In this scenario, both (24) and (25) are simplified to V̇1 + �1V1 + �2V
γ+1

2
1 ,

where �1 = 2αk1|||ωe|α−1||∞
λmax(J)

, �2 =
(

2
λmax(J)

) γ+1
2

αk2|||ωe|α−1||∞, and therefore,
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convergence to σe = 0 is ensured in finite time

t1 ≤ 1

�1(1 − γ )/2
ln

�1V (1−γ )/2
2 (σe(0)) + �2

�2
. (26)

2. Scenario2 (d(t) �= 0), δJ �= 0, Δ �= I4)
Following the analysis given in Yu et al. (2005), from (24) and (25) it is obvious

that, if k1 − ||L̄||
||σe|| > 0 and k2 − ||L̄|| ||σe||

||σe||γ+1
γ+1

> 0 is ensured, then (24) and (25)

structure will take the faster finite time stability condition (17) of Lemma 1, and

the region ||σe|| <
||L̄||
k1

and ||σe|| <
( ||L̄||

k2

)1/γ

will be achieved in finite time,

respectively. This completes the proof.

Sliding phase stability

Theorem 2 After the attitude trajectory of system (6)–(7) reach to the neighborhood
of σe = 0, the tracking error in attitude states will converge to zero in finite time.

Proof Once the attitude states of (6)–(7) reach to σe = 0, we have

sigα(ωe) + M1 sigα(qev) + M2 qev = 0

ωe ≤ −M
1
α

1 qev − M
1
α

1 sig
1
α qev (27)

Define another Lyapunov function

V2 = qT
evqev. (28)

Evaluating the first time derivative of (28), give

V̇2 = 2qT
evq̇ev

= qT
ev(qe4I + q×

ev)ωe. (29)

Applying the inequality (27), and using the fact ||(qe4I + q×
ev)|| ≤ 1, the above

expression results

V̇2 ≤ qT
ev(−M1/α

1 (qev) − M1/α
2 sig1/α(qev)) (30)

≤ −M1/α
1 V2 − M1/α

2 V (α+1)/2α
2

≤ −λ1V2 − λ2V (α+1)/2α
2

where λ1 and λ2 are the minimum eigen values of M1/α
1 and M1/α

2 , respectively.
Therefore,

V̇2 + λ1V2 + λ2V (α+1)/2α
2 ≤ 0 (31)
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The above Eq. (31) satisfies the finite time stability criteria (17), and hence, once
the attitude trajectory falls on to the sliding surface, then the quaternion error will
converge to zero in finite time

t2 ≤ 1

λ1(α − 1)/2α
ln

λ1V (α−1)/2α
2 (σe(t1)) + λ2

λ2
, (32)

where t1 is the time to cross the reaching phase and to enter into the neighborhood
region of σe = 0. Subsequently, by (6), it is proved that ωe = 0. This completes the
proof.

Remark 4 From (32), it is obvious that M1 and M2 both have significant effect on
the convergence speed. However, the nominal control component (13) is also linked
with M1 and M2. Therefore, it is desired that while deciding M1 and M2, both the
convergence speed and the control input level should be monitored.

4 Simulation and Result Discussion

In this section, to verify the effectiveness of the proposed control method, simulations
are conducted and the outcomes are presented with extensive discussion. The pro-
posed controller effectiveness demonstration completes in two steps. In the first step,
a small spacecraft attitude stabilization performance for the pure condition (d(t) = 0,
δJ = 0, Δ = 0), and the practical condition (d(t) �= 0, δJ �= 0, Δ �= 0) is checked. In
the second step, a practical spacecraft is taken, and its attitude tracking performance
is demonstrated for practical conditions. Other than the structural difference and type
of control, the both simulation steps differs on certain other grounds. In stabilization
example, number of actuators are four, and in tracking example three actuators are
applied. Additionally, in the tracking example, both the additive fault and actuator
effectiveness loss are applied.

4.1 Step 1: Spacecraft Attitude Stabilization

The considered spacecraft parameters are referred from Hu et al. (2012). The
nominal component and the uncertain component of spacecraft inertia matrix are
Jo = [20 0 0.9; 0 17 0; 0.9 0 15] and δJ = diag[3, 2, 1][1 + e−0.1t + 2Υ (t − 10)−
4Υ (t − 20)], respectively, where Υ (x) = 1 for x ≥ 0, else Υ (x) = 0. The space-
craft attitude is controlled with four reaction wheels with torque constraint limit
|u(t)| ≤ 0.2 N-m; the distribution matrix for reaction wheels is
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D =
⎡
⎣−1 0 0 1/

√
3

0 −1 0 1/
√

3
0 0 −1 1/

√
3

⎤
⎦ .

For the simulations, rigid spacecraft mathematical model discussed in (6)–(7) is
used. The initial conditions of the body frame quaternion and the body frame angular
velocity are taken as qv(0) = [0.3 − 0.2 − 0.3 0.8832]T and ω(0) = [0 0 0]T ,
respectively. The desired frame is characterized with qd(0) = [0 0 0 1]T and ωd(0) =
[0 0 0]T .

Further, to check the robustness against external disturbances, and to investigate
the proposed controller effectiveness against actuator faults, the following mathe-
matical model for the external disturbance and the actuator fault, respectively, are
taken (Hu et al. 2012).

External disturbance:

d(t) = (||ω||2 + 0.005)[sin 0.8t cos 0.5t cos 0.3t]T N − m (33)

Actuator effectiveness:

Δ1 =
{

1, if t ≤ 2.4 s.

0.45 + 0.15 rand(ti) + 0.1sin(0.5t + π/3), if t > 2.4 s.

Δ2 =
{

1, if t ≤ 5.0 s.

0.50 + 0.15 rand(ti) + 0.1sin(0.5t + 2π/3), if t > 5.0 s.

Δ3 =
{

1, if t ≤ 10.0 s.

0.40 + 0.15 rand(ti) + 0.1sin(0.5t + π), if t > 10.0 s.

Δ4 =
{

1, if t ≤ 15.0 s.

0, if t > 15.0 s.
(34)

The controller settings used for the stabilization are mentioned in Table 1.

4.1.1 Interpretation and Discussion with Comparative Comments
on Stabilization Performance

Case 1: Stabilization performance for pure condition

For the pure condition, simulation results are shown in Figs. 1, 2 and 3. The top and
bottom frames of Fig. 1a illustrate that the error quaternion and the angular velocity
error vectors, respectively, reduces to zero in finite time. Figure 1b illustrates the
steady precision of the error quaternion and angular velocity error vectors. Figure 2
depicts the time evolution of the NSFTSM vector and the control input; in which the
bottom frame of Fig. 2a illustrates that the control input is continuous. The steady
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Table 1 Controller parameters

Step 1 Attitude stabilization M1 =
diag(0.080, 0.080, 0.080)

M2 =
diag(0.152, 0.152, 0.152)

α = 1.1 γ = 0.47

k1(0) = 1.5 k2(0) = 0.20

η = 30 φ = 25

Step 2 Attitude tracking M1 =
diag(0.07, 0.07, 0.07)

M2 =
diag(2.90, 2.90, 2.90)

α = 1.1 γ = 0.49

k1(0) = 0.80 k2(0) = 0.02

η = 60 φ = 56
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Fig. 1 Stabilization performance Case 1: quaternion and angular velocity pattern under pure con-
dition. a Quaternion and angular velocity. b Steady precision

precision of NSFTSM vector and control input are illustrated in Fig. 2b. Figure 3
illustrates the estimates of control gains.

As illustrated in Figs. 1 and 2 and mentioned in Table 2, the proposed controller
needs time 5.8 s to guarantee that the NSFTSM vector entered into the band
|σe| ≤ 5e − 3; and further, total time 18.15 s is required to satisfy the condition
(|qev|, |Ω|) ≤ 2e − 2. Additionally, it is revealed that the steady precision for the
error quaternion vector, the angular velocity error vector, and the NSFTSM vector
are ensured in the range |qev| ≤ 1.35e − 7, |Ω| ≤ 1.07e − 5, |σe| < 3.41e − 6,
respectively.
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Fig. 2 Stabilization performance Case 1: sliding vectors and control input pattern under pure
condition. a Sliding vectors and control input. b Steady precision
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Case 2: Stabilization performance for practical condition
Further, the spacecraft stabilization performance is verified with inertia uncertainty,
external disturbance (33), and loss of actuator effectiveness (34). The simulation
results are illustrated in Figs. 4 and 6. In Fig. 4a, the finite time convergence of the
quaternion and the angular velocity to the desired level, respectively, are portrayed.
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Table 2 Controller performance summary

Controller Control type Steady precision Convergence time

(in s) for

σe qev Ω |σe| < (|qei|, |Ωi|) <

5e-3 (2e-2,2e-2)

(12): Case 1 Stabilization ±3.41e-6 ±1.35e-7 ±1.07e-5 5.8 18.15

(12): Case 2 Stabilization ±2.62e-5 ±6.26e-5 ±5.26e-5 8.05 20.9

(22)(Hu et al. 2012): Case 2 Stabilization ±9.83e-4 ±3.11e-5 ±9.51e-4 36.81 35.42

(12) Tracking ±6.62e-4 ±8.80e-4 3.66e-5 14.81 13.15

(13)(Lu et al. 2013) Tracking ±2.74e-5 ±6.25e-4 ±3.35e-5 30.34 29.06
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Fig. 4 Stabilization performance Case 2: quaternion and angular velocity pattern under uncertainty,
disturbance, actuator fault. a Quaternion and angular velocity. b Steady precision

It is verified that even with the presence of uncertainty, external disturbance, and
actuator effectiveness loss, the controller successfully ensure to achieve the desired
objective.

As mentioned in Table 2, and illustrated in the top and the bottom frame of Fig. 4,
(|qev|, |Ω|) ≤ 2e − 2 is achieved in 20.9 s. Figure 5 top frame exhibits the time
evolution of NSFTSM vector, and it is verifiable that in time 8.05 s, |σe| ≤ 5e −
3 is established. Figure 5 bottom frame illustrates that the control input pattern is
within the imposed limitation |u| ≤ 0.2 N-m; and no sign of chattering is appeared.
The steady precision performance is shown in Figs. 4b and 5b. Figure 6 illustrates
the estimates of control gains; as expected, the estimate of control gains are attained
the higher values than their counterparts of pure condition.
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Interestingly, in the pure conditions’ control input patterns, the fourth reaction
wheel output always satisfy |u| < 0.2 N-m, and attain never to the maximum limit
(|u| = 0.2 N-m). In contrary, for the practical case, the all four reaction wheels output
need to attain to the maximum limit. Additionally, in the practical case, the reaction
wheels maximum control output is to be required to apply for the longer duration.
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Fig. 7 Controller (22) (Hu et al. 2012) stabilization performance: quaternion and angular velocity
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For the comparative analysis, the proposed controller stabilization performance is
compared with the controller (22) (Hu et al. 2012). Simulation results to the similar
condition are shown in Figs. 7 and 8. The salient points of the proposed controller are
the non-singularity, faster convergence speed, and the adaptive law estimated gains.
Particularly, the proposed controller ensured to satisfy the criterion |σe| ≤ 5e-3 and
(|qei|, |Ωi|) < (2e-2, 2e-2) for i = 1, 2, 3 in time 8.05 and 20.9 s. respectively; but
the controller (22) (Hu et al. 2012) takes 36.81 and 35.42 s. respectively, to satisfy the
similar criterion. The steady precision level are almost same for both controller, but
the the proposed controller is more quicker in fault tolerant, and it doesn’t demand
the uncertainty or disturbance bounds to decide the controller’s gains.

4.2 Step 2: Spacecraft Attitude Tracking

Further, to examine the tracking performance of controller (12), simulations are con-
ducted on the spacecraft model mentioned in Lu et al. (2013). The nominal component
and the uncertain component of inertia matrix are Jo = [800.027 0 0; 0 839.93 0;
0 0 289.93] and δJ = diag[100, 100, 50], respectively. In contrast to stabilization
Step, in tracking case the spacecraft attitude is controlled with three reaction
wheels only, and the wheels are constrained with torque limit u(t) = 30 N-m.
The initial conditions of the body frame quaternion and angular velocity are the
same as it taken in Step 1 simulations. The initial conditions for the desired
frame quaternion and angular velocity are qd(0) = [0 0 0 1]T and ωd(t) =
0.05[sin(π t\100) sin(2π t\100) sin(3π t\100)]T , respectively. In this simulation
step, in addition to the actuator effectiveness loss the additive fault possibility is
also included, and therefore the dynamics of rigid spacecraft is modified to

Jω̇e = (−ωe + Cωd)×J(ωe + Cωd) + J(ω×
e Cωd − Cω̇d)

+ (D Δ(t) u(t) + E(t)) + d(t). (35)

where E(t) = [e1 e2 e3]T is the additive fault.
The mathematical model considered for the external disturbance, the actuator

effectiveness loss, and the additive fault are as follows
Disturbance:

d(t) = [0.1 sin 0.1t 0.2 sin 0.2t 0.3 sin 0.3t]T (36)

Actuator Effectiveness:

Δ1 =
{

1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + π/3), if t > 10 s.
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Δ2 =
{

1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + 2π/3), if t > 10 s.

Δ3 =
{

1, if t ≤ 10 s.

0.75 + 0.1sin(0.5t + π), if t > 10 s.
(37)

Additive fault:

ei =

⎧⎪⎨
⎪⎩

0, if t < 15 s.

0.1 + 0.05sin(0.5π t), if t ≥ 15 s.

for i = 1, 2, 3

4.2.1 Interpretation and Discussion with Comparative Comments
on Tracking Performance

By applying the afore-mentioned external disturbance, inertia uncertainty, actuator
effectiveness loss, and additive fault, the simulation results for the attitude tracking
are shown in Figs. 9 10, 11, and 12.
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Fig. 9 Tracking performance: quaternion and angular velocity pattern under uncertainty, distur-
bance, actuator fault. a Quaternion and angular velocity. b Steady precision
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Fig. 11 Tracking performance: sliding vectors and control input pattern under uncertainty, distur-
bance, actuator fault. a Sliding vectors and control input. b Steady precision

The error quaternion and the angular velocity tracking errors are portrayed in
Fig. 9, it illustrates that the controller is successfully negates the odd effects, and
ensures the tracking performance in finite time. Additionally, as mentioned in Table 2,
and illustrated in the top and the bottom frame of Fig. 9a, (|qev|, |Ω|) ≤ 2e − 2 is
achieved in 13.15 s. For the better lucidity, the quaternion tracking pattern is also
shown in Fig. 10, and this also approves the attitude tracking performance. The
NSFTSM and the control input time evolution are depicted in Fig. 11, it illustrates
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that NSFTSM vector reached into region |σe| < 5e − 3 in time 14.81 s, and the
control input is maintained within the defined constraint |u| ≤ 30 N-m without any
sign of chattering. In steady region, the control input is limited within |u| ≤ 4 N-m.
The steady precision for the error quaternion and the angular velocity error, and the
NSFTSM vector are shown in Figs. 9b and 11b, respectively; from these illustration
and Table 2, it is noted that for attitude tracking, the proposed controller guarantee
the steady precision in |qev| < 8.80e − 4, |Ω| < 3.66e − 5, |σe| < 6.62e − 5.
Figure 12 illustrates the estimate of control gains.

To compare the performance of the proposed controller (12), the simulation results
of the proposed controller and controller (13) (Lu et al. 2013) are scrutinized. The
simulation under same initial condition is conducted for the controller (13) (Lu et al.
2013); and the results are shown in Figs.13 and 14. As is mentioned in (Lu et al.
2013), the selected values for the gains are τi = σi = 50. With these gain values, it
is verified that finally the controller’s gains attained to the level of 104.

It is noticed that the proposed controller is to require lesser time to track the desired
attitude than to the controller (13) (Lu et al. 2013). In more detail, the controller
(13) (Lu et al. 2013) took 30.34 and 29.06 s. to satisfy the criterion |σe| ≤ 5e-3
and (|qei|, |Ωi|) < (2e-2, 2e-2) for i = 1, 2, 3, respectively; in contrary, to satisfy
the same criterion, the proposed controller (12) is demanded 14.81 and 13.15 s,
respectively. Though, the steady precision for error quaternion and angular velocity
error is slightly lower than to the controller (13) (Lu et al. 2013)(Refer to Table 2),
yet it is acceptable and comes in high precision range. Additionally, in contrary to
the controller (13) (Lu et al. 2013), the proposed controller’s gains are not selected
on any conservative approach, and in fact are being estimated with the proposed
adaptive law; hence, even if any unwanted and unaccounted external disturbance
and uncertainty surfaced, then also the proposed controller is equipped with adaptive
laws to overcome its effect.



Rigid Spacecraft Fault-Tolerant Control Using Adaptive … 403

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

time (sec)

q e

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

time (sec)

ω
−

ω
d

Ω1 Ω2 Ω
3

q
e4

q
e1

q
e2

q
e3

60 80 100 120 140 160 180

−5

0

5

x 10
−4

time (sec)

60 80 100 120 140 160 180 200

−2

0

2

4

x 10
−5

time (sec)

q e
ω

−
ω

d

(a) (b)

Fig. 13 Controller (13) (Lu et al. 2013) tracking performance: quaternion and angular velocity
pattern under uncertainty, disturbance, actuator fault. a Quaternion and angular velocity. b Steady
precision
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5 Conclusion

By using the NSFTSM, a fault-tolerant control law for rigid spacecraft attitude control
has been proposed. The proposed control has two components, nominal and adaptive.
The adaptive component is designed with aims to ensure quick convergence speed
and to eliminate the advance requirements for uncertainty and external disturbance
upper bounds. Additionally, by the proposed control, the chattering is eliminated, and
the singularity is removed also. The finite-time stability is proved using the Lyapunov
stability theorem. The simulation results for attitude stabilization and tracking are
reported for two different example spacecraft, respectively, to illustrate the controller
efficacy. The shown results reveal that even in presence of inertia uncertainty, external
disturbance, and actuator saturation, the controller is able to ensure the fault tolerance,
and successfully stabilize and track the desired equilibrium and the desired attitude
frame, respectively. In both the stabilization and the tracking case, quick convergence
speed and high steady precision is noticed.

Though, the proposed controller gives the required performance for the system
considered; in the future control design, to give the most practical solution, actuator
dynamics and spacecraft structure flexibility may be include to.

Appendix

To show that ωe = 0 is not an attractor in reaching phase, apply (12), (13), (14) in
(7), and L̄ = 0, yields

ω̇e = 1

2α
(M1αdiag(|qev|α−1) + M2)(qe4I3 + q×

ev)sig2−αωe

−k
′
1σe − k

′
2sigγ σe (38)

where, k
′
1 = J−1

o k̂1 ∈ �3×3 and k
′
2 = J−1

o k̂2 ∈ �3×3.
Substituting ωe = 0, (38) gives

ω̇e = −k
′
1σe − k

′
2sigγ σe, (39)

from (39) it is obvious that ω̇e is not zero in reaching phase (σe �= 0). Hence, ωe = 0
is not an attractor in reaching phase.
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Sliding Modes for Fault Tolerant Control

Hemza Mekki, Djamel Boukhetala and Ahmad Taher Azar

Abstract As modern technological systems increase in complexity, their
corresponding control systems become more and more sophisticated. In order to
increase the reliability, which is crucial topic in industrial applications. The main
focus of this chapter will be on the design of fault tolerant control (FTC) strat-
egy. Therefore, FTC has found extensive applications in multiple domains includ-
ing mechanical engineering, electrical engineering, control engineering, biomedical
engineering, and micro-engineering. This chapter gives a brief overview in the field
of FTC (definitions, practical requirements and classification). On the other hand,
give a brief introduction to the concept of sliding mode control and examine its prop-
erties. Sliding surface design and tracking requirements are also discussed. In many
ways, this chapter demonstrates the true theoretical and applications depth to which
the sliding mode control paradigm has been developed today in the fields of FTC.
Also, highlights the benefits and give discussions of some FTC approaches based
SMC. At the end, in order to introduce the concept and to prove the effectiveness
of the proposed approach a permanent magnet synchronous motor (PMSM) systems
case study will be presented.

H. Mekki (B)

Department of Electrical Engineering, University of M’sila, M’sila, Algeria
e-mail: hamza.mekki@g.enp.edu.dz

D. Boukhetala
Process Control Laboratory, Department of Automatic,
Ecole Nationale Polytechnique (ENP), Algiers, Algeria
e-mail: djamel.boukhetala@g.enp.edu.dz

A.T. Azar
Faculty of Computers and Information, Department of Scientific Computing,
Benha University, Benha, Egypt
e-mail: ahmad_t_azar@ieee.org

© Springer International Publishing Switzerland 2015
A.T. Azar and Q. Zhu (eds.), Advances and Applications in Sliding Mode Control systems,
Studies in Computational Intelligence 576, DOI 10.1007/978-3-319-11173-5_15

407



408 H. Mekki et al.

1 Introduction

To meet the market requirements in terms of functionality, cost and flexibility,
automated systems have long pushed to ever-increasing modularity, which passes
including reuse many components developed independently. This high degree of
reuse leads to increasingly complex architectures incorporating heterogeneous ele-
ments in multifaceted systems, which increases the risk of a fault.

Currently, when a faults occurs in the level of complex systems such as nuclear
central, aircraft system and railway system. The most research into reconfigurable
systems control focuses on faults detection and isolation (FDI) where the fundamental
purpose of a FDI scheme is to generate an alarm when a fault occurs and to pin-point
the source (Patton et al. 1989). The FDI is very important phase but it’s not sufficient
to ensure safe operation and guarantee the good performance. Where, it is important
for these complex systems to be kept stable with an acceptable closed loop control
performance. Ideally, in these applications where continuity of operation is a key
feature, the closed loop system should be capable of maintaining its pre-specified
performance in terms of quality, safety, and stability despite the presence of faults
(Patton 1997). This procedure is rendered possible thanks to the fault tolerant control.

The common Fault tolerant control definition can be found in Zhang and Jiang
(2008) where authors states: ...FTCS are control systems which possess the ability
to accommodate component failures automatically. They are capable of maintaining
overall system stability and acceptable performance in the event of such failures. In
other words, a closed-loop control system which can tolerate component malfunc-
tions, while maintaining desirable performance and stability properties is said to be
a fault-tolerant control system...

In the last decade where the automation has become more complex, fault tolerance
has become an increasingly interesting topic. Fault tolerance is no longer limited to
high-end systems but also to railway (Bennett et al. 1999), and automobile applica-
tions (Benbouzid et al. 2007). While Jones (2005) gives a survey on reconfiguration
methods used specifically for FTC in flight control applications. FTC becomes an
important means to increase the reliability, availability, and continuous operation of
electromechanical systems among the automotive ones.

In general, the FTC approaches can be classified into two types: the passive
approach and the active approach. The survey papers (Patton 1997), (Prashant et al.
2013) and (Zhang and Jiang 2008) review the concepts and the state of the art in the
field of FTCs. comparative study between these two approaches have been reported
in Jiang and Xiang (2012). Then, more discussion of these FTC strategies is provided
in the following next chapter subsections.

In high performance nonlinear systems, a conventional state feedback such as
the proportional and integral controller (PI) can be very limited and cause the sys-
tem to unwanted behaviors or instability. To overcome such drawbacks, the method
presented in this chapter, uses Sliding Mode Control (SMC) to develop a robust con-
troller which adaptively handles input magnitude and rate constraints. We first give
an overview of SMC before going through the particulars of its use in reconfiguration.
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Sliding mode control (SMC) theory was introduced for the first time the context of
the variable structure system (VSS). It was developed for electrome-chanical systems
by Utkin see Utkin et al. (1999). It has become so popular that now it represents this
class of control systems. Even through, in its early stage of development, the SMC
theory was over-looked because of the development in the famous linear control
theory, during the last 20 years it has shown to be a very effective control method
(Edwards and Spurgeon 1998). Various books on SMC have also been published
recently Utkin (1992), Edwards and Spurgeon (1998), Fridman et al. (2011).

During the last two decades, new techniques for fault tolerant control (FTC) have
been developed for the specific purpose of maintaining relatively system performance
and stability. Development of FTC systems has also provided us a systematic way to
design and implement various control methods; the most FTC implemented control
methods based sliding mode control. Some application, of SMC in the field of FTC
can be found in these papers Benbouzid et al. (2007), Alwi et al. (2011), Alwi and
Edwards (2008), Fekih (2008), Mekki et al. (2013).

In this chapter in order to facilitate quantitative assessment and to prove the
effectiveness of the proposed approach, a permanent magnet synchronous motor
(PMSM) system is selected as case study. Nowadays PMSM drive is widely used in
the industry applications due to their high efficiency and high power/torque density
(Teng et al. 2012). These motors are used in many applications such as traction with
variable speeds in transportation as presented in Erginer and Sarul (2013). In order
to introduce the concept and to prove the effectiveness of the proposed approach a
PMS motor systems case study will be presented.

In this chapter, an introduction to fault tolerant control (FTC) and sliding modes
approach will be presented. The chapter will start with some definitions of faults
and failures which can occur in systems and describe some practical requirements
of FTC systems. Then, classification of different of FTC types will be presented and
discussed. Later, the sliding modes approach details will be given as well as a brief
overview. Also, some discussions on the benefits and motivation for sliding mode
techniques in the fields of FTC will be presented. At the end, this chapter wills give
a survey on sliding modes methods used specifically for FTC in PMSM systems
case study, in order to prove the high precision of the proposed control techniques
in healthy and during the faulty condition, some simulation results will be presented
and discussed.

2 Fault Tolerant Control Methods

This section will discussion and present a brief fault tolerant control (FTC) strategies
overview (definitions, requirements and classifications). In order to develop this area
further the terms fault and failure need to be defined in the context of uncertain
systems. This will also enable the concept of fault tolerant control (FTC) to be
specified in terms of faults and/or failures later in this chapter.
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2.1 Faults and Failures

Compressive area about faults and failures topics and more detail can be found
in Alwi et al. (2011) book. The faults and failures definitions provided in Alwi
et al., book is in compliance with the definitions given by the IFAC SAFEPROCESS
technical committee as given in Isermann and Balle (1997). Where the IFAC technical
committee, makes the following definitions:

Fault: an unpermitted deviation of at least one characteristic property or para-
meter of the system from the acceptable/usual/standard condition.

Failure: a permanent interruption of a system’s ability to perform a required func-
tion under specified operating conditions.

Faults in the components of controlled systems may lead to total system failure,
depending on the precise conditions, the criticality of the fault, etc. and if appropriate
action is not taken (Isermann and Balle 1997).

On the other hand, a Failure describes the condition when the system is no longer
performing the required function i.e. the system function involving the faulty com-
ponent may have failed (Klinkhieo 2009).

Clearly, a failure is a condition which is much more severe than a fault. When a
fault occurs in an actuator for example, the actuator is still usable but may have a
slower response or become less effective. But when a failure occurs, a totally different
actuator is needed to be able to produce the desired effect (Alwi et al. 2011).

2.2 Practical Requirements for FTC

Due to the large and rapid development experienced by the industrial world, the
manufacturing processes are becoming more complex and sophisticated. Therefore,
the increase in reliability, availability and dependability, is at present, one of the
major concerns of industry.

In several complex systems; such as nuclear central (see Fig. 1) and/or aircraft
systems (see Fig. 2). The faults detection and reconstruction phase is needed but will
not sufficient to ensure safe operation and guarantee the good performance. When
the fault appear in these systems it’s essential to change the control law in real time
to maintain stability of the system and ensure an acceptable operating in degraded
mode. Thus, it is necessary to associate to FDD a fault tolerant control unit. Figures 1
and 2 shows some examples that faults can lead to serious accidents also show the
importance of fault information and fault tolerant control.

In September 2004 the Group for Aeronautical Research and Technology in
Europe (GARTEUR) launch a project a Flight Mechanics Action Group FM-AG16:
Fault Tolerant Control. The project has started from and is expected to be finished in
September 2007. The AG16 group developed further research on fault-tolerant flight
control and demonstrated the value of using FTC methods to reduce the probability
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Fig. 1 Fukushima Daiichi nuclear accident

of accident. The goal was to apply a number of FDD and FTC algorithms within a
realistic failure scenario. Currently, the project has been participated by the several
leading universities in Europe (such as Cambridge University, Leicester University,
Hull University and Brunel University in UK; Delft University of Technology in the
Netherlands; University of Lille 1 and University of Bordeaux in France),

Figure 1 illustrates the Fukushima Daiichi nuclear accident on March 11, 2012.
This figure represents an aerial view of Fukushima Daiichi nuclear central before
and one year after disaster (www.maxisciences.com). Evacuation order was issued
for an initial range of 3 Km from the periphery of the reactor and included on the
5,800 people living within this range. He also advised people living within 10 Km
of the plant to remain in their homes. Later, the evacuation order covered all of the
population within 10 km. Today, it is completely useless and should be dismantled.

Figure 2 illustrates Hudson River flight accident on January 15, 2009. The downed
US Airways 1549 floating on the Hudson River in the west side of Manhattan, The
flight lasted 5 min 8 s after takeoff. No loss of life in this accident (www.celebitchy.
com).

www.maxisciences.com
www.celebitchy.com
www.celebitchy.com
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Fig. 2 Hudson River flight accident

2.3 Definitions of FTC Systems

Fault tolerance is an issue that has been addressed by many authors. During the last
two decades there has been a substantial literature on the subject of FTC according
to reviews, survey papers and books (e.g. Patton 1997; Blanke et al. 2001; Zhang and
Jiang 2008; Noura et al. 2009; Alwi et al. 2011; Prashant et al. 2013), which give
the state of the art and perspectives in the field of control reconfiguration in FTC. As
discussed above, approaches to FTC are motivated only by a particular application.
For example, safety in flight control, efficiency and quality improvements in industrial
processes, etc.

Patton in Patton (1997) stated in his survey that: ...Most often, the main require-
ment is that the system should maintain some “acceptable” level of performance
or degrade gracefully, subsequent to a malfunction. When it is proved that this can
be achieved the fault-tolerant approach becomes acceptable to systems and control
engineers...

Noura Hassan in Noura et al. (2000) stated that: ...Fault-tolerant control systems
are characterized here by their capabilities, alter fault occurrence, to recover per-
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formance close to the nominal desired performance. In addition, their ability to react
successfully (stably) during a transient period between the fault occurrence and the
performance recovery is an important feature. Accommodation capability of a con-
trol system depends on many factors such as the severity of the failure, the robustness
of the nominal system, and the actuators’ redundancy...

2.4 Classification of FTC Systems

Generally, in Patton (1997) and Zhang and Jiang (2008), authors classify FTCS into
two major groups: active fault tolerant control systems (AFTCS) and passive fault
tolerant control systems (PFTCS) as presented in Fig. 3. These two approaches use
different design methodologies for the same control objective. The survey books
Noura et al. (2009) and Prashant et al. (2013) review the design and practical appli-
cations of FTCS, recent advances and comparative study between these two FTCS
approaches are available in Alwi et al. (2011) and Jiang and Xiang (2012). A Table
presents a brief comparison of the FTC methods can be find in Jones (2005). The
taxonomy of active and passive FTC methods adapted from Patton (1997) is illustrate
in Fig. 3 healthy

2.4.1 Active Fault Tolerant Control

In the active approach, as presented in Alwi and Edwards (2008), Alwi et al. (2011),
Benbouzid et al. (2007), Zhang and Jiang (2008), Tabbache et al. (2013)), a new con-
trol system is redesigned using desirable properties of performance and robustness

Passive Active

FTC

FDI/System Identification 
+ 

Control Reconfiguration/Restructure

Online Controller
Redesign/AdaptationProjection

Robust
Control

Fig. 3 Decomposition of fault tolerant control
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that were important in the original system, but with the reduced capability of the
impaired system in mind (Patton 1997). AFTCS react to the system component
failures actively by reconfiguring control actions so that the stability and accept-
able performance of the entire system can be maintained. In certain circumstances,
degraded performance may have to be accepted (Zhang and Jiang 2008). Typically
active FTCS consists of an FDD scheme to provide the fault or failure information,
a reconfigurable controller, and a controller reconfiguration mechanism. These three
units have to work in harmony to complete successful control tasks (Jiang and Xiang
2012).

