
Symbolic Execution Debugger (SED)

Martin Hentschel, Richard Bubel, and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
{hentschel,bubel,haehnle}@cs.tu-darmstadt.de

Abstract. We present the Symbolic Execution Debugger for sequential
Java programs. Being based on symbolic execution, its functionality goes
beyond that of traditional interactive debuggers. For instance, debugging
can start directly at any method or statement and all program execution
paths are explored simultaneously. To support program comprehension,
execution paths as well as intermediate states are visualized.

Keywords: Symbolic Execution, Debugging, Program Execution
Visualization.

1 Introduction
We present the Symbolic Execution Debugger (SED),1 a language independent
extension of the Eclipse debug platform for symbolic execution. Symbolic exe-
cution [3,4,9,10] is a program analysis technique based on the interpretation of
a program with symbolic values. This makes it possible to explore all concrete
execution paths (up to a finite depth). We describe an SED implementation that
uses KeY [2] as the underlying symbolic execution engine, supporting sequential
Java without floats, garbage collection and dynamic class loading. Our main
contributions are the SED platform, interactive symbolic execution of Java and
visualization of program behavior including unbounded loops and method calls.

The SED supports traditional debugger functionality like step-wise execution
or breakpoints, and enhances it as follows: Debugging can begin at any method
or any other statement in a program, no fixture is required. The initial state
can be specified partially or not at all. During symbolic execution all feasible
execution paths are discovered, thus it is not necessary to set up a concrete initial
program state leading to an execution where a targeted bug occurs. At any time
each intermediate state can be inspected using the SED. Intermediate states
tend to be small and simple, because symbolic execution can be started close to
the suspected location of a bug and the symbolic states contain only program
variables accessed during execution. This makes it easy for the bug hunter to
comprehend intermediate states and the actions performed on them to find the
origin of a bug. Heisenbugs [5], a class of program errors that disappear while
debugging, are avoided as the behavior of a program is correctly reflected in its
symbolic execution. Besides debugging the SED platform allows to visualize and
explore results of static analysis based on symbolic execution.
1 The website www.key-project.org/eclipse/SED provides an installation & user guide

(with instructions on how to use API classes), screencast and theoretical background.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 255–262, 2014.
c© Springer International Publishing Switzerland 2014

http://www.key-project.org/eclipse/SED

256 M. Hentschel, R. Bubel, and R. Hähnle

2 Symbolic Execution

Symbolic execution (SE) means to execute a program with symbolic values in
lieu of concrete values. We explain SE and how it is used interactively in the
SED by example: method eq shown in the listing in Fig. 1 compares the given
Number instance with the current one.

For a Java method to be executed it must be called explicitly. For instance, the
expression new Number().eq(new Number()); invokes eq on a fresh instance
with a different instance as argument. This results in a single execution path:
first the guard in line 5 is evaluated to true, as fields of integer type are initialized
with 0 by default. Finally, true is returned as result. To inspect another execution
path the method has to be called in a different state.

Let us execute method eq symbolically, i.e., without a concrete argument, but
a reference to a symbolic value n which can represent any object or null. In our
SE tree notation we use different icons to underscore the semantics of nodes.
As Fig. 1 shows, the root is a Start Node representing the initial state and the
program fragment (any method or any block of statements) to execute. Here a
call to eq is represented by its Method Call child node.

1 public class Number {
2 private int value;
3

4 public boolean eq(Number n) {
5 if (value == n.value) { return true; }
6 else { return false; }
7 }
8

9 // ...
10 }

<start>

self.eq(n);

if (this.value==n.value)

!n = null

self.value = n.value

return true;

<return TRUE as result of self.eq(n);>

<end>

!self.value = n.value

return false;

<return FALSE as result of self.eq(n);>

<end>

n = null

<uncaught java.lang.NullPointerException>

Fig. 1. Source code of class Number and SE tree of method eq

The if-guard, represented as a Branch Statement node, splits execution when
the field value is accessed on the symbolic object n. Because nothing is known
about n, it could be null. The Branch Condition children nodes show the con-
dition under which each path is taken. On the left, where n is not null, the
comparison in the if-guard splits execution again. If both values are the same,

