
SafeBrowsingCloud: Detecting

Drive-by-Downloads Attack Using Cloud
Computing Environment

Haibo Zhang, Chaoshun Zuo, Shanqing Guo, Lizhen Cui, and Jun Chen

Shandong University,
Shunhua Road, Jinan, P.R. China

{guoshanqing,clz,jchen}@sdu.edu.cn,
gsq_cy@163.com, guosq2002@hotmail.com

Abstract. Drive-by downloads attack has become the primary attack
vehicle for malware distribution in recent years. One existing method of
detecting drive-by download attacks is using static analysis technique.
However, static detection methods are vulnerable to sophisticated obfus-
cation and cloaking. Dynamic detection methods are proposed to over-
come the shortcomings of static analysis techniques and can get a higher
detection rate. But dynamic anomaly detection methods are typically
resource intensive and introduce high time overhead. To improve perfor-
mance of dynamic detection techniques, we designed SafeBrowingCloud,
a system based on apache S4, a distributed computing platform. And
the system is deployed at edge router. SafeBrowingCloud analyzes net-
work traffic, executes webpages in firefox with modified javascript engine,
abstracts javascript strings and detects shellcode with three shellcode de-
tection methods to find malicious web pages. Experimental results show
efficiency of the proposed system with the high-speed network traffic.

Keywords: Drive-by download, Apache S4, Shellcode, Cloud.

1 Introduction

Drive-by download attack is one of the main vectors used to spread malware.
In a drive-by download attack, an attacker first presents a web page including
malicious code which tries to exploit a vulnerability in the victim’s browser or
in a browser plugin. When a web visitor browses the malicious web page, the
injected code instructs the victim’s computer to download and install malicious
software. The installed malware often enables an attacker to control a user’s
computer and steal sensitive information.

To protect users from drive-by download attack while browsing the Internet,
several methods for detecting malicious web pages have been proposed. One
existing malicious web page detection technique involves the use of what are
known as a static detection technique, which uses data mining and machine
learning technique[1,5,7]. The detection time of static detection methods is faster
than that of dynamic detection methods but the detection rate is lower due

R.C.-H. Hsu and W. Shangguang (Eds.): IOV 2014, LNCS 8662, pp. 292–303, 2014.
c© Springer International Publishing Switzerland 2014

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 293

to sophisticated obfuscation and cloaking[3]. To overcome the shortcomings of
static detection method, dynamic detection technique is proposed[13], which
run the scripts associated with web pages on a virtual machine to detect if
the page is malicious. The main idea of these systems is to monitor a computer
system for anomalous changes during the rendering of a web page such as changes
to the file system, registry information or creation of processes. The dynamic
detection method can get a higher detection rate than the static method. [2,9].
Dynamic detection technique can conquer some drawbacks of the static detection
and the detection rate is higher than static method. However, most dynamic
techniques are typically resource intensive and introduce high time overhead,
making these approaches difficult to deploy as online detectors [3].Therefore,
dynamic detection is not very applicable to large scale, real time classification[2],
especially to complete the analysis of the flow of hundreds of megabytes by
intrusion detection equipment[12], not to mention on Gigabit network traffic.

Traditional methods either distribute a security software for users to install or
analyze webpages offline. Not every user would like to install a third party soft-
ware. And offline analysis can’t achieve realtime protection for drive-by download
attack. To protect hosts from drive-by download attack, we would implement
protection at edge router.

To protect from Drive-by downloads attack at edge router, the system should
be able to analyze high speed network traffic, get http requests, load the web-
pages and detect shellcode when javascript executing. The scale of a network can
change from several to thousands.One scalable system is necessary to accomplish
above jobs, which can adjust its process capacity according to the network’s scal-
ability. To detect malious webpage as soon as possible,the system should have
good real-time processing capacity. To this end, we implemented our method on
Apache S4, a distributed stream processing platform.

Paper Organization. The rest of this paper is organized as follows. Section 2
presents our system design and implementation. Section 3 evaluates SafeBrows-
ingCloud’s performance. Section 4 reviews related works. Section 5 concludes.

2 System

In this section, we proposed SafeBrowsingCloud, a cloud platform used for fil-
tering web-based attack as users visit a web page. We intend the system to act
as a first layer of defence against web-based attack.

