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Abstract. The concept of IOV (Internet of Vehicles) is capable of ensuring the 
safety and efficiency in road transportation by using wireless communication 
among the vehicles and the infrastructure facilities. Precise and real-time 
positioning of vehicles in the road net is of great significance for many 
intelligent functions and applications. In this paper, we expand the capability of 
Dedicated Short Range Communication (DSRC) devices to enhance the GNSS 
(Global Navigation Satellite System) for vehicle positioning. By utilizing the 
Huber-based M-estimation technique, an improved robust cubature filter is 
proposed with a novel approach for real-timely updating the measurement 
covariance, and a strategy for tuning the filter parameter is designed to improve 
the adaptability. Simulation results with specific tools show that the robustness 
and estimation precision of information fusion for positioning can be improved 
under the uncertain measurement and operating conditions. 

1 Introduction 

Due to the developing requirements for transportation in nowadays, the mobility, 
sustainability and safety of road transportation systems have been critical topics of 
interests all over the world [1]. The concept of Internet of Vehicles (IOV) has been an 
important part of future intelligent transportation and the realization of the wisdom 
city, which envisages the vehicles and the objects of the transportation infrastructure 
are all connected as an internet-based system that is capable of exchanging 
information for achieving a more efficient, safe and green world of transportation [2]. 
For lots of IOV applications, vehicle positioning is of great significance for providing 
fundamental information to support decision-making and further functions. 

Traditionally, using the satellite navigation has been a common approach to solve 
the vehicle location detection issues with a relatively low cost, where the rapid 
developing GNSSs (Global Navigation Satellite Systems), including GPS, GLONASS 
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and BDS (BeiDou Navigation Satellite System), are strengthening the belief of the 
users. In order to compensate the drawbacks of GNSS positioning, especially the 
service unavailability and performance consistency in complex urban environments, 
many solutions and strategies have been proposed [3~5]. Compared with the sensor-
assisted solutions, the wireless communication promotes a novel information resource 
for enhancing the satellite-based vehicle positioning. DSRC (Dedicated Short Range 
Communication) based inter-vehicle communication is also involved in the vehicle 
positioning solution, which uses the Carrier Frequency Offset (CFO) measurements to 
extend the information used for position computation and is with great potential for 
assisting the GNSS [6]. In order to make good use of the advantages of GNSS/DSRC 
integration, the position information processing logic employed in the integrated 
system has to deal with the problems of nonlinearity in system and measurement 
model, and uncertain interference in practical operation conditions. The conventional 
nonlinear filters mainly focus on the nonlinearity approximation capability. However, 
the deviation between the assumed posterior density and the practical features may 
result in failures of the connected vehicles services and even greatly rein the 
availability for some vehicle safety critical applications. 

In this paper, we focus on the improvement of the nonlinear filter using the M-
estimation technique [7]. A novel nonlinear filtering-based solution is proposed and 
applied to enhance the performance of GNSS/DSRC positioning, and simulations are 
carried out to illustrate the performance of the proposed method. 

2 Improved Huber-Based Robust Filtering 

As many other Bayesian filters, the CKF consists of time update and the measurement 
update equations. By using the cubature rule, a set of cubature points is involved to 
solve the nonlinearity in system and measurement models. Consider the discrete-time 
nonlinear dynamic process: 
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where kx  is the n -dimensional state vector, kz  is the p -dimensional 

measurement vector, ( )kf ∗  and ( )kh ∗  are system and measurement functions, kv  

and kw  are the system process and the measurement noise vectors, which are 

assumed fulfilling 

T T TE[ ] ,E[ ] ,E[ ] 0, ,i j ij i i j ij i i j i jδ δ= = = ∀v v Q w w R v w  (2) 

According to standard CKF [8], the cubature point set { , }i iωξ  is designed as: 

[ ]2 1 , 1 , 1,2, , 2i ii
m m m m nω= = = =ξ  (3) 

The state is estimated and the corresponding error covariance is derived as: 
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| 1 | 1
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where | 1
ˆ

k k −x  is the state prediction, kK  is the filtering gain, kz  is the measurement 

vector with its estimation | 1ˆk k −z , | 1k k −P  is the covariance of prediction, and zz, | 1k k −P  

denotes the innovation covariance matrix. 
In the design of the original CKF algorithm, the nonlinearity is highly concerned to 

achieve an effective solution for the Bayesian filtering scheme. However, since the 
posterior density is assumed with a fixed form, there are limitations for its 
nonlinearity approximation capability, especially when the deviations from the 
assumption exist and the property of interferences is uncertain and complicated due to 
the operation environments. Therefore, the improvement of robustness is of great 
necessity in many applications with certain critical performance requirements. By 
applying the Huber technique, the measurement process of a Bayesian filter can be 
modified for realizing a Huber-based robust cubature Kalman filter (HRCKF). 

