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Abstract. In this paper we present TTT, a novel active automata learn-
ing algorithm formulated in the Minimally Adequate Teacher (MAT)
framework. The distinguishing characteristic of TTT is its redundancy-
free organization of observations, which can be exploited to achieve op-
timal (linear) space complexity. This is thanks to a thorough analysis
of counterexamples, extracting and storing only the essential refining in-
formation. TTT is therefore particularly well-suited for application in a
runtime verification context, where counterexamples (obtained, e.g., via
monitoring) may be excessively long: as the execution time of a test se-
quence typically grows with its length, this would otherwise cause severe
performance degradation. We illustrate the impact of TTT’s consequent
redundancy-free approach along a number of examples.

1 Introduction

The wealth of model-based techniques developed in Software Engineering – such
as model checking [10] or model-based testing [7] – is starkly contrasted with
a frequent lack of formal models. Sophisticated static analysis techniques for
obtaining models from a source- or byte-code representation (e.g., [11]) have
matured to close this gap to a large extent, yet they might fall short on more
complex systems: be it that no robust decision procedure for the underlying
theory (e.g., floating-point arithmetics) is available, or that the system performs
calls to external, closed source libraries or remote services.

Dynamic techniques for model generation have the advantage of providing
models reflecting actual execution behavior of a system. Passive approaches
(e.g., [21]) construct finite-state models from previously recorded traces, while
active techniques (e.g., [2]) achieve this by directly interacting with (“querying”)
the system. In this paper, we focus on the latter; in particular, we consider
Angluin-style active automata learning [2], or simply active automata learning.

Active automata learning allows to obtain finite-state models approximat-
ing the runtime behavior of systems. These models are inferred by invoking
sequences of operations (so-called membership queries) on the system, and ob-
serving the system’s response. The technique relies on the following assumptions:
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Fig. 1. Active automata learning setup with monitoring in the loop

– the set of operations that can be invoked has to be known a priori (e.g., from
a public API),

– the reaction of the system to a membership query must be observable,

– the system has to behave deterministically, under the chosen output abstrac-
tion, and

– a way of resetting the system is required, i.e., subsequent membership queries
have to be independent.

While some of these assumptions seem rather strong, the work of Cho et al. [8]
on inferring botnet protocols has shown that active learning is a viable technique
for obtaining useful models even in highly adverse scenarios.

A practical problem is that Angluin-style automata learning relies on coun-
terexamples for model refinement, which are to be provided by an external source.
Without such counterexamples, the inferred automata usually remain very small.
Bertolino et al. [5] have thus suggested to combine active learning with moni-
toring, continuously validating inferred hypotheses against actual system traces.
The setup is sketched in Figure 1: a learner infers an initial hypothesis through
queries. The system is further instrumented to report its executions during reg-
ular operation to a model validator component in real-time. This component
checks whether the monitored traces conform to the model. In case of a viola-
tion, a trace forming a counterexample is reported to the learner, which then
refines its hypothesis.

The problem with this approach is that counterexamples obtained through
monitoring can be very long. In the following section, by means of a simple
example we sketch why virtually all existing active learning algorithms are not
prepared to deal with such long counterexamples.
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Fig. 2. (a) Example target system, (b) inferred approximation

1.1 Practical Motivation

Consider the behavioral fragment of the system depicted in Figure 2a, repre-
senting a stripped-down version of a resource access protocol. A resource can be
opened, read from, and closed. Reading from and closing the resource is possible
only if it has been opened before. A resource can only be opened if it is closed.
Additionally, it is possible to write to a resource. This requires the access mode
of this resource to be set to read/write previously (chmod rw). It is not possible
to change the access mode of an open resource.

Active automata learning aims at inferring such a behavioral model by execut-
ing test cases and observing the outcome (i.e., whether a sequence of operations
is legal or not). The chmod rw action does not have an immediate effect: to notice
a difference, the resource needs to be opened and then written to. The model
inferred by a learning algorithm might therefore be an incorrect approximation,
as depicted in Figure 2b. If writing is a rare operation compared to reading, this
incompleteness will go unnoticed for a long time. Only if the access mode is set
to read/write and the resource is opened and written to, our hypothesis will fail
to explain the observed behavior.

