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Abstract. This paper introduces a powerful, efficient and generic frame-
work for optimal routing of electric vehicles in the setting of flexible edge
cost functions and arbitrary initial states.

More precisely, the introduced state-based routing problem is a con-
solidated model covering energy-efficiency and time-dependency. Given
two vertices and an initial state the routing problem is to find optimal
paths yielding minimal final states, while the profile routing problem is
to find optimal paths for all initial states. A universal method for apply-
ing shortest path techniques to profile routing is developed. To show the
genericity and efficiency of this approach it is instantiated for two typi-
cal shortest path algorithms, namely for A* and Contraction Hierarchies.
Especially using the latter, a highly efficient solution for energy-efficient
profile routing is obtained.

Keywords: State-based, energy-efficient, time-dependent, flexible rout-
ing, profile search, electric vehicles.

1 Introduction

Computing energy-efficient paths for electric vehicles is of particular interest be-
cause of their limited range and long recharge periods. Shortest path algorithms
can be used to provide a user with optimal driving directions, but the question
is how to adapt efficient algorithms to respect the requirements of an accurate
model of the vehicle and its environment.

Dijkstra’s algorithm [4] is probably the most known shortest path algorithm,
with A∗ being a natural extension using a heuristic lower bound on shortest
path distances [9]. There are numerous extensions to the simple shortest path
problem, two prominent examples of interest here are time-dependent routing
described e.g. by Delling and Wagner [3] and energy-efficient routing described
by Sachenbacher et al. [11]. Both of these problems are based on the idea of
having an initial state, i.e. the departure time or the initial battery charge, and
functions mapping the current state to edge costs, but they do not explicitely
consider finding paths for all initial states.

Many different shortest path techniques were developed reducing the query
time in a trade for preprocessing time and space requirements, a thorough review
classifying those techniques is given by Bast et al. [1]. A prominent example of
such an algorithm is Contraction Hierarchies (CHs) introduced by Geisberger [7].
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The problem is, that those techniques cannot be directly applied to solve state-
based routing problems or profile queries. While the concept of CHs was adapted
to time-dependent routing by Batz et al. [2] and to energy-efficient routing by
Eisner et al. [5], this was done using a clever trick, which is applicable in these
two specific settings: One can use backwards reachability to label all relevant
edges and then run a simple routing algorithm such as Dijkstra’s on the labeled
edges. However, no general solution is given by these two approaches.

The routing problem considering all initial states is called profile query or
profile search and was mentioned in the context of time-dependent routing [3]. It
is a particularly interesting problem, because the initial state is often not known
precisely, maybe due to inexact measurements of an electric vehicle’s battery,
or because it is configurable – for instance by charging the battery a little more
before starting. Another reason for searching profiles might be the dependency
on other problems, for example when routing is done in the context of vehicle
scheduling problems, where different initial states are of interest. We expect
this to be of particular interest for intermodal mobility, i.e. the combination of
different modes of transportation, with Masuch et al. describing a promising
example [10].

This paper introduces a powerful framework by adapting efficient state-of-
the-art shortest path algorithms to find profiles describing optimal solutions for
all initial states in a generic network with flexible edge weight functions. It is
organized as follows. Section 2 introduces the state-based routing problem and
the theory of profiles. Energy-efficient routing is shown to be one instance of
this model. The profile routing problem is introduced and a theorem connects
the routing problem to profile queries. Section 3 covers the generic approach to
adapting shortest path algorithms to the profile routing problem. This approach
is presented for a typical algorithm, namely A∗. For the evaluation in Section 4,
we also implemented Contraction Hierarchies and adapted them in the same way.
Section 5 concludes with an interpretation and a discussion of open problems.

There are various approaches to introduce and combine different kinds of op-
timization criteria. The bicriteria search is probably the most known approach
for finding Pareto-optimal paths, described for example by Skriver and Ander-
sen [13]. It is similar to the profile search, because both problems use partially
ordered values, but the state-based approach is more general and shortest path
techniques can still be applied.

