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Preface

The 14th International Conference on Runtime Verification (RV 2014) was held
September 22–25, 2014, at the Fields Institute for Research in Mathematical Sci-
ences on the campus of University of Toronto, Canada. The conference program
included invited talks, tutorials, peer-reviewed presentations, and tool demon-
strations.

RV started in 2001 as an annual workshop and turned into a conference in
2010. The workshops were organized as satellite events to an established forum,
including CAV and ETAPS. The proceedings for RV from 2001 to 2005 were
published in the Electronic Notes in Theoretical Computer Science. Since 2006,
the RV proceedings have been published in Springer’s Lecture Notes in Computer
Science.

RV 2014 was attended by researchers and practitioners from all around the
world. The conference program included papers on a wide variety of subjects,
such as theoretical aspects of runtime verification, testing, tracing, bug finding,
monitoring distributed systems, timed systems, and cyber-physical systems.

We are extremely pleased to have had three excellent invited speakers:

– Jeannette Wing, Vice President and Head of Microsoft Research Interna-
tional, is a leading figure in computer science research, particularly in formal
methods, security, and privacy.

– Kevin Driscoll is a fellow at Honeywell Labs with 40 years, experience in
safety and security critical systems.

– Assaf Schuster is Professor of Computer Science at the Technion, Israel, and
has made significant contributions to monitoring distributed data streams
and big data technology.

The conference also included two exciting tutorials:

– Vijay K. Garg (UT-Austin) and Neeraj Mittal (UT-Dallas) gave a tutorial
on lattice-theoretic approaches to monitoring distributed systems.

– David Basin (ETH-Zurich) and Felix Klaedtke (NEC Labs, Europe) gave the
second tutorial on runtime monitoring and enforcement of security policies.

We would like to extend our deep thanks to the authors of all submitted pa-
pers, to the members of the Program Committee, and to the external reviewers
for their outstanding job in thoroughly evaluating all submitted papers. RV 2014
received 70 submissions: 57 regular papers, three tool papers, and 10 short pa-
pers. Most regular papers were reviewed by five Program Committee members.
Tool and short papers were reviewed by three members of the Program Commit-
tee, who in the end decided to accept 18 are regular papers, 2 are tool papers,
7 short papers. Most paper discussions were conducted through the EasyChair
conference manager. Four papers were discussed over a live conference call.
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We would also like to thank the Fields Institute for its generous monetary
contribution to the conference, as well as sharing its facility to hold the conference
free of charge. We highly appreciate EasyChair for its free service to manage
submissions.

Finally, our special thanks go to the incomparable chair of the Steering Com-
mittee, Klaus Havelund, for his invaluable help during all stages of organizing
RV 2014.

July 2014 Borzoo Bonakdarpour
Scott A. Smolka
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Invited Talks

Murphy Strikes Again
Kevin Driscoll (Honeywell Labs, USA)

An objective of a conference keynote is to provide some rationale and motivation
for the conference: Why are we here? For this conference: Why do Runtime Ver-
ification? It must be for applications critical enough to warrant this additional
expense to ensure that the application performs adequately in the presence of
faults – design faults and hardware faults. There is an interesting link between
the latter and the former. In critical applications, there often is a higher density
of faults in the fault-tolerance software than there is in the rest of the soft-
ware! Three reasons for this are: (1) The higher density of complex conditional
branches in this type of software. (2) The lack of understanding of all possible
failure scenarios leading to vague or incomplete requirements. (3) This software
is the last to be tested. . . when the funding and schedule are exhausted. My
boss once said that “All system failures are caused by design faults.” This is
because, regardless of the requirements, critical systems should be designed to
never fail. It is extremely rare for a critical system to fail in a way that was
anticipated by the designers (e.g., redundancy exhaustion). NASA’s C. Michael
Holloway observed: “To a first approximation, we can say that accidents are al-
most always the result of incorrect estimates of the likelihood of one or more
things.” This keynote will explore the factors that lead to designers underes-
timating the possibility/probabilities of certain failures. Examples of rare, but
actually occurring, failures will be given. These will include Byzantine faults,
component transmogrification, “evaporating” software, and exhaustively tested
software that still failed. The well known Murphy’s Law states that: “If anything
can go wrong, it will go wrong.”For critical systems, the following should added:
“And, if anything can’t go wrong, it will go wrong anyway.”

Monitoring Big, Distributed, Streaming Data
Assaf Schuster (Technion, Israel)

More and more tasks require efficient processing of continuous queries over scal-
able, distributed data streams. Examples include optimizing systems using their
operational log history, mining sentiments using sets of crawlers, and data fu-
sion over heterogeneous sensor networks. However, distributed mining and/or
monitoring of global behaviors can be prohibitively difficult. The näıve solution
which sends all data to a central location mandates extremely high communi-
cation volume, thus incurring unbearable overheads in terms of resources and
energy. Furthermore, such solutions require expensive powerful central platform,
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while data transmission may violate privacy rules. An attempt to enhance the
näıve solution by periodically polling aggregates is bound to fail, exposing a vi-
cious tradeoff between communication and latency. Given a continuous global
query, the solution proposed in the talk is to generate filters, called safe zones, to
be applied locally at each data stream. Essentially, the safe zones represent geo-
metric constraints which, until violated by at least one of the sources, guarantee
that a global property holds. In other words, the safe zones allow for constructive
quiescence: There is no need for any of the data sources to transmit anything
as long as all constraints are held with the local data confined to the local safe
zone. The typically-rare violations are handled immediately, thus the latency
for discovering global conditions is negligible. The safe zones approach makes
the overall system implementation, as well as its operation, much simpler and
cheaper. The saving, in terms of communication volume, can reach many orders
of magnitude. The talk will describe a general approach for compiling efficient
safe zones for many tasks and system configurations.

Formal Methods: An Industrial Perspective
Jeannette Wing (Carnegie Mellon University and Microsoft

Research, USA)

Formal methods research has made tremendous progress since the 1980s when a
proof using a theorem prover was worthy of a Ph.D. thesis and a bug in a VLSI
textbook was found using a model checker. Now, with advances in theorem prov-
ing, model checking, satisfiability modulo theories (SMT) solvers, and program
analysis, the engines of formal methods are more sophisticated and are applica-
ble and scalable: to a wide range of domains, from biology to mathematics; to
a wide range of systems, from asynchronous systems to spreadsheets; and for a
wide range of properties, from security to program termination. In this talk, I
will present a few Microsoft Research stories of advances in formal methods and
their application to Microsoft products and services. Formal methods use, how-
ever, is not routine—yet—in industrial practice. So, I will close with outstanding
challenges and new directions for research in formal methods.



Invited Tutorials

A Lattice-Theoretic Approach to Monitoring Distributed
Computations
Vijay K. Garg (UT Austin, USA)

Neeraj Mittal (UT Dallas, USA)

Reasoning about distributed programs is hard because the non-deterministic in-
terleaving of concurrent activities in the system dramatically increases the num-
ber of possible executions of the program. This non-determinism also makes it
difficult to test or verify the correctness of a distributed program before deploy-
ment. Continuous monitoring of a running system is a complementary approach
for increasing the dependability of a distributed program after deployment.

An execution of a distributed system, also referred to as a distributed com-
putation, can be modeled as a partially ordered set (poset) of events ordered by
the happened-before relation. The set of all consistent global states of the com-
putation correspond to the lattice of all down-sets of the poset. The problem of
runtime monitoring can be viewed as evaluating a predicate on this lattice. In this
tutorial, we will give a survey of algorithms and their limitations for evaluating
global predicates in distributed systems. The algorithms exploit lattice-theoretic
properties of predicates for efficiency. For example, if the given predicate B is
meet-closed and join-closed, then we can compute a subcomputation (called slice)
which exactly captures all the consistent global states that satisfy B. We will
describe centralized and distributed algorithms to compute such a slice. We also
show how slices can be used to detect temporal logic predicates in a distributed
computation.

Runtime Monitoring and Enforcement of Security Policies
David Basin (ETH Zurich, Switzerland)

Felix Klaedtke (NEC Europe Ltd., Switzerland)

Many kinds of digitally stored data should only be used in restricted ways. The
intended usage may be stipulated by government regulations, corporate privacy
policies, preferences of the data owner, etc. Such policies cover not only who may
access which data, but also how the data may or must not be used after access.
An example of such a usage restriction is that “collected data must be deleted
after 30 days and not accessed or forwarded to third parties.”

In this tutorial, we present different methods and results for monitoring and
enforcing such policies along with their underlying foundations. We show how
temporal logical can be used not only to formalize such regulations, but to
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synthesize efficient monitors from specifications. These monitors can then be
used either online or offline to check whether the behavior of system agents,
i.e., users and processes, is policy compliant. A particular focus here will be on
the use of metric first-order temporal logic as a policy language, its algorithmic
realization in the MonPoly tool, and our experience using this tool.

We will also consider the question of when and how can such policies be
enforced by execution monitoring. We will review Schneider’s seminal work on
policy enforcement as well as its limitations. We will show how to overcome the
limitations of Schneider’s setting by distinguishing between system actions that
are controllable by an enforcement mechanism and those actions that are only
observable, that is, the enforcement mechanism sees them but cannot prevent
their execution. For this refined setting, we give necessary and sufficient condi-
tions on when a security policy is enforceable. Furthermore for different specifi-
cation languages, we investigate the problem of deciding whether a given policy
is enforceable and synthesizing an enforcement mechanism from an enforceable
policy.
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First International Competition

on Software for Runtime Verification

Ezio Bartocci1, Borzoo Bonakdarpour2, and Yliès Falcone3

1 Vienna University of Technology, Austria
ezio.bartocci@tuwien.ac.at

2 McMaster University, Canada
borzoo@mcmaster.ca

3 Université Grenoble-Alpes, Laboratoire d’Informatique de Grenoble, France
ylies.falcone@ujf-grenoble.fr

Abstract. We report on the process of organizing the First Interna-
tional Competition on Software for Runtime Verification (CSRV). The
report describes the format, participating teams and evaluation process.
The competition was held as a satellite event of the 14th International
Conference on Runtime Verification (RV’14). The Competition was or-
ganized in three tracks: offline monitoring, online monitoring of C pro-
grams, and online monitoring of Java programs.

1 Introduction

Runtime Verification (RV) is a lightweight yet powerful formal specification-
based technique for offline analysis (e.g., for testing) as well as runtime monitor-
ing of software. RV is based on extracting information from a running system
and checking if the observed behavior satisfies or violates the properties of in-
terest. During the last decade, many important tools and techniques have been
developed and successfully employed. However, due to lack of standard bench-
mark suites as well as scientific evaluation methods to validate and test new
techniques, we believe our community is in pressing need to have an organized
venue whose goal is to provide mechanisms for comparing different aspects of
existing tools and techniques.

For these reasons, inspired by the success of similar events in other areas
of computer-aided verification (e.g., SV-COMP, SAT, SMT), we organized the
First International Competition on Software for Runtime Verification (CSRV
2014) with the aim to foster the process of comparison and evaluation of software
runtime verification tools. The aim of CSRV’14 was the following:

– To stimulate the development of new efficient and practical runtime verifi-
cation tools and the maintenance of the already developed ones.

– To produce benchmark suites for runtime verification tools, by sharing case
studies and programs that researchers and developers can use in the future
to test and to validate their prototypes.

– To discuss the metrics employed for comparing the tools.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 1–9, 2014.
c© Springer International Publishing Switzerland 2014



2 E. Bartocci, B. Bonakdarpour, and Y. Falcone

– To compare different aspects of the tools running with different benchmarks
and evaluating them using different criteria.

– To enhance the visibility of presented tools among different communities
(verification, software engineering, distributed computing and cyber secu-
rity) involved in software monitoring.

CSRV’14 was held in September 2014, in Toronto, Canada, as a satellite event
of the 14th International conference on Runtime Verification (RV’14). The event
was organized in three tracks: (1) offline monitoring, (2) online monitoring of C
programs, and (3) online monitoring of Java programs. The competition included
three phases for each track:

1. collection of benchmarks,
2. training and monitor submissions,
3. evaluation.

This report presents the procedures, rules, and participating teams of CSRV’14.
The final results of the competition are planned to be announced during the
RV’14 conference.

2 Format of the Competition

In this section we describe in detail the phases of the competition.

2.1 Declaration of Intent and Submission of Benchmarks and
Specifications

The competition was announced in relevant mailing lists starting from October
2013. Potential participants were requested to declare their intent for participat-
ing in CSRV by December 15, 2013. For each of the three main tracks (offline, C
and Java), the tools participating in the competition listed in alphabetical order
in Tables 1, 2, and 3, respectively.

Subsequently, participants were asked to prepare benchmark/specification
sets. These were collected in a shared repository1. The deadline was June 1st,
2014. The benchmarks were collected and classified into a hierarchy of folders
representing the competition tracks and participating teams.

Online monitoring of Java and C programs tracks. In the case of Java and C
tracks, each benchmark contribution was required to be structured as follows:

– Program package containing the program source code, a script to compile it,
a script to run the executable, and an English description of the functionality
of the program.

– Specification package is a collection of files, each containing a property that
contains a formal representation of it, informal explanation and the expected
verdict (the evaluation of the property on the program), instrumentation
information, and an English description.

1 https://bitbucket.org/borzoob/csrv14

https://bitbucket.org/borzoob/csrv14
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Table 1. Tools participating in online monitoring of C programs track

Tool Ref. Contact person Affiliation

RiTHM [11] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
E-ACSL [7] J. Signoles CEA LIST, France
RTC P. Pirkelbauer University of Alabama at Birmingham, USA

Table 2. Tools participating in online monitoring of Java programs track

Tool Ref. Contact person Affiliation

Larva [4] C. Colombo University of Malta, Malta
jUnitRV [5] N. Decker ISP, University of Lübeck, Germany
jUnitRV (MMT) [6] N. Decker ISP, University of Lübeck, Germany
JavaMop [10] G. Rosu U. of Illinois at Urbana Champaign, USA
prmj4 [12] E. Bodden TU Darmstadt, Germany
QEA [1] G. Reger University of Manchester, UK

Table 3. Tools participating in the offline monitoring track

Tool Ref. Contact person Affiliation

ZOT+SOLOIS [3] D. Bianculli Politecnico di Milano, Italy
S. Krstic University of Luxembourg, Luxembourg

LogFire [9] K. Havelund NASA JPL, USA
RiTHM2 [11] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
MonPoly [2] E. Zalinescu ETH Zurich, Switzerland
STePr N. Decker ISP, University of Lübeck, Germany
Breach [8] A. Donzé University of California, Berkeley, USA
QEA [1] G. Reger University of Manchester, England

The instrumentation information maps the events referred in the properties
to concrete program events. A property consists of a formally defined object
(e.g., an automaton, logical formula, etc), an informal description, and whether
the program satisfies the property (i.e., the expected verdict). Instrumentation
is a mapping from concrete events (in the program) to abstract events (in the
specification). For instance, if one considers the HasNext property on iterators,
the mapping should indicate that the hasNext event in the property refers to a
call to the hasNext() method on an Iterator object. We allow for several concrete
events to be associated to one abstract event.

Offline monitoring track. In the case of offline track, each benchmark contribu-
tion should consist of:

– a trace in either XML, CSV, or JSON format
– a specification package, which consists of a collection of files, each contain-

ing the formal representation of a property, informal explanation and the
expected verdict (the evaluation of the property on the program), instru-
mentation information, and a brief English description.
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Below we present some examples, where an event name ranges over the set of
possible event names, a field name ranges over the set of possible field names,
a value ranges over the set of possible runtime values.

JSON format:

an_event_name

a_field_name = a_value

a_field_name = a_value

an_event_name

a_field_name = a_value

a_field_name = a_value

CSV format:

an_event_name, a_field_name = a_value, a_field_name = a_value

an_event_name, a_field_name = a_value, a_field_name = a_value

XML format

<log>

<event>

<name>an_event_name</name>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

</event>

<event>

<name>EVR</name>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

</event>

</log>
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2.2 Training Phase and Monitor Collection phase

After a sanity check of the benchmarks performed by the organisers, the training
phase started on June 18, 2014. During this phase, all participants are supposed
to train their tools with all the available benchmarks in the repository. This
phase was scheduled to be completed by July 20, 2014, when the participants
will submit the monitored versions of benchmarks. In this phase, a contribution
consists of a the source of a program and a list of pairs of program and property
identifier. That is, a contribution is related to a program and contains monitors
for the properties of this program. Each monitor is related to one property.
A monitor consists of two scripts, one for building the (monitored version of)
program, one for running the monitored version of the program.

2.3 Benchmark Evaluation Phase

The competition experiments for evaluation will be performed on DataMill
(http://datamill.uwaterloo.ca), a distributed infrastructure for computer
performance experimentation targeted at scientists that are interested in perfor-
mance evaluation. DataMill aims to allow the user to easily produce robust and
reproducible results at low cost. DataMill executes experiments on real hardware
and incorporates results from existing research on how to setup experiments and
hidden factors.

Each participant will have the possibility to setup and try directly their tool
using DataMill. The final evaluation will be performed by the competition or-
ganizers. In the next section, we present in detail the algorithm to calculate the
final score for each tool.

3 Evaluation - Calculating Scores

Let us consider one of the three competition tracks (Java, C, and offline). Let N
be the number of tools participating in the considered track and L be the total
number of benchmarks provided by all teams. The total number of experiments
for the track will be N × L. Then, for each tool Ti (1 ≤ i ≤ N) w.r.t. each
benchmark Bj (1 ≤ j ≤ L), we assign three different scores: the correctness
score Ci,j , the overhead score Oi,j , and the memory utilization score Mi,j. In
case of online monitoring, let Ej be the execution time of benchmark Bj (without
monitor). Note, in the following, for simplicity of notation, we assume that all
participants of a track want to compete on benchmark Bj . Participants can of
course decide not to qualify on a benchmark of their track. In this case, the
following score definitions can be adapted easily.

3.1 Correctness Score

The correctness score Ci,j for a tool Ti running a benchmark Bj is calculated as
follows:

http://datamill.uwaterloo.ca
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– Ci,j = 0, if the property associated with benchmark Bj cannot be expressed
in the specification language of Ti.

– Ci,j = −10, if the property can be expressed, but the monitored program
crashes.

– Ci,j = −5, if, in case of online monitoring, the property can be expressed
and no verdict is reported after 10× Ej .

– Ci,j = −5, if, in case of offline monitoring, the property can be expressed,
but the monitor crashes.

– Ci,j = −5, if the property can be expressed, the tool does not crash, and the
verification verdict is incorrect.

– Ci,j = 10, if the tool does not crash, it allows to express the property of
interest, and it provides the correct verification verdict.

Note that in case of a negative correctness score there is no evaluation w.r.t
the overhead and memory utilization scores for the pair (Ti, Bj).

3.2 Overhead Score

The overhead score Oi,j for a tool Ti running a benchmark Bj is related to
the timing performance of the tool for detecting the (unique) verdict. For all
benchmarks, a fixed total number of points O is allocated when evaluating the
tools on a benchmark. Thus, the scoring method for overhead ensures that

N∑
i=1

L∑
j=1

Oi,j = O.

The overhead score is calculated as follows. First, we compute the overhead
index oi,j , for tool Ti running a benchmark Bj , where the larger overhead index,
the better.

– In the case of offline monitoring, for the overhead, we consider the elapsed
time till the property under scrutiny is either found to be satisfied or violated.
If monitoring (with tool Ti) of the trace of benchmark Bj executes in time
Vi, then we define the overhead as

oi,j =

{ 1
Vi

if Ci,j > 0

0 otherwise

– In the case of online monitoring (C or Java), the overhead associated with
monitoring is a measure of how much longer a program takes to execute due
to runtime monitoring. If the monitored program (with monitor from tool
Ti) executes in Vi,j time units, we define the overhead index as

oi,j =

⎧⎪⎨
⎪⎩

N
√∏N

l=1 Vl,j

Vi,j
if Ci,j > 0

0 otherwise
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In other words, the overhead index for tool Ti evaluated on benchmark Bj

is the geometric mean of the overheads of the monitored programs with all
tools over the overhead of the monitored program with tool Ti.

Then, the overhead score Oi,j for a tool Ti w.r.t benchmark Bj is defined as
follows:

Oi,j = O × oi,j∑N
l=1 ol,j

.

For each tool, the overhead score is a harmonization of the overhead index so
that the sum of overhead scores is equal to O.

3.3 Memory Utilization Score

The memory utilization score Mi,j is calculated similarly to the overhead score.
For all benchmarks, a fixed total number of points O is allocated when evaluating
the tools on a benchmark. Thus the scoring method for memory utilization
ensures that

N∑
i=1

L∑
j=1

Mi,j = M.

First, we measure the memory utilization index mi,j for tool Ti running a
benchmark Bj , where the larger memory utilization index, the better.

– In the case of offline monitoring, we consider the maximum memory allo-
cated during the tool execution. If monitoring (with tool Ti) of the trace of
benchmark Bj uses a quantity of memory Di, then we define the overhead
as

mi,j =

{ 1
Di

if Ci,j > 0

0 otherwise

That is, the memory utilization index for tool Ti evaluated on benchmark Bj

is the geometric mean of the memory utilizations of the monitored programs
with all tools over the memory utilization of the monitored program with
tool Ti.

– In the case of online monitoring (C or Java tracks), memory utilization
associated with monitoring is a measure of the extra memory the monitored
program needs (due to runtime monitoring). If the monitored program uses
Di, we define the memory utilization as

mi,j =

⎧⎪⎨
⎪⎩

N
√∏N

l=1 Dl,j

Di,j
if Ci,j > 0

0 otherwise

Then, the memory utilization score Mi,j for a tool Ti w.r.t. a benchmark Bj is
defined as follows:

Mi,j = M × mi,j∑N
l=1 ml,j

.



8 E. Bartocci, B. Bonakdarpour, and Y. Falcone

3.4 Final Score

The final score Fi for tool Ti is then computed as follows:

Fi =
L∑

j=1

Si,j

where:

Si,j =

{
Ci,j if Ci,j ≤ 0,
Ci,j +Oi,j +Mi,j otherwise.

4 Concluding Remarks

This report was written during the training phase. Once this phase is complete,
the organizers will evaluate all the submitted monitors using the formula pro-
posed in Section 3. The results of the competition is expected to be announced
during the RV 2014 conference in Toronto, Canada. This report is published
to assist future organizers of CSRV to build on the efforts made to organize
CSRV 2014.
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Abstract. This paper introduces a new approach at classifying event traces, gen-
eralizing a monitor’s classical two- or three-valued outcome. Given the specifi-
cation of a system’s behaviour expressed as a Linear Temporal Logic formula,
we produce from the evaluation of the formula on a given trace a data structure
called a trace hologram. When interpreted as equivalence classes, we show how
manipulations on these holograms cluster event traces into various natural cate-
gories, depending on the precise way in which each group of traces violate the
specification.

1 Introduction

Management systems called bug trackers have been developed to help file, categorize,
prioritize and analyze bug reports of a system under development. Yet, while bug reports
may in some cases be filed automatically, their management from that point on is still
mostly qualitative and manual. Existing schemes for classifying bugs only provide a
handful of coarse classification schemes have been proposed in past literature, allowing
bug reports to be clustered by e.g. “severity” (low, medium, high) [1] or type (e.g. sys-
tem bugs, code bugs, etc.) [4]. Moreover, assessing each bug report to these categories
almost always requires human intervention, as is the task of determining whether two
reports are actually occurrences of the same bug. On the other hand, various runtime
monitoring can techniques detect the occurrence of bugs [3], but, most of the time, only
produce a Boolean verdict which is of limited use for classification.

This paper presents a novel technique for classifying execution traces using an ex-
tension of Linear Temporal Logic (LTL). The evaluation of an LTL formula on a given
trace can be used to produce a data structure we call a trace hologram. This hologram is
a generalized verdict of the formula and may be used as a label, with traces producing
the same hologram belonging to the same category. However, different traces are likely
to have different holograms, so we introduce a number of systematic rules to merge
different traces in the same category.

Our proposed approach distinguishes itself from past works by being the first to be
fully automatable, based on a formal specification, parameterizable in various ways,
and expressed directly in terms of the system’s execution traces.

� The author gratefully acknowledges the financial support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 10–14, 2014.
c© Springer International Publishing Switzerland 2014



Multiple Ways to Fail: Generalizing a Monitor’s Verdict 11

2 Traces and Temporal Specifications

The general problem of classifying bugs can be seen as devising a function κ : Σ∗ →C
that associates to every trace of events from the alphabet Σ a “category” taken from
some set C. For the purpose of bug tracking, one is interested in avoiding filing separate
entries for traces that belong to the same category, as they are intuitively taken to be
two instances of the “same” bug. For some category c ∈ C, we will denote as �c�κ the
set S ⊂ Σ∗ such that σ ∈ S if and only if κ(σ) = c, i.e. the set of all traces in category c.

Strictly speaking, a formula in the First-Order Linear Temporal Logic LTL-FO+ [2]
induces one such function κ↓ with C = {	,⊥,?}, where:

κ↓(σ) =

⎧⎪⎨
⎪⎩
	, if σ |= ϕ
⊥, if σ �|= ϕ
?, otherwise.

The value “?” stands for “inconclusive”. It is required, since the evaluation of an LTL-
FO+ formula on a finite trace may sometimes return neither true nor false; for example,
this is the case for the expression Ga evaluated on any finite trace where a has never
occurred.

At the other end of the spectrum, if we take C = Σ∗, the function κ↑(σ) = σ is a
much finer partition where each trace stands alone in its own category. Neither of these
two extremes is particularly useful: κ↓ merely distinguishes between “buggy” and “non-
buggy” traces, while κ↑ will treat any trace as a different bug. Clearly, a meaningful
classification κ is a partition that should lie somewhere in between. In the following,
we shall elicit two properties that a logic-based classification of traces should exhibit.

First, the function κ must be a sub-partition of κ↓; that is, it should not mix buggy
and non-buggy traces in the same category.

Property 1. For every category c ∈ C, exactly one of these statements is true: �c�κ ⊆
�	�κ↓ , or �c�κ ⊆ �⊥�κ↓ , or �c�κ ⊆ �?�κ↓ .

This first requirement imposes that the classification not be too coarse.
The second desirable property bounds the precision of κ in the opposite way, stat-

ing that the classification should not be too fine. As an extreme example, consider the
specification ϕ =⊥; it would not make sense for κ to send some traces in a category c,
and some other traces in another category c′, as this makes an arbitrary distinction that
is finer than the specification itself. In other words, different categories should reveal
actually different ways of making the specification true or false.

This can be formalized as follows. Let π ∈ Π be some path expression, σ ,σ ′ ∈
Σ∗ two traces that are identical, except that at their i-th event, σ i(π) �= σ ′

i(π). These
two traces are said to be (π , i)-different. A formula ϕ is said to be π-invariant if, for
any pair of (π , i)-different traces σ ,σ ′, σ |= ϕ if and only if σ ′ |= ϕ . A meaningful
classification of traces should not arbitrarily separate traces that the formula ϕ itself
does not discriminate.

Property 2. For every π ∈Π , if ϕ is π-invariant and σ ,σ ′ are two (π , i)-different traces,
then κ(σ) = κ(σ ′).



12 S. Varvaressos et al.

The evaluation of an LTL-FO+ formula ϕ on a trace σ induces a tree by repeatedly
applying its associated rules. Figure 1 shows such a tree for the formula G(a → Xb),
evaluated on the trace cab. Ultimately, only Boolean conditions on individual events
remain, and the value of each subformula can then be obtained by combining and prop-
agating values towards the top of the tree.

⊥

ab |= Xb

	

b |= b

b |= Xbb �|= a

ε |= b	

⊥

cab |= (a → Xb)

cab |= G(a → Xb)

b |= (a → Xb)ab |= (a → Xb)

cab |= Xbcab �|= a

ab |= b	

ab �|= a

⊥

Fig. 1. Evaluating an LTL-FO+ formula on a trace induces a tree

From this representation, one can extract a simplified tree whose nodes are simply
labelled by the top-level operator that is being evaluated. Each operator is accompanied
by a symbol indicating the truth value of the sub-expression it represents. We shall
call such a representation a trace hologram. The tree structure contains the “complete”
information about how a particular formula is evaluated on a given trace. Moreover,
provided that n-ary operators are evaluated in a fixed order, this structure is uniquely
defined for a given formula and a given trace.

As a first classification, we take κ to be the function that associates each trace to
its hologram. It is then possible to demonstrate that it fulfils the properties described
earlier.

Theorem 1. Given some LTL-FO+ formula ϕ , if two traces σ ,σ ′ ∈ Σ∗ have the same
hologram, then σ |= ϕ if and only if σ ′ |= ϕ .

Theorem 2. Let c be a category of κϕ
↑ . Let κ ′ be a classification function, such that

there exists two distinct categories c′ and c′′ such that �c� = �c′�∪ �c′′�. Suppose in
addition that both �c′� and �c′′� are not empty. Then κ ′ violates either Property 1 or 2.

In other words, it is possible do show that no categorization finer than κϕ
↑ is possible.

This result shows that function κϕ
↑ , although it does not partition Σ∗ into arbitrarily
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small classes, is still probably too fine for most practical purposes; modulo π-invariance,
all traces yield different holograms and are considered as different bugs: one is therefore
interested in a coarser categorization.

3 Natural Generalizations of κ

We now briefly describe a number of generalizations of κϕ
↑ . The construction of these

generalizations follows the same principle: delete nodes, branches or labels from a holo-
gram according to some systematic pattern. This has for effect that some holograms that
were different before deletion can become identical after, thereby creating the cluster-
ing of categories sought after. The space of possible generalizations of κ is potentially
infinite since deletion rules can be applied in all combinations and many of them are
parameterizable.

The first deletion pattern is the fail-fast deletion. It consists of deleting all children
of a temporal operator node that no longer have an influence on its truth value. Figure 2
shows the procedure for the G operator; ϕ is an arbitrary subformula, and the symbols
�i represent its truth value for each event, with the additional condition that �i �= ⊥ for
1 ≤ i < n. The box ϕn hence represents the first child node that evaluates to ⊥. One
can see in Figure 2b that all nodes following ϕn are deleted. Intuitively, this represents
the fact that, once the n-th event has ϕ evaluate to ⊥, then Gϕ itself evaluates to ⊥, no
matter how ϕ evaluates on the subsequent events since one does not care what follows
a violation.

∧

G⊥

ϕ�n−1
n−1ϕ�1

1 ϕ⊥
n

. . . . . .ϕ�n+1
n+1

(a)

∧

G⊥

ϕ�n−1
n−1ϕ�1

1 ϕ⊥
n

. . .

(b)

∧

G⊥

ϕ⊥
n

(c)

Fig. 2. Two deletion patterns for the G operator. (a) Original hologram (b) After fail-fast deletion
(c) After polarity deletion.

Fail-fast deletion applies only to temporal operators. As an extension of that rule,
one may only keep nodes that are sufficient to decide on the value of an expression. For
example, if the expression ϕ ∧ψ evaluates to ⊥ because ϕ evaluates to ⊥, then it is
not necessary to conserve ψ , since its truth value has no effect on the result (and dually
for the ∨ operator). Similarly, if the formula Gϕ evaluates to ⊥ because the n-th event
of a trace σ does not satisfy ϕ , it is not necessary to conserve nodes describing how ϕ



14 S. Varvaressos et al.

evaluates to 	 on the n− 1 previous events: the knowledge that σn �|= ϕ is sufficient to
decide on the value of Gϕ .

More generally, it is not necessary to keep nodes of a hologram whose polarity (i.e.
their truth value) does not contribute to the final result of the global formula. This is the
polarity deletion. When applied to temporal operators, this deletion rule expresses the
fact that two traces where the same violating sequence of events occurs are considered
the same, even if this sequence is preceded by a varying number of events irrelevant to
the violation.

In a way, applying polarity deletion only keeps the “Boolean structure” of a failure,
but disregards the relative positioning of events that cause it. When applied to first-order
quantifiers, the rule expresses the fact that what distinguishes a trace are the values that
make the formula fail, and not those that fulfill it.

Finally, a further simplification regarding values is to remove them from quantifiers
and/or equalities. Used in isolation, value removal only discards values of variables, but
still keeps the subtrees associated to each; hence, it assimilates traces that differ only
in their offending parameter values, but still distinguishes how many such values they
contain.

A simple deletion rule, truncation, consists of trimming from the hologram all nodes
beyond a certain depth n. An extreme case is n = 1, which deletes all but the root of the
hologram. For other values of n, truncation is such that one does not distinguish traces
up to a certain level of abstraction.

4 Conclusion and Future Work

In this paper, we have shown how techniques borrowed from runtime verification can
be adapted to the classification of event traces for bug tracking purposes. Given a for-
mal specification of a system’s expected behaviour, the evaluation of that specification
on an event trace produces a data structure we called a trace hologram. This method
could see some improvements like assigning a weight to various parts of specification
or considering the number of times a property is violated, adding a severity rating to the
classification.
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Abstract. Roşu and Chen’s trace analysis algorithm identifies activity
streams in a monitored application based on data (such as memory lo-
cations) and groups events accordingly into slices. It can be generalised
to assign several such activity streams to the same slice, even if data
is unrelated. This is useful for monitoring scheduling algorithms, which
linearise activity streams that are not necessarily related. The algorithm
can be generalised further to impose constraints on the generated slices
such that, for example, each trace relates a high-priority activity to a
low-priority activity. There are no limitations on constraints other than
that constraint solvers efficient enough for runtime analysis need to be
available.

Keywords: Asynchronous events, constraint solving, runtime monitor-
ing, scheduling, trace slicing.

1 Introduction

Slicing separates a stream of monitored events into parts, called slices, that
can be analysed independently of each other. In Roşu and Chen’s Algorithm A
[11] the separation is based on the data contained in the events. Events that
share a piece of data — for example, the address of an object in memory — are
identified as related and are put into the same slice. The algorithm is motivated
by the observation that activities in a program that operate on separate sets of
objects are usually not related. For example, when an iterator is created in a
Java program, and the task is to monitor that the underlying collection is not
modified while an iterator is used, operations on iterators created from other
collections are irrelevant and these events need not (and should not) be put into
the slice corresponding to that iterator.

There are monitoring scenarios where it is desirable that events triggered by
activities not related directly to each other in the above sense are put into the
same slice. An example are scheduling algorithms, which ensure that concurrent
activities are executed in an appropriate order — for example, based on priority.
Algorithm A is not directly applicable to such scenarios, but it can be extended
in a straightforward manner to make it applicable. How this can be done is the
subject of the present work.
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1.1 Fixed-Priority Scheduling

Fixed-priority scheduling is the most commonly used scheme for scheduling ac-
tivities in realtime systems [5]. In order to schedule m concurrent activities (for
example, threads) on n < m executors (for example, CPUs) each activity is
assigned a priority and only the n activities of highest priority are executed.
Activities with lower priorities can only make progress when higher-priority ac-
tivities are blocked.

Fig. 1. Firing and Handling of Asynchronous Events on a Multicore System

Fig. 1 shows an execution trace of a Java program running on the realtime-
capable JamaicaVM [1] on VxWorks 6.9. The application is based on the Real-
Time Specification for Java (RTSJ) [13] and contains threads communicating
through asynchronous events. The trace was obtained with JamaicaVM’s built-
in monitoring facilities. It shows four threads running on two CPUs. The first
thread, which runs on its own CPU, fires three asynchronous events 1, 2 and
3, and is then suspended in the Java method wait(long). The other three
threads share the other CPU and act as handlers. The box labelled “Fire 1”
marks the point in time where 1 is fired. A short while later, the corresponding
handler, which is the lowest priority thread, is woken up and starts its activity.
Concurrently, the first thread now fires 3. This asynchronous event has higher
priority than 1 and is handled by the second thread. In order to do so, this thread
now apparently needs to enter a lock currently held by the handler of 1, which
is of lower priority. This situation is known as priority inversion. To prevent a
deadlock the priority of the thread holding the lock is temporarily raised. Then,
that handler can proceed, the priority is lowered, and 3 is handled. Afterwards,
asynchonous event 2, which has been fired in the meantime, is handled, and
eventually the handler of 1 resumes and completes its task.

The boxes labelled “Fire x” and “Handle y” in the diagram represent monitor
events in the application’s execution trace, and they will be abbreviated as f(x)
and h(y), where x and y denote asynchronous events.1 For scheduling to be
correct, whenever several asynchronous events are pending simultaneously, the

1 Events in the execution trace should not be confused with asynchronous events of
the RTSJ. When the meaning of “event” is not clear from the context the term
“monitor event” will be used for referring to an event in a trace.
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higher-priority asynchronous events need to be handled first. That is, for two
asynchronous events x and y with priority(x) > priority(y) whenever f(x) is
observed then there may either be no f(y) until h(x) or otherwise h(x) must
come before h(y).

Such properties can, for example, be expressed with linear temporal logic and
monitored with automata [8]. In a scenario with m asynchronous events, rather
than constructing a monitor for m asynchronous events, using monitors for pairs
of asynchronous events in combination with slicing is more practical.

1.2 Overview of the Paper

Roşu and Chen’s algorithm processes a trace of events and computes mappings
from event parameters to data. Each mapping yields a slice. The mappings are
partial functions and will be called parameter instantiations. In this paper, it
will first be shown that the correctness proof of Algorithm A is even valid when
generalised from partial functions to semilattices (Sect. 2). Then the algorithm
will be extended so it can combine events from multiple activity streams into one
slice, and it becomes applicable to monitoring scheduling algorithms (Sect. 3).
The extended algorithm yields two slices for each pair of asynchronous events,
while according to priorities only one slice is useful. It will then be shown how this
can be addressed by generalising the algorithm further with constraint solving
techniques (Sect. 4).

2 Algorithm A Revisited

Roşu and Chen’s algorithm computes a set of partial functions, which are pa-
rameter instantiations, and a slice for each instantiation. In this section the
algorithm and its correctness proof are shown to be valid if instantiations are
generalised to an arbitrary semilattice. The exposition of semilattices and partial
functions follows Jacobson’s textbook on basic algebra [7].

2.1 Partial Orders and Upper Semilattices

Lattices are partial orders in which least upper bounds and greatest lower bounds
exist. The notions of least upper bound and greatest lower bound are dual, and
a lattice can be seen as comprising two semilattices. The semilattice formed by
least upper bounds is sufficient for understanding Algorithm A.

Definition 1. A partially ordered set is a tuple (S,≤) where S is a set and ≤
is a binary relation on S satisfying reflexivity, antisymmetry and transitivity.

Let A ⊆ S. An element u ∈ S in an upper bound of A if x ≤ u for every x ∈ A.
It is a least upper bound of A if it is an upper bound of A and u ≤ v for every
upper bound v of A. If a least upper bound exists for A it is unique. The least
upper bound of A is denoted as

∨
A. If

∨
A ∈ A then the least upper bound of

A is also called the greatest element of A and denoted maxA.
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Definition 2. An (upper or join) semilattice is a partially ordered set (L,≤) in
which any two elements have a least upper bound.

The least upper bound of x and y is denoted as x∨y (“x join y”). By induction,
any non-empty finite set of elements of a semilattice has a least upper bound.
The least upper bound of x1, x2, . . . , xn is denoted as x1∨x2∨· · ·∨xn. A partially
ordered set for which every subset A has a least upper bound is called a complete
(upper) semilattice. The following properties of the join operation of semilattices
are generally known to hold for lattices (with both meet and join), but proofs
[7, Chap. 8] already apply to semilattices.

Lemma 1. The join operation ∨ of a semilattice satisfies commutativity, asso-
ciativity and idempotence. The order relation and the join operation have these
relationships:

1. x ≤ y if, and only if x ∨ y = y.
2. If x ≤ z and y ≤ z then x ∨ y ≤ z.
3. If x ≤ y then x ∨ z ≤ y ∨ z (monotonicity).

For a finite semilattice every non-empty subset A has a least upper bound.
Likewise for a complete semilattice. If A coincides with the underlying set L
of the semilattice then

∨
A is the greatest element of L.

∨
L is called the top

element of L and denoted 	. Conversely, let A be the empty set ∅. Any u ∈ L is
an upper bound of ∅. If a least upper bound exists for ∅ it is called the bottom
element of L, and

∨
∅ is denoted by ⊥. Unlike top, not all semilattices have

a bottom element. By definition, complete semilattices have a bottom element,
and finite semilattices with bottom element are complete.

Definition 3. A subset M of a semilattice L is called a sublattice (more pre-
cisely, an upper subsemilattice, but the former will be used throughout for brevity)
if it is closed under the operation ∨.

It is evident that M is a semilattice relative to the induced join operation of the
sublattice. A sublattice of a complete lattice is complete if it contains a bottom
element (which need not coincide with the bottom element of L).

Let a ∈ L be fixed. The subset of elements x ∈ M such that x ≤ a is either
empty or, by Lemma 1.2, a sublattice of M (and of L). We denote this set by
M [a]. This observation implies

Lemma 2. If M is a sublattice of L, a ∈ L and M [a] is non-empty then its
least upper bound is an element of M [a] — that is, maxM [a] exists.

Additional Results. Roşu and Chen lift the binary join operation to sets: for
M,N ⊆ L let

M ∨N = {x ∨ y | x ∈ M and y ∈ N}.

If M and N are sublattices of L then M∨N is a sublattice of L as well. If ⊥ ∈ M
and ⊥ ∈ N then ⊥ ∈ M ∨N . (In fact, this condition holds for any x ∈ L.)
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Lemma 3 ([11, Proposition 8.3]). Let L be a complete semilattice, let Θ be a
sublattice of L, ⊥ ∈ Θ and θ ∈ L, and let θ1, θ2 ∈ {θ}∨Θ such that θ1 =

∨
Θ[θ2].

Then θ1 = θ2.

Proof. In the original proof it is shown that {θ′ ∈ Θ | θ2 = θ∨ θ′} has a greatest
element q and q = θ1. It follows that θ2 = θ∨θ1 = θ1. The original proof applies,
which can be shown by step-by-step inspection. ��

2.2 Partial Functions

Roşu and Chen’s original algorithm operates on partial functions. These do not
form a semilattice, but they can be made one by adding an additional element
that will be called the “inconsistent function”.

Let S and T be non-empty sets. Functions are sets of tuples (s, t) ∈ S × T .
The set of partial functions from S to T is denoted by S ⇁ T , the set of (total)
functions as S → T . Let be α ∈ S ⇁ T . The set of elements s such that there is
a t with (s, t) ∈ α is the domain of α, written Domα. If α is total, its domain
coincides with S. For a partial function, the domain is allowed to be the empty
set. In this case, α is called the empty function and is denoted as ⊥.

The subset relation is a partial order on sets. The set of partial functions
S ⇁ T is partially ordered by the subset relation as well. Let α, β ∈ S ⇁ T .
If α ⊆ β then Domα ⊆ Domβ and α and β agree on Domα. If additionally
α ⊆ γ and β ⊆ γ for some total function γ, then α and β may be viewed as
providing partial information towards γ and β being more informative than α.
In the sequel, this order relation on partial functions will be denoted as �.

Let α and β again be arbitrary partial functions ∈ S ⇁ T . They are said to be
compatible if α(s) = β(s) for any s ∈ Domα ∩Domβ. It is evident that a least
upper bound of α and β exists in S ⇁ T if, and only if α and β are compatible.
In particular, S ⇁ T is not a semilattice. This can be rectified by introducing
the “inconsistent function” 	 and declaring α � 	 for any α ∈ (S ⇁ T ) ∪ {	}.
The latter set will be denoted as S

�
⇁ T .

These considerations show

Lemma 4. (S
�
⇁ T,�) is a semilattice with bottom.

The bottom element is the empty function and the top element is the “inconsis-
tent function”. The least upper bound α � β of two partial functions α and β is
either {(s, t) | (s, t) ∈ α or (s, t) ∈ β} if α and β are consistent or, otherwise, 	.
The least upper bound of a set of partial functions A is denoted as

⊔
A.

Injective functions will be needed later. The set of injective partial functions
will be denoted by S ⇁i T and its extension by the inconsistent function as

S
�
⇁i T . The latter is a sublattice of S

�
⇁ T . Let α and β ∈ S

�
⇁i T . The least

upper bound of α and β is α�β if that is injective or 	 otherwise. It is denoted

as α �i β. The least upper bound of A ⊆ S
�
⇁i T is

⊔
i A.
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2.3 Traces and Slices

A trace is either a sequence of base events or a sequence of events with data. Let
E be the set of base events,X a set of variables and V a set of values (representing
the data). Roşu and Chen model events with data as follows. For each e ∈ E ,
Xe ⊆ X is the set of parameters of e. An event with data consists of a base event
e and a parameter instantiation θ ∈ X ⇁ V such that Dom θ = Xe. We denote
the set of events with data as E〈X ⇁ V 〉. The sets E∗ and E〈X ⇁ V 〉∗ are the
sets of sequences of events; they include the empty sequence ε.

Definition 4. For a trace τ ∈ E〈X ⇁ V 〉∗ and a parameter instantiation θ, the
slice τ�θ is the subsequence of base events e such that e〈θ′〉 ∈ τ and θ′ � θ.

That is, τ�θ contains all events of τ whose instantiation is less informative than
or equal to θ.

Since a trace is finite, the sets E and V can be assumed to be finite, and
since each base event has only a finite number of parameters, a finite set X of
parameters is sufficient as well. Consequently, the set of partial functions X ⇁ V

is finite, and X
�
⇁ V is a complete semilattice. Its bottom element is the empty

function ⊥.

Lemma 5 (Lookup [11, Proposition 14]). Let τ be a trace with data, and

let Θ be a sublattice of X
�
⇁ V such that {θ′ | e〈θ′〉 ∈ τ} ⊆ Θ and ⊥ ∈ Θ. Let

θ ∈ X
�
⇁ V . Then τ�⊔Θ[θ] = τ�θ.

Proof. The least upper bound
⊔

Θ[θ] exists by Lemma 2 and is an element
of Θ[θ]. Consider an arbitrary event e〈θ′〉 ∈ τ . By the premises θ′ ∈ Θ. It is
sufficient to show that θ′ �

⊔
Θ[θ] if, and only if θ′ � θ. Let θ′ �

⊔
Θ[θ]; θ is

an upper bound of Θ[θ] and so θ′ �
⊔

Θ[θ] � θ. Conversely, let θ′ � θ. Then
θ′ � θ0 for any upper bound θ0 of Θ[θ] and in particular for

⊔
Θ[θ]. ��

2.4 The Algorithm

Roşu and Chen’s slicing algorithm reads a sequence of events with data and
computes sequences of base events. The algorithm is shown in Fig. 2. The input is
a trace τ ∈ E〈X ⇁ V 〉∗, which is processed sequentially. The computation yields

a set of parameter instantiations Θ ⊆ X
�
⇁ V and a map T ∈ (X

�
⇁ V ) ⇁ E∗.

The latter is the table of slices computed by the algorithm.
Apart from notational details, the only difference to the original version [11,

Fig. 2] is the inclusion of the “inconsistent function” 	 in Θ and DomT. This
modification ensures that these sets are semilattices and serves simplifying the
correctness argument. Semilattice replaces Roşu and Chen’s notion of a closed
set of partial functions. Implementations can either exclude 	 right away (as
done in the original version) or drop the additional trace when returning the
result.
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Algorithm A

Input τ ∈ E〈X ⇁ V 〉∗

Output T ∈ (X
�
⇁ V ) ⇁ E∗ and Θ ⊆ X

�
⇁ V

1: T← {⊥ �→ ε,
 �→ ε}; Θ← {⊥,
}
2: for each e〈θ〉 ∈ τ do
3: for each θ′ ∈ {θ} � Θ do
4: T(θ′)← T(

⊔
Θ[θ′])e

5: end for
6: Θ ← {⊥, θ} �Θ
7: end for

Fig. 2. Roşu and Chen’s Original Algorithm

Algorithm A with Patterns

Input P ⊆ A(X) and τ ∈ A(V )∗

Output T ∈ (X
�
⇁ V ) ⇁ A(V )∗ and Θ ⊆ X

�
⇁ V

1: T← {⊥ �→ ε,
 �→ ε}; Θ← {⊥,
}
2: for each q ∈ τ do
3: Σ ← {mgmi(p, q) | p ∈ P}
4: for each θ′ ∈ Σ �i Θ do
5: T(θ′)← T(

⊔
i Θ[θ′])q

6: end for
7: Θ ← Θ ∪ (Σ �i Θ)
8: end for

Fig. 3. Data Interpretation Based on Patterns

Algorithm A with Constraints

Input c ∈ C, P ⊆ A(X) and τ ∈ A(V )∗

Output T ∈ C ⇁ A(V )∗ and Θ ⊆ C

1: T← {c �→ ε,
 �→ ε}; Θ ← {c,
}
2: for each q ∈ τ do
3: Σ ← {true .mgm(p, q) | p ∈ P}
4: for each θ′ ∈ Σ ∧Θ do
5: T(θ′)← T(

∧
Θ[θ′])q

6: end for
7: Θ ← Θ ∪ (Σ ∧Θ)
8: end for

Fig. 4. Trace Slicing with Constraints
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Theorem 1 (Slicing [11, Theorem 1]). Let τ ∈ E〈X ⇁ V 〉∗ be a trace where
E, X and V are sets of events, parameters and values, respectively, and let T and
Θ be the result of processing τ with Algorithm A. Then these conditions hold:

DomT = Θ (1)

{θ | e〈θ〉 ∈ τ} ⊆ Θ (2)

T(θ) = τ�θ for any θ ∈ Θ (3)

τ�θ = T(
⊔

Θ[θ]) for any θ ∈ X
�
⇁ V (4)

The proof follows Roşu and Chen’s proof.

Proof. All arguments are by induction on the outer loop. Let T and Θ denote
the states of the variables T and Θ at the beginning of the body of the outer
loop and T′ and Θ′ the states at the end, and let e〈θ〉 be the processed event.

First, Θ is a semilattice with bottom element ⊥: the set is initialised to {⊥,	},
which is a sublattice of X

�
⇁ V , in line 1, and it remains one when updated

to {⊥, θ} � Θ in line 6 since the join operation on sets preserves sublattices.
Moreover, Θ is complete.

Equation (1) is also immediate from how T and Θ are updated. In particular,
the inner loop defines T at {θ} �Θ (if not defined already) and so

DomT′ = DomT ∪ {θ} �Θ = Θ ∪ {θ} �Θ = {⊥, θ} �Θ = Θ′

by the induction hypothesis and the definition of the join operator on sets.
Condition (2) is again immediate from the updates in lines 1 and 6.
The sequence in which the elements of {θ}�Θ are processed by the inner loop

(lines 3 to 5) is not specified, and in particular an event e must not be added
to the same slice twice. In fact, the outcome of the loop is invariant under the
processing sequence, and it is sufficient to show that the order of two elements
θ1, θ2 ∈ {θ} � Θ that are processed consecutively in the loop does not matter.
This is a consequence of Lemma 3.

For (3) the induction hypothesis is T(θ0) = τ�θ0 for any θ0 ∈ Θ. Let θ′ ∈ Θ′.
The event e is added to the slice T(θ′) if, and only if θ′ ∈ {θ} � Θ. This is
equivalent to θ � θ′ since θ′ ∈ Θ′ = Θ ∪ ({θ} �Θ), and the assignment in line 4
updates the correct slot. It remains to be shown that, if e is added to a slot,
the table lookup retrieves the correct prefix: T(

⊔
Θ[θ′]) = τ�⊔Θ[θ′] = τ�θ′ . This

follows from the induction hypothesis and Lemma 5.
Equation (4) follows from (3) and Lemma 5. ��

3 Combining Multiple Activity Streams into One Slice

Let us now return to the monitoring problem of Sect. 1.1, where asynchronous
events are fired and handled in an application. Firing and handling are traced
as f(x) and h(x), respectively. In order to monitor whether for each pair of
asynchronous events x and y the order of the recorded fire and handle monitor
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events adheres to the scheduling policy, slices for each pair of events are extracted
from the trace. Consider, for example,

τ = f(2)h(2)f(1)f(2)h(2)f(3)h(3)h(1)

with three asynchronous events 1, 2 and 3, and priority(3) > priority(2) >
priority(1). Slicing should yield a trace for each pair of asynchronous events:

τ2,1 = f(2)h(2)f(1)f(2)h(2)h(1)

τ3,1 = f(1)f(3)h(3)h(1)

τ3,2 = f(2)h(2)f(2)h(2)f(3)h(3)

Each slice can then be processed individually — for example, by an instance of
a suitable parametric automaton where x represents the high-priority and y the
low-priority asynchronous event.

This example illustrates the main challenge when combining multiple activity
streams into one slice. Distinct instances of f(x) and f(y) need to be put in
the same slice. Algorithm A is not designed to support this. In fact, this is a
limitation of the trace model.

3.1 Events and Event Patterns

The modified trace model uses terminology from term algebra [2], but it is only
a subtle generalisation of the original model. Like in Sect. 2.3, X and V denote
the sets of parameters (variables) and values, respectively, of the base events.
A term is either a parameter or a value. T = X ∪ V denotes the set of terms.
Base events are now symbols that can be applied to a fixed number of terms.
Let e ∈ E . Then αe ∈ N is the arity of e. Let αe = k and t1, . . . , tk ∈ T . Then
e(t1, . . . , tk) is an atom; if k = 0 then the atom is denoted as e. If t1, . . . , tk ∈ V
then e(t1, . . . , tk) is a ground atom. The set of atoms is denoted as A(X,V ),
the set of ground atoms as A(V ). Atoms are also called patterns, and ground
atoms now represent events with data. A(X) is the set of patterns that contain
no values.

