
R.C.-H. Hsu and W. Shangguang (Eds.): IOV 2014, LNCS 8662, pp. 313–324, 2014.
© Springer International Publishing Switzerland 2014

Cloud Services for Deploying Client-Server
Applications to SaaS

Jianbo Zheng and Weichang Du

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{jianbo.zheng,wdu}@unb.ca

Abstract. The Software as a Service (SaaS) model of cloud computing is
becoming the trend of the new generation of software development due to its
low investment, flexibility, and accessibility. Nowadays there are many well
used conventional software applications, especially client-server applications.
Reuse these application in cloud platforms will benefit both enterprises and the
customers. This paper proposes a service framework for easily deploying
conventional client-server applications to cloud running as SaaS. The service
framework consists of four services: tenant awareness services, tenant
management service, application auto-deployment service, and cloud resources
management service. The proposed service framework has been implemented
and verified on the Amazon AWS cloud engine.

1 Introduction

Software as a Service (SaaS) is an emerging business model in the software industry
due to its advantages of flexibility, quick deployment, and scalability. Recently more
enterprises have been attracted to build or upgrade their applications or services from
local infrastructure to cloud.

In the past decades, the client-server computing model was commonly used in
enterprise applications. In this model, software development companies license their
software application packages to customers and assist the customers to deploy the
software on their own IT infrastructures.

Meanwhile, in SaaS model, software applications usually are adopt by using a
multi-tenant architecture, that is, a single application can serve multiple customers or
tenants at same time. SaaS based applications can also make enterprises support
rapidly onboarding new customers, which is essential to grow user bases of
applications. In SaaS model, software developers or venders become service
providers which deploy their software applications on cloud and provide deployed
applications as services via internet. The customers become tenants of SaaS
applications, which no longer need to purchase or install the applications. Instead,
customer or tenants subscribe and pay for services on demand via internet.

There have been active research project to investigate migrate conventional client-
server applications to cloud environments. Gartner [1] summarizes five general ways
to do such migration: re-host on IaaS, refactor for PaaS, revise for IaaS or PaaS,

314 J. Zheng and W. Du

rebuild on PaaS, and replace with SaaS, and gives advice on how to choose the
method. Amazon [2] [3] also gives its migration instruction about deploying or
moving an existing system to Amazon cloud.

Generally speaking, Enterprises have three options to move their software
applications from their local IT infrastructure to the cloud. The first option is to use an
existing SaaS application with similar functionality to replace the current local
application, such as using the Salesforce CRM to replace the current CRM system.
However, it is hard to find out an application which is exactly suited to an enterprise’s
business. Moreover, an enterprise may have already had their own software which is
fit to their current business.

The second option is to re-design and redevelop a current local application based
on a PaaS, like Google App Engine, or Windows Azure. However, re-designing and
re-developing the application on a new PaaS cloud platform with new technologies
will result in high cost and risks to an enterprise.

The third option is to re-deploy or re-host the current local applications to IaaS,
like Amazon EC2, or Open Stack. This solution is much more intuitive. With various
types of virtual machines, IaaS platform allows enterprises easily to move their
current local applications to cloud without many modifications, as shown in Fig. 1.
However, this IaaS based solution supports neither resource sharing among tenants
nor flexible management of dynamic tenants’ subscriptions and usages. As shown in
the figure, each tenant keeps an application instance with a running virtual machine
on the IaaS cloud. This solution may have a significant resource waste for the
software service provider who has more than one tenant to serve.

Fig. 1. Simple deployment solution of the application management

To overcome the weak points of the pure IaaS solution, this paper proposes a
service framework, named Application to SaaS framework (A2SF), to provide an
improved solution and helps software developers deploy their original client-server
applications to Cloud, running as SaaS applications. Fig. 2 shows the improved
solution for application instance management in A2SF framework. In this improved
solution, the original application is divided into two parts, private components and

 Cloud Services for Deploying Client-Server Applications to SaaS 315

utility components. The private components usually are the customers’ data related
components, such as the configuration component. For the private components, A2SF
wraps them in the multi-tenant awareness layers (service proxy layer in the figure).
The utility components usually are the application programs, which will never be
changed during application execution. In A2SF, the utility components are considered
as shared recourses among tenants. A2SF runs as a service load balancer to share and
reuse utility components among tenants.