Another approach is to melt multiple criteria into a single criterion, for exam-
ple by a linear function as described by Geisberger et al. [6]. The coefficients are
meant to be dynamic, such that the precomputation of shortest path techniques
must be valid for all coefficients. We consider a more general approach, where
the coefficients of linear cost functions might be incorporated in the state, but
probably losing the possibility of exploiting the special nature of linear functions
– that is, handling flexible edge cost functions which are known to be linear is
probably easier than handling non-linear functions.
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2 Modelling

We define state-based routing and show energy-efficient routing to be an instance
interesting for electric mobility. A formal definition of the profile routing problem
is then based on defining routing profiles and profile preorders.

2.1 State-Based Routing

Instead of weighting edges with fixed and totally preordered costs, we use mono-
tone (s1 ≤S s2 → f(s1) ≤S f(s2)) and extensive (s ≤S f(s)) state functions
S → S on an arbitrary set of states S partially preordered by ≤S ensuring
reflexivity and transitivity. If an edge’s function f : S → S is undefined for
some s ∈ S, written f(s) = ⊥, it is not traversable for that state. We define
⊥ ≤S s for all states s ∈ S. Notice, that these functions are not necessarily
commutative with respect to functional composition. We use the composition
order (f ◦ g)(x) = g(f(x)) to reflect how edges are concatenated to form a walk.
A walk is a sequence of vertices, while a path is a cycle-free walk.

Definition 1. The tuple (G,S,≤S ,W) is called a state-based network, if

– G = (V,E) is a directed graph,
– (S,≤S) is a partially preordered set of states,
– W : E → (S → S) is a weighting of monotone and extensive state functions.

We extend W to walks by edge-wise functional composition W(γ) = W(v0, v1) ◦
. . . ◦W(vk−1, vk) for all walks γ = (v0, . . . , vk) of G. For the initial state s ∈ S,
we call W(γ)(s) ∈ S a final state with respect to walk γ and state s.

v0
v1

v2
v3

...

...

...
...s0

s1
s2

s3initial
state

final
state

start end

W(v0, v1) W(v1, v2) W(v2, v3)

Fig. 1. A walk of four vertices (v0, v1, v2, v3) is shown as part of a state-based network.
Every edge (vi, vi+1) is labeled with a state function W(vi, vi+1) : S → S. The state
changes as we move along the walk: si+1 =W(vi, vi+1)(si) =W(v0, . . . , vi+1)(s0).

The following definition of the state-based routing problem requires two things
to notice: Both monotonicity and extensivity is preserved under composition and
for all walks there is at least one path (without cycles) yielding equivalent or
better final states.

Definition 2. Given a state-based network (G,S,≤S ,W), a start x ∈ V , a
destination y ∈ V and an initial state s ∈ S, the state-based routing problem is
to find corresponding paths π from x to y for each minimal final state W(π)(s)
except for equivalence.
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2.2 Energy-Efficient Routing

Finding energy-efficient routes is interesting for reasons of saving fossil fuels and
anthropogenic carbon dioxide, but it is also of particular interest for users of
electric vehicles which have a short cruising range and slow recharge rates. We
want to determine if the battery charge is sufficient to reach the destination and
which route we should take in order to retain most of the battery’s energy. There
is an algorithmic approach to this problem adapting A∗ using vertex potentials
naturally given by their altitudes [11]. This example is used for evaluating our
approach.

Energy-efficiency comprises various aspects, but we focus on battery con-
straints for electric vehicles. Given a battery capacity K > 0, we describe bat-
tery charges with J ∈ [0,K]. Energy is consumed as we travel along the edges
of the road network, but by recuperation the battery status may also increase
while losing potential energy. We consider recuperation from driving downhill, so
we incorporate the altitude map in the form of potential energy levels. Battery
constraints play a role whenever recuperation reaches the battery’s capacity and
whenever the battery is exhausted.

We can model this problem using a state-based network in the following way.
The energy state is a pair of battery charges and potential energy levels S =
[0,K]×R. The preorder≤S is given by comparing the sums, i.e. (J, h) ≤S (J ′, h′)
if and only if J + h ≥ J ′ + h′ (the sum of both values could also be used,
but we want to keep the battery’s state unbiased). Notice, that the comparison
is inverted because of maximizing the remaining energy (instead of minimizing
costs). Using potential energy as vertex potentials originates from [11]. We denote
the potential energy by hv for vertex v ∈ V .