With the consideration of the process-based HRCKF approach, the measurement 
equation can be approximated by integrating the measurement prediction result and 
the transformed prediction error, which is expressed as: 

| 1 | 1 | 1
ˆˆ ˆ ( )k k k k k k k k k k k− − −+ = + −z z H r z H x x  (6) 

Thus, the measurement update can be changed to a linear regression problem: 
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where { }| 1,k k k kdiag −=M R P . 

According to the principle of the robust M-estimation, the measurement update is 
enhanced with a minimization target for a cost function [9]: 
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where iΔ  represents the i th component of the vector as ( )k k k i−Φ x y , and ( )ρ ∗  

depicts the Huber’s score function that is defined with an adjusting parameter γ [10] 
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In order to obtain a direct solution of the modified filtering with the cost function, 
it is expected that ' ( ) 0kJ =x , and the solution for ˆ

kx  is achieved using the matrix 

diag[ ( )]iψ=Θ Δ , '( ) ( ) /i i iψ ρ=Δ Δ Δ , which means the estimation is solved by 

( 1) T ( ) 1 T ( ) T 1ˆ ( ) , ( )j j j
k k k k k k k k

+ − −= =x Φ Θ Φ Φ Θ y P Φ ΘΦ  (10) 

where j  represents the number of iteration step, and the initial value (0)
kx  is derived 

as (0) T 1 Tˆ ( )k k k k k
−=x Φ Φ Φ y .  

With a proper parameter γ , the measurement update process of standard CKF can 

be replaced, and the Huber function can contribute the robustness capability with its 
segmentation features. It can be found that the matrix Θ  is actually an integration of 
two components corresponding to the measurement prediction residual and the state 
prediction error. If we transform Θ  to be an integration of four parts as: 

z

x

p np p

n p n n

××

× ×

 
 =  
  

Θ 0
Θ

0 Θ
 (11) 

Since the true state is unknown in practical problems, the prediction error is set to 
zero and thus x =Θ 0 . If we introduce Eq. (11) into Eq. (10), it can be derived that 

the state estimation returns to a standard Kalman filtering form [11]. When we 
substitute x =Θ 0  into the expressions, the filtering process is given as: 

| 1 | 1[ ] [ ]k k k k k k k k k− −= − = −  P I K H P I K H P  (12) 

where 1/2 1 1/2 T
| 1 | 1 x | 1 | 1( )k k k k k k k k

−
− − − −= =P P Θ P P , and hence k

K  is the reweighted Kalman 

gain that is written as T T 1/2 1 1/ 2 T 1
| 1 | 1 x[ ( ) ]k k k k k k k k k k

− −
− −= +K P H H P H R Θ R . And the state 

vector will be estimated as: 

| 1 | 1
ˆ ˆ ˆ[ ( )]k k k k k k k kh− −= + −x x K z x  (13) 

From the results, it is obvious that the matrix Θ  used in the Huber-based filtering 
just affects the measurement component, where the conventional measurement error 
covariance is modified to be 1/2 1 1/2 T

x ( )k k
−R Θ R . Therefore, it is naturally considered that 

the enhancement of robustness can be realized by improving only the measurement 
related component. The covariance kM   will be further enhanced with Θ as 

1/2 1 1/ 2 T( )k k k
−=M M Θ M  (14) 
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According to the same reason that mentioned in Eq. (11), the state prediction error 

is assumed zero so that the improved measurement error covariance k
R  is updated 

by extracting the corresponding components from k
M . Based on that, the robustness 

can be improved by a novel strategy that updates the measurement covariance in 
standard CKF, rather than the reweighted least-square solution as Eq. (10). 