Symbolic Execution Debugger (SED) 257

the return statement is executed, indicated by a Statement node. Now the sym-
bolic path of the method is fully executed and returns true in the Method Return
child node. This SE path ends in the Termination node. The branch where the
values are different looks similar, but false is returned instead. In the rightmost
branch the parameter n has the value null and SE ends with an uncaught
NullPointerException, visualized as an Exceptional Termination node.2

In contrast to concrete execution, SE does not require fixture code and dis-
covers all feasible execution paths (up to its execution depth). Each SE path
through an SE tree may represent infinitely many concrete executions and is
characterized by its path condition (the conjunction of all branch conditions on
it). SE may not terminate in presence of loops and recursive methods which can
be avoided by applying loop invariants or method contracts, see Section 4.

3 Basic Usage of the Symbolic Execution Debugger

The SED is realized as an Eclipse plugin. SE of a selected method or selected
statements in a method can be started via the Eclipse context menu item Debug
As, Symbolic Execution Debugger (SED). The user is then offered to switch to
the Symbolic Debug perspective, which provides all relevant views for interactive
symbolic execution (see Fig. 2).

The Debug view allows, as usual, to switch between debug sessions and to
control program execution. In case of SE, the view shows the traversed SE tree,
instead of the current stack trace. The SE tree is also visualized in the Symbolic
Execution Tree view (it is identical to the tree in Fig. 1). An SE tree sketch is
provided by the Symbolic Execution Tree (Thumbnail) view to help navigation.
The symbolic program state of a node consists of variables and their symbolic
values. It can be inspected in the Variables view. Breakpoints suspend execution
and are managed in the Breakpoints view. The details of a selected node (path
condition, call stack, etc.) are available in the Properties view. The source code
line corresponding to the selected SE tree node is highlighted in the editor. The
Symbolic Execution Settings view lets one customize SE, e.g., choose between
method inlining and method contract application.

In Fig. 2 the SE tree node return true; is selected. In the Variables view
we can see that the symbolic values of field value are identical for the objects
referenced by self (the current instance) and parameter n. This is exactly what
is enforced by the path condition. In an object-oriented setting one could think
that self and n refer to different instances, but this needs not to be the case.
The path condition is also satisfied if n and self reference the same object. Un-
intended aliasing is a source of bugs. The SED helps to find these by determining
and visualizing all possible memory layouts w.r.t. the path condition.

Selecting context menu item Visualize Memory Layouts of an SE tree node
creates a visualization of possible memory layouts as a symbolic object diagram
(see Fig. 3). It resembles a UML object diagram and shows the dependencies
2 The instantiation of the thrown exception is not visualized since we do not include

execution of Java API methods for simplicity.

258 M. Hentschel, R. Bubel, and R. Hähnle

Fig. 2. Symbolic Execution Debugger: Interactive symbolic execution

between objects, the values of object fields and the local variables of the cur-
rent state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Fig. 3, the local
variables n and self refer to objects visualized as rectangles. The content of the
instance field value is shown in the lower compartment of each object.

The toolbar (near the origin of the callout) allows to select different possible
layouts and to switch between the current and the initial state of each layout. The
initial state shows how the memory layout looked before the execution started
resulting in the current state. Fig. 3 shows both possible layouts of the selected
node return true; in the current state. The second memory layout (inside the
callout) represents the situation, where n and self are aliased.

4 Usage Scenarios

Like a traditional debugger, the SED helps the user to control execution and to
comprehend each performed step. It is helpful to focus on a single branch where
a buggy state is suspected. (To change the focus to a different branch, no new
debugging session or new input values are needed). It is always possible to revisit
previous steps, because each node in the SE tree provides the full state.