We define a battery constraint Ba,b as a soft upper bound b ∈ R to repre-
sent fully charged batteries and a hard lower bound a ∈ R to represent empty
batteries:

Ba,b(x) =

⎧
⎪⎨

⎪⎩

b if x > b,

x if a ≤ x ≤ b, and

⊥ if x < a.

We can now define battery functions S → S from a vertex v to a vertex w
with potentials hv and hw by

(J, hv) �→ (Ba,b(J − c−Δ), hw),

where 0 ≤ a ≤ b ≤ K describe battery constraints, c ∈ [0,K] describes the costs
andΔ = hw−hv describes the difference of potentials. The function is undefined,
if the second parameter is not equal to the potential hv of v. Notice, that these
functions are extensive, because Ba,b(J − c − Δ) + hw ≤ J − c − Δ + hw =
J − c+ hv ≤ J + hv. The functions are also monotone due to the monotonicity
of the battery constraint Ba,b.
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2.3 Profiles

While state-based routing problems ask for optimal paths given an initial state,
we might also ask for a minimal set of optimal paths covering all initial states.
This idea is adapted from time-dependent routing, where it is called a profile
query [3]. The motivation behind profile routing is twofold: providing the user
with more information and enabling bidirectional searches.

A profile shall be described by a set of walks sharing common end vertices, i.e.
the same start and end vertex. At the same time, those profiles shall represent
partially preordered values. The reason for that distinction is, that there may be
values not representing any walks. This corresponds to the concept of heuristics
in A∗ and in ALT using landmarks [8].

Two operations, namely concatenation ◦ and combination ∪, are essential.
The former means to connect two consecutive profiles to form a new profile
containing all pair-wise composed walks. The latter means to join both sets of
walks to form a combined profile.

We define a partial preorder on profiles with the intended meaning that a
profile may consist of more valuable walks than another profile. The imposed
requirements are essential for proving the correctness of algorithms, but they
also follow directly from the specification of state-based networks.

Definition 3. Let G = (V,E) be a graph, let (M,≤M ) be a partially preordered
set of profile values and let ◦,∪ : M×M → M be two operations on M , such that
we can identify start and destination vertex of each profile M → V ×V . We write
mx,y in short to say that a profile m has start vertex x and destination vertex
y. The partial preorder ≤M is called a profile preorder if all of the following
conditions (for all resp. profiles) are satisfied:

mx,y ∪ m′
x,y ≤M mx,y (1)

mx,y, my,z ≤M mx,y ◦my,z (2)

mx,y ≤M m′
x,y → mx,y ∪ m′′

x,y ≤M m′
x,y ∪ m′′

x,y (3)

my,z ≤M my,z′ → mx,y ◦my,z ≤M mx,y ◦my,z′ (4)

mx,y ≤M mx′,y → mx,y ◦my,z ≤M mx′,y ◦my,z (5)

mx,y ≤M mx′,y′ ,m′
x′,y′ → mx,y ≤M mx′,y′ ∪ m′

x′,y′ (6)

When talking about profiles as sets of walks, the following definition helps
understanding and handling profiles.

Definition 4. Given a graph G = (V,E), a profile mx,y ⊆ walksx,y is a set of
walks from x to y in G. The set of all profiles from x to y is denoted by Mx,y

(the power set of all walks from x to y) and the union of all profiles is denoted
by M :=

⋃
x,y∈V Mx,y. Let ≤M be a profile preorder on M .

– The combination mx,y∪m′
x,y of profiles mx,y,m

′
x,y is the union of both sets.

– The concatenation mx,y ◦ my,z of consecutive profiles mx,y,my,z is the set
of element-wise concatenations {γ1 ◦ γ2 | γ1 ∈ mx,y, γ2 ∈ my,z}.
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– A walk γ from x to y is said to improve (or is not dominated by) a profile
mx,y, if and only if mx,y �M mx,y ∪ {γ}. A profile m′

x,y improves mx,y if
there is a walk γ ∈ m′

x,y improving mx,y.
– A profile mx,y is said to be complete, if and only if there is no walk γ from

x to y improving mx,y.
– A profile mx,y is said to be minimal, if and only if all walks γ ∈ mx,y improve

mx,y \ {γ}.
– A method reduce finds minimal subprofiles m′

x,y of mx,y, i.e. m
′
x,y ≡M mx,y

and m′
x,y is minimal (not uniquely determined).

