

R.C.-H. Hsu and W. Shangguang (Eds.): IOV 2014, LNCS 8662, pp. 396–406, 2014.
© Springer International Publishing Switzerland 2014

An Adaptive Pre-copy Strategy
for Virtual Machine Live Migration

Ching-Hsien Hsu1,2, Sheng-Ju Peng1, Tzu-Yi Chan1,
Kenn Slagter3, and Yeh-Ching Chung3

1 Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu, 30012 Taiwan

{chh,m10102022,b10002099}@chu.edu.tw
2 School of Computer and Communication Engineering,

Tianjin University of Technology, Tianjin, 300384 China
3 Department of Computer Science, National Tsing Hua University, Hsinchu, 30013 Taiwan

{kennslagter,ychung}@cs.nthu.edu.tw

Abstract. Live migration technology for virtual machines provides greater
flexibility when scheduling tasks in a cloud environment. This flexibility helps
increase the utilization of resources within the cloud. A key component of live
migration technology is the pre-copy strategy. The pre-copy strategy allows
virtual machine to perform live migration without interruption of service.
However, in order for live migration to be efficient, it is imperative that virtual
machines' memories are not limited by bandwidth and that the downtime of the
virtual machines involved is minimal.

This paper presents an adaptive pre-copy strategy for virtual machine live
migration called Multi-Phase Pre-Copy (MPP). In iterative pre-copy stage MPP
transmits memory pages only when a predefined threshold is met. This strategy
significantly reduces unnecessary migration of memory pages.

Keywords: Virtualization, virtual machine, live migration, multi-phase pre-copy.

1 Introduction

Investment by businesses and governments has led to a rapid growth in cloud
computing research. Cloud computing applications use a combination of networked
computing resources and virtualization techniques and architecture. Virtualization is
achieved by having physical machines (called nodes) in the network run virtual
machines. These virtual machines can be divided up in different ways and can be asked
to perform different tasks.

Virtualization is a key technology in cloud computing. Consequently, effective
management of virtual machines and related technologies is required in order to make
efficient use of resources on the cloud. One of the ways to make efficient use of the
underlying hardware on the cloud is to dynamically transfer virtual machines throughout
the network in order to make better use of the resources on the network. Dynamic
transfer of virtual machines over the network is known as migration.

 An Adaptive Pre-copy Strategy for Virtual Machine Live Migration 397

Live migration technology is based on prevalent virtual machine migration
technology. Previous migration techniques required a short downtime of a system
whenever a virtual machine gets transferred over the network. The purpose of live
migration is to allow virtual machines to migrate elsewhere on the network without any
perceivable interruption of a service by the user.

Live migration of virtual machines can be divided into pre-copy and post-copy
methods. The most common live migration method is pre-copy. With the pre-copy
method a hypervisor copies all the memory pages from the source node to the
destination node while the virtual machine is running on the source node. With the
post-copy method the virtual machine is paused at the source, and the execution state of
the virtual machine is transferred to the target. Once the virtual machine is transferred
to the target the virtual machine resumes execution and the source pushes stored
memory pages to the target via a technique known as pre-paging.

Migration time for post-copy migration is relatively low compared to pre-copy
migration, but the overall downtime of the virtual machine in post-copy is longer than it
is for pre-copy. Therefore, this paper focuses on improving pre-copy migration. The
Xen hypervisor [1][2] is a well-known open source hypervisor used by industry and
academia that implements pre-copy migration. For these reasons, this paper focuses on
reducing downtime and total migration time when doing pre-copy migration by the Xen
hypervisor.

A drawback of the traditional Xen pre-copy migration process is that it repeatedly
copies memory pages and processor (CPU) states across the network. The copying of
memory page occurs when the data in the memory page changes, and becomes a dirty
page. Xen will send this dirty page to the target even if the dirty page remains
unchanged from the last time it was copied. Consequently, this prolongs the overall
migration time.

In this paper, we propose a new multi-phase pre-copy method (MPP) that reduces
the number of pages being shipped over the network, and reduces overall migration
time. MPP transfers pages over the network based on a set of threshold values which
determine if a page should be transferred to its target or not.

The rest of this paper is organized as follows. In Section 2 we discuss related work.
Section 3 presents some background. In Section 4, we present our proposed technique.
In Section 5, we present our performance evaluation. Finally, the conclusion and future
work are presented in Section 6.