An instantiation is again a partial function θ ∈ X ⇁ V . The result of its
application to a term t is denoted as θ(t) and is defined as θ(t) if t ∈ Dom θ.
Otherwise, it is t. In particular, a value is mapped to itself. Instantiations are
lifted to atoms: σ(e(t1, . . . , tk)) = e(σ(t1), . . . , σ(tk)).

Instantiations are no longer considered part of the trace but are inferred by
matching events against patterns. A pattern p ∈ A(X,V ) matches an event
q ∈ A(V ) if there is an instantiation θ ∈ X ⇁ V such that θ(p) = q, and θ is
a matcher of p and q. A minimal (or most general) matcher of p and q maps
exactly the variables that occur in p to the corresponding values in q. If a matcher
exists for p and q the minimal matcher is unique. It is denoted as mgm(p, q). We
define mgm(p, q) = 	 if p does not match q. If the minimal matcher is injective,
mgmi(p, q) is defined as mgm(p, q). Otherwise mgmi(p, q) = 	.
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3.2 Slicing Based on Patterns

A slice of a trace τ ∈ A(V )∗ is a subsequence of events that match an element
of a given set P ⊆ A(X) of patterns.

Definition 5 (Slice with Patterns). For a set of patterns P ⊆ A(X), a trace
τ ∈ A(V ) and a parameter instantiation θ, the slice τ |θ is defined as follows.
Either θ = 	. Then τ |θ is the full sequence τ . Otherwise, it is the subsequence
of events q ∈ τ such that there exists a pattern p ∈ P and θ(p) = q.

The modified slicing algorithm is shown in Fig. 3. It takes the set P of patterns
as an additional argument. The inner loop iterates over parameter instantiations
θ′ that extend minimal matchers of these patterns and the processed event q.
Only instantiations that are injective are considered.

Lemma 6 (Lookup with Patterns). Let P ⊆ A(X) and τ ∈ A(V )∗, and let

Θ be a sublattice of X
�
⇁i V such that {mgmi(p, q) | p ∈ P , q ∈ τ} ⊆ Θ and

⊥,	 ∈ Θ. Let θ ∈ X
�
⇁i V . Then τ |⊔

i Θ[θ] = τ |θ.

Proof. Let q ∈ τ |θ. Either θ = 	, and so
⊔

i Θ[θ] = 	 and q ∈ τ |⊔
i Θ[θ]. Other-

wise there is a p ∈ P with θ(p) = q. Then mgmi(p, q) � θ and mgmi(p, q) ∈ Θ.
Therefore mgmi(p, q) �

⊔
i Θ[θ] and (

⊔
i Θ[θ])(p) = q. This implies q ∈ τ |⊔

i Θ[θ].
Conversely, let q ∈

⊔
i Θ[θ]. Either

⊔
i Θ[θ] = 	 and so θ = 	 or there is a p ∈ P

such that (
⊔

i Θ[θ])(p) = q. From
⊔

i Θ[θ] � θ follows θ(p) = q and q ∈ τ |θ.

Theorem 2 (Slicing with Patterns). Let P ⊆ A(X) and τ ∈ A(V )∗, and let
T and Θ be the result of processing P and τ with Algorithm A with Patterns.
Then these conditions hold:

DomT = Θ (5)

{mgmi(p, q) | p ∈ P and q ∈ τ} ⊆ Θ (6)

T(θ) = τ |θ for any θ ∈ Θ (7)

τ |θ = T(
⊔

i
Θ[θ]) for any θ ∈ X

�
⇁i V (8)

The conditions are direct analogues of those of Theorem 1 except (6), which says
that traces for all minimal matchers of patterns and events are computed.

Proof. The argument that Θ is a semilattice is more involved than for Theorem 1
since a set of matchers is processed in each iteration of the outer loop. It is easy

to see that Θ ⊆ X
�
⇁i V throughout the computation. Further, in line 7, Θ

is updated to Θ ∪ (Σ �i Θ) = ({⊥,	} ∪ Σ) �i Θ. The set {⊥,	} ∪ Σ is a
semilattice where the elements of Σ are not comparable. Let σ1 and σ2 be two
distinct elements of Σ. They are matchers of distinct patterns with the same
event q. Since these patterns only contain variables, σ1 �σ2 is not injective, and

so σ1 �i σ2 = 	. By induction, Θ is a sublattice of X
�
⇁i V .

Since the proof of Theorem 1 applies to semilattices in general, most of the
reasoning is directly applicable to slicing with patterns. The exception is (7)
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because the definition of slice has changed. The induction hypothesis is T(θ0) =
τ |θ0 for any θ0 ∈ Θ, and let q again be the processed event. Consider θ′ ∈ Θ′ =
Θ ∪ (Σ �i Θ) where Σ = {mgmi(p, q) | p ∈ P}. The event q is added to the
slice T(θ′) if, and only if θ′ ∈ Σ �i Θ. There are two cases. Either θ′ ∈ Σ �i Θ.
Then there is a pattern p ∈ P and θ′ ∈ {mgmi(p, q)} �i Θ, and so θ′(p) = q and
q ∈ τq|θ′ . Otherwise, θ′ /∈ Σ �i Θ but θ′ ∈ Θ. If there were a p ∈ P such that
θ′(p) = q then, by the minimality of the elements of Σ, θ′ ∈ Σ�iΘ. So q /∈ τq|θ′ .
Therefore the assignment in line 5 updates the correct slot. By the induction
hypothesis and Lemma 6 the table lookup in the same line retrieves the correct
prefix: T(

⊔
i Θ[θ′]) = τ |⊔

i Θ[θ′] = τ |θ′ . ��

3.3 Examples

It is illustrative to inspect the working of the algorithm.We return to the schedul-
ing example from the beginning of the section. Let P = {f(x), f(y), h(x), h(y)}
and let

τ = f(2)h(2)f(1)f(2)h(2)f(3)h(3)h(1)

be the monitored trace. After processing the first two events, the set of instan-
tiations Θ is {⊥, {x �→ 2}, {y �→ 2},	} and T contains four slices:

T(⊥) = ε, T({x �→ 2}) = T({y �→ 2}) = T(	) = f(2)h(2)

When the next event, f(1), is processed the set of instantiations is duplicated,
and f(1) is added to all slices of instantiations that contain a mapping to 1 (and
of	). The full result of processing τ is shown in Table 1. The third group of slices,
containing mappings to 3, is added when f(3) is processed. One can see that
indeed the expected slices are computed. For example, τ2,1 = T({x �→ 2, y �→ 1}).

Slices for instantiations that map only one parameter to a value, for example
for {x �→ 2}, appear to be redundant but are required so they can be cloned
whenever a monitor event for a new asynchronous event arrives. On the other
hand, having two instantiations for each pair of asynchronous events, such as
{x �→ 1, y �→ 2} in addition to {x �→ 2, y �→ 1} is redundant. It is desirable to
only compute slices for instantiations with priority(x) > priority(y). This will
be the subject of the following section.

A trace processed by the original Algorithm A is also amenable for process-
ing by Algorithm A with Patterns. For each base event e ∈ E let the set P of
patterns contain one f(x1, . . . , xk) such that Xe = {x1, . . . , xk} and x1, . . . , xk

is the intended order of parameters. Since each event q is matched by exactly
one pattern p ∈ P the set of instantiations Σ computed in line 3 is singleton and
the algorithm is schematically reduced to the original version. The remaining
difference is that the former operates on parameter instantiations that are injec-
tive. The author believes that this is not a fundamental limitation. It appears
that in typical applications of the original algorithm, only injective parameter
instantiations are relevant.



26 C. Ballarin

Table 1. Slices for τ = f(2)h(2)f(1)f(2)h(2)f(3)h(3)h(1)

⊥ ε
x �→ 2 f(2) h(2) f(2) h(2)
y �→ 2 f(2) h(2) f(2) h(2)

 f(2) h(2) f(1) f(2) h(2) f(3) h(3) h(1)

x �→ 1 f(1) h(1)
y �→ 1 f(1) h(1)

x �→ 1, y �→ 2 f(2) h(2) f(1) f(2) h(2) h(1)
x �→ 2, y �→ 1 f(2) h(2) f(1) f(2) h(2) h(1)

y �→ 3 f(3) h(3)
x �→ 3 f(3) h(3)

x �→ 1, y �→ 3 f(1) f(3) h(3) h(1)
x �→ 2, y �→ 3 f(2) h(2) f(2) h(2) f(3) h(3)
x �→ 3, y �→ 1 f(1) f(3) h(3) h(1)
x �→ 3, y �→ 2 f(2) h(2) f(2) h(2) f(3) h(3)

θ T(θ)

4 Adding Constraints

The slicing algorithm with patterns computes slices for all combinations of asyn-
chronous events (see Table 1), while only slices for events with x > y or, more
precisely, priority(x) > priority(y) are meaningful for the subsequent analysis.
It is easy to filter out the undesired slices before passing them on to analysis.
But it is even possible to avoid generating these slices right away by imposing
constraints on the parameter instantiation.

4.1 Constraint Solving

Constraint solving is an established technique from the problem solving domain,
and efficient solvers exist for many arithmetic and finite domains. The following
introduction follows Marriott and Stuckey’s textbook [10].

A constraint domain defines the language of constraints and the set of values
over which they range. Constraints involve variables. The set of variables and
values are X and V , respectively, sharing the notation for instances from the
previous sections. A constraint c is of the form γ1 ∧ · · · ∧ γn, where the γi are
primitive constraints. The latter are predicate symbols applied to expressions.
The set of expressions is defined by the constraint domain. It includes variables
and values.

A valuation maps variables to values (the notion is identical to the that of
instantiations from the previous section). If a constraint evaluates to true under
a valuation it is said to have a solution. The empty conjunction of primitive con-
straints, for which any valuation is a solution, is denoted by true, the constraint
that has no solution as false .



Two Generalisations of Roşu and Chen’s Trace Slicing Algorithm A 27

Let c1 and c2 be constraints. The conjunction c1∧ c2 is the conjunction of the
primitive constraints of c1 and c2. The constraint c1 implies c2 if θ(c1) = true
implies θ(c2) = true for all valuations θ such that Dom θ contains the variables
that occur in c1 and c2. Implication is denoted by c1 → c2. If c1 → c2 and
c2 → c1 then c1 and c2 are equivalent. In the sequel, equivalent constraints are
considered equal. It is also assumed that equations of the form x = v for x ∈ X
and v ∈ V can be expressed as constraints, and that implication and equivalence
are computable — that is, a complete solver exists. For θ ∈ X ⇁ V we denote the
extension of a constraint c by the equational constraints given by the mappings
of θ as c.θ. For the “inconsistent function”, c.	 = false .

The set C of constraints for a constraint domain is partially ordered by impli-
cation. It is also partially ordered by reverse implication. The latter is an upper
semilattice where c1 ∧ c2 is the least upper bound of c1 and c2. The least upper
bound of a set C′ ⊆ C of constraints is denoted by

∧
C′. The top element is

false and the bottom element true.2

4.2 Slicing with Constraints

Slicing with constraints involves an initial constraint c, which is taken into ac-
count while matching patterns to events. For example, the constraints x > y
(or priority(x) > priority(y)) expresses the priority condition for the scheduling
example, where {f(x), f(y), h(x), h(y)} is the set of patterns. This constraint
already entails injectivity of parameter instantiations. Explicit references to in-
jectivity can be pulled out of the algorithm by requiring the initial constraint to
imply injectivity of instantiations.

Definition 6 (Slice with Constraints). For an initial constraint c ∈ C, a
set of patterns P ⊆ A(X), a trace τ ∈ A(V ) and a constraint θ, the slice τ |θ is
defined as follows. Either θ = false. Then τ |θ is the full sequence τ . Otherwise,
it is the subsequence of events q ∈ τ such that there exists a pattern p ∈ P and
θ → c.mgm(p, q).

The modified slicing algorithm is shown in Fig. 4. It takes the initial constraint
c as an additional argument. The inner loop iterates over constraints θ′ that
imply c.

Lemma 7 (Lookup with Constraints). Let τ ∈ A(V )∗, c ∈ C and let Θ be
a sublattice of C such that {c.mgm(p, q) | p ∈ P , q ∈ τ} ⊆ Θ and c,	 ∈ Θ. Let
θ ∈ C with θ → c. Then τ |⊔Θ[θ] = τ |θ.

Proof. Let q ∈ τ |θ. Either θ = false, and so
∧

Θ[θ] = false and q ∈ τ |∧Θ[θ].
Otherwise there is a p ∈ P with θ → c.mgm(p, q) and c.mgm(p, q) ∈ Θ, and
so

∧
Θ[θ] → c.mgm(p, q). This implies q ∈ τ |∧Θ[θ]. Conversely, let q ∈

∧
Θ[θ].

Either
∧

Θ[θ] = false and so θ = false or there is a p ∈ P such that
∧

Θ[θ] →
c.mgm(p, q). From θ →

∧
Θ[θ] follows θ → c.mgm(p, q) and q ∈ τ |θ.

2 Logic-inclined readers might find it more intuitive to interpret C as a lower semilat-
tice with top true and bottom false. For consistency with the previous versions of
the algorithm this has not been done here.
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Definition and lemma differ from their counterparts from Sect. 3 only in notation,
and the proof of the lemma is a literal translation of the version for patterns.

Theorem 3 (Slicing with Constraints). Let c ∈ C and P ⊆ A(X) such that
c ∧ (x = y) → false for any two distinct variables x, y ∈ X. Let τ ∈ A(V )∗ and
let T and Θ be the result of processing τ with Algorithm A with Constraints.
Then these conditions hold:

DomT = Θ (9)

{c.mgm(p, q) | p ∈ P and q ∈ τ} ⊆ Θ (10)

T(θ) = τ |θ for any θ ∈ Θ (11)

τ |θ = T(
∧

Θ[θ]) for any θ ∈ C with θ → c (12)

Proof. It is sufficient to observe that Θ is maintained during the computation
to be a sublattice of C with bottom element c and top element false. Then the
arguments for Theorem 2 apply. ��

4.3 Experiments

Algorithm A with Constraints was implemented in Java. The implementation
is generic in the constraint domain and enables experiments with different con-
straint solvers. It can read traces generated by JamaicaVM, but it is not de-
signed for online monitoring. The implementation is a fairly direct rendering of
the pseudocode from Fig. 4 and has not been optimised in any way.

Two solvers were provided. The first is a wrapper for the semilattice X
�
⇁i V .

The second supports the primitive constraints x ≤ y and x �= y. The order
constraints are maintained as a directed graph, and whenever there is a x �= y
such that x and y are in the same strongly connected component the collection
of primitive constraints has no solution (is inconsistent).

Configuring Algorithm A with Constraints with the solver for injective func-
tions and the initial constraint c = true yields Algorithm A with Patterns. Hence
the former is a generalisation of the latter. The slices shown in Table 1 were ob-
tained with this configuration of the implementation. When switching to the
solver for order constraints and inequality, and with the initial constraint x > y,
the result is the same, except that the slices for {x �→ 1, y �→ 2}, {x �→ 1, y �→ 3}
and {x �→ 2, y �→ 3} disappear as expected. The implementation was tested on a
number of traces including the example from Roşu and Chen [11, Table 1] and
yielded the expected results.

5 Conclusions

This work was inspired by work by Boden and Stolz [4,12]. The idea pursued
initially was to use a combination of alternating automata and constraint solvers
for imposing priority constraints on the monitors. While this seemed to work in
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principle, the solution was fairly complicated, and an extension to time — for
example, timed automata [9] —, which is indispensable for monitoring realtime
systems, would have complicated things even further. The combination of con-
straint solvers with a slicing algorithm is much cleaner. It enables using any
monitoring technology.

An extension to the Algorithms B and C, which are versions of A optimised
for use in practice, has not yet been investigated. Neither have we experimented
with efficient finite-domain solvers, which seem most appropriate for handling
priority constraints. The main requirement for efficiency, namely that the table
T of slices can be updated in parallel in the inner loop of the algorithm, is also
met by the two variants of A presented here.

Solutions to monitoring events with data differ in the trade-off between mon-
itoring speed and expressiveness. Quantified event automata [3] share some fea-
tures of this work— for example, the use of pattern matching to categorise events
— but go beyond beyond its specification capabilities by allowing existential
quantification of data. Both extensions can monitor properties not amenable to
the original algorithm. Temporal data logic [6] is a monitoring formalism based
on the combination of a temporal logic for specifying the order of events with a
logic for reasoning about the data. Like with our constraint-based extension of
Roşu and Chen’s algorithm a reasoning specialist — in this case an SMT solver
— is used for analysing the data.

The distinctive contribution of this work is that Roşu and Chen’s algorithm
itself is applicable to a wider range of monitoring problems than it was designed
for. Whether an integration of the algorithm with constraint solvers performs
better in practice than filtering out unwanted slices generated by the version for
patterns remains to be seen. The main result is theoretical: a deeper understand-
ing of Roşu and Chen’s algorithm, which opens the field for new applications.
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Abstract. We propose an approach to monitoring IT systems offline,
where system actions are logged in a distributed file system and subse-
quently checked for compliance against policies formulated in an expres-
sive temporal logic. The novelty of our approach is that monitoring is
parallelized so that it scales to large logs. Our technical contributions com-
prise a formal framework for slicing logs, an algorithmic realization based
onMapReduce, and a high-performance implementation. We evaluate our
approach analytically and experimentally, proving the soundness and com-
pleteness of our slicing techniques and demonstrating its practical feasibil-
ity and efficiency on real-world logs with 400GB of relevant data.

1 Introduction

Data owners, such as individuals and companies, are increasingly concerned
that their private data, collected and shared by IT systems, is used only for
the purposes for which it was collected. Conversely, those parties responsible
for collecting and managing such data must increasingly follow regulations on
how it is processed. For example, US hospitals must follow the US Health Insur-
ance Portability and Accountability Act (HIPAA) and financial services must
conform to the Sarbanes-Oxley Act (SOX), and these laws even stipulate the
use of mechanisms in IT system for monitoring system behavior. Although var-
ious monitoring approaches have been developed for different expressive policy
specification languages, such as [9, 10, 13, 15, 18], they do not scale to checking
compliance of large-scale IT systems like cloud-based services and systems that
process machine-generated data. These systems typically log terabytes or even
petabytes of system actions each day. Existing monitoring approaches fail to
cope with such enormous quantities of logged data.

In this paper, we propose a scalable approach to offline monitoring, where
system components log their actions and monitors inspect the logs to identify
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policy violations. Given a policy, our solution works by decomposing the logs into
small parts, called slices, that can be independently analyzed. We can therefore
parallelize and distribute the monitoring process over multiple computers.

One of the main challenges is to generate the slices without weakening the
guarantees provided by monitoring. In particular, the slices must be sound and
complete for the given policy and logged data. That means that only actual
violations are reported and every violation is reported by at least one monitor.
Furthermore, slicing should be effective, i.e., producing the slices should be fast
and the slices should be small. We provide a framework for obtaining slices with
these properties. In particular, our framework lays the foundations for slicing
logs, where logs are represented as temporal structures and policies are given as
formulas in metric first-order temporal logic (MFOTL) [8, 9]. Although we use
temporal structures for representing logs and MFOTL as a policy specification
language, the underlying principles of our slicing framework are general and
apply to other representations of logs and other logic-based policy languages.

Within our theoretical slicing framework, we define orthogonal methods to
generate sound and complete slices. The first method constructs slices for check-
ing system compliance for specific entities, such as all users whose login name
starts with the letter “A.” Note that it is not sufficient to consider just the ac-
tions of these users to check their compliance; other users’ actions might also be
relevant and must also be included in a slice to be sound. The second method
checks system compliance during a specific time period, such as a particular
week. In addition to these two basic methods for slicing with respect to data
and time, we describe slicing by filtering, which discards parts of a slice to speed
up monitoring. Finally, we show that slicing is compositional. We can therefore
obtain new, more powerful slicing methods by composing existing methods.

We demonstrate how to employ the MapReduce framework [12] to parallelize
and distribute the slicing and monitoring tasks. We propose algorithms, for both
slicing and filtering. Moreover, we explain how to flexibly combine slicing and
filtering. As required by MapReduce, we define map and reduce functions that
constitute the backbone of the algorithmic realization of our slicing framework.
The map function realizes slicing and the reduce function realizes monitoring.
MapReduce runs in its map phase and in its reduce phase multiple instances of
the respective function in parallel, where each instance is responsible for a part
of the logged data. Splitting and parallelizing the workload this way enables
monitoring to scale in the high-performance implementation of our approach.

We deploy and evaluate our monitoring solution in a real-world setting, where
we check the compliance of more than 35,000 computers, producing approxi-
mately 1TB of log data each day. The policies considered concern the updating
of system configurations and access to sensitive resources. We successfully mon-
itor the relevant actions logged by these computers. The log consist of several
billion log entries from a two year period, requiring 0.4TB of storage. The moni-
toring takes just a few hours, using only 1,000 machines in a MapReduce cluster.

Overall, we see our contributions as follows. First, we provide a framework for
splitting logs into slices for monitoring. Second, we give a scalable algorithmic
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realization of our framework for monitoring large logs in an offline setting. Both
our framework and our algorithmic realization support compositional slicing.
Finally, with our case study, we show that the approach is effective and scales
well. In particular, our deployment and the evaluation demonstrate the feasibility
of checking compliance in large-scale IT systems.

We proceed as follows. In Section 2, we give background on MFOTL and
monitoring. In Section 3, we describe our approach to slicing and monitoring,
including its algorithmic realization in MapReduce. In Section 4, we experimen-
tally evaluate our approach. We discuss related work in Section 5 before drawing
conclusions in Section 6. Additional details, including proofs and pseudo code
omitted due to space restrictions, are given in the full version of this paper,
which is available from the authors or their webpages.

2 Preliminaries

In this section, we explain how we use MFOTL to represent system requirements,
and how we monitor a single stream of logged system actions.

Specification Language. We give just a brief overview of MFOTL; further de-
tails can be found in the paper’s full version. MFOTL is similar to propositional
real-time logics like MTL [2]. However, as it is a first-order logic, MFOTL’s syn-
tax is defined with respect to a signature. Furthermore, instead of timed words,
its models are temporal structures (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a sequence
of structures and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers. As is usual, a
structure D over a signature S (without function symbols) consists of a domain
|D| �= ∅ and interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for each constant symbol
c and predicate symbol r of the signature S, where ι(r) denotes r’s arity.

The formulas over the signature S are given by the grammar

ϕ ::= t1≈ t2
∣∣t1≺ t2

∣∣r(t1, . . . , tι(r))∣∣¬ϕ
∣∣ϕ ∨ ϕ

∣∣ ∃x. ϕ∣∣�I ϕ
∣∣�I ϕ

∣∣ϕ SI ϕ
∣∣ϕ UI ϕ ,

where t1, t2, . . . are variables or constant symbols of S, r a predicate symbol of S,
x a variable, and I an interval [a, b) ⊆ N. The temporal operators�I (“previous”),�I (“next”), SI (“since”), and UI (“until”) require the satisfaction of a formula
within a particular time interval in the past or future. An operator’s subscript I
specifies this time interval.MFOTL’s satisfaction relation |= is defined as expected
for (i) a time point i ∈ N, (ii) a valuation v interpreting the variables, and (iii) a
temporal structure (D̄, τ̄ ). We call the indices of the τis and Dis time points and
the τis timestamps. In particular, τi is the timestamp at time point i ∈ N.

We use standard terminology and syntactic sugar, see e.g., [3,14]. For instance,
we use terms like free variable and atomic formula, and abbreviations such as

�I ϕ := true SI ϕ (“once”), �I ϕ := true UI ϕ (“eventually”), �I ϕ := ¬ �I ¬ϕ
(“historically”), and �I ϕ := ¬ �I ¬ϕ (“always”), where true := ∃x. x ≈ x.
Intuitively, the formula �I ϕ states that ϕ holds at some time point in the
past within the time window I and �I ϕ states that ϕ holds at all time points
in the past within the time window I. The corresponding future operators are

�I and �I . We also use non-metric operators like �ϕ := �[0,∞) ϕ. To omit



34 D. Basin et al.

parentheses, we use the standard conventions about the binding strength of
logical connectives, e.g., Boolean operators bind stronger than temporal ones
and unary operators bind stronger than binary ones.

Throughout the paper, we make the following assumptions when not stated
otherwise. First, formulas and temporal structures are over the signature S con-
sisting of the sets C and R of constant and predicate symbols, and the function
ι assigns an arity to each predicate symbol. Second, the set of variables is V .
Third, the structures’ domain is D and constant symbols are interpreted iden-
tically in all structures. The set of all these temporal structures is T. Finally,
without loss of generality, variables are quantified at most once in a formula and
quantified variables are disjoint from the formula’s free variables.

Monitoring. We use MFOTL to check the policy compliance of a stream of
system actions as follows [8]. Policies are given as MFOTL formulas of the form
�ψ. For illustration, consider the policy stating that SSH connections must last
no longer than 24 hours. This can be formalized in MFOTL as

�∀c. ∀s. ssh login(c, s) → �[0,25) ssh logout(c, s) , (P0 )

where we assume that time units are in hours and the signature consists of the
two binary predicate symbols ssh login and ssh logout . We also assume that the
system actions are logged. In particular, the ith entry in the stream of logged
actions consists of the performed actions and a timestamp τi that records the
time when the actions occurred. For checking compliance with respect to the
formula (P0 ), we assume that the logged actions are the logins and logouts,
with the parameters specifying the computer’s name and the session identifier.

The corresponding temporal structure (D̄, τ̄) for such a stream of logged SSH
login and logout actions is as follows. The domain of D̄ contains all possible
computer names and session identifiers. The ith structure in D̄ contains the
relations ssh loginDi and ssh logoutDi , where (1) (c, s) ∈ ssh loginDi iff there is
a logged login action in the ith entry of the stream with the parameter values c
and s, and (2) (c, s) ∈ ssh logoutDi iff there is a logged logout action in the ith
entry of the stream with the parameter values c and s. The ith timestamp in τ̄ is
simply the timestamp τi of the ith log entry. This generalizes straightforwardly
to an arbitrary stream of logged actions, where the kind of actions correspond
to the predicate symbols specified by the temporal structure’s signature and the
actions’ parameter values are elements from the temporal structure’s domain.

In practice, we can only monitor finite prefixes of temporal structures to de-
tect policy violations. However, to ease our exposition, we require that temporal
structures, and thus also logs, describe infinite streams of system actions. We use
the monitoring tool MONPOLY [7] to check whether a stream of system actions
complies with a policy formalized in MFOTL. It implements the monitoring al-
gorithm in [9]. MONPOLY iteratively processes the temporal structure (D̄, τ̄)
representing a stream of logged actions, either offline or online, and outputs the
policy violations. Formally, for a formula �ψ, a policy violation is a pair (v, τ)
of a valuation v and a timestamp τ such that (D̄, τ̄ , v, i) |= ¬ψ, for some time
point i with τi = τ . The formula ψ may contain free variables and the valua-
tion v interprets these variables. As MONPOLY searches for all combinations of
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timepoints and interpretations of the free variables for which a given stream of
logged actions violates the policy, in practice we drop the outer universal quan-
tifications in the policy’s MFOTL formalization to obtain additional information
about the violations. For instance, if we remove the universal quantification over
s in the formula (P0 ), then the valuation v in each policy violation (v, τ) specifies
a session identifier of an SSH connection that lasted 25 hours or more.

In general, we assume that the subformula ψ of �ψ formalizing the given
policy is bounded, i.e., the interval I of every temporal operator UI occurring
in ψ is finite. Since ψ is bounded, the monitor only needs to process a finite
prefix of (D̄, τ̄ ) ∈ T when determining the valuations satisfying ¬ψ at any given
time point. To effectively determine all these valuations, we also assume here
that predicate symbols have finite interpretations in (D̄, τ̄ ), that is, the relation
rDj is finite, for every predicate symbol r and every j ∈ N. Furthermore, we
require that ¬ψ can be rewritten to a formula that is temporal safe-range [9], a
generalization of the standard notion of safe-range database queries [1]. In our
SSH example, the rewritten formula of (P0 ) without the outermost temporal
operator and quantifiers is ssh login(c, s) ∧ ¬ �[0,25) ssh logout(c, s).

3 Log Slicing

In Section 3.1, we present the logical foundation of our slicing framework. A
slicer splits the temporal structure to be monitored into slices. We introduce
the notions of soundness and completeness for individual slices relative to sets of
possible violations, called restrictions. We show that soundness and completeness
of each individual slice in a set are sufficient to find all violations of a given policy,
provided that the restrictions are chosen appropriately. We also show that slicing
is compositional. In Section 3.2, we present concrete instances of slicers and in
Section 3.3, we present an algorithmic realization of our slicing framework.

3.1 Slicing Foundations

Slices. Slicing entails splitting a temporal structure, which represents a stream
of logged actions, into multiple temporal structures. Each such temporal struc-
ture contains only a subset of the logged actions. Formally, a slice is defined as
follows.

Definition 1. Let s : [0, �)→N be a strictly increasing function, with �∈N∪{∞}.
The temporal structure (D̄′, τ̄ ′) ∈ T is a slice of (D̄, τ̄ ) ∈ T (with respect to the
function s) if τ ′

i = τs(i) and rD
′
i ⊆ rDs(i) , for all i ∈ [0, �) and all r ∈ R.

Recall that the logged system actions at a time point i ∈ N are represented as
the elements in Di’s relations rDi , with r ∈ R. The function s determines which
time points of the temporal structure (D̄, τ̄ ) are in the slice (D̄′, τ̄ ′). For the
time points present in the slice, some actions may be ignored since rD

′
i ⊆ rDs(i) ,

for i ∈ [0, �). Note that the domain of the function s may be finite or infinite.
If its domain is infinite, i.e. when � = ∞, we require that each action in the
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slice is an action of the original stream of actions, i.e. rD
′
i ⊆ rDs(i) , for each

i ∈ N. If s’s domain is finite, i.e. when � ∈ N, we relax this requirement by
not imposing any restrictions on the structures D′

i and the timestamps τ ′
i with

i ≥ �. In this case, the suffix of the slice starting at time point � is ignored
when monitoring the slice.

To meaningfully monitor slices independently, we require that slices are sound
and complete. Intuitively, this means that at least one of the monitored slices
violates the given policy if and only if the original temporal structure violates
the policy. We define these requirements in Definition 2 below, relative to a set
R ⊆ ((V → D)× N), called a restriction. We use R to denote the set of all such
restrictions and say that a violation (v, t) is permitted by R ∈ R if (v, t) ∈ R.

Definition 2. Let ϕ be a formula and R ∈ R.
(i) (D̄′, τ̄ ′) ∈ T is R-sound for (D̄, τ̄ ) ∈ T and ϕ if for all pairs (v, t) permitted

by R, it holds that (D̄, τ̄ , v, i) |= ϕ, for all i ∈ N with τi = t, implies
(D̄′, τ̄ ′, v, j) |= ϕ, for all j ∈ N with τ ′

j = t.

(ii) (D̄′, τ̄ ′) ∈ T is R-complete for (D̄, τ̄) ∈ T and ϕ if for all pairs (v, t)
permitted by R, it holds that (D̄, τ̄ , v, i) �|= ϕ, for some i ∈ N with τi = t,
implies (D̄′, τ̄ ′, v, j) �|= ϕ, for some j ∈ N with τ ′

j = t.

We equip each slice with a restriction. The original temporal structure is
equipped with the non-restrictive restriction R0 := ((V → D)× N), which per-
mits any pair (v, t).

Slicers. We call a mechanism that splits a temporal structure into slices a slicer.
Additionally, a slicer equips the resulting slices with restrictions. In Definition 3,
we give requirements that the slices and their restrictions must fulfill. In The-
orem 4, we show that these requirements suffice to ensure that monitoring the
slices is equivalent to monitoring the original temporal structure.

Definition 3. A slicer sϕ for the formula ϕ is a function that maps (D̄, τ̄ ) ∈ T
and R ∈ R to a family of temporal structures (D̄k, τ̄k)k∈K and a family of
restrictions (Rk)k∈K that satisfy the following conditions.
(S1) (Rk)k∈K refines R, i.e.,

⋃
k∈K Rk = R.

(S2) (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and ϕ, for all k ∈ K.
(S3) (D̄k, τ̄k) is Rk-complete for (D̄, τ̄ ) and ϕ, for all k ∈ K.

Theorem 4. Let sϕ be a slicer for the formula ϕ. Assume that sϕ maps (D̄, τ̄ ) ∈
T and R ∈ R to the family of temporal structures (D̄k, τ̄k)k∈K and the family
of restrictions (Rk)k∈K . The following conditions are equivalent.
(1) (D̄, τ̄ , v, i) |= ϕ, for all valuations v and i ∈ N with (v, τi) ∈ R.
(2) (D̄k, τ̄k, v, i) |= ϕ, for all k ∈ K, valuations v, and i ∈ N with (v, τi) ∈ Rk.

Composition. We define next an operation for composing slicers. Theorem 6
shows that the composition of slicers is again a slicer. Hence we can restrict our-
selves to a few basic slicers, which we provide in Section 3.2 and their algorithmic
realization in Section 3.3. By composition, we obtain more powerful slicers, which
may be needed to obtain slices of manageable size from very large logs.
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Definition 5. Let sϕ and s′ϕ be slicers for the formula ϕ. The combination

s′ϕ ◦k̂ sϕ for the index k̂ is the function that maps (D̄, τ̄ ) ∈ T and R ∈ R to
the following families of temporal structures and restrictions, assuming that sϕ
maps (D̄, τ̄) and R to (D̄k, τ̄k)k∈K and (Rk)k∈K

– If k̂ �∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K and (Rk)k∈K .

– If k̂ ∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K′′ and (Rk)k∈K′′ , where K ′′ :=
(K \ {k̂}) ∪ K ′ and (D̄k, τ̄k)k∈K′ and (Rk)k∈K′ are the families returned by

s′ϕ for the input (D̄k̂, τ̄ k̂) and Rk̂, assuming K ∩K ′ = ∅.

Intuitively, we first apply the slicer sϕ. The index k̂ specifies which of the ob-

tained slices should be sliced further. If there is no k̂th slice, the second slicer
s′ϕ does nothing. Otherwise, we use s′ϕ to make the k̂th slice smaller. Note that
by combing the slicer sϕ with different indices, we can slice all of sϕ’s outputs
further. Note too that an algorithmic realization of the function s′ϕ ◦k̂ sϕ need
not necessarily compute the output of sϕ before applying s′ϕ.

Theorem 6. The combination s′ϕ ◦k̂ sϕ of the slicers sϕ and s′ϕ for the formula
ϕ is a slicer for the formula ϕ.

3.2 Basic Slicers

We now introduce three basic slicers. Due to space limitations, we focus on just
one of them. The full version of the paper provides details on the other two.

Slicing Data. Data slicers split the relations of a temporal structure. We call
the resulting slices data slices. Formally, (D̄′, τ̄ ′) ∈ T is a data slice of (D̄, τ̄ ) ∈ T
if (D̄′, τ̄ ′) is a slice of (D̄, τ̄ ), where the function s : [0, �) → N in Definition 1 is
the identity function and � = ∞. In the following, we introduce data slicers that
return sound and complete slices relative to a restriction.

In a nutshell, a data slicer takes as input a formula ϕ, a slicing variable x,
which is a free variable in ϕ, and slicing sets, which are sets of possible values for
x. It constructs one slice for each slicing set. The slicing sets can be chosen freely,
and can overlap, as long as their union covers all possible values for x. Intuitively,
each slice excludes those elements of the relations interpreting the predicate
symbols that are irrelevant to determining ϕ’s truth value when x takes values
from the slicing set. For values outside of the slicing set, the formula may evaluate
to a different truth value on the slice than on the original temporal structure.

We begin by defining the slices output by our data slicer.

Definition 7. Let ϕ be a formula, x ∈ V , (D̄, τ̄ ) ∈ T, and S ⊆ D a slicing set.
The (ϕ, x, S)-slice of (D̄, τ̄) is the data slice (D̄′, τ̄ ′), where the relations are as
follows. For all r ∈R, i∈N, and ā∈Dι(r), it holds that ā∈ rD

′
i iff ā∈ rDi and

there is an atomic subformula of ϕ of the form r(t̄) such that for every j with
1≤j≤ ι(r), at least one of the following conditions is satisfied.
(D1) tj is the variable x and aj ∈ S.
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(D2) tj is a variable y different from x.

(D3) tj is a constant symbol c with cD̄ = aj.

Intuitively, the conditions (D1) to (D3) ensure that a slice contains the tuples
from the relations interpreting the predicate symbols that are sufficient to eval-
uate ϕ when x takes values from the slicing set. For this, it suffices to consider
only atomic subformulas of ϕ with a predicate symbol. Every item of a tuple
from the symbol’s interpretation must satisfy at least one of the conditions. If
the subformula includes the slicing variable, then only values from the slicing
set are relevant (D1). If it includes another variable, then all possible values are
relevant (D2). Finally, if it includes a constant symbol, then the interpretation
of the constant symbol is relevant (D3).

The following example illustrates Definition 7. It also demonstrates that the
choice of the slicing variable can influence how lean the slices are and how much
overhead the slicing causes in terms of duplicated log data. Ideally, each logged
action appears in at most one slice. However, this is not generally the case and
a logged action can appear in multiple slices. In the worst case, each slice ends
up being the original temporal structure.

Example 8. Let ϕ be the formula ssh login(c, s) → �[0,6) notify(reg server, s),
where c and s are variables and reg server is a constant symbol, which is in-
terpreted by the domain element 0 ∈ D, with D = N. The formula ϕ ex-
presses that a notification of the session identifier of an SSH login must be
sent to the registration server within 5 time units. Assume that at time point
0 the relations of D0 of the original temporal structure (D̄, τ̄ ) for the predicate
symbols ssh login and notify are ssh loginD0 = {(1, 1), (1, 2), (3, 3), (4, 4)} and
notifyD0 ={(0, 1), (0, 2), (0, 3), (0, 4)}.

We slice on the variable c. For the slicing set S = {1, 2}, the (ϕ, c, S)-slice

contains the structure D′
0 with ssh loginD′

0 = {(1, 1), (1, 2)} and notifyD′
0 =

{(0, 1), (0, 2), (0, 3), (0, 4)}. For the predicate symbol ssh login , only those tuples
are included where the first parameter takes values from the slicing set. This is
because the first parameter occurs as the slicing variable c in the formula. For
the predicate symbol notify , those tuples are included where the first parameter
is 0 because the constant symbol 0 occurs in the formula.

For the slicing set S′ = {3, 4}, the (ϕ, c, S′)-slice contains the structure D′′
0

with ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 1), (0, 2), (0, 3), (0, 4)}.
The tuples in the relation for the predicate symbol notify are duplicated in all
slices because the first element of the tuples, 0, occurs as a constant symbol in
the formula. The condition (D3) in Definition 7 is therefore always satisfied and
the tuple is included.

Next, we slice on the variable s instead of c. For the slicing set S, the (ϕ, s, S)-

slice contains the structure D′
0 with ssh loginD′

0 = {(1, 1), (1, 2)} and notifyD′
0 =

{(0, 1), (0, 2)}. For both of the predicate symbols ssh login and notify , only those
tuples are included where the second parameter takes values from the slicing set
S. This is because the second parameter occurs as the slicing variable s in the
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formula. For the slicing set S, the (ϕ, s, S′)-slice contains the structure D′′
0 with

ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 3), (0, 4)}.

According to Definition 9 and Theorem 10 below, a data slicer is a slicer that
splits a temporal structure into a family of (ϕ, x, S)-slices. Furthermore, it refines
the given restriction with respect to the given slicing sets.

Definition 9. Let ϕ be a formula, x ∈ V a variable, and (Sk)k∈K a family of
slicing sets. The data slicer dϕ,x,(Sk)k∈K

is the function that maps a temporal

structure (D̄, τ̄) ∈ T and a restriction R ∈ R to the family of temporal struc-
tures (D̄k, τ̄k)k∈K and the family of restrictions (Rk)k∈K , where (D̄k, τ̄k) is the
(ϕ, x, S′k)-slice of (D̄, τ̄), with S′k := Sk ∩ {v(x) | (v, t) ∈ R, for some t ∈ N},
and Rk = {(v, t) ∈ R | v(x) ∈ Sk}, for each k ∈ K.

Theorem 10. A data slicer dϕ,x,(Sk)k∈K
is a slicer for the formula ϕ if the

slicing variable x is not bound in ϕ and
⋃

k∈K Sk = D.

Slicing Time. Another possibility is to slice a temporal structure along its
temporal dimension. A time slice contains all the logged actions over a sufficiently
large time interval to determine the policy violations over a given time period.
We obtain this time interval from the formula’s temporal operators and their
intervals. Due to space limitations, we refer to the full version of the paper for the
details of how we produce the time slices, and the soundness and completeness
guarantees when monitoring these slices independently. Instead, we illustrate
time slicing by the following example.

Example 11. Recall the formula (P0 ) from Section 2. We can split a log into
time slices that are equivalent to the original log over 1-day periods. However,
to evaluate the formula over a 1-day period, each time slice must also include the
log entries of the next 24 hours. This is because the formula’s temporal operator

�[0,25) refers to SSH logout events up to 24 hours into the future from a time
point. Hence each time point would be monitored twice: once when checking
compliance for a specific day and also in the slice for checking compliance of the
previous day. If we split the log into time slices that are equivalent to the original
log over 1-week periods then 6/7 of the time points are monitored once and
1/7 are monitored twice. This longer period produces less monitoring overhead.
However, less parallelization is possible.

Filtering. Removing time points in which all the structures’ relations are
empty from a temporal structure can significantly speed up monitoring. Empty
relations can, for example, originate from the application of a data slicer. Fil-
tering empty time points is sound and complete for the formula (P0 ) from Sec-
tion 2. However, in general, this is not the case. For instance, for the formula
�∀x. p(x) → �[0,1) ¬q(x) the filtering of empty time points prior to monitoring
is not sound. We refer again to the paper’s full version for details, including the
identification of a fragment for which it is safe to filter empty time points.
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3.3 Parallel Implementation

Our slicing framework establishes the theoretical foundations for splitting logs
into parts that can be monitored independently in a sound and complete fash-
ion. We now explain how we exploit this in a concrete technical framework for
parallelizing computations, the MapReduce framework [12]. Using MapReduce,
we monitor a log corresponding to a temporal structure in three phases: map,
shuffle, and reduce.

In the map phase, the log is fragmented by MapReduce. For each log fragment,
we create a stream of log entries in a pointwise fashion. To this end, we implement
a collection of slicing functions realizing the slicers and the composition of slicers
within MapReduce. Each slicing function takes a single log entry (D, τ) as an
argument and returns (a) the structure D unmodified, (b) a structure D′ that
results from D by deleting actions (i.e., rD

′ ⊆ rD must hold for each r ∈ R), or
(c) the special symbol ⊥ indicating that the log entry shall be deleted. We also
associate a key with each log entry.

The shuffle phase reorganizes log entries into chunks, i.e., streams of key-
value pairs with matching keys and each value is a single log entry from the map
phase. Chunks can be viewed as slices in the sense of Definition 1. However, it
is important that the associated keys are chosen in the map phase in such a way
that the shuffle puts all log entries of one slice into the same chunk and that log
entries of different slices are put into different chunks.

In the reduce phase, we individually monitor each chunk produced during the
shuffle phase against the given policy and afterwards we combine the monitoring
results thereby yielding the set of all violations. Due to the one-to-one correspon-
dence between chunks and slices, Theorem 4 is applicable; hence no violations
are lost by monitoring the constructed chunks in this phase.

In each of the three phases, computations are parallelized by MapReduce. In
particular, the map and reduce phases comprise the parallel execution of multiple
instances of a map function and a reduce function, respectively. The full version
of the paper provides the details as well as pseudo code for the map, reduce, and
slicing functions. Note that the shuffle phase is built into MapReduce.

4 The Google Case Study

Scenario. We consider a setting with over 35,000 computers accessing sensitive
resources. These computers are used both within Google, connected directly to
the corporate network, and outside of Google, accessing Google’s network from
remote unsecured networks.

Google uses access-control mechanisms to minimize the risk of unauthorized
access to sensitive resources. In particular, computers must obtain time-limited
authentication tokens using a tool, which we call AUTH. Furthermore, the Se-
cure Shell protocol (SSH) is used to remotely login to servers. Additionally, to
minimize the risk of security exploits, computers must regularly update their
configuration and apply security patches according to a centrally managed con-
figuration. To do this, every computer regularly starts an update tool, which
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Table 1. Policy formalization

policy MFOTL formula

(P1 ) � ∀c.∀t. auth(c, t) → 1000 ≺ t

(P2 ) � ∀c.∀t. auth(c, t) → �[0,3d] �[0,0] upd success(c)

(P3 )

� ∀c.∀s. ssh login(c, s)∧(
�[1min,20min] net(c) ∧�[0,1d] �[0,0] net(c) → �[1min,20min] net(c)

) →
�[0,1d) �[0,0] ssh logout(c, s)

(P4 )
� ∀c.net(c) ∧ (

�[10min,20min] net(c)
) ∧ (

�[1d,2d] alive(c)
)∧

¬(
�[0,3d] �[0,0] upd success(c)

) → �[0,20min) �[0,0] upd connect(c)

(P5 )
� ∀c.upd connect(c) ∧ (

�[5min,20min] alive(c)
) →

�[0,30min) �[0,0] upd success(c) ∨ upd skip(c)

(P6 ) � ∀c.upd skip(c) → �[0,1d] �[0,0] upd success(c)

we call UPD, connects to a central server to download the latest centrally man-
aged configuration, and attempts to reconfigure and update itself. To prevent
over-loading the configuration server, if the computer has recently updated its
configuration then the update tool does not attempt to connect to the server.

Policies. The policies we consider specify restrictions on the authorization pro-
cess, SSH sessions, and the update process. All computers are intended to comply
with these policies. However, due to misconfiguration, server outages, hardware
failures, and the like, this is not always the case. The policies are as follows.
(P1 ) Entering credentials with the tool AUTH must take at least 1 second.

The motivation is that authentication with the tool AUTH should not be
automated. That is, the authentication credentials must be entered manually
and not by a script when executing the tool.

(P2 ) The tool AUTH may only be used if the computer has been updated to
the latest centrally-managed configuration within the last 3 days.

(P3 ) Long-running SSH sessions present a security risk. Therefore, they must
not last longer than 24 hours.

(P4 ) Each computer must be updated at least once every 3 days unless it is
turned off or not connected to the corporate network.

(P5 ) If a computer connects to the central configuration server and downloads
the new configuration, then it should successfully reconfigure itself within
the next 30 minutes.

(P6 ) If the tool UPD aborts the update process, claiming that the computer was
recently successfully updated, then this update must have occurred within
the last 24 hours.

Table 1 presents our formalization of these policies, where we use the predicate
symbols given in Table 2. We explain here the less obvious aspects of our formal-
ization. The variable c represents a computer, s represents an SSH session, and t
represents the time taken by a user to enter authentication credentials. In (P3 ),
we assume that if a computer is disconnected from the corporate network, then
the SSH session is closed. In (P4 ), because of the subformula �[1d,2d] alive(c), we
only consider computers that have recently been used. In particular, the subfor-
mula suppresses false positives stemming from newly installed computers, which
do not generate alive events prior to their installation. Similarly, we only require
an update of a computer if it is connected to the network for a given amount of
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Table 2. Predicate symbols and their interpretation

predicate symbol description

alive(c)
The computer c is running. This event is generated at least once every 20 minutes
when c is running but at most twice every 5 minutes.

net(c)
The computer c is connected to the corporate network. This event is generated at
least once every 20 minutes when c is connected to the corporate network but at
most once every 5 minutes.

auth(c, t)
The tool AUTH is invoked to obtain an authentication token on the computer c.
The second argument t indicates the time in milliseconds it took the user to enter
the authentication credentials.

upd start(c) The tool UPD started on the computer c.

upd connect(c)
The tool UPD on the computer c connected to the central server and downloaded
the latest configuration.

upd success(c) The tool UPD updated the configuration and applied patches on the computer c.

upd skip(c)
The tool UPD on the computer c terminated because it believes that the computer
was recently updated.

ssh login(c, s)
An SSH session with identifier s to the computer c was opened. We use the session
identifier s to match the login event with the corresponding logout event.

ssh logout(c, s) An SSH session with identifier s to the computer c was closed.

Table 3. Log statistics

event count
alive 16 B (15,912,852,267)
net 8 B (7,807,707,082)
auth 8M (7,926,789)
upd start 65M (65,458,956)
upd connect 46M (45,869,101)
upd success 32M (31,618,594)
upd skip 6M (5,960,195)
ssh login 1 B (1,114,022,780)
ssh logout 1 B (1,047,892,209)

Table 4. Monitor performance

policy runtime runtime memory
(overall) (per slice) (per slice)

median max cumulative median max
[hh:mm] [sec] [hh:mm] [days] [MB] [MB]

(P1) 2:04 169 0:46 21.4 6.1 6.1
(P2) 2:10 170 0:51 21.4 6.1 10.3
(P3) 11:56 170 10:40 22.7 7.1 510.2
(P4) 2:32 169 1:06 21.3 9.2 13.1
(P5) 2:28 168 1:01 21.3 6.1 6.1
(P6) 2:13 168 0:48 21.1 6.1 7.1

time. In (P5 ), since a computer can be turned off after downloading the latest
configuration but before modifying its local configuration, we only require a suc-
cessful update if the computer is still running 5 to 20 minutes after downloading
the new configuration.

Logs. The computers log entries describing their local system actions and upload
their logs to a log cluster. Approximately 1TB of log data is uploaded each day.
We restricted ourselves to log data that spans approximately two years. We
then processed the uploaded data to obtain a temporal structure consisting of
the events relevant for the policies considered. Since events occur concurrently,
we collapsed the temporal structure [8], that is, the structures at time points
with equal timestamps are merged into a single structure. By doing this, we
make the assumption that equally timestamped events happen simultaneously.
The size of the collapsed temporal structure is approximately 600MB per day on
average and 0.4TB for the two years, in a protocol buffers [16] format. It contains
approximately 77.2 million time points and 26 billion events, i.e., tuples in the
relations interpreting the predicate symbols. Table 3 presents a breakdown of
the numbers of the events in the temporal structure by predicate symbols.
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Slicing and Monitoring. For each policy, we used 1,000 computers for slic-
ing and monitoring. Here we used Google’s MapReduce framework [12] and the
MONPOLY tool [7]. We split the collapsed temporal structure into 10,000 slices
so that each computer processed 10 slices on average. The decision to use 10
times more slices than computers makes the individual map and reduce com-
putations small. This has the advantage that if the monitoring of a slice fails
and must be restarted, then less computation is wasted. Furthermore, for slicing
and monitoring, we used the formulas in Table 1 without universally quantify-
ing over the variables c, t, and s. The resulting formulas fall into the fragment
that the MONPOLY tool handles and our slicing techniques from Section 3 are
applicable, i.e., they are sound and complete.

We employed data slicing with respect to the variable c, which occurs in all
the atomic subformulas with a predicate symbol, and filtering of empty time
points. We did not slice by time. Our implementation generates the primary
keys of the key-value pairs emitted by a mapper from c’s interpretation in an
event. Concretely, we apply the MurmurHash [25] function to this value and take
the remainder after dividing it by 10,000 (the number of slices). The values of the
key-value pairs emitted by the implemented mappers are log entries consisting
of a single event and a timestamp. Slices are generated with respect to the
conjunction of all policies. Figure 1 depicts the distribution of the size of the
slices. Note that generating the slices for each policy individually would result in
smaller slices and thus simplify the monitoring process. Note too that although
we use the same set of slices for all policies, each policy was checked separately
and the slices were generated during this check.

Evaluation. Figure 1 shows the distribution of the sizes of the slices in the
format used as input for MONPOLY. On the y-axis is the percentage of slices
whose size is less than or equal to the value on the x-axis. The median size of
a slice is 61MB and 99% of the slices have a size of at most 135MB. There are
three slices with sizes over 1GB and the largest slice is 1.8GB. Recall that we
used the same slicing method for all policies. The sum of the sizes of all slices
(0.6TB) is larger than the size of the collapsed temporal structure (0.4TB). Since
we slice by the computer (variable c), the slices do not overlap. However, some
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overhead results from timestamps and predicate symbol names being replicated
in multiple slices. Moreover, we consider the sizes of the slices in the more verbose
text-based MONPOLY format than the protocol buffers format.

Table 4 shows the performance of our monitoring solution. The second col-
umn shows for each policy the time for the entire MapReduce job, including
both slicing and monitoring, that is, the time from starting the MapReduce job
until the monitor finished on the last slice and its output was collected by the
corresponding reducer. Except for (P3 ), the slicing and monitoring took up to
2 1
2 hours. Slicing and monitoring (P3 ) took almost 12 hours. Table 4 also gives

details about the monitoring of the individual slices. The overhead of the MapRe-
duce framework and time necessary for slicing is small; most resources are spent
on monitoring the slices. The cumulative running times roughly amount to the
time necessary to monitor all slices sequentially on a single computer.

