Dynamic Verification for Hybrid Concurrent
Programming Models

Erdal Mutlu!, Vladimir Gajinov?, Adridn Cristal®3,
Serdar Tasiran!, and Osman S. Unsal?

! Koc University
{ermutlu,stasiran}@ku.edu.tr
2 Barcelona Supercomputing Center
{vladimir.gajinov,adrian.cristal,osman.unsal}@bsc.es
3 IITA - CSIC - Spanish National Research Council

Abstract. We present a dynamic verification technique for a class of
concurrent programming models that combine dataflow and shared mem-
ory programming. In this class of hybrid concurrency models, programs
are built from tasks whose data dependencies are explicitly defined by
a programmer and used by the runtime system to coordinate task exe-
cution. Differently from pure dataflow, tasks are allowed to have shared
state which must be properly protected using synchronization mecha-
nisms, such as locks or transactional memory (TM). While these hybrid
models enable programmers to reason about programs, especially with
irregular data sharing and communication patterns, at a higher level,
they may also give rise to new kinds of bugs as they are unfamiliar to
the programmers. We identify and illustrate a novel category of bugs in
these hybrid concurrency programming models and provide a technique
for randomized exploration of program behaviors in this setting.

Keywords: Dynamic verification, dataflow, transactional memory.

1 Introduction

Most modern computation platforms feature multiple CPU and GPU cores. For
many large applications, it is more convenient for programmers to make use
of multiple programming models to coordinate different kinds of concurrency
and communication in the program. In this paper, we explore hybrid concurrent
programming models that combine shared memory with dataflow abstractions.
Shared memory multi-threading is ubiquitous in concurrent programs. By
contrast, in the dataflow programming model, the execution of an operation is
constrained only by the availability of its input data — a feature that makes
dataflow programming convenient and safe when it fits the problem at hand.
Using the dataflow programming model in conjunction with shared memory
mechanisms can make it convenient and natural for programmers to express
the parallelism inherent in a problem as evidenced by recent proposals [4,9]
and adoptions [5,7,8]. The proposed hybrid programming models [4,9] provide

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 156-161, 2014.
© Springer International Publishing Switzerland 2014



Dynamic Verification for Hybrid Concurrent Programming Models 157

programmers with dataflow abstractions for defining tasks as the main execution
unit with corresponding data dependencies. Contrary to the pure dataflow model
which assumes side-effect free execution of the tasks, these models allow tasks
to share the data using some form of thread synchronization, such as locks
or transactional memory (TM). In this way, they facilitate implementation of
complex algorithms for which shared state is the fundamental part of how the
computational problem at hand is naturally expressed.

Enabling a combination of different programming models provides a user with
a wide choice of parallel programming abstractions that can support a straight-
forward implementation of a wider range of problems. However, it also increases
the likelihood of introducing concurrency bugs, not only those specific to a given
well-studied programming model, but also those that are the result of unexpected
program behavior caused by an incorrect use of different programming abstrac-
tions within the same program. Since the hybrid dataflow models we consider
in this paper are quite novel, many of the bugs that belong to the latter cate-
gory may not have been studied. The goal of this work is to identify these bugs
and design a verification tool that can facilitate automated behavior exploration
targeting their detection.

We present a dynamic verification tool for characterizing and exploring be-
haviors of programs written using hybrid dataflow programming models. We
focus in particular on the Atomic DataFlow (ADF) programming model [4] as
a representative of this class of programming models. In the ADF model, a pro-
gram is based on tasks for which data dependencies are explicitly defined by
a programmer and used by the runtime system to coordinate the task execu-
tion, while the memory shared between potentially concurrent tasks is managed
using transactional memory (TM). While ideally these two domains should be
well separated within a program, concurrency bugs can lead to an unexpected
interleaving between these domains, leading to incorrect program behavior.

We devised a randomized scheduling method for exploring programs written
using ADF. The key challenge in our work was precisely characterizing and
exploring the concurrency visible and meaningful to the programmer, as opposed
to the concurrency present in the dataflow runtime or TM implementations.
For exploration of different interleavings, we adapted the dynamic exploration
technique “Probabilistic Concurrency Testing (PCT)” [3] to ADF programs in
order to amplify the randomness of observed schedules [2]. For shared memory
concurrent programs, PCT provides probabilistic guarantees for bug detection.
By properly selecting the scheduling points that PCT randomly chooses from,
we aim to provide a similar guarantee for ADF programs.

In this paper, we motivate the use of and the need for a verification tool
for ADF, explain our randomized behavior exploration tool and describe the
experimental evaluation we are undertaking.