If we validate the inferred model by monitoring the actual system, the causal
relationship between these three events might not at all be easily identifiable
from a counterexample trace. Consider the following trace, not supported by the
hypothesis in Fig. 2b:

prefix
︷ ︸︸ ︷

open read close open read close chmod rw open read close open read close open write
︸ ︷︷ ︸

suffix

When presented with such a counterexample, a learning algorithm needs to
incorporate the contained information into its internal data structures. Most
algorithms implement a variant of one of the following strategies: they identify
that the chmod rw transition in Figure 2b is wrongly routed, as a subsequent
execution of the suffix part yields a different outcome than executing the suffix
only (i.e., from the initial state). Rivest&Schapire’s algorithm [26], for example,
will add the suffix part to its internal data structures. Other algorithms, such as
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Maler&Pnueli’s [22] or NL∗ [6], will even add all suffixes of the counterexample
to their data structures.

Alternatively, a learning algorithm might recognize that the prefix part corre-
sponds to a state not yet reflected in the hypothesis, as a subsequent execution
of the single action write is successful. Kearns&Vazirani’s algorithm [20] will thus
identify the new state using the prefix part. The original L∗ algorithm will even
use all prefixes of the counterexample to ensure identification of a new state.

While this increases the space required by the internal data structures, the
much graver issue is that the stored information is used for membership queries
during subsequent refinements. The redundant open read close . . . sequences thus
have to be executed again and again, even if no valuable information can be
gained from them. Furthermore, as these redundancies appear both before and
after the actual point of interest (chmod rw), neither entirely prefix- nor entirely
suffix-based approaches will avoid this problem.

In this paper, we present the TTT algorithm, which eliminates all future
performance impacts caused by redundancies in counterexamples. In particular,
after the refinement step is completed, the internal data structures maintained
by TTT after processing the above counterexample would be completely indis-
tinguishable from those resulting from processing the stripped-down counterex-
ample chmod rw open write.

Outline. After establishing notation in the next section, the main contribution is
presented in Section 3: the description of the novel TTT algorithm, particularly
highlighting the above-described approach. Section 4 reports on the results of
a first experimental evaluation of TTT. Section 5 gives an overview on related
work in the field of active automata learning, before Section 6 concludes the
paper with an outlook on future work.

2 Preliminaries

2.1 Alphabets, Words, Languages

Let Σ be a finite set of symbols (we call such a set a (finite) alphabet). By Σ∗

we denote the set of all finite words (i.e., finite sequences) over symbols in Σ,
including the empty word ε. We define Σ+ = Σ∗ \ {ε}. The length of a word
w ∈ Σ∗ is denoted by |w|. For words w,w′ ∈ Σ∗, w · w′ is the concatenation
of w and w′. Unless we want to emphasize the concatenation operation, we will
usually omit the concatenation operator · and just write ww′.

2.2 Deterministic Finite Automata

As DFA are one of the fundamental concepts in computer science, we will only
give a very brief recount for the sake of establishing notation.

Definition 1 (DFA). Let Σ be a finite alphabet. A deterministic finite automa-
ton (DFA) A over Σ is a 5-tuple A = 〈QA, Σ, qA0 , δA, FA〉, where
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– QA is a finite set of states,
– qA0 ∈ QA is the initial state,
– δA : QA ×Σ → QA is the transition function, and
– FA ⊆ QA is the set of final (or accepting) states.

For a ∈ Σ and q ∈ QA, we call q′ = δA(q, a) the a-successor of q. Slightly abusing
notation, we extend the transition function to words by defining δA(q, ε) = q
and δA(q, wa) = δA(δA(q, w), a) for q ∈ Q, a ∈ Σ,w ∈ Σ∗.

The following shorthand notations will greatly ease presentation. For q ∈
QA, we define the output function λA

q : Σ∗ → {�,⊥} of q as λA
q (v) = � iff

δA(q, v) ∈ F for all v ∈ Σ∗. We denote by λA the output function of qA0 . For
the (extended) transition function, we use a notation borrowed from [20]: for
u ∈ Σ∗, A[u] = δA(qA0 , u) is the state reached by u.