We show the overall architecture of SafeBrowsingCloud in Figure 1. There
are five kinds of nodes in SafeBrowsingCloud:the adapter node, the processing
node, the zookeeper node, storage node and idle node. The adapter nodes are
responsible for receiving router network traffic and dispatching http packets
to processing nodes. The processing nodes hold the PEs to process data. The
zookeeper node monitors the status of the system, reports node failures, and
records system running statistics. The idle nodes are running as stand-by nodes.
Once a node happens to crash, an idle node would take the place of it and
take over its function. The storage node stores blacklist, whitelist and third

294 H. Zhang et al.

party engine database. Here the third party engine database stores malicious
and legitimate URLs provided by third party engine,like google safe browsing
service and so on.This database would update periodically.

Client Client Client

Router

Storage
node

Zookeeper
node

...

Input stream

Adapter nodes

AbstractPE

BrowserPE

DetectPE

StoragePE

DetectPEDetectPE

BrowserPE BrowserPE

...

...

PacketEvent

StringEvent

ResultEvent

URLEvent

PEs PEsPEs

Idle node

Idle node

Processing node

URL

Result

Fig. 1. System Architecture

The processing node processes data by internal PEs. We design four kinds of
PE, including AbstractPE, BrowserPE, DetectPE and StoragePE.Every kind of
PE is responsible for processing one kind of Event. And the Events are designed
as Table 1. The AbstractPE analyzes network data packets, abstracts URL from
http request and emits URLEvent which includes the URL. BrowserPE receives
a URLEvent, visits each URL by firefox with modified spidermonkey, to collect
the strings produced by running the javascript embedded in the web pages, and
emit StringEvents. The DetectPE receives a StringEvent, detects if the string is
a shellcode and emits ResultEvent. The StoragePE receives a ResultEvent and
updates the database in the StoragePE node. SafeBrowsingCloud’s final decision
is returned to the party that submitted the URL; they can then take appropriate
action based on their application, such as displaying a warning that users can
click through, or deleting the content that contained the URL entirely. We now
give an overview of each PE in this workflow.

2.1 AbstractPE

The AbstractPE is mainly responsible for analyzing network traffic to abstract
URLs. We abstract the TCP socket (source IP:source port,destination IP:

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 295

Table 1. Events in SafeBrowsingCloud

Event type Key-Value pair Event entity

PacketEvent null byte array including network data packet

URLEvent ”url”,http request url URL,socket,timestamp

StringEvent ”url”,url that produced the string URL,javascript string

ResultEvent null URL,malicious or legitimate,timestamp

destination port), request time and url to record users’ http requests history.
The url would be submitted to BrowserPE for analyzing the webpage if mali-
cious.

2.2 BrowserPE

For a drive-by attack to succeed, it is important that the shellcode is loaded into
memory and interpreted as valid x86 instructions. In javascript,the only way to
storing shellcode is by using a string variable.

To detect the shellcode that a malicious script might construct on the heap,
we have to keep track of all string variables that the program allocates[2]. To
this end, we modified spidermonkey, the JavaScript engine used by Firefox. In
javascript, there are mainly three kinds of string operation, including string ini-
tialization, string concatenating and string spliting. As strings in JavaScript are
immutable, all three kinds of manipulation would lead to string being created in
a new memory area. We just need to add code to all points where a new string
is created in spidermonkey. To implement string operations, spidermonkey orga-
nizes some string classes into a single inheritance hierarchy. For each string in
JavaScript, there is a corresponding instance of JSString, the base string class
in spidermonkey. Each concrete class corresponds to a particular implementa-
tion of JSString. For instance, JSRope is optimized to represent concatenated
strings, and JSDependentString to represent substrings. The SpiderMonkey API
provides corresponding functions that can be used to create instance of concrete
class of JSString. For example, JSNewStringCopyN and JSNewStringCopyZ are
used to create instances of JSFixedString. We would track these functions and
abstract created strings. Besides, we need to tell which web page produces the
string. In spidermonkey, the cx variable of JSContext type contains the html lo-
cation information.Once a string is created, the string along with the web page
url would be both put in a StringEvent.

The BrowserPE first query the database of the storage node if the url has
been detected before. If the url has existed in the database, then the BrowserPE
does nothing. Otherwise, it would execute the web page with received url, trace
the javascript string variables and put them in StringEvent with the url.