We first discuss the time taken to monitor the individual slices and then the
memory used. For (P3 ), Figure 2 shows on the y-axis the percentage of slices
for which the monitoring time is within the limit on the lower x-axis. We do not
give the curves for the other policies as they are similar to (P3 ). The similarities
indicate that for most slices the monitoring time does not vary much across the
considered policies. 99% of the slices are monitored within 8.2 minutes each and
do not need more than 35 MB of memory.

(P3 ) required substantially more time to monitor than the other formulas due
to the nesting of temporal operators. This additional overhead is particularly
pronounced on large slices and results in waiting for a few large slices that take
substantially longer to monitor than the rest. There are several options to deal
with such slices. We can stop the monitor after a timeout and ignore the slices and
any policy violations involving them. Note that the monitoring of the other slices
and the validity of violations found on them would be unaffected. Alternatively,
we can split large slices into smaller ones, either prior to monitoring or after
a timeout when monitoring a large slice. For (P3 ), we can slice further by the
variable c and also by s . We can also slice by time.

Due to the sensitive nature of the logged data, we do not report here on
the policy violations. However, we remark that monitoring a large population
of computers and aggregating the violations found can be used to identify sys-
tematic policy violations and policy violations due to system misconfiguration.
An example of the former is not letting a computer update after the weekend
before using it to access sensitive resources on a Monday; cf. (P2 ). An example
of the latter is that the monitoring helped determine when the update process
was not operating as expected for certain types of computers during a specific
time period. This information can be useful for identifying seemingly unrelated
changes in the configuration of other components in the IT infrastructure.

Given the amount of logged data and the modest computational power (1,000
computers in a MapReduce cluster), the monitoring times are in general low,
and reasonable even for (P3 ). The presented monitoring solution allows us to
cope with even larger logs and to speed-up the monitoring process by deploying
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additional slicing mechanisms provided by our general framework and by using
additional computers in a MapReduce cluster.

5 Related Work

This work builds upon and extends the work by Basin et al. [7–9], where a single
monitor is used to check system compliance with respect to policies expressed
in metric first-order temporal logic. By parallelizing and distributing the moni-
toring process, we overcome a central limitation of this prior work and enable it
to scale to logging scenarios that are substantially larger than those previously
considered [8], namely, approximately 100 times larger in terms of the number
of events and 50 times larger in the data volume.

For different logic-based specification languages, various monitoring algo-
rithms exist, e.g., [5, 6, 10, 11, 13, 15, 17–19, 23, 24]. These algorithms have
been developed with different applications in mind, such as intrusion detec-
tion [23], program verification [5], and checking temporal integrity constraints
for databases [11]. In principle, these algorithms can also be used to check com-
pliance of IT systems, where a single centralized monitor observes the system
online or checks the system logs offline. However, none of these algorithms, in-
cluding the one of Basin et al. [9], would scale to IT system of realistic size due
to the lack of parallelization.

Similar to our work, Barre et al. [4] monitor parts of a log in parallel and inde-
pendently of other log parts with a MapReduce framework. While we split the log
into multiple slices and evaluate the entire formula on these slices in parallel, they
evaluate the given formula inmultiple iterations ofMapReduce. All subformulas of
the same depth are evaluated in the sameMapReduce job and the results are used
to evaluate subformulas of a lower depth during anotherMapReduce job. The eval-
uation of a subformula is performed in both the map and the reduce phase. While
the evaluation in the map phase is parallelized for different time points of the log,
the results of the map phase for a subformula for the whole log are collected and
processed by a single reducer. The reducer therefore becomes a bottleneck and
their approach’s scalability remains unclear. Furthermore, in their experiments
they used a log with fewer than five million entries and performed monitoring on
a single computer with respect to formulas of a propositional temporal logic, which
is limited in its ability to express realistic policies.

Roşu and Chen [22] present a generic monitoring algorithm for parametric
specifications. They group logged events into slices by their parameter instances,
one slice for each parameter value in case of a single parameter and one slice for
each combination of values when the specification has multiple parameters. The
slices are then processed by a monitoring algorithm unaware of parameters. In
contrast to our work, they do not provide a solution for parallelizing the mon-
itoring process; they provide an algorithmic solution to generate the slices on-
line. We note that the extension of the temporal logic LTL with parameterized
propositions, as considered by Roşu and Chen, is less expressive than a first-
order extension like MFOTL, used in our work. Roşu and Chen also report on
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experiments with logs containing up to 155 million entries, all monitored on a sin-
gle computer. This is orders of magnitude smaller than the log in our case study.

6 Conclusion

We presented a scalable solution for checking compliance of IT systems, where
behavior is monitored offline and checked against policies. To achieve scalability,
we parallelize monitoring, supported by a framework for slicing logs and an
algorithmic realization within the MapReduce framework.

MapReduce is particularly well suited for implementing parallel monitoring.
It allows us to efficiently reorganize huge logs into slices. It also allocates and dis-
tributes the computations for monitoring the slices, accounting for the available
computational resources, the location of the logged data, failures, etc. Finally, ad-
ditional computers can easily be added to speedup the monitoring process when
splitting the log into more slices, thereby increasing the degree of parallelization.

Our slicing framework allows logs to be sliced in multiple dimensions by com-
posing different slicing methods. As future work, we will evaluate different possi-
bilities of obtaining a larger number of smaller slices that are equally expensive
to monitor. We also plan to adapt our approach to check system compliance
online. In this regard, there are extensions and alternatives to the MapReduce
framework for online data processing, such as S4 [21] and STORM [20], which
can potentially be used to obtain a scalable online monitoring solution.
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Abstract. A problem with most runtime verification techniques is that
the monitoring specification formalisms are often complex. In this paper,
we propose an extension of live sequence charts (LSCs) which avoids this
problem. We extend the standard LSCs as proposed by Damm and Harel
by introducing the notion of “sufficient prechart”, and by adding con-
catenation and iteration of charts. With these extended LSCs, necessary
and sufficient conditions of certain statements can be intuitively speci-
fied. Moreover, similar as for message sequence charts, sequencing and
iteration allow to express multiple scenarios. We give a translation of
extended LSCs into linear temporal logic formulae, and develop online
monitoring algorithms for traces with respect to extended LSCs. We use
our algorithm to test a concrete example from the European Train Con-
trol System (ETCS) standard, and evaluate it on several benchmarks.
The results show the feasibility of our approach.

1 Introduction

Runtime verification [17,20] is a lightweight formal verification technique, where
a system’s behaviour is checked while the system is running. This technique
involves the use of amonitor, which is a device or a piece of software that observes
a behaviour of the system and checks the observations against a monitoring
specification. Such a monitoring specification consists of a set of correctness
properties formulated in some suitable formal language.

Although runtime verification techniques continue to grow more powerful,
their practical application in industry is hindered by the fact that most moni-
toring specification languages are quite complex. A runtime verification method
typically uses some form of temporal logic linear temporal logic (LTL) [22],
metric temporal logic [24], time propositional temporal logic (TPTL) [7] and
first-order temporal logic [2] to specify correctness properties. Although these
specification languages are expressive and technically sound for monitoring, most
software engineers are not familiar with them and need extensive training to use
them efficiently. Therefore, many runtime verification systems support also other
specification languages that are more understood by software engineers, such as
regular expressions [8] and context-free grammars [21]. Unfortunately, it is dif-
ficult to specify complex properties with multiple instances in these languages,
and they are not (yet) used in practice by system designers.
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Graphical languages such as message sequence charts (MSCs) and UML se-
quence diagrams (UML-SDs) are widely used in industry for system specifica-
tions. However, as semi-formal languages, the semantics of MSCs and UML-SDs
is not defined formally. One of the central questions in this context is: “does
an MSC (or a UML-SD) describe all possible executions, or does it describe a
set of sample executions of the system?” [3]. Since there does not seem to be
an agreement on this question, these languages are not suitable for specifying
monitoring correctness properties.

In this paper, we investigate the use of live sequence charts (LSCs) as proposed
by Damm and Harel [12] for monitoring specifications. The LSC language is
an extension of MSC. Using the notions of universal and existential chart, it
can express that a behaviour of a system is necessary or possible. A universal
chart specifies a necessary (i.e., required) behaviour of the system, whereas an
existential chart specifies a possible (i.e., allowed) behaviour. The LSC language
also introduces the notion of “temperature” of an element (i.e., hot and cold
elements) for distinguishing between mandatory (hot) elements and provisional
(cold) elements.

For monitoring, we focus on universal LSCs. A universal chart typically con-
sists of two components: a prechart and a main chart. The intended meaning is
that if the prechart is executed (i.e., the underlying system exhibits an execu-
tion which is specified by the prechart), then the main chart must be executed
afterwards. The standard definition thus interprets the prechart as a necessary
condition for the main chart.

However, for monitoring it is also important to be able to express sufficient con-
ditions of statements. For example, consider the statement IF a THEN b in some
programming language. It indicates that b is executed if a is true; otherwise,b is not
executed. This is not the same as the universal chart (prechart(a), mainchart(b)),
because here the main chart b can still be executed if a is not satisfied.

As a possible specification for this statement, it has been suggested in UML
2.0 to use the negation operator to denote the case of not-executing b. As we
show in this paper, sufficiency conditions of statements cannot be expressed by
a finite set of negation-free universal LSCs. Since the semantics of negative LSCs
is hard to define, we suggest an alternative way to specify this case. We extend
LSCs to eLSCs by introducing the notion of a “sufficient” prechart. In contrast,
we call the prechart of a standard universal chart a “necessary” prechart. With
this extension, one can easily and intuitively express situations as above.

Alur and Yannakakis have introduced MSC-graphs to express multiple sce-
narios [1]. For the same reason, we introduce concatenation and iteration into
the eLSC language. Since a universal chart consists of a prechart and a main
chart, we define four modes of concatenation. Consequently, iteration also has
four modes. In this paper, we study one mode: iteration defined on precharts.

We give a translation of eLSCs without iteration, that is, universal LSCs
with necessary and sufficient precharts and concatenations, into LTL formulae.
Checking whether a system run satisfies such an eLSC specification then becomes
the problem of checking an execution trace against some LTL formula.
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The language of an eLSC with iteration is not necessarily regular. Therefore,
an eLSC with iteration cannot be translated into an equivalent LTL formula.
Thus, we develop an explicit algorithm for checking arbitrary eLSC properties.

In order to demonstrate the feasibility of these algorithms, we give a concrete
example from the railway domain: We formulate properties of the RBC-RBC-
handover process in the European Train Control System (ETCS) standard with
our eLSC language. Then, we evaluate them with several benchmark traces and
give some remarks on the complexity.

Related Work

The MSC language and UML sequence diagrams are visual specification lan-
guages. They are widely used in industry. Alur et. al. study the model checking
problems of MSCs, MSC-graphs and Hierarchical MSC-graphs [1]. They show
that the complexity of model checking problems for MSCs and synchronous
MSC-graphs are coNP-complete, and for asynchronous MSC-graphs are unde-
cidable. Simmonds et. al. use UML-SD as the property specification language
to monitor Web Service Conversations [23]. Ciraci et. al. propose a technique to
check the correspondence between UML-SD models and implementations [9].

Damm et. al. defined the LSC language, which distinguishes between necessary
and possible behaviours of a system [12]. Harel et. al. propose a play-in/play-
out approach [14]. Behaviours of the system are captured by play-in; and the
system is tested by play-out through executing the LSC specification directly.
Bontemps et. al. prove that any LSC specification can be translated into LTL
formulae [6]. Kugler et. al. [18] develop a translation of LSCs into LTL formulae,
where the size of the resulting LTL formula is polynomial in the number of
events appearing in the LSCs. The expressive power and complexity of LSCs are
discussed in the survey [16]. Kumar et. al. extend the LSC language with Kleene
star, subcharts, and hierarchical charts [19]. They translate an extended LSC
based communication protocol specification into an automaton, and verify the
specification with the resulting automaton. Since all existing works are based on
the standard LSC language, they suffer from the same expressiveness problem
as addressed in this paper.

LSCs have been used to model a variety of systems, such as railway systems [4],
telecommunication systems [11], biological systems [13], and so on. The existing
papers essentially build models of systems with the LSC language, and focus
on model checking problems. To our knowledge, LSC based runtime verification
approaches have not been studied yet.

2 Extended Universal Live Sequence Charts

2.1 Universal Live Sequence Charts

A basic chart of an LSC is visually similar to an MSC. It specifies the exchange
of messages among a set of instances. Each instance is represented by a lifeline.
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When an LSC is executed, for each message in the chart two events occur: the
event of sending the message and the event of receiving it. The partial order of
events induced by a basic chart is as follows.

– an event at a higher position in a lifeline precedes an event at a lower position
in the same lifeline; and

– for each message m, the send-event of m precedes the receive-event of m.

Formally, basic charts can be defined as follows.
Let Σ be a finite alphabet of messages m, i.e., m ∈ Σ. An event e is a pair

e � (m, β) with β ∈ {s, r}, where (m, s) denotes the event of sending m, and
(m, r) denotes the event of receiving m. We denote the set (Σ × {s, r}) with
BΣ. A trace τ over BΣ is an element of BΣ∗. The length of τ is |τ |.

A lifeline l is a sequence of events l � (e1, e2, ..., en). A basic chart c is a set of
lifelines c � {l1, l2, ..., ln}, where each event (m,β) occurs at most once. Lifelines
in a basic chart are usually drawn as vertical dashed lines, and messages as solid
arrows between lifelines.

Now we present the trace semantics for basic charts. For a basic chart c, let
E (c) be the set of events appearing in c. The chart c induces a partial order
relation ≺ on E (c) as follows:

1. for any l � (e1, e2, ..., em) ∈ c and 1 ≤ j < m, it holds that ej ≺ ej+1; and
2. for any m ∈ Σ, if (m, s) and (m, r) ∈ E (c), then (m, s) ≺ (m, r).
3. ≺ is the smallest relation satisfying 1. and 2.

Let P(c) � {(e, e′) | e ≺ e′ with e, e′ ∈ E (c)}. A set of traces is defined by c
as follows:

Traces(c) � {(ex1, ex2, ..., exn) | {ex1, ex2, ..., exn} = E (c); n = |E (c)|; and for
all exi, exj ∈ E (c), if exi ≺ exj, then xi < xj}.

We call each σc ∈ (BΣ\E (c)) a stutter event of c. For each basic chart c, the
language L(c) is defined by L(c) � {(σ∗

c , e1, σ∗
c , e2, ..., σ∗

c , en, σ∗
c )}, where (e1

e2, ..., en) ∈ Traces(c) and each σ∗
c is a finite (or empty) sequence of stutter

events. A trace τ is admitted by a basic chart c (denoted by τ � c) if τ ∈ L(c).
A universal chart consists of two basic charts: a prechart (drawn with a sur-

rounding hashed hexagon) and a main chart (drawn within a solid rectangle).
It is formalized as a pair u � (p, m), where p is the prechart and m is the main
chart. Intuitively, a universal chart specifies all traces τ such that, if τ contains
a segment which is admitted by the prechart, then it must also contain a contin-
uation segment (directly following the first segment) which is admitted by the
main chart.

Given a universal chart u � (p,m), the stutter events of u are σu ∈ (BΣ\(E (p)∪
E (m)). The languages L(p) of the prechart and L(m) of the main chart are de-
fined with these stutter events as above.

For languages L and L′, let (L ◦ L′) be the concatenation of L and L′ (i.e.,
(L◦L′) � {(ττ ′) | τ ∈ L and τ ′ ∈ L′}); and L be the complement of L (i.e., for
any τ ∈ BΣ∗, it holds that τ ∈ L iff τ /∈ L). The semantics of universal charts
is defined as follows (see, e.g., [5]).
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Definition 1. Given a finite alphabet Σ, the language of a universal chart u �
(p,m) is

L(u) � BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗.

This formalizes the intuitive interpretation given above. An LSC specification
U is a finite set of universal charts. The language of U is L(U) �

⋂
u∈U

L(u).

2.2 Expressiveness of LSC Specifications

The standard definition of a universal chart interprets the prechart as a necessary
condition of the main chart, i.e., a system is allowed to adhere to any execution,
as long as it does not execute the prechart. This is not sufficient for specifying
some correctness properties. For instance, for two basic charts c and c′ we can
define the statement

CS = ( (c is executed) IF AND ONLY IF LATER (c′ is executed)),

to have the semantics

L(CS) �
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
∩

(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
.

However, this can not be expressed with LSC specifications:

Lemma 1. The language
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
cannot be defined by an

LSC specification.

Proof. See appendix.

2.3 Extended LSCs

One way to overcome the above expressiveness limitation is to introduce a nega-
tion operator into the LSC language. Unfortunately, the semantics of such a
negation operator can be tricky, see [15]. As an alternative, we extend universal
charts by introducing the notion of a “sufficient prechart” (drawn with a sur-
rounding solid hexagon). This is a prechart which is interpreted as a sufficient
condition for a main chart. In contrast, we label the original prechart of a uni-
versal chart as a “necessary prechart”. Formally, the syntax of extended LSCs
is as follows.

Definition 2. An eLSC is a tuple u � (p,m,Cond), where p and m are a
prechart and a main chart, and Cond ∈ {Nec, Suff } denotes if p is a neces-
sary or sufficient prechart.

For a chart u � (p,m,Nec), the language is as defined in Definition 1. The
language defined by a chart u � (p,m, Suff) is
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L(u) �
(
BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗

)
.

The above condition statement CS can then be specified by an LSC specifica-
tion {(c, c′,Nec), (c, c′, Suff)}. As an abbreviation, we introduce an “iff” prechart
(notated with a double dashed lines). An eLSC with an “iff” prechart is defined
as uiff � {(p,m,Nec), (p,m, Suff)}.

2.4 Concatenations of Universal LSCs

Concatenation of two eLSCs essentially introduces partial orders of executions
of the charts. This feature can be inherited by eLSC specifications.

First, we define the concatenation of basic charts c and c′, denoted with (c →
c′). Intuitively, a trace τ is in the language of (c → c′) iff it contains two segments
υ and υ′ such that υ precedes υ′ in τ , and υ (resp. υ′) is admitted by c (resp.
c′). Formally, the language of (c → c′) is given by the following clause.

L(c → c′) �
(
L(c) ∩ L(c′) ∩ L(c) ◦ L(c′)

)
.

Since a universal chart u consists of two basic charts p and m, there are four
possibilities to define the concatenation of universal charts u and u′: p → p′,
p → m′, m → p′ and m → m′.

For monitoring, we consider only two modes of concatenation in this paper:
prechart concatenation and main chart concatenation. The concatenation of two
universal charts u and u′ is defined to be a tuple δ � (u, u′,Mode), where Mode ∈
{preC ,mainC }. Formally, the semantics of the two concatenation modes is given
as follows.

Definition 3. Given two eLSCs u and u′, The language of the concatenation of
u and u′ is

L(δ) �
(
L(u) ∩ L(u′) ∩ BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
,

where c = p and c′ = p′, if Mode = preC; and
c = m and c′ = m′, if Mode = mainC.

It can be shown that the language of a concatenation (u, u′, preC ) (resp.
(u, u′,mainC )) is the same as the language of the eLSC specification {u, u′,
(p, p′, Suff)} (resp. {u, u′, (m,m′, Suff)}). Figure 1 illustrates the two concatena-
tion modes of eLSCs u1 and u2, where Fig. 1(a) presents a main chart concate-
nation and Fig. 1(b) presents a prechart concatenation. Fig. 1(c) and Fig. 1(d)
present the partial orders of events of these concatenations, respectively.

To specify a repeating execution (e.g., repeating responses to requests), an
iteration operator can be introduced. Such iteration operator can be directly
defined from the above concatenations; u+ � u ∪ (u → u) ∪ (u → u → u) ∪ ...
Since concatenations have different modes, iteration has different modes as well.

In this paper, we consider only iteration of necessary precharts. Intuitively, an
eLSC u+ specifies that if the prechart is executed n times, then the main chart
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must be executed at least n times, where the executions of the main chart can
be interleaved. For instance, given the eLSC u1 in Fig. 1, a trace (... s1, r1, s2,
s1, r2, r1, s2, r2,...) is admitted by u+1 ; whereas traces (... s1, s1, r1, s2, r2, r1,
s2, r2,...) and (... s1, r1, s2, r2, s1, r1) are not admitted by u+1 .

(a) Mainchart Concatenation (b) Prechart Concatenation

(c) Partial orders induced by
the mainchart concatenation.

(d) Partial orders induced by the prechart con-
catenaiton.

Fig. 1. Example: a prechart concatenation and a mainchart concatenation

3 A Translation of eLSCs into LTL Formulae

3.1 Preliminaries

We now show how to translate extended LSCs into linear temporal logic formulae
for online monitoring.

Definition 4. Given the finite alphabet Σ of messages, the formulae ϕ of LTL
are inductively formed according to the following grammar, where, m ∈ Σ and
β ∈ {s, r}:

ϕ ::= ⊥ | (m, β) | (ϕ1 ⇒ ϕ2) | (ϕ1 U ϕ2) | X ϕ.

In addition, we use the following shorthand: ¬ϕ stands for (ϕ ⇒ ⊥), 	 stands
for ¬⊥, F ϕ stands for (	 U ϕ), G ϕ stands for ¬F ¬ϕ and ϕ1 W ϕ2 stands
for ¬ (¬ϕ2 U ¬ (ϕ1 ∨ ϕ2)). Given an event e � (m,β), we define Mess(e) � m
and Beh(e) � β. We define LTL on finite traces as follows.

Definition 5. Let τ � (e1, e2, ..., en) ∈ BΣ∗ with 1 ≤ i ≤ n being a position of
τ . The semantics for LTL is defined inductively as follows:
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(τ, i) � ⊥;
(τ, i) |= (m, β) iff m = Mess(ei) and β = Beh(ei);
(τ, i) |= (ϕ1 ⇒ ϕ2) iff (τ, i) |= ϕ1 implies (τ, i) |= ϕ2;
(τ, i) |= (ϕ1 U ϕ2) iff there exists i ≤ j ≤ |τ | with (τ, j) |= ϕ2,

and for all i ≤ j′ < j it holds that (τ, j′) |= ϕ1;
(τ, i) |= X ϕ iff i = |τ | or (τ , i+ 1) |= ϕ.

As usual, τ |= ϕ iff (τ, 1) |= ϕ. Note that the logic is defined on events, and
will be used for monitoring sequences of events.

3.2 Translation of Universal Charts

In this section, we show how to translate a universal chart into an LTL formula
to check whether a trace is admitted. We follow the approach of Kugler et al.
[18]. From a basic chart c, we define the LTL formula ξc � ψc ∧ γc ∧ yc, where

ψc �
∧

(e, e′)∈P(c)

(¬e′ W e)

γc �
∧

e∈E (c)

(¬e W (e ∧ X G ¬e))

yc �
∧

e∈E (c)

F e

The formula ψc specifies that e′ cannot occur before e in a trace with e ≺ e′.
It does not specify e must occur at some point. The formula γc specifies that
each e can only occur at most one time in a trace. The formula yc specifies that
every event appearing in the chart will eventually occur in a trace.

With these formulae, we can then obtain LTL formulae from eLSCs with
necessary and sufficient precharts. From an eLSC u � (p, m, Cond), we define
the following formulae.

ξp � ψp ∧ γp ∧ yp, and ξm � ψm ∧ γm ∧ ym,
χ �

∧
e′∈E (p)

((
∧

e∈E (m)

(¬e)) W e′)

ϕ(u) � ((ξp ∧ χ) ⇒ ξm) if Cond = Nec; and
ϕ(u) � (¬(ξp ∧ χ) ⇒ ¬ξm) if Cond = Suff.
The formula χ specifies that events appearing in the main chart cannot occur

until all events appearing in the prechart have occurred in a trace. In can be
shown that the formula ϕ(u) defines the language of u.

Lemma 2. A trace is admitted by a universal chart u if and only if it satisfies
ϕ(u): τ � u iff τ |= ϕ(u).

Proof. Follows from the definitions. Omitted in this version of the paper.

With this translation of LSCs into LTL formulae, a system can be monitored
by standard methods, e.g., formula rewriting. The size of the formula ϕ(u) is
polynomial in the number of events appearing in u. Therefore, the resulting LTL
formula will not explode when dealing with large eLSC specifications.

As remarked above, a concatenation δ = (u, u′,Mode) of eLSCs can be ex-
pressed by a set of single eLSCs. This can be translated into an equivalent
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conjunction of LTL formulae as above. Thus, concatenation does not pose any
additional difficulties for monitoring.

4 An Algorithm for Checking eLSCs with Iteration

The language defined by an eLSC with iteration is incomparable with LTL. Even
eLSCs cannot express the temporal “next” operator. Similar with asynchronous
concatenations of MSCs, the language of an eLSC with iterated precharts is not
necessary regular. Therefore, for an eLSC u+, in general there is no equivalent
LTL formula, and the above approach to monitoring cannot be applied. For
this reason, we develop an explicit algorithm for checking traces against eLSCs
with prechart iterations. In the algorithm, a trace is checked against an eLSC
specification u+ in two steps.

1. The trace is decomposed into a set of sub-traces and a remainder sequence
according to the events appearing in p and m. Every event is unique in each
sub-trace.

2. It is checked whether all sub-traces are admitted by the corresponding basic
charts p and m, and whether the begin point and the end point of each
sub-trace respect the partial order implied by u+.

4.1 Decomposing Traces

A trace is decomposed by two operations � and �. The operation � generates a
sub-trace τs from a trace τ according to a set of events E. In the resulting τs,
each event in E occurs at most once. The order of events in τs is the same as in
the original trace. The operation � generates the “complement” sub-trace of τs.
These operations are formally defined as follows.

Given a trace τ � (e1, ..., en) and a formula ϕ, we define κ(τ , ϕ) to be the
smallest i such that (e1, ...ei) |= ϕ (and κ(τ , ϕ) = 0 if there is no such i). For a
set of events E = {x1, ..., xm}, we define a sequence of points K(τ, E) � (k1, ...,
km) with 1 ≤ k1 ≤ ... ≤ km ≤ |τ | by {k1, ..., km} = {κ(τ, Fx1), ..., κ(τ, Fxm)}.
Let E (τ) be the set of events appearing in τ and let ε be the empty trace. The
operations � and � are defined as follows.

�: BΣ∗ × 2BΣ �→ BΣ∗ such that
τ � E � (e[k1], ..., e[k|E|]) with (k1, ..., k|E|) = K(τ , E) if E ⊆ E (τ);

τ � E � ε if E � E (τ).
�: BΣ∗ × 2BΣ �→ BΣ∗ such that

τ � E � (e[1], ..., e[k1 − 1], e[k1 + 1], ..., e[k|E| − 1], e[k|E| + 1], ..., e[n]) if
τ � E �= ε;
τ � E � τ if τ � E = ε.

Given a trace τ and a basic chart c, we define a tuple Div(τ, c) � (τs,Pos
I ,

PosF ), where PosI is the index of the initial point of τs, and PosF is the index
of the final point of τs. Formally, Div(τ, c) is defined as follows.
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– τs � (τ � E (c)), PosI �
∨

e∈E (c)

Fe, PosF �
∧

e∈E (c)

Fe, if E (c) ⊆ E (τ);

– τs � τ and PosI = PosF = 0, otherwise.

Algorithm 1. divide a trace according to a basic chart

Try typing ¡return¿ to proceed.If that doesn’t work, type X ¡return¿ to quit.
procedure TraceDiv(trace τ , basic chart c) =
while (τ � E (c)) �= τ do

τs ← (τ � E (c));
PosI ← κ(τ ,

∨
e∈E (c)

Fe);

PosF ← κ(τ ,
∧

e∈E (c)

Fe);

DivSet← DivSet.add (τs, PosI , PosF ); //add the resulting tuple into the set DivSet
τ ← (τ � E (c));

end
return DivSet

Next, we define a set DivSet(τ , c) � {(τs1, PosI1, PosF1 ), ..., (τsn, PosIn, PosFn )},
where

(τs1,Pos
I
1,Pos

F
1 ) � Div(τ, c);

(τsi,Pos
I
i ,Pos

F
i ) � Div((τi−1 � c), c) for 1 < i ≤ n; and

(τs(n+1) � E (c)) = ε.
For a universal chart, we define two such sets DivSet(τ, p) and DivSet(τ,m).

The calculation of these set can be done with Algorithm 1 above.

4.2 Checking Sub-traces

With the above decomposition, we can then check whether τ is admitted by
u+. An eLSC with iteration specifies repeated execution of a chart. A trace τ is
admitted by u+ if and only if

– τ is able to be decomposed into a number of sub-traces, each of which is
admitted by u; and

– the order of execution of the prechart is respected.

According to the above rules, we develop algorithms for checking whether
τ � u+, where Alg. 2 (resp. Alg. 3) checks the prechart (resp. the main chart)
of u. The two sub-algorithms return PRes and MRes as the checking result. The
satisfaction of τ against u+ is (PRes ∧ MRes) Let F be a formula, we define
an interpretation operation [[F ]] that maps F to a boolean value. For a trace
τ and an LTL formula ϕ, we say [[τ |= ϕ]] � true if τ is satisfied by ϕ; and
[[τ |= ϕ]] � false if τ is violated by ϕ. The algorithm for checking traces against
LTL formulae is developed according to an effective rewriting algorithm proposed
by Havelund [17].



58 M. Chai and B.-H. Schlingloff

Algorithm 2. Checking the prechart of u+

Try typing ¡return¿ to proceed.If that doesn’t work, type X ¡return¿ to quit.
input : A trace τ and an eLSC u � (m, p,Cond)
output: whether τ is admitted by u+

PRes ← true; // initialize the checking result
p ← |DivSet(τ, p)|; // the number of executions of the prechart
for i← 1 to p do

// check whether each execution of the prechart is correct
PRes ← (PRes ∧ [[τsi |= ψp]]);
// check the partial order of the prechart’s executions
PRes ← (PRes ∧ [[PosFi < PosIi+1]]);
/* if the prechart is a necessary prechart, then there is an execution of the main
chart after each execution of the prechart */
if Cond == Nec then

PRes ← (PRes ∧ [[m ≥ p]]);
if ∃(τs, PosI , PosF ) ∈ DivSet(τ , m) s.t. PosI > PosFi then

PRes ← PRes ∧ true;
else

PRes ← false;
end

end

end
return PRes

5 Case Study: The RBC/RBC Handover Process

In this section, we present a concrete example from the European Train Control
System (ETCS). In the ETCS level 2, the radio block center (RBC) is responsible
for providing movement authorities to allow the safe movement of trains. A
route is divided into several RBC supervision areas. When a train approaches
the border of an RBC supervision area, an RBC/RBC handover process takes
place. The current RBC is called the handing over RBC (HOVRBC), whereas
the adjacent RBC is called the accepting RBC (ACCRBC)1.

The RBC/RBC handover process is performed via exchanging a sequence of
messages between the two RBCs. These messages are called NRBC messages,
including “Pre-Announcement” (preAnn), “Route Related Information Request”
(RRIReq), “Route Related Information” (RRI) and “Acknowledgement” (Ackn).
The NRBC messages are exchanged via an open communication system GSM-R.

The safety standard EN50159 identifies the following threats to an open trans-
mission system: corruption, masquerading, repetition, deletion, insertion, rese-
quencing and delay. A safety protocol is added between the application layer
and the transport layer for providing safe communication between RBCs. The

1 Further details of this case study are provided in
http://www2.informatik.hu-berlin.de/ hs/Publikationen/2014 RV

Ming-Schlingloff ETCS-Case-study(description-of-RBCRBC-handover)
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safety protocol provides protection against threats related to corruption and
masquerading, other threats are covered elsewhere.

We use eLSC based monitors to protect against threats related to temporal
relations of messages, i.e., repetition, deletion, insertion and resequencing. In
this paper, we specify the following two properties with the eLSC language.

1. For a successful RBC/RBC handover process, if the train reaches the bor-
der of two RBC areas, the NRBC messages should be correctly exchanged
between the two RBCs (see Fig. 2(a)).

2. The NRBC messages can only be exchanged after the two RBCs establish a
safe connection (see Fig. 2(b)).

For property 1, the message preAnn is exchanged in sequence if and only if
after the HOVRBC detects the handover condition. We specify the handover
condition by an “HOV cond” message. Therefore, the eLSC preHOV is with an
“iff” prechart, which consists of the receiving event of the message HOV cond.
If HOVRBC sends an RRIReq message to ACCRBC, ACCRBC sends an RRI
message to HOVRBC. HOVRBC sends an Ackn message to ACCRBC after
receiving the RRI message. In fact, the accepting RBC is allowed to send an
RRI without an RRI request when there is new route information. Hence, the
second eLSC in Fig. 2(a) (eLSC ExdEoA) is with a necessary prechart. Since
the HOVRBC can ask for new route information iteratively, the eLSC is with
an iteration.

Algorithm 3. Checking the main chart of u+

input : A trace τ and an eLSC u � (m, p,Cond)
output: whether τ is admitted by u+

MRes ← true; // initialize the checking result
m ← |DivSet(τ,m)|; // the number of executions of the main chart
for j ← 1 to m do

MRes ← (MRes ∧ [[τsj |= ψm]]; // check each execution of the main chart
/* If u is with a sufficient prechart, then there is an execution of the prechart before
each execution of the main chart. */
if Cond == Suff then

MRes ← (MRes ∧ [[m ≤ p]]);
if ∃(τs, PosI , PosF ) ∈ DivSet(τ , p) s.t. PosF < PosIi then

MRes ← MRes ∧ true;
else

MRes ← false;
end

end

end
return MRes
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LSC preHOV

preAnn

HOV cond

LSC ExdEoA

RRI

RRIReq

Ackn

+

HOVRBC ACCRBC HOVRBC ACCRBC

(a) The eLSC for Pro. 1 (b) The eLSC for Pro. 2

Fig. 2. Example: the RBC/RBC handover process

According to the requirements of ETCS, the messages RRIReq and RRI are
allowed to be exchanged after HOVRBC receives the “preAnn” message. Thus,
the eLSC ExdEoA in Fig. 2(a) cannot be executed before preHOV. The double
arrow between eLSCs preHOV and ExdEoA in Fig. 2(a) denotes {(m,m′, Suff),
(m, p′, Suff)} for u = preHOV and u′ = ExdEoA.

For property 2, the safe connection is established after HOVRBC receives a
“safe connection confirm” (Sa-CONN.conf) message. As an example, we consider
the message preANN: it cannot be transmitted before HOVRBC receives Sa-
CONN.conf. This property is specified by an eLSC with a sufficient prechart,
which consists of a receiving event of SaCONN.conf (see Fig. 2(b)).

As an example observation from the log file of RBCs (according to the speci-
fication SUBSET-039), we used the trace shown in Fig. 3(a).

(a) A trace example
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(b) Monitoring efficiency

Fig. 3. Evaulation results in Maude

To prove that the concept of eLSC based monitoring is feasible, we built
a prototypical implementation of our algorithms. We translate eLSCs without
iteration into LTL formulae, and implement the LTL model checking algorithm
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in Maude, see [17] and [7]. This is a high performance rewriting environment,
which is able to execute millions of rewrites per second [10].

We checked the example trace with our prototypical implementation. The re-
sults show that it satisfies the two properties. In addition, we built some more
traces by injecting errors, such as adding/removing events, and exchanging the
occurrence order of events. The results show that the monitor can detect repe-
tition, deletion, insertion and resequencing errors.

For our LTL translation, since the size of the formula is polynomial in the size
of the eLSC, the monitoring complexity is the same as the complexity of LTL
model checking. Thus, given an eLSC specification and a trace, the complexity
of monitoring is linear in the length of the trace, and (worst-case) exponential in
the number of events appearing in the eLSC. We repeated similar experiments
several times with different traces. The checking efficiency is shown in Fig. 3(b).
In this diagram, ϕ1 and ϕ2 are the resulting LTL formulae of property 1 and
property 2, respectively. The difference in checking efficiency is caused by the
sizes of the two formulae: ϕ1 consists of approx. 630 sub-formulae, whereas ϕ2 has
only approx. 130 sub-formulae. The experimental results show that our approach
is capable to detect failures in the executions of a system.

6 Conclusion and Discussion

In this paper, we have proposed a monitoring approach on basis of eLSC spec-
ifications. We introduced the notion of a sufficient prechart for specifying suffi-
ciency conditions in correctness properties. Then we defined concatenation and
iteration of LSCs. We have shown how to translate eLSCs without iteration into
LTL formulae. A system can then be monitored by formula rewriting. For the full
language, we developed an explicit monitoring algorithm. Finally, we presented
a case study with a concrete example from the railway domain. The results show
the feasibility of our implementation.

There are several interesting topics for future work. Firstly, the implemen-
tation reported in this paper was done as a proof-of-concept, showing that the
approach of eLSC based monitoring is feasible. Since the sizes of resulting for-
mulae are often large, translating eLSC into LTL formulae is not an efficient
way for monitoring. In addition, to maintain monitors in deployed systems, one
would not want to employ full Maude. Therefore, we are currently developing a
more efficient implementation, which can check eLSC specifications directly.

Secondly, in this paper we only considered a subset of the original LSC lan-
guage, excluding conditions and “cold” elements, where additionally all messages
had to be unique. Even though we do not think that the full LSC language poses
additional fundamental problems, this needs to be worked out. Moreover, the
LSC language has been extended with timing constructs for specifying real-time
properties. We want to investigate the translation of eLSCs with such timing
constructs into TPTL formulae for monitoring purposes.

Last but not least, it remains open to define an automaton concept which has
exactly the same expressiveness as our eLSCs.
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A Proof of Lemma 1

Lemma 1. The language
(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
cannot be defined by an

LSC specification.

Proof. A universal chart u � (p, m) defines the language L(u) �(
BΣ∗ ◦ L(p) ◦ L(m) ◦ BΣ∗

)
[5]. The language defined by an LSC specification

U � {u1, u2, ..., un} with ui � (pi,mi) isX �
⋂

1≤i≤n

(
BΣ∗ ◦ L(pi) ◦ L(mi) ◦ BΣ∗

)
.

We only consider the segments S �
⋂

1≤i≤n

(
L(pi) ◦ L(mi)

)
, where every word in

X contains a segment in S. The complement of S is S �
⋃

1≤i≤n

(
L(pi) ◦ L(mi)

)
.

Every word in S contains a prefix υ ∈
⋃

1≤i≤n

L(pi). For the segment S′ �(
L(c) ◦ L(c′)

)
of Y �

(
BΣ∗ ◦ L(c) ◦ L(c′) ◦ BΣ∗

)
, a word in S′ contains a seg-

ment υ′ ∈ L(pi). The language of a basic chart c is defined by stutter events and
a finite set Traces(c). Therefore, the language of c is defined by stutter events
and a set (BΣ∗\Traces(c)), which is an infinite set. Whereas, the set

⋃
1≤i≤n

L(pi)

is finite with n < ∞. Therefore, there exists some υ′ that is not expressed by S.
In other words, there are some segments of words in S′ that are not expressed
by S. Since i) X consists of S and BΣ∗; ii) Y consists of S′ and BΣ∗; and iii)
S′ cannote be expressed by S, the language Y cannot be epxressed by X . �
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Abstract. Stream runtime verification (SRV), pioneered by the tool
LOLA, is a declarative approach to specify synchronous monitors. In
SRV, monitors are described by specifying dependencies between output
streams of values and input streams of values. The declarative nature of
SRV enables a separation between (1) the evaluation algorithms, and (2)
the monitor storage and its individual updates. This separation allows
SRV to be lifted from conventional failure monitors into richer domains
to collect statistics of traces. Moreover, SRV allows to easily identify
specifications that can be efficiently monitored online, and to generate
efficient schedules for offline monitors.

In spite of these attractive features, many important theoretical prob-
lems about SRV are still open. In this paper, we address complexity, ex-
pressiveness, succinctness, and closure issues for the subclass of Boolean
SRV (BSRV) specifications. Additionally, we show that for this subclass,
offline monitoring can be performed with only two passes (one forward
and one backward) over the input trace in spite of the alternation of past
and future references in the BSRV specification.

1 Introduction

Runtime verification (RV) has emerged in the last decades as an applied formal
technique for software reliability. In RV, a specification, expressing correctness
requirements, is automatically translated into a monitor. Such a monitor is then
used to check either the current execution of a running system, or a finite set of
recorded executions with respect to the given specification. The former scenario
is called online monitoring, while the latter one is called offline monitoring.
Online monitoring is used to detect and possibly handle (e.g., by the execution
of additional repair code) violations of the specification when the system is in
operation. On the other hand, offline monitoring is used in post-mortem analysis
and it is convenient for testing large systems before deployment. Unlike static
verification (such as model-checking) which formally checks that all the (infinite)
executions or traces of a system satisfy the specification, RV only considers a
single finite trace. Thus, this methodology sacrifices completeness guarantees to
obtain an immediately applicable and formal extension of testing. See [17,14] for
modern surveys on runtime verification.
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StreamRuntimeVerification. The first specification formalisms proposed for
runtime verification were based on specification languages for static verification,
typically LTL [18] or past LTL adapted for finite paths [15,9,5]. Other formalisms
for expressing monitors include regular expressions [23], rule based specifications
as proposed in the logic Eagle [1], or rewriting [22]. Stream runtime verification
(SRV), first proposed in the tool LOLA [8], is an alternative to define monitors for
synchronous systems. InSRV, specifications declare explicitly the dependencies be-
tween input streams of values (representing the observable behavior of the system)
and output streams of values (describing error reports and diagnosis information).
These dependencies can relate the current value of an output stream with the val-
ues of the same or other streams in the presentmoment, in past instants (like in past
temporal formulas) or in future instants. A similar approach to describe temporal
relations as streams was later introduced as temporal testers [21].

Stream runtime verification offers two advantages to the description of moni-
tors. First, SRV separates the algorithmic aspects of the runtime evaluation (by
explicitly declaring the data dependencies) from the specific individual opera-
tions performed at each step (which depend on the type of data being observed,
manipulated and stored). In this manner, well-known evaluation algorithms for
monitoring Boolean observations – for example those from temporal logics – can
be generalized to richer data domains, producing monitors that collect statistics
about traces. Similarly to the Boolean case, the first approaches for collecting
statistics from running traces were based on extensions of LTL [10]. SRV can
be viewed as a generalization of these approaches to streams. Other modern
approaches to the runtime verification for statistic collection extend first-order
LTL [4,2,3]. Moreover, the declarative nature of SRV allows to identify spec-
ifications that are amenable for efficient online monitoring, essentially those
specifications whose values can be resolved by past and present observations.
Additionally, the analysis of dependencies also allows to generate efficient offline
monitors by scheduling passes over the dumped traces, where the number of
passes (back and forth) depends on the number of alternations between past
and future references in the specification.

SRV can be seen as a variation of synchronous languages [7] – like Esterel [6],
Lustre [13] or Signal [11] – specifically designed for observing traces of systems,
removing the causality assumption. In synchronous languages, stream values
can only depend on past or present values, while in SRV a dependency on future
values is additionally allowed to describe future temporal observations. In recent
years, SRV has also been extended to real-time systems [20,12].

When used for synthesizing monitors, SRV specifications need to be well-
defined : for every input there is a unique corresponding output stream. How-
ever, as with many synchronous languages, the declarative style of SRV allows
specifications that are not well-defined: for some observations, either there is
no possible output (over-definedness) or there is more than one output (under-
definedness). This anomaly is caused by circular dependencies, and in [8], a
syntactical constraint called well-formedness is introduced in order to ensure
the absence of circular dependencies, and guarantee well-definedness.
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Our Contribution. In spite of its applicability, several foundational theoret-
ical problems of SRV have not been studied so far. In this paper, we address
complexity, expressiveness, succinctness, and closure properties for Boolean SRV
(BSRV). Our results can be summarized as follows:
– we establish the complexity of checking whether a specification is under-

defined, over-defined or well-defined. Apart from the theoretical significance
of these results, many important practical properties of specifications (like
semantic equivalence, implication and redundancy) can be reduced to the
decision problems above.

– BSRV specifications can be naturally interpreted as language recognizers,
where one selects the inputs for which the specification admits some output.
We prove that in this setting, BSRV captures precisely the class of regular
languages. We also show efficient closure constructions for many language
operations. Additionally, BSRV specifications can be exponentially more suc-
cinct than nondeterministic finite-state automata (NFA).

– Finally, based on the construction of the NFA associated with a well-defined
BSRV specification, we show how to schedule an offline algorithm with only
two passes, one forward and one backward. This gives a partial answer (for
the Boolean case) to the open problem of reducing the number of passes in
offline monitoring for well-formed SRV specifications [8].

The rest of the paper is structured as follows. Section 2 revisits SRV. In
Section 3 we establish expressiveness, succinctness, and closure results for BSRV
specifications when interpreted as language recognizers. In Section 4, we describe
the two-pass offline monitoring algorithm. Section 5 is devoted to the decision
problems for BSRV specifications. Finally, Section 6 concludes. Due to lack of
space, some proofs are omitted and are included in the longer version of this
document1.

2 Stream Runtime Verification (SRV)

In this Section, we recall the SRV framework [8]. We focus on SRV specifications
over stream variables of the same type (with emphasis on the Boolean type).

A type T is a tuple T = 〈D,F〉 consisting of a countable value domain D
and a finite collection F of interpreted function symbols f , where f denotes a
computable function from Dk to D and k ≥ 0 is the specific arity of f . Note
that 0-ary function symbols (constants) are associated with individual values.
In particular, we consider the Boolean type, where D = {0, 1} and F consists of
the Boolean operators ∧ and ∨ and ¬. A stream of type T is a non-empty finite
word w over the domain D of T. Given such a stream w, |w| is the length of w
and for all 1 ≤ i ≤ |w|, w(i) is the ith letter of w (the value of the stream at
time step i). The stream w is uniform if there is d ∈ D such that w is in d∗.

For a finite set Z of (stream) variables, a stream valuation of type T over Z is
a mapping σ assigning to each variable z ∈ Z, a stream σ(z) of type T such that

1 The longer version can be obtained at http://software.imdea.org/~cesar/

http://software.imdea.org/~cesar/
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the streams associated with the different variables in Z have the same length N
for some N ≥ 1. We also say that N is the length of σ, which is denoted by |σ|.

Remark 1. Note that for the Boolean type, a stream valuation σ over Z can
be identified with the non-empty word over 2Z of length |σ| whose ith symbol,
written σ(i), is the set of variables z ∈ Z such that σ(z)(i) = 1.

Stream Expressions. Given a finite set Z of variables, the set of stream ex-
pressions E of type T over Z is inductively defined by the following syntax:

E := τ
∣∣ τ [�|c]

∣∣ f(E1, . . . ,Ek)

where τ is either a constant of type T or a variable in Z, � is a non-null integer,
c is a constant of type T, and f ∈ F is a function of type T and arity k > 0.
Informally, τ [�|c] refers to the value of τ offset � positions from the current
position, and the constant c is the default value of type T assigned to positions
from which the offset is after the end or before the beginning of the stream.
Stream expressions E of type T over Z are interpreted over stream valuations
σ of type T over Z. The valuation of E with respect to σ, written [[E, σ]], is the
stream of type T and length |σ| inductively defined as follows for all 1 ≤ i ≤ |σ|:

– [[c, σ]](i) = c and [[z, σ]](i) = σ(z)(i) for all z ∈ Z

– [[τ [�|c], σ]](i) =
{
[[τ, σ]](i + �) if 1 ≤ i + � ≤ |σ|
c otherwise

– [[f(E1, . . . ,Ek), σ]](i) = f([[E1, σ]](i), . . . , [[Ek, σ]](i))

For the Boolean type, we use some shortcuts: E1 → E2 stands for ¬E1 ∨ E2,
E1 ↔ E2 stands for (E1 → E2) ∧ (E2 → E1), and if E then E1 else E2 stands for
(E ∧ E1) ∨ (¬E ∧ E2). Additionally, we use first and last for the Boolean stream
expressions 0[−1|1] and 0[+1|1], respectively. Note that for a Boolean stream,
first is 1 precisely at the first position, and last is 1 precisely at the last position.

Example 1. Consider the following Boolean stream expression E over Z = {x}:

E := if x then x else x[1|0]

For every Boolean stream valuation σ over Z such that σ(Z) ∈ (01)+, the valu-
ation of E with respect to σ is the uniform Boolean stream 1|σ|.

Stream Runtime Verification Specification Language (SRV). Given a
finite set X of input variables and a set Y = {y1, . . . , yn} of output variables
with X ∩ Y = ∅, an SRV ϕ of type T over X and Y is a set of equations

ϕ := {y1 = E1, . . . , yn = En}

where E1, . . . ,En are stream expressions of type T over X ∪ Y . Note that there
is exactly one equation for each output variable. A stream valuation of ϕ is a
stream valuation of type T over X ∪ Y , while an input (resp., output) of ϕ is a
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stream valuation of type T over X (resp., Y ). Given an input σX of ϕ and an
output σY of ϕ such that σX and σY have the same length, σX ∪ σY denotes
the stream valuation of ϕ defined in the obvious way. The SRV ϕ describes a
relation, written [[ϕ]], between inputs σX of ϕ and outputs σY of ϕ, defined as
follows: (σX , σY ) ∈ [[ϕ]] iff |σX | = |σY | and for each equation yj = Ej of ϕ,

[[yj , σ]] = [[Ej, σ]] where σ = σX ∪ σY

If (σX , σY ) ∈ [[ϕ]], we say that the stream valuation σX ∪σY is a valuation model
of ϕ (associated with the input σX). Note that in general, for a given input σX ,
there may be zero, one, or multiple valuation models associated with σX . This
leads to the following notions for an SRV ϕ:

– Under-definedness: for some input σX , there are at least two distinct valua-
tion models of ϕ associated with σX .

– Over-definedness: for some input σX , there is no valuation model of ϕ asso-
ciated with σX .

– Well-definedness: for each input σX , there is exactly one valuation model of
ϕ associated with σX .

Note that an SRV ϕ may be both under-defined and over-defined, and ϕ is
well-defined iff it is neither under-defined nor over-defined. For runtime verifi-
cation, SRV serves as a query language on program behaviors (input streams)
from which one computes a unique answer (the output streams). In this con-
text, a specification is useful only if it is well-defined. However, in practice, it is
convenient to distinguish intermediate output variables from observable output
variables separating output streams that are of interest to the user from those
that are used only to facilitate the computation of other streams. This leads
to a more general notion of well-definedness. Given a subset Z ⊆ Y of output
variables, an SRV ϕ is well-defined with respect to Z if for each input σX , there
is exactly one stream valuation σZ over Z having the same length as σX such
that σX ∪ σZ can be extended to some valuation model of ϕ (uniqueness of the
output streams over Z).

Analogously, we consider a notion of semantic equivalence between SRV of the
same type and having the same input variables, which is parameterized by a set
of output variables. Formally, given an SRV ϕ of type T over X and Y , an SRV
ϕ′ of type T over X and Y ′, and Z ⊆ Y ∩Y ′, we say that ϕ and ϕ′ are equivalent
with respect to Z if for each valuation model σ of ϕ, there is a valuation model σ′

of ϕ′ such that σ and σ′ coincide on X ∪Z, and vice versa. Moreover, if Y ′ ⊇ Y ,
then we say that ϕ′ is ϕ-equivalent if ϕ and ϕ′ are equivalent with respect to Y .

Remark 2. In the rest of the paper, we focus on Boolean SRV (BSRV for short).
Thus, in the following, we omit the reference to the type T in the various def-
initions. We assume that the offsets � in the subexpressions τ [�|c] of a BSRV
are encoded in unary. For a Boolean stream expression E, we denote by ‖E‖ the
offset � if E is a stream expression of the form τ [�|c]; otherwise, ‖E‖ is 1. The
size |ϕ| of a BSRV ϕ is defined as |ϕ| :=

∑
E∈SE(ϕ) ‖E‖, where SE(ϕ) is the set

of stream subexpressions of ϕ.
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Example 2. Consider the following BSRV over X = {x} and Y = {y}:

ϕ1 := {y = x∧y} ϕ2 := {y = x∧¬y} ϕ3 := {y = if x then x[2|0] else x[−2|0]}

The specification ϕ1 is under-defined since (1N , 0N) and (1N , 1N ) are two valu-
ation models for each N ≥ 1. On the other hand, the specification ϕ2 is over-
defined since for each N ≥ 1, there is no valuation model associated with the
input 1N . Finally, the specification ϕ3 is well-defined.

3 BSRV as Language Recognizers

BSRV can be interpreted as a simple declarative formalism to specify languages
of non-empty finite words. Formally, we associate to a BSRV ϕ over X and Y ,
the language L(ϕ) of non-empty finite words over 2X (or, equivalently, input
stream valuations) for which the specification ϕ admits a valuation model, i.e.,

L(ϕ) := {σX | (σX , σY ) ∈ [[ϕ]] for some σY }

Example 3. Let X = {x}, Y = {y}, and ϕ = {y = if E then y else ¬y}, where
E :=

(
first → (x ∧ y)

)
∧
(
y → ¬y[+1|0]

)
∧
(
¬y → (x[+1|1] ∧ y[+1|1])

)
A pair (σX , σY ) is a valuation model of ϕ iff the valuation of the stream expres-
sion E w.r.t. σX ∪σY is in 1+ iff σX(x)(i) = 1 for all odd positions i. Hence, L(ϕ)
is the set of Boolean streams which assume the value 1 at the odd positions.