Symbolic Execution Debugger (SED) 259

Fig. 3. Symbolic Execution Debugger: Different memory layouts

Finding the Origin of Bugs The explicit rendering of different control flow
branches in the SE tree constitutes a major advantage over traditional debug-
gers. Unexpected or missing expected branches are good candidates for possible
sources of bugs. Fig. 4a shows a buggy part of a Quicksort implementation for
sorting array numbers. Within a concrete execution of a large application a
StackOverflowError was thrown. It indicates that method sortHelper calls
itself infinitely often. Using SED we start debugging close to the suspected lo-
cation of the bug, namely, at method sort. Executing the method stepwise,
exhibits execution paths taken when invoking the method in an illegal state. Ex-
ploration of such cases can be avoided by providing a precondition which limits
the initial symbolic state. In this example, we exclude empty arrays by specify-
ing the precondition numbers != null && numbers.length >= 1 in the debug
configuration. After a few steps, the SE tree produced by SED (see Fig. 4b)
shows that the if statement is not branching. This is suspicious and deserves
closer attention. Inspecting the if guard shows that the comparison should have
been low < high and the source of the bug is found.3

Program and Specification Understanding SE trees show control and data flow
at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews
or in early prototyping phases, where the full implementation is not yet avail-
able. It works best, when partial method contracts and invariants are available
to achieve compact and finite SE trees. However, useful specifications can be
much weaker than what would be required for verification. The listing in Fig. 5
shows a buggy implementation of method indexOf with a very simple loop in-
variant written in JML. We configured the symbolic execution engine to apply

3 Without the precondition the bug can be observed as well, but a little later.

260 M. Hentschel, R. Bubel, and R. Hähnle

1 public class QuickSort {
2 private int[] numbers;
3

4 public void sort() {
5 sortHelper(0, numbers.length - 1);
6 }
7

8 private void sortHelper(int low, int high) {
9 if (low <= high) {

10 int middle = partition(low, high);
11 sortHelper(low, middle);
12 sortHelper(middle + 1, high);
13 }
14 }
15

16 private int partition(int low,
17 int high) {
18 // ...
19 }
20 }

(a) Buggy Quicksort implementation (from [6])

<start>

self.sort();

sortHelper(0,this.numbers.length-1);

self.sortHelper(low,high);

if (low<=high)

int middle = partition(low,high);

(b) SE tree

Fig. 4. Quicksort example

loop invariants instead of unrolling loops, which guarantees a finite SE tree. The
resulting SE tree under precondition a != null is also shown in Fig. 5. Appli-
cation of the loop invariant splits execution into two branches. Body Preserves
Invariant represents all loop iterations and Use Case continues execution after
the loop (full branch conditions are not shown for brevity).

Without checking further details, one can see that the leftmost branch termi-
nates in a state where the loop invariant is not preserved. Now, closer inspection
shows the reason to be that, when the array element is found, the variable i is
not increased, hence the decreasing clause (a.length - i) of the invariant is
violated. The two branches below the Use Case branch correspond to the code
after the loop has terminated. In one case an element was found, in the other
not. Looking at the return node, however, we find that in both cases instead of
the index computed in the loop, the value of i is returned.

Our examples demonstrate that SE trees can be used to answer questions
about thrown exceptions or returned values. In SED the full state of each node
is available and can be visualized. Thus it is easily possible to see whether and
where new objects are created and which fields are changed when (comparison
between initial and current memory layout).

Using breakpoints, symbolic execution is continued until a breakpoint is hit
on any branch. Breakpoints can be attached to a line of code with or without
a condition or they may consist only of a condition. Thus they can be used to
find execution paths that (i) throw a specified exception, (ii) access or modify
a specified field, (iii) invoke or return from a specified method. Breakpoints can

Symbolic Execution Debugger (SED) 261

1 public static int indexOf(int[] a,
2 int s) {
3 int index = -1;
4 int i = 0;
5 /*@ loop_invariant i >= 0 && i <= a.length;
6 @ decreasing a.length - i;
7 @ assignable index, i;
8 @*/
9 while (index < 0 && i < a.length) {

10 if (s == a[i]) { index = i; }
11 else { i++; }
12 }
13 return i;
14 }

<start>

Arrays.indexOf(a,s);

int index = -1;

int i = 0;

invariant: i >= 0 & i <= a.length
variant: javaSubInt(a.length, i)
assignable: index, i

Body Preserves Invariant

if (s==a[i])

a[i_0] = s

index_1=i;

<loop body end>

!a[i_0] = s

i++;

<loop body end>

Use Case

return i;

index_1_0 > -1

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

index_1_0 < 0

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

Fig. 5. Buggy and partially specified implementation of indexOf and its SE Tree

also be used to (iv) control loop unwinding and recursive method invocation and
(v) to stop at an intermediate state that has a specified property.

