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Abstract. Stream runtime verification (SRV), pioneered by the tool
LOLA, is a declarative approach to specify synchronous monitors. In
SRV, monitors are described by specifying dependencies between output
streams of values and input streams of values. The declarative nature of
SRV enables a separation between (1) the evaluation algorithms, and (2)
the monitor storage and its individual updates. This separation allows
SRV to be lifted from conventional failure monitors into richer domains
to collect statistics of traces. Moreover, SRV allows to easily identify
specifications that can be efficiently monitored online, and to generate
efficient schedules for offline monitors.

In spite of these attractive features, many important theoretical prob-
lems about SRV are still open. In this paper, we address complexity, ex-
pressiveness, succinctness, and closure issues for the subclass of Boolean
SRV (BSRV) specifications. Additionally, we show that for this subclass,
offline monitoring can be performed with only two passes (one forward
and one backward) over the input trace in spite of the alternation of past
and future references in the BSRV specification.

1 Introduction

Runtime verification (RV) has emerged in the last decades as an applied formal
technique for software reliability. In RV, a specification, expressing correctness
requirements, is automatically translated into a monitor. Such a monitor is then
used to check either the current execution of a running system, or a finite set of
recorded executions with respect to the given specification. The former scenario
is called online monitoring, while the latter one is called offline monitoring.
Online monitoring is used to detect and possibly handle (e.g., by the execution
of additional repair code) violations of the specification when the system is in
operation. On the other hand, offline monitoring is used in post-mortem analysis
and it is convenient for testing large systems before deployment. Unlike static
verification (such as model-checking) which formally checks that all the (infinite)
executions or traces of a system satisfy the specification, RV only considers a
single finite trace. Thus, this methodology sacrifices completeness guarantees to
obtain an immediately applicable and formal extension of testing. See [17,14] for
modern surveys on runtime verification.
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StreamRuntimeVerification. The first specification formalisms proposed for
runtime verification were based on specification languages for static verification,
typically LTL [18] or past LTL adapted for finite paths [15,9,5]. Other formalisms
for expressing monitors include regular expressions [23], rule based specifications
as proposed in the logic Eagle [1], or rewriting [22]. Stream runtime verification
(SRV), first proposed in the tool LOLA [8], is an alternative to define monitors for
synchronous systems. InSRV, specifications declare explicitly the dependencies be-
tween input streams of values (representing the observable behavior of the system)
and output streams of values (describing error reports and diagnosis information).
These dependencies can relate the current value of an output stream with the val-
ues of the same or other streams in the presentmoment, in past instants (like in past
temporal formulas) or in future instants. A similar approach to describe temporal
relations as streams was later introduced as temporal testers [21].

Stream runtime verification offers two advantages to the description of moni-
tors. First, SRV separates the algorithmic aspects of the runtime evaluation (by
explicitly declaring the data dependencies) from the specific individual opera-
tions performed at each step (which depend on the type of data being observed,
manipulated and stored). In this manner, well-known evaluation algorithms for
monitoring Boolean observations – for example those from temporal logics – can
be generalized to richer data domains, producing monitors that collect statistics
about traces. Similarly to the Boolean case, the first approaches for collecting
statistics from running traces were based on extensions of LTL [10]. SRV can
be viewed as a generalization of these approaches to streams. Other modern
approaches to the runtime verification for statistic collection extend first-order
LTL [4,2,3]. Moreover, the declarative nature of SRV allows to identify spec-
ifications that are amenable for efficient online monitoring, essentially those
specifications whose values can be resolved by past and present observations.
Additionally, the analysis of dependencies also allows to generate efficient offline
monitors by scheduling passes over the dumped traces, where the number of
passes (back and forth) depends on the number of alternations between past
and future references in the specification.

SRV can be seen as a variation of synchronous languages [7] – like Esterel [6],
Lustre [13] or Signal [11] – specifically designed for observing traces of systems,
removing the causality assumption. In synchronous languages, stream values
can only depend on past or present values, while in SRV a dependency on future
values is additionally allowed to describe future temporal observations. In recent
years, SRV has also been extended to real-time systems [20,12].

When used for synthesizing monitors, SRV specifications need to be well-
defined : for every input there is a unique corresponding output stream. How-
ever, as with many synchronous languages, the declarative style of SRV allows
specifications that are not well-defined: for some observations, either there is
no possible output (over-definedness) or there is more than one output (under-
definedness). This anomaly is caused by circular dependencies, and in [8], a
syntactical constraint called well-formedness is introduced in order to ensure
the absence of circular dependencies, and guarantee well-definedness.
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Our Contribution. In spite of its applicability, several foundational theoret-
ical problems of SRV have not been studied so far. In this paper, we address
complexity, expressiveness, succinctness, and closure properties for Boolean SRV
(BSRV). Our results can be summarized as follows:
– we establish the complexity of checking whether a specification is under-

defined, over-defined or well-defined. Apart from the theoretical significance
of these results, many important practical properties of specifications (like
semantic equivalence, implication and redundancy) can be reduced to the
decision problems above.

– BSRV specifications can be naturally interpreted as language recognizers,
where one selects the inputs for which the specification admits some output.
We prove that in this setting, BSRV captures precisely the class of regular
languages. We also show efficient closure constructions for many language
operations. Additionally, BSRV specifications can be exponentially more suc-
cinct than nondeterministic finite-state automata (NFA).