Active approaches are divided into two main types of methods: projection-based
methods and on-line automatic controller redesign methods. The latter involves the
calculation of new controller parameters in response to a control impairment. This is
often referred to as reconfigurable control (Patton 1997). In projection-based meth-
ods, controllers are designed a priori for all possible faults/failures that might occur
in the system. The projected controller will only be active when the corresponding
fault/failure occur see Alwi et al. (2011). A discussion of these different strategies is
provided in Jones (2005) and Alwi et al. (2011).

2.4.2 Passive Fault Tolerant Control

A closed-loop system can have limited fault-tolerance by means of a carefully chosen
feedback design, taking care of effects of both faults and system uncertain-ties. Such
a system is sometimes called a passive fault-tolerant control system (Eterno et al.
1985; Stengel 1991). Although there are systems in which a specially fixed controller
can compensate for the effects of certain faults, usually information about the fault
nature and location is required before the controller is able to react to the fault (Patton
1997).

Passive approaches make use of robust control techniques to ensure that a closed-
loop system remains insensitive to certain faults using constant controller parameters
(Eterno et al. 1985). A list of potential malfunctions is assumed known a priori as
design basis faults, and all failure modes as well as the normal system operating
conditions are considered at the design stage (Jiang and Xiang 2012). Therefore when
a fault occurs, the controller should be able to maintain stability of the system with an
acceptable degradation in performance. Also the effectiveness of this strategy, that
usually assumes a very restrictive repertory of faults, depends upon the robustness
of the nominal closed-loop system. It is interesting to note that in PFTCS neither an
FDD scheme nor a controller reconfiguration mechanism is needed. These techniques
are usually simple in implementation but are not usually suitable for severe cases of
failures. Discu-ssions on PFTCS are beyond the scope of this paper and interested
readers are referred to Bonivento et al. (2004), Nieamann and Stoustrup (2005),
Benosman and Lum (2010), Liao et al. (2002), Yang and Ye (2010) and the references
therein for recent development.
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3 Sliding Mode Control in Fields of FTC

The main advantage of the SMC over the other nonlinear control laws is its robustness
to external disturbances, model uncertainties, and variations in system parameters.
Sliding mode techniques have good robustness and are completely insensitive to so-
called matched uncertainty (Edwards and Spurgeon 1998; Utkin 1992). It has been
shown that sliding mode techniques can be used to deal with both structural and
unmatched uncertainty.

In the last few decades, various techniques based fault tolerant control appro-
aches have been developed for the specific purpose of maintaining relatively system
performance and stability. Development of FTC systems has also provided us a
systematic way to design and implement various control methods; the most FTC
implemented control methods based sliding mode control. Therefore, the application
of sliding mode techniques for FTC offers good potential. The comprehensive survey
papers Härkegard and Glad (2005), Shin et al. (2005), Benbouzid et al. (2007),
Alwi et al. (2011), Alwi and Edwards (2008), Fekih (2008), Xiao et al. (2012), Mekki
et al. (2013), Gouichiche et al. (2013), Hamayun et al. (2013), Cortés-Romero et al.
(2013) provides an overview of SMC based active and passive FTC approaches, and
many results have been established.

3.1 Sliding Mode Control in Active FTC

3.1.1 Projection Based Approach

Early publications focused on so-called projection methods as presented in Ben-
bouzid et al. (2007), Fekih (2008), Gouichiche et al. (2013), Alwi et al. (2011). In
this case all expected failure scenarios are enumerated during failure modes and
fault models constructed which cover each situation. Whereby if a particular fault
was identified and detected, a corresponding control law from a pre-computed and
prespecified set of controllers, projection method select and switches online to the
pre-computed control law corresponding to the current failure situation.

In Fekih (2008) and Gouichiche et al. (2013) authors propos a FTC based projec-
tion method which need a switching bloc, to switch between tow control strategies
Field Oriented Control for the healthy condition and SMC for the faulty condition .
In our case the proposed FTC structures don’t need a switching bloc and used only
one control strategy (SMC).

The fault tolerant architecture proposed in Fekih (2008), Gouichiche et al. (2013)
is illustrated in Fig. 4 In this diagram, each technique is being used where it is most
advantageous which guarantees the achievement of control objectives under any
considered conditions.



416 H. Mekki et al.

Faults

+
Alarm

Process Plant Output (y)

Residual
Evaluation

Output (y)

FTC

hV
Controller for Faulty 

Conditions

hVController for Healthy 
Conditions

Fig. 4 Bloc diagram of FTC based projection methods (figure adapted from: Fekih 2008)

3.1.2 Control Allocations

Control allocation (CA) has been heavily studied in relation to over-actuated systems
and has received a great deal of attention in the literature for reconfigurable systems as
it allows actuator failures to be handled without the need to modify the control law; for
a survey see (Enns 1998). CA has the capability of redistributing the control command
signals to the actuators especially during faults/failures. In CA, the controller is
designed based on a ‘virtual control’ signal and the CA element will map the virtual
control to the actual control demand to the actuators. The benefit here is that the
controller design is independent of the CA unit (Alwi and Edwards 2008). Therefore,
CA can be used in conjunction with any other controller design paradigm. Some of
the recent work in this area can be found in these papers (Enns 1998; Härkegard and
Glad 2005; Shin et al. 2005; Alwi and Edwards 2008; Hamayun et al. 2013).

A recent application of sliding mode controllers for active FTC is also presented.
Here the inherent robustness properties of sliding modes to matched uncertainty are
exploited. Although sliding mode controllers can cope easily with faults, they are
not able to directly deal with failures—i.e. the total loss of an actuator. In order to
overcome this problem, the integration and combination of sliding mode scheme with
control allocation framework is considered in Shin et al. (2005), Alwi and Edwards
(2008), Hamayun et al. (2013) where in these papers authors present a FTC using
SMC with on-line control allocation also considered in the 11th chapter edited by
Alwi and Edwards in this book Fridman et al. (2011). Whereby the effectiveness level
of the actuators is used by the control allocation scheme to redistribute the control
signals to the ‘healthy’ actuators when a fault occurs (Fig. 5).
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Fig. 5 Bloc diagram of FTC based Control Allocation Strategy (figure adapted from: Alwi and
Edwards 2008)

3.2 Sliding Mode Control in Passive FTC

Robust controls have great potential for the development of simple, robust fault
tolerant controllers. This controller is closely related to passive fault tolerant control
systems (PFTCS). As shown in Fig. 6, in this case the controller is designed to be
robust against uncertainty and disturbances during the stage design also to tolerate
system component faults by using the system redundancies without any parameter
adjustment or controller structure.

The robust characteristics of the sliding mode method provide a natural environ-
ment for the use of such methods on passive FTC schemes. This technique has been
properly used in different control schemes and assisted by other effective control
strategies which have shown proper performance under fault tolerant operations see
for examples Xiao et al. (2012), Hamayun et al. (2013), Mekki et al. (2013). Over
the past years, considerable attention has been paid to the design of for sliding mode
controller assistance in order to overcome several issues like disturbance rejection
as presented in Cortés-Romero et al. (2013) also to accommodating actuator failures
as presented in Corradini et al. (2005).

The possibilities of exploiting the inherent robustness properties of SM for FTC
previously been explored for several applications as flexible spacecraft (Xiao et al.
2012) and flight systems (Hess and Wells 2003; Shin et al. 2005; Jones 2005) the

+

Faults

Reference

Passive FTC

Faults

Robust 
Controller
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Fig. 6 Bloc diagram of Passive FTC Strategy
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work presented in these last reference papers proved that sliding mode control has
the potential to become an alternative to reconfigurable control. This is due to the
inherent robustness properties of sliding modes to a certain class of uncertainty,
including its ability to directly handle actuator faults without requiring the fault to
be detected and without requiring controller reconfiguration. Despite its robustness
property in handling actuator faults, sliding mode control (as with most other con-
trollers) cannot handle total actuator failures (Alwi et al. 2011). One of the current
researches attempting to solve this problem has assumed that exact replication of the
failed actuator is available (Corradini et al. 2005).

In Jones (2005) author presents a brief comparison of current FTC methods
resumed in table the same table is presented in Alwi et al. (2011). As can be seen
from this table, that SMC method can handle partial loss of effectiveness of actua-
tors but not complete loss also SMC assumes robust control can handle all forms of
structural failures

4 Sliding Modes Control Methods

In the recent past years, the SMC strategies have received worldwide interest, and
many theoretical studies and application researches are reported recently in Hung
et al. (1993), Edwards and Spurgeon (1998), Utkin et al. (1999), Fridman et al.
(2011). Even through, in its early stage of development, the SMC theory was over-
looked because of the development in the famous linear control theory, during the
last 20 years it has shown to be a very effective control method (Edwards and Spur-
geon 1998). It is known that the SMC can offer such properties as insensi-tivity
to parameters variations, external disturbance rejection, fast dynamic response, and
simplicity of design and implementation. In this ways, this chapter demonstrates the
true theoretical and applications depth to which the sliding mode control paradigm
has been developed today in the field of FTC. SMC has three very strong themes:
control design, theoretical extensions and industrial applications (Alwi et al. 2011).
For sliding mode control, this section gives brief introduction to understands of the
design method.

4.1 Different Modes of Trajectory

By using a set of switching control laws, the drive system is forced to follow a
predefined trajectory in the phase plane irrespective of plant parameter variation.
Consequently, robustness and global stability are achieved despite the system uncer-
tainties. In the variable structure control (sliding mode), the state trajectory is fed
to a surface called sliding surface. Then this path is forced to remain in the vicinity
thereof using the switching function. As presented in Slotine (1984), Hung et al.
(1993), the trajectory in the phase plane consists of three distinct parts; see Fig. 7.
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Fig. 7 Different modes of trajectory in the phase plane

4.1.1 Convergence Mode (CM)

This is the mode in which the controlled variable moves from any starting point in
the phase plane, and tends towards the switching surface S(x) = 0 and reaches in
a finite time. This mode is characterized by the control law and the convergence
criterion.

4.1.2 Sliding Mode (SM)

This is the mode in which the state variable is reached and the sliding surface tends
to cause the phase plane. The dynamics of this mode is characterized by the choice
of the sliding surface S(x) = 0.

4.1.3 Permanent Regime Mode (PRM)

This mode is added to the study of the response of the system around the equilibrium
point. It characterizes the quality and performance of the control (Hung et al. 1993).

4.2 Design of Sliding Mode Control

The design of the sliding mode control takes into account the problems of stability
and good performance in its approach. In general, for this type of control three steps
must be performed:
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4.2.1 Design of Sliding Surface

In this step the design of a sliding surface such that the system possesses the desired
performance when it is restricted to the surface is given. The most commonly used
for the slip speed which guarantees the convergence of the state towards its reference
given by SOLTINE (see Slotine (1984)) surface is defined by:

S(x) = (
d

dt
+ λ)r−1e(x) (1)

In this first equation λ, r , and e(x) = (xre f − x) represents respectively a positive
constant, relative degree and the difference between the controlled variable and its
reference.

4.2.2 Convergence Conditions and Existence

The conditions of existence and convergence criteria are different dynamics that
allow the system to converge to the sliding surface and stay there regardless of the
disturbance. There are two considerations to ensure convergence of the user: (i) the
direct switching function, which is the first condition of convergence, it is proposed
and studied by EMILYANOV and UTKIN. This is to give the surface a convergent
dynamic to zero. It is given by:

S(x)Ṡ(x) < 0 (2)

(ii) the LYAPUNOV Function, which is the second condition of convergence. The
Lyapunov function is a positive scalar function (V (x) > 0) for the system state
variables of the. We define the Lyapunov function as follows:

V (x) = 1

2
S2(x) (3)

Then the derivative of this function is given by:

V̇ (x) = S(x)Ṡ(x) (4)

For the LYAPUNOV function V (x) can decrease and converge to zero, just to ensure
that its derivative is negative. This is checked only if condition (2) holds.

4.2.3 Design of a Variable Structure Control Law

Obtaining a sliding regime implies a discontinuous control. The sliding surface
should be attractive to both sides. Therefore, if this is essential discontinuous control,
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it does not prevent a continued part it is added. The party continues in effect lead
to reduce as much as we want the amplitude of the discontinuous portion. In the
presence of a disturbance, the discontinuous portion is essentially to check the terms
of attractiveness.

In this case, the structure of a sliding mode controller consists of two parts: (i)
switching control Un ; (ii) equivalent control Ueq . To force the system to follow the
path imposed just now to make S = 0 attractive. For this, a switching control Un

will be added to the equivalent control Ueq in the form:

U = Ueq + Un (5)

Necessary for the system states provided, follow the defined surfaces sliding trajec-
tory is what brings us to define the equivalent command. While the control law which
ensures the attractiveness is given by:

Un = −k sign(S) (6)

Then the condition is always performed, which proves that S = 0 is attractive and
invariant, despite the disruptions.

Remark 1 It’s important to notice that the most work’s as presented in Edwards
and Spurgeon (1998), Yan and Edwards (2007), Alwi et al. (2011) consider that the
sliding mode approach consists of two steps: (i) the design of a sliding surface such
that the system possesses the desired performance when it is restricted to the surface;
(ii) the design of a variable structure control law which drives the system trajectories
to the sliding surface in finite time and maintains a sliding motion on it thereafter.
In these cases the conditions of existence and convergence step will be associated to
the design of a variable structure control law.

5 Case Study: PMSM Example

The method described above will now be demonstrated using a permanent magnet
synchronous motor (PMSM) as application example. Where; permanent magnet
synchronous motor is nowadays widely used in the industry applications due to
their high efficiency and high power/torque density (Teng et al. 2012). These motors
are used in many applications such as traction with variable speeds in transportation
as presented in Erginer and Sarul (2013).
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5.1 PMSM Healthy Model

The setting in the state form of the PMSM model allows the simulation of this latter.
In the rotor rotating (d − q) reference frame, the PMSM stator current model is
described as follows (Tang 1997):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = f (x) + Bu + DTL

x = [x1 x2 x3]T = [
id iq ωr

]T

u =
[

ud = Vsd

uq = Vsq

]
; B =

[
b1 0 0
0 b2 0

]T

D = [
0 0 d

]T

(7)

With the following expression of field vector f (x):

⎧⎨
⎩

f1(x) = a1x1 + a2x2x3
f2(x) = a3x2 + a4x3 + a5x1x3
f3(x) = a6x2 + a7x3 + agx1x2

(8)

The components of this vector are expressed according to the PMSM parameters as
follows:

⎧⎨
⎩

a1 = − Rs
Ld

; a2 = Lq
Ld

; a3 = − Rs
Lq

a4 = − ϕ f
Ld

; a5 = Ld
Lq

; a6 = − n2
pϕ f

j

a7 = − f
J ; a8 = n2

pϕ f

j (Ld − Lq); d = − n p
J ; b1 = 1

Ld
; b2 = − 1

Lq

where: id , iq stator current; Vd , Vq stator voltage; Ld , Lq stator inductance; Rs sta-
tor resistance; ϕ f rotor permanent magnet flux. ωr rotor speed, f viscous friction
coefficient, LT load torque, J moment of Inertia. As presented in the appendix (see
Table 1) we take in this paper in PMSM with smooth poles Ld = Lq = L in this
case (ag = 0)

The use of the classical controllers such as the proportional and integral controller
(PI) is insufficient to provide good speed tracking performance. To overcome these
problems, a robust controller based SMC approach is proposed.

5.2 Sliding Mode Control Design

Sliding mode control (SMC) is an effective control strategy in modern theory of
strong control robustness and simple implementation. Due to its order reduction,
disturbance rejection, strong robustness and simple operation using the power con-
verter is one of the possible methods of control for electromechanical systems (Utkin
et al. 1999). As presented in Ezzat (2011) and Attou et al. (2013) the application of
the sliding mode control strategy to PMSM in this case is divided into two steps.
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First we take the following equilibrium surface:

⎛
⎝ S1 = ew = x∗

3 − x3
S2 = eq = x∗

2 − x2
S3 = ed = x∗

1 − x1

⎞
⎠ (9)

5.2.1 Speed Regulator

The condition necessary for the system states follow the trajectory defined by the
sliding surfaces is S1 = 0 which brings back us to define the speed equivalent control
in the following way:

(S1 = 0) ⇒ Ṡ1 = ẋ3 − ẋ∗
3 = 0 (10)

With: x3 and x∗
3 represents the real and reference speed. In this case we get:

xd
2 = 1

a6
(−a7x3 − dTL + ẋ∗

3 ) (11)

From 6 the control law which ensures the attractivity is given by:

in
d = −k1sign(S1) (12)

where: k1 are positive constant. Then from (5), (11) and (12) we get:

x∗
2 = 1

a6
(−a7x3 − dTL + ẋ∗

3 ) − k1sign(S1) (13)

5.2.2 Currents Regulator

The condition necessary for the system states follow the trajectory defined by the
sliding surfaces is S2 = 0 and S3 = 0 which brings back us to define the direct and
quadratic currents equivalents control in the following way:

{
S2 = 0
S3 = 0

⇒
{

Ṡ2 = ẋ∗
2 − ẋ2 = 0

Ṡ3 = ẋ∗
1 − ẋ1 = 0

(14)

According to the derivative of the direct and quadratic currents surfaces we can
generate the tension given as fellow:

⎧⎨
⎩

ueq
q = V eq

sq = 1
b

(
ẋ∗

2 − a3x2 − a4x3 − a5x1x3

)
ueq

d = V eq
sd = 1

b

(
ẋ∗

1 − a1x1 − a2x2x3

) (15)
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From (6) the attractive control law is ensured and given by:

{
V n

sq = −k2sign(S2)

V n
sd = −k3sign(S3)

(16)

With k2 and k3 are positive constants. Finely from (5) we get:

{
unom

q = 1
b

(
ẋ∗

2 − a3x2 − a4x3 − a5x1x3
) − k2sign(S2)

unom
d = 1

b

(
ẋ∗

1 − a1x1 − a2x2x3
) − k3sign(S3)

(17)

5.2.3 Stability of the Closed Loop

The control objective in this case is to force the PMSM speed (ωr = x3) to follow its
reference x∗

3 and maintain in the same time the direct current (id = x1) to zero under
load torque disturbance. Let ed , eq and eω be the tracking errors of the currents and
the speed then the dynamic of the tracking errors are given by:

⎧⎨
⎩

ėd = a1x1 + a2x2x3 + b1Vsd − ẋ∗
1

ėq = a3x2 + a4x3 + a5x1x3 + b2Vsq − ẋ∗
2

ėω = a6x2 + a7x3 + dTL − ẋ∗
3

(18)

By taking k1 = kω

a6
in (13), from this equation and ėωgiven in (18) we get:

ėω = −kωsigneω (19)

By taking k2 = kq
b2

and k3 = kd
b1

in (17) from this new equation, ėq and ėd given in
(18) we get: {

ėq = −kqsigneq

ėd = −kdsigned
(20)

Consider the following Lyapunov function:

V = 1

2
e2

d + 1

2
e2

q + 1

2
e2
ω (21)

The derivative of V with respect to time is:

V̇ = ed(−kdsigned) + eq(−kqsigneq) + eω(−kωsigneω) (22)

Remark 2 We have at t → ∞ei → 0 and sign ei → 0 then we take signei = ei

where ei = ed , eq , eω then the derivative of the Lyapunov function given by (22)
becomes:

V̇ = −kde2
d − kqe2

q − kωe2
ω (23)
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Finely From (23) we see that (V̇ ≤ 0) the derivative of the complete Lyapunov
function be negative definite this implies that all the error variables are globally
uniformly bounded and maintain the system closed loop performance in presence of
load torque disturbances.

5.3 Fault Tolerant Control Design

5.3.1 PMSM Faulty Model

In this section we briefly review how the PMSM model will be modifies in presence
of faults which can be both of mechanical and electrical nature. The faults dealt
with in this paper can be summarized in the class of Stator asymmetries, mainly due
to static eccentricity as presented in Akar and Çankaya (2009) and Ebrahimi et al.
(2009). Following the theory in Vas (1994), it turns out that the presence of stator
faults generates asymmetries in the PMSM, yielding some slot harmonics (sinusoidal
components) in the stator currents (see Akar and Çankaya 2009; Ebrahimi et al. 2009).
Then the currents will be modified as fellow:

{
id → id + A sin (ω1t + ϕ)

iq → iq + A cos (ω1t + ϕ)
(24)

where id and iq denote the stator currents in the (d − q) reference frame. The pulsa-
tions ω1 of the harmonic components depend on the kind of fault (due to the stator
asymmetries). The amplitude A and the phases ϕ are unknown; they depend on the
stator faults entity. The sinusoidal components generated by the presence of the sta-
tor faults can be modeled by the following exosystem presented in Bonivento et al.
(2004), Mekki et al. (2013):

ẇ = S (ω1) · w w ∈ �2n f (25)

With: S (ω1) is the vector of the pulsations.

S (ω1) =
(

0 ω1
−ω1 0

)
(26)

where ω1the pulsation of the harmonic is generated by the stator faults; the amplitudes
and the phases of the harmonics are unknown; they depend on the initial state w(0)

of the exosystem. Then, the additive sinusoidal terms in (24) can be as a suitable
combination of the exosystem state, i.e.:

{
i̇d → i̇d + Qdw
i̇q → i̇q + Qqw

(27)
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where:

{
Qd = ( 1 0 1 0 . . . 1 0 )

Qq = ( 0 1 0 1 . . . 0 1 )

Recalling the current dynamics in the un-faulty operative condition reported in the
previous section, a simple computation shows that, once the perturbing terms Qdw
and Qdw are added, by deriving (27) the (id − iq) modify as:

{
did
dt = ẋ1 = a1x1 + a2x2x3 + b1ud − (a1 Qd + a2 Qq x3 + Qd S)w
diq
dt = ẋ2 = a3x2 + a4x3 + a5x1x3 + b2uq − (a3 Qd + a4 Qq x3 + Qd S)w

(28)
Bearing in mind the dynamics of the stator currents in the healthy operative condi-
tions, it is also simple to get the PMSM dynamics after the occurrence of a fault. As
a matter of fact, taking Eq. (28) it is readily seen that the PMSM healthy model given
by (7) and (8) in faulty condition (presence of stator faults) will be given by:

⎧⎨
⎩

ẋ1 = a1x1 + a2x2x3 + b1ud + �dw
ẋ2 = a3x2 + a4x3 + a5x1x3 + b2uq + �qw
ẋ3 = a6x2 + a7x3 + dTL

(29)

With: �(w) = −
(

�d

�q

)
w

{
�d = −(a1 Qd + a2 Qq x3 + Qd S)

�q = −(a3 Qd + a5 Qq x3 + Qd S)

Finely, in the presence of stator faults the PMSM model becomes:

ẋ = f (x) + Bu + dTL + �(w) (30)

5.3.2 Control Reconfiguration

The principal of the new FTC control law will be expressed by (31) in this section
the total control law is dividing to two control laws: (i) the nominal control unom

resulting from the SMC law presented in Sect. 5.2 by Eq. (17); (ii) the additive control
uad which is added to the control and setting to compensate the faults effect. This
additive control results from the internal model whose role is to reproduce the signal
representing the faults effect.

⎧⎨
⎩

u = unom + uad

u =
[

ud

uq

]
=

[
unom

d
unom

q

]
+

[
uad

d
uad

q

]
(31)

The instantaneous difference between the state derivative of the system and the
reference becomes:

˙̄x =
⎡
⎣ ėd

ėq

ėω

⎤
⎦ =

⎡
⎣ ẋ1

ẋ2
ẋ3

⎤
⎦ −

⎡
⎣ ẋ∗

1
ẋ∗

2
ẋ∗

3

⎤
⎦ =

⎧⎨
⎩

f1(x) + b1ud − ẋ∗
1 − �dw

f2(x) + b2uq − ẋ∗
2 − �qw

f2(x) − ẋ∗
3

(32)
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From the SMC law given by (17) and the FTC law given by (31) after rep-lacing in
(32) we get:

˙̄x =
⎡
⎣ ėd

ėq

ėω

⎤
⎦ =

⎧⎨
⎩

−kdsign ed + b1uad
d − �dw

−kqsign eq + b2uad
q − �qw

−kωsign eω

(33)

In the third equation if eω → 0 ⇒ ėω → 0 Let us notice that the first two equations
do not depend on the variable eω. In the continuation, for the determination of uad

let us consider the new variables (x̃1 = ed and x̃2 = eq), whose dynamics results
from Remark 2 and from (33) as follow:

⎧⎨
⎩

ẇ = S (�) · w

˙̃x =
[ ˙̃x1˙̃x1

]
=

{−k3 x̃1 + b1uad
d − �dw

−k4 x̃2 + b2uad
q − �qw

(34)

Then we can write the system (34) in a matrix form:

˙̃x = H(x̃) + B̃ · uad − � · w (35)

⎧⎪⎪⎨
⎪⎪⎩

H(x̃) = Ã · x̃ and Ã =
[−k3 0

0 −k4

]

B̃ =
[

bd 0
0 bq

]
and � =

[
�d 0
0 �q

] (36)

In this case for the determination of the internal model we introduce a resent implicit
fault tolerant control approach which does not rest on the resolution of the Sylvester
equation problem proposed in Bonivento et al. (2004). To solve this problem we
propose in this paper an internal based Lyapunov theory which takes the following
form Mekki et al. (2013):

{
ξ̇ = S (�) ξ + N (x̃)

dim(ξ) = dim(w) = 2n f
(37)

As presented in Mekki et al. (2013) the additive control law uad is chosen like:

uad = B̃−1�ξ (38)

Consider the systems (35) and the additive term given by (38) in this case we have:

˙̃x = H(x̃) + � · (ξ − w) (39)

The new error variable is considered is e = (ξ − w). Its derivative compared to time
takes this form:

ė = ξ̇ − ẇ = S (�) ξ + N (x̃) + S (�) w (40)
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The equations describing the dynamics of the errors in closed loop are thus:

{ ˙̃x = Ã · x̃ + � · e
ė = S (�) e + N (x̃)

(41)

It is necessary to find the expression of N (x̃) which cancels the observation error of
the faults e and makes it possible at the same time to reject their effect for it cancels
also x̃ . That is to say the Lyapunov function of the system (41):

V = 1

2
x̃ T · x̃ + 1

2
eT · e (42)

After develop of calculates V̇ becomes:

V̇ = x̃ T · Ã · x̃ + eT · �T · x̃ + eT · N (x̃) (43)

In this case the N (x̃) choice is given by:

N (x̃) = −�T x̃ (44)

After replacing of (43) in (44). The derivative of Lyapunov function become:

V̇ = x̃ T · Ã · x̃ ≤ 0 (45)

Finally the system (41) will be:

{
� · e = 0
ė = S (�) e

(46)

The objective of the control is achieved by adopting the procedure suggested and
we able to compensate the faults effect on the system (x → 0) and to reproduce
(e → 0) thanks to sliding mode control and internal model.

5.4 Simulation Results

In this section numerical simulations have been performed to test and validate the
proposed FTC based SMC scheme. The PMSM parameters are given as follow:
Power = 22 W; Voltage = 220 V; Frequency = 50 Hz; n P = 2; Rs = 3.4�; Ld =
0.0121 H; Lq = 0.0121 H ; ϕ f = 0.013 H ; f = 0.0005IS. The speed and direct
current references are fixed at 100 (rad/s) and zero (A) respectively, also a load torque
disturbance TL = 0.05 N .m is applied at t = 0.3 s. In Fig. 8 after association between
PMSM and PWM inverter controlled by the SMC technique we start the simulation
without any load torque, then at t = 0.3 s the application of a load torque equal to the
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Fig. 8 SMC performance under load torque disturbance and stator fault

nominal torque (TL = 0.05N .m) is presented, then the effect of stator fault will be
introduced at t = 0.5 s. For Fig. 9 the same consideration is taken account but in this
case we simulate the global closed loop system with the FTC based SMC approach.

From these simulations we can noticed that sliding mode controller (nominal
controller) which we synthesized present a robustness compared to the load torque
disturbance, but can’t deal with total faults in this case it proves to be insufficient in
the event of stator fault. This is checked by simulations represented above when the



430 H. Mekki et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-5

0

5

10

C
ur

re
nt

s 
(A

) Id
Iq
Id ref

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-100

-50

0

50

100

Time (sec)

V
ol

ta
ge

s 
(V

) Vd
Vq

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120
S

pe
ed

 (
ra

d/
s)

Wr ref

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-2

0

2

4

6

S
pe

ed
 e

rr
or

Fig. 9 FTC approach based SMC performance under load torque disturbance and stator fault

internal model is not active. Therefore, the FTC approach (when the internal model
is active) which we synthesized rejects the effect of the load torque disturbances and
also the stator faults effect.
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The work presented in this section focuses on the concept of fault tolerant control
approach based sliding mode control strategy for PMS Motors. In un-faulty condition
the SM Controller permits to steer the direct current and the speed variables to their
desired references and to reject the load torque disturbances, however the presence of
stator fault degraded the performances of the PMSM. In order to compensate the faults
effect a FTC approach can be designed starting with generating from the internal
model, an additive term wish we add to the nominal control (SMC) to compensate
the faults effect. The proposed approach is validated through the simulated results.

6 Conclusion

This chapter highlights the benefits of sliding modes when applied to the fields of
fault tolerant control (FTC). The presented considerations in this chapter provide a
strong motivation for the development of methods and strategies for the design of
advanced fault tolerant control systems based sliding mode control that ensure an
efficient and timely response to enhance fault recovery, prevent faults from propa-
gating or developing into large class of failures, and reduce the risk. The presented
chapter gives a general FTC strategies overview. Also this chapter briefly discuses
and highlights the benefits of SMC strategy when applied to active and passive FTC.
On the other hand, give a brief introduction to the concept of sliding mode control
and examine its properties. Finely, a permanent magnet synchronous motor (PMSM)
systems case study is presented in order to introduce the concept and to prove the
effectiveness of the proposed approach. Where computer numerical simulations show
the effectiveness of the proposed FTC based SMC scheme. We hope that this work
will serve as a good starting point and a useful reference for researchers working on
the development of new sliding modes based fault tolerant control approaches.
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Transient Stability Enhancement of Power
Systems Using Observer-Based Sliding Mode
Control

M. Ouassaid, M. Maaroufi and M. Cherkaoui

Abstract The high complexity and nonlinearity of power systems, together with
their almost continuously time-varying nature, have presented a big challenge for
control engineers, for decades. The disadvantages of the linear controllers/models,
such as being dependent on the operating condition, sensibility to the disturbance such
as parametric variations or faults can be overcome by using appropriate nonlinear
control techniques. Sliding-mode control technique has been extensively used when
a robust control scheme is required. This chapter presents the transient stabilization
with voltage regulation analysis of a synchronous power generator driven by steam
turbine and connected to an infinite bus. The aim is to obtain high performance for the
terminal voltage and the rotor speed simultaneously under a large sudden fault and
a wide range of operating conditions. The methodology adopted is based on sliding
mode control technique. First, a nonlinear sliding mode observer for the synchronous
machine damper currents is proposed. Next, the control laws of the complete ninth
order model of a power system, which takes into account the stator dynamics as
well as the damper effects, are developed. They are shown to be asymptotically
stable in the context of Lyapunov theory. Finally, the effectiveness of the proposed
combined observer-controller for the transient stabilization and voltage regulation is
demonstrated.