5 Related and Future Work

A number of recent tools implement SE for program verification [8] or test gener-
ation [1,12], which are complementary to SED. In fact, SED could be employed
to control or visualize these tools. As far as we know, EFFIGY [10] was the
first system that allowed to interactively execute a program symbolically in the
context of debugging. It did not support specifications or visualization.

The Eclipse plugin of Java Path Finder (JPF) [11] prints the analysis results
obtained from SE as a text report, but does neither provide graphical visualiza-
tion nor interactive control of SE. JPF is prototypically supported by SED as
an alternative SE engine.

The SE engine and its Eclipse integration described in [7] features non-
interactive graphic visualization of the SE tree. SED allows to interact with
the visualization as a means to control SE and to inspect symbolic states.

A prototypic symbolic state debugger that could not make use of method con-
tracts and loop invariants was presented in [6]. However, that tool was not very

262 M. Hentschel, R. Bubel, and R. Hähnle

stable and its architecture was tightly integrated into the KeY system. As a con-
sequence, the SED was developed from scratch as a completely new application
featuring significant extended and new functionality. It is realized as a reusable
Eclipse extension which allows to integrate different symbolic execution engines.

We plan to use the visualization of an SE tree as an alternative GUI of the
KeY verification system [2]. The visualization capabilities and a debugger-like
interface will flatten the learning curve to use a verification system. On the
other hand, exploiting verification results during SE allows to classify execution
paths automatically as correct or wrong. Complementary techniques to SE like
backward slicing could help the user to find the origin of bugs more easily.
Visualization capabilities could be improved by grouping nodes based on code
members like methods or loop bodies. In this way more information is visualized
and fully executed groups could be collapsed.

References
1. Albert, E., Cabanas, I., Flores-Montoya, A., Gomez-Zamalloa, M., Gutierrez, S.:

jPET: An Automatic Test-Case Generator for Java. In: Proc. of the 18th Working
Conf. on Reverse Engineering, WCRE 2011, pp. 441–442. IEEE CS (2011)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT—A formal system for testing and de-
bugging programs by symbolic execution. ACM SIGPLAN Notices 10(6), 234–245
(1975)

4. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier/North-Holland (1974)

5. Grottke, M., Trivedi, K.S.: A classification of software faults. Journal of Reliability
Engineering Association of Japan 27(7), 425–438 (2005)

6. Hähnle, R., Baum, M., Bubel, R., Rothe, M.: A visual interactive debugger based
on symbolic execution. In: ASE, pp. 143–146 (2010)

7. Ibing, A.: Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Co-
dan. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254,
pp. 196–206. Springer, Heidelberg (2013)

8. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

9. Katz, S., Manna, Z.: Towards automatic debugging of programs. In: Proc. of the
Intl. Conf. on Reliable Software, Los Angeles, pp. 143–155. ACM Press (1975)

10. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7), 385–394 (1976)

11. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per-
son, S., Pape, M.: Combining Unit-level Symbolic Execution and System-level Con-
crete Execution for Testing Nasa Software. In: Proc. of the 2008 Intl. Symposium
on Software Testing and Analysis, ISSTA 2008, pp. 15–26. ACM (2008)

12. Tillmann, N., de Halleux, J.: Pex: White Box Test Generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

	Symbolic Execution Debugger (SED)
	1 Introduction
	2 Symbolic Execution
	3 Basic Usage of the Symbolic Execution Debugger
	4 Usage Scenarios
	5 Related and Future Work
	References