Fig. 2. Improved solution of the application management

The rest of paper is organized as following: Section 2 describes the overview and
runtime architecture of A2SF, as well as its components. Section 3 gives a case study
on deploying a real web application SugarCRM with A2SF to Amazon AWS cloud,
as well as the related experiments’ results and analysis. Section 4 briefly describe the
related works and compared with our work. Section 5 concludes the paper.

2 A2SF Services

2.1 Overview

A2SF provides multi-tenant awareness services and application instance management
services, running as an application container as well as a service load balancer. There
are three essential requirements to A2SF services: tenant management and
identification, tenant isolation and data security, and automatic service scalability.

316 J. Zheng and W. Du

2.1.1 Tenant Management and Identification Services
For each tenant, A2SF assigns a unique token to it, which will be carried in each
service request from clients. Using the token, the tenant identification service is able
to identify which tenant the service request comes from. This tenant identification
service, working together with the original application’s authentication module,
provides identification and authentication functionalities for the deployed application,
which is running as a SaaS application in the cloud.

2.1.2 Tenant Isolation and Data Security Services
In A2SF, two approaches of data isolation are applied. One approach is virtualization-
based isolation. By this approach, in A2SF, the different tenants’ runtime data and
configurations of the deployed application will be stored in different virtual machines.
The other approach is application-based isolation. A2SF provides two types of multi-
tenant awareness services, which execute the access control on services (application)
and resources (data) in the runtime A2SF. In the application level, tenants are only
allowed to access their own services and resources.

2.1.3 Application Instance Management Services
A2SF provides application instance management services to support automatic
application scalability. These services not only implement the virtualization-based
isolation but also support the automatically elastic application scalability which is
based on the tenants’ statuses.

A2SF implements an application instance manager service which is responsible for
generating and recycling application instances based on the tenant application
management rules. Based on the pre-customized scripts, A2SF supports dynamically to
assign an online tenant a virtual machine and deploy the tenant-customized application
instance on that virtual machine. The cloud resources management services of A2SF
allocate and recycle the cloud resources in the unit of application instance.

2.2 Runtime Services Architecture

A2SF runtime architecture consists of tenant management services, multi-tenant
awareness services, and application instance management services, in addition to
components or services from the original client-server application.

Fig. 3 shows the runtime architecture of A2SF. The purple parts in the figure are
the main services, which includes the service proxy service, tenant manager
(including tenant manager interface) service, application instance manager service,
data access service, and database service.

Multi-tenant awareness services are implemented by service proxy service and data
access service. The tenant manager service provides the tenant information
management service and tenant identification service. The application instance
manager service is responsible to automatically generate and recycle application
instances based on statuses of real-time tenant access. The database service stores the
application configuration and tenants’ information, such as tenant proxy rules, tenant
statuses, and logs.

 Cloud Services for Deploying Client-Server Applications to SaaS 317

Fig. 3. A2SF runtime architecture

2.3 Services Descriptions

2.3.1 Service Proxy Service
The service proxy service is responsible for service access control. In A2SF, tenants
are only allowed to access their own application instances. As shown in Fig. 3, the
service proxy service is the single entrance of the deployed application, and all clients
or end users’ service requests are sent to it, instead of their original local servers.

When the service proxy service starts up, it will load all the tenants’ proxy rules.
After receiving a client request, the service proxy service first acquires the token of
the request and identifies the request’s source by invoking the tenant identification
service. Once the request is identified, the service proxy service handles the request
based on the tenant’s proxy rules and forwards the request to the proper application
instance. If the request cannot be identified, the service proxy service will deny the
service request.

As the original client-server application will be wrapped and deployed to the cloud
as a whole package without modification, the original communication protocols as
well as the business logic processes between clients and server do not need to be
changed between the application deployed in cloud and the original client-side
application.

318 J. Zheng and W. Du

2.3.2 Data Access Service
The data access service is responsible for the data access control between application
instances and databases, to assure that tenants are only allowed to access their own
data.

In A2SF, an application is considered to have two essential parts, programming
code and user data. The programming code is the common part and can be shared
with all tenants, while the user data belongs to tenants’ private data which should be
protected under the access control. Furthermore, the user data can be categorized into
local data and remote data. The local data is stored in local files. For instance, the
configuration file is a typical example of local data. The remote data is usually stored
in a database.

The data access service stores the local data in the database, initializes the local
data before the application instance runs, and stores and clears it after the application
instance stops.