Since the statistical features of the errors cannot accurately described by a certain 
known distribution, the value of γ  will directly affect the performance of nonlinear 

estimation. In the improved RCKF approach, with an initial 0γ , a simple adjusting 

strategy is involved to increase the adaptability of the filter. We define a time-varying 
parameter kη  referring to the discrepancy status of the state prediction and the final 

estimation, which is described as 

1

T
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where 0kη >  illustrates the strong effect of calibration to the model-based prediction 

compared to the previous iteration, which requires an enhanced concentration to the 
filtering performance of the robust method. Therefore, we consider employing a large 

kγ  in the case of  0kη > . An adaptive logic for selecting kγ  is proposed as 

1 0k k kγ γ ω η−= +  (16) 

where 0ω  is a fixed scale factor for tuning the adjusting capability of kη . 

3 Application in GNSS/DSRC Vehicle Positioning 

In GNSS/DSRC integrated vehicle positioning system, the measurement information 
from the on-board sensors can be collected and used for the data fusion logic. The 
architecture of sensor collecting and information fusion is described as Fig.1. 

The on-board GNSS receiver obtains the pseudo range from the available satellites. 
With a different information awareness method, the range (also range rate) between a 
DSRC transmitter in a neighborhood vehicle and a DSRC receiver within an objective 
vehicle can be measured based on the Doppler Effect. 

According to the principle of sensor measuring for GNSS and DSRC, the proposed 
filtering-based sensor information fusion will be performed, for which the most 
decisive step is to set up the system and measurement model as the form in Eq. (1). 
The three-dimensional position and the related components are involved to make the 
definition for state vector as T( , , , , , , , , )k k k k k k k k k kx x x y y y z z z=      x . 

For the generation of the system kinematical model, with the consideration of 
implementing a robust estimator, the simple conventional constant acceleration model 
is sufficient to describe the short-term state transition from instant ( 1)k −  to k .  
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Fig. 1. Architecture of the GNSS/DSRC vehicle positioning system 

By this approach, the nonlinear system function ( )kf = ∗  is replaced by a linear state 

transition process , 1k k k k k−= +x F x v  with the state transition matrix , 1k k −F . 

For the measurement process, at a certain time instant k , the observations from 

sn  GNSS satellites and dn  neighborhood vehicle nodes are combined to update the 

measurement vector kz . It can be seen that the measurements from two positioning 

systems are integrated with a tightly coupled architecture, where the observations are 
combined to achieve a complete calculation solution for vehicle position estimation. 
With the definitions of the system model , 1k k −F  and measurement model ( )kh ∗ , the 

integration of GNSS and DSRC can be performed according to the proposed robust 
filtering algorithm, and the performance of vehicle positioning will be improved than 
the conventional filters, especially the capabilities under uncertain conditions. 
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4 Simulation Analysis and Discussion 

We present our simulation results to validate the proposed improved robust cubature 
Kalman filter for the GNSS/DSRC vehicle positioning problem. We generate a traffic 
simulation scenario, where a local road network is built covering totally 9 signalized 
intersections. The traffic flow is generated according to a pre-defined OD condition, 
where the dynamic state of the simulated vehicles is recorded real-timely using 
corresponding APIs. An objective vehicle (OV) is tracked based on its ID and the 
DSRC measurements from its neighborhood vehicles (NVs) are simulated, where the 
effective communication coverage is set with a radius of 150m and the measurement 
error of DSRC increases with V2V relative distance. Fig.2 shows the road network in 
simulation and indicates the situation of OV and NVs at the time instant 66t s= .  
 

 

Fig. 2. Vehicle trajectory and the distribution of neighborhood vehicles as t=66s 

As presented in the Fig.2, there are 23 neighborhood vehicles travelling within the 
DSRC coverage of the OV. In positioning calculation for the OV, we use four 
neighborhood vehicle nodes to update measurement vector in an iteration, according 
to the relative distance and the space distribution of the NVs, which may influence the 
communication quality and the dilution of precision for locating the vehicle. 

With the extracted trajectory of the OV, the satellite receiver measurement is 
simulated with a GNSS Simulator. The pseudo-ranges of the BDS satellites are 
generated according to specific observation models. In order to validate the vehicle 
positioning performance in the practical environment, the ionospheric delay and 
tropospheric delay can be coupled in the original observation simulation process, 
which provides effective conditions for validating the filtering performance. 