In order to connect state-based routing and profiles the following definition
introduces an induced profile preorder. Intuitively, a profile mx1,y1 is better than
another profile mx2,y2 , if the walks in mx1,y1 yield better final states than all
walks in mx2,y2 for all comparable initial states. We define that comparison
formally as follows.

Definition 5. Let (G,S,≤S ,W) be a state-based network and let M be the set of
profiles, then ≤M is an induced profile preorder on M , where mx1,y1 ≤M mx2,y2

if and only if for all s2 ∈ S we have

∀γ2 ∈ mx2,y2 : W(γ2)(s2) = ⊥
or else there is an s1 ∈ S with s2 ≤S s1 and

∀γ2 ∈ mx2,y2 ∃γ1 ∈ mx1,y1 : W(γ1)(s1) ≤S W(γ2)(s2).

One of the main theoretical results of the paper is this relation and the fol-
lowing theorem. It is essential for connecting profile searches with the problem
of finding optimal paths. It states, that routing problems in a state-based net-
work always have an induced profile problem, which can be solved efficiently
as described in the next section. The proof makes use of the state preorder ≤S

and of the monotonicity and extensivity of weight functions, but must thorougly
account for the partiality of the weight functions and the genericity of states.

Theorem 1. The induced profile preorder ≤M of a state-based network is a
preorder and satisfies all conditions from Definition 3.

After introducing profiles, which are the sets of paths contributing to opti-
mal final states, we define a routing problem looking for minimal and complete
profiles as follows.

Definition 6. Given a state-based network (G,S,≤S ,W) and two vertices x, y ∈
V the state-based profile routing problem is to find a minimal and complete pro-
file mx,y with respect to the induced profile preorder ≤M .

For the sake of completeness, a solution to a state-based routing problem can
be determined from the minimal and complete profile:

Lemma 1. Given a solution π ∈ pathsx,y of a state-based routing problem for a
given initial state s ∈ S and a solution m ⊆ pathsx,y of a profile routing problem,
then there is a path π′ ∈ m such that W(π)(s) is equivalent to W(π′)(s).
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3 Algorithms

Shortest path algorithms explore the graph step by step labeling vertices with
intermediate results. Because usually multiple queries need to be processed on
the same graph, preprocessing the graph while preserving shortest paths is the
key to improve query times.

The general idea for applying shortest path techniques to the profile routing
problem is to replace comparison of values, addition of values and labeling of
predecessors by their respective definitions on profiles, i.e. comparison, concate-
nation and combination of profiles.

In our experiments we use unbalanced binary trees, in which elements are
inserted to the right subtree, if it is greater than the subtree’s root, and to the
left subtree otherwise.

As an example, the A* variant for profile searches is presented in Algorithm 1.
The variables mx,v ∈ Mx,v are profiles for reaching vertex v from start x (similar
to the predecessor variables of the original algorithm). In A∗ we additionally use
heuristic lower bound values on the remaining distance denoted by hv,y. We
require mx,v ◦ hv,y ≤M mx,y for all mx,v ≤M mx,y representing a lower bound.
In the case of a simple Dijkstra’s algorithm, the heuristic profile values would
be left out in line 4 and 5.

Algorithm 1. A∗ for Profile Routing

1 mx,v ← ∅ for all v ∈ V
2 mx,x ← {(x)}
3 queue q ← {x}
4 while mx,y �M mx,v ◦ hv,y for some v ∈ q do
5 remove v from q with minimal mx,v ◦ hv,y

6 for every successor w of v do
7 if mx,v ◦ {(v, w)} improves mx,w then
8 mx,w ← reduce(mx,w ∪ (mx,v ◦ {(v, w)}))
9 add w to q

10 return mx,y

Notice, that because of building solutions step by step only paths (walks
without cycles) are constructed by this algorithm. This is important for the
following theorem, an essential result of this paper:

Theorem 2. Algorithm 1 computes a minimal and complete profile mx,y from
x to y consisting only of paths (no cycles).