2 Related Work

Virtual Machine Live Migration (VMLM) has become a hot topic in both academia and
industry. Topics on VMLM can be found in both practical applications as well as
research papers. Traditionally VMLM migrates the internal memory state, and
importantly involves memory image transfer. Some memory transfer research focuses
on handling the state of the virtual machine memory [3][4][5]. Additional research
by [5][6][7] provides a virtual machine management platform that provides an
uninterrupted service when migrating virtual machines.

Pre-copy algorithms [5][7] have been presented that enhance pre-copy efficiency for
when machine reads and writes are numerous. These algorithms focus on alleviating

398 C.-H. Hsu et al.

the amount of downtime that occurs due to the frequent number of dirty pages created
as a consequence. From a different perspective there is also research [8] that looks
into how bandwidth can be dynamically adjusted during VMLM in order to limit
network traffic.

To further improve the efficiency of the pre-copy algorithm [6] introduces
time-series prediction techniques. Time-series prediction is done by updating records
and using statistics each time a dirty page is sent from the source to the target. However,
the associated formula expects parameters used to define a page to be static even
though these parameters can easily change. Furthermore, even though the dirty page
threshold in its formula can significantly reduce pre-copy transmission times in
iterative rounds, it increases the downtime.

3 Background

Virtual machine migration has become an essential feature in cloud computing. There
are various reasons why virtual machine migration may be instigated including:
hardware maintenance, lack of resources, and load imbalance. Despite improved or
more stable performance after migration, it is best if there is no perceivable interruption
of service during migration by the user.

Virtual machine migration can be divided into two distinct categories: offline
migration and online migration. Online migration itself can be divided into two distinct
subcategories cold migration and live migration. Details of these two subcategories are
described below.

According to [9] when one migrates virtual machines on a virtual system one needs
to consider downtime and total migration time. Downtime is the time it takes a source
host to suspend a virtual machine until the time the virtual machine resumes on the
target host. In other words downtime refers to the time when the virtual machine is
unresponsive. Total migration time is the time from the start of the migration process
on the source host until the end of the migration process, which is after the time the
virtual machine resumes on the target host and once the source virtual machine has
been deactivated and discarded.

Fig. 1. Virtual Machine Migration Phase Diagram [4]

 An Adaptive Pre-copy Strategy for Virtual Machine Live Migration 399

Figure 1 shows the three different phases that occur during live migration [9], and
the relationship they have between each other and their effect on downtime and total
migration time. The phases that occur during virtual machine migration are:

1. Push phase: The source virtual machine continues to operate while content is
moved to the target.

2. Stop-and-copy phase: the source virtual machine stops executing. Any remaining
content found at the source is removed, following the move, the migrated virtual
machine on the target begins to operate.

3. Pull phase: a virtual machine system is up and running on the target host during
migration. Any content missing on the target is taken (pulled) from the source.

Fig. 2. The three ways migration is performed [4]

In general, there are three common ways that migration is performed [10]:

1. Simple copy: also known as “pure stop-and-copy” [11] halts the virtual machine at
the source, copies memory pages from the source to the target, and then starts a
new virtual machine on the target. The advantage of this approach is that it is the
simplest one to implement. However, the disadvantage of this approach is that
there must be a significant amount of downtime and overall migration time. How
long it takes to migrate depends on the size of the memory used by the virtual
machines.

2. Lazy copy: also known as “pure demand-migration”[12] uses a short stop-and-
copy phase to transfer over any vital kernel data to the target. The target virtual
machine is then started. Memory pages are then transferred over the network when
used for the first time due as a consequence of a page fault. The advantage of this
approach is that it has a much shorter downtime compared to the simple copy
method. However, the total migration time is lengthened. Furthermore, the
performance of the target virtual machine after migration will likely be poor until a
substantial number of pages have been transferred across.

400 C.-H. Hsu et al.

3. Pre-copy: balances the concerns found in simple copy and lazy copy methods. It
combines an iterative push phase with a typically short stop-and-copy phase.
During the iterative push phase pages are transferred in rounds to the virtual
machine ready for them to be of use in the subsequent round that needs them. Since
every virtual machine has a set of pages that are used often and are a poor
candidate for the pre-copy method the number of rounds is bounded based on
analysis of a writing working set.