In the following, we show that BSRV, as language recognizers, are effectively
equivalent to nondeterministic finite automata (NFA) on finite words. While the
translation from NFA to BSRV can be done in polynomial time, the converse
translation involves an unavoidable singly exponential blowup. Moreover, BSRV
turn out to be effectively and efficiently closed under many language operations.

In order to present our results, we shortly recall the class of NFA on finite
words. An NFA A over a finite input alphabet I is a tuple A = 〈Q, q0, δ, F 〉,
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × I → 2Q is
the transition function, and F ⊆ Q is a set of accepting states. Given an input
word w ∈ I∗, a run π of A over w is a sequence of states π = q1, . . . , q|w|+1 such
that q1 is the initial state and for all 1 ≤ i ≤ |w|, qi+1 ∈ δ(qi, w(i)). The run
π is accepting if it leads to an accepting state (i.e, q|w|+1 ∈ F ). The language
L(A) accepted by A is the set of non-empty finite words w over I such that
there is an accepting run of A over w. A is universal if L(A) = I+. A language
over non-empty finite words is regular if it is accepted by some NFA. An NFA is
unambiguous if for each input word w, there is at most one accepting run on w.

Fix a BSRV ϕ on X and Y . In order to build an NFA accepting L(ϕ), we define
an encoding of the valuation models of ϕ. For this, we associate to ϕ two param-
eters, the back reference distance b(ϕ) and the forward reference distance f(ϕ):

b(ϕ) := max(0, {� | � > 0 and ϕ contains a subexpression of the form z[−�, c]})
f(ϕ) := max(0, {� | � > 0 and ϕ contains a subexpression of the form z[�, c]})
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For a stream valuation σ of ϕ and an expression E of ϕ, the value of E w.r.t. σ
at a time step i is completely specified by the values of σ at time steps j such
that i− b(ϕ) ≤ j ≤ i+ f(ϕ). We define the following alphabets:

A := 2X∪Y A⊥ := A ∪ {⊥} Pϕ := (A⊥)b(ϕ) ×A× (A⊥)f(ϕ)

where ⊥ is a special symbol. Note that a stream valuation of ϕ corresponds to
a non-empty finite word over the alphabet A, and the cardinality of Pϕ is singly
exponential in the size of ϕ. For an element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Pϕ, the component a0, called the main value of p, intuitively represents the
value of some stream valuation σ at some time step i, while a−b(ϕ), . . . , a−1

(resp., a1, . . . , af(ϕ)) represent the values of σ at the previous b(ϕ) (resp., next
f(ϕ)) time steps, if any (the symbol ⊥ is used to denote the absence of a previous
or next time step). Let τ be either a Boolean constant or a variable in X ∪ Y ,
and a ∈ A. Then, the Boolean value of τ in a is τ if τ is a constant, otherwise
the value is 1 iff τ ∈ a. For a Boolean stream expression E over X ∪ Y and an
element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) of Pϕ, the value [[E, p]] of E with
respect to p is the computable Boolean value inductively defined as follows:

– [[c, p]] = c and [[z, p]] = the value of z in a0

– [[τ [�|c], p]] =
{

the value of τ in a� if − b(ϕ) ≤ � ≤ f(ϕ) and a� �= ⊥
c otherwise

– [[f(E1, . . . ,Ek), p]] = f([[E1, p]], . . . , [[Ek, p]])

We denote by Qϕ the subset of Pϕ consisting of the elements p of Pϕ such
that for each equation y = E of ϕ, the value of y with respect to p coincides
with the value of E with respect to p. Let # be an additional special symbol
(which will be used as initial state of the NFA associated with ϕ). An expanded
valuation model of ϕ is a word of the form # · w such that w is a non-empty
finite word w over the alphabet Qϕ satisfying the following:

– w(1) is of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ));
– w(|w|) is of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥);
– if 1 ≤ i < |w| and w(i) = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)), then there is d ∈

A⊥ such that w(i + 1) is of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d).

For an expanded valuation model # · w of ϕ, the associated stream valuation
σ(w) is the stream valuation of ϕ of length |w| whose ith element is the main
value of the ith element of w. By construction, we easily obtain that σ(w) is a
valuation model of ϕ and, more precisely, the following lemma holds.

Lemma 1. The mapping assigning to each expanded valuation model # ·w of ϕ
the associated stream valuation σ(w) is a bijection between the set of expanded
valuation models of ϕ and the set of valuation models of ϕ.

By the above characterization of the set of valuations models of a BSRV ϕ, we
easily obtain the following result.



Foundations of Boolean Stream Runtime Verification 71

Theorem 1 (From BSRV to NFA). Given a BSRV ϕ over X and Y , one can
construct in singly exponential time an NFA Aϕ over the alphabet 2X accepting
L(ϕ) whose set of states is Qϕ ∪ {#}. Moreover, for each input σX , the set
of accepting runs of Aϕ over σX is the set of expanded valuation models of ϕ
encoding the valuation models of ϕ associated with the input σX .

Proof. The NFA Aϕ is defined as Aϕ = 〈Qϕ ∪ {#},#, δϕ, Fϕ〉, where Fϕ is the
set of elements of Qϕ of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥), and δ(p, ι) is
defined as follows for all states p and input symbol ι ∈ 2X :

– if p = #, then δϕ(p, ι) is the set of states of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ))
such that a0 ∩X = ι;

– if p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) ∈ Qϕ, then δϕ(p, ι) is the set of
states of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d) for some d ∈ A⊥
whose main value a satisfies a ∩X = ι.

By construction, for each input σX , the set of accepting runs of Aϕ over σX

coincides with the set of expanded valuation models # · w of ϕ such that the
stream valuation σ(w) is associated with the input σX . Thus, by Lemma 1, the
result follows. ��

For the converse translation from NFA to BSRV, we show the following.

Theorem 2 (From NFA to BSRV). Given an NFA A over the input alphabet
2X, one can construct in polynomial time a BSRV ϕA with set of input variables
X such that L(ϕA) = L(A).

Proof. Let A = 〈Q, q0, δ, F 〉. We construct a BSRV ϕA over the set of input
variablesX as follows. First, for each input symbol ι, we use a Boolean expression
Eι over X , encoding the input symbol ι, defined as Eι := (

∧
x∈ι x)∧(

∧
x∈X\ι ¬x).

The set Y of output variables of ϕA is defined as follows:

Y =
⋃
q∈Q

{q} ∪ {control}

Thus, we associate to each state q ∈ Q, an output variable q, whose associated
equation is the trivial one given by q = q. The equation for the output variable
control is given by

control = if Eev then control else ¬control

where the boolean stream expression Eev describes accepting runs of the NFA A
and is defined as follows:

Eev =
∨
q∈Q

(q ∧
∧

p∈Q\{q}
¬p)

︸ ︷︷ ︸
at each step, A is exactly in one state

∧ (first −→ q0)︸ ︷︷ ︸
a run of A starts at the initial state

∧

∧
q∈Q

∧
ι∈I

(
(q ∧ Eι) −→

∨
p∈δ(q,ι)

p[+1|1]
)

︸ ︷︷ ︸
the evolution of A is δ-consistent

∧
(
last −→

∨
(q,ι)∈{(q,ι)|δ(q,ι)∩F �=∅)}

(q ∧ Eι)
)

︸ ︷︷ ︸
the run of A is accepting
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By construction, it easily follows that given an input stream valuation σX , there
is a valuation model of ϕA associated with the input σX if and only if there is a
stream valuation σ associated with the input σX such that the valuation of Eev

with respect to σ is a uniform stream in 1+ if and only if there is an accepting
run of A over the input σX . Hence, the result follows. ��
Corollary 1. BSRV, when interpreted as language recognizers, capture the class
of regular languages over non-empty finite words.

Succinctness Issues. It turns out that the singly exponential blow-up in The-
orem 1 cannot be avoided. To prove this we first show a linear time translation
from standard linear temporal logic LTL with past over finite words (which cap-
tures a subclass of regular languages) into BSRV. Recall that formulas ψ of LTL
with past over a finite set AP of atomic propositions are defined as follows:

ψ := p
∣∣ ¬ψ

∣∣ ψ ∨ ψ
∣∣ ψ

∣∣ ψ
∣∣ ψ U ψ

∣∣ ψ S ψ

where p ∈ AP and , , U , and S are the ‘next’, ‘previous’, ‘until’, and ‘since’
temporal modalities. For a finite word w over 2AP and a position 1 ≤ i ≤ |w|,
the satisfaction relation (w, i) |= ψ is defined as follows (we omit the rules for
the boolean connectives and the atomic propositions, which are standard):

(w, i) |= ψ ⇔ i+ 1 ≤ |w| and (w, i + 1) |= ψ
(w, i) |= ψ ⇔ i > 1 and (w, i − 1) |= ψ
(w, i) |= ψ1 U ψ2 ⇔ ∃ i ≤ j ≤ |w|, (w, j) |= ψ2 and ∀ i ≤ h < j, (w, h) |= ψ1

(w, i) |= ψ1 S ψ2 ⇔ ∃ 1 ≤ j ≤ i, (w, j) |= ψ2 and ∀ j < h ≤ i, (w, h) |= ψ1

The language L(ψ) of a LTL formula ψ is the set of non-empty finite words w
over 2AP such that (w, 1) |= ψ.

Proposition 1. LTL with past can be translated in linear time into BSRV.

Proof. Let ψ be a formula of LTL with past over a finite set AP of atomic
propositions. We construct in linear time a BSRV specification ϕ over the set
of input variables X = AP such that L(ϕ) = L(ψ). Let SF(ψ) be the set of
subformulas of ψ. Then, the set of output variables Y of ϕ is defined as follows.

Y =
⋃

θ∈SF(ψ)

{yθ} ∪ {init}

Thus, we associate to each subformula θ of ψ, an output variable yθ. The intended
meaning is that for an input valuation σX (corresponding to a non-empty finite
word over 2AP) and a valuation model σ associated with σX , at each time step
i, the value of variable yθ is 1 iff θ holds at position i along σX . The equations
for the output variables are defined as follows, where p ∈ AP = X .

init = first → (yψ ∨ ¬init) yp = p
y¬θ = ¬ yθ yθ1∨θ2 = yθ1 ∨ yθ2
yθ = yθ[+1|0] yθ = yθ[−1|0]
yθ1Uθ2 = yθ2 ∨ (¬last ∧ yθ1 ∧ yθ1Uθ2 [+1|1])
yθ1Sθ2 = yθ2 ∨ (¬first ∧ yθ1 ∧ yθ1Sθ2 [−1|1])
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One can easily show that the construction is correct, i.e., L(ϕ) = L(ψ). ��

It is well-known that there is a singly exponential succinctness gap between
LTL with past and NFA [16]. Consequently, we obtain the following result.

Theorem 3. BSRV are singly exponentially more succinct than NFA, that is,
there is a finite set X of input variables and a family (ϕn)n≥1 of BSRV such
that for all n ≥ 1, ϕn has input variables in X and size polynomial in n, and
every NFA accepting L(ϕn) has at least 2Ω(n) states.

Effective Closure under Language Operations. An interesting feature of
the class of BSRV is that, when interpreted as language recognizers, BSRV are
effectively and efficiently closed under many language operations. For two lan-
guages L and L′ of finite words, LR denotes the reversal of L, L ·L′ denotes the
concatenation of L and L′, and L+ denotes the positive Kleene closure of L.

For a BSRV ϕ, we say that an output variable y of ϕ is uniform if for each
valuation model of ϕ, the stream for y is uniform.

Theorem 4. BSRV are effectively closed under the following language opera-
tions: intersection, union, reversal, positive Kleene closure, and concatenation.
Additionally, the constructions for these operations can be done in linear time.

Proof. We illustrate the constructions for the considered language operations.
Intersection, Union, and Reversal. The constructions are illustrated in Fig. 1.
For the intersection, assuming w.l.o.g. that the BSRV ϕ and ϕ′ have no output
variable in common, the BSRV recognizing L(ϕ)∩L(ϕ′) is simply the joint set of
the equations of ϕ and ϕ′. For the union, we use two new output variables check
and main. Intuitively, check is a uniform output variable used to guess whether
the input has to be considered an input for ϕ or for ϕ′. The equation for check
ensures that the streams for check range over all the uniform Boolean streams.
Depending on the uniform value of check (if it is in 0+ or 1+), the equation
for the output variable main ensures that the input is recognized iff either the
equations of ϕ are fulfilled or the equations of ϕ′ are fulfilled. For the reversal,
the BSRV recognizing L(ϕ)R is obtained from ϕ by replacing each subexpression
τ [k|d] (resp., τ [−k|d]) with k > 0 with the subexpression τ [−k|d] (resp., τ [k|d]).
Positive Kleene closure. The construction is given in Fig. 2.

TheBSRV recognizing [L(ϕ)]+ uses two new output variables:wbegin andwend.
Intuitively, wbegin and wend are used for guessing a decomposition in the given
input σX of the form σX = σX,1 · . . . · σX,N for some N ≥ 1 in such a way that
each component σX,i is in L(ϕ). In particular, the output variable wbegin (resp.,
wend) is used to mark the first (resp., the last) positions of the components σX,i.
Moreover, the equations for the output variables of ϕ are modified to allow check-
ing for an offset k of ϕ and a position j inside a component σX,i in the guessed
decomposition of the input σX , whether k + j is still a position inside σX,i.

Concatenation. The construction is given in Fig. 3. We assume w.l.o.g. that
the BSRV ϕ and ϕ′ have no output variables in common. The BSRV recognizing
L(ϕ) ·L(ϕ′) uses a new output variable: wmark. This variable is used for guessing
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ϕ = {y1 = E1, . . . , yk = Ek} ϕ′ = {y′
1 = E′

1, . . . , y
′
h = E′

h}
Intersection: ϕ ∩ ϕ′ = {y1 = E1, . . . , yk = Ek, y

′
1 = E′

1, . . . , y
′
h = E′

h}
where {y1, . . . , yk} ∩ {y′

1, . . . , y
′
h} = ∅.

Union: ϕ ∪ ϕ′ = {y1 = y1, . . . , y
′
h = y′

h, check = Echeck,main = Emain}

Echeck = if ¬last→ (check↔ check[+1|1]) then check else ¬check

Emain = if
(
(check→

i=k∧
i=1

yi ↔ Ei) ∧ (¬check→
i=h∧
i=1

y′
i ↔ E′

i)
)
then main else ¬main

Reversal: ϕR = {y1 = ER
1 , . . . , yk = ER

k }
ER
i is obtained from Ei by converting each offset k in its opposite −k.

Fig. 1. Constructions for intersection, union, and reversal

Positive Kleene closure for ϕ = {y1 = E1, . . . , yk = Ek}

ϕ+ = {y1 = E+
1 , . . . , yk = E+

k ,wbegin = Ewbegin,wend = Ewend}

Ewbegin = if (first→ wbegin) ∧ (wbegin→ wend[−1|1]) then wbegin else ¬wbegin
Ewend = if (last→ wend) ∧ (wend→ wbegin[+1|1]) then wend else ¬wend

and E+
i is obtained from Ei by replacing each stream subexpression τ [k|d] with Eτ,k,d:

Eτ,k,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if

j=k∨
j=1

wbegin[j|1] then d else τ [k|d] if k > 0

if

j=−k∨
j=1

wend[−j|1] then d else τ [k|d] if k < 0

Fig. 2. Construction for positive Kleene closure

a decomposition in the given input of the form σX · σ′
X in such a way that

σX ∈ L(ϕ) and σ′
X ∈ L(ϕ′). In particular, the output variable wmark assumes

the value 1 along all and only the positions of σX (the equation for wmark ensures
that a Boolean stream for wmark is always in 1+0+). Moreover, the equations for
the output variables of ϕ are modified in order to allow to check for a positive
offset k > 0 of ϕ and a position j inside σX in the guessed decomposition σX ·σ′

X

of the input, whether k+j is still a position inside σX . Analogously, the equations
for the output variables of ϕ′ are modified to allow checking for a negative offset
k < 0 of ϕ′ and a position j inside σ′

X in the guessed decomposition σX · σ′
X of

the input, whether k + j is still a position inside σ′
X . ��

4 Offline Monitoring for Well-Defined BSRV

In this section, we propose an offline monitoring algorithm for well-defined BSRV
based on Theorem 1. The algorithm runs in time linear in the length of the input
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ϕ = {y1 = E1, . . . , yk = Ek} ϕ′ = {y′
1 = E′

1, . . . , y
′
h = E′

h}
Concatenation: {y1, . . . , yk} ∩ {y′

1, . . . , y
′
h} = ∅

ϕ · ϕ′ = {y1 = if wmark then Ẽ1 else y1, . . . , yk = if wmark then Ẽk else yk,

y′
1 = if ¬wmark then Ẽ

′
1 else y′

1, . . . , y
′
h = if ¬wmark then Ẽ

′
h else y′

h,wmark = Ewmark}

Ewmark = if (first→ wmark) ∧ (last→ ¬wmark) ∧ (wmark→ wmark[−1|1])∧
(¬wmark→ ¬wmark[+1|0]) then wmark else ¬wmark

Ẽi is obtained from Ei by replacing each stream subexpression τ [k|d] s.t. k > 0 with:

if

j=k∨
j=1

¬wmark[j|0] then d else τ [k|d]

Ẽ
′
i is obtained from E′

i by replacing each stream subexpression τ [k|d] s.t. k < 0 with:

if

j=−k∨
j=1

wmark[−j|1] then d else τ [k|d]

Fig. 3. Construction for concatenation

Monitoring(ϕ, σX) /** ϕ is a well-defined BSRV and Aϕ = 〈Q, q0, δ, F 〉 **/
Λ← {q0}
for i = 1 upto |σX | do
update Λ← {q ∈ Q | q ∈ δ(p, σX(i)) for some p ∈ Λ}
store Λ at position i on the tape

for i = |σX | downto 1 do

let Λ be the set of states stored at position i on the tape
if i = |σX | then p ← the unique accepting state in Λ
else let q be the unique state in Λ such that p ∈ δ(q, σX(i+ 1)); update p← q
output at position i the main value of p

Fig. 4. Offline monitoring algorithm for well-defined BSRV

trace (input streams) and singly exponential in the size of the specification.
Additionally, we partially solve a question left open in [8] for the case of BSRV.

Let ϕ be a BSRV over X and Y , and Aϕ = 〈Q, q0, δ, F 〉 be the NFA over 2X

accepting L(ϕ) of Theorem 1. Recall that Q \ {q0} is contained in (A⊥)b(ϕ) ×
A× (A⊥)f(ϕ), where A = 2X∪Y and A⊥ := A∪ {⊥}, and an expanded valuation
model of ϕ is of the form π = q0, q1, . . . , qk, where qi ∈ Q\{q0} for all 1 ≤ i ≤ k.
Moreover, the valuation model of ϕ encoded by π is the sequence of the main
values of the states qi visited by π. By Theorem 1, the set of accepting runs of
Aϕ over an input σX is the set of expanded valuation models of ϕ encoding the
valuation models of ϕ associated with the input σX . Hence, the following holds.

Proposition 2. A BSRV ϕ is well-defined if and only if the NFA Aϕ is universal
and unambiguous.
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The offline monitoring algorithm for well-defined BSRV is given in Fig. 4, where
we assume that the input trace σX is available on a tape. The algorithmoperates in
two phases. In the first phase, a forward traversing of the input trace is performed,
and the algorithm simulates the unique run over the input σX of the deterministic
finite state automaton (DFA) that would result from Aϕ by the classical powerset
construction. Let {q0}, Λ(1), . . . , Λ(|σX |) be the run of this DFA over σX . Then, at
each step i, the stateΛ(i) of the run resulting from reading the input symbol σX(i)
is stored in the ith position of the tape. In the second phase, a backward traversing
of the input trace is performed, and the algorithm outputs a stream valuation ofϕ.
Since ϕ is well-defined, by using Proposition 2, we easily deduce that the unique-
ness conditions in the second phase of the algorithm are satisfied. Moreover, the
sequence of states computed by the algorithm in the second phase is the unique ac-
cepting run π ofAϕ overσX . Therefore, the algorithmoutputs the valuationmodel
of ϕ encoded by π, which is the unique valuation model of ϕ associated with the
input σX . Thus, since the size of the NFAAϕ is singly exponential in the size of ϕ,
we obtain the following result.

Theorem 5. One can construct an offline monitoring algorithm for well-defined
BSRV running in time linear in the length of the input trace and singly expo-
nential in the size of the specification. Additionally, the algorithm processes a
position of the input trace exactly twice.

In [8], a syntactical condition for general SRV, called well-formedness, is intro-
duced, which can be checked in polynomial time and implies well-definedness.
Well-formedness ensures the absence of circular definitions by requiring that a de-
pendency graph of the output variables have not zero-weight cycles. As illustrated
in [8], for the restricted class ofwell-formedSRV, it is possible to construct an offline
monitoring algorithmwhich runs in time linear in the length of the input trace and
the size of the specification. Moreover, one can associate to a well-formed SRV ϕ a
parameter ad(ϕ), called alternation depth [8], such that the monitoring algorithm
processes each position of the input trace exactly ad(ϕ)+1 times. An important
question left open in [8] is whether for a well-formed SRV ϕ, it is possible to con-
struct a ϕ-equivalent SRVwhose alternation depth is minimal. Here, we settle par-
tially this question for the class of BSRV. By using the same ideas for constructing
the algorithm of Fig. 4, we show that for the class of BSRV, the semantic notion of
well-definedness coincides with the syntactical notion of well-formedness (modulo
BSRV-equivalence), and the hierarchy of well-formed BSRV induced by the alter-
nation depth collapses to the level 1. In particular,we establish the following result.

Theorem 6. Given a well-defined BSRV ϕ, one can build in doubly exponential
time a ϕ-equivalent BSRV which is well-formed and has alternation depth 1.

5 Decision Problems

We investigate complexity issues for some relevant decision problems on BSRV.
In particular, we establish that while checking well-definedness is in EXPTIME,
checking for a given BSRV ϕ and a given subset Z of output variables, whether ϕ
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is well-defined with respect to Z (generalized well-definedness problem) is instead
EXPSPACE-complete. Our results can be summarized as follows.

Theorem 7. For BSRV:
1. The under-definedness problem is PSPACE-complete, the well-definedness

problem is in EXPTIME and at least PSPACE-hard, while the over-definedness
problem and the generalized well-definedness problem are both EXPSPACE-
complete.

2. Checking semantic equivalence is EXPSPACE-complete.
3. When interpreted as language recognizers, language emptiness is PSPACE-

complete, while language universality, language inclusion, and language equiv-
alence are EXPSPACE-complete.

Here, we illustrate the upper bounds of Theorem 7(1). We need a preliminary
result (Proposition 3). For an NFA A = 〈Q, q0, δ, F 〉, a state projection of A
is a mapping Υ : Q → P for some finite set P such that for all q ∈ Q, Υ (q)
is computable in logarithmic space (in the size of Q). The mapping Υ can be
extended to sequences of states in the obvious way. We say that the NFA A is
unambiguous with respect to Υ if for all w ∈ L(A) and accepting runs π and π′

of A over w, their projections Υ (π) and Υ (π′) coincide.

Proposition 3. Given an NFA A and a state projection Υ of A, checking whether
A is not unambiguous with respect to Υ can be done in NLOGSPACE.

Upper Bounds of Theorem 7(1). Let ϕ be a BSRV over X and Y , and Aϕ

be the NFA of Theorem 1 accepting L(ϕ) and whose size is singly exponential in
the size of ϕ.

Under-definedness: by Theorem 1 and Lemma 1, ϕ is under-defined iff Aϕ is
not unambiguous. Thus, since Aϕ can be constructed on the fly and PSPACE =
NPSPACE, by Proposition 3 (with Υ being the identity map), it follows that the
under-definedness problem is in PSPACE.

Over-definedness: sinceAϕ accepts L(ϕ), ϕ is over-defined iffAϕ is not universal.
Thus, since checking universality for NFA is a well-known PSPACE-complete
problem [19], membership in EXPSPACE for checking over-definedness follows.

Well-definedness: it is well-known that checking universality of unambiguous
NFA can be done in polynomial time [24]. By Proposition 2, ϕ is well-defined iff
Aϕ is universal and unambiguous. Thus, since checking that Aϕ is unambiguous
can be done in PSPACE (in the size of ϕ), membership in EXPTIME for checking
well-definedness follows.

Generalized Well-definedness: let Z ⊆ Y . Recall that the set of non-initial states
of Aϕ is contained in (A⊥)b(ϕ) ×A× (A⊥)f(ϕ), where A = 2X∪Y and A⊥ := A∪
{⊥}. Let ΥZ be the state projection of Aϕ assigning to the initial state q0 of Aϕ

q0 itself, and assigning to each non-initial state (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Aϕ the tuple (d−b(ϕ), . . . , d−1, d0, d1, . . . , df(ϕ)), where for all b(ϕ) ≤ i ≤ f(ϕ),
di = ai if ai = ⊥, and di = ai ∩ Z otherwise. Now, let σ and σ′ be two
valuation models of ϕ associated with an input σX , and π and π′ be the expanded
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valuation models encoding σ and σ′, respectively. By construction, it follows that
ΥZ(π) = ΥZ(π

′) iff the restrictions of σ and σ′ to Z coincide. By Theorem 1,
we obtain that ϕ is well-defined with respect to Z iff Aϕ is unambiguous with
respect to ΥZ and Aϕ is universal. Thus, since checking universality for NFA
is PSPACE-complete, by Proposition 3, membership in EXPSPACE for checking
generalized well-definedness follows.

6 Conclusion

In this paper, we have studied some theoretical problems for the class of Boolean
SRV. We have also presented an offline monitoring algorithm for well-defined
BSRV that only requires two passes over the dumped trace. An open question
is the exact complexity of checking well-definedness for BSRV: it lies somewhere
between PSPACE and EXPTIME. Future work includes the theoretical investi-
gation and the development of monitoring algorithms for SRV over richer data
types, such as counters and stacks. In particular, the emerging field of symbolic
automata and transducers [25]—that extend the classical notions from discrete
alphabets to theories handled by solvers—seems very promising to study in the
context of SRV, which in turn can extend automata from states and transitions
to stream dependencies. The combination of these two extensions has the po-
tential to provide a rich but tractable foundation for the runtime verification of
values from rich types. Additionally, we are studying the extension to the mon-
itoring of visibly pushdown systems, where SRV is extended to deal with traces
containing calls and returns.

Finally, we plan to study the monitorability of well-definedness of specifica-
tions. If one cannot determine well-definedness statically, a plausible alternative
would be to use a monitor that assumes well-definednees in tandem with a mon-
itor that detects non-well-definedness (and hence, the incorrectness of the first
monitor).
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control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 360–364. Springer, Heidelberg (2012)

3. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)
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Abstract. We describe a prototype architecture for the runtime monitoring of
Java programs using a smartphone. An online tool can produce an AspectJ file
which, when woven with the program to be monitored and executed, instantiates
a GUI window where XML events from the program’s execution are output in
the form of QR codes. We illustrate the feasibility of this approach by monitor-
ing runtime properties on the execution of a video game by pointing a handheld
Android phone at the game’s screen and obtaining realtime feedback.

1 Introduction

Instrumentation forms one of the two major parts of a runtime verification architec-
ture. While the general goal of instrumentation is generally well-understood (producing
events out of the execution of a system to be processed by a monitor), the techniques ad-
vocated in past works vary widely, ranging from the manual insertion of code snippets
to aspect-oriented solutions where event-generating code, and even the monitor itself,
is automatically inserted in a program through a process called weaving. However, our
past experience with industrial partners revealed a general reluctance for such an in-
trusive technique, where complex and untrusted monitoring code interferes with the
normal execution of the program in possibly unforseen ways. This observation led us
to seek instrumentation techniques that would take events out of the program as fast as
possible, and to perform the bulk of the processing in a completely independent process.

Our initial solution involved a template-based instrumentation on the program side,
where events were carried to the monitor as XML strings through a pipe or a TCP
socket [5]. While at first sight this approach provides a reasonable separation between
the monitor and the program, we discovered that it still presents a risk of “crosstalk”
unacceptable in many application domains. Using a pipe forces the monitor to reside
on the same computer as the program to monitor; moreover, if no monitor is present to
consume events from the pipe (or fails to retrieve them fast enough), the pipe eventually
reaches its maximal size, after which any write operation on the program side becomes
blocking (i.e. halts the execution of the program) until enough space becomes available.
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Using a TCP connection presents the same problems; moreover, the bidirectional na-
ture of such a connection presents too high a risk of attacks on the program to monitor.
Finally, in both cases some software setup is required to hook up the monitor to the pro-
gram: defining IP addresses, pipe names, ports, etc., which again represents too much
coupling in many scenarios.

In this paper, we explore an alternate instrumentation solution aimed at providing ab-
solute isolation of the program from the monitor, while at the same time minimizing the
need for establishing a link between both. We achieve this through the use of so-called
“QR” codes, which are two-dimensional barcodes whose content can be read through
purely optical means. This way, the communication channel between the program and
the monitor is strictly unidirectional and non-blocking. In addition, monitoring boils
down to pointing the device at the program’s display and starting to capture the stream
of events, without requiring the setup of any specific link.

The use of smartphones for runtime monitoring has already been suggested in a
few works [1–3]; in this context, a monitor witnesses the execution of some process
running inside the phone, in particular for enforcing security and usage policies. We
rather propose a method for runtime monitoring with an Android phone —that is, the
source of events is not the execution of the phone itself, which is rather used as an
event-harvesting and processing device.

2 Architecture

In the proposed setup, the instrumentation on the program side instantiates a GUI win-
dow where XML events from the program’s execution are output in the form of QR
codes. A smartphone application, using the device’s embedded camera, captures these
codes and converts them back into events that are then fed to an onboard runtime mon-
itor, or are simply relayed through a TCP connection to a monitor instance residing on
some other computer.

2.1 Instrumentation

The first part of the architecture requires producing XML events from the execution of
the program and outputting them as optical QR codes. The generation and display of
these codes is handled by a custom-made Java library called Gyro Gearloose,1 which
provides a GUI window to which arbitrary character strings can be sent. The library
uses in the background the ZXing framework2 to convert these strings into QR codes
and display them in the window in real time.

To streamline the instrumentation of an application, an online tool3 takes as input
a declaration of the method calls to trap, along with the XML template to create from
each method call, and transforms it automatically into an executable AspectJ file re-
sponsible for instantiating a window where QR codes will be displayed, and declaring

1 https://github.com/sylvainhalle/GyroGearloose
2 https://github.com/zxing/zxing/
3 http://beepbeep.sourceforge.net/qr-monitor/formatter.php

https://github.com/sylvainhalle/GyroGearloose
https://github.com/zxing/zxing/
http://beepbeep.sourceforge.net/qr-monitor/formatter.php


82 K. Lavoie et al.

appropriate pointcuts to intercept the relevant method calls —each provoking the up-
date of the displayed code in the window depending on the XML contents generated
from the event. Figure 1 shows an example of an input specification. The PROTOTYPES
section of the specification indicates what method calls should be trapped by the instru-
mentation, by declaring their prototypes (including argument names and types, if any).
Immediately following the prototype declaration is an XML event template, which de-
fines the contents and structure of the XML events that will be generated from every
call to the method.

This event is free form; one can use arbitrary element names and whatever structure
is deemed appropriate, including nested elements if necessary. Everything that does not
appear between braces is copied verbatim. The portion between braces, however, is Java
code. When creating the XML structure upon a method call, the formatter replaces it
by the result of evaluating the enclosed expression. This expression can involve any of
the arguments from the method call; in addition, the instance of the object that has been
called can also be referred to using the keyword this.

Weaving the resulting AspectJ file with the application to monitor results in a pro-
gram that outputs its event through QR codes. Figure 1 shows an example of an appli-
cation instrumented in such a way.

PROTOTYPES
void Mario.jump(int height,

Authorization auth);

<call>
<method>withdraw</method>
<id>
{auth.getId()}

</id>
<amount>
{auth.getAmount()}

</amount>
<call>

Fig. 1. An example of an instrumentation specification (left), and an instrumented version of
Infinite Mario Bros. outputting its XML events as QR codes in a satellite window.

2.2 Monitoring

The second part of our architecture consists of an apparatus to receive events as QR
codes, decode them and feed them to a runtime monitor. We realized this part as an
application running in an Android smartphone, using the device’s camera to capture QR
codes displayed onscreen, and convert them back into XML strings. Figure 2b shows
the basic interface for this application.

This process is again separate from the monitoring itself; events can be relayed in
their string form to any runtime monitor through a simple TCP socket, and in particular
the monitor need not to reside directly on the phone. Nevertheless, we retrieved the
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code for the BeepBeep runtime monitor [4], given its ability to read XML events from
a socket, and adapted it to run inside the Android operating system. In particular, we
created a simple interface allowing a user to pick temporal logic properties to monitor
(selected from text files copied onto the device); moreover, once the monitor’s state
switches from the “inconclusive” state to either “true” or “false”, a message is sent in
the phone’s notification area, as is shown in Figure 2a and 2c.

Fig. 2. Screenshots from the prototype smartphone application. (a) The main monitor window
displaying basic stats about the monitor’s execution, and allowing a user to select the LTL-FO+

properties to monitor. (b) The video capture window, where a user points at QR codes displayed
on an external device to capture events. (c) The phone’s notification area, where status updates
about the monitor are displayed (at the bottom).

3 Experimental Results

We assessed the feasibility of this approach by testing it on various randomly-genrated
traces of events for sample LTL properties. Our reference phone is a Sony Xperia Z
running Android version 4.3 Jelly Bean. The phone’s camera was set at a relatively low
resolution of 800×600 pixels. The telephone was held directly in the user’s hand (i.e.
was not resting on any kind of stable surface), who pointed it at a code occupying a
square space of 300 pixels on the computer’s screen. Although the code reader and the
monitor are separate processes which can run on two different devices linked through a
standard TCP connection, in the experiment both were run inside the same phone and
communicated through a local socket.

Table 1 shows the time required to process one frame of video containing a QR code,
for varying data densities. Unsurprisingly, running times both for decoding and pro-
cessing of events by the monitor are noticeably slower on a telephone than on a desktop
computer. However, it is interesting to note that the bottleneck of the architecture is not
the monitor, but rather the processing of video frames back into QR codes. On our ref-
erence telephone, the ZXing library takes on average 106 ms to process a video frame,
while the monitor, in the worst case, was clocked at 12 ms to process the event extracted
from the QR code.
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Table 1. Experimental results for the decoding of video frames and the processing of XML events
inside a smartphone

Code size (b) Decoding time (ms) Success rate
110 100 99%
160 106 95%
210 104 99%
260 105 91%
310 105 58%
360 105 80%
410 111 76%

Events Cumulative time (ms)
1 3
10 42

100 188
1000 2156
5000 24848
10000 63302
20000 240657

Another element worthy of mention is the decoding rate, which varied from near-
perfect to about 60%. It shall be noted that this figure indicates the number of video
frames where a code could successfully be read; however, as our instrumented system
produces events at a slow rate (a few events per second), each distinct code had multiple
frames to be decoded. As a matter of fact, in our experiments not a single event has ever
been missed.

4 Conclusion and Future Work

Early experiments on the use of analog means to transmit data from the execution of a
program can be put to good use for runtime monitoring. This opens the way to various
applications, such as the realtime monitoring of video games or other entertainment
software by simply filming a portion of the television screen using a separate device.
Future work includes the development of an efficient binary format to transmit event
data in a compact form, with signalling and redundancy to compensate for poor capture
conditions.
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Abstract. We describe our approach to building a runtime file system checker
for the emerging Linux Btrfs file system. Such checkers verify the consistency of
file system metadata update operations before they are committed to disk, thus
preventing corrupted updates from becoming durable. The consistency checks in
Btrfs are complex and need to be expressed clearly so that they can be reasoned
about and implemented reliably, thus we propose writing the checks declaratively.
This approach reduces the complexity of the checks, ensures their independence,
and helps identify the correct abstractions in the checker. It also shows how the
checker can be made robust against arbitrary file system corruption.

Keywords: Runtime file system checker, Btrfs, Datalog, Consistency invariants.

1 Introduction

A runtime file-system consistency checker verifies the consistency of file-system update
operations before they are committed to disk. File system metadata corruption can thus
be detected before it propagates to disk, which minimizes data loss. In contrast, tradi-
tional offline checkers [1,4] require the file system to be taken offline to be checked for
possible corruption, which can incur significant downtime [5]. Recon [3] enforces the
consistency of the Linux Ext3 file system at runtime by checking that metadata updates
conform to a set of rules called consistency invariants. These invariants are expressed
in terms of the file system data structures, which are inferred outside the file system at
the block layer using metadata interpretation, similar to semantically smart disks [6].

We describe the challenges with designing and building a robust, accurate and com-
plete runtime checker for the Linux Btrfs file system. Since Btrfs is still under active
development, a runtime checker that limits the damage caused by bugs in the file system
software can both serve as a powerful debugging tool and help encourage adoption of
the new file system. Compared to Ext3, Btrfs uses many more file system data structures
with vastly complex relationships, which complicate both the metadata interpretation
and the consistency invariants considerably. Thus, it is of paramount importance that
consistency invariants for Btrfs are expressed clearly and concisely so that they can be
reasoned about and implemented reliably.

We use a declarative language to express the Btrfs consistency invariants, which is
similar in spirit to Gunawi et al.’s [4] offline consistency checker written in SQL. This
approach makes it easier to reason about the runtime checker’s correctness in three
ways. First, each consistency invariant can be written as a set of declarative statements
and run independently of the other invariants. Second, the declarative style helps to
identify the appropriate abstractions for representing file system metadata updates; the
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conceptual invariants are written as clearly as possible, and the metadata is interpreted
accordingly. Last, the declarative approach clarified two distinct categories of invari-
ants: the first expresses constraints on structural properties of the metadata (e.g., bounds
checking) and the second expresses semantic properties (e.g., the agreement between
directory entries and inode link counts).

2 Robust Consistency Checking

Our Btrfs runtime consistency checker has two goals: 1) it should detect all consistency
violations, and 2) it should work correctly and predictably in the presence of arbitrary
file system corruption failures. We meet these goals with two design principles. First,
the semantic invariants must be written declaratively and concisely, making it easier to
reason about their correctness. Second, the file system’s structural invariants should be
checked before performing any semantic checks so that the latter can depend on the
structural integrity of the file system.

2.1 Abstractions for Runtime Checking

Here we provide an overview of how invariants are checked in a runtime file system
checker. Invariant checks are expressed in terms of changes to file system objects such
as directories, inodes and extents, but they may also involve querying the state of objects
that have not changed. The checking operation verifies that when the logical file system
changes are applied to consistent, pre-transaction file system state, they will result in
consistent, post-transaction file system state.

Invariant checks are performed using two abstractions. The first is the change record,
which captures any modifications to file system objects, such as the addition of a new
object, an update to an existing object, or the removal of an object in a transaction. For
example, a change record for Btrfs can be expressed as: change(TREE, ID, FIELD,
OLD, NEW). Here, TREE is the Btrfs B-tree within which the object resides, while ID
is the unique identifier of the object that is being changed (e.g., a Btrfs key for an
inode). The TREE and ID uniquely identify Btrfs objects. The FIELD is a specific part
of the object (e.g., inode size). Finally, OLD and NEW are the old and new values of the
corresponding field.

The second abstraction is the query primitive, which is used to access objects or
object fields that may or may not have changed in a transaction, and thus may not
appear as change records. The primitives return the most recent version of the object,
from either the checking framework’s internal caches or the disk. There are two types of
primitives, query() for retrieving an object by key, and prev()/next() for finding
the previous or next Btrfs key in a tree, as shown in Figure 1.

2.2 Expressing Invariants

Btrfs is a highly complex file system with correspondingly complex consistency prop-
erties. These properties are hard to extract from the C source code of btrfsck, the file
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% the btrfs key for an extent is [start , extent_item , size]
violation (6, TREE_ID , k(EXTENT , extent_item , SIZE )) :-

add(TREE_ID , k(EXTENT , extent_item , SIZE )),
prev (TREE_ID , k(EXTENT , extent_item , SIZE ),

k(EXTENT_PREV , extent_item , SIZE_PREV )),
EXTENT < EXTENT_PREV + SIZE_PREV .

% the underscore ’_’ is a "don ’t care " or wildcard variable
violation (6, TREE_ID , k(EXTENT , extent_item , SIZE )) :-

add(TREE_ID , k(EXTENT , extent_item , SIZE )),
next (TREE_ID , k(EXTENT , extent_item , SIZE ),

k(EXTENT_NEXT , extent_item , _)),
EXTENT_NEXT < EXTENT + SIZE .

Fig. 1. Btrfs invariant “If a new extent item is added, it must not overlap previous or next extents”

system checker for Btrfs, because they are implemented piecemeal and intermingled
with the checker’s metadata interpretation code. When we converted the consistency
properties to their corresponding runtime invariants and implemented them in C, we
found that it was hard to reason about the correctness of these invariants because their
implementation was complex, with many corner cases.

Instead, we chose to express consistency invariants in Datalog, a declarative logic
programming language [2]. Datalog programs consist of statements that are expressed
in terms of relations, represented as a database of facts and rules. Rules take the form
of conclusion & premise, where premise consists of one or more predicates joined by
conjunction (comma) or disjunction (semicolon). We express the change records gener-
ated from a file system transaction as Datalog facts. Semantic invariants are statements
that must hold true for a consistent file system. In Datalog, we negate these invariants to
reach the conclusion that an invariant has been violated. For example, for an invariant
A⇒ B, the corresponding Datalog statement is violation& A, ¬B where A is a condition
which will trigger the check B. The predicate A looks for a change in the file system
by matching on the attributes of a change record. The predicate B can match change
records or invoke primitives to access unmodified objects.

Figure 1 shows the Datalog invariant that checks for extent overlap. The add(TREE,
ID) clause looks for an extent_item object with the Btrfs key ID that has been added
to the file system and binds the TREE_ID, EXTENT and SIZE variables to its values.
The prev() and next() clauses are primitives that query the file system state and bind
the previous and next items in the tree to their second argument, respectively. We need
a query in this case because the adjacent extents may not have changed, and thus may
not be available as change records. The final clause checks for overlap between the
new extent and the previous or next extents returned by the primitives. When an extent
does not have a previous or next extent, the relevant query will fail, indicating that the
invariant has not been violated. Note that this invariant is independent of the metadata
interpretation code and other consistency invariants, making it easier to reason about.
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2.3 Checking Structure before Semantics

Our second goal is to ensure that the checker works predictably in the presence of
arbitrary file system failures. To do so, we need to ensure that the three components
of the checker (metadata interpretation, query primitives, and invariant checking) are
robust to metadata corruption. Invariant checking operates on change records generated
by metadata interpretation and uses query primitives. Hence, its robustness depends on
the first two components. Both metadata interpretation and query primitives access the
current file system state, including the possibly corrupt metadata blocks that need to be
checked. Thus, these components must perform careful validation.

Metadata interpretation requires checks to ensure that file system data structures are
correctly typed, so that they can be interpreted correctly (e.g., these checks will prevent
following a stray or corrupt pointer). In addition to correct typing, the primitives, which
take an identifier as input, need to operate on the data structure associated with this
identifier. These requirements lead to three invariants that need to be checked in order:

Type Safety: Type safety ensures that interpretation of updated metadata is robust
to data corruption. Consider a query primitive query(TREE, ID, VALUE) that binds
VALUE to a given object with identifier ID within tree TREE. Here ID incorporates the
type of the object (e.g., the type in the Btrfs key). Type safety ensures that the object
bound to VALUE will be of the same type as that specified in ID. The metadata inter-
pretation code will therefore operate on correctly typed objects. Type safety is hard to
enforce dynamically because file system data structures do not usually provide type in-
formation (e.g., a tag associated with each type). Even if they did, it could have been
corrupted, possibly to another known type. Instead, we ensure type safety by validating
or range checking all primitive data types that are accessed during metadata interpre-
tation. For example, absolute disk pointers need to lie within the file system partition,
while extent-relative pointers must lie within the extent. Similarly, enumerated values
(enum in C) need to be valid instances, and any length fields in structures must lie within
expected bounds. If these checks fail, we raise a type-safety violation.

Reachability Invariants: The query primitives require more than type safety. For ex-
ample, query(TREE, ID, VALUE) would not return an existing object that has been
misplaced in a B-tree, because it assumes that keys are ordered (otherwise it would need
to perform an expensive full tree search). In Btrfs, we enforce reachability by checking
that a parent points to the correct child node, and keys are sorted correctly. Reachability
invariants also ensure that primitives will not encounter an infinite loop in the B-tree.

Uniqueness Invariants: The primitives expect that all objects are uniquely identified
by an identifier. If multiple objects have the same identity several problems can arise.
First, the primitives may not provide such duplicate objects deterministically, which
could lead to invariant violations that are hard to analyze, or worse, allow corruption to
propagate to disk. Second, duplicate change records may be generated (e.g., two objects
with the same identity are modified), but since Datalog ignores duplicate facts, only one
of the changes would be checked. We check reachability before uniqueness, because if
an object is reachable, it is easy to test for uniqueness by first searching for the object.
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1. nr_items != 0 && nr_items < PTRS_PER_BLOCK
2. p.ptr[i].key == c.ptr[0].key
3. p.ptr[i].blockptr == c.header.bytenr
4. p.ptr[i].generation == c.header.generation
5. ptr[i].key < ptr[i+1].key

Fig. 2. The structural invariants on an internal B-tree node in Btrfs (p and c are parent and child)

violation (16, TREE , k(INODE_NR , dir_item , CRC )) :-
new(TREE , k(INODE_NR , dir_item , CRC), type , DIR_ITEM_TYPE ),
query(TREE , k(INODE_NR , dir_item , CRC), location , LOCATION ),
not(query(TREE , LOCATION , f(mode , s_ifmt), INODE_FILE_TYPE ),

DIR_ITEM_TYPE =:= INODE_FILE_TYPE ).

Fig. 3. Btrfs invariant “Directory entry type is the same as the type of the inode”

After the three types of structural invariants have been checked, we are assured that
query(TREE, ID, VALUE) will bind VALUE to the object associated with ID. At this
point, the semantic invariants can depend on well-formed change records being gener-
ated (even though their contents may be corrupt) and the primitives working correctly.

Figure 2 shows the five structural invariants that we check for B-tree internal nodes.
An internal node consists of a header and an array of key pointers. The header contains
the number of key pointers in the node (nr_items), the location of the node on disk
(bytenr), and the generation number of the node. A key pointer (ptr[]) contains a
Btrfs key, the location of the node pointed to by the key (blockptr) and the generation
of the pointed-to node. Invariant 1 is a type-safety check on the key pointer array. In-
variants 2 to 4 are reachability invariants that verify that the parent points to the correct
child node. Invariant 5 checks that all keys in a valid B-tree node must be monotonically
increasing, a requirement that provides both reachability and uniqueness. Together, In-
variants 2-5 ensure that B-tree items are ordered correctly. Similar structural invariants
exist for B-tree leaf nodes. The file system metadata in the leaf nodes also has additional
structural invariants such as type safety requirements for all data types.

A simple example shows the need to check structural invariants before semantic
ones. Figure 3 shows the Btrfs invariant that checks that a directory entry’s file type is
the same as the type of the inode to which it points (e.g., both are directories or both are
files). The new predicate returns the file type in a changed directory item. Suppose while
creating a directory, the file system creates a directory entry and mistakenly creates two
inodes with the same inode number, one of which has the file type. The second query
primitive in Figure 3 (within the not clause), which returns the type of the inode, would
match the two inode change records. However, the INODE_TYPE value that is bound
depends on the Datalog engine, so the corruption may not be detected.

Semantic invariants can be made simpler when structural invariants are checked first,
because they can depend on structural correctness. The semantic invariants can also
be checked independently of each other, because the correctness of the primitives has
been established by the structural invariants, rather than by the order in which semantic
invariants are checked. Finally, this approach raises structural violations as early as
possible, thus providing more accurate debugging information.
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violation (12, TREE_ID , k(INODE_NUMBER , TYPE , OFFSET )) :-
delete(TREE_ID , k(INODE_NUMBER , inode_item , _)),
file_tree (TREE_ID),
query(TREE_ID , k(INODE_NUMBER , TYPE , OFFSET )).

violation (12 , TREE_ID , k( INODE_NUMBER , TYPE , OFFSET )) :-
add(TREE_ID , k( INODE_NUMBER , TYPE , OFFSET )),
file_tree (TREE_ID), TYPE \= inode_item ,
not(query(TREE_ID , k(INODE_NUMBER , inode_item , 0))).

Fig. 4. Invariant 12: An inode item must exist for every distinct objectid in a file system tree

3 Experiences with Invariants

The declarative approach allows the invariants in our runtime checker to match the pro-
grammer’s intent, enhancing our confidence in the correctness of the implementation.
The programmer can focus on pattern matching, without worrying about the correctness
of other code such as memory management. We share three examples illustrating the
benefits of a declarative approach over an imperative one.

Invariant 12, shown in Figure 4, can be simply stated as “If an inode is removed,
ensure that no objects with that inode number remain in the tree. If an item is added, and
it’s not an inode, verify that a corresponding inode exists.” The Datalog invariant reflects
this statement in two rules, each written in 4 lines. The corresponding implementation
in C consists of 45 lines, spread across several locations.

Declarative invariants also support rapid prototyping. The Btrfs directory metadata
includes Btrfs items that map the file name to an object id (i.e., inode number) and two
indexes for fast lookup and iterating over all entries; each inode stores back references
to all the directory entries pointing to it. The invariant that checks the consistency of
the directory entries, the indexes and the back references is complicated. Its C imple-
mentation is spread in 13 locations, 1 for initializing hash tables, 4 for initializing data
structures based on the different change records, and 8 for invariant checking based on
different hash tables. As our understanding of the invariant evolved, significant amounts
of the C code needed to be re-written. We found it simpler to reason about the invari-
ant in Datalog, and then reimplement the equivalent version in C. The final Datalog
invariant consists of 45 lines, while just the rewrite of the C invariant added 250 lines.

Fixing bugs in invariants is also easier in Datalog. Our original understanding was
that all the data extents in a file must be contiguous, however, we learned that Btrfs files
can have discontiguous extents beyond their logical file size. The fix for this invariant
required adding a single line of Datalog to check if the offset was less than the size. The
corresponding fix took roughly 20 lines (and several hours) to implement in C.

4 Conclusions

We have designed and implemented a declarative online file system checker for Btrfs,
a modern file system that supports a rich set of features. The most significant chal-
lenge lies in reasoning about the correctness of the checker in the face of arbitrary file
system corruption failures. A key takeaway is that the invariants should be expressed
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as concisely and intuitively as possible, using a declarative language such as Datalog.
The rest of the checker, such as the metadata interpretation, should then be designed
to support the invariants. This approach makes prototyping invariants and fixing bugs
easier, significantly enhancing our confidence in their correctness. We also identified
the need to check structural invariants before semantic invariants, so that arbitrary file
system structural violations are caught early, and the semantic invariants can depend on
the structural integrity of the file system.
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Abstract. Decentralized runtime monitoring involves a set of monitors
observing the behavior of system executions with respect to some cor-
rectness property. It is generally assumed that, as soon as a violation of
the property is revealed by any of the monitors at runtime, some recov-
ery code can be executed for bringing the system back to a legal state.
This implicitly assumes that each monitor produces a binary opinion,
true or false, and that the recovery code is launched as soon as one of
these opinions is equal to false. In this paper, we formally prove that, in a
failure-prone asynchronous computing model, there are correctness prop-
erties for which there is no such decentralized monitoring. We show that
there exist some properties which, in order to be monitored in a wait-
free decentralized manner, inherently require that the monitors produce
a number of opinions larger than two. More specifically, our main result
is that, for every k, 1 ≤ k ≤ n, there exists a property that requires
at least k opinions to be monitored by n monitors. We also present a
corresponding distributed monitor using at most k+1 opinions, showing
that our lower bound is nearly tight.

1 Introduction

Runtime verification is concerned with monitoring software and hardware sys-
tem executions. It is used after deployment of the system for ensuring reliability,
safety, and security, and for providing fault containment and recovery. Its es-
sential objective is to determine, at any point in time, whether the system is
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in a legal or illegal state, with respect to some specification. Consider a dis-
tributed system whose execution is observed by one or several monitors. Passing
messages to a central monitor at every event leads to severe communication
and computation overhead. Therefore, recent contributions [6,9,27] on runtime
verification of distributed systems focused on decentralized monitoring, where a
set of n monitors observe the behavior of the system. As soon as a violation of
the legality of the execution is revealed by any of these monitors at runtime,
recovery code can be executed for bringing the system back to a legal state. For
example, the recovery code can reboot the system, or release its resources. This
framework implicitly assumes that each monitor i produces a binary opinion
oi ∈ {true, false}, and that the recovery code is launched as soon as one of these
opinions is equal to false. In this paper, we formally prove that, in a crash-failure
prone asynchronous wait-free computing model [4], there are correctness prop-
erties for which such decentralized monitoring does not exist, even if we let the
number of opinions grow to an arbitrary constant k ≥ 2.