We conclude this section with an important property of DFA.

Definition 2 (Canonicity). Let A be a DFA. A is canonical iff:

1. ∀q ∈ QA : ∃u ∈ Σ∗ : A[u] = q (all states are reachable)
2. ∀q �= q′ ∈ QA : ∃v ∈ Σ∗ : λA

q (v) �= λA
q′ (v) (all states are pairwisely separable,

and we call v a separator).

It is well known that canonical (i.e., minimal) DFA are unique up to isomor-
phism [24].

3 The TTT Algorithm

In this section, we will present our main contribution: a new algorithm for ac-
tively inferring DFA. We start by giving a brief recount of active automata
learning, defining the problem statement and sketching common assumptions
and techniques. After this, we will introduce our running example that will ac-
company the explanation of the key steps, given in Section 3.4. We will also use
this opportunity to provide the reader with a high-level idea of the interplay
between TTT’s data structures. Finally, we conclude the section with remarks
on complexity.

3.1 Active Automata Learning in the MAT Model

In active automata learning, the goal is to infer an unknown target DFA A over
a given alphabet Σ. For the remainder of the paper, we fix both the alphabet
and the target DFA A, which w.l.o.g. we assume to be canonical. The entity
confronted with this task is called a learner, and to accomplish this task it may
pose queries to a teacher (also called Minimally Adequate Teacher, MAT) [2].
Two kinds of queries are allowed: the Membership Query (MQ) of a word w ∈
Σ∗ corresponds to a function evaluation of λA(w). Whenever the learner has
conjectured a hypothesis DFA H, it may subject this to an Equivalence Query
(EQ). Such a query either signals success (the hypothesis is correct) or yields a
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Fig. 3. Running example: (a) target DFA A and final hypothesis H2, (b) final discrim-
ination tree T ′′

2 , (c) discriminator trie for final hypothesis

counterexample. A counterexample is a word w ∈ Σ∗ for which λA(w) �= λH(w).
If presented with a counterexample, the learner needs to refine its hypothesis
by asking additional membership queries, to conjecture a subsequent hypothesis
H′. These steps of hypothesis construction/refinement and equivalence checking
are iterated until an equivalence query signals success. Note that in this setting,
the learner is not in control over the appearance of counterexamples.

Many learning algorithms work by maintaining a finite, prefix-closed set Sp ⊂
Σ∗ identifying states in the target DFA A. Each element of Sp corresponds to a
state of the hypothesis H, and vice versa. For q ∈ QH, we call its corresponding
element u ∈ Sp the access sequence of q, denoted by 
q�H, and we haveH[u] = q.
We extend this notation to arbitrary words, allowing to transform them into
access sequences: for w ∈ Σ∗, we define 
w�H = 
H[w]�H.

It is desirable to ensure that distinct prefixes in Sp also correspond to distinct
states in the target DFA A. To accomplish this, the learner maintains a finite
set of distinguishing suffixes (or discriminators) D ⊂ Σ∗. It then constructs Sp
in such a way that, for any distinct pair of prefixes u �= u′ ∈ Sp, there exists a
discriminator v ∈ D such that λA(u · v) �= λA(u′ · v) has been observed through
membership queries. Due to determinism in A, this implies A[u] �= A[u′]. We
denote the set of states of A that the learner has identified (or discovered)
through words in Sp by A[Sp] = {A[u] |u ∈ Sp}.

3.2 Running Example

We will now introduce our running example. We will also use this opportunity
to briefly sketch the ideas behind the TTT algorithm’s organization in terms of
data structures.

Consider the DFA A in Figure 3a, defined over the alphabet Σ = {a, b}. This
DFA accepts words containing 4i + 3 a’s, i ∈ N. The rest of Figure 3 shows
the state of TTT’s eponymous data structures for inferring this DFA as its final
hypothesis.