2 Motivation

In this section, we describe an unexpected execution scenario for motivating our
dynamic verification method. Due to the asynchronous concurrent execution of



158 E. Mutlu et al.

in(x);
in(y);
{ in(z1);
z1 = max(x, y); in(z2);
22 =min(x, y); {
atomic { avgl = avg(zl, z2);
if(z1 > g_max) avg?2 = avg(g_max, g_min);
g max = z1;
} if(avgl > avg2)
// Do some work! res = avgl;
atomic { else
if(z2 < g_min) res = avg2;
g _min = z2;
} out(res);
out(z1); }
out(z2);
} 1
a) max_min b) comp_avg c) Dataflow

Fig. 1. Motivating example

tasks in the ADF model, users can face unexpected execution orders causing
atomicity violations between dataflow tasks. To illustrate such a behavior, con-
sider two ADF tasks in Figure 1, max min that compute the maximum and
minimum values from two input streams while updating a global minimum and
maximum, and comp avg that uses the output streams provided by max min
for comparing the average values of ¢ max and g min with the input values and
returning the bigger one. As seen in Figure 1-c, the dependencies between these
tasks can be using the expressed with ADF programming model naturally as
shown in Figure 1-a and b. However, while these particular implementations ap-
pear correct separately, when combined, they may result in unexpected behavior
in an ADF execution. As the updates on the global variables, g max and g min,
are performed in separate atomic blocks, concurrently running tasks can read
incorrect values of global variables. Consider an execution where the first pair
of integers from the input streams x and y are processed by max min and then
passed to comp avg. During the execution of comp avg, maxr min can start to
process the second pair and update g max value, causing comp avg to read the
new g max value from the second iteration while reading g min value from the
first one. Such concurrency scenarios that arise due to an interaction between
dataflow and shared memory may be difficult to foresee for a programmer and
are not addressed properly by verification methods for pure dataflow or pure
shared memory model.

3 System Overview

3.1 Probabilistic Concurrency Testing

The “Probabilistic Concurrency Testing (PCT)” method relies on the observa-
tion that concurrency bugs typically involve unexpected interactions among few
instructions that are executed by a small number of threads [6]. For capturing
these unexpected thread interactions, PCT defines a bug depth parameter as the
minimum number of ordering constraints that are sufficient to find a bug and



Dynamic Verification for Hybrid Concurrent Programming Models 159

uses a randomized scheduling method, with provably good probabilistic guaran-
tees, to find all bugs of low depth.

PCT makes use of a priority based scheduler that maintains randomly assigned
priorities for each thread. During execution, the scheduler schedules only the thread
with the highest priority until it becomes blocked by another thread or finishes its
execution. For simulating the ordering constraints, the PCT scheduler also main-
tains a list of priority change points. Whenever the execution reaches a priority
change point, the scheduler changes the priority of the running thread to a prede-
termined priority associated with the change point. With this mechanism, the PCT
method can potentially exercise all bugs of depth d by simply using d — 1 points.

Consider a program with n threads that together execute at most & instruc-
tions. Assuming that we want to find bugs with depth d, PCT provides a guar-
antee of finding a bug of depth d with the probability at least 1/nk? L.

3.2 Owur Method and Implementation

The ADF programming model has an inherently asynchronous concurrent execu-
tion model, where tasks can be enabled and executed multiple times. In addition,
programmers are allowed to provide their custom synchronization using trans-
actional memory to protect certain code blocks (not necessarily entire tasks) in
ADF tasks. This can potentially influence the dataflow execution. In order to
fully investigate behaviors of programs written using a hybrid model such as
ADF, the dynamic exploration technique has to be aware of both the dataflow
structure and the specifics of the shared memory synchronization mechanism.
Furthermore, the dynamic verification tool should not simply instrument the
platform implementations for transactional memory, atomic blocks and dataflow.
This would not only be very inefficient, but it would also not provide value to the
programmer. The user of a hybrid concurrent programming model is not inter-
ested in the concurrency internal to the platform implementing the model, which
should be transparent to the programmer, but only in the non-determinism made
visible at the programming model level.

We build upon the PCT algorithm but redefine priority assignment points,
making use of TM transaction boundaries for priority change point assignment.
Rather than using the original ADF work-stealing scheduler based on a pool of
worker threads, we have devised a new scheduler that creates a thread with a
randomly assigned priority for each enabled task and sequentially schedules the
threads by honoring their priorities. Likewise, instead of using the original prior-
ity change point assignment from the PCT method, we narrowed possible priority
change point locations to the beginning and the end of atomic regions only.

Given an ADF program with at most n enabled tasks that together execute
at most k regions (atomic and non-atomic), our exploration method tries to find
bugs of depth d as follows.

1. Whenever a task becomes enabled, randomly assign one of n priority values
between d and d + n to a thread associated with the task.

2. Pick d — 1 random priority change points k1,...,kq—1 in the range of [1, k] and
associate priority value of 7 to k;.



160 E. Mutlu et al.

3. Schedule a thread with the highest priority and execute it sequentially. When
a thread reaches the i-th change point, change its priority to i.

With this randomized scheduler, our exploration technique provides the fol-
lowing guarantee.