Nomenculture

vd , vq Direct and quadrature axis stator terminal voltage components,
respectively

v f d Excitation control input
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vt Terminal voltage
id , iq Direct and quadrature axis stator current components, respectively

i f d Field winding Current
ikd , i kq Direct and quadrature axis damper winding current components,

respectively
λd , λq Direct and quadrature axis flux linkages, respectively

Rs Stator resistance
R f d Field resistance

Rkd , Rkq Damper winding resistances
Ld , Lq Direct and quadrature self inductances, respectively

L f d Rotor self inductance
Lkd , Lkq Direct and quadrature damper winding self inductances, respec-

tively
Lmd , Lmq Direct and quadrature magnetizing inductances, respectively

ω Angular speed of the generator
δ Rotor angle of the generator

Tm Mechanical torque
Te Electromagnetic torque
D Damping constant
H Inertia constant
a Phase angle of infinite bus voltage

V ∝ Infinite bus voltage
Le Inductance of the transmission line
Re Resistance of the transmission line

1 Introduction

Nowadays, electric power systems have evolved through continuing growth in inter-
connections, use of new technologies and controls. They are operating more and more
closely to their limit stability in highly stressed conditions. To maintain a high degree
of reliability and security, different forms of system instability must be considered
in the design of controllers.

Stability is a condition of equilibrium between opposing forces. Depending on the
network topology, system operating condition and the form of disturbance, different
sets of opposing forces may experience sustained imbalance leading to different
forms of instability. Figure 1 identifies the categories and subcategories of the power
system stability problem. The classification of power system stability is generally
based on the physical nature of the resulting mode of instability, the size of the
disturbance considered, the devices, processes, and the time span (Kundur 1994).

The reliability of the power supply implies much more than merely being available.
Ideally, the loads must be fed at constant voltage and frequency at all times. However,
small or large disturbances such as power changes or short circuits may transpire.
One of the most vital operation demands is maintaining good stability and transient
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Power System
Stability

Rotor Angle Stability Frequecy Stability Voltage Stability

Transient 
Stability

Small 
Disturbance 

Angle 
Stability

Large 
Disturbance 

Voltage 
Stability

Small 
Disturbance 

Stability

Short Term Short Term Long TermShort Term Long Term

Fig. 1 Classification of power system stability

performance of the terminal voltage, rotor speed and the power transfer to the network
(Guo et al. 2001; Jiawei et al. 2014). This requirement should be achieved by an
adequate control of the system.

Traditionally, excitation controllers, which are mainly designed by using linear
control theory, are used to regulate the terminal voltage at a specified value and
ensure the stability under small and large disturbances. The principal conventional
excitation controller is the automatic voltage regulator (AVR). Many different AVR
models have been developed to represent the various types used in a power system.
The IEEE defined several AVR types, the main one of which (Type 1) is shown in
Fig. 2. The modern AVR employing conventional, fixed parameter compensators,
whilst capable of providing good steady state voltage regulation and fast dynamic
response to disturbances, suffers from considerable variations in voltage control
performance as the generator operating change. Several forms of adaptive control
have been investigated to address the problem of performance variation (Ghazizadeh
and Hughes 1998).

Adversely, the generator automatic voltage regulator which reacts only to the volt-
age error weakens the damping introduced by damper windings. This detrimental
effect of the AVR can be compensated using supplementary control loop which is
the power system stabilizer (PSS). The structure of the PSS is given in Fig. 3. These
stabilizers introduced additional system damping signals derived from the machine
speed or power through the excitation system in order to improve the damping of
power swings (Ghandakly and Farhoud 1992). Conventional fixed parameter stabi-
lizers work reasonably well over medium range of operating conditions. However
may diminish as the generator load changes or the network configuration is altered
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by faults or other switching conditions which lead to deterioration in the stabilizer
performance. Remarkable efforts have been devoted to the design of appropriate
PSS; various methods, such as root locus, eigenvalue techniques, pole placement,
adaptive control, etc. have been used. But in all these methods, model uncertainties
cannot be considered explicitly at the design stage (Zhao and Jiang 1995).

To deal with a high complexity and nonlinearity of power systems, together with
their almost continuously time-varying nature, different techniques have been inves-
tigated in aim to:

• Tackle the problem of transient stability by considering nonlinear models of power
systems.
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• Overcome the drawbacks of the linear controllers via design of nonlinear con-
trollers.

The main features of those controllers are summarized as follows:

• Independence of the equilibrium point and taking into account the important non-
linearities of the power system model.

• Robustness The designed controller must be insensible to all kinds of perturbations
such as parametric variations or faults and the non-modeled dynamics.

• Dynamics performance and Tracking Terminal voltage, rotor speed and rotor angle
converge to their references with accuracy and rapidity.

• Enhancing the transient stability Damping of all types of oscillations (local and
inter area).

Several control approaches have been applied. As a summary, the main strategies
are outlined as follows:

1.1 Feedback linearization

The essence of this technique is to first transform a nonlinear system into a linear on by
a nonlinear feedback, and then uses the well-known linear design techniques to com-
plete the controller design (Isidori 1995). Nevertheless these control designs require
the exact cancellation of nonlinear terms. With parametric uncertainties present in
the system, the cancellation is no longer applied. This constitutes an important draw-
back in the implementation of such controllers in the presence of model uncertainties
and/or external disturbances, thus affecting the robustness of the closed loop system
(Gao et al. 1992; King et al. 1994). Several adaptive versions of the feedback lin-
earizing controls are then developed in (Jain et al. 1994; Tan and Wang 1998).

1.2 Passivity based control

The control based on the passivity has been the subject of several investigations.
The aim of the method is to make the system passive closed loop (Byrnes et al.
1991; Kokotovic 1992; Ortega et al. 1998). This approach is limited to physical sys-
tems described by equations of motion Euler-Lagrange. The major problem with this
approach is that the performance of the closed loop system depends on the knowl-
edge of the model parameters used to define terms of energy dissipation. Therefore,
the performance is not satisfactory if terms of energy, which are used to ensure the
asymptotic stability of the controlled system dissipation, are used to ensure the pas-
sivity for all operating conditions (Nickllasson et al. 1997). References (Ortega et al.
1998) and (Galaz et al. 2003) present an application of this technique.
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1.3 Robust control

To cope with parametric uncertainties in power systems, many robust voltage reg-
ulators have been proposed using the theory of linear robust control such as H ∞
(Ahmed et al. 1996) and the L ∞ stability theory (Guo et al. 2001; Jiawei et al.
2014). In (Ohtsuk 1992), several types of uncertainties and changes in variables are
taken into account in the design of H ∞ controller. The maximum effects of these
disturbances are minimized. The use of this type of control for electric power sys-
tem is investigated in (Xi et al. 2002) and (Wang et al. 2003). The disadvantage
of these regulators is excessive gain values, which makes it difficult their practical
achievements.

1.4 Adaptive control

It should be noted that the model of a process, even relatively complex, is never
perfect. This type of approach applies to systems whose dynamics are known but
whose parameters are poorly identified or unknown or even slowly varying in time
(Astrom and Wittenmark 1995). The weakness of this type of controller resides
essentially in the fact that the dynamics of the estimator is not considered in the
design process. The relatively slow convergence of the adaptation may result in
some cases irreversible instability of the loop (Narendra and Balakrishnan 1997).
In (Khorrami et al. 1994; Ghandakly and Dai 2000; Shen et al. 2003; Jiao et al.
2005; Wu and Malik 2006), regulators of power system are based on adaptive
control.

1.5 Backstepping technique

This approach widely detailed by Krstic and Kokotovic Kanellakopolus in (Krstić
et al. 1995) provides solutions to the aforementioned problems. Indeed, the back-
stepping, whose basic idea is to synthesize the control law in a recursive manner, is
less restrictive compared to the control non-linear state feedback which cancels the
nonlinearities that might be useful. Unlike the adaptive controllers, based on certain
equivalence, which separate the design of the controller and the terms of adaptation,
adaptive backstepping has emerged as an alternative. In adaptive backstepping, the
control law takes into account the dynamic adaptation. These last two and the Lya-
punov function which guarantees the stability and performance of the overall system
are designed simultaneously. This technique has been successfully applied for power
system in (Karimi and Feliachi 2008; Ouassaid et al. 2008, 2010).
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1.6 Intelligent control

New approaches have been proposed for power stability such as fuzzy logic control
(Mrad et al. 2000; Abbadi et al. 2013), neurocontrol (Shamsollahi and Malik 1997;
Park et al. 2003; Venayagamoorthy et al. 2003; Mohagheghi et al. 2007) and algorithm
genetic (Alkhatib and Duveau 2013). Combinations of the above techniques are also
proposed in order to exploit the advantages of each method. These solutions are
efficient, but they increase the cost and complexity of the control system (Segal et al.
2000; Wang 2013).

1.7 Sliding mode control

This method is a very interesting technique. It dates back to the 70 s with the work
of Utkin (Utkin 1977). It is a robust control to the parametric uncertainties and
neglected dynamics. Nevertheless, the problems of chattering inherent in this type of
discontinuous control appear quickly. Note that the chattering may excite the high-
frequency dynamics neglected sometimes leading to instability. Methods to reduce
this phenomenon have been developed (Slotine and Li 1991). This technique was
applied to electric power systems in (Morales et al. 2001; Colbia-Vega et al. 2008;
Huerta et al. 2010).

Almost all the mentioned above controllers for EPS consider reduced order mod-
els, taking into account the generator mechanical dynamics only. In the most of those
studies, the nonlinear model used was a reduced third order model of the synchro-
nous machine. In (Loukianov et al. 2004; Cabrera-Vazquez et al. 2007) sliding mode
controllers for infinite machine bus systems have been designed considering the
mechanical rotor, and electrical stator dynamics. Likewise, In (Akhrif et al. 1999),
the feedback linearization technique was used to improve the system’s stability and
to obtain good post-fault voltage regulation. It is based on a 7 order model of the
synchronous machine which takes into account the damper windings effects. How-
ever the authors assumed that the damper currents are available for measurement. In
fact, the technology for direct damper current measurement is not fully developed
yet. Because, damper windings are metal bars placed in slots in the pole faces and
connected together at each end.

Thanks to the mentioned assumption, implementation of a controller based
on a complete 7th order model of power synchronous machine requires infor-
mation about the entire states of the power system. As a result, the estimation problem
of damper currents of synchronous generator arises. For this purpose, a nonlinear
observer for damper currents is developed, based on the sliding mode technique
(Ouassaid et al. 2012).

The rest of this chapter is organized as follows: In Sect. 2, a mathematical model
of a power system is introduced. It is based on a detailed 9th order model of a sys-
tem which consists of a steam turbine and Single Machine Infinite Bus (SMIB) and
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takes into account the stator dynamics as well as the damper winding effects and
practical limitation on controls. A nonlinear observer for damper winding currents is
developed in Sect. 3. Then, in Sect. 4, a sliding mode controller is constructed based
on a time-varying sliding surface to control the rotor speed and terminal voltage,
simultaneously, in order to enhance the transient stability and to ensure good post-
fault voltage regulation for power system. Section 5 presents a number of numerical
simulations results of the proposed observer-based nonlinear controller. Finally, con-
clusions are given in Sect. 6.

2 Power System Model

The system to be controlled is shown in Fig. 4. It consists of synchronous generator
driven by steam turbine and connected to an infinite bus via a transmission line. The
synchronous generator is described by a 7th order nonlinear mathematical model
which comprises three stator windings, one field winding and two damper windings.

The synchronous machine equations in terms of the Park’s d-q axis are expressed
(Fig. 5) as follows (Cheng and Hsu 1992; Anderson and Fouad 1994):

Armature windings

vd = −Rsid − ωλq + dλd

dt
(1)

vq = −Rsiq + ωλd + dλq

dt
(2)

where

λd = −Ldid + Lmd(i f d + ikd) (3)

λq = −Lqiq + Lmqikq (4)

Fig. 4 Block diagram of the power system with observer based-controller
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Fig. 5 Synchronous machine in Park’s d-q axis

Field winding

v f d = Rsi f d − Lmd
did

dt
+ L f d

di f d

dt
+ Lmd

dikd

dt
(5)

Damper windings

0 = Rkdikd − Lmd
did

dt
+ Lmd

di f d

dt
+ Lkd

dikd

dt
(6)

0 = Rkqikq − Lmq
did

dt
+ Lkq

dikq

dt
(7)

Mechanical equations

dδ

dt
= ω − 1 (8)

2H
dω

dt
= Tm − Te − Dω (9)

The electromagnetic torque is

Te = (
Lq − Ld

)
id iq + Lm f d i f d iq + Lmdikd iq − Lmqid ikq (10)

The equation of transmission network in the Park’s coordinates is

vd = Reid + Le
did

dt
− ωLeiq + V ∞ cos(δ − a) (11)

vq = Reiq + Le
diq

dt
+ ωLeid − V ∞ sin(δ − a) (12)
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where Re is the external resistance and Le inductance. In state space form, the
resulting system by combining Eqs. (1)–(12) is highly nonlinear not only in the
state but in the input and output as well (Akhrif et al. 1999). By considering
x = [id , i f d , iq , ikd , ikq , ω, δ, Pm, Xe]T the vector of state variables, the math-
ematical model of the generator system, in per unit, has the following form:
Electrical equations:

dx1

dt
= x1a11 + a12x2 + a13x3x6 + a14x4 + a15x6x5 + a16 cos(−x7 + σ) + b1u f d

(13)

dx2

dt
= a21x1 + a22x2 + a23x3x6 + a24x4 + a25x6x5 + a26 cos(−x7 + σ) + b2u f d

(14)

dx3

dt
= a31x1x6 + a32x2x6 + a33x3 + a34x4x6 + a35x5 + a36 sin(−x7 + σ) (15)

dx4

dt
= a41x1 + a42x2 + a43x3x6 + a44x4 + a45x6x5 + a46 cos(−x7 + σ) + b3u f d

(16)

dx5

dt
= a51x1x6 + a52x2x6 + a53x3 + a54x4x6 + a55x5 + a56 sin(−x7 + σ) (17)

Mechanical equations:

dx6

dt
= a61x6 + a62

x8

x6
− a62Te (18)

dx7

dt
= ωR(x6 − 1) (19)

Turbine dynamics (Hill and Wang 2000):

dx8

dt
= a81x8 + a82x9 (20)

Turbine valve control (Hill and Wang 2000):

dx9

dt
= a91x9 + a92x6 + b4ug (21)

where, u f d the excitation control input, ug the input power of control system. The
parameters ai j and bi are described as follow

a11 = −(Rs + Re)(L f d Lkd − L2
md )ωR D−1

d a41 = −(Rs + Re)(L f d Lmd − L2
md )ωR D−1

d
a12 = −R f d (Lmq Lkd − L2

md )ωR D−1
d a42 = R f d ((Ld + Le)Lmd − L2

md )ωR D−1
d

a13 = (Lq + Le)(Lmd Lkd − L2
md )ωR D−1

d a45 = −Lmd (Lmq .L f d − L2
md )ωR D−1

d
a15 = −Lmq (L f d Lkd − L2

md )ωR D−1
d a43 = (Lq + Le)(Lmd Ld − L2

md )ωR D−1
d

a14 = Rkd ((Ld + Le)Lmd − L2
md )ωR D−1

d a44 = −Rkd ((Ld + Le)L f d − L2
md )ωR D−1

d
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a16 = −V ∞((Ld + Le)Lkd − L2
md )ωR D−1

d a46 = −V ∞(Lmd .L f d + L2
md )ωR D−1

d
b1 = (Lmd Lkd − L2

md )ωR D−1
d a51 = −(Ld + Le)LmqωR D−1

q

a21 = −(Rs + Re)(Lmd Lkd − L2
md )ωR D−1

d a52 = Lmd LmqωR D−1
q

a22 = −R f d ((Ld + Le)Lkd − L2
md )ωR D−1

d a53 = −(Rs + Re)LmqωR D−1
q

a23 = (Lq + Le)(Lmd Lkd − L2
md )ωR D−1

d a54 = Lmd LmqωR D−1
q

a24 = Rkd ((Ld + Le)Lmd − L2
md )ωR D−1

d a55 = −Rkq (Lq + Le)ωR D−1
q

a25 = −Lmq (Lmd Lkd − L2
md )ωR D−1

d a56 = −V ∞LmqωR D−1
d

a26 = −V ∞(Lmd Lkd − L2
md )ωR D−1

d a61 = −D(2H)−1

b2 = ((Ld + L f d )Lkd − L2
md )ωR D−1

d a62 = (2H)−1

a31 = −(Ld + Le)LkqωR D−1
q a81 = −(Tm)−1

a32 = Lmd LkqωR D−1
q a82 = Km(Tm)−1

a33 = −(Rs + Re)LkqωR D−1
q a91 = −(Tg)−1

a34 = Lmd LkqωR D−1
q a92 = −Kg(Tg RωR)−1

a35 = −Lmq .RkqωR D−1
q b4 = Kg(Tg)−1

a36 = V ∞LkqωR D−1
q

b3 = ((Ld + Le)Lmd − L2
md )ωR D−1

d

Here we have denoted

Dd = (Ld + Le)L f d Lkd − L2
md(Ld + L f d + Lkd) + 2L3

md

Dq = (Lq + Le)Lkq − L2
mq

The machine terminal voltage is calculated from Park components vd and vq as
follows (Anderson and Fouad 1994; Akhrif et al. 1999):

vt =
(
v2

d + v2
q

) 1
2

(22)

with

vd = c11x1 + c12x2 + c13x3x6 + c14x4 + c15x5x6 + c16 cos(−x7 + σ) + c17u f d

(23)

vq = c21x1x6 + c22x2x6 + c23x3 + c24x4x6 + c25x5 + c26 sin(−x7 + σ) (24)

where ci j are coefficients which depend on the coefficients ai j , on the infinite bus
phase voltage V ∞ and the transmission line parameters Re and Le. They are described
as follow

c11 = Re + a11Leω
−1
R c17 = b1Leω

−1
R

c12 = a12 Leω
−1
R c21 = Le + a31Leω

−1
R

c13 = Le(a13ω
−1
R − 1) c22 = a32 Leω

−1
R

c14 = a14Leω
−1
R c23 = a33Leω

−1
R + Re

c15 = a15Leω
−1
R c24 = a34Leω

−1
R
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c16 = V ∞ + a16Leω
−1
R c25 = a35Leω

−1
R

c26 = V ∞ + a36Leω
−1
R

Available states for synchronous generator are the stator phase currents id and iq ,
voltages at the terminals of the machine vd and vq , field current i f d . It is also assumed
that the angular speed ω and the power angle δ are available for measurement (De
Mello 1994). In the next section the construction an observer of the damper currents
ikd and ikq will be given.

3 Sliding Mode Observer for the Damper Winding Currents

The state space representation of the electrical dynamics of the power system model
(13)–(17) is given as

d

dt

⎡
⎣ x1

x2
x3

⎤
⎦ = F11

⎡
⎣ x1

x2
x3

⎤
⎦ + F12

[
x4
x5

]
+

⎡
⎣ b1

b2
0

⎤
⎦ u f d + H1(t) (25)

d

dt

[
x4
x5

]
= F21

⎡
⎣ x1

x2
x3

⎤
⎦ + F22

[
x4
x5

]
+

[
b3
0

]
u f d + H2(t) (26)

where

H1(t) = [a16 cos(−x7 + σ), a26 cos(−x7 + σ), a36 sin(−x7 + σ)]T

H2(t) = [a46 cos(−x7 + σ), a56 sin(−x7 + σ)]T

F11 =
⎡
⎣ a11 a12 a13x6

a21 a22 a23x6
a31x6 a32x6 a33

⎤
⎦

F21 =
[

a41 a42 a43x6
a51x6 a52x6 a53

]

F12 =
⎡
⎣ a14 a15x6

a24 a25x6
a34x6 a35

⎤
⎦

F22 =
[

a44 a45x6
a54x6 a55

]
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Considering the switching surface S as follows

S(t) =
⎡
⎣ x̂1 − x1

x̂2 − x2
x̂3 − x3

⎤
⎦ ≡

⎡
⎣ z1

z2
z3

⎤
⎦ = 0 (27)

Hence, a sliding mode observer for (25) is defined as

d

dt

⎡
⎣ x̂1

x̂2
x̂3

⎤
⎦ = F11

⎡
⎣ x̂1

x̂2
x̂3

⎤
⎦ + F12

[
x̂4
x̂5

]
+

⎡
⎣ b1

b2
0

⎤
⎦ u f d + H1(t) + K

⎡
⎣ sgn(x̂1 − x1)

sgn(x̂2 − x2)

sgn(x̂3 − x3)

⎤
⎦

(28)

where x̂1, x̂2 and x̂3 are the observed values of id , i f d and iq , K is the switching gain,
and sgn is the sign function.

Furthermore, the damper current observer is given from (26) as

d

dt

[
x̂4
x̂5

]
= F21

⎡
⎣ x̂1

x̂2
x̂3

⎤
⎦ + F22

[
x̂4
x̂5

]
+

[
b3
0

]
u f d + H2(t) (29)

where x̂4 and x̂5 are the observed values of ikd and ikq .
Subtracting (25) from (28), the error dynamics can be written in the following

form

d

dt

⎡
⎣ z1

z2
z3

⎤
⎦ = F11

⎡
⎣ z1

z2
z3

⎤
⎦ + F12

[
x̃4
x̃5

]
+ K

⎡
⎣ sgnz1

sgnz2
sgnz3

⎤
⎦ (30)

where x̃4and x̃5 are the estimation errors of the damper currents x4 and x5.
The switching gain is defined as

K = min

⎧⎨
⎩

−a11 |z1| − (a12z2 + a13ωz3 + a14 x̃4 + a15ωx̃5) sgnz1
−a22 |z2| − (a21z1 + a23ωz3 + a24 x̃4 + a25ωx̃5) sgnz2
−a33 |z3| − (a31ωz1 + a32ωz2 + a34ωx̃4 + a35 x̃5) sgnz3

⎫⎬
⎭ − ξ (31)

where ξ is a positive small value.

Theorem 1 The globally asymptotic stability of (30) is guaranteed, if the switching
gain is given by (31).

Proof The stability of the overall structure is guaranteed through the stability of the
direct axis and quadrature axis currents x1, x2, and field current x3 observer. The
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Lyapunov function of the sliding mode observer for damper currents is chosen as

Vobs = 1

2
ST �S (32)

where � is an identity positive matrix. Consequently, the derivative of the Lyapunov
function is

dVobs

dt
= ST �

d S

dt

=
⎡
⎣ z1

z2
z3

⎤
⎦

T

�

⎛
⎝F11

⎡
⎣ z1

z2
z3

⎤
⎦ + F12

[
x̃4
x̃5

]
+ K

⎡
⎣ sgnz1

sgnz2
sgnz3

⎤
⎦

⎞
⎠

= G1 + G2 + G3

(33)

where

G1 = a11z2
1 + a12z1z2 + a13ωz1z3 + a14z1 x̃4 + a15ωz1 x̃5 + K |z1|

G2 = a21z1z2 + a22z2
2 + a23ωz2z3 + a24z2 x̃4 + a25ωz2 x̃5 + K |z2|

G3 = a31ωz1z3 + a32ωz2z3 + a33z2
3 + a34ωz3 x̃4 + a35z3 x̃5 + K |z3|

Using the designed switching gain in (31), both G1, G2 and G3 are negatives.
Therefore, V̇obs is a negative definite, and the sliding mode condition is satisfied
(Slotine and Li 1991). Furthermore the global asymptotic stability of the observer is
guaranteed.

According to (31) by a proper selection of ξ , the influence of parametric uncer-
tainties of the SMIB can be much reduced. The switching gain must large enough to
satisfy the reaching condition of sliding mode. Hence the estimation error is confined
into the sliding hyperplane

d

dt

⎡
⎣ z1

z2
z3

⎤
⎦ =

⎡
⎣ z1

z2
z3

⎤
⎦ = 0 (34)

Nevertheless, if the switching gain is too large, the chattering noise may lead to
estimation errors. To avoid the chattering phenomena, the sign function is replaced
by the following continuous function

S(t)

|S(t)| + ς1

where ς1 is a positive constant.
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Stator and Field 
Currents Observer

Eq. (28)

Damper Currents 
Observer
Eq. (29) 

+

-

fdu

fdu
d̂i

q̂i

f̂di

di

qi

fdi

k̂di

k̂qi

Fig. 6 Block diagram of the sliding mode damper currents observer

4 Design of Sliding Mode Controllers

This section deals with a procedure for the design of power system controllers, in
order to improve the system’s stability and damping properties under large distur-
bances and variation in operating points. The first objective is the terminal voltage
regulation.

The dynamic of the terminal voltage (35), is obtained through the time derivative of
(22) using (23) and (24) where the damper currents are replaced by the observer (29)

dvt

dt
= 1

vt

(
vd

dvd

dt
+ vq

dvq

dt

)

= vq

vt

dvq

dt
+ c17

vd

vt

du f d

dt

+ vd

vt

⎡
⎢⎣

c11
dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt
+ c14

dx̂4

dt

+c15x6
dx̂5

dt
+ c15 x̂5

dx6

dt
+ c16

dx7

dt
sin(−x7 + σ)

⎤
⎥⎦ (35)

= c17
vd

vt

du f d

dt
+ f (x)

where

f (x) = vq

vt

dvq

dt
+ vd

vt

⎡
⎢⎣

c11
dx1

dt
+ c12

dx2

dt
+ c13x6

dx3

dt
+ c13x3

dx6

dt
+ c14

dx̂4

dt

+c15 x̂5
dx6

dt
+ c15x6

dx̂5

dt
+ c16

dx7

dt
sin(−x7 + σ)

⎤
⎥⎦
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The tracking error between terminal voltage and its reference is given as

e1 = vt − v
re f
t (36)

Hence, its dynamic is derived, using (35), as follows:

de1

dt
= c17

vd

vt

du f d

dt
+ f (x) (37)

According to the (36), the proposed time-varying sliding surface is defined by

S1 = K1e1(t) (38)

where K1 is a positive constant feedback gain. The next step is to design a control
input which satisfies the sliding mode existence law. The control input have the
following structure

u(t) = ueq(t) + un(t) (39)

where ueq(t) is an equivalent control-input that determines the system’s behavior on
the sliding surface and un(t) is a non-linear switching input, which drives the state
to the sliding surface and maintains it on the sliding surface despite the presence of
the parameter variations and disturbances. The equivalent control-input is obtained
from the invariance condition and is given by the following condition (Utkin et al.
1999):

S1 = 0 and
d S1

dt
= 0 ⇒ u(t) = ueq(t)

From the above equation

Ṡ1 = K1c17
vd

vt

du f d

dt
+ K1 f (x) = 0 (40)

Therefore, the equivalent control-input is given as

ueq(t) = − vt

c17vd
f (x) (41)

By choosing the nonlinear switching input un(t) as follows

un(t) = −α1
vt

c17vd
sgn(e1) (42)
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where α1 is a positive constant. The control input is derived from (39), (41) and (42)
as follows:

u(t) = du f d

dt
= − vt

c17vd
( f (x) + α1sgn(e1)) (43)

Using the proposed control law (43), the reachability of sliding mode control of (37)
is guaranteed.

Now, the attention is focused to the rotor speed tracking objective. The sliding
mode-based rotor speed control methodology consists of three steps

Step 1: The rotor speed error is

e2 = x6 − ωre f (44)

where ωre f = 1 p.u. is the desired trajectory. The sliding surface is selected as
follow

S2 = K2e2(t) (45)

where K2 is a positive constant. By using (44) and (18), the derivative of the sliding
surface (45) is calculated as:

d S2

dt
= K2 (a61x6 + a62x8/x6 − a62Te) (46)

The x8 can be viewed as a virtual control in the above equation. To ensure the
Lyapunov stability criteria i.e. d S2

dt S2 ≺ 0 we define the nonlinear control input
x∗

8eq as

x∗
8eq = x6

a62
(a62Te − a61x6) (47)

The nonlinear switching input x∗
8n can be chosen as follows

x∗
8n = −α2

x6

a62
sgn(e2) (48)

where α2 is a positive constant.
Then, the stabilizing function of the mechanical power is obtained as

x∗
8 = x6

a62
(a62Te − a61x6 − α2sgn(e2)) (49)

When a fault occurs, large currents and torques are produced. This electrical per-
turbation may destabilize the operating conditions. Hence, it becomes necessary to
account for these uncertainties by designing a higher performance controller.
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In (49), as electromagnetic load Te is unknown, when fault occurs, it has to be
estimated adaptively. Thus, let us define

x̂∗
8 = x6

a62

(
a62T̂e − a61x6 − α2sgn(e2)

)
(50)

where
∧
Te is the estimated value of the electromagnetic load which should be deter-

mined later. Substituting (50) in (46), the rotor speed sliding surface dynamics
becomes

d S2

dt
= K2

(
−α2sgn(e2) − a62

∼
Te

)
(51)

where
∼
Te = Te − ∧

Te is the estimation error of electromagnetic load.

Step 2: Since the mechanical power x8 is not our control input, the stabilizing error
between x8 and its desired trajectory x∗

8 is defined as

e3 = x∗
8 − x8 (52)

To stabilize the mechanical power x8, the new sliding surface is selected as

S3 = K3e3(t) (53)

where K3 is a positive constant. The derivative of S3 using (52) and (20) is given as

d S3

dt
= K3

(
a81x8 + a82x9 − dx∗

8

dt

)
(54)

By considering the steam valve opening x9 as a second virtual control, the equivalent
control x∗

9eq is obtained as the solution of the equation d S3(t)
dt = 0.

x∗
9eq = 1

a82

(
dx∗

8

dt
− a81x8

)
(55)

As a result, the stabilizing function of the steam valve opening x∗
9 the mechanical

power is computed as

x∗
9 = 1

a82

(
dx∗

8

dt
− a81x8 − α3sgn(e3)

)
(56)

where α3 is a positive constant. Substituting (56) in (54), the steam valve opening
sliding surface dynamics becomes

d S3

dt
= −α3 K3sgn(e3) (57)
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Step 3: Finally, the steam valve opening error is defined as

e4 = x9 − x∗
9 (58)

By defining a sliding surface S4(t) = K4e4(t), the derivative of S4 is calculated
by time-differentiation of (58) and using (21)

d S4

dt
= K4

(
a91x9 + a92x6 + b4ug − dx∗

9

dt

)
(59)

To assure the reaching condition d S4
dt S4 ≺ 0, the equivalent control ugeq(t) is

obtained as

ugeq = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6

)
(60)

Subsequently, the control law is written as

ug = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6 − α4sgn(e4)

)
(61)

Theorem 2 The dynamic sliding mode control laws (43) and (61) with stabilizing
functions (50) and (56) when applied to the single machine infinite power system,
guarantee the asymptotic convergence of the outputs vt and x6 = ω to their desired
values vtre f and ωre f =1, respectively.

Proof Consider the following positive definite Lyapunov function

Vcon = 1

2
S2

1 + 1

2
S2

2 + 1

2
S2

3 + 1

2
S2

4 + 1

2μ

∼
T 2

e (62)

By considering (40), (51), (57) and (59), the derivative of (62) can be derived as
follows:

V̇con = d S1

dt
S1 + d S2

dt
S2 + d S3

dt
S3 + d S4

dt
S4 + ∼

Te
1

μ

d
∼
Te

dt

= K1c17
vd

vt

du f d

dt
+ K1 f (x) + K2

(
−α2sgn(e2) − a62

∼
Te

)
(63)

− α3 K3sgn(e3)+K4

(
a91x9 + a92x6 + b4ug − dx∗

9

dt

)
+ ∼

Te
1

μ

d
∼
Te

dt
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Substituting the control laws (43) and (61) in (63) gives

V̇con = −α1 K 2
1 e1sgn(e1) − α2 K 2

2 e2sgn(e2) − α3 K 2
3 e3sgn(e3)

− α4 K 2
4 e4sgn(e3) − K 2

2 a62
∼
Te e2

∼+Te
1

μ

d
∼
Te

dt
(64)

= −α1 K 2
1 |e1| − α2 K 2

2 |e2| − α3 K 2
3 |e3| − α4 K 2

4 |e4|

+
⎛
⎝ 1

μ

d
∼
Te

dt
− K 2

2 a62e2

⎞
⎠ ∼

Te

By choosing the adaptive law (65), the time derivative of Vcon is strictly negative.

d
∼
Te

dt
= μa62 K 2

2 e2 (65)

Thus

dVcon

dt
= −α1 K 2

1 |e1| − α2 K 2
2 |e2| − α3 K 2

3 |e3| − α4 K 2
4 |e4|

= −
4∑

i=1

αi K 2
i |ei | < 0 (66)

From the above analysis, it is evident that the reaching condition of sliding mode is
guaranteed.