– Finally, based on the construction of the NFA associated with a well-defined
BSRV specification, we show how to schedule an offline algorithm with only
two passes, one forward and one backward. This gives a partial answer (for
the Boolean case) to the open problem of reducing the number of passes in
offline monitoring for well-formed SRV specifications [8].

The rest of the paper is structured as follows. Section 2 revisits SRV. In
Section 3 we establish expressiveness, succinctness, and closure results for BSRV
specifications when interpreted as language recognizers. In Section 4, we describe
the two-pass offline monitoring algorithm. Section 5 is devoted to the decision
problems for BSRV specifications. Finally, Section 6 concludes. Due to lack of
space, some proofs are omitted and are included in the longer version of this
document1.

2 Stream Runtime Verification (SRV)

In this Section, we recall the SRV framework [8]. We focus on SRV specifications
over stream variables of the same type (with emphasis on the Boolean type).

A type T is a tuple T = 〈D,F〉 consisting of a countable value domain D
and a finite collection F of interpreted function symbols f , where f denotes a
computable function from Dk to D and k ≥ 0 is the specific arity of f . Note
that 0-ary function symbols (constants) are associated with individual values.
In particular, we consider the Boolean type, where D = {0, 1} and F consists of
the Boolean operators ∧ and ∨ and ¬. A stream of type T is a non-empty finite
word w over the domain D of T. Given such a stream w, |w| is the length of w
and for all 1 ≤ i ≤ |w|, w(i) is the ith letter of w (the value of the stream at
time step i). The stream w is uniform if there is d ∈ D such that w is in d∗.

For a finite set Z of (stream) variables, a stream valuation of type T over Z is
a mapping σ assigning to each variable z ∈ Z, a stream σ(z) of type T such that

1 The longer version can be obtained at http://software.imdea.org/~cesar/

http://software.imdea.org/~cesar/
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the streams associated with the different variables in Z have the same length N
for some N ≥ 1. We also say that N is the length of σ, which is denoted by |σ|.
Remark 1. Note that for the Boolean type, a stream valuation σ over Z can
be identified with the non-empty word over 2Z of length |σ| whose ith symbol,
written σ(i), is the set of variables z ∈ Z such that σ(z)(i) = 1.

Stream Expressions. Given a finite set Z of variables, the set of stream ex-
pressions E of type T over Z is inductively defined by the following syntax:

E := τ
∣
∣ τ [�|c] ∣

∣ f(E1, . . . ,Ek)

where τ is either a constant of type T or a variable in Z, � is a non-null integer,
c is a constant of type T, and f ∈ F is a function of type T and arity k > 0.
Informally, τ [�|c] refers to the value of τ offset � positions from the current
position, and the constant c is the default value of type T assigned to positions
from which the offset is after the end or before the beginning of the stream.
Stream expressions E of type T over Z are interpreted over stream valuations
σ of type T over Z. The valuation of E with respect to σ, written [[E, σ]], is the
stream of type T and length |σ| inductively defined as follows for all 1 ≤ i ≤ |σ|:
– [[c, σ]](i) = c and [[z, σ]](i) = σ(z)(i) for all z ∈ Z

– [[τ [�|c], σ]](i) =
{
[[τ, σ]](i + �) if 1 ≤ i + � ≤ |σ|
c otherwise

– [[f(E1, . . . ,Ek), σ]](i) = f([[E1, σ]](i), . . . , [[Ek, σ]](i))

For the Boolean type, we use some shortcuts: E1 → E2 stands for ¬E1 ∨ E2,
E1 ↔ E2 stands for (E1 → E2) ∧ (E2 → E1), and if E then E1 else E2 stands for
(E ∧ E1) ∨ (¬E ∧ E2). Additionally, we use first and last for the Boolean stream
expressions 0[−1|1] and 0[+1|1], respectively. Note that for a Boolean stream,
first is 1 precisely at the first position, and last is 1 precisely at the last position.

Example 1. Consider the following Boolean stream expression E over Z = {x}:

E := if x then x else x[1|0]

For every Boolean stream valuation σ over Z such that σ(Z) ∈ (01)+, the valu-
ation of E with respect to σ is the uniform Boolean stream 1|σ|.

Stream Runtime Verification Specification Language (SRV). Given a
finite set X of input variables and a set Y = {y1, . . . , yn} of output variables
with X ∩ Y = ∅, an SRV ϕ of type T over X and Y is a set of equations

ϕ := {y1 = E1, . . . , yn = En}

where E1, . . . ,En are stream expressions of type T over X ∪ Y . Note that there
is exactly one equation for each output variable. A stream valuation of ϕ is a
stream valuation of type T over X ∪ Y , while an input (resp., output) of ϕ is a
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stream valuation of type T over X (resp., Y ). Given an input σX of ϕ and an
output σY of ϕ such that σX and σY have the same length, σX ∪ σY denotes
the stream valuation of ϕ defined in the obvious way. The SRV ϕ describes a
relation, written [[ϕ]], between inputs σX of ϕ and outputs σY of ϕ, defined as
follows: (σX , σY ) ∈ [[ϕ]] iff |σX | = |σY | and for each equation yj = Ej of ϕ,

[[yj , σ]] = [[Ej, σ]] where σ = σX ∪ σY
If (σX , σY ) ∈ [[ϕ]], we say that the stream valuation σX ∪σY is a valuation model
of ϕ (associated with the input σX). Note that in general, for a given input σX ,
there may be zero, one, or multiple valuation models associated with σX . This
leads to the following notions for an SRV ϕ:

– Under-definedness: for some input σX , there are at least two distinct valua-
tion models of ϕ associated with σX .