When using the BDS simulation results under normal conditions, three positioning 
modes are involved in the comparison to illustrate the performance of IHRCKF, 
including (1) BDS-based positioning, (2) BDS/DSRC with standard CKF, and (3) 
BDS/DSRC with the improved IHRCKF method. With the real state of the OV, the 
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positioning errors in both the east and north direction under a Gauss plane coordinate 
can be calculated. We use RMSE (Root Mean Square Error) to evaluate the filtering 
precision. Fig.3 and Fig.4 depict the RMSE in east and north directions. 

 

Fig. 3. Comparison of RMSE in east direction with different positioning modes 

 

Fig. 4. Comparison of RMSE in north direction with different positioning modes 

From the figures, it can be found that, compared to the BDS alone mode and the 
CKF-based integration mode, the IHRCKF solution contributes certain improvement 
in positioning precision. However, the performance of the IHRCKF is not enhanced 
greatly where the BDS is simulated with normal conditions.  

In order to validate the effectiveness of the proposed approach, both the CKF  
and the IHRCKF solutions are involved in simulation with GNSS measurements under 
the challenging conditions. Different values for diagonal elements of kR  are compared. 

We use Gσ  and Dσ  to indicate the predefined measurement covariance of each satellite 
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and the on-board DSRC device of those related neighborhood vehicles, which means 
2 2 2 2
G G D D( , , , , , )k diag σ σ σ σ=  R . A wide range of covariances (from 2.0 to 100.0) for 

both Gσ  and Dσ are tested. 

The results of CKF and IHRCKF are summarized in Table 1 and Table 2, where 
the deviation between the maximum and minimum RMSE with different Gσ  values 

for a certain Dσ  is calculated and recorded as ΔDmax-min in the tables. The meaning of 

ΔGmax-min can be described with a similar approach. Both the ΔDmax-min and ΔGmax-min 
provide obvious descriptions for evaluating the sensitivity to the different covariance 
assumption conditions. 

Table 1. RMSE and its max-min deviation of CKF with different measurement covariances 

σG 2.0 5.0 10.0 50.0 100.0 

ΔGmax-min 1.0169 0.9601 1.6082 7.2037 14.3639 

σD 2.0 5.0 10.0 50.0 100.0 

ΔDmax-min 4.7672 10.2799 13.1983 1.7245 1.6937 

Table 2. RMSE and its max-min deviation of IHRCKF with different measurement covariances 

σG 2.0 5.0 10.0 50.0 100.0 

ΔGmax-min 1.4958 1.1279 1.4836 1.4227 1.6358 

σD 2.0 5.0 10.0 50.0 100.0 

ΔDmax-min 0.9858 0.7852 0.6315 1.7163 2.3167 

 
It can be found that a better robustness performance of state estimation of vehicle 

positioning is obtained by the proposed IHRCKF. Compared to the results from CKF, 
the response of IHRCKF to the variety of covariance assumptions is insensitive and 
relatively stable, while the deviation of CKF is with distinct diversity in a wide range 
from 1.0169 to 14.3639. It is illustrated that the modification of the measurement 
covariance in IHRCKF and the adaptive γ strategy greatly enhance the robustness of 
GNSS/DSRC integration to deal with the unknown error characteristics and operation 
conditions, while the conventional filtering method that uses a fixed kR  is lack of 

adaptability and cannot cope with the uncertainties with the specific assumptions. 

5 Conclusions 

In this paper, we proposed an improved robust cubature Kalman filter to fuse the 
sensor data for locating the vehicles, using the GNSS/ DSRC positioning scheme. The 
proposed approach solves the issues of nonlinearity and robustness, and poses 
problem for the conventional filtering techniques like the cubature Kalman filter and 
other related solutions. By modifying the measurement process of the standard CKF 
using an adaptive strategy for measurement covariance matrix and the key parameter 
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γ, the sensitivity of the estimation precision to the covariance assumptions and the 
operating conditions is effectively constrained. Simulation results demonstrate the 
capability of the proposed filter approach, and show its potential for implementation 
in practical connected vehicles environment. 
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