Remark In order to eliminate the chattering, the discontinuous control components
in (43), (50), (56) and (61) can be replaced by a smooth sliding mode component to
yield

du f d

dt
= − vt

c17vd

(
f (x) + α1

S1(t)

|S1(t)| + τ2

)

x∗
8 = x6

a62

(
a62Te − a61x6 − α2

S2(t)

|S2(t)| + τ3

)

x∗
9 = 1

a82

(
dx∗

8

dt
− a81x8 − α3

S3(t)

|S3(t)| + τ4

)

ug = 1

b4

(
dx∗

9

dt
− a91x9 − a92x6 − α4

S4(t)

|S4(t)| + τ5

)

where τi 
 0 is a small constant. This modification creates a small boundary layer
around the switching surface in which the system trajectory remains. Therefore, the
chattering problem can be reduced significantly (Utkin et al. 1999).
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5 Validation and Discussion

To verify the effectiveness of the developed observer based-controller, some simula-
tion works are carried out for the power system under severe disturbance conditions
which cause significant deviation in generator loading. Also, different operating
points load are considered. The performance of the nonlinear controller was tested
on the complete 9th order model of SMIB power system (202 MVA, 13.7 KV), includ-
ing all kinds of nonlinearities such as exciter ceilings, control signal limiters, etc.
and speed regulator. The parameter values used in the simulation are given in the
Tables 1, 2 and 3. The physical limits of the plant are

max
∣∣vfd

∣∣ = 10 p.u., and 0 ≤ Xe(t) ≤ 1

The system configuration is presented as shown in Fig. 7. The proposed sliding mode
observer is implemented based on the scheme shown in Fig. 6.

In order to verify the stability and asymptotic tracking performance of the pro-
posed control system, a symmetrical three-phase short circuit occurs closer to the
generator bus, at t = 10 s and removed by opening the barkers of the faulted line at
t = 10.1 s. The operating points considered are Pm = 0.6 p.u. and Pm = 0.9 p.u. The

Table 1 Parameters of the
transmission line in p.u.

Paramseter Value

Le, inductance of the transmission line 0.4

Re, resistance of the transmission line 0.02

Table 2 Parameters of the
synchronous generator in p.u

Parameter Value

Rs , stator resistance 1.096 10−3

R f d , field resistance 7.42 10−4

Rkd , direct damper winding resistance 13.1 10−3

Rkq , quadrature damper winding resistance 54 10−3

Ld , direct self-inductance 1.700

Lq quadrature self-inductances 1.640

L f d , rotor self inductance 1.650

Lkd , direct damper winding self inductance 1.605

Lkq , quadrature damper winding self 1.526

inductance

Lmd , direct magnetizing inductance 1.550

Lmq , quadrature magnetizing inductance 1.490

V ∝, infinite bus voltage 1

D, damping constant 0

H, inertia constant 2.37 s
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Table 3 Parameters of the
steam turbine and speed
governor

Parameter Value

Tt , time constant of the turbine 0.35 s

Kt , gain of the turbine 1

R regulation constant of the system 0.05

Tg , time constant of the speed governor 0.2 s

Kg , gain of the speed governor 1

Damper Currents
Observer

Sliding mode 
controller

control laws
Eqs  (43) and (61)

 stabilizing functions 
Eqs (50) and (56)

Excitation
System

Steam
Turbine 

ug

Pm

System state variables

ufd

vtref

ref

vt

SG

 Le

Infinite Bus

Re

System state variables

Fig. 7 Control system configuration

simulated results are given in Figs. 8 and 9. It is shown terminal voltage, rotor speed
and rotor angle of the power system, respectively. The results are compared with
those of the linear IEEE type 1 AVR+PSS and speed regulator. It is seen how dynam-
ics of the terminal voltage and rotor speed exhibit large overshoots during post-fault
state with the standard controller than with the nonlinear controller. It is evident that
the proposed combined observer-controller can quickly and accurately converge to
the desired terminal voltage and rotor speed for different operating points.

Robustness of the proposed observer-based controller is evaluated with respect to
the variation of system parameters and error model. The values of the transmission
line (Le, Re) and the inertia constant H increased by +20 and −20 % from their
original values, respectively. In addition to the abrupt and permanent variation of the
power system parameters a three-phase short-circuit is simulated at the terminal of
the generator. Figure 10 shows the performances of the terminal voltage and rotor
speed of the combined observer-controller. It can be seen that the designed control
scheme is not sensitive to the uncertainties of parameters and ensures the global
stability of the system with good performances in transient and steady states.
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Fig. 8 Performance results
of the proposed controller
under large sudden fault for
Pm = 0.6 p.u
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Fig. 9 Performance result of the proposed controller under large sudden fault for Pm = 0.9 p.u
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Fig. 10 Dynamic tracking performance control scheme under parameter perturbations

6 Conclusion

A nonlinear observer-controller has been developed and applied to the single machine
infinite-bus power system. The synchronous generator is based on the complete 7th
order model. The aim is to achieve both transient stability improvement and good
post-fault performance of the generator terminal voltage and frequency.

The sliding mode technique was adopted to construct a nonlinear observer of
damper currents winding. Then nonlinear control laws of terminal voltage and rotor
speed has been provided. Global and exponential stability of both the control laws
and the observer has been proven by applying Lyapunov stability theory.

Test results show the effectiveness of the proposed control strategy in improving
transient stability of system under large disturbances in comparison with conventional
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controllers (IEEE type 1 AVR+PSS). Also, the combined observer-controller is
independent of the operating point and possesses a great robustness to deal with
parameter uncertainties.
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Switching Function Optimization of Sliding
Mode Control to a Photovoltaic
Pumping System

Asma Chihi, Adel Chbeb and Anis Sellami

Abstract The research deals with the performances of an asynchronous motor
coupled to a pump in terms of optimal photovoltaic transfer, using the concept of
variable structure systems by sliding mode. The main advantage is to implement a
robust sliding mode control from a nonlinear system. The contribution of this work
is modeling a new switching surface. The control law is based on adding an integral
term for the considered surface in order to improve the performances of the system.
Moreover, a sliding mode control technique associated with a boost converter is
used to extract the Maximum Power Point Tracking (MPPT). In the first part of this
chapter, a general modeling of the different elements of the photovoltaic pumping
system is presented. In the second part, a methodology of synthetizing sliding mode
control is developed with the choice of a novel switching function. The proposed
control law acts on the duty cycle applied to a boost converter in order to transfer
a maximum power delivered by the photovoltaic generator to the induction motor.
Finally, the validation of the results is carried out with a comparative study to show
the efficiency of the proposed control.
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1 Introduction

The development and exploitation of clean sources of renewable energy becomes
the subject of several studies. Many forms of renewable energy are operated in
the literature such as: solar energy, wind, geothermal and biomass. A large part of
energy from the sun is transmitted by infrared radiation. This energy is exploiting
into electricity. That defined the photovoltaic effect.

The photovoltaic system is the most efficient source and well accepts renewable
energy sources because of their suitability in distributed generation, transportation
and satellite systems. Therefore, the major drawback of the PV system is the nonlin-
earity between the output voltage and current particularly shorted conditions. During
this latter, the curve power voltage (P-V) has multiple peaks and admits a unique
Maximum Power Point (MPP), which depends on irradiance and temperature con-
ditions. When these items are changed, the operating point will change. Such, to
overcome this problem, several researchers have investigated different methods for
extracting the maximum power such as: Perturb & Observer, incremental conduc-
tance and Hill Climbing. So, a comparison of these techniques can result important
information for the design of these types of systems.

The association in series or parallel connection of several photovoltaic cells helps
to adapt the production of this energy at the demand of user. These associations
provide a photovoltaic generator having a specific characteristic current – voltage
(I-V), admits nonlinear models and represents a Maximum Power Point (MPP). This
technique depends mainly on the irradiance level, cell temperature and the aging
of the ensemble. The intersection of the electrical characteristic of the photovoltaic
generator and the load provides the operating point of the system.

Recently, the use of the induction motor in many industrial applications has
increases. This becomes that the induction motor has relatively low cost, reliable
and rugged. But, controlling the induction motor is not a trivial task because it
admits a nonlinear model and its physical parameters are most imprecisely known.
Therefore, this problem opens the door of several studies in order to provide a robust
control against parametric variations and uncertainties. Moreover, the indirect field
oriented control by sliding mode presents satisfactory performances in presence of
these internal disturbances. Many approaches consist to exploit the nonlinear con-
trol which admits robustness proprieties, such as: Sliding Mode Control (SMC), and
Fuzzy Logic Control (FLC). The SMC theory is a best method which accomplished
in practice.

Nowadays, the increasing need to use a photovoltaic system is more and more
important in several applications such as photovoltaic system, water desalination.
These items require a control law which has an important role for realization of such
systems (Dal 2005; Moallem et al. 2001; Sabanovic and Izosimov 1993; Rao et al.
2008).

Therefore, in the practical control system, there is a difference between the
mathematical and the real model. This difference comes from external disturbances
and parametric variations. Therefore, it must be designed to maintain the desired



Switching Function Optimization of Sliding Mode Control … 465

performance in the closed loop with presence of these disturbances. The concept
of sliding mode is one of the best solutions for this problem (Soltanpour and Fateh
2009). The main advantage of this kind of control is the robustness through para-
metric variations and convergence in a finite time. In this work, we applied a sliding
mode control to a photovoltaic pumping system. So, two controls are developed;
the first one is about controlling the boost converter via the Maximum Power Point
Tracking (MPPT) with acting on the duty cycle, and the second one about controlling
the induction motor by applying an indirect field oriented control based on sliding
mode in order to obtain a constant speed and torque, respectively flow and pressure.

This chapter is organized as follows: Sect. 2 developed the problem formulation
given in this type of systemwhich required to a relatedwork for putting the considered
work in its context, Sect. 3 presents an overview of the photovoltaic pumping system
which we talk about the different elements of the proposed system. The design of
sliding mode control is describes in Sect. 4. The simulation results are interpreted
and discussed in Sect. 5 to validate the best control method. Different techniques are
compared and explained in Sect. 6. Finally, Sect. 7 includes the concluding remarks.

2 Problem Formulation

The most important advantage of the photovoltaic system is the production of
electricity without harmful effects on the environment during all the exploitation
period. So, the photovoltaic system is attached to natural parameter like solar irradi-
ance and temperature which are varying randomly each instant.

Inmany studies, based approaches such as: (P&Oalgorithm, Inc.Cond. algorithm)
are used to extract the Maximum Power Point (MPP) of the photovoltaic system
(Aureliano et al. 2013). In order to find the maximum power to the load, an algorithm
based on sliding mode control proposed by Bianconi et al. (2013), (Montoya et al.,
2013), Mamarelis et al. (2014), Haroun et al. (2014) are developed. This technique
has robustness against parametric variations and uncertainties.

Also, several researcher used the sliding mode to control the induction motor
for different applications such as: pumping system (Mapurunga et al. 2014; Gian-
noursos and Manias 2014), irrigation (Melton et al. 2012), grid connected system
(Yang et al. 2013; Mohan et al. 2013).

Moreover, our objective is to demonstrate that the sliding mode control applied
to a moto-pump, admit a switching function that is presented with the difference
between the selected variable and its reference. This control provides a satisfactory
results that are reported by Haroun et al. (2014) as well as Mamarelis et al. 2014.
But, each control must give some criteria to discuss its performances like robustness
and accuracy. The items presented a dilemma. There is a robust system and also an
accuracy system. The combination of both provides the desired solution. The novel
technique is proposed using a modified sliding surface that is to add an integral
error into the considered switching function, in order to achieve the solution for this
dilemma.
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Fig. 1 Synoptic diagram of photovoltaic pumping system

3 Overview of the Photovoltaic Pumping System

We consider a nonlinear system shown in Fig. 1. It composed, like any system, of
power part and control part. The power side system is the association, in a series; of
the photovoltaic (PV) panel with a three phase asynchronous Moto-pump, through
a boost converter and a three level AC inverter.

The regulation strategy is based on Sliding Mode Control (SMC). The PV is
controlled via Maximum Power Point Tracking (MPPT) to extract the Maximum
Power Point (MPP) with acting on the duty cycle α.The Moto-pump is controlled
with Indirect Field Oriented Control (IFOC) by Sliding Mode (SM) techniques in
order to extract the pressure and flow that correspond respectively to the torque
and speed.

The general proposed scheme is as shown in Fig. 1.

3.1 Induction Motor—Pump Group

The pumps are an essential element in industrial and agricultural applications, such as
oil sector, irrigation, water treatment. They are used for fluid transportation whether
hot or cold, clean or dirty.

Various types of pumps are available in the market, such as volumetric pumps and
centrifugal pumps, of surface or submerged.

The principal parameters characterized the pump are:

• The flow (Q), which presented by the following equation:

Q = q

ρ
(1)
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Fig. 2 Curves of pressure as a function of flow for different speed

where:
ρ = the volumetric mass.

• The Head (H) can be written by the representative equation:

H = P(bar) ∗ 10.2

d
with d = ρ

1,000
(2)

where
d = the volumetric density.

• The efficiency (η), it provides by the following equation:

η = use f ulpower

powerconsumption
= Q Hρg

P
(3)

where
g = gravity.
This work will focus on the use of a centrifugal pump which consists of a turbine

disposed in a body system, which receives the fluid horizontally to drive it back, in
the direction perpendicular to the inlet water.

The centrifugal pump have the following advantages: A good performance com-
pared to the volumetric pump, easy maintenance due to its simple construction and
small bulk.

A pump is characterized by a pressure corresponding to a flow which is bound by
Fig. 2.

Similitude equations (4) can help in determining the pressure and flow in a
different operating point.
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⎧⎪⎪⎨
⎪⎪⎩

QvN ′ = QvN ∗ N ′
N

HtN ′ = HtN ∗ ( N ′
N

)2
PN ′ = PN ∗ ( N ′

N

)3 (4)

The centrifugal pump is driven by an electric motor which has diversified choice.
The latter is limited in four machine types namely direct current machine, asynchro-
nous machine, synchronous machine and step by step machine.

The asynchronous machine is the most commonly used in all applications of
pumping, because it has the following advantages: better performance, simple main-
tenance compared to direct current machine and admits a lower cost.

Themodel of the asynchronousmachine is shown by differential equations admit-
ting a constant coefficient varying versus time.

To manipulate this machine, it is supposed to make a transformation of these
equations in (a-b-c)–(d-q) frame. Park transformation is used in order to facilitate
the manipulation of this machine.

3.2 The Inverters

An inverter is a Direct Current (DC) to Alternative Current (AC) converter. It is
possible to impose across an alternative three phase load a voltage via a logic control.

Themodulation technique is based on sinusoidal PulseWidthModulation (PWM)
with carriers.

The main principle of this technique is comparing a sinusoidal signal with trian-
gular signal having the same magnitude and frequency.

The switches of each arm are controlled in a complementary way in order to
prevent a short circuit in the input voltage E. The topology schema of the inverter is
presented by Fig. 3.

In the studied system, the full-wave control is used; the operation of the switches
is as follows:
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Fig. 3 Inverter DC–AC
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• K1 led for t = 0; K1′ led for t = π ,
• K2 led for t = 2π

3 ; K2′ led for t = 2π
3 + π ,

• K3 led f or t = 4π
3 ; K3′led for t = 4π

3 + π .

The Three output phase voltages can be written as shown in Eq. (5).

⎧⎨
⎩

VAN = VAO − VN O

VB N = VBO − VN O

VC N = VC O − VN O

(5)

where:
VAN , VB N and VC N are respectively the phase voltages in the first, second and

third arm.
The three line to line output voltages can be expressed by:

⎧⎨
⎩

UAB = UAO − UBO

UBC = UBO − UC O

UAC = UAO − UC O

(6)

The three output phase voltages VAN , VB N and VC N constitute a balanced three
phase system.

The representative equation is expressed as follows:

VAN + VB N + VC N = 0 (7)

Also:
VAO + VBO + VC O − 3VN O = 0 (8)

The following equation relative to the output phase voltage can be obtained:

VAN = VAO − 1

3
(VAO + VBO + VC O) (9)

Thus, the three phase voltage is effectively relaxed to:

⎧⎪⎪⎨
⎪⎪⎩

VAN = 2
3VAO − 1

3VBO − 1
3VC O

VB N = − 1
3VAO + 2

3VBO − 1
3VC O

VC N = − 1
3VAO − 1

3VBO + 2
3VC O

(10)

The state of switches assumed perfect can be defined by three Boolean quantities
K i = (1, 2, 3).

K i = 1, where the switch in the top is closed and to bottom is open.
K i = 0, where the switch in the top is open and to bottom is closed.
Under these conditions, we can write voltagesVAO , VBO and VC O according to

control signals Ki, we get:
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VAO = K1E − E
2

VBO = K2E − E
2

VC O = K3E − E
2

(11)

So, we can establish the instant equation for the output phase voltage:

⎛
⎝ VAN

VB N

VC N

⎞
⎠ = E

3

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠

⎛
⎝ K1

K2
K3

⎞
⎠ (12)

3.3 Association Inverter—Induction Motor

The purpose of associating an inverter with induction motor is the control of the
torque, speed, pressure and flow respectively.

Among the techniques used to control, field oriented vector control is presented
in Fig. 4. This method is based on modeling the machine in the (d-q) stationary
reference frame. That is to say φrd = φr and φrq = 0.

The mathematical model chosen to modeling the induction motor is relative to
rotor flux—stator current. The state space of the induction motor is defined by rela-
tion (13).
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Fig. 4 Representative schema of indirect field oriented control
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disd

dt
= −

(
1

στs
+ 1 − σ

στr

)
isd + 1 − σ

σ Msr τr
φrd + 1 − σ

σ Msr
φrqw + 1

σ Ls
Vsd

disq

dt
= −wdq isd −

(
1

στs
+ 1 − σ

στr

)
isq − 1 − σ

σ Msr
wφrd + 1 − σ

σ Msr τr
φrq + 1

σ Ls
Vsq

dφrd

dt
= Msr

τr
isd − 1

τr
φrd − wφrq

dφrq

dt
= Msr

τr
iqs + wφdr − 1

τr
φqr

dw

dt
= 3

2
np2

j

Msr

Lr
(φrd isq − φrq isd ) − np

j
(Cr − C f )

(13)
where:

I ds,I qs : d-, q-axis stator current components,
φdr , φqr : d-, q-axis rotor flux components,

wsl : slip angular speed (wdq-wr),
wdq : synchronous angular speed,

Rr ,Rs : rotor and stator resistances,
Msr : cyclic mutual inductance stator-rotor,

Lr ,Ls : rotor and stator self-inductions,
τs, τr : stator and rotor time constant,

s : leakage coefficient,
np : pole-pair number,

j : inertia,
C f : friction torque,
Cr : load torque,

t : Continuous time.

3.4 Photovoltaic System

The functioning of photovoltaic cells is characterized by the photons which absorb
solar radiation and convert it into electricity.

The photovoltaic cells are constituted by semiconductor material. The technolo-
gies developed to this day are monocrystalline silicon, polycrystalline and silicon
thin layer. These are developed to produce PV cells whose performance and lifetime
are different.

• Characteristics of PV Cell

The diagram of the PV cell is presented by a current source in parallel with a
diode. A shunt (Rsh) and a series resistance (Rs) are added to the model.
Rs is the intrinsic series resistance; its value is very small.
RSh is the equivalent shunt resistance which has a very high value, Fig. 5.
We require Kirchhoff’s laws, the expression of the current in the PV cell is written

as it’s shown in relation (14).
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phI dV pV chRshR
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Fig. 5 PV cell schema

Ip = Iph − Iss

(
e

(
Vp + I p Rs

VT

)
− 1

)
−

(
Vp + Ip Rs

Rsh

)
(14)

where:

Iph : Insolation current,
Ip : cell current,
Iss : reverse saturation current,
Vp : cell voltage,
Rs : series resistance,

Rsh : parallel resistance,
VT : Terminal voltage.

VT = K T

q
(15)

where:

K : Bolzman constant,
T : temperature in Kelvin,
q : Charge of electron.

The power available at the terminals of “a cell” is very low. In this case, it’s necessary
to combine in series (Ns) or in parallel (Np) cells for power modules compatible with
the electrical equipment to be used.

Adding the Nsand Np in Eq. (14), the expression of the current is defined by
relation (16).

Ip = Np

[
Iph − Is

(
e

(
1

VT

(
Vp
Ns

+ Rs I p
N p

))
− 1

)]
− NpVp

Ns Rsh
− Rs Ip

Rsh
(16)

The photovoltaic generator is a (series/parallel) combination of PV cells, which
leads to increasing power and performance according to the user request. The series
combination has the role of increasing voltage and parallel combination has the role
of increasing the current as shown in Fig. 6.
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Cell
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Fig. 6 PV Fields: assembling of cell and module

Fig. 7 Influence of the irradiance in the the PV cell, temperature 25 ◦C

The interconnection of photovoltaic cells defines a PV module and the intercon-
nection of several modules led to a PV array.

The PV system can be used in two ways: Either with storage energy (electricity
uses during the night and this makes it through batteries accumulation), or without
storage, such as the PV pumping.

• Effect of irradiance and temperature

The temperature and the irradiance are two important parameters behavior of the
PV cells, Fig. 7.

Figure 7 allows concluding that, for a fixed temperature equal to 25 ◦C (standard
test condition), each change of illumination causes a change in the Maximum Power
Point (MPP). And for fixing the solar irradiance in the 1kW/m2 that is the value of
standard test, we conclude also that the variation of temperature leads to change the
(MPP), Fig. 8.
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Fig. 8 Influence of the temperaturein the the PV cell, irradiance 1,000W/m2

Table 1 Parameters of the
photovoltaic module

Electrical specification Value

Power (W at test ± 10%) 60W

Maximum power current Imp 3,55A

Maximum power voltage Vmp 16,9V

Short circuit current Isc 3,85 A

Open circuit voltage Vsc 21V

Number of serial cells 36

The model of the photovoltaic generator (PVG) used in this application is brand
ATERA A-GO. The electrical parameters of the generator in the Standard Test Con-
dition (STC) (1kW/m2 and 25 ◦C) are given by Table 1.

For the energy demands of the load, the power supplied with a single module is
not enough. For this reason, we used a PV generator constant of 4 modules in series,
so the maximum power supplied by the PVG is about 240W.

3.5 DC–DC Converter

DC-DC converter is used to convert an unregulated DC voltage to a regulated DC
output voltage.

The switching device used in this converter is usually IGBT, MOSFET. The
switching loss increases with the switching frequency. So, the efficiency decreases.

The control voltage is obtained by comparing the representative output voltage
with its reference value. The Pulse Width Modulation control signal is compared
with a saw tooth voltage.
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Generally, for this kind of system, there are three structures for switching
controllers namely boost converter, buck converter and buck-boost converter
(Nema et al. 2011).

The choice of the DC converter depends essentially on the characteristics of the
load exactly for the motor and the pump employed.

At startup, the induction motor uses a high current, on the order of 6 to 8 times
the nominal RMS current.

In the case of the pumping over sun, the system has a discontinuity and a variation
of the illumination during the day. So, it is impossible to pump below a certain level
of illumination. Thus, there is a loss of energy at the beginning and the end of the
day with the risk of umbrage and interruption operation during the day.

In order to improve the performance of a photovoltaic pumping system, it is
necessary to use the maximum power of the PV panels.

The optimization technique is the search of Maximum Power Point Tracking
(MPPT). This technique is achievedby increasing aDC/DCconverter between thePV
panels and load. The principle is to vary the voltage in order to obtain the maximum
power (Byung-Duk et al. 2008; Jong-Pil et al. 2010).

• Boost Converter

Aboost converter produces a higher output voltage than the DC input voltage. The
studied system admits an output voltage 200V and input voltage 68V. This verifies
the use of the boost converter.

The circuit diagram of the boost converter is displayed in Fig. 9.
The output voltage is related to the input voltage by the following equation:

Vs = 1

1 − α
Ve (17)

where:
α = duty cycle.

• Inductor and Capacitor Design

In The first part of the operating cycle [0; αT], the controlled switch is closed,
hence we have:

sV

L

LV

eV

dV

C chR

Fig. 9 Boost converter schema
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Ve = Vs (18)

where:

Ve : Input voltage of the boost converter.
Vs : output voltage of the boost converter.

The voltage across the inductor VL can be written as:

VL = L
d IL

dt
= L

	IL

	t
(19)

where:

IL : Input current in the inductor.
	IL : Variation of the input current in the inductor.

The duty cycle can be expressed by:

α = Vs − Ve

Vs
(20)

The interval which limits the duty cycle α is:

αmax = Vsmax − Vemin

Vsmax
= 210 − 67.6

210
= 0.678 (21)

And

αmin = Vsmin − Vemax

Vsmin
= 190 − 80

190
= 0.578 (22)

The maximum current in the inductor can be expressed as follows:

ILmax = Pemax

Vemin
= 850

67.6
= 12.57A (23)

We assume a 10% ripple of the maximum current in the inductor, then:

	IL = 0.1 ∗ 12.57 = 1.257A (24)

The maximum current in the inductor is summarized as follows:

ILmax = Pemax

Vemin
(25)

where:
Pemax = the maximum power in the input of the boost converter.
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The inductor value is given as:

Lmax = αmaxVemax

f 	IL
= 0.678 ∗ 80

16 ∗ 103 ∗ 1.257
= 2.7mH (26)

with:
f = the switching frequency of the boost converter.
It is also assumed that the ripple of the capacitor voltage is equal to 5% of the

ripple output voltage:

	Vs = 0.05 Vsmax = 0.05 ∗ 210 = 10.5V (27)

The maximum current is expressed as follows:

Ismax = Psmax

Vsmin
= 850

190
= 4.47A (28)

The capacitor value is defined by:

Cmax = αmax Ismax

f 	Vs
= 0.678 ∗ 4.47

16 ∗ 103 ∗ 10.5
= 18μF (29)

where:

Is = the output current of the boost converter.
	Vs = The ripple output voltage.

For sizing the input capacitor Ce which defined the continuous bus, we established
the following equation:

Ce = αmax

8 ∗ Lmax ∗ f ∧ 2 ∗ 0.02 ∗ Vpv

= 0, 678

8 ∗ 2.7 ∗ 10−3 ∗ (16 ∗ 103)2 ∗ 0.02 ∗ 80
= 0.1μF (30)

3.6 Main Concept of the Sliding Mode Control

The sliding mode is a novel technique for modeling control. It is characterized by its
robustness and it admits a convergence in a finite time.

The major problem of sliding mode is to design a control low in closed loop that
drives asymptotically themass to the origin. In other terms, the representative control
is supposed to lead the state variable to zero.

The variable structure control is a system with variable structure according to the
variation of the control. Moreover, such a system may have novel proprieties that do
not exist in each structure (Sabanovic, 2011).
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The main principle of variable structure control is to lead the state trajectory to
a surface, called Sliding Surface, and to force them to stay in the vicinity of this
surface.

The slidingmode control is a control lawwhich is adapted to the variable structure
systems. Indeed, to synthesize a control lawby slidingmode, thefirst step is the choice
of the sliding surface that converge the state trajectory of the system to the desired
balanced point. In a second step, the establishment of the matching conditions of
sliding mode which is connected to convergence of state trajectory of the balanced
point. In the final step, we determine the control law, which represents the role
allowing maintaining the attractiveness of the sliding mode.

• Sliding Surface design

The sliding surface represents the desired dynamic behavior. The state trajectory
of the system should reach this surface. There aren’t any specific criteria for choosing
the sliding surface.

• Matching condition

The matching conditions of sliding mode are criteria that allow the dynamic
of a studied system to convert to the sliding surface and stay there regardless of
disturbances. These conditions can be defined by direct switching function or by the
stability function of Lyapunov.

The Lyapunov function technique is chosen positive and decreasing to force the
trajectory of the system to move towards the sliding surface. Therefore, the idea is
to choose a scalar function s(x) which ensures the attraction of the variable x into a
reference value. This is assured by a control function V, Eq. (31).

V (x) = 1

2
s2(x) (31)

With V̇ (x) is given by Eq. (32).

V̇ (x) = s(x) · ṡ(x) (32)

• Control law strategy

The chosen surface is stable and converge the output to the desired output yd(t)
which assures the convergence of the sliding mode. Then, we determine the control
that will force the state system to reach the balanced point that reflects the existing
condition s of sliding mode.

The control low U is composed by two components:

• Ueq : The equivalent control is used to maintain the state on the sliding surface
s(x) = 0.

• Unl : The non linear controller, it is the stabilizing control.
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The global control U takes the final form (33).

U = Ueq + Unl (33)

3.7 Association PV—Boost Converter

The techniqueof extracting theMaximumPowerPointTracking (MPPT) is employed
to a boost converter via duty cycle.Manymethods have been used to obtain theMPPT
such as P&O method and incremental conductance method. But, the output energy
of the PV panels change frequently by the environmental change that is temperature
(Ghazanfari and Farsangi 2012). For this reason, the employment of adequate control
which is robust in the presence of parameter variation and disturbance, especially
for a non-linear system, may improve the system performance, Fig. 10.

The principal schema of the boost converter is presented by the Fig. 11.
It is important to make a mathematical model of the association PV—boost con-

verter. Therefore, Kirchhoff’s laws are used, (34) and (35).

Ip = Il + Ic (34)

PVG

DC

DC
Load

MPPT SM

α

,p pI V

eC

Fig. 10 Principal schema of MPPT control

PVG

DC

DC
eC

L

pV

ehI

cI
pI sI

C busV

Fig. 11 Boost converter schema
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So:
Ic = Ip − Ic (35)

The input output current applied to the boost converter are given by the relation (36).

IL = 1

1 − α
is (36)

The value of the current across capacity Ce is expressed as follows:

Ic = Ce
dV p

dt
(37)

Or, the expression of the output current of the PV panels is defined by:

Ip = Iph − Iss

(
e

(
V p
VT

)
− 1

)
(38)

From Eqs. (36), (37) and (38), the derivative voltage Vp is summarized as follows:

dVp

dt
= 1

Ce
(Iph − Iss

(
e

(
Vp
VT

)
− 1

)
− 1

Ce

(
1

1 − α

)
is (39)

So, Eq. (38) is written in the following form:

Ẋ = A(x, t) + B(x, t) (40)

where:

X = Vp (41)

The switching function is presented by:

sv = c1εv + c5

∫
εvdt where εv = Vp − Vpre f (42)

The derivative of the Eq. (42) is:

ṡv = c1ε̇v + c5εv (43)

The equivalent component Ueq is determined while putting the Eq. (39) to zero,
where:

u = 1

1 − α
(44)
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The nonlinear component is presented by:

Unl = −kvsign(sv) (45)

Forminimizing the chattering given to the system,we replace theSignumfunction by:

Unl = −kv |sv|β sign(sv) where 0 < β < 1 (46)

The global control law can be written as:

u(t) = 1

is
(Iph − Iss

(
e

(
V p
VT

)
− 1

)
− kv |sv|β sign(sv) (47)

4 Sliding Mode Control (SMC)

As mentioned in Paragraph 2.7, the concept of sliding mode control can be summa-
rized in three steps: beginning by the choice of a sliding surface, reaching conditions
and determination of control law (Utkin 1993; Lee et al. 1994; Fnaiech et al. 2006;
Ahmed et al. 2010; Gao and Hung 1993 and Ellouze et al. 2010).