Let us consider the following motivating example arising often in practice [8],
of a system in which requests are sent by clients, and acknowledged by servers.
The system is in a legal state if and only if (1) all requests have been acknowl-
edged, and (2) every received acknowledgement corresponds to a previously sent
request. Each monitor i is aware of a subset Ri of requests that has been received
by the servers, and a subset Ai of acknowledgements that has been sent by the
servers. To verify legality of the system, each monitor i may communicate with
other monitors in order to produce some opinion oi. In the traditional setting
of decentralized monitoring mentioned in the previous paragraph, it is required
that the monitors produce opinions oi ∈ {true, false} such that, whenever the
system is not in a legal state, at least one monitor produces the opinion false.

In runtime monitoring, a correctness property is described by a formula in
some temporal logic. In this paper, we abstract away the logic, and directly spec-
ify the property by the set of legal configurations of the system, that we call a dis-
tributed language, denoted by L. For instance, in the request-acknowledgement
example above, L is the set of all configurations {(ri, ai), i ∈ I} such that
∪i∈I ri = ∪i∈I ai, where I ⊆ [1, n]. Indeed, this language is specifying that all
observed requests have been acknowledged, and every observed acknowledgement
corresponds to a previously sent request. The monitors must produce opinions
enabling to distinguish the legal configurations, i.e., those in L, from the illegal
ones. In order to make up their opinions, the monitors are able to communicate
among themselves, so that each monitor can potentially collect system observa-
tions of other monitors. Since we are mostly interested in lower bounds, we ask
very little from the monitors, and simply require that, for any pair (C,C′) of
configurations with C ∈ L and C′ /∈ L, the multiset of opinions produced by the
monitors given the legal configuration C must be different from the multiset of
opinions given the illegal configuration C′.

In the centralized setting, more than two logical values may be required to
avoid evaluating prematurely the correctness of a property that cannot be de-
cided solely based on a prefix of the execution, like request-acknowledgement.
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Hence [2,7] extended linear temporal logic (LTL) to logics with three values
(e.g., {true, false, inconclusive}). More recently, it was recognised [8] that even
three values are not sufficient to monitor some properties, and thus extensions
of LTL with four logical values (e.g., {true, false, probably true, probably false})
were introduced. In this paper we argue that, in an asynchronous failure-prone
decentralized setting, even four values may not be sufficient.

Our results. We consider decentralized monitoring in the wait-free setting [4].
(See Section 2 for details about this model, and for the reasons why we chose it).
Our main result is a lower bound on the number of opinions to be produced by a
runtime decentralized monitor in an asynchronous system where monitors may
crash. This lower bound depends solely on the language, i.e., on the correctness
property being monitored. More specifically, we prove that, for any positive
integer n, and for any k, 1 ≤ k ≤ n, there exists a distributed language requiring
monitors to produce at least k distinct opinions in a system with n monitors.
This result holds whatever the system does with the opinions produced by the
monitors. That is, our lower bound on the number of opinions is inherent to the
language itself — and not to the way the opinions are handled in order to launch
the recovery code to be executed in case the system misbehaves.

The number of opinions required to runtime monitor languages in a decen-
tralized manner is actually tightly connected to an intrinsic property of each
language: its alternation number. This parameter essentially captures the num-
ber of times a sequence of configurations of the system alternates between legal
and illegal. Our main result states that, for any k, 1 ≤ k ≤ n, there exists a
language with alternation number k which requires at least k opinions to be
monitored by n monitors. This bound is essentially tight, as we also design a
distributed monitor which, for any k, 1 ≤ k ≤ n, and any distributed language L
with alternation number k, monitors L using at most k + 1 opinions in systems
with n monitors.

Technically, in this paper, we establish a bridge between, on the one hand, run-
time verification, and, on the other hand, distributed computability. Thanks to
this bridge, we could prove our lower bound using arguments from (elementary)
algebraic topology. More specifically, our impossibility result for 2 opinions is
obtained using graph-connectivity techniques sharing similarities with the FLP
impossibility result for consensus [15], while our general impossibility result uses
higher-dimensional techniques similar to those used in set agreement impossibil-
ity results e.g. [22,23].

As far as we know, this paper is the first one studying necessary conditions
for monitoring distributed systems with failures.

Related work. The main focus in the literature is on sequential runtime verifica-
tion. The monitors are event-triggered [24], where every change in the state of
the system triggers the monitor for analysis. There is work also in time-triggered
monitoring [10], where the monitor samples the state of the program at regular
time intervals. Parallel monitoring has been addressed in [20] to some extent by
focusing on low-level memory architecture to facilitate communication between
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application and analysis threads. The concept of separating the monitor from
the monitored program is considered in, e.g., [28]. Later, [9] uses a specialized
parallel architecture (GPU), to implement runtime formal verification in a par-
allel fashion. Efficient automatic signaling monitoring in multi-core processors is
considered in [13].

Closer to our setting is decentralized monitoring. In sequential runtime veri-
fication one has to monitor the requirement based on a single behavioral trace,
assumed to be collected by some global observer. A central observer basically
resembles classical LTL monitoring. In contrast, in decentralized monitoring,
there are several partial behavioural traces, each one collected at a component
of the system. Intuitively, each trace corresponds to the view that the compo-
nent has of the execution. In decentralized LTL monitoring [6] a formula φ is
decomposed into local formulas, so monitor i evaluates locally φi, and emits
a boolean-valued opinion. In our terminology, an “and interpretation” is used.
That is, it is assumed a global violation can always be detected locally by a
process. In addition, it is assumed the set of local monitors communicate over
a synchronous bus with a global clock. The goal is to keep the communication
among monitors minimal. In [26] the focus is in monitoring safety properties
of a distributed program’s execution, also using an “and interpretation”. The
decentralized monitoring algorithm is based on formulae written in a variant of
past time LTL. For the specific case of relaxed memory models, [11] presents a
technique for monitoring that a program has no executions violating sequential
consistency. There is also work [19] that targets physically distributed systems,
but does not focus on distributed monitoring.

To the best of our knowledge, the effects of asynchrony and failures in a
decentralized monitoring setting were considered for the first time in [17]. We
extend this previous work in two ways. First, we remove the restriction that the
monitors can produce only two opinions. Second, [17] investigated applications
to locality, while here we extend the framework and adapt it to be able to apply
it to a more general decentralized monitoring setting.

Related work in the distributed computing literature includes seminal pa-
pers such as [12] for stable property detection in a failure-free message-passing
environment, and [5] for distributed program checking in the context of self-
stabilization.

Organization of this paper. The distributed system model is in Section 2. Dis-
tributed languages and wait-free monitoring are presented in Section 3. In Sec-
tion 4 we present the example of monitoring leader election. Our main result
is in Section 5. Its proof is presented in Section 6. We conclude the paper and
mention some open problems in Section 7. A full version [18] provides additional
details and all the proofs.

2 Distributed System Model

There are many possible computation and communication models for distributed
computation. Here we assume wait-free asynchronous processes that may fail by
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crashing, communicating by reading and writing a shared memory. This model
serves as a good basis to study distributed computability: results in this model can
often be extended to other popular models, such as when up to a fixed number of
processes can crash (in a dependent or independent way). Also, message-passing,
or various networkingmodels that limit direct process-to-process connectivity, are
essentially computationally equivalent or less powerful than shared memory. We
recall here the main features of the wait-free model, and refer to textbooks such
as [4] for a more detailed description, as well as for the relation to other distributed
computing models.

The asynchronous read/write shared memory model assumes a system con-
sisting of n asynchronous processes. Let [n] = {1, . . . , n}. We associate each
process to an integer in [n]. Each process runs at its own speed, that may vary
along with time, and the processes may fail by crashing (i.e., halt and never
recover). We consider wait-free distributed algorithms, in which a process never
“waits” for another process to produce some intermediate result. This is because
any number of processes may crash (and thus the expected result may never be
produced).

The processes communicate through a shared memory composed of atomic
registers, organised as an array of n single-writer/multiple-reader (SWMR) reg-
isters, one per process. Register i ∈ [n] supports the operation read() that re-
turns the value stored in the register, and can be executed by any process. It
also support de operation write(v) that writes the value v in the register, and
can be executed only by process i.

In our algorithms we use a snapshot operation by which a process can read all
n SWMR registers, in such a way that a snapshot returns a copy of all the values
that were simultaneously present in the shared memory at some point during the
execution of the snapshot operation (snapshots are linearizable). Snapshots can
be implemented by a wait-free algorithm (any number of processes may crash)
using only the array of n SWMR registers [1] (see also textbooks such as [25]).
Thus, we may assume snapshots are available to the processes, without loss of
generality. The algorithms are simplified, as well as the proofs of our theorems,
without modifying the outcomes of our results.

In a distributed algorithm each process starts with an input value, repeats a
loop N times, consisting of writing to its register, taking a snapshot and mak-
ing local computations1. At the end each process produces an output value. In
a step, a process performs an operation on the registers (i.e., writes or snap-
shots). A configuration completely describes the state of the system. That is,
a configuration specifies the state of each register as well as the local state of
each process. An execution is a (finite) sequence of alternating configurations
and steps, starting and ending in a configuration. A process participates in an
execution if it takes at least one step in the execution. We assume that the first
step of a process is a write, and it writes its input.

1 If the set of possible input values is finite, all processes may execute the loop the
same number of times, N (e.g. see [3]).
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3 Distributed Languages and Wait-Free Monitoring

3.1 Distributed Languages

Let A be an alphabet of symbols, representing the set of possible values produced
by some distributed algorithm to be monitored. Each process i ∈ [n] has a read-
only variable, inputi, initially equal to a symbol ⊥ (not in A), and where the
value to be monitored is deposited. We consider only the simplest scenario, where
these variables change only once, from the value ⊥, to a value in A. The goal
is for the processes to monitor that, collectively, the values deposited in these
variables are correct.

Formally, consider an execution C0, s1, C1, . . ., where each Ci is a configuration
and each si is a step (write or snapshot) by some process, and C0 is the initial
configuration where all SWMR registers are empty. We assume the first step by
a process i is to write its input, and is taken only once its variable inputi is
initialized to a value in A. Thus, s1 is a write step by some process.

The correctness specification to be monitored is usually stated as a global
predicate in some logic (e.g. [13,14]). We rephrase the predicate in terms of
what we call a distributed language. An instance over alphabet A (we may omit
A when clear from the context) is a set of pairs s = {(id1, a1), . . . , (idk, ak)},
where {id1, . . . , idk} ⊆ [n] are distinct process identities, and a1, . . . , ak are (not
necessarily distinct) elements of A. A distributed language L over the alphabet
A is a collection of instances over A. Given a language L, we say that an instance
s is legal if s ∈ L and illegal otherwise.

Let s = {(id1, a1), . . . , (idk, ak)} be an instance over A. We denote by ID(s)
the set of identities in s, ID(s) = {id1, . . . , idk}. The multiset of values in s is
denoted by val(s) (formally, a function that assigns to each a ∈ A a non-negative
integer specifying the number of times a is equal to one of the ai in s).

Note that an instance s can describe an assignment of values from A to the
input variables of a subset of processes. More precisely, consider an execution
C0, s1, C1, . . . , sk, Ck, k ≥ 1. Suppose the processes that have taken steps in
this execution are those in P , P ⊆ [n]. This execution defines the instance
s = {(id1, a1), . . . , (idk, ak)} over A, where ID(s) = P and ai is the first value
written by process idi. A configuration Ck also defines an instance, given by the
input variables of processes that have written at least once (from the local state
of a process, one can deduce if it has already executed a write operation).

An execution is correct if and only if its instance s is in L. If the execution is
correct, then processes in ID(s) have values as specified by the language (and the
other processes have not yet been assigned a value or may be slow in announcing
their values).

Consider for example the language req-ack, which captures a simplified ver-
sion of the request-acknowledgment problem mentioned in the introduction, in
which no more than q requests are sent by the clients. Requests and acknowledg-
ments are identified with integers in [q]. A process idi may know of some subset
of requests ri ⊆ [q], and some subset of acknowledgments ai ⊆ [q]. The language
req-ack over alphabet A = 2[q] × 2[q] is defined by instances s as follows
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s =
{
(id1, (r1, a1)), . . . , (idk, (rk, ak))

}
∈ req-ack ⇐⇒

⋃
1≤i≤k

ri =
⋃

1≤i≤k

ai.

For each process i, the sets ri and ai denote the (possibly empty) sets of requests
and acknowledgments, respectively, that process i is aware of. An instance is legal
if and only if every request has been acknowledged.

As another example, consider leader election, for which it is required that
one unique process be identified as the leader by all the other processes. This
requirement is captured by the language leader defined over A = [n] as follows:

s =
{
(id1, �1), . . . , (idk, �k)

}
∈ leader ⇐⇒ ∃i ∈ [k] : idi = �1 = · · · = �k. (1)

An instance is legal if and only if all the processes agree on the identity � of one
of them.

3.2 Decentralized Monitoring

Monitoring the correctness specified by a language L involves two components:
an opinion-maker M , and an interpretation μ. The opinion-maker is a dis-
tributed algorithm executed by the processes enabling each of them to produce
an individual opinion about the validity of the outputs of the system. We call
the processes running this algorithm monitors, and the (finite) set of possible
individual opinions U , the opinion set.

The interpretation μ specifies the way one should interpret the collection of
individual opinions produced by the monitors about the validity of the monitored
system. We use the minimal requirement that the opinions of the monitors should
be able to distinguish legal instances from illegal ones according to L. Consider
the set of all multi-sets over U , each one with at most n elements. Then μ =
(Y,N) is a partition of this set. Y is called the “yes” set, and N is called the
“no” set.

For instance, when U = {0, 1}, process may produce as an opinion either 0 or
1. Together, the processes produce a multi-set of at most n boolean values. We
do not consider which process produce which opinion, but we do consider how
many processes produce a given opinion. The partition produced by the and-
operator [17,16] is as follows. For every multi-set of opinions S, we set S ∈ Y if
every opinion in S is 1, otherwise, S ∈ N.

Given a language L over an alphabet A, a monitor for L is a pair (μ,M), as
follows.

– The opinion-maker M is a distributed wait-free algorithm that outputs an
opinion ui at every process i. The input of process i is any element ai of
A (assigned to its read-only variable inputi). Each process i is required to
produce an opinion ui such that: (1) every non-faulty process eventually
produces an output (termination), and (2) if process i outputs ui, then we
must have: ui ∈ U (validity).

– Consider any execution of M where all participating processes have decided
an opinion. If the instance s corresponding to the execution is legal, i.e.,
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s ∈ L, the monitors must produce a multiset of opinions S ∈ Y, and if the
instance s is illegal, i.e., s �∈ L, then they must produce a multiset of opinions
in N.

The paper focusses on the following question: given a distributed language L,
how many opinions are needed to monitor L?

3.3 Opinion and Alternation Numbers

As stated above, we are interested in the smallest size |U | of the opinion set
enabling the monitors, after the execution of some distributed algorithm, to
output opinions that distinguish legal instances from illegal ones. Hence, we
focus on the following parameter associated with every distributed language.

Definition 1 (Opinion number). Let L be a distributed language on n pro-
cesses. The opinion number of L is the smallest integer k for which there exists
a monitor (μ,M) for L using a set of at most k opinions. It is denoted by
#opinion(L).

As we shall see, there are monitors using a small number of opinions, inde-
pendent of the size of the alphabet used to define L, and depending only on the
number n of processes. The opinion number is shown to be related to a com-
binatorial property of languages, captured by the notion of alternation number.
Given a language L over the alphabet A, the alternation number of L is the
length of a longest increasing sequence of instances s1, . . . , sk with alternating
legality. More formally:

Definition 2 (Alternation number). Let L be a distributed language. The
alternation number of L is the largest integer k for which there exists instances
s1, . . . , sk such that, for every i, 1 ≤ i < k, si ⊂ si+1, and either (si ∈ L) ∧
(si+1 /∈ L) or (si /∈ L) ∧ (si+1 ∈ L). It is denoted by #altern(L).

Clearly, the alternation number is at most n since an instance has at most n
elements.

4 Monitoring Leader Election

As a warm up example, let us show that the language leader of Equation 1
can be monitored using three opinions, namely, that #opinion(leader) ≤ 3. To
establish this result, we describe a monitor for leader, called traffic-light. The
set of opinions consists of three values, namely {red, orange, green}. Recall that
the input of each process i ∈ [n] is a value �i where �i ∈ [n] is supposed to be
the identity of the leader. The opinion maker works as follows. Each monitor
i writes its identity and it own input �i in shared memory, and then reads the
whole memory with a snapshot operation. The snapshot returns a set of pairs,
si = {(idj , �j), j ∈ I} for some I, that includes the values written so far in the
memory. Recall that processes run asynchronously, hence a process may collect
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values from only a subset of all processes. Process i decides “green” if every
process in si agrees on the same leader, and the ID of the common leader is
the ID of one of the processes in si. Instead, if two or more processes in si have
distinct leaders, then process i decides “red”. In the somewhat “middle” case
in which every process in si agrees on the same leader (i.e., same ID), but the
ID of the common leader is not an ID of a process in si, then process i decides
“orange”.

More formally, the traffic-light opinion maker uses two procedures: “agree”
and “valid”. Given a set s = {(id1, �1),. . . , (idk, �k)} of pairs (idi, �i) ∈ [n]× [n],
agree(s) is true if and only if �i = �j for every i, j, 1 ≤ i, j ≤ k. For a same s,
valid(s) is true if and only if, for every �i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ k
such that idj = �i. Each process performs the pseudo-code below:

Opinion-maker at process p with input �:
write (ID(p), �) to p’s register ;
snapshot memory, to get s = {(id1, �1), . . . , (idk, �k)};
if agree(s) and valid(s) then decide “green”
else if agree(s) but not valid(s) then decide “orange” else decide “red”.

The interpretation of the opinions produced by the monitors is the following.
An opinion ui produced by process i is an element of the set U =
{green, orange, red}. The opinion-maker produces a multi-set u of opinions. We
define the yes-set Y as the set of all multi-sets u with no red elements, and at
least one green element. Hence, N is composed of all multi-sets u with at least
one red element, or with no green elements.

Now, one can easily check that the traffic-light monitor satisfies the desired
property. That is, for every set s = {(id1, �1), . . . , (idk, �k)} of pairs (idi, �i) ∈
[n]× [n], if u denotes the multi-set of opinions produced by the monitors, then
we have

s ∈ leader ⇐⇒ u ∈ Y.

Interestingly enough, one can prove that the language leader cannot be moni-
tored using fewer than three opinions. Namely,

Proposition 1. #opinion(leader) = 3.

Crucially, the fact that three opinions are required, and that, in particular,
the opinions true and false are not sufficient, is an inherent property of the
language leader, independently of the opinion-maker algorithm, and indepen-
dently of the interpretation of the opinions produced by the monitors. The lower
bound argument enabling to establish this result is not hard but uses a funda-
mental theorem about two-process read/write wait-free computation: the graph
of executions is connected (e.g. see [3]).

As we mentioned before, the number of opinions required to monitor a dis-
tributed language is strongly related to its alternation number. The sequence of
instances

s1 = {(1, 2)}, s2 = {(1, 2), (2, 2)}, and s3 = {(1, 2), (2, 2), (3, 3)}
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satisfies s1 ⊂ s2 ⊂ s3. Moreover s1 and s3 are illegal, while s2 is legal (as far
as leader is concerned). We thus infer that the alternation number of leader
is at least 3. In fact, it can be shown that its alternation number is exactly 3.
Namely,

Proposition 2. #altern(leader) = 3.

Intuitively, the alternation between legal and illegal instances forces the pro-
cesses to use three opinions. Given s1, process 1 may say that the instance is
“probably illegal” (orange), while, given s2, process 2 may say that the instance
is “potentially legal” (green). Only process 3, given s3, can declare that the in-
stance is “definitively illegal” (red), no matter the number of further processes
that may show up.

5 Main Result

In this section, we state our main result, that is, a lower bound on the number
of opinions needed to monitor languages with n monitors.

Theorem 1. For any n ≥ 1, and every k, 1 ≤ k < n, there exists a language L
on n processes, with alternation number k, that requires at least k opinions to be
monitored. For k = n, there exists a language L on n processes, with alternation
number n, that requires at least n+ 1 opinions to be monitored.

In other words, there are system properties which require a large number
of opinions to be monitored. Before dwelling into the details of the proof of
Theorem 1, we want to stress the fact that our lower bound is essentially the
best that can be achieved in term of alternation number. Indeed, Theorem 1 says
that, for every k, there exists a language L with alternation number k such that
#opinion(L) ≥ #altern(L). We show that this lower bound is essentially tight.
Indeed, we establish the existence of a universal monitor that can monitor all
distributed languages using a number of opinions equal roughly to the alternation
number. More specifically, we show that, for every k, and for every language L
with opinion number k, we have #opinion(L) ≤ #altern(L) + 1.

Theorem 2. There exists a monitor which, for every k ≥ 1, monitors every
language with alternation number k using at most k + 1 opinions.

Since the alternation number of a language on n processes is at most n,
Theorem 2 yields the following.

Corollary 1. There exists a monitor which, for every n ≥ 1, monitors every
language on n processes, using at most n + 1 opinions. Moreover, this monitor
uses at most k + 1 opinions for every execution in which at most k processes
participate.
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It is worth noticing that the monitor of Corollary 1 has an interpretation μ
which does not depend at all on the language to be monitored, not even on the
number of processes involved in the language. (The same holds for Theorem 2).
The opinion-maker (as well as the one for Theorem 2), does however depend on
the language, but only up to a limited extent. Indeed, the general structure of the
opinion-maker is independent of the language. It simply uses a black box that
returns whether s ∈ L for any instance s. Apart from this, the opinion-maker is
essentially independent of the language. In this sense it is universal.

The full proof of Theorem 2 is omitted for lack of space. The rest of the paper
is dedicated to describing the main ideas of the proof of our main result.

6 Orientation-Detection Tasks, and Proof of Theorem 1

To establish our lower bound, we show that the design of distributed runtime
monitors using few opinions is essentially equivalent to solving a specific type of
tasks, that we call orientation-detection tasks. This equivalence is made explicit
thanks to an equivalence lemma (Lemma 1). Introducing orientation-detection
tasks requires elementary notions of combinatorial topology.

6.1 Tasks and Combinatorial Topology Terminology

When solving a distributed task2, each process starts with a private input value
and has to eventually decide irrevocably on an output value. (In our setting,
the input value of a process is a symbol in a given alphabet A, and the output
value is an opinion). A process i ∈ [n] is initially not aware of the inputs of other
processes. Consider an execution where only a subset of k processes participate,
1 ≤ k ≤ n. These processes have distinct identities {id1, . . . , idk}, where for
every i ∈ [k], idi ∈ [n]. A set s = {(id1, x1), . . . , (idk, xk)} is used to denote the
input values, or output values, in the execution, where xi denotes the value of
the process with identity idi — either an input value (e.g., a symbol in a given
alphabet A), or a output value (e.g., an opinion).

The monitor task. An opinion-maker M for a language L on n processes with
opinion set U , and interpretation μ = (Y,N) is a distributed wait-free algorithm
that solves the followingmonitor task. Any instance over alphabet A is a possible
assignment of inputs in A to the processes. If process i has input ai ∈ A, then
i is required to produce as output an opinion ui ∈ U such that, in addition to
satisfying termination and validity, it also satisfy consistency, defined as follows.
Consider any execution, where I is the set of processes that do not crash, and
all others crash without taking any steps. Let s = {(idi, ai), i ∈ I}, and let
u = {ui, i ∈ I} denote the multiset of opinions that are eventually output by the
processes in I. We must have: s ∈ L ⇐⇒ u ∈ Y.

2 A task is the basic distributed computing problem, defined by a set of inputs to the
processes and for each input to the processes, a set of legal outputs of the processes
– see, e.g., [22].
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Simplices and complexes. Let s′ be a subset of a “full” set s = {(1, x1), . . . , (n, xn)},
i.e., a set s such that ID(s) = [n]. Since any number of processes can crash, all such
subsets s′ are of interest for taking into account executions where only processes
in ID(s′) participate. Therefore, the set of possible input sets forms a complex be-
cause its sets are closed under containment. Similarly, the set of possible output
sets also form a complex. Following the standard terminology of combinatorial
topology, the sets of a complex are called simplexes. Hence every set s′ as above
is a simplex.

More formally, a complex K is a set of vertices V (K), and a family of finite,
nonempty subsets of V (K), called simplexes, satisfying: (1) if v ∈ V (K) then {v}
is a simplex, and (2) if s is a simplex, so is every nonempty subset of s. The
dimension of a simplex s is |s| − 1, the dimension of K is the largest dimension
of its simplexes, and K is pure of dimension k if every simplex belongs to a k-
dimensional simplex. In distributed computing, the simplexes (and complexes)
are often chromatic, since each vertex v of a simplex is labeled with a distinct
process identity i ∈ [n].

A distributed task T is formally described by a triple (I,O, Δ) where I and
O are pure (n− 1)-dimensional complexes, and Δ is a map from I to the set of
non-empty sub-complexes of O, satisfying ID(t) ⊆ ID(s) for every t ∈ Δ(s). We
call I the input complex, and O the output complex. Intuitively, Δ specifies, for
every simplex s ∈ I, the valid outputs Δ(s) for the processes in ID(s) that may
participate in the computation. We assume that Δ is (sequentially) computable.

Given any finite set U and any integer n ≥ 1, we denote by complex(U, n) the
(n − 1)-dimensional pseudosphere [22] complex induced by U : for each i ∈ [n]
and each x ∈ U , there is a vertex labeled (i, x) in the vertex set of complex(U, n).
Moreover, u = {(id1, u1), . . . , (idk, uk)} is a simplex of complex(U, n) if and only
if u is properly colored with identities, that is idi �= idj for every 1 ≤ i < j ≤
k. In particular, complex({0, 1}, n) is (topologically equivalent) to the (n − 1)-
dimensional sphere. For u ∈ complex(U, n), we denote by val(u) the multiset
formed of all the values in U corresponding to the processes in u.

6.2 Orientation-Detection Tasks

An oriented complex 3 is a complex whose every simplex s is assigned a sign,
sign(s) ∈ {−1,+1}. Given an oriented input complex, J , a natural task con-
sists in computing distributively the sign of the actual input simplex. That is,
each process is assigned as input a vertex of V (J ), and the set of all the ver-
tices assigned to the processes forms a simplex s ∈ J . Ideally, one would like
that processes individually decide “yes” if the simplex is oriented +1 and “no”
otherwise. However, this is impossible in general because processes do not have
the same view of the execution, and any form of non-trivial agreement cannot
be solved in a wait-free manner [15]. Thus, we allow processes to express their
knowledge through values in some larger set U .

3 In the case of chromatic manifolds, our definition is equivalent to usual definition of
orientation in topology textbooks.
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Definition 3 (Orientation detection task). Let J be a (n− 1)-dimensional
oriented complex. A task T = (J ,U , Δ), with U = complex(U, n) for some set
U , is an orientation detection task for J if and only if for every two s, s′ ∈ J ,
and every t ∈ Δ(s) and t′ ∈ Δ(s′): sign(s) �= sign(s′) ⇒ val(t) �= val(t′).

Hence, to detect the orientation of a simplex s, the processes i, i ∈ I ⊆ [n],
occurring in a simplex s have to collectively decide a multiset val(t) = {val(i), i ∈
I} of values in U , where val(i) denotes the value decided by process i. If J is
non-trivially oriented, i.e., if there exist s, s′ ∈ J of the same dimension, with
sign(s) �= sign(s′), then no orientation-detection tasks for J exists with |U | = 1,
because one must be able to discriminate the different orientations of s and
s′. Instead, for every oriented complex J , there exists an orientation-detection
task for J with |U | = 2. To see why, consider the task T = (J ,U , Δ), where
U is the (n − 1)-dimensional sphere, and Δ maps every k-dimensional simplex
s ∈ J with sign(s) = −1 (resp., +1) to the k-dimensional simplex t ∈ U with
val(t) = {0, 0, . . . , 0} (resp., val(t) = {1, 1, . . . , 1}). However, this latter task is
not necessarily wait-free solvable (i.e., solvable in our context of asynchronous
distributed computing where any number of processes can crash). The complex-
ity of detecting the orientation of an oriented complex J is measured by the
smallest k for which there exists an orientation-detection task T = (J ,U , Δ)
that is wait-free solvable, with U = complex(U, n), and |U | = k.

In the next subsection, we show that the problem of finding the minimum-
size set U for detecting the orientation of an arbitrary given oriented complex
J is essentially equivalent to finding the minimum-size set of opinions U for
monitoring a language LJ induced by J (and its orientation).

6.3 Equivalence Lemma

This section shows that the notion of monitoring and the notion of orientation-
detection are essentially two sides of the same coin.

Let L be a n-process distributed language defined over an alphabet A. We
define JL = complex(n,A). That is, for every collection {a1, . . . , ak} of at most
k elements of A, 1 ≤ k ≤ n, and every k-subset {id1, . . . , idk} ⊆ [n] of distinct
identities, {(id1, a1), . . . , (idk, ak)} is a simplex in JL. Let us orient JL as follows.
For every simplex s ∈ JL, we define:

sign(s) =

{
+1 if s ∈ L;
−1 otherwise.

Conversely, let J be a well-formed oriented complex. We say that an oriented
complex J on n processes is well-formed if for every I ⊆ [n], there exists s, s′ ∈
J with ID(s) = ID(s′) = I and sign(s) = −sign(s′). We set LJ as the n-
process language defined over the alphabet A = {+1,−1}×V (J ). That is, each
element of A is a pair (σ, v) where σ is a sign in {+1,−1} and v a vertex of J .
The language LJ is the set of instances s = {(id1, (σ1, v1)), . . . , (idk, (σk, vk))}
specified as follows:

s ∈ LJ ⇐⇒
{

t = {(id1, v1), . . . , (idk, vk)} is a simplex of J ,
and sign(t) = σi for every i, 1 ≤ i ≤ k.
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That is, in a legal instance, each process is assigned a vertex of some simplex
t ∈ J together with the orientation of t.

We have now all ingredients to state formally the first main ingredient to-
ward establishing Theorem 1: the equivalence between language-monitoring and
orientation-detection.

Lemma 1 (Equivalence lemma)
• Let L be a n-process language. If there exists k ≥ 1 and a wait-free solvable
orientation-detection task for JL using values in some set of size k, then there
exists a monitor for L using at most k opinions.
• Let J be a well-formed oriented complex, and let k ≥ 1. If no orientation-
detection task for J is wait-free solvable using k values, then the language LJ
requires at least k + 1 opinions to be monitored.

The proof of Lemma 1 is omitted from this extended abstract. This lemma es-
tablishes an equivalence between wait-free solving orientation-detection tasks and
monitoring a language with few opinions. It can be shown that, in addition, this
lemma preserves alternation numbers in the following sense. The concept of alter-
nation number (for languages) can be similarly defined for oriented complexes: for
an oriented complex J , the alternation number of J is the length of a longest in-
creasing sequence of simplexes of J with alternating orientations. Formally:

Definition 4 (Alternation number of oriented complexes). Let J be an
oriented complex. The alternation number, #altern(J ), of J is the largest in-
teger k for which there exists s1, . . . , sk ∈ J such that, for every i, 1 ≤ i < k,
si ⊂ si+1 and sign(si) �= sign(si+1).

The equivalence established in Lemma 1 preserves alternation number as
stated by the following result.

Lemma 2. For every language L, and every well-formed oriented complex J ,
we have #altern(JL) = #altern(L) and #altern(LJ ) ≤ #altern(J ) + 1.

6.4 Sketch of the Proof of Theorem 1

Due to lack of space, we only sketch the proof of Theorem 1. We use the
correspondence between monitors and orientation-detection tasks as stated in
Lemma 1, and focus on orientation-detection tasks. Given k, 1 ≤ k < n, we care-
fully build an oriented complex J with alternation number k−1 and shows that
any orientation-detection task with input complex J cannot be solved wait-free
with k − 1 values or less. Therefore, by the equivalence Lemma (Lemma 1),
the language LJ induced by J requires at least k values to be monitored. To
complete the proof, we establish that the alternation number of LJ satisfies
#altern(LJ ) = #altern(J ) + 1 = k. (The case k = n is similar, except that we
construct J with alternation number n, and #altern(LJ ) = #altern(J ).).

The main challenge lies in constructing, and orienting the complex J in such
a way that no orientation-detection task with input J is wait-free solvable with
less than k values. One important ingredient in the proof is an adaptation of
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Sperner’s Lemma to our setting. To get an idea of how the proof proceeds,
consider a �-dimensional simplex s ∈ J whose all (�− 1)-dimensional simplexes
have sign −1, but one which has sign +1. Assume moreover that � values only
are used to encode the signs of these faces. Recall that any wait-free distributed
algorithm induces a mapping from a subdivision of the input complex to the
output complex [23]. By Sperner’s Lemma, we prove that, whatever the opinion-
maker does, at least one �-dimensional simplex s′ resulting from the subdivision
of s satisfies |val(s′)| = � + 1. That is, � + 1 values are used to determine the
orientation of s, for every monitor (μ,M). In the full paper we describe the many
details omitted here, that are behind this intuition. ��

7 Conclusions and Future Work

We investigated the minimum number of opinions needed for runtime monitor-
ing in an asynchronous distributed system where any number of processes may
crash. We considered the simplest case, where each process outputs a single value
just once, and the monitors verify that the values collectively satisfy a given cor-
rectness condition. A correctness condition is specified by a collection of legal
sets of these values, that may occur in an execution. Each monitor expresses its
opinion about the correctness of the set of outputs, based on its local perspec-
tive of the execution. We proved lower bounds on the number of opinions, and
presented distributed monitors with nearly the same number of opinions.

Many avenues remain open for future research. Itwould be interesting to derive a
temporal logic framework that corresponds to ours, and that associates to opinions
a formal meaning in the logic. In our setting the processes produce just one output
and the monitors must verify that, collectively, the set of outputs produced is cor-
rect. It would of course be interesting to extend our results to the case where each
process produces a sequence of output values. Also, opinions are anonymous. The
interpretation specifies which multisets of opinions indicate a violation, indepen-
dently of the identities of the monitors that output them.We do not knowwhether
or not taking into account the identities would help reducing the total number of
opinions needed. Finally, it would be interesting to extend our results to othermod-
els, such as t-resilient models in which not more than t processes may fail.
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Abstract. Wireless sensor networks (“sensornets”) are highly
distributed and concurrent, with program actions bound to external
stimuli. They exemplify a system class known as reactive systems, which
comprise execution units that have “hidden” layers of control flow. A
key obstacle in enabling reactive system developers to rigorously validate
their implementations has been the absence of precise software compo-
nent specifications and tools to assist in leveraging those specifications at
runtime. We address this obstacle in three ways: (i) We describe a speci-
fication approach tailored for reactive environments and demonstrate its
application in the context of sensornets. (ii) We describe the design and
implementation of extensions to the popular nesC tool-chain that enable
the expression of these specifications and automate the generation of
runtime monitors that signal violations, if any. (iii) Finally, we apply the
specification approach to a significant collection of the most commonly
used software components in the TinyOS distribution and analyze the
overhead involved in monitoring their correctness.

1 Introduction

In software development, there is a behavioral spectrum that runs from purely
synchronous to purely asynchronous. A purely synchronous system contains a
single thread of control, typically originating from main(). Traditional component-
based specification and validation strategies were designed with these systems
in mind and have proven to be effective in ensuring application correctness.
Toward the middle of this spectrum are the more common applications, com-
prising multiple threads that communicate through narrow interfaces, or through
a small set of shared variables, essentially forming a collection of synchronous,
semi-independent activities. In this context, component-based specification and
validation mechanisms begin to break down; they were not designed to handle
frame property violations originating from outside the main control thread. At
the far end of the spectrum, in the presence of pure asynchrony, component-based
specification and validation mechanisms break down entirely.
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A reactive system is one in which an invocation sequence may originate from
outside the main thread of control (e.g., main()). Such systems are increasingly
important, particularly in the context of embedded applications, which tend to
spend much of their time in a reduced power state to conserve energy, waking in
response to internal and external interrupts. We focus on the rigorous character-
ization and validation of such systems. The discussion is presented in the context
of nesC [12], a component-based dialect of the C programming language, using
examples from the TinyOS [14] distribution, the most popular operating system
(library) of its kind for building wireless sensor network systems. However, the
basic principles of the runtime verification approach are applicable to a range
of languages and systems, including standard event-based systems developed in
Java, and interrupt-based systems developed in other embedded C dialects.

Reactive systems often depend on external stimuli, e.g., from an attached
sensor or control system. These systems are commonly implemented using an
event-driven programming style, encoding the application’s behavior in the form
of a state machine, with actions tied to each state. The transitions among these
states are initiated internally by the application, as well as through external
signals. In this style of expression, all concurrent behaviors are explicit. So while
well-suited to accommodating interrupt behavior, it poses a significant burden in
terms of program understanding. Program logic is partitioned into disjoint units
that are often textually distant; the state shared among these units must be
managed manually, including control flow state [2]. Not only are these programs
more difficult to understand, the transition from synchrony to asynchrony pre-
cludes the application of contract-based specification and validation mechanisms
— arguably the most powerful tools for ensuring program correctness.

Contract specifications [23] have proven valuable for developing and validat-
ing component-based software. Unfortunately, pre- and post-conditions do not
support the encoding of event semantics, which dictate properties on the call
sequence of an execution. Without encoding call sequence properties, the con-
tracts are not as useful; the pre- and post-conditions need to be contextualized
by when a particular method invocation must occur. The latest attempt at defin-
ing interface contracts for TinyOS components suffers this same limitation [3].
The contracts do not preserve the timing context of method calls, offer little
abstraction, and leave virtually no implementation freedom.

We use the concept of a trace to specify reactive behavior in a precise man-
ner. Given the high degree of expressivity of trace variables, this may not be
surprising (though our approach is novel). Here is the surprising part: The trace
—traditionally viewed as a brute-force, heavy-weight mechanism— can be used
to specify reactive behavior in a manner that is both concise and accessible.
Using the trace construct, we define the notion of a promise that an operation
makes about its future behavior. This promise, captured in a specialized promises
clause, accompanies traditional pre- and post-conditions in the contract.

There has been extensive work in runtime validation using various temporal
logics and associated tools. Despite their expressive power, there is little evi-
dence of programmer adoption. The contributions of this paper are of an applied
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nature, serving as a bridge from the theoretical programming languages commu-
nity to a popular programming domain. The goal is to provide a practical toolset,
both in terms of language extensions and supporting software tools, to enable
practitioners to make use of temporal concepts. Our specification approach is
to recast traditional temporal specifications as time-indexed state vectors, and
to introduce suitable language notations to integrate the resulting conditions as
part of state-based pre- and post-conditions. The supporting tools check these
conditions to the extent possible.

To support the use of promises in sensornet development, we extend the nesC
tool-chain to accommodate an optional promises clause as part of a method’s
signature. At compile-time, the promises are used to generate runtime monitors
that are woven throughout the resulting application image. If a promise is vio-
lated, the monitors signal the violation, notifying the developer, and potentially
triggering corrective measures. We describe the design and implementation of
the tool-chain extensions and demonstrate their use across a significant set of
commonly used components within the TinyOS distribution. Finally, we present
a detailed analysis of the runtime overhead these extensions introduce and show
that the overhead is modest in most cases.

2 TinyOS and nesC

TinyOS [14] is a software component library designed for constructing sensornets.
The components and the programs which use them are written in nesC [12], a
dialect of C that supports component-oriented, event-driven programming.

A nesC program consists of interfaces and modules. A nesC interface is anal-
ogous to a Java interface and defines the command signatures that must be
provided by implementations of that interface. An interface may additionally
define one or more events that will be signaled by an implementation. An event
declaration defines the signature of its callback handler.

A nesC module defines a set of interfaces provided by the component, and
a set of interfaces used by the component. The module is then responsible for
implementing the commands that it provides and relies on the commands that
it uses to satisfy those implementations. The module is also responsible for im-
plementing the events (i.e., handlers) defined by the interfaces that it uses.

Long-running operations in TinyOS are implemented as split-phase opera-
tions. In the first phase, the component that initiates the operation (e.g., sending
a message) calls a command to initiate the operation (send()). The component
that receives the command immediately returns control to the caller after regis-
tering the request. This prevents the processor from blocking, allowing the caller
to continue execution. At a later point, when the operation has completed, an
event is signaled (e.g., sendDone(), originating from interrupt context) to the
calling component notifying it of the completion of the split-phase operation.
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3 The Specification Approach

1 interface Timer {
2 modeled by: (active: boolean, period: nat number)
3 initial state: (false, 0)
4 command void start(uint32_t delay);
5 command void stop();
6 event void fired();
7 }

Consider the Timer interface shown above. The interface provides commands
to start and stop a timer, and an event that serves as the timer’s periodic signal.
A component using this interface can start a timer, with the expectation that
when delay time units have elapsed, the fired() event will be signaled. Using
simple state predicates, a first spec attempt might look as follows (based on [3]):

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay

While the spec captures the state change induced by the call to start(), it
does not capture the most important impact of the call — at a future time (i.e.,
delay time units later), the fired() event will be signaled. Using a temporal
specification to capture this liveness property, a second attempt might look like:

1 start() � fired()

But such temporal specifications do not coexist well with state contracts, com-
promising compositional reasoning [18]. The desired goal is to express the direct
relationship between the call to start() and the signaling of fired(). To do
so, we introduce our main specification mechanism — namely, fτ , pronounced
“future trace” of execution. The future trace of a component is the sequence of
method footprints (both incoming and outgoing) that the component will ulti-
mately participate in. Using fτ , we can make an assertion that as a result of the
call to start(), the fired() event will be signaled in the future. To simplify the
expression of assertions defined over fτ , we introduce two predicates, CallAt()
and CallBet():

1 CallAt(source, target,method, time) ≡
2 (fτ [time].s = source) ∧ (fτ [time].t = target) ∧ (fτ [time].m = method)

CallAt() is true if the source object places a call to the method body provided
by the target object at the specified time, where time is defined as an index into fτ .

1 CallBet(source, target,method, lb, ub) ≡
2 ( ∃ft : lb < time < ub :
3 (fτ [time].s = source) ∧ (fτ [time].t = target) ∧ (fτ [time].m = method) )

CallBet() evaluates to true iff the call occurs within a specified window,
given by lower-bound lb, and upper-bound ub, again defined as indices into fτ .
When applying these predicates, we often wish to disregard the source and/or
target clauses. Rather than introducing additional predicates, we introduce the
special object value −, indicating “don’t care”; object = − evaluates to true for
all object values. With these definitions in place, consider a third attempt at
specifying Timer.start():
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1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay ∧ CallBet(self,−,fired, now,∞)

The last conjunct states that at some time in the future (i.e., after the current
time, now), a fired event will be signaled. Now let us consider the rest of the
interface. The stop() command stops an active timer. In terms of fτ , the com-
mand guarantees that there is no fired() signal in the future, between current
time and the “end” of time.

1 command void stop();
2 requires: self.active
3 ensures: !self.active ∧ self.period = 0 ∧ ¬CallBet(self,−,fired, now,∞)

While individually meaningful, the specifications miss a key relationship be-
tween the two commands. In the case of start(), the method can guarantee a
fired() event in fτ only if there is no call to stop() in the intervening dura-
tion. Similarly, a call to start(), after a call to stop() will, in fact, introduce
a fired() event in fτ . Accounting for this in the specifications of start() and
stop() results in this next attempt:

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay ∧
4 ∃i : now < i : [CallAt(−,self,stop, i) ∧ ¬CallBet(self,−,fired, i,∞)] ∨
5 [¬CallBet(−,self,stop, now, i) ∧ CallAt(self,−,fired, i)]
6 command void stop();
7 requires: self.active
8 ensures: !self.active ∧ self.period = 0 ∧
9 ∀i : now < i : CallAt(self,−,fired, i) =⇒ CallBet(−,self,start, now, i)

While improved, the specifications are no longer independent. A post-condition
is intended to capture only what is true about the component upon successful
termination. The last conjunct in each post-condition is a predicate on the future
behavior of the component. One way of addressing this is to elevate predicates
on fτ to an invariant on the component, succinctly capturing all correct inter-
leavings of command invocations. Each command specification then refers only
to the corresponding command, independent of other commands. The invariant
for the Timer interface is as follows:

1 ∀i : [[CallAt(−,self,start, i)
2 =⇒ ∃j : i < j : CallAt(self,−,fired, j) ∨ CallBet(−,self,stop, i, j)] ∧
3 [CallAt(self,−,fired, i)
4 =⇒ ∃h : h < i : CallAt(−,self,start, h) ∧ ¬CallBet(−,self,stop, h, i)]]

The first conjunct states that each call to start() results in a future call to
fired(), or there is an interleaving call to stop(). The second conjunct states
that every call to fired() must have been preceded by a call to start(), and
there must have been no interleaving call to stop(). Given this invariant, the
command contracts can again be expressed as simple state assertions on the
abstract model. However, the split-phase correspondence between start() and
stop() is left implicit. This is a useful relationship for developers, one that can
be captured with a new promises clause.

The promises clause defines an obligation that a component must meet at
some point after termination of the current command. It is the dual of the
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expects clause [18], which describes the obligations that a component expects
clients to meet after successful termination of an operation. The key difference
between expects and promises is in the “direction” of the deferred method call.

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired()

Operationally, in addition to the control-flow context and variable values in
each state of the program, each component maintains a promise set – a set of
actions that it has promised to other components. For example, upon successful
termination of the start() method, the Timer component promises to signal
fired() on the caller. The complete specification of Timer is as follows:

1 interface Timer {
2 modeled by: (active: boolean, period: nat number)
3 initial state: (false, 0)
4 maintains:
5 ...invariant clause presented above...
6 command void start(uint32_t delay);
7 requires: !self.active
8 ensures: self.active ∧ self.period = delay
9 promises: signal caller.fired()
10 command void stop();
11 requires: self.active
12 ensures: !self.active ∧ self.period = 0
13 event void fired();
14 requires: self.active
15 ensures: !self.active ∧ self.period = delay
16 }

The promises clause on start() specifies both halves of the split-phase op-
eration, adding significant reasoning value for client programmers. Consider a
program that invokes foo(), followed, after a delay of 1000 time units, by bar():

1 void op1() { foo(); call Timer.start(1000); }
2 ...
3 event void Timer.fired() { bar(); }

After calling foo(), op1() starts a timer and terminates. The call to bar()
appears within the event handler of fired(). Without the promises clause, there
is no indication of where program control will continue once the timer expires.

3.1 The Invariant as an Idiom

The invariant on the future trace has broad applicability in reactive program-
ming. In nesC, the invariant serves as an idiom for specifying interfaces that con-
tain a split-phase operation started by SPOpStart() and completed by SPOpDone();
and contain an operation cancelSPOp(), used to cancel an operation after it has
been initiated. The invariant idiom for such a component is:

1 ∀i : [[CallAt(−,self,SPOpStart, i)
2 =⇒ ∃j : i < j : CallAt(self,−,SPOpDone, j) ∨ CallBet(−,self,SPOpCancel, i, j)] ∧
3 [CallAt(self,−,SPOpDone, i)
4 =⇒ ∃h : h < i : CallAt(−,self,SPOpStart, h) ∧ ¬CallBet(−,self,SPOpCancel, h, i)]]
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The structure mirrors the “instantiated” invariant for the Timer interface. As
another example, consider applying the idiom to the Send interface in TinyOS,
used to send wireless messages in a network. The idiom correspondence is as fol-
lows: send() corresponds to SPOpStart(), sendDone() corresponds to SPOpDone(),
and cancel() corresponds to cancelSPOp(). Combining the instantiated specifi-
cation idiom with the usual state predicates yields the following specification:

1 interface Send {
2 modeled by: (active: boolean, message: string)
3 initialization ensures: (false, <>)
4 maintains:
5 ...instantiated invariant...
6 command error_t send(message_t* msg, uint8_t len);
7 requires: !self.active
8 ensures: self.active ∧ self.message = #msg
9 promises: signal caller.sendDone()
10 command error_t cancel(message_t* msg);
11 ...standard state conditions...
12 event void sendDone(message_t* msg);
13 ...standard state conditions...
14 }

3.2 Refining Promises

Conditional Promise. Consider the Send interface. When send() is invoked, the
message to be sent is placed in an outgoing buffer. If this step completes, send()
returns SUCCESS; otherwise, it returns FAIL. The return value communicates to
the client that sendDone() will be signaled only if the message is successfully
scheduled for transmission. Accordingly, we modify the specification of send():

1 command error_t send(message_t* msg, uint8_t len);
2 requires: !self.active
3 ensures: self.active ∧ self.message = #msg
4 promises: (retval == SUCCESS) =⇒ signal caller.sendDone()

Conditional promises, which allow for a promise to be made contingent on a
state assertion, are a specialization of the basic idiom. The basic idiom assumes
that commands always complete in a state that guarantees the promise. Condi-
tional promises can be used in cases where such an assumption is unrealistic.

Timed Promise. It is often useful to specify when invocations must occur. Con-
sider again the Timer interface. When a timer is started, it is not enough to
promise that fired() will eventually be signaled. It is also necessary to state
that the event will be signaled after delay time. We can strengthen the specifi-
cation of start() as follows:

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired() within delay

Repeat Promise. In some cases, a single split-phase SPOpStart() can lead to
multiple event signals. Consider, for example, a periodic timer. In such cases,
the promises clause includes the repeat keyword, signifying that the event will
be signaled continuously until the cancel operation is called by the client. We
can specify the start of a periodic timer using a repeat promise as follows:
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1 command void startPeriodic(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired() within delay repeat

Notice here that the promise includes both a time limit and a repeat condition.
In practice, most promises have multiple refinement annotations.

4 nesC / TinyOS Tool-Chain Extensions

To assist developers use our approach, we have developed extensions to the nesC
compiler . Specifically, we have extended the nesC parser to accommodate a vari-
ation on the specification syntax introduced in the previous sections. Further, we
have modified the compiler to enable the generation of runtime monitoring logic
used to detect promise violations. This logic is automatically woven throughout
the source base, if requested. For our case studies, we target a significant subset
of the components and applications included in the TinyOS 2.1.1 distribution.

4.1 Annotations

To support promises, we introduce command-level annotations within the nesC
interface grammar. When specifying that a given command issues a promise,
the developer introduces the following annotation on the event signature, where
the <event> parameter specifies the signature of the event to be invoked in the
future: @promises <event>

To support refined promises, three subordinate annotations (applied beneath
the root @promises annotation) are introduced. The first is used to support a
conditional promise; it imposes a condition on the return value of the initiating
command. A <condition> clause specifies a value to compare against the initi-
ating command’s return value. Only if these values match is a promise made:
@condition <condition>

The second subordinate annotation supports timed promises. The annotation
specifies that the promised event will be invoked within <p> time units, where
the unit of measure is (at present) specified at compile time: @within <p>

The final subordinate annotation supports repeat promises. This annotation
accepts no parameters and specifies that the promised event will be invoked
repeatedly: @repeat

Consider the application of these annotations in specifying the behavior of
the SplitControl power management interface in TinyOS. The interface has two
commands, start() and stop(), with two corresponding events, startDone() and
stopDone(). The start()/ startDone() operation is used to initialize a peripheral,
while the stop()/stopDone() operation is used to put a peripheral into a low-
power state. The commands, return codes, and events have the usual meanings.
The annotated signature of start() is:

1 // @promises startDone
2 // @condition SUCCESS
3 command error_t start();
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Table 1. Annotated TinyOS 2.1.1 Interfaces

Interface Command Promised Event Periodicity Timed Condition

Send send sendDone singleton NO SUCCESS
AMSend send sendDone singleton NO SUCCESS

CC2420Config sync syncDone singleton NO SUCCESS
Tcp connect connectDone singleton NO SUCCESS

Mount mount mountDone singleton NO SUCCESS
Read read readDone singleton NO SUCCESS

ReadStream
postBuffer bufferDone singleton NO SUCCESS

read readDone singleton NO SUCCESS

SplitControl
start startDone singleton NO SUCCESS
stop stopDone singleton NO SUCCESS

Timer
startOneShot fired singleton YES (none)
startPeriodic fired repeat YES (none)

ConfigStorage
read readDone singleton NO SUCCESS
write writeDone singleton NO SUCCESS

commit commitDone singleton NO SUCCESS

LogWrite
append appendDone singleton NO SUCCESS
erase eraseDone singleton NO SUCCESS
sync syncDone singleton NO SUCCESS

LogRead
read readDone singleton NO SUCCESS
seek seekDone singleton NO SUCCESS

Next recall the Timer interface. This interface includes a command
startPeriodic(), which makes a promise that the event fired() will be invoked
repeatedly, with a period specified as argument. The command does not return
a value, so the promise is unconditional. Here is the annotated signature of
startPeriodic():

1 // @promises fired
2 // @within dt
3 // @repeat
4 command void startPeriodic(uint32_t dt);

These are demonstrative examples. We have annotated all of the core inter-
faces in TinyOS 2.1.1 to specify the appropriate promises (Table 1).

4.2 Overhead Evaluation

To use the PromiseTracker tool with TinyOS applications, we recompiled all of
the constituent applications to use the annotated interfaces and corresponding
runtime monitors. The number and types of promises introduced in each ap-
plication are summarized in Table 2a. Each application is intended to illustrate
only one or two TinyOS concepts. As such, each application uses a small number
of split-phase operations. Table 2b shows the overhead introduced by Promise-
Tracker. In absolute terms, the overhead is nearly the same in each application.