This theorem can be proven by establishing a loop invariant and showing
its initialization, its maintenance and its termination. Let πv denote the prefix
of a path π up to a certain vertex v ∈ V (including v) and let πv denote the
suffix of a path π starting from a certain vertex v ∈ V (including v). The loop
invariant is: For each path π improving a (non-complete) profile mx,y or mx,u

with mx,y �M mx,u there is a vertex v in π also contained in q, such that
πv ∈ mx,v and πw improves mx,w for all consecutive successors w of v on π.
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4 Evaluation

We evaluate our approach within the prototypic framework of Green Naviga-
tion, a tool for providing energy-efficient driving directions and for computing
the range of electric vehicles. The project was initialized at the Technische Uni-
versität München and is continued at the University of Lübeck.

The energy-efficient routing problem and its profile variant is implemented
based on the geospatial data taken from the collaborative OpenStreetMap (OSM)
project and the altitude values taken from the NASA Shuttle Radar Topographic
Mission (SRTM). A section representing Bavaria, a state of Germany with an
interesting relief, is used in the experiments. A full charge allows a cruising range
of about 150 km. For 1000 test cases the start and destination are chosen ran-
domly (uniformly distributed among vertices) within reach. The experiments
were carried out by the Java SE Runtime Environment on a single core of an
Intel(R) Core(TM) i7-3520M CPU at 2.90GHz provided with 4 GB RAM.
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Fig. 2. The running times of different algorithms are shown on a logarithmic scale
together with linear regressions of a logarithmic model

Figure 2 shows the running times for 1000 in-range test cases. The road graph
contains 975,806 vertices and 1,885,037 edges. The original algorithm refers to
the specialized A∗ version for energy-efficient routing [11] yielding an average
running time of 281 ms. Profile searches are more complex, the adapted A∗ for
profile searches is therefore slower with an average running time of 1106 ms.

Contraction Hierarchies were adapted in a similar way. The preprocessing of
CHs takes approximately 15 minutes and contains 1,970,615 additional edges.
The maximum profile size of the contracted graph is 6. Despite of solving a more
difficult problem, the queries are much faster with an average running time of
about 19 ms.

While A∗ performs reasonably good for profile routing, the CHs drastically
improve the query time. This makes profile queries highly efficient for the energy-
efficient routing problem. We are convinced, that these results can be signifi-
cantly improved by using specialized data structures and sophisticated heuristics
for the node ordering of CHs.
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5 Conclusions

The essential idea of many routing problems is to maintain accumulated costs
while traversing the network. The state-based routing problem is a generaliza-
tion of the simple shortest path problem comprising a set of states and edge
weight functions. The problem of finding solutions for all initial states is the
profile routing problem. One interesting instance is energy-efficiency, but in the
future we will show, that also time-dependent routing and even some variants
of stochastic routing are instances.

One important aspect when considering instances of state-based routing is
the descriptive complexity of the profiles. In case of the simple shortest path
problem, profiles would be trivial and operations would be constant in time and
space. In case of energy-efficient routing, concatenation does not add complexity
while combination increases the complexity linearly.

We distinguish between profile values and profile walks in order to be able to
use heuristics. In A∗ a lower bound on the remaining path costs is computed
usually using the straight-line distance, which does not represent an actual path.
In the same way we use a profile value not representing an actual set of walks.

Many practical shortest path techniques trade preprocessing time and space
for faster queries. However, it is not in general possible to apply those techniques
to other routing problems. This paper defines the profile routing problem as a
general class of routing problems that has a similar nature to the simple shortest
path problem, such that shortest path techniques can be applied relatively easy,
yet solving a more complex problem.

As a proof of concept, we instantiated our profile routing with A∗ and contrac-
tion hierarchies and have shown its efficiency in the context of energy-efficient
routing. Using Contraction Hierarchies we have now, to the best of our knowl-
edge, obtained the currently most efficient profile routing system for the energy-
efficient routing problem.

In the future, we want to analyze other aspects for state-based routing such as
dynamic data, intermodality, fleet routing, congestion and also combinations of
these. Furthermore, we want to integrate certain stochastic aspects, as described
in our previous work [12] which is based on Uludag et al. [14]. We will show, that
this can be done by using distribution functions of random variables as states
and convolutions as state functions, which results also in interesting numerical
challenges.
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