4.1 Sliding Surface Design

Generally, several researchers have used the sliding surfaces which are defined as
(Chihi et al. 2012; Msaddek et al. 2013) :

⎧⎪⎪⎨
⎪⎪⎩

sv = c1εv with εv = V ∗
p − Vp

sw = c2εw with εw = w∗ − w

sd = c3εd with εd = I∗sd − Isd

sq = c4εq with εq = I∗sq − Isq

(48)

However, due to the complexity of the real system, we ameliorate the dynamic of
the switching function by adding an integral term in order to obtain a faster response
time and zero steady-state error. The new proposed sliding surfaces are presented as
follows: ⎧⎪⎪⎨

⎪⎪⎩

sv = c1εv + c5
∫

εvdt
sw = c2εw + c6

∫
εwdt

sd = c3εd + c7
∫

εddt
sq = c4εq + c8

∫
εqdt

(49)

where: c1, c2, c3, c4, c5, c6, c7, c8 : proportional gains.
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4.2 Determination of Control Design

The control law design of the photovoltaic system is constituted by four control loops
relative to the four selected switching functions.

4.2.1 MPPT Control

The switching function is presented by Eq. (50):

sv = c1εv + c5

∫
εvdt (50)

The derivative of Eq. (50) is defined by:

ṡv = c1ε̇v + c5εv (51)

We recall that the fundamental equation relative to the association of the photovoltaic
is as follows:

V̇p = Iph

Ce
− Iss

Ce
(e

Vp
Vt − 1) + 1

Ce(1 − β)
Is (52)

With
Vp: Output voltage of the PV cell,
Iph : photo current of the PV cell,
Iss : saturation current of the diode,
Vt : thermodynamic potential of PV cell,
β: Duty cycle.
The control law is determined by:

V ∗
p = 1

Is
(Iph − Iss(e

Vp
Vt − 1)) − kv |sv|α sign(sv) wi th 0 < α < 1 (53)

4.2.2 Speed Controller

The representative switching function is expressed as follows:

sω = c2εω + c6

∫
εωdt (54)

The time derivative of Eq. (54) is given as:

ṡω = c2ε̇ω + c6εω (55)
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The mechanical equation is defined by:

j
dw

dt
+ frw = np(Cem − Cr ) (56)

The famous equation for the electromagnetic torque is given by:

Cem = 3

2

Msr np

Lr
(φrd isq − φrq isd) (57)

where the control law is C ∗
em :

C ∗
em = Cem_eq + Cem_nl (58)

During the sliding mode, we have: sw = ṡw = 0.
The global control functions as follows:

C ∗
em = J

np
(ẇ∗ + f

J
w + c6

c2
εw) − kw |sw|α sign(sw) with 0 < α < 1 (59)

where:

kw : Proportional gain of the nonlinear control relative to the speed controller,
Sign (.) : Signum function.

4.2.3 Direct Stator Current Controller

The switching function relative to the direct stator current controller is defined as:

sd = c3εd + c7

∫
εddt (60)

The time derivative of the switching function in Eq. (60) is:

ṡd = c3ε̇d + c7εd (61)

Let us use the time derivative of the direct stator current controller which is presented
in the system Eq. (13).
The direct stator voltage is the difference between the direct voltage and the d-back
electromotive force (EMF).

Vsd = Vd − Ed (62)

where:

Vd = σ Ls(p + (
1

στs
+ 1 − σ

τrσ
))isd (63)
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And

Ed = σ Ls(wdq isq + (
1 − σ

σ Msrτr
)φr ) (64)

The control law V ∗
d is given by:

V ∗
d = Vd_eq + Vd_nl (65)

From Eqs. (62)–(65), we get:

V ∗
d = σ Ls( İ ∗

sd + (
1

στs
+ (1 − σ)

στr
)isd + c7

c3
εd)

− kd |sd |α sign(sd) with 0 < α < 1 (66)

where:
kd : Proportional gain of the nonlinear control relative to the speed controller.

4.2.4 Quadratic Stator Current Controller

The representative equation defining the switching function relative to the quadratic
stator current is given by:

sq = c4εq + c8

∫
εqdt (67)

We consider the time derivative of Eq. (67) is portrayed as:

ṡq = c4ε̇q + c8εq (68)

Referring to the system Eq. (13), when we use the time derivative of the quadratic
stator current, we obtain:

Vsq = Vq − Eq (69)

where
Eq represents the q—back electromotive force (EMF).
The quadratic voltage can be determined by:

Vq = σ Ls(p + (
1

στs
+ 1 − σ

τrσ
))isq (70)

The q-back EMF is defined by:

Eq = −σ Ls(wdq isd + (
1 − σ

σ Msr
)wslφr ) (71)
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The control law V ∗
q is presents by:

V ∗
q = Vq_eq + Vq_nl (72)

During the sliding mode:
sq = ṡq = 0 (73)

The global control law is summarized as follows:

V ∗
q = σ Ls( İ ∗

sq + (
1

στs
+ (1 − σ)

στr
)isq + c8

c4
εd)

− kq
∣∣sq

∣∣α sign(sq) wi th 0 < α < 1 (74)

where:
kq : Proportional gain of the nonlinear control relative to the speed controller.

4.3 Matching Condition

The existant condition of sliding mode advert that both s and ṡ will tend to zero
when t tend to infinity, Let us consider the Lyapunov function candidate presented
by Eqs. (31) and (32).

4.3.1 MPPT Controller

The time derivative of the sliding surface related to the MPPT controller is:

ṡv = c1(v̇p
∗ − v̇p) + c5(v

∗
p − vp) (75)

We note by:

ṡv = c1

[
Iph

Ce
− Iss

Ce
(e

x1
VT − 1) − is

Ce
u + c5εv

]
(76)

Also,

ṡv = c1

[
Iph

Ce
− Iss

Ce
(e

x1
VT − 1) − is

Ce
(ueq + unl) + c5εv

]
(77)

To change the equivalent control by his expression, the time derivative of the surface
is taken as:

ṡv = −c1
is

Ce
Kv |sv|α (78)
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We satisfy the Lyapunov conditions, we obtain:

s.ṡv = −c1
is

Ce
kv |sv|α+1 (79)

We request the inequality s.ṡv < 0, we get:

− c1
is

Ce
kv |sv|α+1 < 0 (80)

The inequality (80) means that in order to obtain a robust and stable control, the
gains of the sliding mode controller can be chosen positive kv > 0 .

4.3.2 Speed Controller

The time derivative of the switching function is as follows:

ṡw = c2ε̇w + c6εw (81)

From the mechanical Eq. (81), we present:

ṡ = c2ẇ
∗ − c2

[
j

np
Cem − f

j
w

]
+ c6εw (82)

We use the Lyapunov function, we obtain:

sw.ṡw = sw(−c2npkw

j
|sw|α sign(sw)) < 0 (83)

Thus, we get:

|s|α+1 > 0 => kw >
j

c2np
(84)

4.3.3 Direct Stator Current Controller

The representative time derivative of the switching surface sd is:

ṡd = c3( İ ∗
sd − İsd) + c7εd (85)

We replace the equation which presented the direct stator current in the Eq. (13), we
obtain:

ṡd = c3 İ ∗
sd − c3

[
−( 1

στs
+ 1−σ

στr
)Isd + wdq Isq + 1−σ

σ Msr τr
φr

+ 1
σ Ls

(Vd − Ed)

]
+ c7εd (86)
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We satisfy the Lyapunov condition, we have:

sd .ṡd = −c3kd

σ Ls
|sd |α+1 < 0 (87)

Therefore, we get:

|sd |α+1 > 0, kd >
σ Ls

c3
(88)

4.3.4 Quadratic Stator Current Controller

The time derivative of sq is as follows:

ṡq = c4( İ ∗
sq − İsq) + c8εq (89)

Wemake the time derivative of quadratic stator current in the Eq. (13) to the Eq. (89),
we obtain:

ṡq = c4 İ ∗
sq − c4

[
−wdq isd − ( 1

στs
+ 1−σ

στr
)isq − 1−σ

σ Msr
wφrd

+ 1−σ
σ Msr τr

φrq + 1
σ Ls

(Vq − Eq)

]
+ c8εd (90)

Applying the Lyapunov condition, we get:

sq .ṡq = −c4kq

σ Ls

∣∣sq
∣∣α+1

< 0 (91)

The condition where the stability of the control strategy is presented, is expressed as:

∣∣sq
∣∣α+1

> 0, kq >
σ Ls

c4
(92)

5 Results and Discussion

In this section, we are going to examine the performance of the proposed control
developed above.

The three phase inductionmotormachine under test is characterized by: 85/140V,
3.5/6A, f = 50Hz, Rs =3.45, Rr =2.95, Ls = 0.1442H, Lr = 0.1442H,
M sr = 0.1342H, j = 0.01Kgm2, np = 2. The coefficients kv , kw, kd and kq involved
in the control law, are tuned to values: kv = 1000, kw = 2000, kd = 3000 and
kq = 3000. These gains have been adjusted until the obtain of the validate results.

The result simulation of the proposed switching functions related to themaximum
power point tracking controller, speed controller, direct stator current controller and
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quadratic stator current controller are shown in Fig. 12. The representative charac-
teristics of the sliding surfaces starts with a zero load torque and after that with 2Nm
from the instant 1s with a nominal speed equal to 157 rad/s and reference flux equal
to 0.8Wb. The sliding surfaces kept to zero, which verified the criteria of the sliding
mode.

The electromagnetic torque admits a sinusoidal curve in the transitory regime
and presents a peak startup 9.2Nm in the instant 0.2 s. After that, it stabilized in
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zero. When we insert the load torque 2Nm, the settling time is 0.23 and the torque
stabilized with the magnitude of 10Nm in the reference value.

The three phase current ia, ib and ic admits a sinusoidal forms, it provides the
same magnitude 5A and when we insert the load torque the magnitude increases at
5.5A, Fig. 14.

6 Comparative Study

The system model still relies on a number of approximations by neglecting some
phenomena such as: the dynamic high frequency. Sometimes, we are forced to work
on the dynamics of the system as it is. For this reason, it is important to know the
reliability of some control and the degree of confidence that we can fix.

While sometimes some systems require robustness and other systems require
precision. The dilemma between robustness and precision is still a research topic.
The proposed control combines the advantages of both.

6.1 Accuracy

In this section, a comparative study between different regulators, such as conven-
tional Proportional Integral (PI), Proportional SlidingMode (PSM) and Proportional
Integral Sliding Mode (PISM), is presented in order to test the system accuracy.
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Fig. 15 Representative error of the torque with different methods

In this context, it is necessary to calculate the error applied to the torque. This
error is the difference between the representative torque and its reference. We can
conclude that the respective error with PSM is more elevated than the conventional
PI and PISM, Fig. 15.

Table 2 compare our results with those obtained with different techniques, such
as: conventional PI, PSM and PISM. The best results are provided with PISM. We
interpreted that the addition of the integral action given to the switching function
ameliorates the precision of the system.

6.2 Robustness

For any kind of control, it is necessary to test the robustness. In the case of induction
motor, the robustness test is to vary some parameters of asynchronous machine
(variation of resistances and inductances).

Generally, this variation is equal to ±50% , relative to the rotor resistance and
stator resistance, +20% relative to the rotor inductance and stator inductance and
+20% in the case of the cyclic mutual inductance.

Table 2 Comparison results
for precision test with
different techniques

Conventional PI PSM PISM

Steady state error 0.020 0.025 0.010

Settling time 0.450 0.350 0.210
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Figure 16 presents the rotor inductance variation with +20% its nominal value;
we remark that the response becomes oscillatory; also the peak startup increases
36Nm. We concluded that the response with conventional PI is changed. However,
with sliding mode has not changed. This verified the robustness provided by the
proposed control.

7 Conclusion

The work presented in this chapter is about the photovoltaic pumping system which
specifies the strategy of slidingmode control. This study addressed the problem raised
by the design of the photovoltaic pumping system. This later requires a precision in
the representative parameters such asflowandpressure respectively torque and speed,
because of each instant it must know the desired flow and pressure to want pumping.

For that, it must design some control which approved these criteria to the consid-
ered system. The sliding mode control gives best performances. We are developed a
novel control based for the choice of the switching function which is ameliorate by
the adding of an integral error. It’s for this objective the chapter is designed. In fact,
we presented an overview of the pumping system which we detail the constitution
of different elements of the system. Then, an indirect field oriented control based on
sliding mode is presented in order to control the asynchronous motor. This structure
synthetize a three control loops related to a speed controller, direct stator controller
and quadratic stator controller. Yet, the robustness and accuracy are demonstrated by
simulation results. Thus, the proposedmethod presents satisfactory results compared
with the techniques reported in the literature.
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Contribution to Study Performance
of the Induction Motor by Sliding Mode
Control and Field Oriented Control

Oukaci Assia, Toufouti Riad and Dib Djalel

Abstract The induction motor squirrel cage that is deemed by its strength, high
torque mass, robustness, and its relatively low cost ... etc., meanwhile, it benefited
from the support of industry since its invention (invention by Tesla the late nineteenth
century). Unfortunately, these advantages are accompanied by a high complexity of
the physical interactions between the stator and the rotor. Therefore, dynamic control
requires complex control algorithms in contrast to its structural simplicity. In recent
decades, many techniques of control of the induction machine, such as technical
oriented control or Field Oriented control, have emerged and are currently used
to enjoy the benefits of the asynchronous machine for applications where variable
speed is essential. The high operating control of the inductionmachine beganwith the
invention of the oriented vector control in the late 60s flux. Before that time control of
the induction machine was limited to scalar commands. This operating control does
not provide a decoupling between the flux and torque. To illustrate this, the torque of a
cage inductionmotor has to be increased by increasing the slip, theflux is affected by a
decrease; therefore the torque control is dependent of the stream, for this the inherent
coupling between these two variables makes conventional techniques less efficient.
To solve these problems this paper seeks to analyze dynamical performances and
sensitivity to induction motor parameter changes, two techniques are applied Sliding
Mode Control and Field Oriented Control. For this, this design on the basis of some
simulations results is illustrated with different functions in order to illustrate its
efficiency andmake comparison between the two techniques; Numerical simulations
are presented to validate the proposed methods. The objective of this paper is to
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guarantee the desired performance of the induction motor, robust to the parameters
variations, disturbances, and reach the speed of rotation at the speed desired in a
minimum response time.

Nomenculture

r, s : Subscripts stand for rotor and stator;
Rr , Rs : Rotor and stator resistances;

Lr , Ls, Lm : Rotor, stator and mutual inductances;
Cem : Electromagnetic torque;

Cr : Load torque;
σ : Total leakage coefficient;

J : Moment of inertia;
v, i : Voltage and current;

φ : Flux linkage;
ωr : Electrical angular rotor speed;
ωs : Synchronously rotating angular speed;

p : Number of poles pair.

1 Introduction

Currently, induction motors (IM) are widely used in many industrial applications,
including transportation, conveyor systems, actuators, material han-dling, pumping
of liquidmetal, and others, with satisfactory performance (Boucheta et al. 2012). The
electromechanical systems of thismotor are suitable for a large spectrumof industrial
applications (Isidori 1995). However, induction motors are multivariable nonlinear
and strongly coupled time-varying systems, mainly, in variable speed applications.
However, its dynamic control requires complex control algorithms, facing its struc-
tural simplicity, since there is a complex coupling between the input variables, output
variables and the internal variables of the machine (Leonhard 1994; Meziane et al.
2008; Maher 2012).

Induction motors are suitable electromechanical systems for a large spectrum
of industrial applications. However, induction motors are multivariable nonlinear
and strongly coupled time-varying systems, mainly, in variable speed applications
(Leonhard 1994; Hautier and Caron 1995). However, its dynamic control requires
complex control algorithms, facing its structural simplicity, since there is a complex
coupling between the input variables, output variables and the internal variables of
the machine (Isidori 1995; Meziane et al. 2008; Maher 2012).

So with the invention of power electronics, and advances in computing, has made
a radical revolution. Its goal is to develop control strategies for induction motors.
The design of suitable control algorithms for those motors (IM) has been widely
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investigated for more than two decades. Since the beginning of field oriented control
(FOC) of AC drives works like a separately excited DC motor and it was proposed
by Blaschke (Direct FOC) and Hasse (Indirect FOC) in early 1970s, (Ramesh et al.
2013), seen as a viable replacement of the traditional DC drives, several techniques
from linear control theory have been used in the different control loops of the FOC
scheme, such as Proportional Integral (PI) regulators, and exact feedback lineariza-
tion (Ouhrouche and Volat 2000; Duarte-Mermoud and Travieso-Torres 2012). Due
to their linear characteristics, these techniques do not guarantee suitable machine op-
eration for the whole operation range, and do not consider the parameter variations
of the motor-load set. The field oriented control technique has a major disadvantage,
such as; requirement of co-ordinate transformations, current controllers, sensitive
to parameter variations. This drawbacks of FOC schemes are minimized with the
new control strategy i.e., DTFC scheme, which is introduced by Isao Takahashi and
Toshihiko Noguchi, in the mid 1980s, (Ramesh et al. 2013).

Direct torque and flux control of an IM is requires the rotor shaft angular position
information. The rotor shaft position can be measured through either speed sensors
(i.e., speed encoder) or from an estimator/observer using current and voltage signals
and information of the IM parameters. The use of speed encoder is associated with
some drawbacks, such as, requirement of shaft extension, reduction of mechanical
robustness of the motor drive, reduces the drive reliability and not suitable for hostile
environments, and also costlier. These drawbacks have made speed sensorless direct
torque and flux controlled IM very attractive over the conventional direct torque and
flux control (DTFC) drive. There are some applications for sensorless drive, where
there is no sufficient space to put the speed sensor or the nature of the environment
does not allow the use of any additional rotor speed sensors, (Ramesh et al. 2013).

Over the past years, several schemes have proposed for rotor speed estimation
in the sensorless vector controlled IMs, (Caruana et al. 2006; Kojabadi 2005). They
are: (i) signal injection based method (Caruana et al. 2006), (ii) state observer based
method (Rojas et al. 2004), and (iii) model based method (Kojabadi 2005). The
signal injection method is suffers from computational complexity and requirement
of external hardware for signal injection, (Ramesh et al. 2013).Among thesemethods,
the sliding mode technique is one of the nonlinear control techniques has also been
proposed to solve the problems mentioned above (Rao et al. 2009; Saiad 2012).

Much research has been done in recent years to apply various approaches to atten-
uate the effect of uncertainties. On the basic aspect, the conventional proportional-
integral-derivative (PID) controllers are widely used in industry due to their simple
control structure, ease of design and low cost. (El-Sousy 2013; Holmes et al. 2012).
However, the PID controller cannot provide perfect control performance if the con-
trolled system is highly nonlinear and uncertain as in the case of IM. In addition,
an objection to the real-time use of such control scheme is the lack of knowledge of
uncertainties (El-Sousy 2013).

Due to the existenceof nonlinearities, uncertainties, anddisturbances, conventional
linear control methods, including the PID control, cannot guarantee a sufficiently
high performance for the IM servo drive system. To deal with these uncertainties,
and to enhance the control performance, in recent years, many nonlinear control
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methods have been developed for the IM drive system, such as variable structure
control (Liaw et al. 2001), adaptive and robust control (Xia et al. 2000; Ravi Teja
and Chakraborty 2012), sliding mode control (SMC) (Li et al. 2005; Comanescu et
al. 2008), higher-order sliding-mode control (Rashed et al. 2005; Traoré et al. 2008),
fuzzy control, neural network control, wavelet neural net work control (Lin and Hsu
2002;Castillo-Toledo et al. 2008), hybrid control (Wai 2001;Wai et al. 2002), optimal
control (Bottura et al. 2000; Attaianese and Timasso 2001), intelligent SMC (Wai et
al. 2002; Zhu et al. 2011), supervisory control using genetic algorithm (Wai 2003;
Su and Kung 2005) and so on. These approaches improve the control performance
of the IM drive from different aspects. The sliding-mode control (SMC) is one of
the effective nonlinear robust control approaches since it provides system dynamics
with an invariance property to uncertainties once the system dynamics are controlled
in the sliding mode (El-Sousy 2013).

Sliding-mode control has received much attention in the control of IM drives. It is
well known that themajor advantage of slidingmode control (SMC) systems is its in-
sensitivity to parameter variations and external disturbance once the system trajectory
reaches and stays on the sliding surface (Slotine and Li 1991; Veselic et al. 2010).

The robustness of theSMC is guaranteed usually by using a large switching control
gain. This switching strategy often in the hitting control law (Slotine and Li 1991;
Rao et al. 2009; Astrom andWittenmark 1995; Corradini et al. 2012; El-Sousy 2013).

The slidingmode control (SMC) is a nonlinear control and based on the switching
functions of state variables, used to create a variety or hyper sliding surface, whose
purpose is to force the system dynamism to correspond with the defined by the
equation of the hyper-surface. When the state is maintained on the hyper surface,
the system is in sliding regime. Its dynamic is so insensitive to external disturbances
and parametric conditions as sliding regime are carried out. In the synthesis of the
control law by way of sliding, the sliding surface is defined as an independent and
stable linear system. However, the dynamics imposed by such a system is slower
than that imposed by a nonlinear system, hence the importance of using the latter
type of systems to synthesize the sliding surface in some applications (Hautier and
Caron 1995; Araujo and Freitas 2000; Aurora and Ferrara 2007; Bounar et al. 2012;
Saiad 2012; Talhaoui et al. 2013).

1.1 Chapter Objectives

Themain objective of this work is to improve the performance of the electricmachine
converter association. Indeed, a new technique for robust control by sliding mode is
presented. The application example is given in this work is that the induction motor.

The bulk of this work thereafter is to arrive at clear a comparative study between
conventional vector control orientation of the rotor flux and the new technique of
slidingmode control. This leads to showfields and limits of use of each control, while
by highlighting all the features that differentiate them both. For this, the proposed
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controls are applied to achieve a speed- and flux-tracking in a minimum response
time objective under parameter uncertainties and disturbance of load thrust force

1.2 Chapter’s Structure

The reminder of the current chapter is organized as follows: The first part focuses
on the development of a mathematical model for an induction motor, the second
part focuses on the development of the mathematical model for the field oriented
control technique to induction motor, the third part focuses on the development of
the sliding mode control to the induction motor, the last part of this chapter focuses
on the performance analysis of theoretical results for both techniques to make a
comparison between them. They have been validated by numerical simulations in
Matlab/Simulink environment.

2 Nonlinear Induction Motor Model

Induction motor as various electric machines constitutes a theoretically interesting
and practically important class of nonlinear dynamic systems. Induction motor is
known as a complex nonlinear system in which time-varying parameters entail addi-
tional difficulty for induction motor system control, conditions monitoring and faults
diagnosis (Leonhard 1994; Isidori 1995). Based on the fact that the nonlinear model
of the induction motor system can be significantly simplified, if only one applies the
d-q Park transformation (Appendix 1) (Jimoh et al. 2012), different structures of the
nonlinear model are investigated. The choice of a model depends on measurement
possibilities, selected state variables of the machine and the problem at hand. In
this paper, the considered induction motor model has stator current, rotor flux and
rotor angular velocity as selected state variables. The control inputs are the stator
voltage and load torque. The available stator current measurements are the induction
motor system outputs. The nonlinear state space model of the induction motor is
expressed as the following (Hautier and Caron 1995; Meziane et al. 2008; Mira and
Duarte-Mermoud 2009):

{
ẋ = f (x) + g(x).v

y = h(x)
(1)

With:

v = [
Vsα Vsβ

]T = [
U1 U2

]T

x = [
isα isβ φrα φrβ�r

]T = [
x1 x2 x3 x4x5

]T
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Such as :
x : State vector.
v : Vector control.
y : Output selected.
h (x) : An analytic function.

f (x) =

⎡
⎢⎢⎢⎢⎣

a11 · x1 + a13 · x3 + a14 · x4.x5
a11 · x2 − a14 · x3.x5 + a13 · x4
a31 · x1 + a33 · x3 + a34 · x4.x5
a31 · x2 − a34 · x3.x5 + a33 · x4

μ · (x2 · x3 − x1 · x4) − cr
J

⎤
⎥⎥⎥⎥⎦ ; g(x) =

⎡
⎢⎢⎢⎢⎣

b11 0
0 b11
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

Such as:

a11 = −
[

1

σ · Ts
+ 1

Tr
·
(
1 − σ

σ

)]
, a13 = 1 − σ

σ
· 1

M · Tr
, a14 = 1

M
· 1 − σ

σ
· p,

a31 = M

Tr
, a33 = − 1

Tr
, a34 = −p, b11 = 1

Ls .σ
, σ = 1 − M2

Ls .Lr
, Ts = Ls

Rs
,

Tr = Lr

Rr
, μ = p · M

J · Lr
.

3 Principle of Field Oriented Control FOC

The basic idea of this method of control is to bring the behavior of the asynchronous
machine similar to that of a DC machine with separate excitation or decoupling is
natural. This method is based on transforming the electric machine variables to a
repository that rotates with the rotor flux vector oriented (Blaschke 1977; Hautier
and Caron 1995; Rong-Jong et al. 2005; Meziane et al. 2008; Bouchhida et al. 2012).
Therefore, it can control the flux of the machine with the component Isd of the
stator current which is the equivalent of the inductor DC current machine. While,
the component Isq to control the armature current corresponding to the DC machine,
electromagnetic torque (Mira and Duarte-Mermoud 2009). This is shown in Fig. 1

The relationship of the electromagnetic torque of the DC machine is given by,
(Hautier and Caron 1995):

Ce = κ · φ · ia = K · i f · ia (2)

With:
φ : Flux imposed by the excitation current if and ia : Inductive current.
The inductive current ia is themagnitude of the torque generator and the excitation

current if is the magnitude of the flux generator. Thus, in a DC machine everything
happens as if the control variables if and ia are orthogonal. Thismeans that the current
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Fig. 1 Analogy induction machines with DCmotor, (Hautier and Caron 1995;Meziane et al. 2008)

flux controlled by the if , and the current torque by the ia . It is said that the armature
and inductor are naturally decoupled.

Thus dissociates the stator current of the asynchronous machine in two compo-
nents Isd and Isq in quadrature such that the current Isd is oriented along the axis of
the flux guide. A constant rotor flux, the couple then depend only aware Isq (Hautier
and Caron 1995; Chaigne and Etien 2005; Meziane et al. 2008).

3.1 Field Oriented Control Structure

The choice of the reference model of the induction machine from the template in
the Park transformation is such that the axis (d) coincides with the desired direction
of the flux (the rotor flux, the stator flux or air gap flux) as shown in the following
Fig. 2, (Araujo and Freitas 2000; Mira and Duarte-Mermoud 2009; El-Sousy and
Salem 2004):

q
( )4132 xxxxJCem ⋅−⋅⋅⋅= μ

rqx φ=4
rφ

d

rdx φ=3

sqix =2

sdix =1

sI

tss ⋅=ωθ

q

sqr

em

iJ

xxJC

⋅⋅=
⋅⋅⋅=

φμ
μ
.

32

rφ d

sqix =2

sdix =1

sI

Fig. 2 Angular relations of current vectors, (Araujo and Freitas 2000)
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There are three types of flux directing namely:

− Rotor flux orientation : φrd = φr and φrq = 0 (3)

− Stator flux orientation : φsd = φs and φsq = 0 (4)

− Gap flux orientation : φgd = φg and φgq = 0 (5)

Control of the stator flux or flux gap is more complicated and does not provide
full decoupling between torque and flux, for this vector control rotor flux orientation
is the most used (Chaigne and Etien 2005; Saiad 2012).

The strategy of the vector control is to independently control the flux term and
the current term to impose a couple. Keeping the control variables as

(
Vsd , Vsq

)
and state variables such as stator currents

(
isd , isq

)
, the flux φr and the mechanical

speed. When an electric motor drives a mechanical load it is essential to properly
control the dynamics of it, to master the instantaneous torque of it. The thrust of
the vector control is to have the asynchronous machine for a couple proportional to
flux engine and a current like the DC machine. So, let’s take the expression of the
electromagnetic torque of the induction machine (Rao et al. 2009):

Cem = J · μ · (x2 · x3 − x1 · x4) (6)

In the reference dq which are projected the rotor flux and the stator current running
at the speed of the rotating field, either in: θs = ωs · t

In order to have expression analogous to that electromagnetic torque of a DC
motor the axis will be directed of the rotor flux, air gap torque of the expression
becomes:

Cem = J · μ · x2 · x3 (7)

By imposing the condition (3) to state the model of IM (1) supplied with volt-
age equations at the following reduced system is realized, (Boukettaya et al. 2008;
Meziane et al. 2008; Bouchhida et al. 2012):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

isq = Lr
P·M · C∗

em
φ∗

r

isd = 1
M ·

[
Tr · dφ∗

r
dt + φ∗

r

]
ωr = M

Tr
· isq

φ∗
r

ωs = ωm + ωr

vsd = Rs ·
[
σ · Ls

disd
dt + isd + Ts

(1−σ)·φ∗
r

M -σ · Ts · ωs · isq

]
vsq = Rs ·

[
σ · Ts

disq
dt + isq + Ts

(1−σ)·φ∗
r

M -σ · Ts · ωs · isd

]
(8)

The diagram of vector control with a flux model is given in Fig. 3:
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Fig. 3 Block diagram of indirect field oriented control structure (Meziane et al. 2008; Bouchhida
et al. 2012)

4 General Concept of Sliding Mode Control

4.1 Condition Existence of Sliding Mode Control

The sliding mode exists when the switching takes place continuously between Umax
and Umin . This is illustrated in Fig. 4 for the case of a control system of the second
order with two state variables x1 and x2, (Wai 2003)

Fig. 4 Path of steady state sliding mode
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4.2 Sliding Mode Control Design

Variable structure control (VSC) with sliding mode (SMC) is one of the effective
nonlinear robust control approaches because it provides system dynamics with an
invariance property to uncertainties once the system dynamics are controlled in the
sliding mode. The first step of SMC design is to select a sliding surface that models
the desired closed-loop performance in state variable space (Fig. 4). The control is
then designed such that the system state trajectories are forced to the sliding surface
and to stay on it. The system state trajectory in the period of time before reaching
the sliding surface is called the reaching phase. Once the system trajectory reaches
the sliding surface, it stays on it and slides along it toward the origin. The system
trajectory sliding along the sliding surface toward the origin is the sliding mode.
The insensitivity of the controlled system to uncertainties exists in the sliding mode,
but not during the reaching phase. Thus, the system dynamic in the reaching phase
continues to be influenced by uncertainties (Utkin 1993; Wai 2000; Ghanes and
Zheng 2009; Boucheta et al. 2012).

4.2.1 The Choice of the Surface

The choice of the sliding surface for the necessary number and shape, depending
on the application and purpose. In general, for a system defined by the state Eq. (1),
choose “m” sliding surfaces for a vector of dimension “m”, (Dwards and Spurgeon
1998; Boucheta et al. 2012), with:

y(x) =
[

y1(x)

y2(x)

]
=

[

r

�r

]
=

[ 1
2

(
x23 + x24

)
x5

]
(9)

The surface S(x) represents the desired dynamic behavior of the system. J. J Slotine
(Utkin 1993; Dwards and Spurgeon 1998; Wai 2000), proposes a form of general
equation to determine the sliding surface which ensures the convergence of a variable
towards its desired value xire f .

If xi a variable to controlled, associated with the following surface:

Si (xi ) =
(

d

dt
+ λi

)r−1

· ei (xi )/ i = 1, 2. (10)

With:
λi : is a positive constant.
r : is the relative degree (Appendix 2).
And that for:

r = 1 ⇒ S(x) = e(x)

r = 2 ⇒ S(x) = λe(x) + ė(x)

r = 3 ⇒ S(x) = λ2e(x) + 2λė(x) + ë(x)

(11)
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The difference between the controlled variable and its reference is:

ei (x) = xi − xire f (12)

The purpose of this paper is to determine a control law to force the system states,
i.e., the rotor flux and the electromagnetic torque to follow the sliding surface as:
S = [S1 S2]T (Ghanes and Zheng 2009).