First, some of the transitions in (a) are highlighted in bold. These transitions
form a spanning Tree, and they correspond to the prefix-closed set Spmaintained
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by TTT; here, Sp = {ε, a, aa, aaa}. Conversely, since paths in a tree are uniquely
defined, the spanning tree itself defines the access sequences of states, and can
be used to compute 
·�H. States of the hypothesis correspond to leaves of the
binary tree shown in (b), the discrimination Tree (DT). This discrimination
tree maintains the information on which discriminators in D separate states: for
every distinct pair of states, a separator can be obtained by looking at the label
of the lowest common ancestor of the corresponding leaves. Thus, the labels of
inner nodes act as discriminators (or separators). As they form a suffix-closed
set, they can compactly be stored in a trie [12] – the discriminator Trie, shown
in (c): each node in this trie represents a word, and this word can be constructed
by following the path to the root.1 The root itself thus corresponds to the empty
word ε.

3.3 Discrimination Trees

Discrimination trees (DT) were first used in an active learning context by Kearns
and Vazirani [20]. They replaced the observation table used in previous algo-
rithms [2,26]: whereas an observation table requires to pose a membership query
for every pair (u, v) ∈ Sp × D, a DT is redundancy-free in the sense that only
MQs that contribute to the distinction of states have to be performed.

As can be seen in Figure 3b, a DT T is a rooted binary tree. Inner nodes
are labeled by discriminators v ∈ D, and leaves are labeled by hypothesis states
q ∈ QH. The two children of an inner node correspond to labels � ∈ {�,⊥}: we
call them the ⊥-child (dashed line) and the �-child (solid line), respectively.

The nature of a discrimination tree is best explained by considering the oper-
ation of sifting a word u ∈ Σ∗ into the tree. Starting at the root of T , at every
inner node labeled by v ∈ D we branch to the �- or ⊥-child depending on the
value of λA(u · v). This procedure is iterated until a leaf is reached, which forms
the result of the sifting operation. Sifting thus requires a number of membership
queries bounded by the height of the tree.

3.4 Key Steps

In this section, we will present the key steps of TTT. We will use the example
presented in Section 3.2 to clarify the effects of the presented steps. A complete
and thorough description of the algorithm is beyond the scope of this paper. For
technical details, we refer to the source code, which we made publicly available
under the GPL license at https://github.com/LearnLib/learnlib-ttt.

Hypothesis Construction. It has already been mentioned in Section 3.1 that
states are identified by means of a prefix-closed set Sp ⊂ Σ∗. Furthermore, these
states correspond to leaves in the discrimination tree. Using this information,
a hypothesis can be constructed from a set Sp and a discrimination tree T as
follows:

1 This is a slight modification to the usual interpretation of a trie, which considers
paths from the root.

https://github.com/LearnLib/learnlib-ttt
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showing blocks in blue, (f) discrimination tree T ′
2 after first discriminator finalization

– the initial state qH0 is identified with the empty word ε ∈ Sp.
– transition targets are determined by means of sifting: given a state q ∈ QH

identified by a prefix u ∈ Sp, its a-successor (a ∈ Σ) is determined by sifting
ua into T .

– a state q ∈ QH is in FH if and only if its associated discrimination tree leaf
is in the �-subtree of the root of T .

In the initial hypothesis H0 and discrimination tree T0, the setup is fairly
simple: the initial state is the only state in the hypothesis, hence Sp = {ε}. As
the corresponding DT leaf is in the ⊥-subtree, q0 is rejecting. Sifting ε · a and
ε · b into T0 results in q0. All transitions therefore form reflexive edges.

Hypothesis Refinement. Key to refining a hypothesis by means of a coun-
terexample, i.e., a word w ∈ Σ+ satisfying λH(w) �= λA(w), is Rivest&Schapire’s
observation [26,28] that w can be decomposed in the following way: there exist
u ∈ Σ∗, a ∈ Σ, v ∈ Σ∗ such that w = u ·a ·v and λA(
u�H a ·v) �= λA(
ua�H ·v).

Such a decomposition makes apparent that the words 
u�H a and 
ua�H lead
to different states in A (as their output for v differs), but to the same state in
H. Therefore, the state qold = H[ua] needs to be split. In the hypothesis, this
is achieved by introducing a new state qnew with access sequence 
u�H a (note
that this preserves prefix-closedness of Sp). In the discrimination tree, the leaf
corresponding to qnew is split, introducing v as a temporary discriminator.