– Over-definedness: for some input σX , there is no valuation model of ϕ asso-
ciated with σX .

– Well-definedness: for each input σX , there is exactly one valuation model of
ϕ associated with σX .

Note that an SRV ϕ may be both under-defined and over-defined, and ϕ is
well-defined iff it is neither under-defined nor over-defined. For runtime verifi-
cation, SRV serves as a query language on program behaviors (input streams)
from which one computes a unique answer (the output streams). In this con-
text, a specification is useful only if it is well-defined. However, in practice, it is
convenient to distinguish intermediate output variables from observable output
variables separating output streams that are of interest to the user from those
that are used only to facilitate the computation of other streams. This leads
to a more general notion of well-definedness. Given a subset Z ⊆ Y of output
variables, an SRV ϕ is well-defined with respect to Z if for each input σX , there
is exactly one stream valuation σZ over Z having the same length as σX such
that σX ∪ σZ can be extended to some valuation model of ϕ (uniqueness of the
output streams over Z).

Analogously, we consider a notion of semantic equivalence between SRV of the
same type and having the same input variables, which is parameterized by a set
of output variables. Formally, given an SRV ϕ of type T over X and Y , an SRV
ϕ′ of type T over X and Y ′, and Z ⊆ Y ∩Y ′, we say that ϕ and ϕ′ are equivalent
with respect to Z if for each valuation model σ of ϕ, there is a valuation model σ′

of ϕ′ such that σ and σ′ coincide on X ∪Z, and vice versa. Moreover, if Y ′ ⊇ Y ,
then we say that ϕ′ is ϕ-equivalent if ϕ and ϕ′ are equivalent with respect to Y .

Remark 2. In the rest of the paper, we focus on Boolean SRV (BSRV for short).
Thus, in the following, we omit the reference to the type T in the various def-
initions. We assume that the offsets � in the subexpressions τ [�|c] of a BSRV
are encoded in unary. For a Boolean stream expression E, we denote by ‖E‖ the
offset � if E is a stream expression of the form τ [�|c]; otherwise, ‖E‖ is 1. The
size |ϕ| of a BSRV ϕ is defined as |ϕ| := ∑

E∈SE(ϕ) ‖E‖, where SE(ϕ) is the set
of stream subexpressions of ϕ.
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Example 2. Consider the following BSRV over X = {x} and Y = {y}:

ϕ1 := {y = x∧y} ϕ2 := {y = x∧¬y} ϕ3 := {y = if x then x[2|0] else x[−2|0]}

The specification ϕ1 is under-defined since (1N , 0N) and (1N , 1N ) are two valu-
ation models for each N ≥ 1. On the other hand, the specification ϕ2 is over-
defined since for each N ≥ 1, there is no valuation model associated with the
input 1N . Finally, the specification ϕ3 is well-defined.

3 BSRV as Language Recognizers

BSRV can be interpreted as a simple declarative formalism to specify languages
of non-empty finite words. Formally, we associate to a BSRV ϕ over X and Y ,
the language L(ϕ) of non-empty finite words over 2X (or, equivalently, input
stream valuations) for which the specification ϕ admits a valuation model, i.e.,

L(ϕ) := {σX | (σX , σY ) ∈ [[ϕ]] for some σY }

Example 3. Let X = {x}, Y = {y}, and ϕ = {y = if E then y else ¬y}, where
E :=

(

first → (x ∧ y)) ∧ (

y → ¬y[+1|0]) ∧ (¬y → (x[+1|1] ∧ y[+1|1]))

A pair (σX , σY ) is a valuation model of ϕ iff the valuation of the stream expres-
sion E w.r.t. σX ∪σY is in 1+ iff σX(x)(i) = 1 for all odd positions i. Hence, L(ϕ)
is the set of Boolean streams which assume the value 1 at the odd positions.

In the following, we show that BSRV, as language recognizers, are effectively
equivalent to nondeterministic finite automata (NFA) on finite words. While the
translation from NFA to BSRV can be done in polynomial time, the converse
translation involves an unavoidable singly exponential blowup. Moreover, BSRV
turn out to be effectively and efficiently closed under many language operations.

In order to present our results, we shortly recall the class of NFA on finite
words. An NFA A over a finite input alphabet I is a tuple A = 〈Q, q0, δ, F 〉,
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × I → 2Q is
the transition function, and F ⊆ Q is a set of accepting states. Given an input
word w ∈ I∗, a run π of A over w is a sequence of states π = q1, . . . , q|w|+1 such
that q1 is the initial state and for all 1 ≤ i ≤ |w|, qi+1 ∈ δ(qi, w(i)). The run
π is accepting if it leads to an accepting state (i.e, q|w|+1 ∈ F ). The language
L(A) accepted by A is the set of non-empty finite words w over I such that
there is an accepting run of A over w. A is universal if L(A) = I+. A language
over non-empty finite words is regular if it is accepted by some NFA. An NFA is
unambiguous if for each input word w, there is at most one accepting run on w.