4.2.2 Area Calculation

After the calculation of the relative degree (given in [Appendix 2]). The sliding
surfaces of the Eq. (12), can be determined as follows:

{
S1 = λ1 · e1 + ė1
S2 = λ2 · e2 + ė2

(13)

With : {
e1 = 
r − 
ire f

e2 = �r − �ire f
(14)

Are successively error flux (e1) and error rate (e2).
When substituting (1) and (14) into (13) the following result is as follows:

{
S1 = λ1 · (
r − 
ire f ) + a31 · (x1 · x3 + x2 · x4) + 2 · a33 · 
r − 
̇ire f

S2 = λ2 · (�r − �ire f ) + μ · (x2 · x3 − x1 · x4) − cr
J − f

J .�r − �̇ire f
(15)

However, to continue
ire f and�ire f , it suffices tomake the sliding surface attractive
and invariant.

4.2.3 Equivalent Command for the Invariance

Once the sliding surface is chosen, it remains to determine the control necessary to
attract the controlled variable to the surface and then to his balance point, the relation
will be as follows:

u = ueq + un (16)

where ueq is called the equivalent control, which dictates the motion of the state
trajectory along the sliding surface, and un is a term introduced to satisfy the condition

following convergence
•
S(x).S(x) < 0 , and it determines the dynamic behavior of the

system during the convergence mode. So this command guarantees the attractiveness
of the variable to be controlled to the sliding surface, (Utkin 1993; Dwards and
Spurgeon 1998; Wai 2000).
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The necessary condition for the system states follow the path defined by the sliding
surfaces is:

Ṡ = 0 (17)

The equivalent command is the commands ensure the condition (17). Then the deriva-
tion of Eq. (15) gives:

⎧⎪⎪⎨
⎪⎪⎩

Ṡ1 = 2 · (λ · a33 + 2 · a2
33 + a31 · a13) · 
r + (λ · a31 + 3 · a33 · a31 + a11 · a31) · f1

−(a31 · a34) · f2 + a2
31 · f3 − λ · 
̇rre f − 
̈rre f + b11 · a31 · (x3 · U1 + x4 · U2 )

Ṡ2 = μ · (
λ1 + a+

33a11
) · f2 − λ2.

cr
J + ·μ · a34.x5 · f1 + − (a34 · a14 · μ) · 
r

−λ2.�̇rre f − �̈rre f + b11 · μ · (x3 · U1 − x4 · U2 )

(18)
Such as: ⎧⎨

⎩
f1 = x1 · x3 + x2 · x4
f2 = x2 · x3 − x1 · x4
f3 = x21 + x22

(19)

The ideal diet is almost never possible. Therefore, the second termof the command
must be used to restore the system state to the surface whenever it deviates. Thus, it
should be taken as follows:

un = Mi · sign (Si (x)) (20)

Mi is a constant, representing the maximum controller output required to overcome
parameter uncertainties and disturbances; and Si (x) is called the switching function
because the control action switches its sign on the two sides of the switching surface
S = 0 . A second-order system S is defined in Eq. (13), (Utkin 1993; Dwards and
Spurgeon 1998; Wai 2000; Boucheta et al. 2012).

S(x) Slip function is selected such that it is a solution of the following differential
equation:

Ṡi (x) = −Mi · sign (Si (x)) / i = 1, 2. (21)

Then equation (17) can be written:

⎧⎪⎪⎨
⎪⎪⎩

−M1 · sign (S1 (x)) = 2 · (λ · a33 + 2 · a2
33 + a31 · a13) · 
r + (λ · a31 + 3 · a33 · a31 + a11 · a31) · f1

−(a31 · a34) · f2 + a2
31 · f3 − λ · 
̇rre f − 
̈rre f + b11 · a31 · (x3 · U1 + x4 · U2 )

−M2 · sign (S2 (x)) = μ · (λ1 + a33 + a11) · f2 − λ2.
cr
J + ·μ · a34.x5 · f1 + − (a34 · a14 · μ) · 
r

−λ2.�̇rre f − �̈rre f + b11 · μ · (x3 · U1 − x4 · U2 )

(22)
According to the Eqs. (19), (20) and (22) the equivalent command (16) for this in-
variance cans determined as (Araujo and Freitas 2000; Boucheta et al. 2012):

u =
[

U1
U2

]
= G−1 ·

[
X
Y

]
(23)
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With:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = 2 · (λ ·
(

a33
a31

)
+ 2 ·

(
a233
a31

)
+ a13) · 
r + (λ + 3 · a33 + a11) · f1 − (a34) · f2

+a31 · f3 −
(

λ
a31

)
· 
̇rre f −

(
1

a31

)

̈rre f +

(
M1
a31

)
· sign (S1 (x))

Y = (λ1 + a33 + a11) · f2 − λ2.
cr
J.μ

+ a34.x5 · f1 + − (a34 · a14) · 
r

−
(

λ2.
μ

)
.�̇rre f −

(
1
μ

)
�̈rre f +

(
M2
μ

)
· sign (S2 (x))

(24)
And

G =
[−b11 · x3 −b11 · x4

b11 · x4 −b11 · x3

]
(25)

In taking into consideration the condition transversal matrix (25), then:

det G �= 0 (26)

Therefore:
b211 ·

(
x23 + x24

)
�= 0

With: {
x3 = φrα

x4 = φrβ
(27)

The determinant is non-zero, therefore, the matrix G is invertible, unless x = 0
and/or stopping the motor; the current is zero so the flux is zero, there must be
provided the initial conditions of flux at startup.

For the switching law to intervene in the law of overall control, choose and suffi-
ciently large, convergence criteria (Aurora and Ferrara 2007; Boucheta et al. 2012).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 >

∣∣∣∣∣∣∣∣∣∣∣∣

2 ·
(

λ ·
(

a33
a31

)
+ 2 ·

(
a233
a31

)
+ a13

)
· 
r

+ (λ + 3 · a33 + a11) · f1
−(a34) · f2 + a·

31 f3 −
(

λ
a31

)
· 
̇rre f

−
(

1
a31

)

̈rre f

∣∣∣∣∣∣∣∣∣∣∣∣

M2 >

∣∣∣∣∣∣∣
(λ1 + a33 + a11) · f2 − λ2.

cr
J.μ

+a34.x5 · f1 − (a34 · a14) · 
r

−
(

λ2.
μ

)
.�̇rre f −

(
1
μ

)
�̈rre f

∣∣∣∣∣∣∣

(28)

The diagram of sliding mode control is given in Fig. 5 (Saiad 2012):
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Fig. 5 Block diagram of the sliding mode control

5 Simulations Results

The simulation analysis of the mathematical model of the induction machine, were
carried out inMATLAB/SIMULINK todemonstrate the effectiveness of the proposed
control scheme for speed control of the IM described above, and allows seeing the
performance comparison of control: Sliding Mode Control (SMC) and field oriented
control (FOC),with test of twomode of operation, speed variation and other inversion
of rotation with variable load torque Cr and rotor resistance Rr .

5.1 Simulation Results Without Inversion Speed

This simulation is realized with the reference speed given in Table1 as follow:

5.1.1 Analysis and Discussions of the Results

The results simulations are given in the following Figs. 6, 7, 8, 9, 10, 11 12:
The proposed controller has been tested also with detuned rotor resistance. The

rotor resistance is considered the most effective parameter in the indirect vector
control as the slip calculator dependsmainly on it. In classical indirect vector control,
the variation of this parameter will adversely affect the motor performance. In this
test, the rotor resistance is assumed to increase as follows: at 0.8 s will rise to 50%

Table 1 The reference speed
at the first simulation

Times t (s) 0 → 1.5 1.5 → 2.75 2.75 → 4

Reference speed 157 170 100

�re f (rad/s)
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Fig. 6 Load and rotor resistance variations

Fig. 7 Current of one phase

Rr , and at 2.1 s will increase to 30% Rr (Fig. 6), in the machine model and keeping
nominal value in the slip calculator.

In this test too, the load torque is assumed to change from 0 to 10 Nm. at 0.75 s
and stepped again to no load at 1.75 s, and change again from 0 to 5 Nm. at 2.5 s as
shown in Fig. 6.

The Fig. 7 reports an enlarged view of the phase stator current during high speed
operation. It is seen that, sinusoidal current waveform is obtainedwith less distortion.

The Fig. 8 indicates that the control Sliding Mode Control (SMC) provides a
successful prosecution at its rotor flux reference (unlike the control Indirect Field
Oriented Control (IFOC)). Thus, the d-axis rotor flux linkage is kept constant at
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Fig. 8 Rotor flux tracking performance

Fig. 9 Rotor flux error

the rated value, while the q-axis flux is kept zero in all the simulation period; only,
small notches in the d-axis flux have been noticed at the instants of load disturbance
application, (in the static regime the error is zero as shown in Fig. 9). In other words,
the decoupling condition between the speed and rotor flux has been realized.

Figure10 shows the results of simulation speed with the two types of controls
(IFOC and SMC), when the machine is operated at different speeds as it’s given
in Table1. It can be seen that the speed follows its reference reasonably well, but
the SMC controller has a response time better than IFOC (0.35s), this time can be
explained by the speed of this technique. As shown in Fig. 10 Zoom 1.

By applying a resisting torque which produces the heating of the machine, who
led to varied the rotor see Fig. 6. In these circumstances, finds that the speed perfectly
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Fig. 10 Rotor speed tracking performance

follows its reference in the two types of control that is clearly demonstrated by the
speed error is zero see Fig. 11, but here too the SMC has a time response is perfect
and the maximum overshoot is about 2% compared to IFOC as shown in Fig. 10
Zoom 2, good tracking performance has been achieved with the proposed sliding
controller in spite of the mismatched rotor resistance.

It has been indicated in the Fig. 12 that excellent tracking performance has been
achieved in spite of the load torque disturbance. Only, small notches have been
noticed at the instants of load disturbance application, peaks 30% of the load torque
for SMC and 20% for IFOC.
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Fig. 11 Rotor speed error

Fig. 12 Electromechanical torque to the load variation

5.2 Simulation Results with Inversion Speed

This simulation is realized with the reference speed given in Table2 as follow:

5.2.1 Analysis and Discussions of the Results

The results simulations are given as following Figs. 13, 14, 15, 16, 17, 18 19:
The proposed controller has been tested also with detuned rotor resistance. The

rotor resistance is considered the most effective parameter in the indirect vector
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Table 2 The reference speed
variation at the second
simulation

Times t (s) 0 → 1.5 1.5 → 3 3 → 4

Reference speed 157 −157 157

Ωre f (rad/s)

Fig. 13 Load and rotor resistance variations

control as the slip calculator dependsmainly on it. In classical indirect vector control,
the variation of this parameter will adversely affect the motor performance. In this
test, the rotor resistance is assumed to increase as follows: at 0.8 s will rise to 50%
Rr , and at 2.1 s will increase to 30% Rr (Fig. 13), in the machine model and keeping
nominal value in the slip calculator.

In this test too, the load torque is assumed to change from 0 to 10 Nm. at 0.75 s
and stepped again to no load at 1.75 s, and change again from 0 to 5 Nm. at 2.5 s as
shown in Fig. 13.

The Fig. 14 reports an enlarged view of the phase stator current during high speed
operation. It is seen that, sinusoidal current waveform is obtained with less distortion
for both techniques,with peaks in the transitional regime and at the inversion of speed.

The Fig. 15 indicates that the control Sliding Mode Control (SMC) provides a
successful prosecution at its rotor flux reference (unlike the control Indirect Field
Oriented Control (IFOC)). Thus, the d-axis rotor flux linkage is kept constant at
the rated value, while the q-axis flux is kept zero in all the simulation period; only,
small notches in the d-axis flux have been noticed at the instants of load disturbance
application andmoment of inversion the direction of rotation, (in the static regime the
error is zero as shown in Fig. 16). In other words, the decoupling condition between
the speed and rotor flux has been realized.

Figure17 shows the results of simulation speed with the two types of controls
(IFOC and SMC), when the machine is operated at different speeds as it’s given
in Table2. It can be seen that the speed follows its reference reasonably well, but



514 O. Assia et al.

Fig. 14 Current of one phase

Fig. 15 Rotor flux tracking performance

the SMC controller has a response time better than IFOC (0.35s), this time can be
explained by the speed of this technique. As shown in Fig. 17 Zoom 1.

By applying a resisting torquewhich produces the heating of themachine, who led
to varied the rotor see Fig. 13. In those circumstances, finds that the speed perfectly
follows its reference in the two types of control that is clearly demonstrated by the
speed error is zero see Fig. 18, but here too the SMC has a time response is perfect
and the maximum overshoot is about 2% compared to IFOC as shown in Fig. 17
Zoom 2, good tracking performance has been achieved with the proposed sliding
controller in spite of the mismatched rotor resistance and the reversing the direction
of rotation.
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Fig. 16 Rotor flux error

Fig. 17 Rotor speed tracking performance
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Fig. 18 Rotor speed error

Fig. 19 Electromechanical torque to the load variation

It has been indicated in the Fig. 12 that excellent tracking performance has been
achieved in spite of the load torque disturbance in spite of the mismatched rotor
resistance and the reversing the direction of rotation. Only, small notches have been
noticed at the instants of load disturbance application, peaks 30% of the load torque
for SMC and 20% for IFOC.
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6 Conclusion

Industrial systems are often significantly nonlinear behavior. The linearization around
an operating point is often inadequate for the needs of the command, therefore it is
important to develop control methods for nonlinear systems.

Controlling an IM can be done using several techniques, each of which offers
dynamic and static performances with well-defined limits applications. The problem
arises in the choice of a particular method. The use of a method or the other is
normally based on the constraints of the specifications, which are sometimes added
new requirements of energy saving and material economy that should be taken into
account.

It is with this understanding that this work has been made. Indeed, the main
objective of this chapter is the development of a new robust control by sliding mode.
This type of control has been sufficiently discussed compared to the vector control
of rotor flux orientation.

First vector control by indirect rotor flux orientation gave lower performance. In-
deed, the strength of the test IFOCwhich has opposite variation of the rotor resistance
shows that control loses its linearity property and affects more decoupling between
rotor flux and torque. To improve the performance of this command and achieve
better results, the online identification of parameters of the machine is essential.

In this sense, our contribution is to propose a methodology of robust control
systems related to variable structureswhose purpose is to overcome the disadvantages
of conventional controls, as theSMC is bynature a non-linear control and their control
law is changed in a discontinuous manner, in this case, the sliding mode control. This
control is characterized by its robustness against external and internal disturbances.
The sliding surface is determined depending on the desired performance. While, the
control law is chosen in order to ensure the convergence conditions and sliding i.e.,
attractiveness and the invariance of switching surfaces.

Finally, the study of the sliding mode control of the induction machine consists
in defining a sliding surface on which the system converges. The corresponding
switching function allows the system to always tend towards the sliding surface. The
technique of sliding mode control used for control of the induction motor has led
to good performance, in many cases obtained in a better quality of adjustment rela-
tive to the vector control, it offers some advantages: first, robustness with respect to
variations of system parameters, second, a high-performance dynamic “acceptable
response time and error stationary practically zero”, and finally a simple implemen-
tation of the law switching.

In addition, the objective of this work is achieved, because there is a perfect
prosecution of the rotor flux, for its reference which makes for a good decoupling
between the rotor flux and the electromagnetic torque, good trajectory tracking the
desired output speed with a minimum response time, the robustness to variations in
parameters, which has been shown by simulation results. The performance of this
technique depends on a suitable choice of the coefficients of the sliding surface and
the speed of the response depends on the maximum torque that can give the machine.
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Perspectives From this, labor perspective can be considered, it would be interesting
to:

• Propose a synthesis of an observer flux sliding mode. Because in the design of
the sliding mode control, it is assumed that all states were measured. Since only
the current measurements are available, then the estimated for the rotor flux of an
application in real time is necessary.

• In an effort to reduce cost, speed sensor can be replaced by a flux observer and
speed.

• And finally, it would be interesting to use this machine (induction machine IM)
and this type of control (SlidingMode Control SMC) for the adopted to renewable
energies (wind).

Appendix: A.1 Arbitrary Reference Frame Theory

Arbitrary reference frame theory is mainly used in the dynamic analysis of electrical
machines. Because of the highly coupled nature of the machine, especially the induc-
tances within the winding make it rather impossible to perform dynamic simulations
and analysis on electrical machines.

Arbitrary reference frame theory was discovered by Blondel, Dreyfus, Doherty
and Nickle as mentioned in the classical paper (Park 1929). This newly found the-
ory was generalized by Park on synchronous machines and this method was later
extended by Stanley to the application of dynamic analysis of induction machines
(Stanley 1938).

By using this method a poly-phase machine is transformed to a two-phase ma-
chine with their magnetic axis in quadrature as illustrated in Fig. 20. This method
is also commonly referred to as the dq method in balanced systems and to the dq0
method in unbalanced systemswith the ‘0’ relating to the zero sequence or homopolar
components in the Fortes cue Transformation (Jimoh et al. 2012).

This transformation eliminates mutual magnetic coupling between the phases and
therefore makes the magnetic flux linkage of one winding independent of the current
of another winding.

The transformation is done by applying a transformation matrix, Eq. (29) while
the inverse transformation matrix, Eq. (30) will be transformed back to the natural
reference frame. Eqs. (29) and (30) applly to a three phase system but can bemodified
to accommodate a system with any number of phases which might be useful in the
case of the machine having an auxiliary winding as proposed in this work (Jimoh et
al. 2012).

[P] =
√
2

3

⎡
⎢⎣

1√
2

1√
2

1√
2

cos θ cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin θ − sin

(
θ − 2π

3

) − sin
(
θ + 2π

3

)
⎤
⎥⎦ (29)
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Fig. 20 Park’s transform

[P]−1 =
√
2

3

⎡
⎢⎣

1√
2
cos θ − sin θ

1√
2
cos

(
θ − 2π

3

) − sin
(
θ − 2π

3

)
1√
2
cos

(
θ + 2π

3

) − sin
(
θ + 2π

3

)
⎤
⎥⎦ (30)

A.2 Modeling of Three-Phase Induction Motor

The winding arrangement of a symmetrical induction machine is shown in Fig. 21.
The stator windings are identical and sinusoidally distributed, displaced 120◦ apart,
with Ns equivalent turns and resistance Rs per winding, per phase. Similarly the rotor
windings are also considered as three identical sinusoidally distributed windings,
displaced 120◦ apart, with Nr equivalent turns and resistance of Rr per, winding per
phase (Jimoh et al. 2012).

In developing the equationswhich describe the behaviour of the inductionmachine
the following assumptions are made (Jimoh et al. 2012):

1. The airgap is uniform.
2. Eddy currents, friction and windage losses and saturation are neglected.
3. The windings are distributed sinusoidally around the air gap.
4. The windings are identical
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Fig. 21 Three-phase winding Arrangement

Appendix: B Calculates of the Relative degree

B.1 Derivation of Lie

Is h : �n → � a scalar function and f = [
f1 f2 . . . fn

]T : �n → �n a vector field
with n is the order of the system (Pietrzak-David et al. 2000; Meziane et al. 2008).

We use the notation L f · h (x) : �n → � to denote the given scalar function:

L f · h (x) = ∂h

∂x
· f (x) =

[
∂h

∂x1
, . . . ,

∂h

∂xn

]
·
⎡
⎢⎣

f1 (x)
...

fn (x)

⎤
⎥⎦ =

n∑
i=1

∂h

∂xi
· fi (x) (31)

where: x = [x1, x2, . . . , xn]T

And L f · h (x) is called the Lie derivative in the direction of the vector field f.
Similarly, it may be noted, for k = 0, 1, 2, 3 . . . :

{
Lk

f · h (x) = ∂k h
∂xk · f (x) = ∂

∂x

(
Lk−1

f · h(x)
)

· f (x)

L0
f · h (x) = h(x)

(32)
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B.2 Relative Degree

Consider the following nonlinear system:

{ •
x = f (x) + g(x)u
y = h(x)

(33)

Now consider the output y = h (x)∈ � . It is said that y = h (x) has a degree
relative r with respect to the input scalar u where:

{
Lg Lk

f · h (x) = 0 , 0 ≤ k ≤ r − 1

Lg Lr−1
f · h (x) �= 0

(34)

Lie derivative of the scalar function h (x) taken along first and then along the second
vector g is defined by:

Lg L ·
f h (x) = ∂

(
L f h

)
∂x

· g (x) (35)

Notes

• The concept of relative degree r is very important during the linearization because
it lets us know if our system is linearizable completely or partially.

• It should be noted that the relative degree r is the number of times to derive the
output y for the u control appears, it is verified as follows:

ẏ = ∂h

∂x
ẋ = ∂h

∂x
· f (x) + ∂h

∂x
· g(x) · u (36)

ẏ = L f · h (x) + Lg · h (x) · u (37)

And since Lg · h (x) = 0 , then:

ẏ = L f · h (x) (38)

Likewise we find:
ÿ = L2

f · h (x)

...

y(r−1) = L(r−1)
f · h (x)

yr = ∂
∂x

(
L(r−1)

f · h (x)
) •

x

= Lr
f · h (x) + Lg · Lr−1

f · h (x) · u

(39)
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Calculate the Relative Degree of the Induction Motor System The relative degree
ri of system corresponding to outputs yi of the induction machine to the relationship
(33) is given as follows:

(a) Relative degree of module rotor flux

h1(x) = (x23 + x24 ) (40)

From Eq. (36), derived the Eq. (40) found:

ḣ1(x) = a31.(x1.x3 + x2x4) + a33.(x23 + x24 ) (41)

The first derivative of h1 (x) does not involve the input v. then it must derive a second
time, as find in Eq. (39).

ḣ1 = (x1x3 + x2x4).(a11a33 + 3a33a31) − (x2x3 − x1x4).(a31a34) + (x23 + x24 ).
(2.a2

33 + a13a31) + a31b11x3U1 + a31b11x4U2
(42)

The U1, U2 commands appear after the second derivative; therefore, the relative
degree with respect to h1(x) is r1 = 2.

(b) Relative degree of the rotation speed.

h2(x) = �r (43)

From Eq. (36), derived the Eq. (43) found:

ḣ2(x) = μ.(x2.x3 − x1.x4) − cr

J
(44)

Again the first derivative of h2 (x) does not involve the input v. then it must derive
a second time, as find in Eq. (39).

ḧ2 = �̇ = J · μ · a34 · (x1 · x3 + x2 · x4) − J · μ · a14 · (
x23 + x24

) + +J · μ · b11
(x3 · U2 − x4 · U1) + J · μ · (a11 + a33) · (x2 · x3 − x1 · x4)

(45)
The U1, U2 commands appear at the end of the second derivative, so the relative

degree with respect to h2 (x) is r2 = 2 .
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Anti-synchronization of Identical Chaotic
Systems Using Sliding Mode Control and
an Application to Vaidyanathan–Madhavan
Chaotic Systems

Sundarapandian Vaidyanathan and Ahmad Taher Azar

Abstract Anti-synchronization is an important type of synchronization of a pair
of chaotic systems called the master and slave systems. The anti-synchronization
characterizes the asymptotic vanishing of the sum of the states of the master and
slave systems. In other words, anti-synchronization of master and slave system is
said to occur when the states of the synchronized systems have the same absolute
values but opposite signs. Anti-synchronization has applications in science and
engineering. This work derives a general result for the anti-synchronization of
identical chaotic systems using sliding mode control. The main result has been
proved using Lyapunov stability theory. Sliding mode control (SMC) is well-known
as a robust approach and useful for controller design in systems with parameter
uncertainties. Next, as an application of the main result, anti-synchronizing con-
troller has been designed for Vaidyanathan–Madhavan chaotic systems (2013). The
Lyapunov exponents of the Vaidyanathan–Madhavan chaotic system are found as
L1 = 3.2226, L2 = 0 and L3 = −30.3406 and the Lyapunov dimension of the
novel chaotic system is found as DL = 2.1095. The maximal Lyapunov exponent
of the Vaidyanathan–Madhavan chaotic system is L1 = 3.2226. As an application
of the general result derived in this work, a sliding mode controller is derived for
the anti-synchronization of the identical Vaidyanathan–Madhavan chaotic systems.
MATLAB simulations have been provided to illustrate the qualitative properties of
the novel 3-D chaotic system and the anti-synchronizer results for the identical novel
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1 Introduction

Chaos is an interesting phenomenon of nonlinear dynamical systems. Chaotic sys-
tems are nonlinear dynamical systems which are sensitive to initial conditions, topo-
logically mixing and with dense periodic orbits. Sensitivity to initial conditions of
chaotic systems is popularly known as the butterfly effect. Small changes in an initial
state will make a very large difference in the behavior of the system at future states.
Chaotic behaviour was suspected well over hundred years ago in the study of three
bodies problem, but it was established only a few decades ago in the study of 3-D
weather models (Lorenz 1963).

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the maximal Lyapunov exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Since the discovery of Lorenz system in 1963, there is a great deal of interest in
the chaos literature in finding new chaotic systems. Some well-known paradigms of
3-D chaotic systems in the literature are (Arneodo et al. 1981; Cai and Tan 2007;
Chen and Ueta 1999; Chen and Lee 2004; Li 2008; Liu et al. 2004; Lü and Chen
2002; Rössler 1976; Sprott 1994; Sundarapandian and Pehlivan 2012; Tigan and
Opris 2008; Vaidyanathan 2013a, b, 2014; Zhou et al. 2008; Zhu et al. 2010).

Chaotic systems have several important applications in science and engineering
such as oscillators (Kengne et al. 2012; Sharma et al. 2012), lasers (Li et al. 2014;
Yuan et al. 2014), chemical reactions (Gaspard 1999; Petrov et al. 1993), cryptosys-
tems (Rhouma and Belghith 2011; Usama et al. 2010), secure communications (Feki
2003; Murali and Lakshmanan 1998; Zaher and Abu-Rezq 2011), biology (Das et al.
2014; Kyriazis 1991), ecology (Gibson and Wilson 2013; Suérez 1999), robotics
(Mondal and Mahanta 2014; Nehmzow and Walker 2005; Volos et al. 2013),
cardiology (Qu 2011; Witte and Witte 1991), neural networks (Huang et al. 2012;
Kaslik and Sivasundaram 2012; Lian and Chen 2011), finance (Guégan 2009; Sprott
2004), etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

Major works on synchronization of chaotic systems deal with the complete syn-
chronization (CS) which has the goal of using the output of the master system to
control the slave system so that the output of the slave system tracks the output of the
master system asymptotically. Thus, if x(t) and y(t) denote the states of the master
and slave systems, then the design goal of complete synchronization (CS) problem
is to satisfy the condition
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lim
t→∞ ‖x(t) − y(t)‖ = 0, ∀x(0), y(0) ∈ IRn (1)

Anti-synchronization (AS) is an important type of synchronization of a pair of
chaotic systems called the master and slave systems. The anti-synchronization char-
acterizes the asymptotic vanishing of the sum of the states of the master and slave
systems. In other words, anti-synchronization of master and slave system is said to
occur when the states of the synchronized systems have the same absolute values
but opposite signs. Thus, if x(t) and y(t) denote the states of the master and slave
systems, then the design goal of anti-synchronization problem (AS) is to satisfy the
condition

lim
t→∞ ‖x(t) + y(t)‖ = 0, ∀x(0), y(0) ∈ IRn (2)

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s (Carroll and Pecora 1991; Pecora and Carroll
1990). The active control method (Liu et al. 2007; Rafikov and Balthazar 2007;
Sundarapandian 2010; Ucar et al. 2007; Vaidyanathan 2012c; Wang and Liu 2006)
is commonly used when the system parameters are available for measurement and
the adaptive control method (Wu et al. 2008; Huang 2008; Lin 2008; Sarasu and
Sundarapandian 2012a, b, c) is commonly used when some or all the system para-
meters are not available for measurement and estimates for unknown parameters of
the systems.

Other popular methods for chaos synchronization are the sampled-data feedback
method (Gan and Liang 2012; Li et al. 2011; Xiao et al. 2014; Zhang and Zhou
2012), time-delay feedback method (Chen et al. 2014; Jiang et al. 2004; Shahverdiev
et al. 2009; Shahverdiev and Shore 2009), backstepping method (Njah et al. 2010;
Tu et al. 2014; Vaidyanathan 2012a; Zhang et al. 2004), etc.

Complete synchronization (Rasappan and Vaidyanathan 2012; Suresh and Sun-
darapandian2013;Vaidyanathan andRajagopal 2011) is characterizedby the equality
of state variables evolving in time, while anti-synchronization (Vaidyanathan 2011,
2012b; Vaidyanathan and Sampath 2012) is characterized by the disappearance of
the sum of relevant state variables evolving in time.

This research work is organized as follows. Section2 gives a brief introduc-
tion about sliding mode control. Section3 discusses the problem statement for the
anti-synchronization of two identical chaotic systems and our design methodology.
Section4 contains the main result of this work, namely, sliding controller design
for the global anti-synchronization of identical chaotic systems. Our sliding mode
control law is designed by considering constant-plus-proportional sliding law. The
main result for the global anti-synchronization of chaotic systems is established using
Lyapunov stability theory.

Section5 introduces the Vaidyanathan–Madhavan chaotic system (Vaidyanathan
and Madhavan 2013), which is a seven-term novel 3-D chaotic system with three
quadratic nonlinearities. Section details the qualitative properties of the
Vaidyanathan–Madhavan 3-D chaotic system. The Lyapunov exponents of the
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Vaidyanathan–Madhavan chaotic system are found as L1 = 3.2226, L2 = 0 and
L3 = −30.3406 and the Lyapunov dimension of the novel chaotic system is found
as DL = 2.1095. The maximal Lyapunov exponent of the Vaidyanathan–Madhavan
chaotic system is L1 = 3.2226.

In Sect. 7, we describe the sliding mode controller design for the global anti-
synchronization of identical Vaidyanathan–Madhavan chaotic systems. MATLAB
simulations are shown to validate and illustrate the slidingmode controller design for
the anti-synchronization of the Vaidyanathan–Madhavan chaotic systems. Section8
contains a summary of the main results derived in this research work.

2 Sliding Mode Control and Chaos Anti-synchronization

In control theory, the sliding mode control approach is recognized as an efficient tool
for designing robust controllers for linear or nonlinear control systems operating
under uncertainty conditions (Perruquetti and Barbot 2002; Utkin 1992).

The started steps of sliding mode control theory originated in the early 1950s and
thiswas initiated byS.V. Emel’yanov asVariable Structure Control (Itkis 1976;Utkin
1978; Zinober 1993). Variable structure control (VSC) is a form of discontinuous
nonlinear control and this method alters the dynamics of a nonlinear system by
application of a high-frequency switching control.

Slidingmode controlmethod has amajor advantage of low sensitivity to parameter
variations in the plant and disturbances affecting the plant, which eliminates the
necessity of exact modeling of the plant.

In the slidingmode control theory, the control dynamics has two sequentialmodes,
viz. (i) the reaching mode, and (ii) the sliding mode. Basically, a sliding mode con-
troller (SMC) design consists of two parts: hyperplane (or sliding surface) design
and controller design.

A hyperplane is first designed via the pole-placement approach in the modern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall control system is ensured by the sliding condition and by a
stable hyperplane. Sliding mode control theory has been used to deal with many
research problems of control literature (Bidarvatan et al. 2014; Feng et al. 2014;
Hamayun et al. 2013; Lu et al. 2014; Ouyang et al. 2014; Zhang et al. 2014).

3 Problem Statement

This section gives a problem statement of global anti-synchronization of a pair of
identical chaotic systems called the master and slave systems.