The data access service provides two ways to deal with the remote data. One way
is to implement a data proxy server, which means all data accesses should go through
the data proxy server first. This method is for those applications, in which the data
connection configurations are hard coded. The other way is to treat the data
connection configuration file as tenant’s private local data. This way is only suitable
for those data connection configurations are separated from the code and easily
replaced.

2.3.3 Tenant Manager Service
The tenant manager service consists of the following sub-services: tenant information
management service, tenant identification service, and tenant status service.

Through the tenant manager service interface, tenant administrators can manage
their information, customize their subscribed services, and review their usage reports.
Also, the service provider, namely the vendor of the deployed application, can
manage the tenants’ subscriptions, set the customization rules for the tenants, and
setup the configuration of A2SF runtime.

The tenant identification service is responsible to verify the token, identify the
tenant, and return the tenant information including the tenant proxy rules. And the
tenant status service is used to obtain the tenants’ current statuses. The tenant
manager service keeps all the tenants’ statuses and updates them regularly, based on
the tenants’ service requests. The tenant status information includes the tenant
application instance status, tenant connection number, tenant live time, and so on.
Based on these statuses, the tenant manager service sends the application instance
management request to the application instance manager, such as application instance
generation request and application instance recycling request.

2.3.4 Application Instance Manager Service
The application instance manager service manages the running application instances
in the cloud, including application instance generation and recycle services. This
service implements the allocation and recycle of the cloud resources.

 Cloud Services for Deploying Client-Server Applications to SaaS 319

The service instance is a server side application, which is composed of a running
virtual machine instance and the customized application deployed in it. Each online or
live tenant who has clients or end-users to access the deployed application is assigned
a customized application instance. Whether or not to generate an application instance
is controlled by the tenant manager service. The tenant manager service keeps the
tenants’ statuses and updates them regularly. When a tenant status matches its rule of
generating or recycling the application instance, the tenant manager service will
invoke the services, provided by the application instance manager service, to generate
or recycle the service instance for the tenant.

When the application instance manager service receives an application instance
generation request for a returning tenant, firstly, it obtains an available virtual
machine from the IaaS cloud. Secondly the application instance manager service
deploys the original application on the virtual machine. Thirdly, the application
instance manager service initializes and customizes the original application by
loading the tenant’s private data to the virtual machine from the data center. Finally,
the application instance manager service sends the result and generated application
instance information to the tenant manager to update the tenant’s statuses.

When the application instance manager service receives a service instance
recycling request for an off-line tenant, firstly, the application instance manager
service stops the tenant’s application instance. Secondly, the application instance
manager service collects the tenant’s local private data on the virtual machine and
saves it to the data center. Finally, the service instance manager service clears the
tenant’s local private data, returns the virtual machine, and sends the result to the
tenant manager to updates the tenant’s statuses.

In order to perform the above steps, the application instance manager service wraps
the standard operations of the IaaS services (launch, start, stop, and terminate a virtual
machine), as well as the remote controlling operations or commands (copy, move,
service start, service stop and so on) on the virtual machine, which are usually
provided by underlying cloud engine.

Moreover, the virtual instance launching time maybe too long to an application that
needs quick responding. So in order to shorten the generation time of application
instance, A2SF also implements a virtual pool, managed by the application instance
manager service, to always keep a number of spare virtual machines that are waiting
to host generated application instances.

3 Experiment

A real-world client-server application SugarCRM has been deployed to Amazon EC2
based on an implemented A2SF prototype. SugarCRM is one of the most popular
customer relationship management applications currently, which is implemented in
the PHP programming language and supports multiple types of databases including
MySQL.

320 J. Zheng and W. Du

3.1 Deploying SugarCRM on Amazon EC2 with A2SF Services

We classify the components of SugarCRM can be into three types: utility
components, local private components, and remote private components, as shown in
Table 1.

Table 1. The classification of SugarCRM components

Type Components
Local private components Folders: custom, upload, cache, data,

modules;
Files: .htaccess, sugarcrm.log, config.php,
config_override.php

Remote private components The database “sugarcrm”
Utility components The rest of components of SugarCRM

The utility components are deployed in the deployable package once for all

tenants. The deployable package is a virtual machine image (in the Amazon cloud, it
is also called as AMI). The local private components are saved in the bucket of
Amazon S3 named by tenant id and tenant name. The remote private components are
stored in a MySQL instance in the Amazon RDS.