Fix a BSRV ϕ on X and Y . In order to build an NFA accepting L(ϕ), we define
an encoding of the valuation models of ϕ. For this, we associate to ϕ two param-
eters, the back reference distance b(ϕ) and the forward reference distance f(ϕ):

b(ϕ) := max(0, {� | � > 0 and ϕ contains a subexpression of the form z[−�, c]})
f(ϕ) := max(0, {� | � > 0 and ϕ contains a subexpression of the form z[�, c]})



70 L. Bozzelli and C. Sánchez

For a stream valuation σ of ϕ and an expression E of ϕ, the value of E w.r.t. σ
at a time step i is completely specified by the values of σ at time steps j such
that i− b(ϕ) ≤ j ≤ i+ f(ϕ). We define the following alphabets:

A := 2X∪Y A⊥ := A ∪ {⊥} Pϕ := (A⊥)b(ϕ) ×A× (A⊥)f(ϕ)

where ⊥ is a special symbol. Note that a stream valuation of ϕ corresponds to
a non-empty finite word over the alphabet A, and the cardinality of Pϕ is singly
exponential in the size of ϕ. For an element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Pϕ, the component a0, called the main value of p, intuitively represents the
value of some stream valuation σ at some time step i, while a−b(ϕ), . . . , a−1

(resp., a1, . . . , af(ϕ)) represent the values of σ at the previous b(ϕ) (resp., next
f(ϕ)) time steps, if any (the symbol ⊥ is used to denote the absence of a previous
or next time step). Let τ be either a Boolean constant or a variable in X ∪ Y ,
and a ∈ A. Then, the Boolean value of τ in a is τ if τ is a constant, otherwise
the value is 1 iff τ ∈ a. For a Boolean stream expression E over X ∪ Y and an
element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) of Pϕ, the value [[E, p]] of E with
respect to p is the computable Boolean value inductively defined as follows:

– [[c, p]] = c and [[z, p]] = the value of z in a0

– [[τ [�|c], p]] =
{

the value of τ in a� if − b(ϕ) ≤ � ≤ f(ϕ) and a� �= ⊥
c otherwise

– [[f(E1, . . . ,Ek), p]] = f([[E1, p]], . . . , [[Ek, p]])

We denote by Qϕ the subset of Pϕ consisting of the elements p of Pϕ such
that for each equation y = E of ϕ, the value of y with respect to p coincides
with the value of E with respect to p. Let # be an additional special symbol
(which will be used as initial state of the NFA associated with ϕ). An expanded
valuation model of ϕ is a word of the form # · w such that w is a non-empty
finite word w over the alphabet Qϕ satisfying the following:

– w(1) is of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ));
– w(|w|) is of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥);
– if 1 ≤ i < |w| and w(i) = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)), then there is d ∈
A⊥ such that w(i + 1) is of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d).

For an expanded valuation model # · w of ϕ, the associated stream valuation
σ(w) is the stream valuation of ϕ of length |w| whose ith element is the main
value of the ith element of w. By construction, we easily obtain that σ(w) is a
valuation model of ϕ and, more precisely, the following lemma holds.

Lemma 1. The mapping assigning to each expanded valuation model # ·w of ϕ
the associated stream valuation σ(w) is a bijection between the set of expanded
valuation models of ϕ and the set of valuation models of ϕ.

By the above characterization of the set of valuations models of a BSRV ϕ, we
easily obtain the following result.
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Theorem 1 (From BSRV to NFA). Given a BSRV ϕ over X and Y , one can
construct in singly exponential time an NFA Aϕ over the alphabet 2X accepting
L(ϕ) whose set of states is Qϕ ∪ {#}. Moreover, for each input σX , the set
of accepting runs of Aϕ over σX is the set of expanded valuation models of ϕ
encoding the valuation models of ϕ associated with the input σX .

Proof. The NFA Aϕ is defined as Aϕ = 〈Qϕ ∪ {#},#, δϕ, Fϕ〉, where Fϕ is the
set of elements of Qϕ of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥), and δ(p, ι) is
defined as follows for all states p and input symbol ι ∈ 2X :

– if p = #, then δϕ(p, ι) is the set of states of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ))
such that a0 ∩X = ι;

– if p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) ∈ Qϕ, then δϕ(p, ι) is the set of
states of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d) for some d ∈ A⊥
whose main value a satisfies a ∩X = ι.

By construction, for each input σX , the set of accepting runs of Aϕ over σX
coincides with the set of expanded valuation models # · w of ϕ such that the
stream valuation σ(w) is associated with the input σX . Thus, by Lemma 1, the
result follows. ��

For the converse translation from NFA to BSRV, we show the following.

Theorem 2 (From NFA to BSRV). Given an NFA A over the input alphabet
2X, one can construct in polynomial time a BSRV ϕA with set of input variables
X such that L(ϕA) = L(A).