To evaluate PromiseTracker in a realistic scenario, we instrumented a com-
mon spanning tree data collection protocol. Upon deployment, the nodes in the
network organize themselves into a spanning tree, with the base-station at the
root of the tree. All nodes collect data from their sensors and transmit the data
up the tree toward the root. When instrumented with PromiseTracker, the span-
ning tree protocol uses a total of 30 promises and nearly all of the core interfaces
in TinyOS. In terms of overhead, RAM usage increased by 33% (from 1,612b to
2,138b), and ROM usage increased by 13% (from 35,404b to 40,130b).
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Table 2. TinyOS Evaluation Results

(a) Number of Clauses Introduced

Application
Number of Promises

single
basic

single
timed

repeat
timed

Blink 0 0 3
BaseStation 4 0 0
MultihopOscilloscope 5 0 1
MultihopOscilloscopeLqi 5 0 1
MViz 5 0 2
Oscilloscope 3 0 1
PowerUp 0 0 0
RadioSenseToLeds 3 0 1
RadioCountToLeds 3 0 1
Sense 1 0 1

(b) Application Sizes After Injection

Application
Memory Overhead

RAM (bytes)/ROM (bytes)/
overhead (%) overhead (%)

Blink 672 / 92% 10260 / 74%
BaseStation 2111 / 16% 18696 / 16%
MultihopOscilloscope 3947 / 9% 34716 / 10%
MultihopOscilloscopeLqi 3030 / 12% 30604 / 12%
MViz 2176 / 18% 38814 / 10%
Oscilloscope 1020 / 56% 24948 / 30%
PowerUp 560 / 99% 7032 / 79%
RadioSenseToLeds 990 / 58% 24890 / 30%
RadioCountToLeds 902 / 64% 19736 / 39%
Sense 696 / 83% 15480 / 48%

file search operation 
search

promise 
search

code 
regeneration

code 
injection

Fig. 1. Monitor Generation Process

4.3 Monitoring Promises at Runtime

The runtime monitoring logic generated by PromiseTracker is automatically wo-
ven into a target system image to detect and report violations at runtime. This
is useful either as a debugging aid or as the foundation for fault recovery.

A summary of the monitor generation process is shown in Figure 1. The first
step is the file search, which mirrors the behavior of the nesC make system. The
project makefile is parsed to identify the top-level component, which is then
parsed using the nesC Analysis and Instrumentation Toolkit [10] to identify all
implementation modules linked (transitively) from the top-level component.

The next step, the operation search, is the most compute-intensive. All of the
implementation modules identified in the previous step are parsed and analyzed.
This yields three hash-tables containing information about all of the interfaces
used in the target application, all of the commands invoked, and all of the events
signaled, respectively.

At this point, the promise search, a second-level parse is performed on each of
the interfaces identified in the previous step. For each command invoked in the
application, the corresponding declaration in the interface is examined to deter-
mine whether there are associated promise annotations. If so, the annotations
associated with the command are added to the information contained within the
command hash-table.

Next, the code injection step is performed, which introduces the runtime moni-
toring logic. The most basic component of this step is the introduction of support
components and data structures to record pending and failed promises. In addi-
tion, for each annotated command invoked in the application, instrumentation
is introduced at the call site to capture the (perhaps conditional) promise being
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made. Similarly, the corresponding <event> specified in the promises annotation
is instrumented to capture the attempt to satisfy the promise.

Finally, the code regeneration step is performed to generate augmented nesC
source materials ready for compilation and installation on the target device(s).

Implementation Details. The PromiseTracker interface lies at the core of the
system. The interface provides commands to register new promises, flag that
particular promises have been satisfied, and check for pending promises. An
implementation of this interface is linked into every monitored application. This
single instance is shared across all module implementations that invoke methods
involving a promise.

During code analysis, each call site involving a command that establishes a
promise is identified. To differentiate these promises and monitor their correct-
ness over time, the analysis stage assigns a unique identifier to each promise, a
promiseID. The identifier serves as an index into an array that stores informa-
tion about each promise. The data structure used to store information about an
unbounded promise is as follows:

1 struct UnboundedPromise { uint8_t state; }

UnboundedPromise defines a single field, state, used to record the current state
of the promise. There are only two possibilities, PENDING and SUCCESS. The first
indicates that a promise of future behavior has been made. The latter indicates
that there is no pending promise. It is interesting to note that these are the
only two states required since an unbounded promise can never be violated in
a finite prefix of a computation. However, recording unbounded promises at the
time they are made and keeping a tally of unfulfilled promises is a valuable tool
for system developers. This class of problems (unfulfilled promises) represents a
large class of errors in embedded networked systems; the identification of where
these errors originate is useful. The data structure used to store information
about a timed promise is as follows:

1 struct TimeBoundedPromise {
2 bool repeat; uint8_t state;
3 uint32_t timeConstraint, startTime; }

TimeBoundedPromise defines four fields. The first, repeat, is a boolean that
records whether the promise is a repeat promise. The second, timeConstraint,
stores the time constraint, <p>, specified as part of the @within annotation. The
third, startTime, stores the time at which the promise obligation was registered.
(Comparing the current system time to startTime and timeConstraint is per-
formed to detect timing failures.) Finally, the state field records the current
state of the promise. As before, a promise may be in the PENDING or SUCCESS
state. In addition, a timed promise may be in the MARKED or FAIL states. When a
promise is MARKED, it indicates that the specified future event has been signaled,
but the timing has not yet been checked. The FAIL state indicates that a promise
of future behavior was not satisfied within the specified time limit.

The essential elements of the PromiseTracker interface are: makePromise(),
markPromise(), and checkPromise(). Calls to these methods are inserted
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Fig. 4. Repeat, Timed Tracking

automatically during the instrumentation process. When a command that in-
cludes a promises clause is invoked, makePromise() is called to register the promise
of future behavior. Note that if the promise is a conditional promise, the re-
turn value of the command is compared to the <condition> specified in the
@condition annotation; makePromise() is not called if there is a mismatch. The
call results in the corresponding promise being marked as PENDING. Similarly, a
call to markPromise() is introduced in the corresponding event. In the case of an
unbounded promise, the call results in the promise state being set to SUCCESS.
In the case of a timed promise, the state is set to MARKED. The complete lifecycle
of an unbounded promise is illustrated in Figure 2.

The lifecycle of a singleton, timed promise is more complicated, as shown in
Figure 3. The call to markPromise() is not the end of the lifecycle; an additional
step remains. Specifically, the monitoring logic must check whether the promise
was satisfied within its deadline. This is done using the checkPromise() method.
At the time the promise was made, makePromise() initiates a timer with a period
equal to the specified promise deadline. When the timer fires, checkPromise() is
invoked. If checkPromise() finds the promise in the PENDING state, it means the
promise has not been kept, and therefore, the deadline has not been met. If the
state is MARKED, it means the promised event has already been signaled within
the deadline. For singleton, timed promises, if the deadline is met properly, the
promise is marked SUCCESS, otherwise it is marked FAIL.

The lifecycle of a repeat, timed promise is similar, as shown in Figure 4. This
type of promise is also examined by checkPromise() when the deadline timer
expires. If the promised event has been signaled by the deadline (MARKED), the
promise is returned to the PENDING state to wait for the next promised event. If
the promised event has not yet been signaled (PENDING), the promise has been
violated and is marked FAIL.
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4.4 Using PromiseTracker during Development

Once interfaces have been annotated using promises clauses to establish links
between commands and events, the PromiseTracker tool can be used as a de-
bugging aid during development. When a developer chooses to use a particular
interface, the promises provide a better understanding of command and event
behaviors. During the development cycle, the developer can use PromiseTracker
to identify the promises that have been made, and to inject code to monitor these
promises. At any point during execution, the developer can query the state of
all promises in the system. Errors involving promise violations are notoriously
difficult to identify using traditional debugging methods. The capability that
PromiseTracker affords in tracking the status of each promise provides value to
developers, making the development process more predictable.

5 Related Work

Specification techniques for reactive systems usually include explicit statements
of safety and progress properties. Popular specification languages such as UNITY
[6] and TLA [19] model concurrency using nondeterministic interleaving of ac-
tions. Other major approaches to capturing concurrent behavior include rely-
guarantee [1,15,29], hypothesis-conclusion [6], and assumption-commitment [8].
All these techniques suffer from a similar problem; they do not map well to
procedural languages.

Contract specifications [23] map well to procedural code, and [18] presents
techniques to capture concurrent behavior in contracts. The promises clause we
have presented is a dual to the expects clause presented in [18]. Contract spec-
ifications have been written for TinyOS before [3]; however, these contracts do
not capture the reactive nature of the components. In particular, these contracts
do not capture the relationship between the halves of a split-phase operation.

Others have worked on capturing the behavior of TinyOS applications. [17]
presents a technique to automatically derive state machines from TinyOS pro-
grams. They use symbolic execution to infer the execution trace of an applica-
tion, and based on this trace, to construct a finite state machine that represents
the behavior of the program. There has also been work in runtime monitor-
ing of TinyOS applications [13]. TOSTracer is a lightweight monitor that runs
concurrently with the application program and generates a sequence diagram
representation of the application’s execution. [4] describes work on verifying
TinyOS programs using the CBMC bounded model checker [7].

Li and Regehr [22] present T-Check, a model checking approach for finding
interaction bugs in sensor networks. T-Check is implemented on top of Safe
TinyOS [9] and allows developers to specify both safety and liveness properties.
T-Check incorporates multiple models of non-determinism in order to explore
the complete state space of a sensornet. Some of the liveness bugs that T-Check
can capture (node-level bugs) can be expressed as promises. Kleenet [26] is a tool
based on symbolic execution for discovering interaction bugs in sensor networks.
Kleenet has been integrated into Contiki [11].
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Several authors have considered monitoring runtime errors using pre-defined
specifications. The Monitoring and Checking framework (MaC) [20] is an ap-
proach to conducting runtime analysis of a system’s execution. MaC uses a
formal language to specify execution requirements, which assert events and con-
ditions in a high-level manner. A monitoring script is used to link the high-level
events and conditions with low-level information at runtime. Monitored informa-
tion is converted to events, which are verified based on the requirements. Based
on MaC, [28] presents an approach that uses verification results and user spec-
ifications to detect errors and adjust the system back to normal execution. [21]
presents an approach that not only monitors execution and logs errors, but also
takes programmers’ system recovery specification as input to perform a desired
repair. These efforts focus on monitoring program execution using user-defined
specs, whereas our work is focused on tracking split-phase operations at runtime
by extending the nesC tool-chain to support command-level annotations.

Dustminer [16] is a diagnostic tool that automatically detects root causes of
interaction bugs and performance anomalies in sensor networks. For example,
after analyzing collected logs from good nodes and crashed nodes in a sensor
network running LiteOS [5], the packet received event was identified as highly
correlated with the get current radio handle event in the good nodes, whereas
it was highly correlated with the get serial send function event in the crashed
nodes. By capturing unexpected event sequences that cause errors, Dustminer
focuses on non-localized errors when nodes run distributed protocols. As such,
Dustminer helps with diagnosing errors that occur in distributed scenarios, which
are usually hard to reproduce. However, Dustminer is not designed to help lo-
calize the events in the code that cause these errors.

[30] presents a technique for TinyOS applications that reconstructs control-
flow paths between procedures based on captured concurrent events and control-
flow paths inside each event. The target program is statically analyzed, and
tracing statements are inserted in each event function body. At runtime, the
recorded trace is stored in RAM, and then compressed and transferred to flash.
When an error is detected, the stored trace is sent to the base-station. By replay-
ing the trace and reproducing the execution sequence in a simulator or debugger,
the programmer is better able to locate the fault and the call sequence that led
to the fault. This tool requires manual operations and depends highly on the
capability of the programmer to identify the error and problematic trace.

There is a vast literature base exploring runtime monitoring for error detec-
tion. [27] presents an approach to monitoring the execution of reactive systems
and recovering from runtime failures. This approach uses a module that learns
the behavior of a reactive system, and when an error is detected, applies a repair
action. The choice of which repair action to use is based on an analysis of the
execution history. [24] presents a discussion of how to design runtime monitors
for real-time systems. The focus is on how to enforce real-time guarantees. Copi-
lot [25] focuses on hard real-time guarantees. The monitoring system samples
observable state variables; the monitor and the system share a global clock.
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6 Conclusion

Asynchronous behavior in reactive systems is difficult to capture using tradi-
tional contract-based specification mechanisms. Such behavior is usually cap-
tured using temporal specifications, but the mapping between such specifications
and corresponding implementations in procedural languages is cumbersome. In
this paper, we have presented a specification idiom that can be used to capture
asynchronous behavior in reactive systems using the concept of a future trace.
When a split-phase operation is initiated, the start command makes a promise
that an event will be signaled in the future. The promise is encoded as part of
the method’s contract along with its pre- and post-condition.

The promises clause offers a way to capture asynchronous behavior in contract
specifications that can be easily integrated with software written in procedural
languages such as C. Split-phase operations are particularly common in embed-
ded systems, where blocking operations are not viable. At this point, the promises
we are able to specify and capture are only local to a single sensor node. While
these represent a large class of potential interaction bugs, interactions between
commands and events across nodes represent an even larger class of such bugs.
These are even harder to find. We are currently working on extending the seman-
tics of the promises clause to be able to express such cross-node promises. Once
the semantics are extended, tool support can be readily added. In fact, we already
have tools that can capture execution snapshots across nodes in a sensor network
and check predicates; promises can be added to such a set of predicates.

As a case study, we have written specifications for TinyOS, which is designed
for sensornets. As a way of enforcing promises at runtime, we have implemented
a runtime monitoring infrastructure that runs in parallel with the application
running on an embedded microcontroller. The runtime monitor, PromiseTracker,
injects bookkeeping calls to track each promise made, and to check if the promise
is satisfied. This runtime monitor, implemented for TinyOS 2.1.1, serves as a
powerful debugging aid in the presence of asynchronous behavior.
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Abstract. Thread Level Speculation (TLS) is a dynamic code parallelization
technique proposed to keep the software in pace with the advances in hardware,
in particular, to automatically parallelize programs to take advantage of the multi-
core processors. Being speculative, frameworks of this type unavoidably rely on
verification systems that are similar to software transactional memory, and that
require voluminous inter-thread communications or centralized registering of the
performed memory accesses. The high degree of communication is against the
basic principles of high performance parallel computing, does not scale with an
increasing number of processor cores, and yields weak performance. Moreover,
TLS systems often apply one unique parallelization strategy consisting in slicing
a loop into several parallel speculative threads. Such a strategy is also against the
basic principles since loops in the original serial code are not necessarily parallel
and also, it is well-known that the parallel schedule must promote data locality
which is crucial in obtaining good performance. This situation appeals to scalable
and decentralized verification systems and new strategies to dynamically generate
efficient parallel code resulting from advanced optimizing parallelizing transfor-
mations. Such transformations require a more complex verification system that
allows intra-thread iterations to be reordered. In this paper, we propose a verifica-
tion system of this kind, based on a model built at runtime and predicting a linear
memory behavior. This strategy is part of the Apollo speculative code parallelizer
which is based on an adaptation for dynamic usage of the polyhedral model.

1 Introduction

Automatically parallelizing sequential code became increasingly important with the ad-
vent of multicore processors. However, static approaches applied at compile-time fail
in handling codes which contain intractable control and memory instructions. For in-
stance, while-loops, indirect array references or pointer accesses cannot generally be
disambiguated at compile-time, thus preventing any automatic parallelization based ex-
clusively on static dependence analysis. Such a situation appeals for the development
of runtime parallelization systems, which are granted more power by the information
discovered dynamically.
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Runtime parallelization techniques of loop nests are usually based on thread-level
speculation (TLS) [1–3] frameworks, which optimistically allow the parallel execution
of code regions before all dependences are known. Hardware or software mechanisms
track register and memory accesses to determine if any dependence violation occur. In
such cases, the register and memory state is rolled back to a previous valid state and
sequential re-execution is initiated. Traditional TLS systems perform a simple, straight-
forward parallelization of loop nests by simply slicing the outermost loop into con-
secutive parallel threads [1, 2, 4]. Verifying the speculations consists in ensuring that
the schedule of the accesses to shared memory locations in the parallel code matches
the one of the original code. This general verification principle is made simple in the
case of straightforward parallelization, since each parallel thread consists of a slice of
successive iterations of the original serial loop nest, thus following internally the origi-
nal sequential schedule. Modest performance improvements have been reported, due to
an expensive verification system and poor parallelizing transformations. The verifica-
tion system requires communication among the parallel threads to share which memory
addresses are accessed, in order to detect conflicts and preserve memory coherency
by rollbacking the delinquent threads. This strategy yields a high communication traf-
fic that is significantly penalizing performance, and which is against the general op-
timization principles in parallel computing. Another important consequence is that a
centralized verification system does not scale with the number of processor cores. This
situation calls for a different strategy where each thread takes part independently in the
verification of the global correctness of the speculative parallelization. Additionally,
as soon as a dependence is carried by the outermost loop, it leads to numerous roll-
backs, consequently, performance drops. Moreover, even if infrequent dependences oc-
cur, there is no guarantee that the resulting instruction schedule improves performance.
Indeed, poor data locality and a high amount of data shared between the threads can
yield a parallel execution slower than the original sequential one. To gain efficiency,
TLS systems must handle more complex code optimizing transformations that can be
selected at runtime, depending on the current execution context.

In this paper, we propose a verification strategy as an answer to these drawbacks. Our
solution relies on a prediction model which is built by first observing a small sample of
the target loop nest execution, and then it is used to verify the speculatively optimized
and parallelized code, during execution. The parallel code is generated by applying
advanced code transformations, thus, the iteration schedule in the parallel threads is no
longer in accordance with the original serial schedule of the iterations. This is equivalent
to saying that iterations are reordered not only across threads, but also within a thread.
Yet, the parallel schedule is semantically correct as long as the prediction model holds.
Each thread verifies independently that its execution is compliant with the prediction
model, hence the verification is entirely de-centralized. The model adopted in this work
to reason about the loop transformations is an adaptation of the polyhedral model to
dynamic and speculative parallelization.

The polyhedral model [5], originally designed for compile-time loop optimization
and parallelization, is known to show immense benefits for loops with linear iteration
counts and array accesses. Such loops are characteristic to scientific codes or kernels
designed for embedded systems. However, frequently, applying the polyhedral model
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statically is prohibited by factors such as: (i) bounds that cannot be statically predicted,
(ii) complex control flows, or (iii) pointers accessing dynamically allocated structures,
which leads to issues such as memory aliasing. Yet, such codes, although not stati-
cally analyzable, may exhibit a linear behaviour at runtime. Thus, they are amenable
to precise polyhedral dependence analysis (based on information acquired by online
profiling), in the view of performing complex parallelizing code transformations at run-
time. This has important consequences: (a) runtime verification is required to validate
the speculative code transformations; (b) an online recovery system, which will be trig-
gered upon a misspeculation, must be designed; (c) the system should be lightweight
enough to shadow the runtime overhead1.

In this paper, we focus on the verification system of a polyhedral TLS framework
called Apollo, for Automatic POLydedral Loop Optimizer. Apollo takes the best of the
two worlds: as a TLS system, it targets non-statically analyzable loop nests and mem-
ory accesses (including while-loops with memory accesses to dynamic data structures
via pointers which exhibit a linear runtime behavior); as a polyhedral optimizer, it ap-
plies polyhedral optimizations prior to parallelization, which makes Apollo novel and
conceptually different than its TLS predecessors.

The paper is organized as follows: next section describes a classic program exhibit-
ing parallel phases, depending on the input data. This kind of programs is a typical
target for Apollo. In Section 3, the global functioning of our polyhedral TLS system is
depicted, while its part dedicated to runtime verification of the speculative paralleliz-
ing and optimizing transformations is thoroughly detailed in Section 4. Related work
addressing runtime verification of speculations in TLS systems is summarized in Sec-
tion 5. Results of experiments showing the effectiveness of our approach are given in
Section 6. Finally, Section 7 presents conclusions and perspectives.

2 Motivating Example

This section underlines an example code exhibiting polyhedral behavior in some exe-
cution contexts, which cannot be detected statically, thus preventing automatic paral-
lelization at compilation time. Apollo is tailored to detect and dynamically optimize
such codes. The example is the kernel loop nest of the breadthFirstSearch (BFS) algo-
rithm from the Problem Based Benchmark Suite [6] shown in Listing 1.1.

The BFS method performs a breadth first search scan of a graph in the following
way. The vertices of the input graph GA are identified as integer values ranging from 0
to GA.n. Thus, array Visited is used to mark each vertex which has already been vis-
ited, by storing respectively 0 or 1 at the vertex index value. Array Frontier is used
to store the list of vertices whose neighbors have to be visited in some next iterations
of the outer while-loop. As long as top > bot, there are still remaining vertices that
have to be visited. Before entering the loop nest, the input starting vertex is identified by
the variable start: it is stored in array Frontier as the first and still unique vertex
whose neighbors must be visited, and the vertex itself is marked in array Visited as
having been already visited. When entering the while-loop, the current vertex whose

1 Stemming from online profiling, dynamic code transformations, support for a speculative ex-
ecution and recovery from invalid speculations.
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Listing 1.1. Main loop nest of the breadthFirstSearch benchmark code

1 p a i r<i n t , i n t> BFS ( i n t s t a r t , graph<i n t> GA) {
2 i n t numVer t i ces = GA. n ;
3 i n t numEdges = GA.m;
4 v e r t e x <i n t> ∗G = GA.V;
5 i n t ∗ F r o n t i e r = newA ( in tT , numEdges ) ;
6 i n t ∗ V i s i t e d = newA ( in tT , numVer t i ces ) ;
7 f o r ( i n t T i = 0 ; i < numVer t i ces ; i ++) V i s i t e d [ i ] = 0 ;
8 i n t b o t = 0 ;
9 i n t t o p = 1 ;

10 F r o n t i e r [ 0 ] = s t a r t ;
11 V i s i t e d [ s t a r t ] = 1 ;
12 #pragma a p o l l o d c o p { /∗ Dynamic C o n t r o l O P t i m i z a t i o n ∗ /
13 whi l e ( t o p > b o t ) {
14 i n t v = F r o n t i e r [ b o t + + ] ;
15 i n t k = 0 ;
16 f o r ( i n t j =0 ; j < G[ v ] . d e g r e e ; j ++) {
17 i n t ngh = G[ v ] . Ne ighbor s [ j ] ;
18 i f ( V i s i t e d [ ngh ] == 0) {
19 F r o n t i e r [ t o p ++] = G[ v ] . Ne ighbor s [ k ++] = ngh ;
20 V i s i t e d [ ngh ] = 1 ; }
21 }
22 G[ v ] . d e g r e e = k ;
23 } / / end w h i l e
24 } / / end pragma
25 f r e e ( F r o n t i e r ) ; f r e e ( V i s i t e d ) ;
26 re tu rn p a i r<i n t , i n t > (0 ,0) ;
27 }

neighbors are going to be visited is Frontier[bot], assigned to variable v. The in-
ner for-loop is used to scan all the neighbors of this current vertex v, their count being
given by G[v].degree. For each neighbor, it is determined if it has already been
visited by testing its corresponding element of array Visited. Otherwise, i.e. when
Visited[ngh]==0, it is stored in array Frontier as a vertex whose neighbors
have to be visited in the next iterations of the while-loop. The order in which vertices
are stored and processed in array Frontier ensures the breadth first search order of
the algorithm.

Compile-time automatic parallelization, as well as manual OpenMP parallelization,
are prohibited by the presence of the while-loop. Additionally, the upper bound of the
inner for-loop is sensitive to the input data. Dependences cannot be analyzed stati-
cally since some elements of array Visited may be updated several times depend-
ing on the value of ngh = G[v].Neighbors[j], itself depending on the value of
v = Frontier[bot++]. Even if experts in parallel programming would be able
to handle its parallelization with considerable efforts, this loop nest is amenable to
automatic parallelization only speculatively, at runtime. Some TLS systems would
attempt to parallelize the outermost while-loop by slicing it into several speculative
threads, with the assumption that values of top and bot can be predicted by the
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speculative system. Nevertheless, this would fail since reads of uninitialized array el-
ements Frontier[bot++] at line 14 would be detected as faulty and not in com-
pliance with the original serial order. In contrast, for particular input graphs, Apollo
detects a Read-After-Write dependence between the update of Frontier[top++]
in the inner loop and the read of Frontier[bot++] in the outer loop, from the
initial run of a small instrumented slice of the outermost loop. Thus, Apollo would
not attempt parallelization of the outer loop.

The unique possible loop parallelization is on the inner for-loop (for TLS systems
also handling inner loops). Special care must be taken regarding accesses to array
G[v].Neighbors which are carrying Write-After-Read dependences, as well as re-
garding read-write accesses to the variables top and k which are carrying Read-After-
Write dependences. Without embedding a mechanism for privatizing in each parallel
thread both latter variables and predict their values, a TLS system would fail. In con-
trast, thanks to instrumentation by sampling and linear interpolation, Apollo embeds
their thread-privatization and the prediction of their values in the resulting parallel code.
In consequence, their associated Read-After-Write dependences are eliminated.

Apollo is successful in parallelizing the inner loop for certain classes of input graphs.
This example highlights a typical case where parallelization opportunities depend on
the input data: for instance, if the input graph defines a regular grid, or a complete N -
tree, then G[v].degree is constant, since by definition, each vertex has the same
fixed number of neighbors. Also in this case, the conditional Visited[ngh]==0 is
evaluated as true for a large number of successive vertices which do not share the same
neighbors. Thus, variable k is equal to variable j for large execution phases, which
enables an accurate prediction of the memory accesses and the parallelization of large
execution phases.

Let us consider a regular grid of n vertices and of degree d defined as follows: each
vertex i < n − d has d neighbors ranging from (i + 1) mod n to (i + d) mod n, and
each vertex i ≥ n − d has one neighbor which is vertex 1. Considering this grid as
input to the breadthFirstSearch algorithm (List. 1.1), Apollo was successful in automat-
ically parallelizing the inner loop on-the-fly. A first significant phase of n/d outer loop
iterations was detected as amenable for parallelization. This phase corresponds to the
continuous evaluation as true of the conditional Visited[ngh]==0. A rollback was
initiated at the end of this phase, followed by the run of a small slice of instrumented
iterations allowing Apollo to build a new prediction model and to parallelize a larger
phase of n−d−n/d outer loop iterations. This latter phase corresponds to the continu-
ous evaluation as false of the conditional Visited[ngh]==0. While this phase was
ended by rollbacking, a next instrumented slice of iterations was not able to build a lin-
ear prediction model. Thus, the execution was completed using the original serial code
for the remaining outer loop iterations. A 9× speed-up was obtained with n = 10, 000
and d = 1000 on two AMD Opteron 6172 processors, of 12 cores each, running 32
parallel threads. Details on how Apollo handled this code, and particularly on how it
ensured correctness of the speculative parallelization, are given in the next Section.
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3 Dynamic and Speculative Polyhedral Parallelization with Apollo

The polytope model [7] has been proven to be a powerful mathematical and geometri-
cal framework for analyzing and optimizing for-loop nests. The requirements are that
(i) each loop iterates according to a unique index variable whose bounds are affine ex-
pressions of the enclosing loop indices, and (ii) the memory instructions are limited to
accesses to simple scalar variables or to multi-dimensional array elements using affine
expressions on the enclosing loop indices. Such loop nests are analyzed accurately with
respect to data dependences that occur among the statements and across iterations.
Thus, advanced optimizing transformations are proven to be semantically correct by
preserving the dependences of the original program. The loop nest optimizations (e.g.,
skewing, interchange) are linear transformations of the iteration domains that are rep-
resented geometrically as polyhedra. Each tuple of loop indices values is associated
with an integer point contained in the polyhedra. The order in which the iterations are
executed translates to the lexicographic order of the tuples. Thus, transformations rep-
resent a reordering of the execution of iterations and are defined as scheduling matrices,
which is equivalent to geometrically transforming a polyhedra into another equivalent
form [7]. Representing loops nests as polyhedra enables one to reason about the valid
transformations that can be performed.

Although very powerful, the polytope model is restrained to a small class of com-
pute-intensive codes that can be analyzed accurately and transformed at compile-time.
However, most legacy codes are not amenable to this model, due to dynamic data struc-
tures accessed through indirect references or pointers, which prevent a precise depen-
dence analysis to be performed statically. On the other hand, applied entirely dynami-
cally, the complex analyses and the polyhedral code transformations would entail signif-
icant overhead. As shown in Section 2, codes that do not exhibit characteristics suiting
the polytope model may still be in compliance with the model, although this compliance
can only be detected at runtime. Targeting such codes for automatic optimization and
parallelization imposes to immerse the polytope model in the context of speculative and
dynamic parallelization. In this context, runtime code analysis and transformation im-
pose strategies which induce very low time-overheads that must be largely compensated
by the gains provided by the polyhedral optimization and parallelization.

For loop nests that cannot be analyzed statically, our strategy for making the poly-
hedral model applicable at runtime relies on speculations, and thus, requires runtime
verification. It consists of observing initially the original code during a very short sam-
ple of the whole run. If a polyhedral behavior has been observed on this sample, we
speculate that the behavior will remain the same on the rest of the loop nest execu-
tion. Thus, we can abstract the loop to a polyhedral representation, reason about the
inter-iteration dependences, and validate and apply a polyhedral optimizing and paral-
lelizing transformation. As long as this prediction remains true, the generated parallel
code is semantically correct by definition of the polyhedral model. In order to verify
continuously the prediction, and thus verify the correctness of the parallel program, we
implemented a decentralized runtime verification system embedded in the parallel code,
as detailed in the next Section.

First, we recall the main steps of static polyhedral automatic parallelization and de-
scribe how these steps are handled in Apollo to turn this approach into its dynamic and
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speculative equivalent form. The framework description focuses on the two main goals:
building the polyhedral prediction model and applying speculative parallelization in-
cluding runtime verification of the prediction. Further details regarding dynamic code
generation and other important parts of Apollo can be found in [8], where a former pro-
totype version called VMAD is presented. Apollo consists of two main parts: a static
part implemented as passes of the LLVM compiler [9], and a dynamic part implemented
as a runtime system written in C++.

At compile-time, Apollo’s static phase: (1) analyzes precisely memory instructions
that can be disambiguated at compile-time; (2) generates an instrumented version to
track memory accesses that cannot be disambiguated at compile-time. The instrumented
version will run on a sample of the outermost loop iterations and the information ac-
quired dynamically is used to build a prediction model of these statically non-analyzable
memory accesses; (3) generates parallel code skeletons [8]. They are incomplete ver-
sions of the original loop nest and require runtime instantiation to generate the final
code. Each instantiation represents a new optimization, therefore the code skeletons
can be seen as highly generic templates that support a large set of optimizing and par-
allelizing transformations. Additionally, the skeletons embed support for speculations
(e.g. verification and recovery code).

At runtime, Apollo’s dynamic phase: (1) runs the instrumented version on a sample
of consecutive outermost loop iterations; (2) builds a linear prediction model for the
loop bounds and memory accesses; (3) computes dependences between the memory
accesses; (4) instantiates a code skeleton and generates an optimized, parallel version of
the original sequential code, semantically correct with respect to the prediction model;
(5) during the execution of the multi-threaded code, each thread verifies independently
if the prediction still holds. If not, a rollback is initiated and the system attempts to
build a new prediction model. An optimization has been designed to limit the number
of iterations required to rollback upon a misspeculation (see subsection 3.2).

3.1 Compliance with the Polyhedral Model

The programmer inserts a dedicated pragma defining regions of code in which all
loop nests will be considered for a speculative execution by Apollo. At compile-time,
the target loop nests are analyzed and first the instrumented versions are generated.
Additional counters named virtual loop iterators are systematically inserted to enable
the framework in handling uniformly any kind of loops, e.g. for-loops or while-loops.
They are also important in the speculative parallelization phase as it will be explained
later. The static analysis consists in the following steps.

Every memory instructions is classified as static or dynamic2. For static memory
accesses, the LLVM scalar evolution pass3 is successful in expressing the sequence
of accessed locations as an affine function of the enclosing loop iterators. This
approach fails on dynamic memory accesses. For each couple of static memory in-
structions where at least one is a store, alias analysis is performed using a dedicated
LLVM pass. The collected aliasing information will be used at runtime to save some

2 i.e. which can be analyzed statically or requires dynamic instrumentation.
3 http://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf

http://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf


Runtime Verification in the APOLLO Framework 131

Table 1. Prediction model characteristics for the breadthFirstSearch code

#handled scalars predicting affine functions
4 0i + 100; 100i + 1

0i + 1j + 0; 100i + 1j + 1

#memory instructions predicting affine functions
16i + 19282504; 16i + 19282496

400i + 4j + 19442512
400i + 4j + 27363348

9 400i + 4j + 19442512
400i + 4j + 23402932
400i + 4j + 27363348

16i + 0j + 19282504; 16i + 19282504

#inner loop bounds predicting affine functions
1 0i + 100

dependence types dependence equations
∀ (i, j) � (i′ , j′)

Write-After-Read
{
i − i′ = 0

Write-After-Read

⎧⎨
⎩

i − i′ = 0

j − j′ = 0

−j + j′ ≥ 0

Write-After-Read

{
i − i′ = 0

i − j′ = 0

Write-After-Write
{
i − i + 1′ = 0

Read-After-Write

{
i − i + 1′ = 0

j − j′ = 0

dependence analysis time-overhead. Instrumentation instructions are inserted to collect
the memory addresses touched by each dynamic memory instruction. Similarly, relying
on the LLVM scalar evolution pass, Apollo attempts to build affine functions describ-
ing the loop bounds. If this attempt fails, instrumentation code is inserted to monitor the
value of the loops bounds. Scalar variables required to maintain the control flow or to
compute the memory addresses are also analyzed by scalar evolution or instrumented if
the analysis fails. These scalar variables are detected at compile-time as being defined
by phi-nodes in the LLVM Intermediate Representation (IR) which is in Static Single
Assignment (SSA) form. Linearly dependent scalars are grouped to reduce instrumen-
tation to one unique representative of the group to lower the instrumentation runtime
cost. The linear functions computed by the scalar evolution pass are stored and will be
transmitted to Apollo’s runtime system to complete the information required for runtime
dependence analysis.

The dynamic analysis consists of the following operations. When running, every
instrumented instruction generates a stream of values (memory addresses or scalar val-
ues) that are interpolated as functions of the virtual loop iterators. If every stream of
values, obtained from an execution sample, can be modeled as an affine function of the
virtual loop iterators, then the target loop nest is speculatively predicted to be compli-
ant with the polytope model. The so-built affine functions are finally used to complete
the dynamic dependence analysis which is also performed using the streams of actual
addresses that are collected from instrumentation.

In summary, the prediction model of each target loop nest is made of: (1) the de-
pendence information which is used to select and validate a parallelizing code transfor-
mation; (2) the affine functions associated with the memory instructions and the scalar
variables: these functions are essential for the runtime verification of the speculation
and to predict the starting context of the parallel threads regarding the scalars. This part
is fully detailed in the next Section. As an example, the prediction model computed by
Apollo at runtime for the first phase of the breadthFirstSearch code (see Section 2) is
detailed in Table 1, where ( denotes the lexicographical order. Notice that even if some
scalars and memory instructions can be intuitively related to the source code, it is gener-
ally difficult, since they are identified at compile-time on the LLVM-IR representation
of the program, after some LLVM optimizations have been applied.
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3.2 Speculative Parallelization and Runtime Verification

Speculative parallelization and runtime verification are performed using the prediction
model as sketched in what follows. Runtime verification is specifically highlighted in
the next Section.

Code skeletons: At compile-time, several variants of codes are generated from each
loop nest that was marked in the source code by the user using the dedicated pragma:
an instrumented version, as described in the previous subsection, but also a number of
code skeletons, presented in detail in our previous work [8]. Skeletons can be seen as
parametrized codes where the instantiation of their parameters results in the generation
of a transformed optimized version of the target loop nest merging original computa-
tions and speculative parallelization management. They consist of three parts: the first
part applies the transformation, which is populated at runtime; the second performs the
original computation on the transformed iteration domain; and the third does the ver-
ification. Skeletons support classes of loop transformations as skewing, interchange,
tiling, etc [10]. In the current implementation, Apollo’s skeletons support skewing and
interchange.

Parallelizing code transformation: As soon as the prediction model has been built,
Apollo’s runtime system performs a dependence analysis which determines if the target
loop nest can be parallelized and optimized and what transformation has to be applied
for this purpose. A polyhedral transformation merely refers to changing the order in
which iterations are executed and is controlled by applying affine functions on the loop
iterators. The transformation is encoded as a matrix, storing the coefficients of the affine
functions which define the new schedule. Given a loop nest of depth two with iterators(
i
j

)
and a transformation matrix T , polyhedral loop transformations such as skewing,

interchange or any affine transformation of the iteration domains [7] are obtained as:
T ×

(
i
j

)
=
(
i′
j′
)
. This is achieved by invoking the polyhedral parallelizer Pluto [7] at

runtime. More precisely, only the scheduler kernel of Pluto is used. It has been slightly
customized to consume our dependence analysis output and to suggest a polyhedral
transformation in return. Since Pluto aims simultaneously data locality optimization
and parallelization, the generated schedule is expected to lead to a well-performing
parallel code. Notice also that Pluto is initially a source-to-source code transformer
used at compile-time, and that Apollo is the first known dynamic framework which is
using it at runtime, with very low time-overhead.

Speculative code orchestration: The different code versions (instrumented, serial orig-
inal, or instantiated skeleton) are launched in chunks of fixed sizes. These chunks are
running a slice of successive iterations of the outermost original loop nest. Thus, op-
timizing parallelizing transformations are applied on such slices. At startup, Apollo
launches a small chunk running the instrumented version in order to build the pre-
diction model and perform the dependence analysis. The transformation suggested by
Pluto from the dependence information is then used to instantiate the code skeleton de-
voted to the corresponding class of transformations. The resulting parallel code is then
launched inside a larger chunk, after having previously backed-up the memory locations
that are predicted to be updated. If the verification of the speculation detects a unpre-
dicted behavior, memory is restored to cancel the execution of the current chunk. The
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execution of the chunk is re-initiated using the original serial version, in order to over-
come the faulty execution point. Finally, an instrumented chunk is launched again to
capture the changing behavior and build a new prediction model. If no miss-prediction
was detected during the run of the parallel code, a next chunk using the same parallel
code and running a next slice of the loop nest is launched.

4 Runtime Verification of Speculative Polyhedral Parallelization

The model handled currently by Apollo is the polyhedral model. Thus, the speculative
prediction model claims (i) that every memory instruction targets a sequence of ad-
dresses represented by an affine function of the loop iterators, (ii) that every scalar vari-
able, that is modified across iterations, either stores values also represented by such an
affine function, or carries a dependence, and finally (iii) that every loop upper bound is
also such an affine function (while the lower bound is 0)4. Each of these three character-
istics must be verified while running the speculative parallel code which is semantically
correct only if the prediction model holds. This is achieved thanks to dedicated code
inserted at compile-time in the parallel code skeletons, and instantiated at runtime. This
code triggers a rollback as soon as the verification fails.

The skeletons are generated automatically in the LLVM IR using our dedicated com-
pilation pass. As depicted in the previous section, they are made of three types of in-
structions: (1) instructions dedicated to apply the optimizing transformation, including
parallelization: these are the for-loops iterating over the introduced virtual iterators,
which are transformed into new iterators through the linear transformation suggested
by Pluto; and instructions in the header of each loop of the nest which are devoted to
the initialization of the predicted scalar variables; (2) instructions of the original code:
the original loop exit conditions serve as guards of the original loop bodies which are
copied in the generated skeletons at compile-time; (3) instructions devoted to the veri-
fication: these instructions are inserted at several relevant points of the skeleton code to
verify the adherence of each linear function constituting the prediction model with the
original code behavior. They are related to memory accesses, scalar initializations and
loop bounds verifications, and are detailed in the following subsections.

4.1 Target Memory Address Verification

Memory instructions executed speculatively are guarded by verification instructions,
ensuring that no unsafe write operations are performed. Recall that the prediction model
is based on representing the sequence of the addresses accessed by an instruction as
affine functions of the (virtual) loop iterators. Based on this linearity of the memory
accesses, a tightly coupled dependence analysis allows to apply an optimizing trans-
formation of the target code which is semantically correct as long as the predicited
dependences are still entirely characterizing the code. Thus, verifying completeness of
the predicted dependences translates to verifying that all memory accesses follow their
associated affine functions. This is ensured by comparing, for each memory instruction,

4 These represent the bounds of the virtual loop iterators.



134 A. Sukumaran-Rajam et al.

the actual target address against the value resulting from the evaluation of the predicting
affine function. Notice that Apollo must verify the linear functions in the transformed
space, not the linear functions which were obtained during instrumentation of the orig-
inal, untransformed, sequential code. An example of the code verifying the update of
array G[v].Neighbors in the breadthFirstSearch code of Figure 1.1 is shown in the
below pseudo source code (instead of original LLVM-IR form). Variables vi and vj
denote the virtual iterators of the two nested loops.

i f (&G[ v ] . Ne ighbor s [ k ] != l i n e a r e q ( mem ins t r ID , vi , v j ) )
r o l l b a c k ( ) ;

G[ v ] . Ne ighbor s [ k ++] = ngh ;

4.2 Scalars Initialization and Verification

As depicted in previous Sections, scalar variables defined as phi-nodes in the LLVM
intermediate representation are taking part of the prediction model. These scalars are
also carrying dependences by being used and updated among loop iterations. As it is
usually done manually when parallelizing serial codes, a common approach to remove
such dependences is to privatize such scalars when possible. Privatization consists of
replacing their incremental updates by the direct computation of their successive values
using the current values of the loop iterators. For some scalars, the scalar evolution pass
of the LLVM compiler may be successful in determining statically an affine expression
to compute their values. Otherwise, Apollo’s instrumentation by sampling provides to
compute this affine function at runtime, as soon as it can be represented in this way.
However, notice that privatization of such latter scalars is therefore speculative.

Since Apollo’s code transformations may not follow the original iteration order,
scalar variables must be initialized at their correct starting values in the header of each
iteration. This is performed in the header of each loop of the target nest, as it is shown
below in pseudo source code for the breadthFirstSearch code example and its top and
bot scalar variables.

t o p = l i n e a r e q (& top , v i ) ;
b o t = l i n e a r e q (& bot , v i ) ;

However, since these scalar initializations are speculative, they must verified. Gen-
erally, scalars used in loops are initiating an iteration while being assigned the very last
value that has been assigned to them among the previous iterations. The same scheme
is followed by Apollo’s verification strategy: at the very end of each iteration, the pre-
diction for the next iteration initial value is compared to the actual value of the scalar,
i.e., its very last value before the initiation of the next iteration. If the verification fails,
a rollback is triggered, as it is shown below in pseudo source code form for the breadth-
FirstSearch code example and its top and bot scalar variables.

i f ( t o p != l i n e a r e q (& top , v i +1) r o l l b a c k ( ) ;
i f ( b o t != l i n e a r e q (& bot , v i +1) r o l l b a c k ( ) ;

Notice that this verification strategy is verifying initial values for the next iteration
according to the original sequential order. Since the current schedule may follow an
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entirely different order resulting from a parallelizing and optimizing transformation of
the original code, some iterations may be run with scalar values that have not yet been
verified. But since all iterations are run inside the same chunk (slice of the outermost
loop), they have all been verified regarding their scalars as soon as their preceding
iteration according to the serial order has been run. Globally, all iterations inside a chunk
have been inevitably verified at the chunk completion. If any of these verifications fails
during the execution of the chunk, rollback for the whole chunk is initiated and memory
is restored.

4.3 Loop Bounds Verification

The polyhedral model imposes loop bounds to be affine functions of the enclosing loop
iterators. These bounds can be either extracted at compile-time thanks to the scalar evo-
lution pass, or must be built at runtime through interpolation and handled speculatively.
For any target loop nest, bounds of the outermost loop and of the inner loops are handled
in different ways.

When undefined at compile-time, the outermost loop bound can only be known after
completion of the loop nest execution. Thus it cannot be used by Apollo when analyzing
and transforming speculatively the target code. However, as it is addressed in subsection
3.2, the target loop nest is launched by chunks consisting of slices of the outermost loop.
Therefore, outermost loop bounds are defined by the starting and finishing borders of
the current chunk. When the original loop exit condition is met during the run of a
chunk and before its completion, a rollback is initiated and the last chunk is run again
in the serial original order. When the outermost loop bound is discovered statically,
Apollo’s runtime system is able to anticipate the final loop exit by launching the very
last chunk of parallel code with the exact convenient size in order to avoid any final
rollback. Once they cannot be obtained at compile-time, inner loop iteration counts
are being interpolated by Apollo during instrumentation. This is mostly the case with
while-loops whose exit conditions are made of values that are unknown at compile-time.
For this kind of bounds, predicted values are verified by comparison with the current
virtual iterators values. Moreover, the original exit condition must yield the same result.
Otherwise, a rollback is initiated.

5 Related Work

TLS systems are a promising solution to automatic parallelization, but suffer from a
high overhead, inherent to maintaining speculative states and version management. At-
tempts to alleviate synchronization in verifying dependences and speculations [11] lead
to increased memory management data structures and rely on hardware support.

MiniTLS [12] makes use of a compact version management structure, which
however, being centralized, requires thread synchronization. Lector [12], employs the
inspector-executor technique, where a lightweight inspector runs ahead and verifies if
dependence violations occur. Softspec [13] is a technique whose concepts represent pre-
liminary ideas of our approach, as it is based on a profiling step and a prediction model.
However, no code transformations are performed, except slicing. The runtime verifi-
cation mechanism is similar to the one presented in this paper, as it does not require
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inter-core communication. However, since Apollo performs advanced code transforma-
tions, it must ensure that the last iteration of the original loop may execute before other
iterations are executed within the same thread, which yields a more complex verification
system. ParExC [14] targets automatic speculative parallelization of code that has been
optimized at compile time, but it abounds in runtime checks designed to run in parallel.
ParExC speculates on a failure free execution and aborts as soon as a misspeculation is
encountered, relying on a transactional memory-based solution. Steffan et al. [15] pro-
pose a hardware-software co-design of a runtime verification based on the coherence
protocol. Recent works of Kim et al. [16] describe automatic parallelization on clus-
ters, by speculating on some memory or control dependences. The system executes a
master process, non-speculative, and several speculative worker processes. Verification
relies on transactional logs and is supported by rollback and recovery mechanisms.

Software transactional memory (STM) [17–19] was proposed to ensure the correct-
ness of speculative code. STM enables a group of read and write operations to execute
atomically, embedded in transactions. The reader is responsible for checking the cor-
rectness of execution and must ensure that no other thread has speculatively modified
the reader’s target location. If validation is successful, the transaction is committed,
otherwise aborted, causing all of its prior changes to rollback. Despite increasing paral-
lelism (speculatively), STM systems are notorious for the high overhead they introduce.
The work of Adl-Tabatabai et al. [17] develops compiler and runtime optimizations for
transactional memory constructs, using JIT. Static optimizations are employed to ex-
pose safe operations, such that redundant STM operations can be removed, while the
STM library interface is tailored to handle JIT-compiled and optimized code. STM-
lite [18] is a tool for light-weight software transactional memory, dedicated to automatic
parallelization of loops, guided by a profiling step. Raman et al. [19] propose software
multi-threaded transactions (SMTXs), which enable combining speculative work and
pipeline transformations. SMTXs use memory versioning and separate the speculative
and non-speculative states in different processes. While STMX has a centralized trans-
action commit manager, conflict detection is decoupled from the main execution.

6 Experiments

Our benchmarks were run on a platform embedding two AMD Opteron 6172 proces-
sors, of 12 cores each, at 2.1 Ghz, running Linux 3.11.0-17-generic x86 64. The set of
benchmarks has been built from a collection of benchmark suites, such that the selected
codes includes a main loop nest and highlights Apollo’s capabilities: backprop and
needle from the Rodinia benchmark suite [20], mri-q, sgemm and stencil from
the Parboil benchmark suite [21], maximalMatching andbreadthFirstSearch
from the Problem Based benchmark suite [6], and finally 2mm from the Polyhedral
benchmark suite [22]. These codes cannot be statically analyzed and transformed for
the following reasons: arrays are passed to functions using pointers, thus yielding alias-
ing issues, dynamic data structures, non-linear array references, conditionals inside loop
bodies, while loops, and references to data structures through pointers. We compiled the
original codes either using the gcc or clang compilers, with optimization flag -O3,
and considered the shortest computation time among both executables, as the baseline
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Fig. 1. Speed-ups obtained from codes speculatively parallelized with Apollo

for Apollo’s speed-up (Figure 1). Apollo handled each code automatically and trans-
parently. We measured the global resulting execution times of the target loop nests for
1, 2, 12, 24 and 32 threads and computed the resulting speed-up (Original computa-
tion time / Apollo’s computation time). The execution times with Apollo from one run
to another and with the same input were as stable as when running the original codes
solely, since Apollo always selects the same transformation. Significant speed-ups were
obtained for most of the codes, of up to 16.2×. Note that although some of the appli-
cations cannot be statically analyzed, they can be parallelized manually by an expert,
as it is the case of the benchmarks extracted from Rodinia benchmark suite [20]. As
expected, straightforward manual parallelization yields higher speed-ups, since there is
no overhead incurred by instrumenting the application, generating code on-the-fly or
providing support for a speculative execution. Nevertheless, the advantages of Apollo
are emphasized by loops which only exhibit parallel phases (in contrast to OpenMP
loops which are parallel for the entire execution), or codes which have a linear behavior
and benefit from polyhedral transformations to enhance data locality or exhibit paral-
lelism. Finally, as an automatic system, Apollo is entirely transparent and relieves the
user from the parallelization effort, which is known to be an error-prone process.

An analysis of the time-overhead induced by the main processing steps of the run-
time system of Apollo shows that the significant amounts of time are spent either in
the memory backup (from 0.01% up to 24% of the whole execution time) or in the
invocation of Pluto (up to 2%). Memory backup is costly, since it obviously involves
many memory accesses. However, it has been optimized and parallelized with Apollo
since each thread takes in charge the memory locations that it is supposed to touch in
the next execution chunk. This approach also promotes a good data locality. Pluto is an
external tool that may spend considerable times in handling some codes. Apollo could
use another scheduler or define a time-out to avoid any excessive time spent by Pluto.

To exhibit the gain provided by the decentralized verification system of Apollo,
we simulated the behavior of a centralized verification system regarding its additional
required memory accesses. For this purpose, we annihilated our verification instruc-
tions that are associated to each memory instruction that is speculatively handled, and
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replaced them by memory writes to random addresses of a buffer which is common to
all the parallel threads. Notice that this minimal simulation is still in favor of a central-
ized system, which would also require some additional processing. The execution time
improvements provided by decentralized verification is shown in Figure 2. It shows the
significant gain that is particularly obtained when the speed-up potential is high. For ex-
ample sgemm, which is running with Apollo using 24 threads at a speed-up higher than
16×, is highly handicapped by a centralized verification system: in the Apollo parallel
execution, data locality is promoted thanks to memory accesses occurring exclusively
in separate memory areas, while a centralized system yields an important traffic in the
memory hierarchy to ensure cache coherency, thus imposing much memory latency to
the threads. Moreover, the gain improvement that can be observed for high speed-up
potential codes when increasing the number of threads shows clearly that a centralized
verification system does not scale.

Fig. 2. Percentage of speedup attributable to decentralized verification

7 Conclusion

The software architecture of the Apollo framework is typical of TLS systems which do
not require a centralized verification system and are able to apply advanced dynamic
code optimizations. It encompasses two main collaborative phases combining static
and dynamic analysis and transformation of the target loop nests, and is based on the
lightweight construction of a prediction model at runtime. Although Apollo implements
a speculative and dynamic adaptation of the polyhedral model, any model providing a
sufficiently accurate characterization of the target program semantics could be used as
soon as it allows to manage speculative and efficient parallel code. We currently inves-
tigate new models for handling codes that are not exhibiting a linear behavior. Alter-
natively, Apollo also highlights the fact that codes may exhibit interesting optimization
opportunities depending on the processed input. This phenomenon opens to investiga-
tions related to new memory allocation and access strategies that may be better handled
for code parallelization and optimization, either in software or hardware.
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Abstract. Users wanting to monitor distributed systems often prefer to abstract
away the architecture of the system, allowing them to directly specify correct-
ness properties on the global system behaviour. To support this abstraction, a
compilation of the properties would not only involve the typical choice of moni-
toring algorithm, but also the organisation of submonitors across the component
network. Existing approaches, considered in the context of LTL properties over
distributed systems with a global clock, include the so-called orchestration and
migration approaches. In the orchestration approach, a central monitor receives
the events from all subsystems. In the migration approach, LTL formulae transfer
themselves across subsystems to gather local information.

We propose a third way of organising submonitors: choreography — where
monitors are orgnized as a tree across the distributed system, and each child
feeds intermediate results to its parent. We formalise this approach, proving its
correctness and worst case performance, and report on an empirical investigation
comparing the three approaches on several concerns of decentralised monitoring.