A possible counterexample for H0 could be w = bbbaaabbb, since λA(w) =
� �= λH0(w). This counterexample contains a lot of redundant information: the
b symbols exercise only self loops in A, and thus do not contribute to the dis-
covery of new states. Part – but not all – of the redundant information will be
eliminated by the first counterexample analysis step, which yields the decompo-
sition 〈bbbb, a, aabbb〉. Hence, a state with access sequence a is added to the next
hypothesis H1 (Fig. 4c), and the corresponding discrimination tree T1 (Fig. 4d)
contains a new inner node labeled with aabbb.
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Hypothesis Stabilization. As a result of the previous step, it might happen
that the constructed hypothesis contradicts information that is present in the
discrimination tree. Consider, for example, the hypothesis H1 and its associ-
ated discrimination tree T1, shown in Figures 4c and d, respectively. State q1
is identified by prefix a ∈ Sp. Since it is the �-child of the inner node labeled
with aabbb, we can deduce that λA(a · aabbb) = �. However, the hypothesis H1

predicts output ⊥.
An important observation is that the word aaabbb again forms a counterexam-

ple. This counterexample is treated in the same way as described in the previous
step: by first decomposing it and then splitting the corresponding leaf in the dis-
crimination tree, thus introducing a new state in the hypothesis. The resulting
discrimination tree T2 can be seen in Figure 4e, and the corresponding hypoth-
esis H2 is already the final one, i.e., the automaton shown in Figure 3a. We call
a hypothesis like H1 instable, as it is refined without a call to an “external”
equivalence oracle.

Discriminator Finalization.When comparing the inferred discrimination tree
T2 (Fig. 4e) to the one shown in Figure 3b, one notices immediately that the
discriminators occurring in T2 are much longer. This is due to the fact that
the counterexample w = bbbaaabbb contained a lot of redundant information,
which is in part still present in the data structure. If these redundancies were
not eliminated, subsequent refinements (if there were any) would frequently pose
membership queries involving aabbb while sifting new transitions into the tree.
To underline the dramatic impact this has, note that any word aaabi, i ∈ N,
would have been a valid counterexample. Thus, the amount of redundancy that
is present in these discriminators is generally unbounded.

TTT treats discriminators derived directly from counterexamples as tempo-
rary (represented by the dashed outlines of the inner nodes in Fig. 4). Further-
more, in Figures 4 d through f, parts of the discrimination tree are enclosed in
rectangular regions. These correspond to maximal subtrees of the discrimination
tree with temporary discriminators, and we refer to them as blocks. The TTT
algorithm will split these blocks by subsequently replacing temporary discrimi-
nators at block roots with final ones. New final discriminators v′ are obtained
by prepending a symbol a ∈ Σ to an existing final discriminator v ∈ D, i.e.,
v′ = av. This can be understood as adding a single node to the discriminator
trie (cf. Fig. 3c). In Figure 4e, the effect of replacing the temporary discriminator
aabbb in T2 with the final discriminator a is shown, resulting in the discrimination
tree T ′

2 . Note that the replacement discriminator does not need to partition the
states in the same way as the temporary discriminators, but it needs to separate
at least two states in the respective block. In particular, aabbb still occurs in T ′′

2

(Fig. 4f), but abbb has vanished.
After replacing aabbb in T ′′

2 with the final discriminator aa, the discrimination
tree already shown in Figure 3b is obtained. As can be seen, it no longer con-
tains any redundant information (i.e., b’s) in any of the discriminators. Without
discriminator finalization, this would have required the stripped-down, minimal
counterexample aaa in the first place.
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3.5 Complexity

We now briefly report the complexity of the TTT algorithm. In particular, we
focus on three complexity measures:

– Query complexity, i.e., the number of overall membership queries posed by
the algorithm.

– Symbol complexity, i.e., the total number of symbols contained in all these
membership queries.

– Space complexity, i.e., the amount of space taken up by the internal data
structures of the algorithm.

We neglect the time spent on internal computations of the algorithm (e.g., for
organizing data structures). This is well-justified by existing reports on practical
applications of automata learning, which usually mention the time required for
either symbol executions [8], system resets [9], or the space taken up by the
observation table data structure [4] as bottlenecks.