Pre-copy live migration operation can be divided into six stages. Each stage

represents a different mode of operation.

1. Stage 0 Pre-migration: Prior to migration a host with sufficient resources is
selected.

2. Stage 1 Reservation: A request is made to migrate from the source to the target
host.

3. Stage 2 Iterative Pre-Copy: In the first iteration of the round, all source pages are
transferred to the host. Any pages that change (dirty pages) are then sent in
subsequent rounds.

4. Stage 3 Stop and Copy: Stops the virtual machine on the source machine and
redirects network traffic to the target machine. CPU state and any dirty memory
pages get transferred as well. Both source and target now have a suspended copy of
the virtual machine. The source virtual machine will resume if there is a failure.

5. Stage 4 Commitment: Target host informs the source host that it has received the
complete virtual machine image. The source host can now discard the old virtual
machine.

6. Stage 5 Activation: The virtual machine will now run as normal on the host
machine.

Xen’s iterative pre-copy stage categorizes used memory pages into three types of

bitmaps. These bitmaps are described as follows:

1. To_Send: marks the pages which were dirty on the previous round, this identifies
which pages need to be transmitted for the current iteration.

2. To_Skip: marks which pages can be ignored for the current iteration.
3. To_Fix: marks which pages should have been transmitted in the previous iteration.

These bitmaps represent those memory pages that need to be sent from the source

host to the target host. In the first round of the iterative process, the entire page of
memory within the virtual machine is sent. Those memory pages that are to be sent are
marked. It then determines whether pages that occur in the subsequent round of the
iterative process should be sent or skipped.

Xen’s iterative pre-copy stage has several termination conditions that ensure it
completes the stage in a timely manner. If any of these termination conditions are
satisfied the iterative pre-copy stage ends and the stop-and-copy stage begins. The
pre-copy termination conditions are as follows:

1. Less than 50 pages were dirtied during the last pre-copy iteration
2. 29 pre-copy iterations have been carried out.

 An Adaptive Pre-copy Strategy for Virtual Machine Live Migration 401

3. More than 3 times the total amount of memory allocated to the VM has been
copied from the source host to the target host.

If the first termination condition is satisfied there will be a short downtime. This is

because the final iteration will send only a small number of dirty pages from the source
to the target. If the second or third condition is satisfied there will be a longer
downtime. This is because there will be a forced migration, a transition to the
stop-and-copy stage, and a considerable number of dirty pages transferred from the
source to the target host.

The termination conditions used by Xen gives it some advantages to a naïve
implementation of the iterative pre-copy process. Without these termination conditions,
iterative pre-copy would take a long time to terminate. This is because memory
typically has regular periods of intensive reading and writing. Furthermore, workloads
typically have a small set of pages that are frequently accessed. By sending pages when
memory is not undergoing intensive read and write sessions, Xen prevents many
unnecessary page transfers. This in turn prevents long migration times.

4 Multi-phase Virtual Machine Migration

In this section we describe improvements made to the iterative nature of the pre-copy
method. The concept presented here applies lazy pre-copy mechanisms to different
stages of the pre-copy mechanism and then applies different judging criteria to
improve overall efficiency during live migration.

A. Lazy Pre-Copy

Live migration, migrates virtual machines over the network from a source host to a
target host. It is tempting to use available bandwidth as metric as a way to improve
performance of LMVM. Unfortunately, it is impossible to predict what the bandwidth
will be based on data collected from the bandwidth history. Furthermore, an incorrect
prediction is likely to have a negative effect on performance.

Fig. 3. Lazy Pre-Copy State Diagram

402 C.-H. Hsu et al.

In order to improve bandwidth usage we use a lazy pre-copy mechanism. The lazy
pre-copy (LPC) mechanism improves the effective bandwidth by reducing the number
of memory pages transmitted over the network. A state diagram for the lazy pre-copy
mechanism is presented in Figure 3. A description of the state transitions found in lazy
pre-copy is as follows:

1. P’ P00: Initialize, send all memory pages (dirty or not) from source host to target

host.
2. P00P00: pages are not dirty, pages are not sent from source host to destination host.
3. P00P01: pages are dirty, pages are not sent from source host to destination host.
4. P01P10: pages are not dirty, pages are not sent from source host to destination host.
5. P01P11: pages are dirty, pages are not sent from source host to destination host.
6. P11P11: pages are dirty, pages are not sent from source host to destination host.
7. P11P10: pages are not dirty, pages are not sent from source host to destination host.
8. P10P01: pages are dirty, pages are not sent from source host to destination host.
9. P10P00: pages are not dirty, pages are sent from source host to destination host.