2.3 DetectPE

In computer security, a shellcode is a small piece of code used as the payload
in the exploitation of a software vulnerability. To evade exploit detection, poly-

296 H. Zhang et al.

morphic or metamorphic technique is applied to shellcode, which creates a poly-
morphic shellcode.

Shellcode detection methods can be classified by the shellcode part they
detect[4]. There are NOP-sled detection, decryption routine detection, shellcode
payload detection and return address zone detection methods.Every detection
method has its advantage and disadvantage. NOP-sled detection method has a
higher detection speed than other methods. However, NOP-sled may be miss-
ing in advanced exploit code and NOP-sled detection method would become
invalid. Decryption routine detection method can detect polymorphic shellcode
with higher detection rate than other methods. In consideration of decryption
routine detection method focusing on decryption routine detection, it would
perform badly on typical common shellcode which doesn’t have decryption rou-
tine.Shellcode payload detection method would have a higher detection rate on
detecting typical common shellcode while it’s not able to detect polymorphic
shellcode well.Given the three methods’ feature, we adopt all of them to detect
shellcode.

The DetectPE is just a general term of PE that detect shellcode in SafeBrows-
ingCloud. We designed three kinds of DetectPE, including NOPSledPE, Decryp-
tionPE and PayloadPE to implement above three shellcode detection methods
respectively.

The NOPSledPE implements the Racewalk[4] algorithm proposed by Dennis
Gamayunov et al. to detect shellcode by NOP-sled. Racewalk proposed a novel
approach for NOP-sled detection using IA-32 instruction frequency analysis and
SVM-based classification. The method is based on the fact that Intel instructions
frequency characteristics for NOP-zones is different from normal data. It first
analyzes sequence using cache, pruning techniques and Disassembly prefix tree
to reduce computational complexity and then implements SVM classification to
reduce the false positives rate.Analysis rate over 600 Mbit/sec using single CPU
core allows to use Racewalk algorithm for gigabit network.

The DecryptionPE implements the method proposed by Qinghua Zhang et
al. to detect self-decrypting exploit code[14]. The method detects the presence
of a decryption routine,which is a characteristic of polymorphic shellcode. It
uses static analysis and emulated instruction execution techniques to find the
starting location and identify the instructions of the polymorphic exploit code.
In addition, it can detect polymorphic exploit code that is self-modifying and
that do not have a NOP-sled, which static analysis has previously been unable
to detect. Its detection speed is roughly linear to stings’ length and amount.The
current implementation achieves a speed more than 10M/s.

The PayloadPE implements the SigFree[12], a signature-free buffer overflow
attack blocker proposed by Xinran Wang et al.. SigFree first blindly dissembles
and extracts instruction sequences from a request. It then applies a novel tech-
nique called code abstraction, which uses data flow anomaly to prune useless
instructions in an instruction sequence. Finally it compares the number of use-
ful instructions to a threshold to determine if this instruction sequence contains

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 297

code.SigFree is signature free, thus it can block new and unknown buffer overflow
attacks.

In consideration of three DetectPEs’ detection speed and shellcode structure,
one coming string would be first detected by NOPSledPE. If NOPSledPE deter-
mines the string malicious, result would be sent to StoragePE. Otherwise, the
string is submitted both to DecryptionPE and PayloadPE to be detected.

There are a large number of DetectPE instances in one processing node to
detect shellcode.The DetectPE instances will be automatically removed from the
cache once a fixed duration has elapsed after the PEs creation, or last access.

2.4 StoragePE

StoragePE processes the ResultEvent ,which contains the url, malicious or legit-
imate and the timestamp when the string is detected.The url is default stored
in whitelist. Once a malicious ResultEvent is received, the url would be put in
blacklist. The StoragePE would detect the blacklist and whitelist periodically.
If one record’s timestamp exceeds one threshold, the StoragePE would emit an
URLEvent with the url to BrowserPE to update the record.

3 Evaluation

This section discusses how we evaluated our prototype as well as the experimen-
tal results. The evaluation was carried out in three parts. First we described our
experimental setting. Second, we evaluated our system performance, including
processing speed and system overhead. Third, we evaluated our system for false
positives by accessing a large number of popular benign web pages and we used
our system on pages that launch drive-by downloads and evaluated the detection
effectiveness.