Query and Symbol Complexity. We limit ourselves to a brief sketch of
query and symbol complexity. Basically, for both correctness and (query) com-
plexity, the same arguments as for other active learning algorithms apply
(cf., e.g., [20,28]). We assume that k is the size of the alphabet Σ, the tar-
get DFA A has n states, and the length of the longest counterexample returned
by an equivalence query is m. TTT in the worst case requires O(n) equivalence
queries and O(kn2+n logm) membership queries, each of length O(n+m). This
pessimistic estimate is due to the fact that (degenerate) DTs can be of height
O(n) (cf. Fig. 3b). This worst-case query and symbol complexity coincides with
Rivest and Schapire’s algorithm [26], though we will see in Section 4 that in
practice there is a huge gap between the two.

Space Complexity. Interesting from a theoretical perspective is the fact that
the TTT algorithm exhibits optimal space complexity, not considering the (tem-
porary) storage required for storing counterexamples. In general, the optimality
becomes apparent when looking at Figure 3. All of the data structures are (based
on) trees, which require an amount of space linear in the number of the leaves.
Thus, the space required for the complete hypothesis (with all transitions, i.e.,
Θ(kn)) dominates the overall space complexity.

Intuitively, it is obvious that every correct learning algorithm has to store
the hypothesis (as it constitutes its output), and thus requires space in Ω(kn).
Therefore, TTT has optimal space complexity. Furthermore, this space complex-
ity is significantly below the space complexity of other algorithms, such as L∗ [2],
Rivest and Schapire’s [26], or Kearns and Vazirani’s [20]. These require space in
Θ(kn · (n+m)), Θ(kn2 + nm), or Θ(kn+ nm), respectively.

Let us briefly remark that to formally prove space optimality, the above intu-
ition is not sufficient. In particular, it does not take into account the reduction
of the search space due to the restriction to canonical automata only. However,
Domaratzki et al. [13] proved a lower bound of fk(n) ≥ (k − o(1))n2n−1n(k−1)n

on the number of distinct canonical DFA with n states over an input alpha-
bet of size k. This implies that encoding a canonical DFA requires, on average,
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Fig. 5. Experimental results for the CWB examples sched4, peterson2, and pots2

(top to bottom). Queries (left) and symbols (right) are shown as a function of the
counterexample length.
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Ω(log fk(n)) = Ω(nk logn) bits, which coincides with TTT’s space complexity
in the logarithmic cost model.

4 Experimental Evaluation

In this section, we report on an evaluation of our first implementation of TTT.
We have implemented TTT in the LearnLib framework,2 which is open source
and can easily be extended. Furthermore, it comes with a number of standard
algorithms, which facilitates performance comparison. The implementation of
TTT, along with the examples used as experiments and the evaluation scripts,
can be obtained from https://github.com/LearnLib/learnlib-ttt.

Target Systems. In order to assess the performance on systems with realis-
tic structure, we learned models of systems distributed with the Concurrency
Workbench:3 Milner’s scheduler for four processes (sched4, n = 97, k = 12),
Peterson’s mutual exclusion algorithm for two processes (peterson2, n = 50,
k = 18), and a model of a telephony system with two clients (pots2, n = 664,
k = 32).

Equivalence Queries. To reflect the setup shown in Figure 1, we randomly
generated traces of fixed length on the target systems. If these traces were not
supported by the hypothesis, we fed them as counterexamples to the learning
algorithm. We let the length of these traces vary between 50 and 3000 (2000 for
pots2), in increments of 50.

Metrics.We measured both the number of membership queries, and the number
of symbols contained in all of these queries combined. We averaged over 10 runs
to account for variations in the counterexample trace generation.

Comparison. We compared our implementation of TTT against algorithms
shipped with LearnLib: Rivest and Schapire’s algorithm [26] (RS), Kearns and
Vazirani’s algorithm [20] (KV), and the “discrimination tree” algorithm4 [15]
(DT), which can be described as TTT without finalizing discriminators
(cf. Sec. 3.4). The former algorithm is based on an observation table, while the
latter two are based on discrimination trees. All these algorithms have in common
that they only add a single suffix from the counterexample to the data structure.
In contrast, algorithms like L∗ [2], Suffix1by1 [18], Maler and Pnueli’s [22], or
NL∗ [6] add (nearly) all prefixes or suffixes of a counterexample to the observa-
tion table. We found that these algorithms were entirely infeasible (i.e., resulting
in OutOfMemoryErrors) for long counterexamples.