Lazy pre-copy improves the migration process by using bandwidth more efficiently.
Lazy pre-copy achieves this by waiting an extra round before it transfers data, this
reduces the number of retransmissions over the network.

B. Threshold Based Iterative Pre-Copy

To improve the efficiency of lazy pre-copy, a set of criterion is used which decides
whether or not to transfer memory pages from the source to the target host. Data
transfer is predicated on threshold K, which increases in value on a round by round
basis.

While lazy pre-copy is executing the value of K is adjusted and set to one of three
thresholds K1(α%), K2(β%), and K3(γ%). The maximum number of rounds for Xen is
30. These rounds are divided into three stages. The first stage (iterations 0~i1) uses
threshold K1(α%), the second stage (iterations i1+1~i2) uses threshold K2(β%) and the
third stage (iterations i2+1~i3) uses threshold K3(γ%). The thresholds for the three stages
are allocated three different memory sizes. The first stage is allocated 5% of the
memory. The second stage is allocated 1% of the memory. The amount of memory
allocated in the third stage is defined by LPC which counts the number of dirty pages per
round. According to which conditions are met and if they reach the associated threshold
value, dirty memory pages are delivered to the target host.

The Multi-Phase Pre-Copy method described above is now presented in the
following algorithm:

Algorithm 1: Multi-Phase Pre-Copy

Input:
Set L: the collection of page which is with 1
Set LP: the collection of page which is with 10
Set LPC: the collection of page which is with 100
Begin:
Pre-Migration and Reservation
Set L = Set LP = Set LPC ← NULL

 An Adaptive Pre-copy Strategy for Virtual Machine Live Migration 403

For iteration 1:
 For page j:
 If (Pj = 1) then set L ← Pj
For iteration 2:
 For page j:
 If (Pj = 0 & Pj in set L) then set LP ← Pj
 Reset set L
 For page j:
 If (Pj = 1) then L ← Pj
For iteration 3 and afterward:
 Reset set_LPC
 For page j:
 If (Pj = 0 & Pj in set LP) then set LPC ← Pj
 Reset set LP
 For page j:
 If (Pj = 0 & Pj in set L) then set LP ← Pj
 Reset set L
 For page j:
 If (Pj = 1) then L ← Pj
 If LPC > threshold then then send Pj ∈ LPC to destination host //Pre-Copy
 If one of the termination conditions T1, T2 and T3 hold then stop_and_copy ()

5 Performance Analysis

In this section we present the experimental environment and experimental results of the
proposed live migration mechanisms. Performance analysis was done by running the
proposed algorithm on a simulated physical environment. To simulate the physical
environment, multiple virtual machine images were installed and executed on a single
physical machine.

A. Experimental Environment

To evaluate the performance of the proposed technique, we implemented the multiphase
virtual machine migration algorithm and tested its performance on a physical machine
running Xen version 3.1.2. All virtual machines had a single CPU core and tests were
performed using different amounts of RAM. The specification of the physical machine
used is shown in Table 1. The software environment is presented in Table 2.

Table 1. Physical Machine 1 Hardware Specifications

CPU AMD Operton 6100 2.0G (8 Core) x1
RAM 8 GB
Disk 500 GB x2 (7200rpm)

Network 1 Gigabit

404 C.-H. Hsu et al.

Table 2. Software Environment

OS CentOS 6.2 x86_64
Kernel 2.6.32

File system EXT4

To evaluate the performance of multi-phase pre-copy, we implemented multiphase
virtual machine migration and tested its performance against the pre-copy method
implementation used by the Xen hypervisor.

The pre-copy methods were tested to see how well they performed with different
image sizes and with different dirty memory page rates. Metrics used to evaluate
performance include: number of iterations, pre-copy performance (number of pages
transferred), downtime and total migration time.