3.1 Experimental Setting

As shown in figure 1, our datasets come from personal computers’ browsing
records distributed in our campus. We captured the network packets and then
abstracted urls. We make use of firefox to execute one url and modified fire-
fox’s javascript engine spidermonkey. Once a string object is produced in spi-
dermoneky, it will be sent to SafeBrowsingCloud for being detected. In our ex-
periment, there is an important parameter, url count that are executed at one
time in firefox. We set a threshold of tab count in consideration of local servers’
network environment and firefox’s procesing capacity. In firefox, we write one
extension to monitoring tabs behavior. The extension would notify SafeBrows-
ingCloud the tab count while tabs count changes and close the tab which has
loaded over the url. We implemented the experiment of SafeBrowsingCloud for a
small deployment consisting of 5 instances on the infrastructure in our network
center. The SafeBrowsingCloud runs on the same infrastructure with four Intel
Xeon 3.06 GHz CPU and 2 GB RAM. The computer is connected to a univer-
sity campus network through 100 Mbps Ethernet;it runs Centos 6.4 Linux with
kernel version 2.6.32.

298 H. Zhang et al.

3.2 Processing Performance

In this part, we evaluated the processing capacity of SafeBrowsingCloud. The
evaluation was carried out in two parts. First, we tested processing speed. Sec-
ond, we tested the whole system’s overhead.

Processing Speed. To evaluate processing speed of the SafeBrowsingCloud
system, we deployed the processing cluster with one to five processing nodes
and recorded the maximum number of processed urls per hour respectively. And
the result is shown in figure 2. It can be observed that the processing speed of
SafeBrowsingCloud is approximately linear to the number of processing nodes,
which demonstrated the scalability of SafeBrowsingCloud. To evaluate how many
processing nodes are needed at least to process the campus network traffic, we
analyzed the http request during one week. After one week analysis, we found
at peak time the whole campus produced 11,000 distinct url per hour while it
produced less than one thousand per hour when clients are not active. From
figure 2, we can see with five processing nodes,the system is able to process the
url in time at peak time. If http request speed becomes higher, we just need to
add processing nodes. We only detect once for duplicated request. The system
would detect one url again once duration between now and last processed time
exceeds one threshold at idle time.

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

15000

Number of Processing Nodes

N
um

be
r

of
 P

ro
ce

ss
ed

 U
R

Ls

Fig. 2. Processing speed

Experiment Overhead. To evaluate the performance of SafeBrowsingCloud,
we also tested its overhead, including cpu, memory and throughout of every pro-
cessing node. The results are shown in figure 3, figure 4 and figure 5 respectively.
It can be observed that the overhead changes of five processing nodes is similar,
which demonstrated the SafeBrowsingCloud is decentralized and every process-
ing node is equal. In addition, we periodically dump system running statistics

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 299

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Time(min)

C
P

U
 U

sa
ge

(%
)

Node1 Running Time
Node2 Running Time
Node3 Running Time
Node4 Running Time
Node5 Running Time
Node1 Idle Time
Node2 Idle Time
Node3 Idle Time
Node4 Idle Time
Node5 Idle Time

Fig. 3. CPU overhead

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

Time(min)

M
em

or
y

U
sa

ge
(%

)

Node1 Running Time
Node2 Running Time
Node3 Running Time
Node4 Running Time
Node5 Running Time
Node1 Idle Time
Node2 Idle Time
Node3 Idle Time
Node4 Idle Time
Node5 Idle Time

Fig. 4. Memory overhead

to logs using the metrics library, which offers an efficient way to gather such in-
formation and relies on statistical techniques to minimize memory consumption.
During the running time, we found not events loss, which means all packets get
processed and every javascript string is detected in time by our detecting classi-
fiers.Observed from figure 3 and figure 4, memory and CPU is not made full use
of. It is the firefoxPE that leads to it. As described before, we set a threshold
in firefox to decide whether to request a url. The threshold is determined by
network environment and firefox’s processing capacity. With better network,the
processing node would be able to process more urls per hour and the whole
SafeBrowsingCloud would get a higher processing speed.