1 Introduction

Due to the end of regular increase of processor speed, more systems are being designed
to be decentralised to benefit from more of the multi-core feature of contemporary pro-
cessors. This change in processors poses a number of challenges in the domain of run-
time verification where performance is paramount.

In runtime verification one is interested in synthesizing a monitor to evaluate a stream
of events (reflecting the behaviour of a system) according to some correctness proper-
ties. When the system consists of several computing units (referred to as components
in the sequel), it is desirable to decentralise the monitoring process for several reasons
(as seen in [1,4,5]). First, it is a solution to benefit from the plurality of computing
units of the system if one can design decentralised monitors that are as independent as
possible. Second, it avoids introducing a central observation point in the system that
presupposes a modification of the system architecture, and it also generally reduces the
communication overhead in the system. See [4,5] for more arguments along this line.

In this paper, we study these questions in the context of monitors synthesized from
LTL specifications by considering three approaches, namely orchestration, migration,
and choreography, to organise monitors (using terminology from [6]): (i) Orchestration

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 140–155, 2014.
c© Springer International Publishing Switzerland 2014
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is the setting where a single node carries out all the monitoring processing whilst re-
trieving information from the rest of the nodes. (ii) Migration is the setting where the
monitoring entity transports itself across the network, evolving as it goes along — doing
away with the need to transfer lower level (finer-grained) information. (iii) Choreogra-
phy is the setting where monitors are organised into a network and a protocol is used to
enable cooperation between monitors.

Note, there are two important assumptions in our study. First, we assume the exis-
tence of a global clock in the system (as in [4]). This assumption is realistic for many
critical industrial systems or when the system at hand is composed of several applica-
tions executing on the same operating system. Second, we assume that local monitors
are attached to the components of the system and that the monitors can directly com-
municate with each other through some network.

Contributions of this paper. First, we survey the work on LTL monitoring in the context
of distributed systems, classifying them under orchestration, choreography, and migra-
tion. Second, we introduce choreography-based decentralised monitoring. Third, we
propose an algorithm that splits the monitoring of an LTL formula into smaller moni-
tors forming a choreography. Fourth, we empirically compare orchestration, migration
(from [4]), and choreography using a benchmark implementation.

Paper Organization. The rest of the paper is organised as follows. Section 2 intro-
duces some background. Sections 3 and 4 recall the orchestration and migration ap-
proaches for LTL monitoring, respectively. In Section 5, we introduce the setting of
choreography-based decentralised monitoring. Section 6 reports on our empirical eval-
uation and comparison of the three approaches using a benchmark implementation. Sec-
tion 7 compares this paper with related work. Finally, Section 8 concludes and proposes
future work.

2 Background

In this section, we formally define a distributed system and alphabet, followed by an
introduction to the syntax and semantics of LTL.

Distributed systems and alphabet. N is the set of natural numbers. Let a distributed
system be represented by a list of components: C = [C1, C2, . . . , Cn] for some n ∈ N \
{0}, and the alphabet Σ be the set of all events of the components: Σ = Σ1∪Σ2∪ . . .∪
Σn, where Σi is the alphabet of Ci built over a set of local atomic propositionsAP i. We
assume that the alphabets and sets of local atomic propositions are pair-wise disjoint1

and define function # returning the index of the component related to an event, if it

exists: # : Σ → N such that #a
def
= i if ∃i ∈ [1;n] : a ∈ Σi and undefined otherwise.

The behavior of each component Ci is represented by a trace of events, which for t time
steps is encoded as ui = ui(0) · ui(1) · · ·ui(t − 1) with ∀t′ < t : ui(t

′) ∈ Σi. Finite
(resp. infinite) traces over Σ are elements of Σ∗ (resp. Σω) and are denoted by u, u′, . . .
(resp. w,w′, . . .). The set of all traces is Σ∞ def

= Σ∗∪Σω. The finite or infinite sequence
wt is the suffix of the trace w ∈ Σ∞, starting at time t, i.e., wt = w(t) · w(t + 1) · · · .

1 This assumption simplifies the presentation but does not affect the generality of the results.
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Linear Temporal Logic. The system’s global behaviour, (u1, u2, . . . , un) can now be
described as a sequence of pair-wise union of the local events in component’s traces,
each of which at time t is of length t + 1 i.e., u = u(0) · · ·u(t).

We monitor a system wrt. a global specification, expressed as an LTL [9] formula,
that does not state anything about its distribution or the system’s architecture. LTL for-
mulae can be described using the following grammar:

ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ,
where p ∈ AP . Additionally, we allow the following operators, each of which is

defined in terms of the above ones: 	 def
= p∨¬p, ⊥ def

= ¬	, ϕ1∧ϕ2
def
= ¬(¬ϕ1∨¬ϕ2),

Fϕ
def
= 	U ϕ, and Gϕ

def
= ¬ F (¬ϕ).

Definition 1 (LTL semantics [9]). LTL semantics is defined wrt. infinite traces. Let
w ∈ Σω and i ∈ N. Satisfaction of an LTL formula by w at time i is defined inductively:

wi |= p ⇔ p ∈ w(i), for any p ∈ AP
wi |= ¬ϕ ⇔ wi �|= ϕ

wi |= ϕ1 ∨ ϕ2 ⇔ wi |= ϕ1 ∨ wi |= ϕ2

wi |= Xϕ ⇔ wi+1 |= ϕ
wi |= ϕ1 U ϕ2 ⇔ ∃k ∈ [i,∞[ · wk |= ϕ2 ∧ ∀l ∈ [i, k[ : wl |= ϕ1

When w0 |= ϕ holds, we also write w |= ϕ.
Several approaches have been proposed for adapting LTL semantics for monitoring

purposes (cf. [2]). Here, we follow previous work [4] and consider LTL3 (introduced
in [3]).

Definition 2 (LTL3 semantics [3]). Let u ∈ Σ∗, the satisfaction relation of LTL3,

|=3: Σ
∗ × LTL → B3, with B3

def
= {	,⊥, ?}, is defined as

u |=3 ϕ =

⎧⎨
⎩

	 if ∀w ∈ Σω : u · w |= ϕ,
⊥ if ∀w ∈ Σω : u · w �|= ϕ,
? otherwise.

3 Orchestration

The idea of orchestration-based monitoring is to use a central observation point in the
network (see Fig. 1). The central observation point can be introduced as an additional
component or it can be a monitor attached to an existing component. In orchestration-
based monitoring, at any time t, the central observation point is aware of every event
ui(t) occurring on each component Ci, and has thus the information about the global

M: G (X(a1 and c1) or (b1 and b2))

Node A

M: a1

Node C

M: c1

Node B

M: b1, b2

Fig. 1. An example of orchestration architecture
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event u1(t) ∪ . . . ∪ un(t) occurring in the system. Several protocols can be used by
local monitors to communicate events. For instance, local monitors can send their local
event at every time instance. Alternatively, the protocol may exploit the presence of
a global clock in the system and just signal which propositions are true at any time
instance or those whose value has changed. From a theoretical perspective, putting aside
the instrumentation and communication, orchestration-based monitoring is not different
from typical centralised monitoring.

4 Migration

Migration-based monitoring was introduced in [4]. The idea of migration is to represent
(the state of) a monitor as an LTL formula that travels across a network. Upon the
reception of a new LTL formula, a component progresses it, i.e., it rewrites the formula
given the local observation, so that the resulting formula is the formula that has to
hold in the next computation step. Such formula may contain references to past time
instants if it has been progressed by components that could not evaluate some parts of
it. More precisely, rewriting a formula is done using the so-called progression, adapted
to the decentralised case, i.e., taking into account the fact that a component has only
information about the local propositions it has access to. For example, in Fig. 2 only
the valuations of b1 and b2 would be available for the monitor at component B. For
the other propositions whose valuation is not available, an obligation is recorded which
will have to be satisfied in a future time instant (by looking at the past). In the example,
note that Pa1 and Pc1 refer to the previous values of a1 and c1 respectively. The
rewritten formula is then sent to the most appropriate component — intuitively, the
component that has the information about the proposition whose obligation reaches
furthest into the past. The recipient component progresses the received formula using
its local observation but also using its local history of observations to evaluate the past
propositions. After sending a formula, a component is left with nothing to evaluate,
unless it receives a formula from another component.

Any verdict found by a component is an actual global verdict. However, since the
values of some propositions are known only one or more time instants later, the verdict
is typically reached with a delay depending on the size of the network. To keep this
delay to a minimum one can initially start monitoring the formula on all components,
enabling different sequences of proposition processing. The downside, however, is that
this increases the number of messages as well as the number of progressions.

M: 

Node A

M: 

Node B

M: G(X(a1 and c1) or (b1 and b2))

Node C

Migration takes place

M: G(X(a1 and c1) or (b1 and b2)) and G(X(Pa1 and Pc1))

Node A

M: 

Node B

M: 

Node C

Fig. 2. An example of migrating architecture
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M: G(_ or (b1 and b2))

Node BNode A

M: a1

Node C

M: X(_ and c1)

Fig. 3. An example of choreography architecture

5 Choreography

Rather than having the whole formula at a single location (whether this is fixed as
in orchestration or variable as in migration), choreography breaks down the formula
across the network, forming a tree structure where results from subformulae flow up to
the parent formula.

5.1 Choreography at an Abstract Level

Figure 3 shows how formula G(X(a1 ∧ c1) ∨ b1 ∧ b2) is spread across a network
of three nodes A,B, and C with sets of local propositions {a1}, {b1, b2}, and {c1},
respectively. Note that each proposition is monitored in what we refer in the following
as its native node, i.e., each node is monitoring a subformula that contains reference
to either its local atomic propositions or place holders. Intuitively, place holders can
be understood as three-state propositions that represent the verdict (true, false, or no
verdict yet) of a remote subformula being evaluated on another component. Note also
that no node is aware of all the propositional values. The progression of a choreographed
monitoring network includes the following steps:

1. Progress the subformulae that do not have place holders, and forward the verdicts
to their parents.

2. Upon receiving all verdicts for place holders, parent subformulae perform their
progression potentially spawning new place holders (e.g., due to the progression of
the Until operator (defined later)).

3. Verdicts continue to propagate from the leaves to the root of the tree until the root
reaches a true or false verdict.

In what follows, we formalise the progression of a choreographed monitoring network,
and prove two properties of the proposed choreography: the maximum number of nested
place holders and the correctness of the verdict reached.

5.2 Formalizing Choreography

In the rest of this section, we formally define an instantiation of the choreography ap-
proach, starting with the distribution of an LTL formula across a network and subse-
quently showing how interactions take place to reach the verdict for a particular trace.
We extend LTL syntax with one modality to support distribution.

Definition 3 (Distributed LTL). Distributed LTL formulae, in LTLD, are defined as
follows:

ϕD ::= ϕ | 〈|x, y|〉ϕ, where x, y ∈ N and ϕ ∈ LTL
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A distributed LTL formula is either an LTL formula or a place holder of the form
〈|x, y|〉ϕ where natural numbers x, y act as a pointer to a subformula in the LTL net-
work, while the LTL formula is kept as a copy.

Remark 1. The modality related to distribution is only used in our definitions and func-
tions. The end user, i.e., the one writing properties, does not need to be aware of it.

Given a distributed LTL formula, we define a scoring function that returns a natural
number representing the desirability of placing the monitor for that LTL formula on
some particular component i. To choose where to place a given LTL formula, we choose
the one with the highest score.

Definition 4 (Choosing component). The scoring and choice functions are defined as
follows:

– The scoring function scori : LTLD → N is defined as follows (using ∼ and * to
range over unary and binary LTL operators, resp.):

scori(ϕ) = match ϕ with
| ∼ψ → scori(ψ) | ψ * ψ′ → scori(ψ) + scori(ψ

′)

| p →
{
1 if #p = i
0 otherwise

| _ → 0

– The choice function chc : LTLD → N is defined as follows:

chc(ϕ)
def
= i such that scori(ϕ) = max(scor1(ϕ), . . . , scorn(ϕ))

Note that this definition of chc might have several solutions but we leave it up to the
implementer to choose any component with a high score, either randomly or through
some other strategy.

An important condition for choreography to function correctly is to ensure that for
any proposition p, chc(p) = #p holds since the value of p can only be resolved at
component #p. In what follows we assume this is always the case.

Remark 2. There are several ways of varying the scoring function. The following two
are just examples: (i) Vary the weighting of binary operators’ operands, e.g., in the
case of the Until the right subformula is given more weighting than the left; (ii) Giving
more weight to a particular component, e.g., to create an orchestration where the whole
formula except the remote propositions are on a single component.

Given a list of components making up a system, a monitor network is a corresponding
list of monitors (with one monitor per component) where each monitor has certain LTL
formulae.

Definition 5 (LTL network). An LTL network is a function M : N → N → LTL
which given a component identifier, returns the component’s monitor, which in turn is a
function which given the formula identifier, returns the formula.

We use M,N,O, P to range over the set of networks M. As abbreviations we use Mi

to refer to M(i), i.e., the i-th component in network M , and M j
i to refer to Mi(j), i.e.,

the j-th formula of the i-th component in M . Moreover, |Mi| = | dom(Mi)| refers to
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the size of the domain of Mi, while M j
i �→ ϕ is used as abbreviation for M † [i �→

Mi ∪ [(j �→ ϕ)]] and M∗
i as abbreviation for M

|Mi|
i , where † is the classical map

override operator.2

Intuitively, distributing a formula across a network requires two operations: modify-
ing the formula to point to its subparts which are in another part of the network, and
inserting the formula with pointers inside the network. The function net defined below
handles the latter aspect while the former is handled by distr. In turn distr (through
recurs) recursively calls itself on subformulae until it encounters a subpart which be-
longs to a different component (due to the scoring function). In this case, function net is
called once more so that the remote subformula is inserted in the network accordingly.
Using function chc, the sub parts of a formula that “choose” a different component
from their parent’s can be marked as distributed using LTLD modalities and placed at a
different point in the network.

Definition 6 (Generating an LTL network). Thus, we define function net : M ×
LTL → M, which given an (initially empty) network, distributes the LTL formula ac-
cording to the scoring function as follows:

net(M,ϕ) = let c = chc(ϕ) in
let M ′, ϕ′ = distrc(M,ϕ) in M ′∗

c �→ ϕ′

where distri(M,ϕ) = match (M,ϕ) with
| ∼ψ → let N,ψ′ = recursi(M,ψ) in N,∼ψ′

| ψ * ψ′ → let N,ψ′′ = recursi(M,ψ) in
let O,ψ′′′ = recursi(N,ψ′) in O,ψ′′ * ψ′′′

| ψ → M,ψ

and recursi(M,ϕ) = let j = chc(ϕ) in

{
distri(M,ϕ) if j = i
net(M,ϕ), 〈|j, |Mj ||〉ϕ otherwise.

Note that, starting with an empty network (ME = {1 �→ {}, . . . , n �→ {}}) where n is
the number of components), this function returns a tree structure with LTL subformulae
linked to their parent. We abbreviate net(ME , ϕ) to net(ϕ). To denote the root of the
tree for the network of an LTL formula ϕ, i.e., the main monitor, we use M̂ , which is
defined as M

|Mc|−1
c where c = chc(ϕ).

Example 1. Consider the scenario of constructing a network for formula ϕ = aU b for
a decentralised system with two components, A and B (numbered 1 and 2 resp.), with
the former having proposition a at its disposal while the latter having proposition b.

Starting with a call to net, we note that chc(ϕ) may return either 1 or 2 depending on
the definition of maximum. In this case, we assume the former and call the distribution
function on an empty network: distr1(ME , ϕ). Starting with the basic definitions, the
example works out as follows:

2 For two functions f and g, for any element e, (f † g)(e) is g(e) if e ∈ dom(g), f(e) if
e ∈ dom(f), and undef otherwise.
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N,ϕ′ = recurs1(ME , a) = distr1(ME , a)
= {1 �→ {}, 2 �→ {}}, a

O, ψ′ = recurs1(N, b) = net(N, b), 〈|2, 0|〉b
= {1 �→ {0 �→ b}, 2 �→ {}}, 〈|2, 0|〉b

distr1(ME , ϕ) = {1 �→ {}, 2 �→ {0 �→ b}}, aU 〈|2, 0|〉b
net(ME , ϕ) = {1 �→ {0 �→ aU 〈|2, 0|〉b}, 2 �→ {0 �→ b}}

At each time step, starting from the main monitor, the network performs one chore-
ographed progression step.

Definition 7 (Choreographed Progression). Given an LTL network M , the index j of
a formula in monitor i, and the current observation σ, the choreographed progression
function progi : M× N×Σ → M, returns the resulting LTL network:

progi(M, j, σ) = match M j
i with

| 	 | ⊥ → M

| p →
{

M j
i �→ 	 if p ∈ σ

M j
i �→ ⊥ otherwise

| ¬ϕ → ¬
(
progi(M, j, σ)ji

)
| Xϕ → M j

i �→ ϕ

| ϕ* ψ → let N = progi(M
j
i �→ ϕ, j, σ) in

let O = progi(N
j
i �→ ψ, j, σ) in

let P, ϕ′ = distri(O,ϕ U ψ) in{
Oj

i �→ N j
i ∨Oj

i when M j
i = ϕ ∨ ψ

P j
i �→ Oj

i ∨ (N j
i ∧ ϕ′) when M j

i = ϕU ψ
| 〈|x, y|〉ϕ → let N = progx(M, y, σ) in{

N j
i �→ Ny

x if Ny
x ∈ {	,⊥}

N otherwise

Finally, due to the call to distri from the progression function, we overload the function
to handle distributed LTL formulae by adding the following line enabling the respawn-
ing of distributed formulae:

distri(M, 〈|x, y|〉ϕ) def
= net(M,ϕ), 〈| chc(ϕ), |Mchc(ϕ)||〉ϕ

The progression mechanism in the choreography context is similar to normal LTL.
However, due to remote subparts of a formula, the network may change in several parts
when progressing a single formula. Thus, when handling LTL operators, subformulae
should first be applied one by one on the network, each time operating on the updated
network (hence N and O). Slightly more complex is the Until case where a fresh copy
of any distributed subparts have to be respawned across the network. P handles this by
calling the distribution function on the progressed network O.

Example 2. Building upon the previous example, a U b, assuming a trace {a} · {b},
starting with network {1 �→ {0 �→ a U 〈|2, 0|〉}, 2 �→ {0 �→ b}}, and noting that the
main monitor resides at (1, 0), progression would evolve as follows (again starting with
the basic definitions):
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1. First element of the trace: {a}

N = prog1({1 �→ {0 �→ a}, 2 �→ {0 �→ b}}, 0, {a})
= {1 �→ {0 �→ 	}, 2 �→ {0 �→ b}}

O = prog1({1 �→ {0 �→ 〈|2, 0|〉b}, 2 �→ {0 �→ b}}, 0, {a})
= {1 �→ {0 �→ ⊥}, 2 �→ {0 �→ ⊥}}

P, ϕ′ = distr1({1 �→ {0 �→ ⊥}, 2 �→ {0 �→ ⊥}}, aU 〈|2, 0|〉b)
= {1 �→ {0 �→ ⊥}, 2 �→ {0 �→ ⊥, 1 �→ b}}, aU 〈|2, 1|〉b

prog1({1 �→ {0 �→ aU 〈|2, 0|〉b}, 2 �→ {0 �→ b}}, 0, {a})
= {1 �→ {0 �→ ⊥ ∨ (	 ∧ aU 〈|2, 1|〉b)}, 2 �→ {0 �→ ⊥, 1 �→ b}}

2. Second element of the trace: {b}. (Note that the main formula has been simplified
using normal LTL simplification rules and unused subformulae garbage collected.)

N = prog1({1 �→ {0 �→ a}, 2 �→ {1 �→ b}}, 0, {b})
= {1 �→ {0 �→ ⊥}, 2 �→ {1 �→ b}}

O = prog1({1 �→ {0 �→ 〈|2, 1|〉b}, 2 �→ {1 �→ b}}, 0, {b})
= {1 �→ {0 �→ 	}, 2 �→ {1 �→ 	}}

P, ϕ′ = distr1({1 �→ {0 �→ 	}, 2 �→ {1 �→ 	}}, aU 〈|2, 1|〉b)
= {1 �→ {0 �→ 	}, 2 �→ {1 �→ 	, 2 �→ b}}, aU 〈|2, 2|〉b

prog1({1 �→ {0 �→ aU 〈|2, 1|〉b}, 2 �→ {1 �→ b}}, 0, {b})
= {1 �→ {0 �→ 	 ∨ (⊥ ∧ aU 〈|2, 2|〉b)}, 2 �→ {1 �→ 	, 2 �→ b}}

Through simplification and garbage collection, the network resolves to {1 �→ {0 �→
	}, 2 �→ {}}, i.e., the main formula is now 	, meaning that a verdict has been reached
as defined below.

Definition 8 (Decentralised semantics). The satisfaction relation for choreographed
monitors is given according to the verdict reached by the topmost monitor as follows:

u �C ϕ
def
=

⎧⎨
⎩

	 if M̂ = 	
⊥ if M̂ = ⊥
? otherwise

For the purpose of guaranteeing the maximum number of indirections in a chore-
ographed LTL network, we define two depth-measuring functions: one which measures
the maximum number of nesting levels in a formula, and another which measures the
number of indirections in the network (typically starting from the main formula).

Definition 9 (Depth). The depth-measuring function dpth : LTLD → N is defined as:

dpth(ϕ) = match ϕ with
| ∼ψ → 1 + dpth(ψ)
| ψ * ψ′ → 1 + max(dpth(ψ), dpth(ψ′))
| _ → 1

The function measuring the depth of nested distribution modalities, taking a network
and an x and y pointer to a formula: dpthD : M× N× N → N is defined as:
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dpthD(M, i, j) = match M j
i with

| 〈|x, y|〉ψ → 1 + dpthD(M,x, y)

| ∼ψ → dpthD(M j
i �→ ψ, i, j)

| ψ * ψ′ → max(dpthD(M j
i �→ ψ, i, j), dpthD(M j

i �→ ψ′, i, j))
| _ → 0

Theorem 1 (Maximum nested distributions). The number of nested distributions in
a choreographed LTL formula cannot exceed the number of levels of nesting within a
formula: ∀ϕ ∈ LTL : dpthD(net(ϕ)) < dpth(ϕ).

Proof. This follows from the definition of net and by extension distr which at most
introduces one place holder (〈|x, y|〉ϕ) for any particular level and from the definitions
of the functions dpth and dpthD where for any case considered dpthD ≤ dpth. Fur-
thermore, we note that since a formula must have propositions, true or false at the leafs,
then the distribution depth is strictly less than the formula depth.

To aid in the proof of correctness, we define the function net which given a chore-
ography network and a pointer to the main formula, returns the LTL formula being
monitored in the network, net : M× N× N → LTL:

net(M, i, j) = match M j
i with

| ∼ψ → ∼
(
net(M j

i �→ ψ, i, j)
)

| ψ * ψ′ →
(
net(M j

i �→ ψ, i, j)
)
*
(
net(M j

i �→ ψ′, i, j)
)

| 〈|x, y|〉ϕ → net(M,x, y)
| ψ → ψ

Theorem 2 (Correctness). The verdict reached by choreographed monitoring is the
same as the one reached under normal monitoring �C = �3.

Proof. In the context of a choreography, the state of the monitor is distributed across the
network. By induction on the size of the trace, we show that at every progression step,
the state of the monitoring network is equivalent to the formula if monitored centrally.

BC: Initially, if we had to compare the original formula to the distributed formula
but “undistributing” it, then they should be equivalent: ϕ = net(net(ϕ)). This follows
from the definitions of net and net.

IH: After k progressions, the resulting LTL formula is equivalent to the resulting
network: kϕ = net(kM) (assuming no simplifications).

IC: Assuming IH, after k+1 progressions the resulting formula and network should
be semantically equivalent: k+1ϕ = net(k+1M). This follows through a case-by-case
analysis of the progression function prog which correspond to the cases of the normal
progression function.

6 Evaluation and Discussion

Numerous criteria can be considered for comparing different organisations of LTL mon-
itoring over a network. Below are a number of them which are treated in this study3:

3 We ignore implementation-dependent measurements such as actual overhead of monitors.
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Delay: Because of the network organization, it takes some communication steps to prop-
agate intermediate results.

Number and size of messages: Since no component in the network can observe the
full behaviour of the system, components have to communicate. Thus, we measure how
many messages are required and their size.

Progressions: Different configurations of the monitoring network affect the number
of LTL progressions that need to be carried out.

Privacy and security concerns4: In certain cases, one might wish to avoid commu-
nicating a component’s local data across the network. This might be either because of
lack of trust between the components themselves or due to an unsecured network.

To compare the three approaches with respect to these criteria, we have carried out
two main experiments (whose results are shown in Tables 1 and 2 resp.):

– The first one varies the size of the network, i.e., the number of components, and
the number of redirections in the resulting LTL network. This experiment is crucial
since the migration approach is sensitive to the size of the network [4] while intu-
itively we expect the choreography approach to be affected by the depth of the LTL
network.

– The second experiment varies the size of the formulae being considered and the
pattern of the resulting tree once the formula is distributed. This enabled us to as-
sess the scalability of the approaches and how they react to a different network
structures. In particular we considered two kinds of networks: one whose formula
is generated purely randomly, and another where we biased the formula genera-
tor such that the bottom-most LTL operators always have operands from the same
component; essentially emulating networks where the basic subformulae of an LTL
formula can be evaluated without communicating.

Some choices needed to be made with respect to the architectural setup of the
experiments:

Experiment setup: The setup is based on the tool DecentMon5 used in a previous
study comparing orchestration with migration [4]. For this study we simply extended
the tool with a choreography approach6.

Benchmark generation: For the first experiment, we generated 100 LTL formulae
and distributed traces randomly, subsequently tweaking the alphabet to manipulate the
number of referenced components and the depth of the resulting LTL network. For
the second experiment we could not use the same formulae since one of the variables
considered was the size of the formulae. The numbers shown in the tables are thus the
average results obtained across the 100 formulae considered in each case.

Communication protocol: Choosing a communication protocol such as communi-
cating only the propositions which are true while assuming that unsent ones are false,
makes a significant difference to our results. The chosen protocols were as follows: In
the case of orchestration, only the propositions referenced in the formula that hold true
are sent. Each sent proposition is considered to be of size one. In the case of migration,

4 We refrain from going into fault-tolerance issues in this study, leaving it for future work.
5 http://decentmonitor.forge.imag.fr
6 The new implementation is available at: http://decentmon3.forge.imag.fr

http://decentmonitor.forge.imag.fr
http://decentmon3.forge.imag.fr
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since the whole formula is sent, it is less straightforward to gain quick savings as in
the case of propositions. Thus, in this case we measure the size of the formula (one for
each proposition and each operator) and use it as the size of the message. In the case
of choreography we have two kinds of messages: updates from subformulae to their
parent’s place holders and redistribution messages. The former kind are similar to those
of orchestration but there is also the possibility that the subformula has neither reached
true nor false. Thus, if no verdict has been reached, the subformula transmits nothing,
otherwise it sends the verdict which counts as one. As for the redistribution messages,
recall that each redistribution would have been already communicated during the initial
setup of the network. Therefore, we assume that upon redistribution there is no need to
resend the formula and we consider its size to be one.

Execution cycles: A major difference between choreography and migration is that the
latter could send all the messages in one cycle while in the case of the choreography,
since the distribution messages succeed the ones enabling progression, there are two
messaging cycles for every time instant. However, the picture is even more complex
because the progression within a component may depend on the verdict of others. Thus,
while migration (as in [4]) strictly allowed one progression and messaging cycle per
system cycle, in our choreography evaluation, we allowed any number of cycles that
were necessary for the network to completely process the values in the current system
cycle. This makes the choreography approach delay-free (and hence avoids references
to the history) but relatively more expensive in terms of the number of cycles and the
messages required for each system cycle.

In the following subsections, we discuss the outcome by first comparing choreog-
raphy with migration, and subsequently comparing choreography to orchestration. We
refrain from comparing orchestration to migration as this has already been carried out
extensively in [4] and the results in the tables confirm the conclusions.

6.1 Choreography and Migration

We start by comparing the choreography approach to the migration approach by con-
sidering each criterion in turn:

Delay: As discussed earlier, since we have opted to allow the monitors to stabilise
between each system cycle, we observe no delay for the choreography case. However,
had this not been the case, we conjecture that the worst case delay would depend on the
depth of the formula network which, as proven in Theorem 1, is less than the depth of
the actual LTL formula.

Number and size of messages: A significant difference between choreography and
migration is that in migration the whole formula is transmitted over the network while
in choreography only when a subformula reaches true or false is the verdict transmitted.
This distinction contributes to the significant difference in the size of the messages sent
observed in Table 1.

However, the situation is reversed in the case of the frequency of messages. This is
mainly because in choreography, not only does the network have to propagate the ver-
dicts, but some progressions require a respawning of some submonitors. For example,
consider the case of formula ϕ U ψ which is progressed to ψ′ ∨ (ϕ′ ∧ ϕ U ψ). First,
we note that ϕ′ and ψ′ are progressions of their counterparts in the context of the time
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instance being considered, while copies of the formulae are respawned to be progressed
in the following time instance. This means that upon respawning, all remote submoni-
tors have to be respawned accordingly. Naturally, this has to be done using messages,
which as shown in Table 1, constitute more than half the total number of messages
required.

Although choreography generally obtained better results with respect to the size of
messages, the scale starts tipping in favour of migration the bigger the formula is. This
is clearly visible in Tables 2 where for bigger formulae the results get closer, with
migration surpassing choreography in the third (unbiased) case. The reason behind this
is probably that simplification in the choreography context does not work optimally
since the simplification function does not have the visibility of the whole network.

As part of the evaluation, we changed the number of components involved in a for-
mula whilst keeping everything constant. Unsurprisingly, changing the number of com-
ponents did not affect the performance of the choreography approach as much as it
affected the performance of the migration approach. Table 1 shows this clearly: the
compound size of messages transmitted over nine components is 16 times bigger than
that of the three-component experiment. The results for choreography still fluctuated7

but not clearly in any direction and less than a factor of two in the worst case.
Similarly, keeping everything constant, we altered the alphabet once more, this time

keeping the number of components constant but changing the number of indirections
required in the choreography, i.e., a deeper tree of monitors. Again, the results in Table 1
confirm the intuition that this change affects the choreography much more than the
migration approach. In this case the distinction is somewhat less pronounced. However,
if we compare the change from 96.16 to 81.3 in the migration case as opposed to the
change from 2.47 to 4.16 in the case of choreography, we note that the percentage
change is over four times bigger in the second case (68% as opposed to 15%).

Progressions: The variations in the number of progressions is similar to the num-
ber of messages sent/received. The two are linked indirectly in the sense that both the
number of messages and progressions increase if the monitoring activity in the network
increases. However, we note that this need not be the case, particularly when the number
of components is small and monitoring can take place with little communication.

Privacy and security concerns: In general, in both the migration and the choreogra-
phy approaches no component can view all the proposition values in the network. How-
ever, the migration approach is significantly safer in this regard as no proposition values
are communicated: only LTL formulae, being less informative to an eavesdropper.

6.2 Choreography and Orchestration

In this subsection, we compare the choreography and the orchestration approaches.
Delay: Since orchestration is a special case of choreography with depth one, the

delay of an orchestration is always better or as good as that of a choreography. However,
in this study, since any number of monitoring cycles are allowed in between system
cycles, neither approach has any delay.

7 The reasons for the fluctuations are probably due to the random adaptations of the alphabet to
change the number of components a formula is based upon.
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Table 1. Same formulae and traces with modified components and distribution depth

Variables Orchestration Migration Choreography
comps depth # msgs progs # msgs |msgs| progs # msgs # distr8 progs

3 4

1.3 1.8

0.12 22.10 14.07 4.22 2.90 8.07
5 4 0.21 98.59 55.02 2.18 1.54 5.74
9 4 0.24 353.86 188.06 2.79 1.96 6.25
5 3.15 0.21 96.16 53.98 2.47 1.74 5.98
5 5.83 0.21 81.3 46.43 4.16 2.88 8.05

Table 2. Same formulae and traces with modified components and distribution depth

Variables Orchestration Migration Choreography
|frm| bias # msgs progs # msgs |msgs| progs # msgs # distr progs

∼2
× 1.97 6.15 1.37 12.05 22.08 3.39 1.19 6.83
� 1.93 5.83 0.52 4.80 16.05 0.59 0.18 5.95

∼4
× 21.79 98.08 6.91 108.00 159.93 22.98 14.60 130.36
� 28.51 111.09 1.18 23.08 137.77 2.73 1.43 113.72

∼8
× 193.11 833.46 26.67 944.77 1166.72 1041.97 655.42 1635.64
� 103.10 334.18 6.58 204.56 433.47 96.71 60.73 592.25

∼16
× 653.20 2259.83 90.15 5828.51 4078.24 4136.77 2680.70 7271.81
� 361.54 1372.84 20.69 1802.93 1935.08 589.37 391.60 33981.28

Number and size of messages: Similar to the case of delay, in general (as shown
in the empirical results) the number of messages required by an orchestration is less
than that required by a choreography. However, this greatly depends on the topology
of the tree. For example, having a distributed subformula b1 ∧ b2, sending updates for
the conjunction is generally cheaper than sending updates for b1 and b2 separately.
This phenomenon is hinted at in Table 1 where the results of the 3.15 depth are worse
than those of depth 4 (where in general this should be the opposite). In other words,
the performance of choreography is greatly dependent on how much the leaves can
propagate their results towards the root of the tree without having to communicate. The
hint is then confirmed in Table 2 where we intentionally biased the formula generation
algorithm such that propositions from the same component are more likely to appear
on the same branch. The results show a significant gain for the choreography approach,
performing even better than orchestration for small formulae.

Progressions: Once more, the number of progressions behaves similarly to the num-
ber of messages.

Privacy and security concerns: In the case of orchestration, since a single component
has visibility of all propositions, a security breach in that component would expose all
the system information. On the contrary, generally speaking, no component has the full
visibility of the system events in the case of choreography.

Clearly, none of the approaches ticks all the boxes. Rather, these experiments have
shed some light as to when it makes more sense to use one approach over another

8 The number of distribution messages is included in the previous column. We also note that all
choreography messages are of size one and thus these two columns represent the size of the
messages too.
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depending on the size of the network, the structure of the LTL formula, the importance
of issues such as privacy, frequency/size of messages, etc.

7 Related Work

The idea of splitting the progression of an LTL formula into subparts and propagating
the results across a network is somewhat similar to the ideas used in parallel prefix
networks [8]. In such networks intermediate results are evaluated in parallel and then
combined to achieve the final result more efficiently. Furthermore, this work has two
other main sources of inspiration: the work by Bauer and Falcone [4] about monitor-
ing LTL properties in the context of distributed systems having a global clock, and the
work by Francalanza et al. [6] which classifies modes of monitoring in the context of
distributed systems. We have thus adapted the classification of distributed monitoring
showing how orchestration, choreography, and migration can be applied to LTL moni-
tors. We note, however, that we have introduced the global clock assumption which is
not present in [6]. Without this assumption, our correctness theorem does not hold due
to the loss of the total order between system events. From another point of view, we have
classified the approach presented in [4] as a migration approach (using the terminology
of [6]) and extended the work by presenting a choreography approach. Furthermore, we
have also empirically compared the advantages and disadvantages of the approaches.

As pointed out in [4], decentralised monitoring is related to several techniques. We
recall some of them and refer to [4] for a detailed comparison. One of the closest ap-
proaches is [10] which proposes to monitor MTTL formulae specifying the safety prop-
erties over parallel asynchronous systems. Contrary to [10], our approach considers the
full set of (“off-the-shelf") LTL properties, does not assume the existence of a global
observation point, and focuses on how to automatically split an LTL formula according
to the architecture of the system.

Also, closely related to this paper is a monitoring approach of invariants using knowl-
edge [7]. This approach leverages an apriori model-checking of the system to pre-
calculate the states where a violation can be reported by a process acting alone. Both [7]
and our approach try to minimize the communication induced by the distributed nature
of the system but [7] (i) requires the property to be stable (and considers only invariants)
and (ii) uses a Petri net model to compute synchronization points.

8 Conclusions and Future Work

In the context of distributed systems becoming increasingly ubiquitous, further studies
are required to understand the variables involved and how these affect the numerous cri-
teria which constitute good monitoring strategies. This would help architects to choose
the correct approach depending on the circumstance.

This study shows that while choreography can be advantageous in specific scenar-
ios such as in the case of systems with lots of components and formulae which can be
shallowly distributed, generally it requires a significant number of messages and cannot
fully exploit the potential of LTL simplification routines. We have noted that a substan-
tial part of the messages required for choreography are in fact messages related to the
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maintenance of the network, i.e., respawning subparts of a formula. This means that
LTL might not be the best candidate when going for a choreography. Contrastingly,
non-progression-based monitoring algorithms where the monitors are not constantly
modified, might lend themselves better to choreography.

We consider future work in three main directions: First, we would like to investigate
how LTL equivalence rules can be used to make the choreography tree shallower. For
example distributing (a1∧a2)∧((a3∧b1)∧b2) might require two hops to reach a verdict
while using associativity rules (obtaining ((a1 ∧ a2) ∧ a3) ∧ (b1 ∧ b2)), it can be easily
reduced to one. Secondly, it would be interesting to consider the case where for each
system cycle, the monitor only performs one cycle too. This introduces a delay for the
choreography to reach the verdict and requires a more complex network to manage the
dependencies across different time instants. Third, using other notations instead of LTL
and/or different monitoring algorithms, particularly ones which are not progression-
based, can potentially tip the balance more in favour of choreography approaches.
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Abstract. We present a dynamic verification technique for a class of
concurrent programming models that combine dataflow and shared mem-
ory programming. In this class of hybrid concurrency models, programs
are built from tasks whose data dependencies are explicitly defined by
a programmer and used by the runtime system to coordinate task exe-
cution. Differently from pure dataflow, tasks are allowed to have shared
state which must be properly protected using synchronization mecha-
nisms, such as locks or transactional memory (TM). While these hybrid
models enable programmers to reason about programs, especially with
irregular data sharing and communication patterns, at a higher level,
they may also give rise to new kinds of bugs as they are unfamiliar to
the programmers. We identify and illustrate a novel category of bugs in
these hybrid concurrency programming models and provide a technique
for randomized exploration of program behaviors in this setting.

Keywords: Dynamic verification, dataflow, transactional memory.

1 Introduction

Most modern computation platforms feature multiple CPU and GPU cores. For
many large applications, it is more convenient for programmers to make use
of multiple programming models to coordinate different kinds of concurrency
and communication in the program. In this paper, we explore hybrid concurrent
programming models that combine shared memory with dataflow abstractions.

Shared memory multi-threading is ubiquitous in concurrent programs. By
contrast, in the dataflow programming model, the execution of an operation is
constrained only by the availability of its input data – a feature that makes
dataflow programming convenient and safe when it fits the problem at hand.

Using the dataflow programming model in conjunction with shared memory
mechanisms can make it convenient and natural for programmers to express
the parallelism inherent in a problem as evidenced by recent proposals [4,9]
and adoptions [5,7,8]. The proposed hybrid programming models [4,9] provide
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programmers with dataflow abstractions for defining tasks as the main execution
unit with corresponding data dependencies. Contrary to the pure dataflow model
which assumes side-effect free execution of the tasks, these models allow tasks
to share the data using some form of thread synchronization, such as locks
or transactional memory (TM). In this way, they facilitate implementation of
complex algorithms for which shared state is the fundamental part of how the
computational problem at hand is naturally expressed.

Enabling a combination of different programming models provides a user with
a wide choice of parallel programming abstractions that can support a straight-
forward implementation of a wider range of problems. However, it also increases
the likelihood of introducing concurrency bugs, not only those specific to a given
well-studied programming model, but also those that are the result of unexpected
program behavior caused by an incorrect use of different programming abstrac-
tions within the same program. Since the hybrid dataflow models we consider
in this paper are quite novel, many of the bugs that belong to the latter cate-
gory may not have been studied. The goal of this work is to identify these bugs
and design a verification tool that can facilitate automated behavior exploration
targeting their detection.

We present a dynamic verification tool for characterizing and exploring be-
haviors of programs written using hybrid dataflow programming models. We
focus in particular on the Atomic DataFlow (ADF) programming model [4] as
a representative of this class of programming models. In the ADF model, a pro-
gram is based on tasks for which data dependencies are explicitly defined by
a programmer and used by the runtime system to coordinate the task execu-
tion, while the memory shared between potentially concurrent tasks is managed
using transactional memory (TM). While ideally these two domains should be
well separated within a program, concurrency bugs can lead to an unexpected
interleaving between these domains, leading to incorrect program behavior.

We devised a randomized scheduling method for exploring programs written
using ADF. The key challenge in our work was precisely characterizing and
exploring the concurrency visible and meaningful to the programmer, as opposed
to the concurrency present in the dataflow runtime or TM implementations.
For exploration of different interleavings, we adapted the dynamic exploration
technique “Probabilistic Concurrency Testing (PCT)” [3] to ADF programs in
order to amplify the randomness of observed schedules [2]. For shared memory
concurrent programs, PCT provides probabilistic guarantees for bug detection.
By properly selecting the scheduling points that PCT randomly chooses from,
we aim to provide a similar guarantee for ADF programs.

In this paper, we motivate the use of and the need for a verification tool
for ADF, explain our randomized behavior exploration tool and describe the
experimental evaluation we are undertaking.

2 Motivation

In this section, we describe an unexpected execution scenario for motivating our
dynamic verification method. Due to the asynchronous concurrent execution of



158 E. Mutlu et al.

Fig. 1. Motivating example

tasks in the ADF model, users can face unexpected execution orders causing
atomicity violations between dataflow tasks. To illustrate such a behavior, con-
sider two ADF tasks in Figure 1, max min that compute the maximum and
minimum values from two input streams while updating a global minimum and
maximum, and comp avg that uses the output streams provided by max min
for comparing the average values of g max and g min with the input values and
returning the bigger one. As seen in Figure 1-c, the dependencies between these
tasks can be using the expressed with ADF programming model naturally as
shown in Figure 1-a and b. However, while these particular implementations ap-
pear correct separately, when combined, they may result in unexpected behavior
in an ADF execution. As the updates on the global variables, g max and g min,
are performed in separate atomic blocks, concurrently running tasks can read
incorrect values of global variables. Consider an execution where the first pair
of integers from the input streams x and y are processed by max min and then
passed to comp avg. During the execution of comp avg, max min can start to
process the second pair and update g max value, causing comp avg to read the
new g max value from the second iteration while reading g min value from the
first one. Such concurrency scenarios that arise due to an interaction between
dataflow and shared memory may be difficult to foresee for a programmer and
are not addressed properly by verification methods for pure dataflow or pure
shared memory model.

3 System Overview

3.1 Probabilistic Concurrency Testing

The “Probabilistic Concurrency Testing (PCT)” method relies on the observa-
tion that concurrency bugs typically involve unexpected interactions among few
instructions that are executed by a small number of threads [6]. For capturing
these unexpected thread interactions, PCT defines a bug depth parameter as the
minimum number of ordering constraints that are sufficient to find a bug and
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uses a randomized scheduling method, with provably good probabilistic guaran-
tees, to find all bugs of low depth.

PCTmakes use of a priority based scheduler that maintains randomly assigned
priorities for each thread.During execution, the scheduler schedules only the thread
with the highest priority until it becomes blocked by another thread or finishes its
execution. For simulating the ordering constraints, the PCT scheduler also main-
tains a list of priority change points. Whenever the execution reaches a priority
change point, the scheduler changes the priority of the running thread to a prede-
terminedpriority associatedwith the change point.With thismechanism, thePCT
method can potentially exercise all bugs of depth d by simply using d − 1 points.

Consider a program with n threads that together execute at most k instruc-
tions. Assuming that we want to find bugs with depth d, PCT provides a guar-
antee of finding a bug of depth d with the probability at least 1/nkd-1.

3.2 Our Method and Implementation

The ADF programming model has an inherently asynchronous concurrent execu-
tion model, where tasks can be enabled and executed multiple times. In addition,
programmers are allowed to provide their custom synchronization using trans-
actional memory to protect certain code blocks (not necessarily entire tasks) in
ADF tasks. This can potentially influence the dataflow execution. In order to
fully investigate behaviors of programs written using a hybrid model such as
ADF, the dynamic exploration technique has to be aware of both the dataflow
structure and the specifics of the shared memory synchronization mechanism.
Furthermore, the dynamic verification tool should not simply instrument the
platform implementations for transactional memory, atomic blocks and dataflow.
This would not only be very inefficient, but it would also not provide value to the
programmer. The user of a hybrid concurrent programming model is not inter-
ested in the concurrency internal to the platform implementing the model, which
should be transparent to the programmer, but only in the non-determinism made
visible at the programming model level.

We build upon the PCT algorithm but redefine priority assignment points,
making use of TM transaction boundaries for priority change point assignment.
Rather than using the original ADF work-stealing scheduler based on a pool of
worker threads, we have devised a new scheduler that creates a thread with a
randomly assigned priority for each enabled task and sequentially schedules the
threads by honoring their priorities. Likewise, instead of using the original prior-
ity change point assignment from the PCT method, we narrowed possible priority
change point locations to the beginning and the end of atomic regions only.

Given an ADF program with at most n enabled tasks that together execute
at most k regions (atomic and non-atomic), our exploration method tries to find
bugs of depth d as follows.

1. Whenever a task becomes enabled, randomly assign one of n priority values
between d and d + n to a thread associated with the task.

2. Pick d−1 random priority change points k1,...,kd−1 in the range of [1, k] and
associate priority value of i to ki.
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3. Schedule a thread with the highest priority and execute it sequentially. When
a thread reaches the i-th change point, change its priority to i.

With this randomized scheduler, our exploration technique provides the fol-
lowing guarantee.

Given an ADF program with at most n enabled tasks that together execute
at most k regions (atomic and non-atomic), our exploration method finds a bug
of depth d with probability at least 1/nkd-1.

We implemented our exploration technique as a separate testing mechanism
into the ADF framework. With this mechanism, users can choose the testing
scheduler for exploring the behaviors of their applications with different task
ordering for a given bug depth. Differently from conventional testing, our tech-
nique provides probabilistic guarantees for finding bugs and the overall detection
probability can be increased by running our technique multiple times.

Our tool also provides a monitoring mechanism for checking globally-defined
invariants during an execution. We provide the users with the capability to write
global invariants on shared variables. These can be checked at every step by our
tool, or at randomly assigned points in the execution.

Consider the motivating example in Figure 1 with input streams of length 2,
our exploration technique can catch the the described buggy behavior with bug
depth 2 as follow:

Initialization. Random priorities between d-(n + d) (2-6 as the length of the
input streams is 2, there can be at most 4 enabled tasks) will be assigned to
the enabled tasks. As the only enabled task is max min, let’s assume it is
given a priority of 4.
Later, d− 1 (1) priority change points will be assigned randomly among the
start and end points of all atomic sections, assume this change point (as we
are exploring bug depth 2) is chosen to be at the end of first atomic block
in max min task.

First iteration. The scheduler starts the execution by choosing the task with
the highest priority. When the execution comes to a priority change point,
the priority is lowered causing scheduler to check for a task with higher
priority. In this case, max min will continue to execute as there is no other
enabled task.
After finishing the execution max min task will enable the comp avg task
resulting in a priority assignment to it. Assume that the scheduler assigned
2 as the priority for the comp avg.
The next set of inputs from the streams will enable max min task again
with new assigned priority to be 3.

Second iteration. Now scheduler will choose the enabled task with the highest
priority for execution, which is max min in this case.
While executing the max min task, the priority will be changed at the pri-
ority change point and set to 1.
As a result scheduler will now choose comp avg to execute causing the buggy
behavior explained in Section 2.
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4 Conclusion and Ongoing Work

This paper identifies and illustrates a novel category of bugs in the hybrid con-
currency programming models that make use of dataflow and shared memory
programming models, and provides a technique for randomized exploration of
program behaviors in this setting.

We have started investigating ADF implementations of DWARF [1] bench-
mark applications. These applications are mostly numerical computations that
have a structured dataflow with little shared memory accesses. We believe these
to be a good initial set of benchmarks for discovering possibly missed cases in
dataflow-heavy implementations.

In later experimental work, we plan to investigate the dynamic verification of
the ADF implementation of a parallel game engine. In this complex application,
the game map is divided between different tasks that process the objects moving
between map regions. Dataflow is used to coordinate the execution of tasks that
correspond to different game regions, whereas the TM synchronization is used
to protect lists of objects, associated with each game region, that hold all the
objects physically located within a region. By using the game engine application,
we wish to evaluate how well our exploration method behaves with performance-
critical applications characterized with highly-irregular behavior.
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Abstract. We propose an automated mining-based method for explain-
ing concurrency bugs. We use a data mining technique called sequential
pattern mining to identify problematic sequences of concurrent read and
write accesses to the shared memory of a multi-threaded program. Our
technique does not rely on any characteristics specific to one type of con-
currency bug, thus providing a general framework for concurrency bug
explanation. In our method, given a set of concurrent execution traces,
we first mine sequences that frequently occur in failing traces and then
rank them based on the number of their occurrences in passing traces.
We consider the highly ranked sequences of events that occur frequently
only in failing traces an explanation of the system failure, as they can re-
veal its causes in the execution traces. Since the scalability of sequential
pattern mining is limited by the length of the traces, we present an ab-
straction technique which shortens the traces at the cost of introducing
spurious explanations. Spurious as well as misleading explanations are
then eliminated by a subsequent filtering step, helping the programmer
to focus on likely causes of the failure. We validate our approach using
a number of case studies, including synthetic as well as real-world bugs.

1 Introduction

While Moore’s law is still upheld by increasing the number of cores of proces-
sors, the construction of parallel programs that exploit the added computational
capacity has become significantly more complicated. This holds particularly true
for debugging multi-threaded shared-memory software: unexpected interactions
between threads may result in erroneous and seemingly non-deterministic pro-
gram behavior whose root cause is difficult to analyze.

To detect concurrency bugs, researchers have focused on a number of prob-
lematic program behaviors such as data races (concurrent conflicting accesses
to the same memory location) and atomicity/serializability violations (an inter-
ference between supposedly indivisible critical regions). The detection of data
races requires no knowledge of the program semantics and has therefore received
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ample attention (see Section 5). Freedom from data races, however, is neither a
necessary nor a sufficient property to establish the correctness of a concurrent
program. In particular, it does not guarantee the absence of atomicity violations,
which constitute the predominant class of non-deadlock concurrency bugs [12].
Atomicity violations are inherently tied to the intended granularity of code seg-
ments (or operations) of a program. Automated atomicity checking therefore
depends on heuristics [25] or atomicity annotations [6] to obtain the boundaries
of operations and data objects.

The past two decades have seen numerous tools for the exposure and detection
of race conditions [22,16,4,5,3], atomicity or serializability violations [6,11,25,20],
or more general order violations [13,18]. These techniques have in common that
they are geared towards common bug characteristics [12].

We propose a technique to explain concurrency bugs that is oblivious to the
nature of the specific bug. We assume that we are given a set of concurrent
execution traces, each of which is classified as successful or failed. This is a
reasonable assumption, as this is a prerequisite for systematic software testing.

Although the traces of concurrent programs are lengthy sequences of events,
only a small subset of these events is typically sufficient to explain an erroneous
behavior. In general, these events do not occur consecutively in the execution
trace, but rather at an arbitrary distance from each other. Therefore, we use
data mining algorithms to isolate ordered sequences of non-contiguous events
which occur frequently in the traces. Subsequently, we examine the differences
between the common behavioral patterns of failing and passing traces (motivated
by Lewis’ theory of causality and counterfactual reasoning [10]).

Our approach combines ideas from the fields of runtime monitoring [2], ab-
straction and refinement [1], and sequential pattern mining [14]. It comprises the
following three phases:
– We systematically generate execution traces with different interleavings, and
record all global operations but not thread-local operations [27], thus requir-
ing only limited observability. We justify our decision to consider only shared
accesses in Section 2. The resulting data is partitioned into successful and
failed executions.

– Since the resulting traces may contain thousands of operations and events,
we present a novel abstraction technique which reduces the length of the
traces as well as the number of events by mapping sequences of concrete
events to single abstract events. We show in Section 3 that this abstraction
step preserves all original behaviors while reducing the number of patterns
to consider.

– We use a sequential pattern mining algorithm [26,23] to identify sequences
of events that frequently occur in failing execution traces. In a subsequent
filtering step, we eliminate from the resulting sequences spurious patterns
that are an artifact of the abstraction and misleading patterns that do not
reflect problematic behaviors. The remaining patterns are then ranked ac-
cording to their frequency in the passing traces, where patterns occurring in
failing traces exclusively are ranked highest.
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In Section 4, we use a number of case studies to demonstrate that our approach
yields a small number of relevant patterns which can serve as an explanation of
the erroneous program behavior.

2 Executions, Failures, and Bug Explanation Patterns

In this section, we define basic notions such as program semantics, execution
traces, and faults. We introduce the notion of bug explanation patterns and
provide a theoretical rationale as well as an example of their usage. We recap
the terminology of sequential pattern mining and explain how we apply this
technique to extract bug explanation patterns from sets of execution traces.