The master system is taken as the chaotic system

ẋ = Ax + f (x), (3)
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where x ∈ IRn is the state of the system, A is the n × n matrix of system parameters
and f is a vector field that contains the nonlinear parts of the system and satisfies
f (0) = 0.
The slave system is taken as the controlled chaotic system

ẏ = Ay + f (y) + u, (4)

where y ∈ IRn is the state of the system, and u is the controller to be determined.
The anti-synchronization error between the master and slave systems is defined

by
e = y + x (5)

Differentiating (5) and simplifying, the error dynamics is obtained as

ė = Ae + η(x, y) + u (6)

where

η(x, y) = f (x) + f (y) (7)

The design problem is to determine a feedback control u so that the anti-
synchronization error dynamics (6) is globally asymptotically stable at the origin
for all initial conditions e(0) ∈ IRn .

For the SMC design for the global anti-synchronization of the systems (3) and
(4), the control u is taken as

u(t) = −η(x, y) + Bv(t), (8)

where B is an (n × 1) column vector chosen such that (A, B) is controllable.
Upon substituting (8) into (6), the closed-loop error system is obtained as

ė(t) = Ae(t) + Bv(t), (9)

which is a linear time-invariant control system with a single input v.
Hence, by the use of the nonlinear control law (8), original problem of global

anti-synchronization of identical chaotic systems (3) and (4) has been converted into
an equivalent problem of globally stabilizing the error dynamics (9).

4 Sliding Controller Design for Global Anti-synchronization

This section derives the main result, viz. sliding controller design for the global
anti-synchronization of the identical chaotic systems (3) and (4). After applying the
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control (8) with (A, B) a controllable pair, it is supposed that the nonlinear error
dynamics (6) has been simplified as the linear error dynamics (9).

In the sliding controller design, the sliding variable is first defined as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (10)

where C is an (1 × n) row vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ IRn : s(e) = Ce = 0} (11)

If a slidingmotion occurs on S, then the slidingmode conditionsmust be satisfied,
which are given by

s ≡ 0 and ṡ = C Ae + C Bv = 0 (12)

It is assumed that the row vector C is chosen so that C B �= 0.
The sliding motion is affected by the so-called equivalent control given by

veq(t) = −(C B)−1C Ae(t) (13)

As a consequence, the equivalent dynamics in the sliding phase is defined by

ė =
[

I − B(C B)−1C
]

Ae = Ee, (14)

where

E =
[

I − B(C B)−1C
]

A (15)

It can be easily verified that E is independent of the control and has at most
(n − 1) nonzero eigenvalues, depending on the chosen switching surface, while the
associated eigenvectors belong to ker(C).

Since (A, B) is controllable, the matrices B and C can be chosen so that E has
any desired (n − 1) stable eigenvalues.

Thus, the dynamics in the sliding mode is globally asymptotically stable.
Finally, for the sliding mode controller (SMC) design, the constant plus propor-

tional rate reaching law is used, which is given by

ṡ = −β sgn(s) − αs (16)

where sgn(·) denotes the sign function and the gains α > 0, β > 0 are found so that
the sliding condition is satisfied and the sliding motion will occur.

From the Eqs. (12) and (16), sliding control v is found as
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C Ae + C Bv = −β sgn(s) − αs (17)

Since s = Ce, the Eq. (17) can be simplified to get

v = −(C B)−1 [
C(α I + A)e + β sgn(s)

]
(18)

Next, the main result of this section is established as follows.

Theorem 1 A sliding mode control law that achieves global anti-synchronization
between the identical chaotic systems (3) and (4) for all initial conditions x(0), y(0)
in IRn is given by the equation

u(t) = −η(x(t), y(t)) + Bv(t), (19)

where v is defined by (18), B is an (n × 1) vector such that (A, B) is controllable,
C is an (1 × n) vector such that C B �= 0 and that the matrix E defined by Eq. (15)
has (n − 1) stable eigenvalues.

Proof The proof is carried out using Lyapunov stability theory (Khalil 2001).
Substituting the sliding control law (19) into the error dynamics (6) leads to

ė = Ae + Bv (20)

Substituting for v from (18) into (20), the error dynamics is obtained as

ė = Ae − B(C B)−1 [
C(α I + A)e + β sgn(s)

]
(21)

The global asymptotic stability of the error system (21) is proved by taking the
candidate Lyapunov function

V (e) = 1

2
s2(e), (22)

which is a non-negative definite function on IRn .
It is noted that

V (e) = 0 ⇐⇒ s(e) = 0 (23)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (24)

By the choice of E , the dynamics in the sliding mode given by (14) is globally
asymptotically stable.

When s(e) �= 0, V (e) > 0.
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Also, when s(e) �= 0, differentiating V along the error dynamics (21) or the
equivalent dynamics (16), the following dynamics is obtained:

V̇ = sṡ = −βs sgn(s) − αs2 < 0 (25)

Hence, by Lyapunov stability theory (Khalil 2001), it is concluded that the error
dynamics (21) is globally asymptotically stable for all initial conditions e(0) ∈ IRn .

This completes the proof. ��

5 Vaidyanathan–Madhavan 3-D Chaotic System

This section describes the equations and phase portraits of Vaidyanathan–Madhavan
3-D chaotic system (Vaidyanathan and Madhavan 2013).

The Vaidyanathan–Madhavan chaotic system is a described by the 3-D dynamics

ẋ1 = a(x2 − x1) + x2x3,
ẋ2 = bx1 + cx1x3,
ẋ3 = −dx3 − x1x2 − x21 ,

(26)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
The system (26) is a seven-term polynomial chaotic system with three quadratic

nonlinearities.
The system (26) depicts a strange chaotic attractor when the constant parameter

values are taken as

a = 22, b = 400, c = 50, d = 0.5 (27)

For simulations, the initial values of the Vaidyanathan–Madhavan chaotic system
(26) are taken as

x1(0) = 0.6, x2(0) = 1.8, x3(0) = 1.2 (28)

The novel 3-D chaotic system (26) exhibits a 2-scroll chaotic attractor. Figure1
describes the 2-scroll chaotic attractor of the Vaidyanathan–Madhavan chaotic sys-
tem (26) in 3-D view.

Figure2 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x1, x2)-plane. In the projection
on the (x1, x2)-plane, a 2-scroll chaotic attractor is clearly seen.

Figure3 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x2, x3)-plane. In the projection
on the (x2, x3)-plane, a 2-scroll chaotic attractor is clearly seen.
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Fig. 1 Strange attractor of the Vaidyanathan–Madhavan chaotic system in IR3
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Fig. 2 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x1, x2)-plane

Figure4 describes the 2-D projection of the strange chaotic attractor of the
Vaidyanathan–Madhavan chaotic system (26) in (x1, x3)-plane. In the projection
on the (x1, x3)-plane, a 2-scroll chaotic attractor is clearly seen.
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Fig. 3 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x2, x3)-plane
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Fig. 4 2-D projection of the Vaidyanathan–Madhavan chaotic system in (x1, x3)-plane

6 Analysis of the Vaidyanathan–Madhavan Chaotic System

This section gives the qualitative properties of the Vaidyanathan–Madhavan 3-D
chaotic system (2013).

6.1 Symmetry and Invariance

The Vaidyanathan system (26) is invariant under the coordinates transformation
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(x1, x2, x3) → (−x1,−x2, x3). (29)

The transformation (29) persists for all values of the system parameters. Thus,
the Vaidyanathan system (26) has rotation symmetry about the x3-axis.

Hence, it follows that any non-trivial trajectory of the system (26) must have a
twin trajectory.

It is easy to check that the x3-axis is invariant for the flow of the Vaidyanathan
system (26). Hence, all orbits of the system (26) starting from the x3 axis stay in the
x3 axis for all values of time.

6.2 Equilibria

The equilibrium points of the Vaidyanathan–Madhavan system (26) are obtained by
solving the nonlinear equations

f1(x) = a(x2 − x1) + x2x3 = 0
f2(x) = bx1 + cx1x3 = 0
f3(x) = −dx3 − x1x2 − x21 = 0

(30)

We take the parameter values as in the chaotic case, viz.

a = 22, b = 400, c = 50, d = 0.5 (31)

Solving the nonlinear system of Eqs. (30) with the parameter values (31), we
obtain three equilibrium points of the Vaidyanathan–Madhavan system (26) as

E0 =
⎡
⎣ 0
0
0

⎤
⎦ , E1 =

⎡
⎣ 1.2472

1.9599
−8.0000

⎤
⎦ and E2 =

⎡
⎣−1.2472

−1.9599
−8.0000

⎤
⎦ . (32)

The Jacobian matrix of the Vaidyanathan system (26) at (x�
1, x�

2, x�
3) is obtained

as

J (x�) =
⎡
⎢⎣

−22 22 + x�
3 x�

2

400 + 50x�
3 0 50x�

1

−x�
2 − 2x�

1 −x�
1 −0.5

⎤
⎥⎦ (33)

The Jacobian matrix at E0 is obtained as

J0 = J (E0) =

⎡
⎢⎢⎢⎣

−22 22 0

400 0 0

0 0 −0.5

⎤
⎥⎥⎥⎦ (34)
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The matrix J0 has the eigenvalues

λ1 = −0.5, λ2 = −105.451, λ3 = 83.451 (35)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian matrix at E1 is obtained as

J1 = J (E1) =
⎡
⎢⎣

−22 14 1.9599

0 0 62.36

−4.4543 −1.2472 −0.5

⎤
⎥⎦ (36)

The matrix J1 has the eigenvalues

λ1 = −26.7022, λ2,3 = 2.1011 ± 14.3283i (37)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian matrix at E2 is obtained as

J2 = J (E2) =
⎡
⎢⎣

−22 14 −1.9599

0 0 −62.36

4.4543 1.2472 −0.5

⎤
⎥⎦ (38)

The matrix J2 has the eigenvalues

λ1 = −26.7022, λ2,3 = 2.1011 ± 14.3283i (39)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
Hence, E0, E1, E2 are all unstable equilibrium points of the Vaidyanathan–

Madhavan chaotic system (26), where E0 is a saddle point and E1, E2 are saddle-
focus points.

6.3 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the Vaidyanathan–Madhavan system as in (28) and
the parameter values of the Vaidyanathan–Madhavan system as (27).

Then the Lyapunov exponents of the Vaidyanathan system (26) are numerically
obtained as

L1 = 3.3226, L2 = 0, L3 = −30.3406 (40)

Thus, the maximal Lyapunov exponent of the Vaidyanathan–Madhavan system
(26) is L1 = 3.3226.
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Fig. 5 Dynamics of the lyapunov exponents of the Vaidyanathan–Madhavan system

Since L1 + L2 + L3 = −27.018 < 0, the system (26) is dissipative.
Also, the Lyapunov dimension of the system (26) is obtained as

DL = 2 + L1 + L2

|L3| = 2.1095 (41)

Figure5 depicts the dynamics of the Lyapunov exponents of the Vaidyanathan–
Madhavan system (26).

7 Anti-synchronization of Vaidyanathan–Madhavan
Chaotic Systems via SMC

This section details the construction of an anti-synchronizer for identical
Vaidyanathan–Madhavan chaotic systems via sliding mode control method.

The master system is taken as the Vaidyanathan–Madhavan system given by
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ẋ1 = a(x2 − x1) + x2x3
ẋ2 = bx1 + cx1x3
ẋ3 = −dx3 − x1x2 − x21

(42)

where a, b, c, d are constant, positive parameters.
The slave system is also taken as the Vaidyanathan–Madhavan system with con-

trollers attached and given by

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = by1 + cy1y3 + u2

ẏ3 = −dy3 − y1y2 − y21 + u3

(43)

where u1, u2, u3 are sliding controllers to be found.
The anti-synchronization error is defined by

e = y + x (44)

Then the error dynamics is obtained as

ė1 = a(e2 − e1) + y2y3 + x2x3 + u1

ė2 = be1 + c(y1y3 + x1x3) + u2

ė3 = −de3 − y1y2 − x1x2 − y21 − x21 + u3

(45)

The error dynamics (45) can be expressed in matrix form as

ė = Ae + η(x, y) + u (46)

where

A =
⎡
⎢⎣

−a a 0

b 0 0

0 0 −d

⎤
⎥⎦ , η(x, y) =

⎡
⎢⎣

y2y3 + x2x3
c(y1y3 + x1x3)

−y1y2 − x1x2 − y21 − x21

⎤
⎥⎦ , u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦
(47)

The parameter values of a, b, c, d are taken as in the chaotic case, i.e.

a = 22, b = 400, c = 50, d = 0.5 (48)

First, the control u is set as

u = −η(x, y) + Bv, (49)

where B is chosen such that (A, B) is controllable.
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A simple choice for B is

B =
⎡
⎣1
1
1

⎤
⎦ (50)

The sliding variable is picked as

s = Ce = [
1 2 −2

]
e = e1 + 2e2 − 2e3 (51)

The choice of the sliding variable indicated by (51) renders the sliding mode
dynamics globally asymptotically stable.

Next, we choose the SMC gains as

α = 6 and β = 0.2 (52)

Using the formula (18), the control v is obtained as

v(t) = −784e1 − 34e2 + 11e3 − 0.2 sgn(s) (53)

As a consequence of Theorem 1 (Sect. 4), the following result is obtained.

Theorem 2 The control law defined by (49), where v is defined by (53), renders the
Vaidyanathan systems (42) and (43) globally and asymptotically anti-synchronized
for all values of the initial states x(0), y(0) ∈ IR3.

For numerical simulations, the classical fourth-order Runge-Kutta method with
step-size h = 10−8 is used in the MATLAB software.

The parameter values are taken as in the chaotic case of the Vaidyanathan systems
(42) and (43), i.e.

a = 22, b = 400, c = 50, d = 0.5

The sliding mode gains are taken as α = 6 and β = 0.2.
The initial values of the master system (42) are taken as

x1(0) = 5.2, x2(0) = 2.7, x3(0) = −3.2

The initial values of the slave system (43) are taken as

y1(0) = 3.4, y2(0) = 3.1, y3(0) = −8.4

Figures. 6, 7 and 8 show the anti-synchronization of the Vaidyanathan systems
(42) and (43). Figure9 shows the time-history of the anti-synchronization errors
e1, e2 and e3.

In Fig. 6, it is seen that the odd states x1(t) and y1(t) are anti-synchronized in 1 s.
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Fig. 6 Anti-synchronization of the states x1 and y1
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Fig. 7 Anti-synchronization of the states x2 and y2

In Fig. 7, it is seen that the even states x2(t) and y2(t) are anti-synchronized in
1 s.

In Fig. 8, it is seen that the odd states x3(t) and y3(t) are anti-synchronized in 1 s.
Figure9 shows the time-history of the anti-synchronization errors e1, e2 and e3.

It is seen that the anti-synchronization errors converge to zero in 1 s.
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Fig. 8 Anti-synchronization of the states x3 and y3
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Fig. 9 Time-history of the anti-synchronization errors e1, e2, e3

8 Conclusions

A general result has been derived in this work for the anti-synchronization of iden-
tical chaotic systems using sliding mode control. The main result has been proved
using Lyapunov stability theory. Sliding mode control (SMC) is well-known as a
robust approach and useful for controller design in systems with parameter uncer-
tainties. Next, as an application of the main result, anti-synchronizing controller
has been designed for Vaidyanathan–Madhavan chaotic systems (2013). The Lya-
punov exponents of the Vaidyanathan–Madhavan chaotic system were found as
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L1 = 3.2226, L2 = 0 and L3 = −30.3406 and the Lyapunov dimension of the
novel chaotic system was found as DL = 2.1095. The maximal Lyapunov exponent
of the Vaidyanathan–Madhavan chaotic system was found as L1 = 3.2226. As an
application of the general result derived in this work, a sliding mode controller has
been derived for the anti-synchronization of the identical Vaidyanathan–Madhavan
chaotic systems. MATLAB simulations have been provided to illustrate the qualita-
tive properties of the novel 3-D chaotic system and the anti-synchronizer results for
the identical novel 3-D chaotic systems. As future research, adaptive sliding mode
controllers may be devised for the anti-synchronization of identical chaotic systems
with unknown system parameters.
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Hybrid Synchronization of Identical Chaotic
Systems Using Sliding Mode Control
and an Application to Vaidyanathan
Chaotic Systems

Sundarapandian Vaidyanathan and Ahmad Taher Azar

Abstract Hybrid phase synchronization is a new type of synchronization of a pair of
chaotic systems called themaster and slave systems. In hybrid phase synchronization,
the odd numbered states of themaster and slave systems are completely synchronized
(CS), while their even numbered states are anti-synchronized (AS). The hybrid phase
synchronization has applications in secure communications and cryptosystems. This
work derives a new result for the hybrid phase synchronization of identical chaotic
systems using slidingmode control. Themain result has been proved using Lyapunov
stability theory. Sliding mode control (SMC) is well-known as a robust approach and
useful for controller design in systems with parameter uncertainties. As an applica-
tion of this general result, a sliding mode controller is derived for the hybrid phase
synchronization of the identical 3-D Vaidyanathan chaotic systems (2014). MAT-
LAB simulations have been provided to illustrate the Vaidyanathan system and the
hybrid synchronizer results for the identical Vaidyanathan systems.

1 Introduction

Chaotic behaviour is an important feature, which is observed in some nonlinear
dynamical systems. Chaotic behaviour was suspected well over hundred years ago
in the study of three bodies problem, but it was established only a few decades ago
in the study of 3-D weather models (Lorenz 1963).

A chaotic system is usually characterized by its extreme sensitivity of behavior to
initial conditions. Small changes in an initial state will make a very large difference
in the behavior of the system at future states.
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The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the maximal Lyapunov exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

In 1963, Lorenz found out that a very small difference in the initial conditions of
his 3-D deterministic weather model led to large changes in the phase space (Lorenz
1963). This was followed by the discoveries of many well-known paradigms of 3-D
chaotic systems in the literature (Rössler 1976; Arneodo et al. 1981; Sprott 1994;
Chen and Ueta 1999; Lü and Chen 2002; Liu et al. 2004; Cai and Tan 2007; Chen
and Lee 2004; Tigan and Opris 2008; Zhou et al. 2008; Sundarapandian and Pehlivan
2012; Vaidyanathan 2013a, b, 2014).

Chaotic systems have several applications in science and engineering. Some
important applications can be mentioned as cryptosystems (Usama et al. 2010;
Rhouma andBelghith 2011), secure communications (Murali andLakshmanan 1998;
Feki 2003; Zaher and Abu-Rezq 2011), chemical reactions (Petrov et al. 1993; Gas-
pard 1999), oscillators (Kengne et al. 2012; Sharma et al. 2012), lasers (Yuan et al.
2014; Li et al. 2014), biology (Das et al. 2014; Kyriazis 1991), ecology (Suérez 1999;
Gibson and Wilson 2013), robotics (Nehmzow and Walker 2005; Volos et al. 2013;
Mondal and Mahanta 2014), cardiology (Qu 2011; Witte and Witte 1991), neural
networks (Kaslik and Sivasundaram 2012; Huang et al. 2012; Lian and Chen 2011),
finance (Sprott 2004; Guégan 2009), etc.

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

The master-slave or drive-response formalism is used in most of the chaos syn-
chronization approaches. If a particular chaotic system is called the master or drive
system and another chaotic system is called the slave or response system, then the
goal of chaos synchronization is to use the output of the master system to control the
slave system so that the output of the slave system tracks the output of the master
system asymptotically.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s (Pecora and Carroll 1990; Carroll and Pecora
1991). The active control method (Ucar et al. 2007; Liu et al. 2007; Sundarapan-
dian 2010; Vaidyanathan 2012c; Wang and Liu 2006; Rafikov and Balthazar 2007)
is commonly used when the system parameters are available for measurement and
the adaptive control method (Wu et al. 2008; Huang 2008; Lin 2008; Sarasu and
Sundarapandian 2012a, b, c) is commonly used when some or all the system para-
meters are not available for measurement and estimates for unknown parameters of
the systems.

Other popular methods for chaos synchronization are the sampled-data feedback
method (Xiao et al. 2014; Zhang and Zhou 2012; Li et al. 2011; Gan and Liang
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2012), time-delay feedback method (Shahverdiev and Shore 2009; Jiang et al. 2004;
Chen et al. 2014; Shahverdiev et al. 2009), backstepping method (Njah et al. 2010;
Tu et al. 2014; Zhang et al. 2004; Vaidyanathan 2012a), etc.

Complete synchronization (Vaidyanathan and Rajagopal 2011a; Rasappan and
Vaidyanathan 2012a; Suresh andSundarapandian 2013) is characterized by the equal-
ity of state variables evolving in time, while anti-synchronization (Vaidyanathan
2011; Vaidyanathan and Sampath 2012; Vaidyanathan 2012b) is characterized by
the disappearance of the sum of relevant state variables evolving in time.

In hybrid synchronization of the master and slave systems, the odd numbered
states of the two systems are completely synchronized while the even numbered
states are anti-synchronized so that the complete synchronization (CS) and anti-
synchronization (AS) co-exist in the synchronization process. Thus, the hybrid syn-
chronization (Vaidyanathan and Rajagopal 2011b; Sundarapandian and Karthikeyan
2012; Karthikeyan and Sundarapandian 2014; Rasappan and Vaidyanathan 2012b)
is an important type of synchronization of chaotic systems, which has applications
in secure communication devices.

This research work is organized as follows. Section2 gives a basic introduc-
tion into sliding mode control and chaos synchronization. Section3 discusses the
problem statement for the synchronization of two identical chaotic systems and our
design methodology. Section4 contains the main result of this work, namely, sliding
controller design for the global chaos synchronization of identical chaotic systems.
Section5 summarizes the qualitative properties of the Vaidyanathan chaotic system
(Vaidyanathan 2014). In Sect. 6, we describe the sliding mode controller design for
the global chaos synchronization of identical Vaidyanathan systems. MATLAB sim-
ulations are shown to validate and illustrate the sliding mode controller design for
the synchronization of the Vaidyanathan systems. Section7 contains a summary of
the main results derived in this research work.

2 Sliding Mode Control and Chaos Synchronization

In control theory, the sliding mode control approach is recognized as an efficient tool
for designing robust controllers for linear or nonlinear control systems operating
under uncertainty conditions (Perruquetti and Barbot 2002; Utkin 1992).

Slidingmode controlmethod has amajor advantage of low sensitivity to parameter
variations in the plant and disturbances affecting the plant, which eliminates the
necessity of exact modeling of the plant.

In the slidingmode control theory, the control dynamics has two sequentialmodes,
viz. (i) the reaching mode, and (ii) the sliding mode. Basically, a sliding mode con-
troller (SMC) design consists of two parts: hyperplane (or sliding surface) design
and controller design.

A hyperplane is first designed via the pole-placement approach in the modern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall control system is ensured by the sliding condition and by a sta-
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ble hyperplane. Slidingmode control theory has been used to dealwithmany research
problems of control literature (Feng et al. 2014; Ouyang et al. 2014; Bidarvatan et al.
2014; Lu et al. 2014; Zhang et al. 2014; Hamayun et al. 2013).

3 Problem Statement

This section gives a problem statement of global hybrid-phase synchronization of a
pair of identical chaotic systems called the master and slave systems.

The master system is taken as the chaotic system

ẋ = Ax + f (x), (1)

where x ∈ IRn is the state of the system, A is the n × n matrix of system parameters
and f is a vector field that contains the nonlinear parts of the system and satisfies
f (0) = 0.
The slave system is taken as the controlled chaotic system

ẏ = Ay + f (y) + u, (2)

where y ∈ IRn is the state of the system, and u is the controller to be determined.
The hybrid synchronization error is defined by

ei =
{

yi − xi if i is odd

yi + xi if i is even
(3)

Differentiating (3) and simplifying, the error dynamics is obtained as

ė = Ae + η(x, y) + u (4)

The design problem is to determine a feedback control u so that the error dynamics
(4) is globally asymptotically stable at the origin for all initial conditions e(0) ∈ IRn .

For the SMC design for the hybrid phase synchronization of the systems (1) and
(2), the control u is taken as

u(t) = −η(x, y) + Bv(t), (5)

where B is an (n × 1) column vector chosen such that (A, B) is controllable.
Upon substituting (5) into (4), the closed-loop error system is obtained as

ė(t) = Ae(t) + Bv(t), (6)

which is a linear time-invariant control system with a single input v.
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Hence, by the use of the nonlinear control law (5), original problem of hybrid
phase synchronization of identical chaotic systems (1) and (2) has been converted
into an equivalent problem of globally stabilizing the error dynamics (6).

4 Sliding Controller Design for Hybrid Phase Synchronization

This section derives the main result, viz. sliding controller design for the hybrid
phase synchronization of the identical chaotic systems (1) and (2). After applying
the control (5) with (A, B) a controllable pair, it is supposed that the nonlinear error
dynamics (4) has been simplified as the linear error dynamics (6).

In the sliding controller design, the sliding variable is first defined as

s(e) = Ce = c1e1 + c2e2 + · · · + cnen, (7)

where C is an (1 × n) row vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {e ∈ IRn : s(e) = Ce = 0} (8)

If a slidingmotion occurs on S, then the slidingmode conditionsmust be satisfied,
which are given by

s ≡ 0 and ṡ = C Ae + C Bv = 0 (9)

It is assumed that the row vector C is chosen so that C B �= 0.
The sliding motion is affected by the so-called equivalent control given by

veq(t) = −(C B)−1C Ae(t) (10)

As a consequence, the equivalent dynamics in the sliding phase is defined by

ė =
[

I − B(C B)−1C
]

Ae = Ee, (11)

where

E =
[

I − B(C B)−1C
]

A (12)

It can be easily verified that E is independent of the control and has at most
(n − 1) nonzero eigenvalues, depending on the chosen switching surface, while the
associated eigenvectors belong to ker(C).

Since (A, B) is controllable, the matrices B and C can be chosen so that E has
any desired (n − 1) stable eigenvalues.
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Thus, the dynamics in the sliding mode is globally asymptotically stable.
Finally, for the sliding mode controller (SMC) design, the constant plus propor-

tional rate reaching law is used, which is given by

ṡ = −β sgn(s) − αs (13)

where sgn(·) denotes the sign function and the gains α > 0, β > 0 are found so that
the sliding condition is satisfied and the sliding motion will occur.

From the equations (9) and (13), sliding control v is found as

C Ae + C Bv = −β sgn(s) − αs (14)

Since s = Ce, the equation (14) can be simplified to get

v = −(C B)−1 [
C(α I + A)e + β sgn(s)

]
(15)

Next, the main result of this section is established as follows.

Theorem 1 A sliding mode control law that achieves hybrid phase synchroniza-
tion between the identical chaotic systems (1) and (2) for all initial conditions
x(0), y(0) ∈ IRn is given by the equation

u(t) = −η(x(t), y(t)) + Bv(t), (16)

where v is defined by (15), B is an (n × 1) vector such that (A, B) is controllable,
C is an (1 × n) vector such that C B �= 0 and that the matrix E defined by Eq. (12)
has (n − 1) stable eigenvalues.

Proof The proof is carried out using Lyapunov stability theory (Khalil 2001).
Substituting the sliding control law (16) into the error dynamics (4) leads to

ė = Ae + Bv (17)

Substituting for v from (15) into (17), the error dynamics is obtained as

ė = Ae − B(C B)−1 [
C(α I + A)e + β sgn(s)

]
(18)

The global asymptotic stability of the error system (18) is proved by taking the
candidate Lyapunov function

V (e) = 1

2
s2(e), (19)

which is a non-negative definite function on IRn .



Hybrid Synchronization of Identical Chaotic Systems Using Sliding … 555

It is noted that

V (e) = 0 ⇐⇒ s(e) = 0 (20)

The sliding mode motion is characterized by the equations

s(e) = 0 and ṡ(e) = 0 (21)

By the choice of E , the dynamics in the sliding mode given by (11) is globally
asymptotically stable.

When s(e) �= 0, V (e) > 0.
Also, when s(e) �= 0, differentiating V along the error dynamics (18) or the

equivalent dynamics (13), the following dynamics is obtained:

V̇ = sṡ = −βs sgn(s) − αs2 < 0 (22)

Hence, by Lyapunov stability theory (Khalil 2001), it is concluded that the error
dynamics (18) is globally asymptotically stable for all initial conditions e(0) ∈ IRn .

This completes the proof. ��

5 Analysis of the Vaidyanathan Chaotic System

This section gives details and qualitative properties of the Vaidyanathan chaotic
system (Vaidyanathan 2014), which is a novel eight-term 3-D polynomial system
with three quadratic nonlinearities.

The Vaidyanathan 3-D chaotic system is a polynomial system described by

ẋ1 = a(x2 − x1) + x2x3,
ẋ2 = bx1 + cx2 − x1x3,
ẋ3 = −dx3 + x21 ,

(23)

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
TheVaidyanathan system (23) depicts a strange chaotic attractorwhen the constant

parameter values are taken as

a = 25, b = 33, c = 11, d = 6. (24)

For simulations, the initial values of the Vaidyanathan system (23) are taken as

x1(0) = 1.5, x2(0) = 3.2, x3(0) = 2.7 (25)



556 S. Vaidyanathan and A.T. Azar

−100
−50

0
50

100

−100

−50

0

50

100
0

50

100

150

200

250

x
1

x
2

x 3

Fig. 1 Strange attractor of the Vaidyanathan system in IR3

The Vaidyanathan 3-D chaotic system (23) exhibits a 3-scroll chaotic attractor.
Figure1 describes the 3-scroll chaotic attractor of the Vaidyanathan system (23) in
3-D view.

Figure2 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x1, x2)-plane. In the projection on the (x1, x2)-plane, a 3-scroll
chaotic attractor is clearly seen.

Figure3 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x2, x3)-plane. In the projection on the (x2, x3)-plane, a 3-scroll
chaotic attractor is clearly seen.

Figure4 describes the 2-D projection of the strange chaotic attractor of the novel
system (23) in (x1, x3)-plane. In the projection on the (x2, x3)-plane, a 3-scroll
chaotic attractor is clearly seen.

5.1 Symmetry and Invariance

The Vaidyanathan system (23) is invariant under the coordinates transformation

(x1, x2, x3) → (−x1,−x2, x3). (26)

The transformation (26) persists for all values of the system parameters. Thus,
the Vaidyanathan system (23) has rotation symmetry about the x3-axis.
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558 S. Vaidyanathan and A.T. Azar

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

50

100

150

200

250

x
1

x 3

Fig. 4 2-D projection of the Vaidyanathan system in (x1, x3)-plane

Hence, it follows that any non-trivial trajectory of the system (23) must have a
twin trajectory.

It is easy to check that the x3-axis is invariant for the flow of the Vaidyanathan
system (23). Hence, all orbits of the system (23) starting from the x3 axis stay in the
x3 axis for all values of time.