300 H. Zhang et al.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

Time(min)

Th
rou

gh
ou

t(k
pb

s)

Node1 Running Time
Node2 Running Time
Node3 Running Time
Node4 Running Time
Node5 Running Time
Node1 Idle Time
Node2 Idle Time
Node3 Idle Time
Node4 Idle Time
Node5 Idle Time

Fig. 5. Network throughout

3.3 Detecting Accuracy

False Positive Evaluation. In the context of our system, a false positive is a
page that is detected as malicious without actually loading shellcode to memory.
To evaluate the likelihood of false positives, we extended our prototype system
to visit a list of k = 1000 known, benign pages. These pages were taken from the
Alexa ranking of global top-sites, and simply consisted of the top k pages. We
consider this to be a realistic test set that reflects a wide range of web applications
and categories of content. For the batch evaluation of URLs, we implemented a
Firefox extension that visits all URLs provided in a file. After last URL loaded
over, the extension automatically visits the next URL in the list.Our prototype
did not produce any false positives for this dataset. This might look suspicious at
a first glance: The x86 instruction set is known to be densely packed, thus, almost
any sequence of bytes makes up valid instructions. However, one has to consider
the fact that JavaScript uses 16-bit Unicode characters to store text. That is,
even if a given sequence of ASCII characters results in a valid x86 instruction
most of the time, the JavaScript representation of the same characters most
likely does not, since every other byte would contain the value 0x0. Of course, an
attacker can encode the shellcode appropriately. However, benign pages typically
do not contain strings that map to valid instruction sequences.

Detection Effectiveness. In a next step, we evaluated the capabilities of our
technique to identify drive-by attacks that rely on shellcode to perform their ma-
licious actions. To this end, we first collected 50 plain malicious shellcodes from
the Internet and the Metasploit Framework, a powerful open source framework
for the construction and execution of exploits. Based on the plain shellcodes,
we generated 1000 polymorphic shellcodes by using Metaspoit Framwork and
two off-the-shelf polymorphic engines:ADMmutate and Clet. We then create

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 301

1000 javascript codes that generate these malicious shellcodes at runtime. With
above malicious javascript codes we created 1000 malicious webpages. We put
these malicious webpages on our internal Web server. We used the aforemen-
tioned Firefox extension visiting all the URLs provided in a filed. And the our
system correctly labeled them as malicious urls.

4 Related Work

Since drive-by download attack came out, several methods have been proposed to
mitigate the threat. Efficiency and effectiveness are two main target in detection
of drive-by download attack. Given different efficiency, these methods can be
used in offline solutions or realtime solutions.

4.1 Off-line Solutions

Webpage content analysis is one technique used in off-line solutions to detect
malicious webpages. Seifert et al.[10] proposed high interaction client honeypots
to monitor the entire operating system, including a web browser, using a virtual
machine. When a malicious page is loaded in browser, unexpected system state
changes would happen.

To improve efficiency of off-line solutions, Seifert et al.[11] present an algo-
rithmic approach by batch processing multiple web pages simultaneously. When
multiple pages is found in a batch, it would use static analysis to find benign
web pages and eliminate them first, thus reducing the number of pages to be
detected.

Off-line solutions tend to be resource intensive and introduce long latency.
Thus, off-line solutions are not suitable for realtime detection of drive-by down-
load attacks.

4.2 Realtime Solutions

Now realtime solutions are mainly embedded in the web browser.
Lu et al.[8] proposed a BLADE system, that creates a non-executable sandbox

to prevent any binary file to execute without explicit user intervention.
Jayasinghe et al.[6] proposed a novel approach to detect drive-by downloads in

web browser environment using low resource dynamic analysis. By dynamically
monitoring the bytecode stream generated by a web browser during rendering,
the approach is able to detect drive-by download attack at runtime.

Ratanaworabhan et al.[9] proposed NOZZLE that detect shellcode in the
memory heap using NOP sled detection to detect drive-by download attacks.

Above realtime detection techniques can improve efficiency of detection of
drive-by download attacks. Realtime solutions are mainly embedded in the web
browser to get realtime information like javascript objects, files, bytecode stream
and so on. They make use of the realtime information to detect malicious page.
Our solution is similar to NOZZLE, which detects drive-by download attacks by

302 H. Zhang et al.

detecting shellcode. Given that not all users would like to accept a third party
browser which would introduce latency inevitably, we implemented our solutions
at edge router. To process high speed network traffic, we designed our solutions
on apache S4, a distributed computing platform.It avoids duplicate detection
and detects malicious pages quickly.A page detection database is built that can
be used by others like a http proxy to intercept drive-by download attacks.