4.1 Results

The results of our evaluation on the three systems (top to bottom: sched4,
peterson2, pots2) are displayed in Figure 5. Both the number of membership

2 http://www.learnlib.de/
3 http://homepages.inf.ed.ac.uk/perdita/cwb/
4 This algorithm is also known as the Observation Pack algorithm.

https://github.com/LearnLib/learnlib-ttt
http://www.learnlib.de/
http://homepages.inf.ed.ac.uk/perdita/cwb/
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queries (left column) and the total number of symbols (right column) are plotted
as a function of the length of counterexample traces.

In terms of membership queries, TTT outperforms all other algorithms on all
examples. When compared to the DT algorithm, the difference is comparatively
small, with TTT requiring 25%–50% as many membership queries. However,
this is still remarkable when considering that the main difference between TTT
and DT is the extra effort for finalizing discriminators (cf. Sec. 3.4). We con-
clude from this that by discriminator finalization, we obtain “more general”
discriminators, which lead to better-balanced trees than the very specific, long
ones directly extracted from the counterexamples. When compared to the RS
and KV algorithms, the difference in membership queries spans several orders
of magnitude.

When looking at the number of symbols, TTT consistently beats DT. On
the sched4 and peterson2 examples, we observe a reduction in the number
of symbols by approximately one order of magnitude. On the pots2 example,
which is the largest of the systems we considered, there even is a 60× reduction!

The peterson2 example poses a special case. Here, the number of member-
ship queries apparently is nearly constant for all counterexample lengths, but
the variation for the KV algorithm is considerable. In terms of symbols, the KV
algorithm outperforms TTT when counterexamples consists of 800 symbols or
more (for a length of 3000, TTT needs roughly 4.5× as many symbols as KV).
Manual inspection of the model showed that it is structured in a DAG-like fash-
ion, with only very few loops. Hence, counterexamples on this system contain
relatively little redundant information. However, this was the only example we
investigated5 where KV performed that strongly in terms of symbols. Further-
more, especially the pots2 example underlines that preferring the KV algorithm
over TTT might be an extremely poor choice: for a counterexample length of
2000, KV on average requires 670× more symbol executions than TTT does.
When considering Rivest&Schapire, this factor increases to up to 1100×.

5 Related Work

The MAT model for active automata learning was established by Angluin [2],
along with the presentation of the famous observation table-based L∗ algorithm.
The technique gained major interest after it was discovered as a means of en-
abling model-based techniques in scenarios where no such models were available.
Notable works in this direction include its application to model checking [25], and
to model-driven test-case generation [14]. The practical applicability was further
improved by adapting the L∗ DFA learning algorithm to Mealy machines [14,27].

While much effort has been devoted to optimizations in practical scenarios
(e.g., using various filters [23]), improvements at the “pure” algorithmic level are

5 Other examples included randomly generated DFA, and instances of Figure 2a for
up to 5 resources, which we do not report upon due to size constraints. All data
necessary to run these experiments can be obtained via GitHub.
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comparably rare. Maler and Pnueli [22] suggested adding all suffixes of the coun-
terexample to the table. Rivest and Schapire [26] found that adding a single suffix
was sufficient, and that this suffix could be determined using a binary search. It
has been observed that this leads to non-canonical intermediate hypotheses [28].
Several heuristics have thus been proposed to maintain suffix-closedness of the
discriminators, such as Shahbaz’s algorithm and Suffix1by1 [18].

Kearns and Vazirani [20] were the first to employ a discrimination tree. A
general framework for active learning named Observation Packs was introduced
by Balcazar et al. [3]. This framework provides a unifying view on the afore-
mentioned algorithms. Its name has been adopted for an algorithm developed
by Howar [15], which can be summarized as combining the discrimination tree
data structure with Rivest and Schapire’s counterexample analysis.