To integrate the A2SF service and the SugarCRM software together we first
configured the Amazon Security Credentials with the list of private components. We
then created a customized AMI (Amazon Machine Image) for generating SugarCRM
application instances. The AMI ID will be updated later by the tenant management
service for dynamic tenant management. Thus when a new or returned tenant comes,
the service proxy service can easily and quickly launch a new SugarCRM application
instance and customized it for the new tenant based on the AMI. Table 2 shows the
contents of the created deployable package for SugarCRM SaaS application.

Table 2. The contents of the deployable package

Component Description
Service proxy server This is a runnable jar file, which runs on the portal

server as the service entrance.
A2SF management center This is a war file, which is deployed on a Tomcat

server in the portal server.
Data proxy server This is a runnable jar file. In this migration, it is

deployed in the AMI.
A2SF scripts These scripts are runnable bash files, which can be

executed to customize the application instance and
save the tenant private local data.

A2SF DB This is a MySQL database for A2SF framework.
SugarCRM This is the original application, which is the target

of this migration.

 Cloud Services for Deploying Client-Server Applications to SaaS 321

Fig. 4 shows the deployed of SugarCRM with A2SF on Amazon AWS Cloud.
Firstly, before deploying SugarCRM, A2SF service has already been deployed on
Amazon EC2 cloud, and the portal service is the A2SF management service. It will be
the entrance of the deployed SugarCRM as well in the cloud. The EC2 AMI is the
deployable package of SugarCRM. Secondly, after the portal service is running, we
accessed the A2SF management service and registered the SugarCRM deployable
package as well as the application information, so that SugarCRM application
instances can be generated correctly. Finally, we added several tenants with different
IP ranges. We then use several client browsers to access the entrance/portal service on
different computers with different IP addresses to simulate multiple tenants’ accesses.

Fig. 4. Deployed of SugarCRM with A2SF on AWS Cloud

3.2 Performance Experiments

For performance evaluation, we also conducted a serial of experiments on the average
time latency of A2SF service. In the experiments, 10 computers with different IP
address were chosen to simulate 10 tenants. We measured the following four time
segments: the first response time, the average time of the normal response, the
processing time of the service proxy, and the processing time of the data proxy.

We first recorded the response time of the SugarCRM application deployed on
Amazon AWS in IaaS mode without using A2SF. Table 3 shows the performance
measurement for a single tenant of the deployed SugarCRM application.

322 J. Zheng and W. Du

Table 3. Performance of single tenant IaaS SugarCRM

Measure Item Value (millisecond)
First response time (FRT) 3428
Average stable response time (ASRT) 169.05
Average service proxy time (ASPT) 62.39
The average data proxy time (ADPT) 27.04

We then we used the 10 computers and ran the testing scripts on each computer.

Table 4 shows the result measurement.

Table 4. Performance of multi-tenants SugarCRM with A2SF

 FRT ASRT ASPT ADPT
Tenant 1 20438 172.38 70.32 25.92
Tenant 2 52014 180.42 62.83 24.68
Tenant 3 24863 177.50 70.10 30.30
Tenant 4 3509 161.30 62.03 23.43
Tenant 5 60271 172.47 69.19 29.59
Tenant 6 52924 166.03 61.02 21.94
Tenant 7 59248 174.30 69.89 30.59
Tenant 8 54631 175.94 61.08 25.15
Tenant 9 3417 163.46 61.81 22.90
Tenant 10 65741 173.40 70.37 31.05
Average 39705.6 171.72 65.86 26.56

The time latency of using A2SF is around 70 ms.
The first response time of the migrated SaaS system in the best case was 3417 ms

and in the worst case it was 65741 ms. These two values also can be taken as the
times of generating an application instance on a pre-prepared virtual machine instance
and generating an application instance from launching a new virtual machine
instance.

The average time of application instance generation is related to the size of the
virtual machine pool and the size of target application. Adding a virtual machine pool
would improve the efficiency of application instance generation. The experiments
show that when the size of virtual machine pool in A2SF was set to 2, the average
time of the first response became 39705.6 ms which is significantly lower than the
first response time of the worst case.

The experiments also show that the average service proxy processing time is
around 65ms, and the average data proxy processing time is around 27 ms. Under the
same computing capability, the service proxy processing time and the data proxy
processing time are stable. In case of supporting more tenants, we can choose to
increase the number of CPU allocate to the service proxy service or add a load
balancer service with multiple service proxy service to process service requests.