Given an ADF program with at most n enabled tasks that together execute
at most k regions (atomic and non-atomic), our exploration method finds a bug
of depth d with probability at least 1/nk®?.

We implemented our exploration technique as a separate testing mechanism
into the ADF framework. With this mechanism, users can choose the testing
scheduler for exploring the behaviors of their applications with different task
ordering for a given bug depth. Differently from conventional testing, our tech-
nique provides probabilistic guarantees for finding bugs and the overall detection
probability can be increased by running our technique multiple times.

Our tool also provides a monitoring mechanism for checking globally-defined
invariants during an execution. We provide the users with the capability to write
global invariants on shared variables. These can be checked at every step by our
tool, or at randomly assigned points in the execution.

Consider the motivating example in Figure 1 with input streams of length 2,
our exploration technique can catch the the described buggy behavior with bug
depth 2 as follow:

Initialization. Random priorities between d-(n + d) (2-6 as the length of the

input streams is 2, there can be at most 4 enabled tasks) will be assigned to
the enabled tasks. As the only enabled task is max min, let’s assume it is
given a priority of 4.
Later, d — 1 (1) priority change points will be assigned randomly among the
start and end points of all atomic sections, assume this change point (as we
are exploring bug depth 2) is chosen to be at the end of first atomic block
in max min task.

First iteration. The scheduler starts the execution by choosing the task with
the highest priority. When the execution comes to a priority change point,
the priority is lowered causing scheduler to check for a task with higher
priority. In this case, max min will continue to execute as there is no other
enabled task.

After finishing the execution max min task will enable the comp avg task
resulting in a priority assignment to it. Assume that the scheduler assigned
2 as the priority for the comp avg.
The next set of inputs from the streams will enable max min task again
with new assigned priority to be 3.

Second iteration. Now scheduler will choose the enabled task with the highest

priority for execution, which is max min in this case.
While executing the maxz min task, the priority will be changed at the pri-
ority change point and set to 1.
As a result scheduler will now choose comp avg to execute causing the buggy
behavior explained in Section 2.



Dynamic Verification for Hybrid Concurrent Programming Models 161

4 Conclusion and Ongoing Work

This paper identifies and illustrates a novel category of bugs in the hybrid con-
currency programming models that make use of dataflow and shared memory
programming models, and provides a technique for randomized exploration of
program behaviors in this setting.

We have started investigating ADF implementations of DWARF [1] bench-
mark applications. These applications are mostly numerical computations that
have a structured dataflow with little shared memory accesses. We believe these
to be a good initial set of benchmarks for discovering possibly missed cases in
dataflow-heavy implementations.

In later experimental work, we plan to investigate the dynamic verification of
the ADF implementation of a parallel game engine. In this complex application,
the game map is divided between different tasks that process the objects moving
between map regions. Dataflow is used to coordinate the execution of tasks that
correspond to different game regions, whereas the TM synchronization is used
to protect lists of objects, associated with each game region, that hold all the
objects physically located within a region. By using the game engine application,
we wish to evaluate how well our exploration method behaves with performance-
critical applications characterized with highly-irregular behavior.

References

1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Commun. ACM 52(10), 56-67 (2009)

2. Ben-Asher, Y., Eytani, Y., Farchi, E., Ur, S.: Producing scheduling that causes
concurrent programs to fail. In: PADTAD 2006, pp. 37-40. ACM (2006)

3. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized sched-
uler with probabilistic guarantees of finding bugs. In: ASPLOS XV, pp. 167-178.
ACM (2010)

4. Gajinov, V., Stipic, S., Unsal, O., Harris, T., Ayguade, E., Cristal, A.: Integrating
dataflow abstractions into the shared memory model. In: SBAC-PAD, pp. 243-251
(2012)

5. Intel: Intel threading building blocks - flow graph,
http://www.threadingbuildingblocks.org/docs/help/
reference/flow graph.htm

6. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics. In: ASPLOS XIII, pp. 329-339. ACM
(2008)

7. Microsoft: Task parallel library - dataflow,
http://msdn.microsoft.com/en-us/library/hh228603. aspx

8. OpenMP: Openmp 4.0 specification,
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

9. Seaton, C., Goodman, D., Lujan, M., Watson, I.: Applying dataflow and transac-
tions to Lee routing. In: Workshop on Programmability Issues for Heterogeneous
Multicores (2012)


http://www.threadingbuildingblocks.org/docs/help/reference/flow_graph.htm
http://www.threadingbuildingblocks.org/docs/help/reference/flow_graph.htm
http://msdn.microsoft.com/en-us/library/hh228603.aspx
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	Dynamic Verification for Hybrid Concurrent
Programming Models

	1 Introduction
	2 Motivation
	3 System Overview
	3.1 Probabilistic Concurrency Testing
	3.2 Our Method and Implementation

	4 Conclusion and Ongoing Work
	References