A fairly recent contribution in the classical scenario of black-box inference of
regular languages is the NL∗ algorithm [6], inferring NFA instead of DFA. These
NFA may be exponentially more succinct than the corresponding DFA, and can
in such cases be learned with less membership queries. However, the number of
required equivalence queries grows from linear to quadratic. Furthermore, it is
unclear how (or even if) the NL∗ algorithm could be adapted to infer Mealy
machines.

6 Conclusion

We have presented TTT, an active automata learning algorithm which stores the
essential data in three tree-like data structures: a spanning tree defining unique
access sequences, embedded into the hypothesis’ transition graph, a discrimina-
tion tree for distinguishing states, and a discriminator trie for storing the suffix-
closed set of discriminators. This leads to an extremely compact representation,
as it strips all the information down to the essentials for learning. In fact, the
combined space required for all data structures is asymptotically the same as the
size of the hypothesis, Θ(kn). We demonstrated the effects of this redundancy-
free data structure on a number of examples. TTT outperformed other learning
algorithms when considering the total number of membership queries on all of
the examples. When considering the number of symbols, Kearns&Vazirani’s al-
gorithm in fact outperformed TTT in one out of three systems (even though it
required a much higher number of membership queries). However, the system
in question was the smallest one, and on all other systems, Kearns&Vazirani’s
algorithm performed poorly. On average, TTT yields a one to two orders of
magnitude reduction in terms of symbol executions, and a 50%–75% reduction
in terms of membership queries when compared to the Observation Pack algo-
rithm, which ranks second. We conclude that the “cleanup” of the internal data
structures that TTT performs is well worth the extra effort.

6.1 Future Work

There are several lines of work we want to explore. The first one is to further
investigate the impact of TTT in practical setups. A necessary step for this will
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be to adapt TTT to learn Mealy machines [14,27], an extension we expect to be
straightforward. We then plan to evaluate the life-long learning approach [5] in
larger case studies, using learning in the loop with monitoring.

The second line concerns improving the practical applicability in general set-
tings. While most of the optimizing filter techniques [23] work with any learn-
ing algorithm, an important optimization is the parallelization of membership
queries [8,16]. The challenge that presents itself here is the fact that when sifting
a word into a discrimination tree, the next query to be asked depends on the
outcome of the previous one.

The third – and probably the most challenging – line of future research
is to adapt TTT to richer modeling formalisms, in particular register au-
tomata [17,19]. Unlike approaches that separate the inference of the control
skeleton from that of the mapper responsible for handling data [1], adapting
TTT to natively infer register automata will require non-trivial modifications at
the algorithmic level.

Acknowledgement. We thank Maren Geske and Dennis Kühn for their help
with preparing the illustrations.
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21. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring State-based Behavior Models. In:
Proc. WODA 2006, pp. 25–32. ACM, New York (2006)

22. Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information
and Computation 118(2), 316–326 (1995)

23. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based Relevance Filtering for
Efficient System-level Test-based Model Generation. Innovations in Systems and
Software Engineering 1(2), 147–156 (2005)

24. Nerode, A.: Linear Automaton Transformations. Proceedings of the American
Mathematical Society 9(4), 541–544 (1958)

25. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Proc. FORTE 1999, pp. 225–240. Kluwer Academic (1999)

26. Rivest, R.L., Schapire, R.E.: Inference of Finite Futomata Using Homing Se-
quences. Inf. Comput. 103(2), 299–347 (1993)

27. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

28. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

http://doi.acm.org/10.1145/1457838.1457895
http://dx.doi.org/2003/29486
http://dx.doi.org/10.1007/s10994-013-5419-7

	The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning

	1 Introduction
	1.1 Practical Motivation

	2 Preliminaries
	2.1 Alphabets, Words, Languages
	2.2 Deterministic Finite Automata

	3 The TTT Algorithm
	3.1 Active Automata Learning in the MAT Model
	3.2 Running Example
	3.3 Discrimination Trees
	3.4 Key Steps
	3.5 Complexity

	4 Experimental Evaluation
	4.1 Results

	5 Related Work
	6 Conclusion
	6.1 Future Work

	References