Proof. Let A = 〈Q, q0, δ, F 〉. We construct a BSRV ϕA over the set of input
variablesX as follows. First, for each input symbol ι, we use a Boolean expression
Eι overX , encoding the input symbol ι, defined as Eι := (

∧

x∈ι x)∧(
∧

x∈X\ι ¬x).
The set Y of output variables of ϕA is defined as follows:

Y =
⋃

q∈Q
{q} ∪ {control}

Thus, we associate to each state q ∈ Q, an output variable q, whose associated
equation is the trivial one given by q = q. The equation for the output variable
control is given by

control = if Eev then control else ¬control
where the boolean stream expression Eev describes accepting runs of the NFA A
and is defined as follows:

Eev =
∨

q∈Q
(q ∧

∧

p∈Q\{q}
¬p)

︸ ︷︷ ︸

at each step, A is exactly in one state

∧ (first −→ q0)
︸ ︷︷ ︸

a run of A starts at the initial state

∧

∧

q∈Q

∧

ι∈I

(

(q ∧ Eι) −→
∨

p∈δ(q,ι)
p[+1|1])

︸ ︷︷ ︸

the evolution of A is δ-consistent

∧ (

last −→
∨

(q,ι)∈{(q,ι)|δ(q,ι)∩F 	=∅)}
(q ∧ Eι)

)

︸ ︷︷ ︸

the run of A is accepting
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By construction, it easily follows that given an input stream valuation σX , there
is a valuation model of ϕA associated with the input σX if and only if there is a
stream valuation σ associated with the input σX such that the valuation of Eev

with respect to σ is a uniform stream in 1+ if and only if there is an accepting
run of A over the input σX . Hence, the result follows. ��
Corollary 1. BSRV, when interpreted as language recognizers, capture the class
of regular languages over non-empty finite words.

Succinctness Issues. It turns out that the singly exponential blow-up in The-
orem 1 cannot be avoided. To prove this we first show a linear time translation
from standard linear temporal logic LTL with past over finite words (which cap-
tures a subclass of regular languages) into BSRV. Recall that formulas ψ of LTL
with past over a finite set AP of atomic propositions are defined as follows:

ψ := p
∣
∣ ¬ψ ∣

∣ ψ ∨ ψ ∣
∣ ψ

∣
∣ ψ

∣
∣ ψ U ψ

∣
∣ ψ S ψ

where p ∈ AP and , , U , and S are the ‘next’, ‘previous’, ‘until’, and ‘since’
temporal modalities. For a finite word w over 2AP and a position 1 ≤ i ≤ |w|,
the satisfaction relation (w, i) |= ψ is defined as follows (we omit the rules for
the boolean connectives and the atomic propositions, which are standard):

(w, i) |= ψ ⇔ i+ 1 ≤ |w| and (w, i + 1) |= ψ
(w, i) |= ψ ⇔ i > 1 and (w, i − 1) |= ψ
(w, i) |= ψ1 U ψ2 ⇔ ∃ i ≤ j ≤ |w|, (w, j) |= ψ2 and ∀ i ≤ h < j, (w, h) |= ψ1

(w, i) |= ψ1 S ψ2 ⇔ ∃ 1 ≤ j ≤ i, (w, j) |= ψ2 and ∀ j < h ≤ i, (w, h) |= ψ1

The language L(ψ) of a LTL formula ψ is the set of non-empty finite words w
over 2AP such that (w, 1) |= ψ.

Proposition 1. LTL with past can be translated in linear time into BSRV.

Proof. Let ψ be a formula of LTL with past over a finite set AP of atomic
propositions. We construct in linear time a BSRV specification ϕ over the set
of input variables X = AP such that L(ϕ) = L(ψ). Let SF(ψ) be the set of
subformulas of ψ. Then, the set of output variables Y of ϕ is defined as follows.

Y =
⋃

θ∈SF(ψ)

{yθ} ∪ {init}

Thus, we associate to each subformula θ of ψ, an output variable yθ. The intended
meaning is that for an input valuation σX (corresponding to a non-empty finite
word over 2AP) and a valuation model σ associated with σX , at each time step
i, the value of variable yθ is 1 iff θ holds at position i along σX . The equations
for the output variables are defined as follows, where p ∈ AP = X .

init = first → (yψ ∨ ¬init) yp = p
y¬θ = ¬ yθ yθ1∨θ2 = yθ1 ∨ yθ2
yθ = yθ[+1|0] yθ = yθ[−1|0]
yθ1Uθ2 = yθ2 ∨ (¬last ∧ yθ1 ∧ yθ1Uθ2 [+1|1])
yθ1Sθ2 = yθ2 ∨ (¬first ∧ yθ1 ∧ yθ1Sθ2 [−1|1])
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One can easily show that the construction is correct, i.e., L(ϕ) = L(ψ). ��
It is well-known that there is a singly exponential succinctness gap between

LTL with past and NFA [16]. Consequently, we obtain the following result.

Theorem 3. BSRV are singly exponentially more succinct than NFA, that is,
there is a finite set X of input variables and a family (ϕn)n≥1 of BSRV such
that for all n ≥ 1, ϕn has input variables in X and size polynomial in n, and
every NFA accepting L(ϕn) has at least 2Ω(n) states.

Effective Closure under Language Operations. An interesting feature of
the class of BSRV is that, when interpreted as language recognizers, BSRV are
effectively and efficiently closed under many language operations. For two lan-
guages L and L′ of finite words, LR denotes the reversal of L, L ·L′ denotes the
concatenation of L and L′, and L+ denotes the positive Kleene closure of L.

For a BSRV ϕ, we say that an output variable y of ϕ is uniform if for each
valuation model of ϕ, the stream for y is uniform.