 Cloud Services for Deploying Client-Server Applications to SaaS 323

4 Related Works

Tsai et al. [4] proposes a two-tier SaaS scaling and scheduling architecture that
duplicates at both service and application levels along with a resource allocation
algorithm that takes different computing power of server nodes into consideration.

Chong et al. [5] proposes a SaaS maturity model, which takes configurability,
multi-tenancy efficiency, and scalability as the key attributes of SaaS and classifies
SaaS software as four maturity levels. In the model, each level is distinguished from
the previous level by addition of one of the three attributes.

Guo et al. [6] proposes a multi-tenancy enabling programming model and
framework, consisting of a set of approaches and common services, to support and
speed up multi-tenant SaaS application development.

Cai et al. [7] [8] proposes an end-to-end methodology and toolkit for transforming
existing web applications into multi-tenant SaaS applications. However, using this
migration methodology, developers have to modify the original application software
as well as server configurations.

Song et al [9] defines a SaaSify Flow Language (SFL) and proposes a SFL tool
which would help convert Java web applications to SaaS applications. However, the
SFL tool also has its limitations. First, the SFL tool seems only support Java web
applications with JDBC access to databases. Second, since the SFL tool uses memory
in threads to keep and share tenant information among layers, it is reasonable to
believe that the tool could not support applications whose components deploy on
different computers.

The above and other similar research projects have made significant progress in the
area of multi-tenant SaaS applications. In our research we more focus on re-
deployment of existing client-server applications to cloud, running as SaaS
applications, without modification the original code.

5 Concluding Remarks

In this paper, we proposed a cloud services, named A2SF services, for helping
deploying conventional client-server applications to cloud, running as multi-tenant
SaaS applications. Re-deploying conventional client-server applications, integrated
with A2SF services, are relatively easy. The runtime architecture of A2SF services for
multi-tenant SaaS are simple and effective, though they are relatively conservative
compared to other proposed multi-tenant SaaS systems. The proposed A2SF services
have been implemented on Amazon EC2 cloud computing engine with a deployed
real-world CRM application. Future work includes performance improvement of
A2SF services and implementations of A2SF services on other cloud platforms.

324 J. Zheng and W. Du

References

1. Gartner. Gartner Identifies Five Ways to Migrate Applications to the Cloud (May 16,
2011), http://www.gartner.com/it/page.jsp?id=1684114

2. Amazon, The total cost of (non) ownership of web applications in the Cloud, Technical
report, Amazon Web Services (October 2012)

3. Varia, J.: Migrating your existing applications to the AWS cloud. A Phase-driven
Approach to Cloud Migration (2010)

4. Tsai, W.T., Sun, X., Shao, Q., Qi, G.: Two-tier multi-tenancy scaling and load balancing.
In: 2010 IEEE 7th International Conference on e-Business Engineering (ICEBE), pp. 484–
489. IEEE (November 2010)

5. Chong, F., Carraro, G.: Architecture strategies for catching the long tail. MSDN Library,
Microsoft Corporation, pp. 9–10 (2006)

6. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: The 9th IEEE International
Conference on E-Commerce Technology and the 4th IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, CEC/EEE 2007, pp. 551–558. IEEE
(2007)

7. Cai, H., Wang, N., Zhou, M.J.: A transparent approach of enabling SaaS multi-tenancy in
the cloud. In: 6th World Congress on Services (services-1), pp. 40–47. IEEE (July 2010)

8. Cai, H., Zhang, K., Zhou, M.J., Gong, W., Cai, J.J., Mao, X.: An end-to-end methodology
and toolkit for fine granularity SaaS-ization. In: IEEE International Conference on Cloud
Computing, CLOUD 2009, pp. 101–108. IEEE (September 2009)

9. Song, J., Han, F., Yan, Z., Liu, G., Zhu, Z.: A SaaSify tool for converting traditional web-
based applications to SaaS application. In: 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 396–403. IEEE (July 2011)

	Cloud Services for Deploying Client-Server Applications to SaaS
	1 Introduction
	2 A2SF Services
	2.1 Overview
	2.2 Runtime Services Architecture
	2.3 Services Descriptions

	3 Experiment
	3.1 Deploying SugarCRM on Amazon EC2 with A2SF Services
	3.2 Performance Experiments

	4 Related Works
	5 Concluding Remarks
	References