B. Experimental Results

Real-time experimental results for LMVM were performed for Xen and multi-phase
methods. Results show that when the the rate dirty pages occur is low, multi-phase
pre-copy is able to reduce unnecessary data transfers significantly. When the dirty rate
increases the number of dirty pages is higher, therefore the number of necessary data
transfers increases. Consequently, the improvement in performance between Xen
pre-copy and multi-phase pre-copy is reduced.

(a) (b)

(c) (d)

(a) Number of iteration (b) Pre-Copy performance (c) Downtime (d) Migration time

Fig. 4. Impact on Dirty Rate 0.05

Experiments were conducted to compare the performance between multi-phase
migration and Xen’s iterative pre-copy method. As shown in figure 6(a) regardless of
virtual memory size, the number of iterations remains constant. However, In Figure

 An Adaptive Pre-copy Strategy for Virtual Machine Live Migration 405

6(a) the number of iterations is much smaller for multi-phase pre-copy than that of
Xen’s pre-copy due to an earlier execution of a termination condition. Less iteration
does not by itself equate to better performance, however it does mean less pages had
to be transferred repeatedly over the network. Figure 6(b) refers to the pre-copy
performance. Pre-copy performance refers to the number of data transfers over the
network from source to the target host. Figure 6(c) show the downtime for
multi-phase pre-copy is slightly longer than Xen’s multi-phase pre-copy. However
Figure 6(d) show that the total migration time is much less overall.

6 Conclusion

In this paper, we presented a multi-phase pre-copy method for live migration of virtual
machines over a network. We show that compared to Xen’s pre-copy method,
multi-phase pre-copy is able to transfer dirty memory pages more efficiently from a
source host to a target host. We show that multi-phase pre-copy can reduce the number
of memory page transfers over the network with only a small increase in downtime.
We also show that multi-phase pre-copy total migration time is significantly better than
Xen’s pre-copy method. For future work we intend to further improve live migration
downtime and study how our algorithm performs on different network configurations.

References

[1] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003 Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, vol. 37(5), pp. 164–177
(December 2003)

[2] Xen-org, Xen, http://Xen.org/
[3] Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the Performance of

Virtual Machine Migration. In: 18th Annual IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 37–46 (August 2010)

[4] Lin, H., Gao, W., Wu, S., Shi, X.-H., Wu, X.-X., Zhou, F.: Optimizing the Live Migration
of Virtual Machine by CPU Scheduling. Journal of Network and Computer
Applications 34(4), 1088–1096 (2011)

[5] Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy Live Migration of Virtual Machines.
ACM SIGOPS Operating Systems Review 43(3), 14–26 (2009)

[6] Hu, B., Lei, Z., Lei, Y., Xu, D., Li, J.: A Time-Series Based Precopy Approach for Live
Migration of Virtual Machines. In: IEEE 17th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 947–952 (December 2011)

[7] Harney, E., Goasguen, S., Martin, J., Murphy, M., Westall, M.: The Efficacy of Live
Virtual Machine Migrations Over the Internet. In: VTDC 2007 Proceedings of the 2nd
International Workshop on Virtualization Technology in Distributed Computing, Article,
No. 8 (November 2007)

406 C.-H. Hsu et al.

[8] Goldberg, R.P.: Survey of Virtual Machine Research, vol. 7(9), pp. 34–45. IEEE
Computer Society Press, Los Alamitos (1974)

[9] Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual machine
monitor. In: Proceedings of the Linux Symposium, pp. 225–230 (2007)

[10] Clark, C., Fraser, K., Hand, S., Hansen, J.G.: Live Migration of Virtual Machine. In:
Proceedings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation, pp. 273–286 (2005)

[11] Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M.:
Optimizing the migration of virtual computers. In: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002), vol. 36(SI), pp. 337–390
(December 2002)

[12] Zayas, E.: Attacking the process migration bottleneck. In: Proceedings of the Eleventh
ACM Symposium on Operating Systems Principles, vol. 21(5), pp. 13–24 (November
1987)

	An Adaptive Pre-copy Strategy for Virtual Machine Live Migration
	1 Introduction
	2 Related Work
	3 Background
	4 Multi-phase Virtual Machine Migration
	5 Performance Analysis
	6 Conclusion
	References