Theorem 4. BSRV are effectively closed under the following language opera-
tions: intersection, union, reversal, positive Kleene closure, and concatenation.
Additionally, the constructions for these operations can be done in linear time.

Proof. We illustrate the constructions for the considered language operations.
Intersection, Union, and Reversal. The constructions are illustrated in Fig. 1.
For the intersection, assuming w.l.o.g. that the BSRV ϕ and ϕ′ have no output
variable in common, the BSRV recognizing L(ϕ)∩L(ϕ′) is simply the joint set of
the equations of ϕ and ϕ′. For the union, we use two new output variables check
and main. Intuitively, check is a uniform output variable used to guess whether
the input has to be considered an input for ϕ or for ϕ′. The equation for check
ensures that the streams for check range over all the uniform Boolean streams.
Depending on the uniform value of check (if it is in 0+ or 1+), the equation
for the output variable main ensures that the input is recognized iff either the
equations of ϕ are fulfilled or the equations of ϕ′ are fulfilled. For the reversal,
the BSRV recognizing L(ϕ)R is obtained from ϕ by replacing each subexpression
τ [k|d] (resp., τ [−k|d]) with k > 0 with the subexpression τ [−k|d] (resp., τ [k|d]).
Positive Kleene closure. The construction is given in Fig. 2.

TheBSRV recognizing [L(ϕ)]+ uses two new output variables:wbegin andwend.
Intuitively, wbegin and wend are used for guessing a decomposition in the given
input σX of the form σX = σX,1 · . . . · σX,N for some N ≥ 1 in such a way that
each component σX,i is in L(ϕ). In particular, the output variable wbegin (resp.,
wend) is used to mark the first (resp., the last) positions of the components σX,i.
Moreover, the equations for the output variables of ϕ are modified to allow check-
ing for an offset k of ϕ and a position j inside a component σX,i in the guessed
decomposition of the input σX , whether k + j is still a position inside σX,i.

Concatenation. The construction is given in Fig. 3. We assume w.l.o.g. that
the BSRV ϕ and ϕ′ have no output variables in common. The BSRV recognizing
L(ϕ) ·L(ϕ′) uses a new output variable: wmark. This variable is used for guessing
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ϕ = {y1 = E1, . . . , yk = Ek} ϕ′ = {y′
1 = E′

1, . . . , y
′
h = E′

h}
Intersection: ϕ ∩ ϕ′ = {y1 = E1, . . . , yk = Ek, y

′
1 = E′

1, . . . , y
′
h = E′

h}
where {y1, . . . , yk} ∩ {y′

1, . . . , y
′
h} = ∅.

Union: ϕ ∪ ϕ′ = {y1 = y1, . . . , y
′
h = y′

h, check = Echeck,main = Emain}
Echeck = if ¬last→ (check↔ check[+1|1]) then check else ¬check

Emain = if
(
(check→

i=k∧

i=1

yi ↔ Ei) ∧ (¬check→
i=h∧

i=1

y′
i ↔ E′

i)
)
then main else ¬main

Reversal: ϕR = {y1 = ER
1 , . . . , yk = ER

k }
ER
i is obtained from Ei by converting each offset k in its opposite −k.

Fig. 1. Constructions for intersection, union, and reversal

Positive Kleene closure for ϕ = {y1 = E1, . . . , yk = Ek}
ϕ+ = {y1 = E+

1 , . . . , yk = E+
k ,wbegin = Ewbegin,wend = Ewend}

Ewbegin = if (first→ wbegin) ∧ (wbegin→ wend[−1|1]) then wbegin else ¬wbegin
Ewend = if (last→ wend) ∧ (wend→ wbegin[+1|1]) then wend else ¬wend

and E+
i is obtained from Ei by replacing each stream subexpression τ [k|d] with Eτ,k,d:

Eτ,k,d =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if

j=k∨

j=1

wbegin[j|1] then d else τ [k|d] if k > 0

if

j=−k∨

j=1

wend[−j|1] then d else τ [k|d] if k < 0

Fig. 2. Construction for positive Kleene closure

a decomposition in the given input of the form σX · σ′
X in such a way that

σX ∈ L(ϕ) and σ′
X ∈ L(ϕ′). In particular, the output variable wmark assumes

the value 1 along all and only the positions of σX (the equation for wmark ensures
that a Boolean stream for wmark is always in 1+0+). Moreover, the equations for
the output variables of ϕ are modified in order to allow to check for a positive
offset k > 0 of ϕ and a position j inside σX in the guessed decomposition σX ·σ′

X

of the input, whether k+j is still a position inside σX . Analogously, the equations
for the output variables of ϕ′ are modified to allow checking for a negative offset
k < 0 of ϕ′ and a position j inside σ′

X in the guessed decomposition σX · σ′
X of

the input, whether k + j is still a position inside σ′
X . ��

4 Offline Monitoring for Well-Defined BSRV

In this section, we propose an offline monitoring algorithm for well-defined BSRV
based on Theorem 1. The algorithm runs in time linear in the length of the input
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ϕ = {y1 = E1, . . . , yk = Ek} ϕ′ = {y′
1 = E′