5 Conclusions

In this paper, we designed SafeBrowsingCloud, a system used to detect drive-by
download attack. In doing so, we analyzed network traffic, modified spidermon-
key to abstract javascript strings and designed a shellcode detector. SafeBrows-
ingCloud is implemented based on apache S4, a distributed computing platform.
The experiment demonstrates that our system can detect drive-by download at-
tack with high efficiency and provide a safe browsing service at edge router.

References

1. Bannur, S.N., Saul, L.K., Savage, S.: Judging a site by its content: learning the
textual, structural, and visual features of malicious web pages. In: Proceedings of
the 4th ACM Workshop on Security and Artificial Intelligence, pp. 1–10. ACM
(2011)

2. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In: Flegel, U., Br-
uschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

3. Eshete, B., Villafiorita, A., Weldemariam, K.: Malicious website detection: Effec-
tiveness and efficiency issues. In: 2011 First SysSec Workshop (SysSec), pp. 123–
126. IEEE (2011)

4. Gamayunov, D., Quan, N., Sakharov, F., Toroshchin, E.: Racewalk: fast instruction
frequency analysis and classification for shellcode detection in network flow. In:
2009 European Conference on Computer Network Defense (EC2ND), pp. 4–12.
IEEE (2009)

5. Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S., Chen, C.-M.: Malicious web content
detection by machine learning. Expert Systems with Applications 37(1), 55–60
(2010)

6. Jayasinghe, G.K., Shane Culpepper, J., Bertok, P.: Efficient and effective realtime
prediction of drive-by download attacks. Journal of Network and Computer Appli-
cations 38, 135–149 (2014)

7. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using clas-
sification techniques. In: 2009 4th International Conference on Malicious and Un-
wanted Software (MALWARE), pp. 47–54. IEEE (2009)

8. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: Blade: an attack-agnostic approach
for preventing drive-by malware infections. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, pp. 440–450. ACM (2010)

9. Ratanaworabhan, P., Livshits, V.B., Zorn, B.G.: Nozzle: A defense against heap-
spraying code injection attacks. In: USENIX Security Symposium, pp. 169–186
(2009)

SafeBrowsingCloud: Detecting Drive-by-Downloads Attack 303

10. Seifert, C., Komisarczuk, P., Welch, I.: True positive cost curve: A cost-based evalu-
ation method for high-interaction client honeypots. In: Third International Confer-
ence on Emerging Security Information, Systems and Technologies, SECURWARE
2009, pp. 63–69. IEEE (2009)

11. Seifert, C., Welch, I., Komisarczuk, P.: Application of divide-and-conquer algorithm
paradigm to improve the detection speed of high interaction client honeypots. In:
Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1426–1432.
ACM (2008)

12. Wang, X., Pan, C.-C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow
attack blocker. IEEE Transactions on Dependable and Secure Computing 7(1),
65–79 (2010)

13. Wang, Y.-M., Niu, Y., Chen, H., Beck, D., Jiang, X., Roussev, R., Verbowski, C.,
Chen, S., King, S.: Strider honeymonkeys: Active, client-side honeypots for finding
malicious websites (2007), http://research.microsoft.com/users/
shuochen/HM.PDF

14. Zhang, Q., Reeves, D.S., Ning, P., Iyer, S.P.: Analyzing network traffic to detect
self-decrypting exploit code. In: Proceedings of the 2nd ACM Symposium on In-
formation, Computer and Communications Security, pp. 4–12. ACM (2007)

http://research.microsoft.com/users/shuochen/HM.PDF
http://research.microsoft.com/users/shuochen/HM.PDF

	SafeBrowsingCloud: DetectingDrive-by-Downloads Attack Using CloudComputing Environment
	1 Introduction
	2 System
	2.1 AbstractPE
	2.2 BrowserPE
	2.3 DetectPE
	2.4 StoragePE

	3 Evaluation
	3.1 Experimental Setting
	3.2 Processing Performance
	3.3 Detecting Accuracy

	4 Related Work
	4.1 Off-line Solutions
	4.2 Realtime Solutions

	5 Conclusions
	References