5.2 Equilibria

For the parameter values in (24), the Vaidyanathan system (23) has three equilibrium
points given by

E1 =
⎡
⎣0
0
0

⎤
⎦ , E2 =

⎡
⎣14.9813

6.0015
37.4066

⎤
⎦ and E3 =

⎡
⎣−14.9813

−6.0015
37.4066

⎤
⎦ . (27)

The Jacobian matrix of the Vaidyanathan system (23) at (x�
1, x�

2, x�
3) is obtained

as
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J (x�) =

⎡
⎢⎢⎢⎣

−25 25 + x�
3 x�

2

33 − x�
3 11 −x�

1

2x�
1 0 −6

⎤
⎥⎥⎥⎦ (28)

The Jacobian matrix at E1 is obtained as

J1 = J (E1) =

⎡
⎢⎢⎢⎣

−25 25 0

33 11 0

0 0 −6

⎤
⎥⎥⎥⎦ (29)

The matrix J1 has the eigenvalues

λ1 = −40.8969, λ2 = −6, λ3 = 26.8969 (30)

This shows that the equilibrium point E1 is a saddle-point.
The Jacobian matrix at E2 is obtained as

J2 = J (E2) =

⎡
⎢⎢⎢⎣

−25 62.4066 6.0015

−4.4066 11 −14.9813

29.9626 0 −6

⎤
⎥⎥⎥⎦ (31)

The matrix J2 has the eigenvalues

λ1 = −40.5768, λ2,3 = 10.2884 ± 25.1648i (32)

This shows that the equilibrium point E2 is a saddle-focus.
The Jacobian matrix at E3 is obtained as

J3 = J (E3) =

⎡
⎢⎢⎢⎣

−25 62.4066 −6.0015

−4.4066 11 14.9813

−29.9626 0 −6

⎤
⎥⎥⎥⎦ (33)

The matrix J3 has the eigenvalues

λ1 = −40.5768, λ2,3 = 10.2884 ± 25.1648i (34)

This shows that the equilibrium point E3 is a saddle-focus.
Hence, all the three equilibria of the Vaidyanathan system (23) are unstable.
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5.3 Lyapunov Exponents and Lyapunov Dimension

For the parameter values as given by Eq. (24) and the initial state as given by Eq. (25),
the Lyapunov exponents of the Vaidyanathan system (23) are numerically obtained
as

L1 = 6.5023, L2 = 0, L3 = −26.4352 (35)

Thus, the maximal Lyapunov exponent of the Vaidyanathan system (23) is L1 =
6.5023.

Since L1 + L2 + L3 = −19.9329 < 0, the system (23) is dissipative.
Also, the Lyapunov dimension of the Vaidyanathan system (23) is obtained as

DL = 2 + L1 + L2

|L3| = 2.2467 (36)

which is fractional.
Figure5 depicts the dynamics of the Lyapunov exponents of the Vaidyanathan

system (23).
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6 SMC Design of Synchronization of Vaidyanathan
Chaotic Systems

This section details the construction of a hybrid synchronizer for identical
Vaidyanathan chaotic systems via sliding mode control method.

The master system is taken as the Vaidyanathan system given by

ẋ1 = a(x2 − x1) + x2x3

ẋ2 = bx1 + cx2 − x1x3

ẋ3 = −dx3 + x21

(37)

where a, b, c, d are constant, positive parameters.
The slave system is also taken as the Vaidyanathan system with controllers

attached and given by

ẏ1 = a(y2 − y1) + y2y3 + u1

ẏ2 = by1 + cy2 − y1y3 + u2

ẏ3 = −dy3 + y21 + u3

(38)

where u1, u2, u3 are sliding controllers to be found.
The hybrid phase synchronization error is defined by

e1 = y1 − x1
e2 = y2 + x2
e3 = y3 − x3

(39)

Then the error dynamics is obtained as

ė1 = a(e2 − e1) − 2ax2 + y2y3 − x2x3 + u1

ė2 = be1 + ce2 + 2bx1 − y1y3 − x1x3 + u2

ė3 = −de3 + y21 − x21 + u3

(40)

The error dynamics (40) can be expressed in matrix form as

ė = Ae + η(x, y) + u (41)

where

A =
⎡
⎢⎣

−a a 0

b c 0

0 0 −d

⎤
⎥⎦ , η(x, y) =

⎡
⎢⎣

−2ax2 + y2y3 − x2x3
2bx1 − y1y3 + x1x3

y21 − x21

⎤
⎥⎦ , u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ (42)
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A hybrid synchronizing sliding controller can be designed by the procedure out-
lined in Sect. 5.

The parameter values of a, b, c, d are taken as in the chaotic case, i.e.

a = 25, b = 33, c = 11, d = 6. (43)

First, the control u is set as

u = −η(x, y) + Bv, (44)

where B is chosen such that (A, B) is controllable.
A simple choice for B is

B =
⎡
⎣1
1
1

⎤
⎦ (45)

The sliding variable is picked as

s = Ce = [
1 2 −1

]
e = e1 + 2e2 − e3 (46)

Then the matrix E defined by (12) has the eigenvalues

λ1 = −47, λ2 = −20, λ3 = 0 (47)

The choice of the sliding variable indicated by (46) renders the sliding mode
dynamics globally asymptotically stable.

Next, we choose the SMC gains as

α = 6, β = 0.2 (48)

Using the formula (15), the control v is obtained as

v(t) = −23.5e1 − 29.5e2 − 0.1 sgn(s) (49)

As a consequence of Theorem 1 (Sect. 4), the following result is obtained.

Theorem 2 The control law defined by (44), where v is defined by (49), renders
the Vaidyanathan systems (37) and (38) globally and asymptotically hybrid phase
synchronized for all values of the initial states x(0), y(0) ∈ IR3. ��

For numerical simulations, the classical fourth-order Runge-Kutta method with
step-size h = 10−8 is used in the MATLAB software.

The parameter values are taken as in the chaotic case of the Vaidyanathan systems
(37) and (38), i.e.
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a = 25, b = 33, c = 11, d = 6

The sliding mode gains are taken as

α = 6 and β = 0.2

The initial values of the master system (37) are taken as

x1(0) = 2.5, x2(0) = −3.7, x3(0) = −3.2

The initial values of the slave system (38) are taken as

y1(0) = 4.3, y2(0) = −1.6, y3(0) = 2.4

Figures6, 7 and 8 show the hybrid synchronization of the Vaidyanathan systems
(37) and (38).

In Fig. 6, it is seen that the odd states x1(t) and y1(t) are completely synchronized
in 0.5 s.

In Fig. 7, it is seen that the even states x2(t) and y2(t) are anti-synchronized in
0.5 s.

In Fig. 8, it is seen that the odd states x3(t) and y3(t) are completely synchronized
in 0.5 s.
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Fig. 6 Hybrid synchronization of the states x1 and y1
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Figure9 shows the time-history of the hybrid synchronization errors e1, e2 and
e3. It is seen that the hybrid synchronization errors converge to zero in 0.5 s. Thus,
the sliding controller for hybrid synchronization of identical Vaidyanathan systems
yields very fast convergence.

7 Conclusions

Hybrid phase synchronization is a new type of synchronization of a pair of chaotic
systems called the master and slave systems, where the odd states are completely
synchronized and the even states anti-synchronized. In this research work, a general
theorem has been developed for the hybrid phase synchronization of identical chaotic
systems via sliding mode controller. The main result was proved using Lyapunov
stability theory. As an application of our general result, a sliding mode controller
has been designed for the hybrid phase synchronization of identical Vaidyanathan
chaotic systems (2014). MATLAB simulations were shown to illustrate the qual-
itative properties of the Vaidyanathan system and the hybrid synchronizer results
for the identical Vaidyanathan systems. As future research, adaptive sliding mode
controllers may be devised for the hybrid chaos synchronization of identical chaotic
systems with unknown system parameters.
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Global Chaos Control of a Novel Nine-Term
Chaotic System via Sliding Mode Control
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Abstract Chaotic systems are nonlinear dynamical systemswhich are very sensitive
to even small changes in the initial conditions. The control of chaotic systems is to
design state feedback control laws that stabilize the chaotic systems around the
unstable equilibrium points. This work derives a general result for the global chaos
control of novel chaotic systems using slidingmode control. Themain result has been
proved using Lyapunov stability theory. Sliding mode control (SMC) is well-known
as a robust approach and useful for controller design in systems with parameter
uncertainties. Next, a novel nine-term 3-D chaotic system has been proposed in this
paper and its properties have been detailed. The Lyapunov exponents of the novel
chaotic system are found as L1 = 6.8548, L2 = 0 and L3 = −32.8779 and the
Lyapunov dimension of the novel chaotic system is found as DL = 2.2085. The
maximal Lyapunov exponent of the novel chaotic system is L1 = 6.8548. As an
application of the general result derived in this work, a sliding mode controller is
derived for the global chaos control of the identical novel chaotic systems.MATLAB
simulations have been provided to illustrate the qualitative properties of the novel 3-D
chaotic system and the sliding controller results for the stabilizing control developed
for the novel 3-D chaotic system.
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1 Introduction

Chaotic systems are nonlinear dynamical systems which are very sensitive to even
small changes in the initial conditions. Sensitivity to initial conditions of chaotic
systems is popularly known as the butterfly effect. Small changes in an initial state
will make a very large difference in the behavior of the chaotic system at future
states.

Chaotic systems are nonlinear dynamical systems which are sensitive to initial
conditions, topologically mixing and with dense periodic orbits.

Chaotic behaviour was suspected well over 100years ago in the study of three
bodies problem, but it was established only a few decades ago in the study of 3-D
weather models (Lorenz 1963).

The Lyapunov exponent is a measure of the divergence of phase points that are
initially very close and can be used to quantify chaotic systems. It is common to
refer to the largest Lyapunov exponent as the maximal Lyapunov exponent (MLE).
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system. A chaotic system is also defined
as a nonlinear dynamical system having at least one positive Lyapunov exponent.

Since the discovery of Lorenz system in 1963, there is a great deal of interest
in the chaos literature in finding new chaotic systems. Some well-known paradigms
of 3-D chaotic systems in the literature are Rössler (1976), Arneodo et al. (1981),
Sprott (1994), Chen and Ueta (1999), Lü and Chen (2002), Liu et al. (2004), Cai
and Tan (2007), Chen and Lee (2004), Tigan and Opris (2008), Zhou et al. (2008),
Sundarapandian and Pehlivan (2012), Vaidyanathan (2013a, b, 2014), Zhu et al.
(2010), Li (2008).

This paper introduces a novel nine-term 3-D chaotic system having four non-
linearities. The Lyapunov exponents of the novel 3-D chaotic system are found as
L1 = 6.8548, L2 = 0 and L3 = −32.8779 and the Lyapunov dimension of the
novel chaotic system is found as DL = 2.2085. The maximal Lyapunov exponent
of the novel chaotic system is L1 = 6.8548.

Chaotic systems have several important applications in science and engineering
such as oscillators (Kengne et al. 2012; Sharma et al. 2012), lasers (Yuan et al. 2014;
Li et al. 2014), chemical reactions (Petrov et al. 1993; Gaspard 1999), cryptosystems
(Usama et al. 2010; Rhouma and Belghith 2011), secure communications (Murali
and Lakshmanan 1998; Feki 2003; Zaher and Abu-Rezq 2011), biology (Das et al.
2014; Kyriazis 1991), ecology (Suérez 1999; Gibson and Wilson 2013), robotics
(Nehmzow and Walker 2005; Volos et al. 2013; Mondal and Mahanta 2014), cardi-
ology (Qu 2011; Witte and Witte 1991), neural networks (Kaslik and Sivasundaram
2012; Huang et al. 2012; Lian and Chen 2011), finance (Sprott 2004; Guégan 2009),
etc.

The control of chaotic systems is to design state feedback control laws that stabilize
the chaotic systems around the unstable equilibrium pints. Chaos and control of
chaotic dynamical systems that have both received great attention in the last few
decades (Alekseev and Loskutov 1987; Lima and Pettini 1990; Weeks and Burgess



Global Chaos Control of a Novel Nine-Term Chaotic System … 573

1997; Lima and Pettini 1998; Basios et al. 1998; Mirus and Sprott 1999; Ge et al.
2000; Sun and Cao 2008; Sundarapandian and Pehlivan 2012).

Synchronizationof chaotic systems is a phenomenon that occurswhen twoormore
chaotic systems are coupled or when a chaotic system drives another chaotic system.
Because of the butterfly effectwhich causes exponential divergence of the trajectories
of two identical chaotic systems started with nearly the same initial conditions, the
synchronization of chaotic systems is a challenging research problem in the chaos
literature.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s (Pecora and Carroll 1990; Carroll and Pecora
1991). The active control method (Ucar et al. 2007; Liu et al. 2007; Sundarapan-
dian 2010; Vaidyanathan 2012c; Wang and Liu 2006; Rafikov and Balthazar 2007)
is commonly used when the system parameters are available for measurement and
the adaptive control method (Wu et al. 2008; Huang 2008; Lin 2008; Sarasu and
Sundarapandian 2012a, b, c) is commonly used when some or all the system para-
meters are not available for measurement and estimates for unknown parameters of
the systems.

Other popular methods for chaos synchronization are the sampled-data feedback
method (Xiao et al. 2014; Zhang and Zhou 2012; Li et al. 2011; Gan and Liang
2012), time-delay feedback method (Shahverdiev and Shore 2009; Jiang et al. 2004;
Chen et al. 2014; Shahverdiev et al. 2009), backstepping method (Njah et al. 2010;
Tu et al. 2014; Zhang et al. 2004; Vaidyanathan 2012a), etc.

Complete synchronization (Vaidyanathan and Rajagopal 2011; Rasappan and
Vaidyanathan 2012; Suresh and Sundarapandian 2013) is characterized by the equal-
ity of state variables evolving in time, while anti-synchronization (Vaidyanathan
2011; Vaidyanathan and Sampath 2012; Vaidyanathan 2012b) is characterized by
the disappearance of the sum of relevant state variables evolving in time.

Both control and synchronization of chaotic systems are important research prob-
lems. This work deals with the global chaos control of the chaotic systems. Explicitly,
sliding mode control theory has been used for the derivation of state feedback-based
sliding controllers for the global stabilization of the chaotic systems about the unsta-
ble equilibrium points.

This research work is organized as follows. Section2 gives an introduction to
sliding mode control for global chaos control of nonlinear control systems. Section3
contains the main result of this work, namely, sliding controller design for the
global chaos control of chaotic systems. Section4 introduces the novel nine-term
3-D chaotic system with four quadratic nonlinearities. Section5 details the quali-
tative properties of the novel 3-D chaotic system. The Lyapunov exponents of the
novel chaotic system are found as L1 = 6.8548, L2 = 0 and L3 = −32.8779 and
the Lyapunov dimension of the novel chaotic system is found as DL = 2.2085.
The maximal Lyapunov exponent of the novel chaotic system is L1 = 6.8548. In
Sect. 6, we describe the sliding mode controller design for the global chaos control
of the novel nine-term 3-D chaotic system. Section7 contains a summary of the main
results derived in this research work.
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2 Sliding Mode Controller for Global Chaos Control

In control theory, the sliding mode control approach is recognized as an efficient tool
for designing robust controllers for linear or nonlinear control systems operating
under uncertainty conditions (Perruquetti and Barbot 2002; Utkin 1992).

The basic steps of sliding mode control theory originated in the early 1950s and
thiswas initiated byS.V. Emel’yanov asVariable Structure Control (Itkis 1976;Utkin
1978; Zinober 1993). Variable structure control (VSC) is a form of discontinuous
nonlinear control and this method alters the dynamics of a nonlinear system by
application of a high-frequency switching control. The state-feedback control law
is not a continuous function of time and it switches from one smooth condition to
another. So the structure of the variable structure control law varies based on the
position of the state trajectory.

Slidingmode controlmethod has amajor advantage of low sensitivity to parameter
variations in the plant and disturbances affecting the plant, which eliminates the
necessity of exact modeling of the plant.

In the slidingmode control theory, the control dynamics has two sequentialmodes,
viz. (i) the reaching mode, and (ii) the sliding mode.

Basically, a sliding mode controller (SMC) design consists of two parts: hyper-
plane (or sliding surface) design and controller design.

A hyperplane is first designed via the pole-placement approach in the modern
control theory and a controller is then designed based on the sliding condition. The
stability of the overall control system is ensured by the sliding condition and by a
stable hyperplane.

Sliding mode control theory has been used to deal with many research problems
of control literature (Feng et al. 2014; Ouyang et al. 2014; Bidarvatan et al. 2014;
Lu et al. 2014; Zhang et al. 2014; Hamayun et al. 2013).

3 Sliding Mode Controller Design for Global
Chaos Control

In this work, we consider a controlled chaotic system given by the dynamics

ẋ = Ax + f (x) + u, (1)

where x ∈ IRn is the state of the system, A is the n × n matrix of system parameters
and f is a vector field that contains the nonlinear parts of the system and satisfies
f (0) = 0. Also, u is the sliding mode controller to be designed.
The design problem is to determine a feedback control u so that the plant dynamics

(1) is globally asymptotically stable at the origin for all initial conditions x(0) ∈ IRn .
For the SMC design for the global chaos control of the system (1), the control u

is taken as

u(t) = − f (x) + Bv(t) (2)
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In Eq. (2), B is an (n × 1) column vector chosen such that (A, B) is controllable.
Upon substituting (2) into (1), the closed-loop plant dynamics is obtained as

ẋ = Ax + Bv, (3)

which is a linear time-invariant control system with a single input v.
Hence, by the use of the nonlinear control law (2), original problemof global chaos

control of the chaotic system (1) has been converted into an equivalent problem of
globally stabilizing the linear dynamics (3).

In the sliding controller design, the sliding variable is first defined as

s(x) = Cx = c1x1 + c2x2 + · · · + cn xn, (4)

where C is an (1 × n) row vector to be determined.
The sliding manifold S is defined as the hyperplane

S = {x ∈ IRn : s(x) = Cx = 0} (5)

If a slidingmotion occurs on S, then the slidingmode conditionsmust be satisfied,
which are given by

s ≡ 0 and ṡ = C Ax + C Bv = 0 (6)

It is assumed that the row vector C is chosen so that C B �= 0.
The sliding motion is affected by the so-called equivalent control given by

veq(t) = −(C B)−1C Ax(t) (7)

As a consequence, the equivalent dynamics in the sliding phase is defined by

ẋ =
[

I − B(C B)−1C
]

Ax = Ex, (8)

where

E =
[

I − B(C B)−1C
]

A (9)

It can be easily verified that E is independent of the control and has at most
(n − 1) nonzero eigenvalues, depending on the chosen switching surface, while the
associated eigenvectors belong to ker(C).

Since (A, B) is controllable, the matrices B and C can be chosen so that E has
any desired (n − 1) stable eigenvalues.

Thus, the dynamics in the sliding mode is globally asymptotically stable.
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Finally, for the sliding mode controller (SMC) design, the constant plus propor-
tional rate reaching law is used, which is given by

ṡ = −β sgn(s) − αs (10)

where sgn(·) denotes the sign function and the gains α > 0, β > 0 are found so that
the sliding condition is satisfied and the sliding motion will occur.

From the Eqs. (6) and (10), sliding control v is found as

C Ax + C Bv = −β sgn(s) − αs (11)

Since s = Cx , the Eq. (11) can be simplified to get

v = −(C B)−1 [
C(α I + A)x + β sgn(s)

]
(12)

Next, the main result of this section is established as follows.

Theorem 1 A sliding mode control law that achieves global chaos control for the
chaotic system (1) for all initial conditions x(0) in IRn is given by the equation

u(t) = − f (x(t)) + Bv(t), (13)

where v is defined by (12), B is an (n × 1) vector such that (A, B) is controllable,
C is an (1 × n) vector such that C B �= 0 and that the matrix E defined by Eq. (9)
has (n − 1) stable eigenvalues.

Proof The proof is carried out using Lyapunov stability theory (Khalil 2001).
Substituting the sliding control law (13) into the plant dynamics (1) leads to the

closed-loop dynamics

ẋ = Ax + Bv (14)

Substituting for v from (12) into (14), the closed-loopplant dynamics is obtained as

ẋ = Ax − B(C B)−1 [
C(α I + A)x + β sgn(s)

]
(15)

The global asymptotic stability of the error system (15) is proved by taking the
candidate Lyapunov function

V (x) = 1

2
s2(x), (16)

which is a non-negative definite function on IRn .
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It is noted that

V (x) = 0 ⇐⇒ s(x) = 0 (17)

The sliding mode motion is characterized by the equations

s(x) = 0 and ẋ(e) = 0 (18)

By the choice of E , the dynamics in the sliding mode given by (8) is globally
asymptotically stable.

When s(x) �= 0, V (x) > 0.
Also, when s(x) �= 0, differentiating V along the plant dynamics (15) or the

equivalent dynamics (10), the following dynamics is obtained:

V̇ = sṡ = −βs sgn(s) − αs2 < 0 (19)

Hence, by Lyapunov stability theory (Khalil 2001), it is concluded that the closed-
loop plant dynamics (15) is globally asymptotically stable for all initial conditions
x(0) ∈ IRn .

This completes the proof. ��

4 A Novel 3-D Chaotic System

The nine-term novel chaotic system is a described by the 3-D dynamics

ẋ1 = a(x2 − x1) − x2x3, (20)

ẋ2 = bx1 − x2 − x1x3,

ẋ3 = −cx3 + d(x22 − x21 ),

where x1, x2, x3 are the states and a, b, c, d are constant, positive, parameters.
The system (20) is a nine-term polynomial chaotic system with four quadratic

nonlinearities.
The system (20) depicts a strange chaotic attractor when the constant parameter

values are taken as

a = 22, b = 600, c = 3, d = 11 (21)

For simulations, the initial values of the novel 3-D chaotic system (20) are taken
as

x1(0) = 1.6, x2(0) = 0.8, x3(0) = 1.2 (22)



578 S. Vaidyanathan et al.

−10
−5

0
5

10

−30
−20

−10
0

10
20

30
0

50

100

150

x
1

x
2

x 3

Fig. 1 Strange attractor of the novel chaotic system in IR3
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Fig. 2 2-D projection of the novel chaotic system in (x1, x2)-plane

The novel 3-D chaotic system (20) exhibits a three-scroll chaotic attractor. Figure1
describes the three-scroll chaotic attractor of the novel chaotic system (20) in 3-D
view.

Figure2 describes the 2-D projection of the strange chaotic attractor of the novel
system (20) in (x1, x2)-plane. In the projection on the (x1, x2)-plane, a three-scroll
chaotic attractor is clearly seen.

Figure3 describes the 2-D projection of the strange chaotic attractor of the novel
system (20) in (x2, x3)-plane. In the projection on the (x2, x3)-plane, a three-scroll
chaotic attractor is clearly seen.



Global Chaos Control of a Novel Nine-Term Chaotic System … 579

−30 −20 −10 0 10 20 30
0

50

100

150

x
2

x 3

Fig. 3 2-D projection of the novel chaotic system in (x2, x3)-plane
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Fig. 4 2-D projection of the novel chaotic system in (x1, x3)-plane

Figure4 describes the 2-D projection of the strange chaotic attractor of the novel
system (20) in (x1, x3)-plane. In the projection on the (x2, x3)-plane, a three-scroll
chaotic attractor is clearly seen.

Combining, Figs. 1, 2, 3, and 4 represent a strongly chaotic system given by (20).
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5 Analysis of the Novel 3-D Chaotic System

This section gives the qualitative properties of the novel 3-D chaotic system.

5.1 Dissipativity

In vector notation, the system (20) can be expressed as

ẋ = f (x) =
⎡
⎣ f1(x)

f2(x)

f3(x)

⎤
⎦ (23)

where

f1(x) = a(x2 − x1) − x2x3
f2(x) = bx1 − x2 − x1x3

f3(x) = −cx3 + d(x22 − x21 ) (24)

The divergence of the vector field f on IR3 is given by

∇ · f = ∂ f1(x)

∂x1
+ ∂ f2(x)

∂x2
+ ∂ f3(x)

∂x3
(25)

Let Ω be any region in IR3 with a smooth boundary. Let Ω(t) = �t (Ω), where
Ωt is the flow of f . Let V (t) denote the volume of Ω(t).

Liouville’s theorem gives the result

V̇ (t) =
∫

Ω(t)

(∇ · f ) dx1 dx2 dx3 (26)

The divergence of the flow of the novel system (20) is determined as

∇ · f = ∂ f1(x)

∂x1
+ ∂ f2(x)

∂x2
+ ∂ f3(x)

∂x3
= −a − 1 − c = −μ < 0 (27)

where

μ = a + 1 + c > 0 (28)

as a, b, c, d are positive parameters.
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Substituting the value of (∇ · f ) in (26), it follows that

V̇ (t) =
∫

Ω(t)

(−μ) dx1 dx2 dx3 = −μV (t) (29)

Integration of the linear differential Eq. (29) yields

V (t) = exp(−μt)V (0) (30)

Since μ > 0, it follows from Eq. (30) that V (t) → 0 exponentially as t → ∞.
Thus, the novel 3-D chaotic system (20) is dissipative. Thus, the system limit sets
are ultimately confined into a specific limit set of zero volume, and the asymptotic
motion of the novel chaotic system (30) settles onto a strange attractor of the system.

5.2 Symmetry and Invariance

The novel chaotic system (20) is invariant under the coordinates transformation

(x1, x2, x3) → (−x1,−x2, x3). (31)

The transformation (31) persists for all values of the system parameters. Thus,
the novel system (20) has rotation symmetry about the x3-axis. As a consequence,
any non-trivial trajectory of the system (20) must have a twin trajectory.

It is easy to check that the x3-axis is invariant for the flow of the novel chaotic
system (20). Hence, all orbits of the system (20) starting from the x3 axis stay in the
x3 axis for all values of time.

5.3 Equilibria

The equilibrium points of the novel 3-D chaotic system (20) are obtained by solving
the nonlinear equations

f1(x) = a(x2 − x1) − x2x3 = 0

f2(x) = bx1 − x2 − x1x3 = 0

f3(x) = −cx3 + d(x22 − x21 ) = 0 (32)

We take the parameter values as in the chaotic case, viz.

a = 22, b = 600, c = 3, d = 11 (33)
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Solving the nonlinear system of equations (32) with the parameter values (33),
the equilibrium points of the novel chaotic system (20) are obtained as

E0 =
⎡
⎣ 0
0
0

⎤
⎦ , E1 =

⎡
⎣ 0.0042

2.4474
21.9619

⎤
⎦ and E2 =

⎡
⎣−0.0042

−2.4474
21.9619

⎤
⎦ . (34)

The Jacobian matrix of the novel chaotic system (20) at (x�
1, x�

2, x�
3) is obtained

as

J (x�) =
⎡
⎢⎣

−22 22 − x�
3 −x�

2

600 − x�
3 −1 −x�

1

−22x�
1 22x�

2 −3

⎤
⎥⎦ (35)

The Jacobian matrix at E0 is obtained as

J0 = J (E0) =
⎡
⎣−22 22 0

600 −1 0
0 0 −3

⎤
⎦ (36)

The matrix J0 has the eigenvalues

λ1 = −126.8701, λ2 = −3, λ3 = 103.8701 (37)

This shows that the equilibrium point E0 is a saddle-point, which is unstable.
The Jacobian matrix at E1 is obtained as

J1 = J (E1) =
⎡
⎢⎣

−22.0000 0.0381 −2.4474

578.0381 −1.0000 −0.0042

−0.0924 53.8428 −3.0000

⎤
⎥⎦ (38)

The matrix J1 has the eigenvalues

λ1 = −52.4131, λ2,3 = 13.2065 ± 35.7625i (39)

This shows that the equilibrium point E1 is a saddle-focus, which is unstable.
The Jacobian matrix at E2 is obtained as

J2 = J (E2) =
⎡
⎢⎣

−22.0000 0.0381 2.4474

578.0381 −1.0000 0.0042

0.0924 −53.8428 −3.0000

⎤
⎥⎦ (40)
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The matrix J2 has the eigenvalues

λ1 = −52.4131, λ2,3 = 13.2065 ± 35.7625i (41)

This shows that the equilibrium point E2 is a saddle-focus, which is unstable.
Hence, E0, E1, E2 are all unstable equilibrium points of the novel 3-D chaotic

system (20), where E0 is a saddle point and E1, E2 are saddle-focus points.

5.4 Lyapunov Exponents and Lyapunov Dimension

We take the initial values of the novel chaotic system (20) as in (22) and the parameter
values of the novel chaotic system (20) as (21).

Then the Lyapunov exponents of the novel chaotic system (20) are numerically
obtained as

L1 = 6.8548, L2 = 0, L3 = −32.8779 (42)

Thus, the maximal Lyapunov exponent of the novel chaotic system (20) is L1 =
6.8548.

Since L1 + L2 + L3 = −26.0231 < 0, the system (20) is dissipative.
Also, the Lyapunov dimension of the system (20) is obtained as

DL = 2 + L1 + L2

|L3| = 2.2085 (43)

Figure5 depicts the dynamics of the Lyapunov exponents of the novel chaotic
system (20).
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Fig. 5 Dynamics of the Lyapunov exponents of the novel chaotic system
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6 Global Chaos Control of the Novel Chaotic System via SMC

This section details the construction of a sliding mode controller for the global chaos
control of the novel 3-D chaotic system (20).

Thus, the controlled novel chaotic system is taken as

ẋ1 = a(x2 − x1) − x2x3 + u1, (44)

ẋ2 = bx1 − x2 − x1x3 + u2,

ẋ3 = −cx3 + d(x22 − x21 ) + u3,

where a, b, c, d are constant, positive parameters and u1, u2, u3 are the sliding con-
trollers to be designed.

The plant dynamics (44) can be expressed in matrix form as

ẋ = Ax + f (x) + u (45)

where

A =
⎡
⎢⎣

−a a 0

b −1 0

0 0 −c

⎤
⎥⎦ , f (x) =

⎡
⎢⎣

−x2x3
−x1x3

d(x22 − x21 )

⎤
⎥⎦ , u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ (46)

The parameter values of a, b, c, d are taken as in the chaotic case, i.e.

a = 22, b = 600, c = 3, d = 11 (47)

First, the control u is set as

u = − f (x) + Bv, (48)

where B is chosen such that (A, B) is controllable.
A simple choice for B is

B =
⎡
⎣1
1
1

⎤
⎦ (49)

The sliding variable is picked as

s = Cx = [
1 2 −2

]
x = x1 + 2x2 − 2x3 (50)

The choice of the sliding variable indicated by (50) renders the sliding mode
dynamics globally asymptotically stable.
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Next, we choose the SMC gains as

α = 5 and β = 0.2 (51)

Using the formula (12), the control v is obtained as

v(t) = −1183x1 − 30x2 + 4x3 − 0.2sgn(s) (52)

As a consequence of Theorem1 (Sect. 3), the following result is obtained.

Theorem 2 The control law defined by (48), where v is defined by (52), renders the
novel 3-D chaotic system (44) globally and asymptotically stable for all values of
the initial states x(0) ∈ IR3. ��

For numerical simulations, the classical fourth-order Runge–Kutta method with
step-size h = 10−8 is used in the MATLAB software.

The parameter values are taken as in the chaotic case for the novel chaotic system
(44), i.e.

a = 22, b = 600, c = 3, d = 11

The sliding mode gains are taken as α = 5 and β = 0.2.
The initial values of the master system (44) are taken as

x1(0) = 5.4 x2(0) = 8.5, x3(0) = −4.7

Figure6 shows the global chaos control of the novel chaotic system (44). It is
clear from Fig. 6 that the controlled states x1(t), x2(t) and x3(t) converge to zero in
1.5 s.
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Fig. 6 Time-history of the controlled states x1(t), x2(t), x3(t)
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7 Conclusions

The control of chaotic systems is to design state feedback control laws that stabilize
the chaotic systems around the unstable equilibrium points. In this work, a general
result has been derived for the global chaos control of chaotic systems using sliding
mode control. The main result has been proved using Lyapunov stability theory.
Sliding mode control (SMC) is well-known as a robust approach and useful for
controller design in systems with parameter uncertainties. Next, as an application
of the main result, a global chaos controller has been derived for the nine-term
polynomial novel 3-Dchaotic systemproposed in thiswork.TheLyapunovexponents
of the novel chaotic systemwere found as L1 = 6.8548, L2 = 0 and L3 = −32.8779
and the Lyapunov dimension of the novel chaotic systemwas found as DL = 2.2085.
The maximal Lyapunov exponent of the novel chaotic system was found as L1 =
6.8548. As an application of the general result derived in this work, a sliding mode
controller has been derived for the global chaos control of the novel 3-D chaotic
system. MATLAB simulations have been provided to depict the basic qualitative
properties of the novel 3-D chaotic system and the global controller results for the
novel chaotic system. As future research, adaptive sliding mode controllers may
be devised for the global chaos control of chaotic systems with unknown system
parameters.
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