1, . . . , y
′
h = E′

h}
Concatenation: {y1, . . . , yk} ∩ {y′

1, . . . , y
′
h} = ∅

ϕ · ϕ′ = {y1 = if wmark then Ẽ1 else y1, . . . , yk = if wmark then Ẽk else yk,

y′
1 = if ¬wmark then Ẽ

′
1 else y′

1, . . . , y
′
h = if ¬wmark then Ẽ

′
h else y′

h,wmark = Ewmark}
Ewmark = if (first→ wmark) ∧ (last→ ¬wmark) ∧ (wmark→ wmark[−1|1])∧

(¬wmark→ ¬wmark[+1|0]) then wmark else ¬wmark

Ẽi is obtained from Ei by replacing each stream subexpression τ [k|d] s.t. k > 0 with:

if

j=k∨

j=1

¬wmark[j|0] then d else τ [k|d]

Ẽ
′
i is obtained from E′

i by replacing each stream subexpression τ [k|d] s.t. k < 0 with:

if

j=−k∨

j=1

wmark[−j|1] then d else τ [k|d]

Fig. 3. Construction for concatenation

Monitoring(ϕ, σX) /** ϕ is a well-defined BSRV and Aϕ = 〈Q, q0, δ, F 〉 **/
Λ← {q0}
for i = 1 upto |σX | do
update Λ← {q ∈ Q | q ∈ δ(p, σX(i)) for some p ∈ Λ}
store Λ at position i on the tape

for i = |σX | downto 1 do

let Λ be the set of states stored at position i on the tape
if i = |σX | then p ← the unique accepting state in Λ
else let q be the unique state in Λ such that p ∈ δ(q, σX(i+ 1)); update p← q
output at position i the main value of p

Fig. 4. Offline monitoring algorithm for well-defined BSRV

trace (input streams) and singly exponential in the size of the specification.
Additionally, we partially solve a question left open in [8] for the case of BSRV.

Let ϕ be a BSRV over X and Y , and Aϕ = 〈Q, q0, δ, F 〉 be the NFA over 2X

accepting L(ϕ) of Theorem 1. Recall that Q \ {q0} is contained in (A⊥)b(ϕ) ×
A× (A⊥)f(ϕ), where A = 2X∪Y and A⊥ := A∪ {⊥}, and an expanded valuation
model of ϕ is of the form π = q0, q1, . . . , qk, where qi ∈ Q\{q0} for all 1 ≤ i ≤ k.
Moreover, the valuation model of ϕ encoded by π is the sequence of the main
values of the states qi visited by π. By Theorem 1, the set of accepting runs of
Aϕ over an input σX is the set of expanded valuation models of ϕ encoding the
valuation models of ϕ associated with the input σX . Hence, the following holds.

Proposition 2. A BSRV ϕ is well-defined if and only if the NFA Aϕ is universal
and unambiguous.
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The offline monitoring algorithm for well-defined BSRV is given in Fig. 4, where
we assume that the input trace σX is available on a tape. The algorithmoperates in
two phases. In the first phase, a forward traversing of the input trace is performed,
and the algorithm simulates the unique run over the input σX of the deterministic
finite state automaton (DFA) that would result from Aϕ by the classical powerset
construction. Let {q0}, Λ(1), . . . , Λ(|σX |) be the run of this DFA over σX . Then, at
each step i, the stateΛ(i) of the run resulting from reading the input symbol σX(i)
is stored in the ith position of the tape. In the second phase, a backward traversing
of the input trace is performed, and the algorithm outputs a stream valuation ofϕ.
Since ϕ is well-defined, by using Proposition 2, we easily deduce that the unique-
ness conditions in the second phase of the algorithm are satisfied. Moreover, the
sequence of states computed by the algorithm in the second phase is the unique ac-
cepting run π ofAϕ overσX . Therefore, the algorithmoutputs the valuationmodel
of ϕ encoded by π, which is the unique valuation model of ϕ associated with the
input σX . Thus, since the size of the NFAAϕ is singly exponential in the size of ϕ,
we obtain the following result.

Theorem 5. One can construct an offline monitoring algorithm for well-defined
BSRV running in time linear in the length of the input trace and singly expo-
nential in the size of the specification. Additionally, the algorithm processes a
position of the input trace exactly twice.

In [8], a syntactical condition for general SRV, called well-formedness, is intro-
duced, which can be checked in polynomial time and implies well-definedness.
Well-formedness ensures the absence of circular definitions by requiring that a de-
pendency graph of the output variables have not zero-weight cycles. As illustrated
in [8], for the restricted class ofwell-formedSRV, it is possible to construct an offline
monitoring algorithmwhich runs in time linear in the length of the input trace and
the size of the specification. Moreover, one can associate to a well-formed SRV ϕ a
parameter ad(ϕ), called alternation depth [8], such that the monitoring algorithm
processes each position of the input trace exactly ad(ϕ)+1 times. An important
question left open in [8] is whether for a well-formed SRV ϕ, it is possible to con-
struct a ϕ-equivalent SRVwhose alternation depth is minimal. Here, we settle par-
tially this question for the class of BSRV. By using the same ideas for constructing
the algorithm of Fig. 4, we show that for the class of BSRV, the semantic notion of
well-definedness coincides with the syntactical notion of well-formedness (modulo
BSRV-equivalence), and the hierarchy of well-formed BSRV induced by the alter-
nation depth collapses to the level 1. In particular,we establish the following result.

Theorem 6. Given a well-defined BSRV ϕ, one can build in doubly exponential
time a ϕ-equivalent BSRV which is well-formed and has alternation depth 1.

5 Decision Problems

We investigate complexity issues for some relevant decision problems on BSRV.
In particular, we establish that while checking well-definedness is in EXPTIME,
checking for a given BSRV ϕ and a given subset Z of output variables, whether ϕ
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is well-defined with respect to Z (generalized well-definedness problem) is instead
EXPSPACE-complete. Our results can be summarized as follows.

Theorem 7. For BSRV:
1. The under-definedness problem is PSPACE-complete, the well-definedness

problem is in EXPTIME and at least PSPACE-hard, while the over-definedness
problem and the generalized well-definedness problem are both EXPSPACE-
complete.

2. Checking semantic equivalence is EXPSPACE-complete.
3. When interpreted as language recognizers, language emptiness is PSPACE-

complete, while language universality, language inclusion, and language equiv-
alence are EXPSPACE-complete.

Here, we illustrate the upper bounds of Theorem 7(1). We need a preliminary
result (Proposition 3). For an NFA A = 〈Q, q0, δ, F 〉, a state projection of A
is a mapping Υ : Q → P for some finite set P such that for all q ∈ Q, Υ (q)
is computable in logarithmic space (in the size of Q). The mapping Υ can be
extended to sequences of states in the obvious way. We say that the NFA A is
unambiguous with respect to Υ if for all w ∈ L(A) and accepting runs π and π′

of A over w, their projections Υ (π) and Υ (π′) coincide.

Proposition 3. Given an NFA A and a state projection Υ of A, checking whether
A is not unambiguous with respect to Υ can be done in NLOGSPACE.

Upper Bounds of Theorem 7(1). Let ϕ be a BSRV over X and Y , and Aϕ

be the NFA of Theorem 1 accepting L(ϕ) and whose size is singly exponential in
the size of ϕ.

Under-definedness: by Theorem 1 and Lemma 1, ϕ is under-defined iff Aϕ is
not unambiguous. Thus, since Aϕ can be constructed on the fly and PSPACE =
NPSPACE, by Proposition 3 (with Υ being the identity map), it follows that the
under-definedness problem is in PSPACE.

Over-definedness: sinceAϕ accepts L(ϕ), ϕ is over-defined iffAϕ is not universal.
Thus, since checking universality for NFA is a well-known PSPACE-complete
problem [19], membership in EXPSPACE for checking over-definedness follows.

Well-definedness: it is well-known that checking universality of unambiguous
NFA can be done in polynomial time [24]. By Proposition 2, ϕ is well-defined iff
Aϕ is universal and unambiguous. Thus, since checking that Aϕ is unambiguous
can be done in PSPACE (in the size of ϕ), membership in EXPTIME for checking
well-definedness follows.

Generalized Well-definedness: let Z ⊆ Y . Recall that the set of non-initial states
of Aϕ is contained in (A⊥)b(ϕ) ×A× (A⊥)f(ϕ), where A = 2X∪Y and A⊥ := A∪
{⊥}. Let ΥZ be the state projection of Aϕ assigning to the initial state q0 of Aϕ

q0 itself, and assigning to each non-initial state (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Aϕ the tuple (d−b(ϕ), . . . , d−1, d0, d1, . . . , df(ϕ)), where for all b(ϕ) ≤ i ≤ f(ϕ),
di = ai if ai = ⊥, and di = ai ∩ Z otherwise. Now, let σ and σ′ be two
valuation models of ϕ associated with an input σX , and π and π′ be the expanded
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valuation models encoding σ and σ′, respectively. By construction, it follows that
ΥZ(π) = ΥZ(π

′) iff the restrictions of σ and σ′ to Z coincide. By Theorem 1,
we obtain that ϕ is well-defined with respect to Z iff Aϕ is unambiguous with
respect to ΥZ and Aϕ is universal. Thus, since checking universality for NFA
is PSPACE-complete, by Proposition 3, membership in EXPSPACE for checking
generalized well-definedness follows.

6 Conclusion

In this paper, we have studied some theoretical problems for the class of Boolean
SRV. We have also presented an offline monitoring algorithm for well-defined
BSRV that only requires two passes over the dumped trace. An open question
is the exact complexity of checking well-definedness for BSRV: it lies somewhere
between PSPACE and EXPTIME. Future work includes the theoretical investi-
gation and the development of monitoring algorithms for SRV over richer data
types, such as counters and stacks. In particular, the emerging field of symbolic
automata and transducers [25]—that extend the classical notions from discrete
alphabets to theories handled by solvers—seems very promising to study in the
context of SRV, which in turn can extend automata from states and transitions
to stream dependencies. The combination of these two extensions has the po-
tential to provide a rich but tractable foundation for the runtime verification of
values from rich types. Additionally, we are studying the extension to the mon-
itoring of visibly pushdown systems, where SRV is extended to deal with traces
containing calls and returns.

Finally, we plan to study the monitorability of well-definedness of specifica-
tions. If one cannot determine well-definedness statically, a plausible alternative
would be to use a monitor that assumes well-definednees in tandem with a mon-
itor that detects non-well-definedness (and hence, the incorrectness of the first
monitor).

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

2. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: Monitoring usage-
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