2.1 Programs and Failing Executions

A multi-threaded program comprises a set V of memory locations or variables
and k threads with thread indices {1, . . . , k}. Each thread is represented by a
control flow graph whose edges are annotated with atomic instructions. We use
guarded statements ϕ�τ to represent atomic instructions, where ϕ is a predicate
over the program variables and τ is an (optional) assignment v := φ (where v ∈ V

and φ is an expression over V). An atomic instruction ϕ � τ is executable in a
given state (which is a mapping from V to the values of a domain) if ϕ evaluates
to true in that state. The execution of the assignment v := φ results in a new
state in which v is assigned the value of φ in the original state. Since an atomic
instruction is indivisible, acquiring and releasing a lock l in a thread with index
i is modeled as (l = 0)� l := i and (l = i)� l := 0, respectively. Fork and join can
be modeled in a similar manner using auxiliary synchronization variables.

Each thread executes a sequence of atomic instructions in program order (de-
termined by the control flow graph). During the execution, the scheduler picks
a thread and executes the next atomic instruction in the program order of the
thread. The execution halts if there are no more executable atomic instructions.

The sequence of states visited during an execution constitutes a program
behavior. A fault or bug is a defect in a program, which if triggered leads to
an error, which in turn is a discrepancy between the intended and the actual
behavior. If an error propagates, it may eventually lead to a failure, a behavior
contradicting the specification. We call executions leading to a failure failing or
bad, and all other executions passing or good executions.

Errors and failures are manifestations of bugs. Our goal is to explain why a
bug results in a failure.

2.2 Events, Transactions, and Traces

Each execution of an atomic instruction ϕ � v := φ generates read events for the
memory locations referenced in ϕ and φ, followed by a write event for v.

Definition 1 (Events). An event is a tuple 〈id#n, tid, �, type, addr〉, where id
is an identifier and n is an instance number, tid ∈ {1, . . . , k} and � are the
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thread identifier and the program location of the corresponding instruction, type ∈
{R,W} is the type (or direction) of the memory access, and addr ∈ V is the
memory location or variable accessed.

Two events have the same identifier id if they are issued by the same thread
and agree on the program location, the type, and the address. The instance num-
ber enables us to distinguish these events. We use Rtid(addr)−� andWtid(addr)−�
to refer to read and write events to the object with address addr issued by thread
tid at location �, respectively. The program order of a thread induces a partial
order po on the set of events E with equivalent tids issued by a program exe-
cution. For each i ∈ {1, . . . , k} the set of events in E with tid = i (denoted by
E	(tid=i)) is totally ordered by po.

Two events conflict if they are issued by different threads, access the same
memory address, and at least one of them is a write. Given two conflicting
events e1 and e2 such that e1 is issued before e2, we distinguish three cases
of data dependency: (a) flow-dependence: e2 reads a value written by e1, (b)
anti-dependence: e1 reads a value before it is overwritten by e2, and (c) output-
dependence: e1 and e2 both write the same memory location.

We use dep to denote the partial order over E representing the data depen-
dencies that arise from the order in which the instructions of a program are
executed. Thus, 〈E, po ∪ dep〉 is a partially ordered set. This poset induces a
schedule. In the terminology of databases [17], a schedule is a sequence of in-
terleaving transactions, where each transaction comprises a set of atomic read
events followed by a set of corresponding atomic write events of the same thread
which record the result of a local computation on the read values. A transaction
in a schedule is live if it is either the final transaction writing to a certain loca-
tion, or if it writes a value read by a subsequent live transaction. Two schedules
are view-equivalent if their sets of live transactions coincide, and if a live trans-
action i reads the value of variable v written by transaction j in one schedule
then so does transaction i in the other [17, Proposition 1].

Two equivalent schedules, if executed from the same initial state, yield the
same final state. Failing executions necessarily deviate from passing executions in
at least one state. Consequently, the schedules of good and bad program execu-
tions started in the same initial state either (a) differ in their flow-dependencies
dep over the shared variables, and/or (b) contain different live transactions. The
latter case may arise if the local computations differ or if two variables are output
dependent in one schedule but not in the other.

Our method aims at identifying sequences of events that explain this discrep-
ancy. We focus on concurrency bugs that manifest themselves in a deviation of
the accesses to and the data dependencies between shared variables, thus ignor-
ing failures caused purely by a difference of the local computations. As per the
argument above, this criterion covers a large class of concurrency bugs, including
data races, atomicity and order violations.

To this end, we log the order of read and write events (for shared variables)
in a number of passing and failing executions. We assume that the addresses of
variables are consistent across executions, which is enforced by our logging tool.
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�1: bal = balance;

pthread mutex unlock(balance lock);
if (bal+t array[i].amount≤MAX)

bal = bal+t array[i].amount;
pthread mutex lock(balance lock);

�2: balance = bal;
. . .

Code fragment

Fig. 1. Conflicting update of bank account balance

Let tot be a linear extension of po∪ dep reflecting the total ordering introduced
during event logging. An execution trace is then defined as follows:

Definition 2. An execution trace σ = 〈e1, e2, ..., en〉 is a finite sequence of
events ei ∈ E, i ∈ {1, ..., n} ordered by tot.

2.3 Bug Explanation Patterns

We illustrate the notion of bug explanation patterns or sequences using a well-
understood example of an atomicity violation. Figure 1 shows a code fragment
that non-atomically updates the balance of a bank account (stored in the shared
variable balance) at locations �1 and �2. The example does not contain a data
race, since balance is protected by the lock balance lock. The array t array con-
tains the sequence of amounts to be transferred. At the left of Figure 1, we see
a failing and a passing execution of our example. The identifiers on (where n is
a number) represent the addresses of the accessed shared objects, and o15 cor-
responds to the variable balance. The events R1(o15) − 118 and W1(o15) − 149
correspond to the read and write instructions at �1 and �2, respectively.

The execution at the very left of Figure 1 fails because its final state is incon-
sistent with the expected value of balance. The reason is that o15 is overwritten
with a stale value at position 20 in the trace, “killing” the transaction of thread
2 that writes o15 at position 15. This is reflected by the output dependency of
the events W1(o15)−149 and W2(o15)−247 and the anti-dependencies between
the highlighted write-after-read couples in the failing trace.

This combination of events and the corresponding dependencies do not arise
in any passing trace, since no context switch occurs between the events R1(o15)−
118 and W1(o15) − 149. Accordingly, the sequence of events highlighted in the
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left trace in Figure 1 in combination with the dependencies reveals the prob-
lematic memory accesses to balance. We refer to this sequence as a bug ex-
planation pattern. We emphasize that the events belonging to this pattern do
not occur consecutively inside the trace, but are interspersed with other un-
related events. In general, events belonging to a bug explanation pattern can
occur at an arbitrary distance from each other due to scheduling. Our expla-
nations are therefore, in general, subsequences of execution traces. Formally,
π = 〈e0, e1, e2, ..., em〉 is a subsequence of σ = 〈E0, E1, E2, ..., En〉, denoted as
π � σ, if and only if there exist integers 0 ≤ i0 < i1 < i2 < i3... < im ≤ n such
that e0 = Ei0 , e1 = Ei1 , ..., em = Eim . We also call σ a super-sequence of π.

2.4 Mining Bug Explanation Patterns

In this section, we recap the terminology of sequential pattern mining and adapt
it to our setting. For a more detailed treatment, we refer the interested reader
to [14]. Sequential pattern mining is a technique to extract frequent subsequences
from a dataset. In our setting, we are interested in subsequences occurring fre-
quently in the sets ΣG and ΣB of passing (good) and failing (bad) execution
traces, respectively. Intuitively, bug explanation patterns occur more frequently
in the bad dataset ΣB. While the bug pattern in question may occur in passing
executions (since a fault does not necessarily result in a failure), our approach
is based on the assumption that it is less frequent in ΣG.

In a sequence dataset Σ = {σ1, σ2, ..., σn}, the support of a sequence π is de-
fined as supportΣ(π) = |{σ |σ ∈ Σ ∧ π � σ}|. Given a minimum support thresh-
old min supp, the sequence π is considered a sequential pattern or a frequent
subsequence if supportΣ(π) ≥ min supp. FSΣ,min supp denotes the set of all se-
quential patterns mined from Σ with the given support threshold min supp and
is defined as FSΣ,min supp = {π | supportΣ(π) ≥ min supp}. As an example, for
Σ = {〈a, b, c, e, d〉, 〈a, b, e, a, c, f〉, 〈a, g, b, c, h〉, 〈a, b, i, j, c〉, 〈a, k, l, c〉} we obtain
FSΣ,4 = {〈a〉 : 5, 〈b〉 : 4, 〈c〉 : 5, 〈a, b〉 : 4, 〈a, c〉 : 5, 〈b, c〉 : 4, 〈a, b, c〉 : 4}, where the
numbers following the patterns denote the respective supports of the patterns. In
FSΣ,4, patterns 〈a, b, c〉 : 4 and 〈a, c〉 : 5 which do not have any super-sequences
with the same support value are called closed patterns. A closed pattern en-
compasses all the frequent patterns with the same support value which are all
subsequences of it. For example, in FSΣ,4 〈a, b, c〉 : 4 encompasses 〈b〉 : 4, 〈a, b〉 : 4,
〈b, c〉 : 4 and similarly 〈a, c〉 : 5 encompasses 〈a〉 : 5 and 〈c〉 : 5. Closed patterns are
the lossless compression of all the sequential patterns. Therefore, we apply algo-
rithms [26,23] that mine closed patterns only in order to avoid a combinatorial
explosion. CSΣ,min supp denotes the set of all closed sequential patterns mined
from Σ with the support threshold min supp and is defined as

{π |π ∈ FSΣ,min supp ∧ �π′ ∈ FSΣ,min supp . π 
 π′ ∧ support(π) = support(π′)}.

To extract bug explanation patterns from ΣG and ΣB, we first mine closed
sequential patterns with a given minimum support threshold min supp from ΣB.
At this point, we ignore the instance number which corresponds to the index
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of events in a totally ordered trace and identify events using their id. This is
because in mining we do not distinguish between the events according to where
they occurred inside an execution trace. The event R1(o15) − 118 in Figure 1,
for instance, has the same id in the failing and passing traces, even though the
instances numbers (5 and 2) differ. After mining the closed patterns from ΣB, we
determine which patterns are only frequent in ΣB but not in ΣG by computing
their value of relative support:

rel supp(π) =
supportΣB

(π)

supportΣB
(π) + supportΣG

(π)
.

Patterns occur more frequently in the bad dataset are thus ranked higher, and
those that occur in ΣB exclusively have the maximum relative support of 1.

We argue that the patterns with the highest relative support are indicative
of one or several faults inside the program of interest. These patterns can hence
be used as clues for the exact location of the faults inside the program code.

Support Thresholds and Datasets. Which threshold is adequate depends on the
number and the nature of the bugs. Given a single fault involving only one vari-
able, every trace in ΣB presumably contains only few patterns reflecting that
fault. Since the bugs are not known up-front, and lower thresholds result in a
larger number of patterns, we gradually decrease the threshold until useful expla-
nations emerge. Moreover, the quality of the explanations is better if the traces
in ΣG and ΣB are similar. Our experiments in Section 4 show that the sets of
execution traces need not necessarily be exhaustive to enable good explanations.

3 Mining Abstract Execution Traces

With increasing length of the execution traces and number of events, sequen-
tial pattern mining quickly becomes intractable [8]. To alleviate this problem,
we introduce macro-events that represent events of the same thread occurring
consecutively inside an execution trace, and obtain abstract events by grouping
these macros into equivalence classes according to the events they replace. Our
abstraction reduces the length of the traces as well as the number of the events
at the cost of introducing spurious traces. Accordingly, patterns mined from the
abstract traces may not reflect actual faults. Therefore, we eliminate spurious
patterns using a subsequent feasibility check.

3.1 Abstracting Execution Traces

In order to obtain a more compact representation of a set Σ of execution traces,
we introduce macros representing substrings of the traces in Σ. A substring of
a trace σ is a sequence of events that occur consecutively in σ.

Definition 3 (Macros). Let Σ be a set of execution traces. A macro-event (or

macro, for short) is a sequence of events m
def
= 〈e1, e2, ..., ek〉 in which all the

events ei (1 ≤ i ≤ k) have the same thread identifier, and there exists σ ∈ Σ
such that m is a substring of σ.
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We use events(m) to denote the set of events in a macro m. The concatenation
of two macros m1 = 〈ei, ei+1, . . . ei+k〉 and m2 = 〈ej , ej+1, . . . ej+l〉 is defined as
m1 · m2 = 〈ei, ei+1, . . . ei+k, ej , ej+1, . . . ej+l〉.

Definition 4 (Macro trace). Let Σ be a set of execution traces and M be a
set of macros. Given a σ ∈ Σ, a corresponding macro trace 〈m1,m2, . . . ,mn〉
is a sequence of macros mi ∈ M (1 ≤ i ≤ n) such that m1 · m2 · · ·mn = σ.
We say that M covers Σ if there exists a corresponding macro trace (denoted by
macro(σ)) for each σ ∈ Σ.

Note that the mapping macro : E+ → M+ is not necessarily unique. Given a
mapping macro, every macro trace can be mapped to an execution trace and vice

versa. For example, for M = {m0
def
= 〈e0, e2〉,m1

def
= 〈e1, e2〉,m2

def
= 〈e3〉,m3

def
=

〈e4, e5, e6〉,m4
def
= 〈e8, e9〉,m5

def
= 〈e5, e6, e7〉} and the traces σ1 and σ2 as defined

below, we obtain

σ1 = 〈
tid=1︷ ︸︸ ︷

e0, e2, e3,

tid=2︷ ︸︸ ︷
e4, e5, e6,

tid=1︷ ︸︸ ︷
e8, e9〉

σ2 = 〈e1, e2︸ ︷︷ ︸
tid=1

, e5, e6, e7︸ ︷︷ ︸
tid=2

, e3, e8, e9︸ ︷︷ ︸
tid=1

〉
macro(σ1) = 〈

tid=1︷ ︸︸ ︷
m0,m2,

tid=2︷︸︸︷
m3 ,

tid=1︷︸︸︷
m4 〉

macro(σ2) = 〈 m1︸︷︷︸
tid=1

, m5︸︷︷︸
tid=2

,m2,m4︸ ︷︷ ︸
tid=1

〉 (1)

This transformation reduces the number of events as well as the length of
the traces while preserving the context switches, but hides information about
the frequency of the original events. A mining algorithm applied to the macro
traces will determine a support of one for m3 and m5, even though the events
{e5, e6} = events(m3) ∩ events(m5) have a support of 2 in the original traces.
While this problem can be amended by refining M by adding m6 = 〈e5, e6〉,
m7 = 〈e4〉, and m8 = 〈e6〉, for instance, this increases the length of the trace
and the number of events, countering our original intention.

Instead, we introduce an abstraction function α : M → A which maps macros
to a set of abstract events A according to the events they share. The abstraction
guarantees that if m1 and m2 share events, then α(m1) = α(m2).

Definition 5 (Abstract events and traces). Let R be the relation defined

as R(m1,m2)
def
= (events(m1) ∩ events(m2) �= ∅) and R+ its transitive closure.

We define α(mi) to be {mj |mj ∈ M ∧ R+(mi,mj)}, and the set of abstract
events A to be {α(m) |m ∈ M}. The abstraction of a macro trace macro(σ) =
〈m1,m2, . . . ,mn〉 is α(macro(σ)) = 〈α(m1), α(m2), . . . , α(mn)〉.

The concretization of an abstract trace 〈a1, a2, . . . , an〉 is the set of macro

traces γ(〈a1, a2, . . . , an〉) def
= {〈m1, . . . ,mn〉 |mi ∈ ai, 1 ≤ i ≤ n}. Therefore,

we have macro(σ) ∈ γ(α(macro(σ))). Further, since for any m1,m2 ∈ M with
e ∈ events(m1) and e ∈ events(m2) it holds that α(m1) = α(m2) = a with
a ∈ A, it is guaranteed that supportΣ(e) ≤ supportα(Σ)(a), where α(Σ) =
{α(macro(σ)) |σ ∈ Σ}. For the example above (1), we obtain α(mi) = {mi}
for i ∈ {2, 4}, α(m0) = α(m1) = {m0,m1}, and α(m3) = α(m5) = {m3,m5}
(with supportα(Σ)({m3,m5}) = supportΣ(e5) = 2).
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3.2 Mining Patterns from Abstract Traces

As we will demonstrate in Section 4, abstraction significantly reduces the length
of traces, thus facilitating sequential pattern mining. We argue that the patterns
mined from abstract traces over-approximate the patterns of the corresponding
original execution traces:

Lemma 1. Let Σ be a set of execution traces, and let π = 〈e0, e1 . . . ek〉 be
a frequent pattern with supportΣ(π) = n. Then there exists a frequent pattern
〈a0, . . . , al〉 (where l ≤ k) with support at least n in α(Σ) such that for each
j ∈ {0..k}, we have ∃m. ej ∈ m ∧ α(m) = aij for 0 = i0 ≤ i1 ≤ . . . ≤ ik = l.

Lemma 1 follows from the fact that each ej must be contained in some macro
m and that supportΣ(ej) ≤ supportα(Σ)(α(m)). The pattern 〈e2, e5, e6, e8, e9〉
in the example above (1), for instance, corresponds to the abstract pattern
〈{m0,m1}, {m3,m5}, {m4}〉 with support 2. Note that even though the abstract
pattern is significantly shorter, the number of context switches is the same.

While our abstraction preserves the original patterns in the sense of Lemma 1,
it may introduce spurious patterns. If we apply γ to concretize the abstract
pattern from our example, we obtain four patterns 〈m0,m3,m4〉, 〈m0,m5,m4〉,
〈m1,m3,m4〉, and 〈m1,m5,m4〉. The patterns 〈m0,m5,m4〉 and 〈m1,m3,m4〉
are spurious, as the concatenations of their macros do not translate into valid
subsequences of the traces σ1 and σ2. We filter spurious patterns and determine
the support of the macro patterns by mapping them to the original traces in Σ
(aided by the information about which traces the macros derive from).

3.3 Filtering Misleading Patterns

Sequential pattern mining ignores the underlying semantics of the events and
macros. This has the undesirable consequences that we obtain numerous patterns
that are not explanations in the sense of Section 2.3, since they do not contain
context switches or data-dependencies.

Accordingly, we define a set of constraints to eliminate misleading patterns:

1. Patterns must contain events of at least two different threads. The rationale
for this constraint is that we are exclusively interested in concurrency bugs.

2. We lift the data-dependencies introduced in Section 2.2 to macros as follows:
Two macros m1 and m2 are data-dependent iff there exist e1 ∈ events(m1)
and e2 ∈ events(m2) such that e1 and e2 are related by dep. We require that
for each macro in a pattern there is a data-dependency with at least one
other macro in the pattern.

3. We restrict our search to patterns with a limited number (at most 4) of
context switches, since there is empirical evidence that real world concur-
rency bugs involve only a small number of threads, context switches, and
variables [12,15]. This heuristic limits the length of patterns and increases
the scalability of our analysis significantly.

These criteria are applied during sequential pattern mining as well as in a
post-processing step.
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3.4 Deriving Macros from Traces

The precision of the approximation as well as the length of the trace is inherently
tied to the choice of macros M for Σ. There is a tradeoff between precision and
length: choosing longer subsequences as macros leads to shorter traces but also
more intersections between macros.

In our algorithm, we start with macros of maximal length, splitting the traces
in Σ into subsequences at the context switches. Subsequently, we iteratively
refine the resulting set of macros by selecting the shortest macro m and splitting
all macros that contain m as a substring. In the example in Section 3.1, we

start with M0 = {m0
def
= 〈e0, e2, e3〉,m1

def
= 〈e4, e5, e6〉,m2

def
= 〈e8, e9〉,m3

def
=

〈e1, e2〉,m4
def
= 〈e5, e6, e7〉,m5

def
= 〈e3, e8, e9〉}. As m2 is contained in m5, we split

m5 into m2 and m6
def
= 〈e3〉 and replace it with m6. The new macro is in turn

contained in m0, which gives rise to the macro m7 = 〈e0, e2〉. At this point, we
have reached a fixed point, and the resulting set of macros corresponds to the
choice of macros in our example.

For a fixed initial state, the execution traces frequently share a prefix (repre-
senting the initialization) and a suffix (the finalization). These are mapped to the
same macro events by our heuristic. Since these macros occur at the beginning
and the end of all good as well as bad traces, we prune the traces accordingly
and focus on the deviating substrings of the traces.

4 Experimental Evaluation

To evaluate our approach, we present 7 case studies which are listed in Table 1
(6 of them are taken from [13]). The programs are bug kernels capturing the
essence of bugs reported in Mozilla and Apache, or synthetic examples created
to cover a specific bug category.

We generate execution traces using the concurrency testing tool Inspect [27],
which systematically explores all possible interleavings for a fixed program input.
The generated traces are then classified as bad and good traces with respect to
the violation of a property of interest. We implemented our mining algorithm
in C#. All experiments were performed on a 2.93 GHz PC with 3.5 GB RAM
running 32-bit Windows XP 32-bit.

In Table 1, the last column shows the length reduction (up to 95%) achieved
by means of abstraction. This amount is computed by comparing the mini-
mum length of the original traces with the maximum length of abstracted traces
given in the preceding columns. The number of traces inside the bad and good
datasets are given in columns 2 and 3, respectively. State-of-the-art sequential
pattern mining algorithms are typically applicable to sequences of length less
than 100 [26,14]. Therefore, the reduction of the original traces is crucial. For all
benchmarks except two of them, we used an exhaustive set of interleavings. For
the remaining benchmarks, we took the first 100 bad and 100 good traces from
the sets of 32930 and 1427 traces we were able to generate. Moreover, for these
two benchmarks, evaluation has also been done on the datasets generated by
randomly choosing 100 bad and 100 good traces from the set of available traces.
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Table 1. Length reduction results by abstracting the traces

Prog. Category Name |ΣB | |ΣG| Min. Trace
Len.

Max. Abst.
Trace Len

Len Red.

Synthetic
BankAccount 40 5 178 13 93%
CircularListRace 64 6 184 9 95%
WrongAccessOrder 100 100 48 20 58%

Bug Kernel

Apache-25520(Log) 100 100 114 16 86%
Moz-jsStr 70 66 404 18 95%
Moz-jsInterp 610 251 430 101 76%
Moz-txtFrame 99 91 410 57 86%

Table 2. Mining results

Program min supp #α #γ #feas #filt #rs = 1#grp

BankAccount 100% 65 13054 19 10 10 3

CircularListRace 95% 12 336 234 18 14 12

WrongAccessOrder 100% 5 8 11 1 1 1

WrongAccessOrderrand 100% 41 62 88 1 1 1

Apache-25520(Log) 100% 160 1650 667 16 12 12

Apache-25520(Log)rand 100% 76 968 51 15 13 6

Apache-25520(Log)rand 95% 105 1318 598 61 39 28

Moz-jsStr 100% 83 615056 486 90 76 4

Moz-jsInterp 100% 83 279882 49 23 23 4

Moz-txtFrame 90% 1192 5137 2314 200 32 11

The results of mining for the given programs and traces are provided in Ta-
ble 2. For the randomly generated datasets, namely WrongAccessOrderrand and
Apache-25520(Log)rand, the average results of 5 experiments are given. The col-
umn labeledmin supp shows the support threshold required to obtain at least one
bug explanation pattern (lower thresholds yield more patterns). For the given
value of min supp, the table shows the number of resulting abstract patterns
(#α), the number of patterns after concretization (#γ), the number of patterns
remaining after removing spurious patterns (#feas), and the patterns remain-
ing after filtering misleading sequences (#filt). Mining, concretization, and the
elimination of spurious patterns takes only 263ms on average. With an aver-
age runtime of 100s, filtering misleading patterns is the computationally most
expensive step, but is very effective in eliminating irrelevant patterns.

The number of patterns with a relative support 1 (which only occur in the bad
dataset) is given in column 7. Finally, we group the resulting patterns according
to the set of data-dependencies they contain; column #grp shows the resulting
number of groups. Since we may get multiple groups with the same relative
support as the column #grp shows, we sort descendingly groups with the same
relative support according to the number of data-dependencies they contain.
Therefore, in the final result set a group of patterns with the highest value of
relative support and maximum number of data-dependencies appears at the top.
The patterns at the top of the list in the final result are inspected first by the user
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for understanding a bug. We verified manually that all groups with the relative
support of 1 are an adequate explanation of at least one concurrency bug in the
corresponding program. In the following, we explain for each case study how the
inspection of only a single pattern from these groups can expose the bug. These
patterns are given in Figure 2. For each case study, the given pattern belongs
to a group of patterns which appeared at the top of the list in the final result
set, hence inspected first by the user. To save space, we only show the ids of the
events and the data-dependencies relevant for understanding the bugs. Macros
are separated by extra spaces between the corresponding events.

53 54 55 53 54 56 57 58 59 60      42 43 44 45 46 30    

R2-W1 balance

34 35 36 37 49 41      61 62 63 64 65 66 67 68    
R1-W2 balance

24 25 26 27 28 29 30 31 32 33 34 32...37 38 32 41 42 43      56 57 78 79 58 59 60 ... 65 66 67 ...65 74 75 76

W1-R2 list-tail

6 7 21 9 10 22 12 13      24 25 26 27 28 29 30      32 33 34 35 36 37
R1-W2 log-end

101 102 103 104 105      106 107 108 109 110 111 112 113 114 115 116      117 120 121 122 123 124 276 277

W1-R2 totalStrings R2-W1 lengthSum

29 30 31      128 129 130      131 132 133      32 134 135 33 34 35

R2-W2 occupancy-flag W2-W1 occupancy-flag

132 133      138      143 177 145 146 147 148      139 140

W2-R1 mContentLengthR1-W2 mContentOffset

BankAccount

CircularListRace

Apache-25520(Log)

Moz-txtFrame

Moz-jsInterp 

Moz-jsStr

W1-W2 
list[2]

W1-R2 log

R1-W2 flush-num

16          9 17 18

W0-R1 fifo

WrongAccessOrder

Fig. 2. Bug explanation patterns-case studies

Bank Account. The update of the shared variable balance in Figure 1 in Sec-
tion 2.3 involves a read as well as a write access that are not located in the
same critical region. Accordingly, a context switch may result in writing a stale
value of balance. In Figure 2, we provide two patterns for BankAccount, each of
which contains two macro events. From the anti-dependency (R2 −W1 balance)
in the left pattern, we infer an atomicity violation in the code executed by
thread 2, since a context switch occurs after R2(balance), consequently it is not
followed by the corresponding W2(balance). Similarly, from the anti-dependency
R1 −W2 balance in the right pattern we infer the same problem in the code ex-
ecuted by the thread 1. In order to obtain the bug explanation pattern given in
Figure 1 for this case study, we reduced the min supp to 60%.

Circular List Race. This program removes elements from the end of a list and
adds them to the beginning using the methods getFromTail and addAtHead,
respectively. The update is expected to be atomic, but since the calls are not
located in the same critical region, two simultaneous updates can result in an in-
correctly ordered list if a context switch occurs. The first and the second macros
of the pattern in Figure 2 correspond to the events issued by the execution of ad-
dAtHead by the threads 1 and 2, respectively. From the given data-dependencies
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it can be inferred that these two calls occur consecutively during the program
execution, thus revealing the atomicity violation.

Wrong Access Order. In this program, the main thread spawns two threads, con-
sumer and output, but it only joins output. After joining output, the main thread
frees the shared data-structure which may be accessed by consumer which has
not exited yet. The flow-dependency between the two macros of the pattern in
Figure 2 implies the wrong order in accessing the shared data-structure.

Apache-25520(Log). In this bug kernel, Apache modifies a data-structure log by
appending an element and subsequently updating a pointer to the log. Since
these two actions are not protected by a lock, the log can be corrupted if a
context switch occurs. The first macro of the pattern in Figure 2 reflects thread 1
appending an element to log. The second and third macros correspond to thread 2
appending an element and updating the pointer, respectively. The dependencies
imply that the modification by thread 1 is not followed by the corresponding
update of the pointer.

For this case study, evaluation on the randomly generated datasets with
min supp =100% (row 7 in Table 2) resulted in patterns revealing only one of
the two problematic data dependencies in Figure 2, namely (R1 −W2 log − end).
By reducing the min supp to 95% (row 8 in Table 2), a pattern similar to the
one in Figure 2 appeared at the top of the list in the final result set.

Moz-jsStr. In this bug kernel, the cumulative length and the total number of
strings stored in a shared cache data-structure are stored in two variables named
lengthSum and totalStrings. These variables are updated non-atomically, result-
ing in an inconsistency. The pattern and the data-dependencies in Figure 2 reveal
this atomicity violation: the values of totalStrings and lengthSum read by thread
2 are inconsistent due to a context switch that occurs between the updates of
these two variables by thread 1.

Moz-jsInterp. This bug kernel contains a non-atomic update to a shared data-
structure Cache and a corresponding occupancy flag, resulting in an inconsis-
tency between these objects. The first and last macro-events in Figure 2 of the
pattern correspond to populating Cache and updating the occupancy flag by
thread 1, respectively. The given data-dependencies suggest these two actions
are interrupted by thread 2 which reads an inconsistent flag.

Moz-txtFrame. The patterns and data-dependencies at the bottom of Figure 2 re-
flect a non-atomic update to the two fields mContentOffset and mContentLength,
which causes the values of these fields to be inconsistent: the values of these
variables read by thread 1 in the second and forth macros are inconsistent due
to the updates done by thread 2 in the third macro.

5 Related Work

Given the ubiquity of multithreaded software, there is a vast amount of work
on finding concurrency bugs. A comprehensive study of concurrency bugs [12]
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identifies data races, atomicity violations, and ordering violations as the preva-
lent categories of non-deadlock concurrency bugs. Accordingly, most bug detec-
tion tools are tailored to identify concurrency bugs in one of these categories.
Avio [11] only detects single-variable atomicity violations by learning acceptable
memory access patterns from a sequence of passing training executions, and then
monitoring whether these patterns are violated. Svd [25] is a tool that relies on
heuristics to approximate atomic regions and uses deterministic replay to detect
serializability violations. Lockset analysis [22] and happens-before analysis [16]
are popular approaches focusing only on data race detection. In contrast to these
approaches, which rely on specific characteristics of concurrency bugs and lack
generality, our bug patterns can indicate any type of concurrency bugs. The al-
gorithms in [24] for atomicity violations detection rely on input from the user in
order to determine atomic fragments of executions. Detection of atomic-set seri-
alizability violations by the dynamic analysis method in [7] depends on a set of
given problematic data access templates. Unlike these approaches, our algorithm
does not rely on any given templates or annotations. Bugaboo [13] constructs
bounded-size context-aware communication graphs during an execution, which
encode access ordering information including the context in which the accesses
occurred. Bugaboo then ranks the recorded access patterns according to their
frequency. Unlike our approach, which analyzes entire execution traces (at the
cost of having to store and process them in full), context-aware communication
graphs may miss bug patterns if the relevant ordering information is not encoded.
Falcon [19] and the follow-up work Unicorn [18] can detect single- and multi-
variable atomicity violations as well as order violations by monitoring pairs of
memory accesses, which are then combined into problematic patterns. The sus-
piciousness of a pattern is computed by comparing the number of times the
pattern appears in a set of failing traces and in a set of passing traces. Unicorn

produces patterns based on pattern templates, while our approach does not rely
on such templates. In addition, Unicorn restricts these patterns to windows of
some specific length, which results in a local view of the traces. In contrast to
Unicorn, we abstract the execution traces without losing information.

Leue et al. [8,9] have used pattern mining to explain concurrent counterex-
amples obtained by explicit-state model checking. In contrast to our approach,
[8] mines frequent substrings instead of subsequences and [9] suggests a heuris-
tic to partition the traces into shorter sub-traces. Unlike our abstraction-based
technique, both of these approaches may result in the loss of bug explanation
sequences. Moreover, both methods are based on contrasting the frequent pat-
terns of the bad and the good datasets rather than ranking them according to
their relative frequency. Therefore, their accuracy is contingent on the values for
the two support thresholds of the bad as well as the good datasets.

Statistical debugging techniques which are based on comparison of the charac-
teristics of a number of failing and passing traces are broadly used for localizing
faults in sequential program code. For example, a recent work [21] statically
ranks the differences between a few number of similar failing and passing traces,
producing a ranked list of facts which are strongly correlated with the failure. It
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then systematically generates more runs that can either further confirm or re-
fute the relevance of a fact. As opposed to this approach, our goal is to identify
problematic sequences of interleaving actions in concurrent systems.

6 Conclusion

We introduced the notion of bug explanation patterns based on well-known
ideas from concurrency theory, and argued their adequacy for understanding
concurrency bugs. We explained how sequential pattern mining algorithms can
be adapted to extract such patterns from logged execution traces. By applying a
novel abstraction technique, we reduce the length of these traces to an extent that
pattern mining becomes feasible. Our case studies demonstrate the effectiveness
of our method for a number of synthetic as well as real world bugs.

As future work we plan to apply our method for explaining other types of
concurrency bugs such as deadlocks and livelocks.
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Abstract. Current approaches to monitoring real-time properties suf-
fer either from unbounded space requirements or lack of expressiveness.
In this paper, we adapt a separation technique enabling us to rewrite
arbitrary MTL formulas into LTL formulas over a set of atoms compris-
ing bounded MTL formulas. As a result, we obtain the first trace-length
independent online monitoring procedure for full MTL in a dense-time
setting.

1 Introduction

In recent years, there has been increasing interest in runtime verification as a
complement to traditional model checking techniques (see [21, 29] for surveys).
Runtime monitoring, for example, may be used in situations in which we wish
to evaluate a system that is either too complex to model or whose internal
details are not accessible. Moreover, logics whose model-checking problems are
undecidable may become tractable in this more restricted setting. The latter is
the case in the present paper, which is concerned with runtime monitoring of
Metric Temporal Logic with both forwards and backwards temporal modalities
(MTL[U,S]).

MTL[U,S] was introduced almost 25 years ago by Koymans [19] and has
since become the most widely studied real-time temporal logic. Over the reals,
it has been shown that MTL[U,S] has the same expressiveness as Monadic First-
Order Logic of Order and Metric (FO[<,+Q]) [17]. In this paper, we study the
monitoring problem for MTL[U,S] over timed words. This so-called pointwise
semantics is more natural and appropriate when we consider systems modelled
as timed automata. Also, monitoring timed words is often conceptually simpler
and more efficient [6].

Given an MTL[U,S] formula ϕ and a finite timed word ρ, the prefix problem
asks whether all infinite timed words extending ρ satisfy ϕ. The monitoring
problem can be seen as an online version of the prefix problem where ρ is given
incrementally, one event at a time. The monitoring procedure is required to
output an answer when either (i) all infinite extensions of the current trace satisfy
the specification, or (ii) no infinite extension of the current trace can possibly
meet the specification. In this paper, we consider a variant of the monitoring
problem, based on the notion of informative prefixes [20].
� More extensive technical details as well as all proofs can be found in the full version

of this paper [16].
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Ideally, for a monitoring procedure to be practical, we require that it be
trace-length independent [7] in the sense that the total space requirement should
not depend on the length of the input trace. With this objective in mind, the
principal difficulty in monitoring MTL[U,S] is that it allows unbounded intervals
and nesting of future and past operators, and hence the truth value of a formula
at some point may depend on the truth values of its subformulas arbitrarily far in
the future or past. For this reason, most real-time monitoring procedures in the
literature impose certain syntactic or semantic restrictions, e.g., only allowing
bounded future modalities1 or assuming integer-time traces. A notable exception
is [4] which handles the full logic MTL[U,S] over dense-time signals, but which
unfortunately fails to be trace-length independent.

The main contribution of this paper is a new online monitoring procedure for
MTL[U,S] over dense-time traces. The procedure we give handles the full logic
MTL[U,S] and is trace-length independent,2 making it suitable for traces with
potentially unbounded lengths, e.g., network activity logs. For a given formula,
we first adapt a separation theorem of [17] to rewrite an MTL[U,S] formula
into an LTL[U,S] formula over a set of atoms comprising bounded MTL[U,S]
formulas, whose truth values are computed and stored efficiently. The remaining
untimed component is then handled via translation to deterministic finite au-
tomata. The resulting algorithm is free of dynamic memory allocations, linked
lists, etc., and hence can be implemented efficiently.

2 Related Work

The most closely related work to the present paper is that of Finkbeiner and
Kuhtz [13], which concerns monitoring MTL over a discrete-time semantics. They
handle bounded formulas in a similar fashion to us and highlight the problematic
role of unbounded temporal operators. However they do not exploit a syntactic
rewriting of unbounded operators from the scope of bounded operators, and are
forced to apply specialised constructions in this case.

Another highly relevant work is that of Nickovic and Piterman [26], in which a
translation from MTL to deterministic timed automata is proposed. The essence
of the method is the observation that, while the truth values of unbounded sub-
formulas must necessarily be guessed, the truth values of bounded subformulas
can be obtained via bounded look-ahead. In spirit, this is very similar to our
approach. The main differences are that they consider only the future fragment,
and we handle bounded subformulas explicitly rather than encoding them into
clock constraints.
1 Note in passing that, unlike for LTL, past modalities strictly increase the expressive-

ness of MTL [9].
2 As shown in [22], trace-length independence necessarily requires a global bound on

the variability of time sequences, i.e., the maximum number of events which can
occur in any given unit-duration time interval. This is a standard assumption which
is in practice always met by physical systems. The proof in [22] is carried out in the
continuous semantics, but it goes through in the pointwise setting as well.
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Regarding real-time logics with past, it is known that the non-punctual frag-
ment of MTL[U,S], called MITL[U,S], can be translated into timed automata [1,
2, 11, 18, 23]. The difficulty in using such approaches for monitoring lies in the
fact that timed automata cannot be determinised in general. In principle one
can carry out determinisation on-the-fly for timed words of bounded variability;
however, it is not clear that this approach can yield an efficient procedure.

Automata-free monitoring procedures also appear in the literature. For exam-
ple, in a pioneering paper, Thati and Roşu [30] propose a rewriting-based moni-
toring procedure for MTL[U,S]. Their procedure is trace-length independent and
amenable to efficient implementations. However, the procedure only works for
integer-time traces and hence does not appear applicable to our setting.

Online monitoring of real-time properties is still a very active topic of re-
search. Recently, there have been some attempts to extend temporal logics with
(restricted) first-order quantifiers for monitoring (see, e.g., [5, 7, 10, 15, 28]). The
work in the present paper can be seen as orthogonal to these advances.

3 Background

3.1 Metric Temporal Logic

A time sequence τ = τ1τ2 . . . is a non-empty strictly increasing sequence of
rational numbers such that τ1 = 0. We consider both finite and infinite time
sequences, denoting by |τ | the length of such a sequence. If τ is infinite we
require it to be unbounded, i.e., we disallow the so-called Zeno sequences.

A timed word over a finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2 . . .
is a non-empty finite or infinite word over Σ and τ is a time sequence of the
same length. We equivalently consider a timed word as a sequence of events
(σ1, τ1)(σ2, τ2) . . .. The finite timed words considered in this paper arise as pre-
fixes of infinite timed words, and so we sometimes use the term prefix to denote
an arbitrary finite timed word. We write TΣ∗ and TΣω for the respective sets
of finite and infinite timed words over Σ. For a set of propositions P we write
ΣP = 2P .

For a space-bounded online monitoring procedure to be possible, we must
impose a global bound on the variability of time sequences, cf. [22]. Henceforth
we assume that all timed words have variability at most kvar for some (a priori
known) absolute constant kvar, i.e., there are at most kvar events in any unit
time interval.

We specify properties of timed words using Metric Temporal Logic with both
the ‘Until’ and ‘Since’ modalities, denoted MTL[U,S]. Given a set of propositions
P , the formulas of MTL[U,S] are given by the following grammar

ϕ ::= p | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p ∈ P and I ⊆ (0,∞) is an interval with endpoints in Q≥0 ∪ {∞}. We
sometime omit the subscript I if I = (0,∞). Given x ∈ Q, we write x < I to
mean x < sup(I). Additional temporal operators and dual operators are defined
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in the standard way, e.g., PIϕ ≡ trueSIϕ and HIϕ ≡ ¬PI¬ϕ. For an MTL[U,S]
formula ϕ, we denote by |ϕ| the number of subformulas of ϕ.

The satisfaction relation ρ, i |= ϕ for an MTL[U,S] formula ϕ, an infinite
timed word ρ = (σ, τ) and a position i ≥ 1 is defined as follows:

– ρ, i |= p iff p ∈ σi

– ρ, i |= ϕ1 UI ϕ2 iff there exists j > i such that ρ, j |= ϕ2, τj − τi ∈ I, and
ρ, k |= ϕ1 for all k with i < k < j

– ρ, i |= ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that ρ, j |= ϕ2, τi − τj ∈ I
and ρ, k |= ϕ1 for all k with j < k < i.3

The semantics of the Boolean connectives is defined in the expected way.
We say that ρ satisfies ϕ, denoted ρ |= ϕ, if ρ, 1 |= ϕ. We write L(ϕ) for the

set of infinite timed words that satisfy ϕ. Abusing notation, we also write L(ψ)
for the set of infinite (untimed) words that satisfy the LTL[U,S] formula ψ, and
L(A) for the set of infinite words accepted by automaton A.

3.2 Truncated Semantics and Informative Prefixes

Since in online monitoring one naturally deals with truncated paths, it is useful
to define a satisfaction relation of formulas over finite timed words. To this end
we adopt a timed version of the truncated semantics [12] which incorporates
strong and weak views on satisfaction over truncated paths. These views indi-
cate whether the evaluation of the formula ‘has completed’ on the finite path,
i.e., whether the truth value of the formula on the whole path is already deter-
mined. For example, the formula F(0,5)p is weakly satisfied by any finite timed
word whose time points are all strictly less than 5 since there is an extension
that satisfies the formula. We also consider the neutral view, which extends to
MTL[U,S] the traditional LTL semantics over finite words [24].

The respective strong, neutral and weak satisfaction relations will be denoted
by |=+f , |=f and |=−f respectively. The definitions below closely follow [12].

Definition 1. The satisfaction relation ρ, i |=+f ϕ for an MTL[U,S] formula ϕ,
a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=+f p iff p ∈ σi

– ρ, i |=+f true

– ρ, i |=+f ϕ1 ∧ ϕ2 iff ρ, i |=+f ϕ1 and ρ, i |=+f ϕ1

– ρ, i |=+f ¬ϕ iff (ρ, i) �|=−f ϕ

– ρ, i |=+f ϕ1UI ϕ2 iff there exists j, i < j ≤ |ρ|, such that ρ, j |=+f ϕ2, τj−τi ∈ I,
and ρ, j′ |=+f ϕ1 for all j′ with i < j′ < j

– ρ, i |=+f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i, such that ρ, j |=+f ϕ2, τi − τj ∈ I

and ρ, j′ |=+f ϕ1 for all j′ with j < j′ < i.

3 Note that we adopt strict interpretations to UI and SI . It is easy to see that, e.g.,
weak-future until operators can be defined in strict-future ones.
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Definition 2. The satisfaction relation ρ, i |=−f ϕ for an MTL[U,S] formula ϕ,
a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=−f p iff p ∈ σi

– ρ, i |=−f true

– ρ, i |=−f ϕ1 ∧ ϕ2 iff ρ, i |=−f ϕ1 and ρ, i |=−f ϕ1

– ρ, i |=−f ¬ϕ iff (ρ, i) �|=+f ϕ

– ρ, i |=−f ϕ1 UI ϕ2 iff either of the following holds:

• there exists j, i < j ≤ |ρ|, such that ρ, j |=−f ϕ2, τj−τi ∈ I, and ρ, j′ |=−f ϕ1

for all j′ with i < j′ < j

• τ|ρ| − τi < I and ρ, j′ |=−f ϕ1 for all j′ with i < j′ ≤ |ρ|
– ρ, i |=−f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i, such that ρ, j |=−f ϕ2, τi − τj ∈ I

and ρ, j′ |=−f ϕ1 for all j′ with j < j′ < i.

The following proposition which helps explain the terms strong, neutral and
weak, can be proved by a simple induction on the structure of ϕ.

Proposition 1. For a finite timed word ρ, a position i in ρ and an MTL[U,S]
formula ϕ,

ρ, i |=+f ϕ → ρ, i |=f ϕ and ρ, i |=f ϕ → ρ, i |=−f ϕ .

A closely related notion, informative prefixes [20], has been adopted in several
works on online monitoring of untimed properties, e.g., [3, 14]. Intuitively, an
informative prefix for a formula ϕ is a prefix that ‘tells the whole story’ about the
fulfilment or violation of ϕ.4 We give two examples before the formal definition.

Example 1. Consider the following formula over {p1}:

ϕ = FG(¬p1) ∧G(p1 → F(0,3)p1) .

The finite timed word ρ = ({p1}, 0)({p1}, 2)(∅, 5.5) is an informative bad prefix
for ϕ, since no extension satisfies the second conjunct. On the other hand, while
ρ′ = ({p1}, 0)({p1}, 2)({p1}, 4) is a bad prefix for ϕ, it has (different) extensions
that satisfy, respectively, the left and right conjuncts. Thus we do not consider
it an informative bad prefix.

Example 2. Consider the following formula over {p1}:

ϕ′ = G(¬p1) ∧G(p1 → F(0,3)p1) .

This formula is equivalent to the formula ϕ in the previous example. However,
all bad prefixes for ϕ′ are informative.

4 Our usage of the term informative slightly deviates from [20] as in that paper the
term refers exclusively to bad prefixes.
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If a prefix ρ strongly satisfies ϕ then we say that it is an informative good prefix
for ϕ. Similarly we say ρ is an informative bad prefix for ϕ when it fails to weakly
satisfy ϕ. Finally ρ is an informative prefix if it is either an informative good
prefix or an informative bad prefix. Here we have adopted the semantic charac-
terisation of informative prefixes in terms of the truncated semantics from [12],
rather than the original syntactic definition [20].

The following proposition follows immediately from the definition of informa-
tive prefixes.

Proposition 2. ρ is informative for ϕ iff ρ is informative for ¬ϕ.

Since ρ |=f ϕ ↔ ρ �|=f ¬ϕ, negating a formula essentially exchanges its set of in-
formative good prefixes and informative bad prefixes. The following proposition
says ‘something good remains good’ and ‘something bad remains bad’.

Proposition 3. For a finite timed word ρ, a position i in ρ and an MTL[U,S]
formula ϕ, if ρ is a prefix of the finite timed word ρ′, then

ρ, i |=+f ϕ → ρ′, i |=+f ϕ and ρ, i �|=−f ϕ → ρ′, i �|=−f ϕ .

4 LTL[U,S] over Bounded Atoms

In this section we present a series of logical equivalences that can be used to
rewrite a given MTL[U,S] formula into an equivalent formula in which no un-
bounded temporal operator occurs within the scope of a bounded operator. Only
the rules for future modalities and open intervals are given, as the rules for past
modalities are symmetric and the rules for other types of intervals are straight-
forward variants. Since we work in the pointwise semantics, the techniques in [17]
(developed for the continuous semantics) must be carefully adapted.

4.1 Normal Form

We say an MTL[U,S] formula is in normal form if it satisfies the following.

(i) All occurrences of unbounded temporal operators are of the form U(0,∞),
S(0,∞), G(0,∞), H(0,∞).

(ii) All other occurrences of temporal operators are of the form UI , SI with
bounded I.

(iii) Negation is only applied to propositions or bounded temporal operators
(except that we allow G(0,∞), H(0,∞)).

(iv) In any subformula of the form ϕ1 UI ϕ2, ϕ1 SI ϕ2, FIϕ2, PIϕ2 where I
is bounded, ϕ1 is a disjunction of temporal subformulas and propositions
and ϕ2 is a conjunction thereof.

We describe how to rewrite a given formula into normal form. To satisfy (i) and
(ii), apply the usual rules (e.g., GIϕ ↔ ¬FI¬ϕ) and the rule:

ϕ1 U(a,∞) ϕ2 ↔ ϕ1 U ϕ2 ∧
(
F(0,a]true → G(0,a](ϕ1 ∧ ϕ1 U ϕ2)

)
.
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To satisfy (iii), use the usual rules and the rule:

¬(ϕ1 U ϕ2) ↔ G¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
.

For (iv), use the usual rules of Boolean algebra and the rules below:

φUI (ϕ1 ∨ ϕ2) ↔ (φUI ϕ1) ∨ (φUI ϕ2)

(ϕ1 ∧ ϕ2)UI φ ↔ (ϕ1 UI φ) ∧ (ϕ2 UI φ) .

4.2 Extracting Unbounded Operators from Bounded Operators

We now provide a set of rewriting rules that extract unbounded operators from
the scopes of bounded operators. In what follows, let ϕxlb = false U(0,b) true,
ϕylb = false S(0,b) true and

ϕugb =
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
U

((
ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)

)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))
,

ϕggb = G
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
.

Proposition 4. The following equivalences hold over infinite timed words.

θ U(a,b)

(
(ϕ1 U ϕ2) ∧ χ

)
↔ θ U(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((

θ U(a,b) (G(0,2b)ϕ1 ∧ χ)
)
∧ ϕugb

)
θ U(a,b) (Gϕ ∧ χ) ↔

(
θ U(a,b) (G(0,2b)ϕ ∧ χ)

)
∧ ϕggb

θ U(a,b)

(
(ϕ1 S ϕ2) ∧ χ

)
↔ θ U(a,b)

(
(ϕ1 S(0,b) ϕ2) ∧ χ

)
∨
((

θ U(a,b) (H(0,b)ϕ1 ∧ χ)
)
∧ ϕ1 S ϕ2

)
θ U(a,b) (Hϕ ∧ χ) ↔

(
θ U(a,b) (H(0,b)ϕ ∧ χ)

)
∧Hϕ(

(ϕ1 U ϕ2) ∨ χ
)
U(a,b) θ ↔

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) (G(0,2b)ϕ1)

)
∧

F(a,b)θ ∧ ϕugb

)
(
(Gϕ) ∨ χ

)
U(a,b) θ ↔ χU(a,b) θ

∨
(
χ U(0,b) (G(0,2b)ϕ1) ∧ F(a,b)θ ∧ ϕggb

)



Online Monitoring of Metric Temporal Logic 185

(
(ϕ1 S ϕ2) ∨ χ

)
U(a,b) θ ↔

(
(ϕ1 S(0,b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

H(0,b)ϕ1 ∨ (ϕ1 S(0,b) ϕ2) ∨ χ
)
U(a,b) θ

)
∧

ϕ1 S ϕ2

)
(
(Hϕ) ∨ χ

)
U(a,b) θ ↔ χ U(a,b) θ ∨

((
(H(0,b)ϕ ∨ χ)U(a,b) θ

)
∧Hϕ

)
.

Proof. We sketch the proof for the first rule as the proofs for the other rules
are similar. In the following, let the current position be i and the position of an
(arbitrary) event in (τi + a, τi + b) be j.

For the forward direction, let the witness position where ϕ2 holds be w. If
τw < τj + 2b, the subformula ϕ1 U(0,2b) ϕ2 clearly holds at j and we are done.
Otherwise, G(0,2b)ϕ1 holds at j and it follows that (ϕxlb → G(b,2b)ϕ1) and ϕylb

(and vacuously ¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)) hold at all positions j′, i < j′ < j. Let
l > j be the first position such that τw ∈ (τl + b, τl +2b). Consider the following
cases:

– There is such l: It is clear that
(
ϕ1∧(ϕ1U(b,2b)ϕ2)

)
holds at l. Since G(b,2b)ϕ1

holds at all positions j′′, j ≤ j′′ < l by the minimality of l, (ϕxlb → G(b,2b)ϕ1)
also holds at these positions. For the other conjunct, note that ϕylb holds at
j and ϕ1 ∧G(0,b]ϕ1 holds at all positions j′′′, j < j′′′ < l.

– There is no such l: Consider the following cases:
• ¬ϕylb and ¬P[b,b]true hold at w: There is no event in (τw − 2b, τw). The

proof is similar to the case where l exists.
• ¬ϕylb and P[b,b]true hold at w: Let l′ be the position such that τl′ =

τw − b. There must be no event in (τl′ − b, τl′). It follows that ¬ϕylb and(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

)
hold at l′. The proof is similar.

• ϕylb holds at w: By assumption, there is no event in (τw−2b, τw−b). It is
easy to see that there is a position such that ¬ϕylb∧

(
ϕ1∧ (ϕ1U(0,b]ϕ2)

)
holds. The proof is again similar.

We prove the other direction by contraposition. Consider the interesting case
where G(0,2b)ϕ1 holds at j yet ϕ1 U ϕ2 does not hold at j. If ϕ2 never holds
in [τj + 2b,∞) then we are done. Otherwise, let l > j be the first position such
that both ϕ1 and ϕ2 do not hold at l (note that τl ≥ τj + 2b). It is clear that((

ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)
)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))
does not hold

at all positions j′, i < j′ ≤ l. Consider the following cases:

– ϕylb does not hold at l: ϕ1 ∧G(0,b]ϕ1 does not hold at l, and hence ϕugb fails
to hold at i.

– ϕylb holds at l: Consider the following cases:
• There is an event in (τl − 2b, τl− b): Let this event be at position j′′. We

have j′′ + 1 < l, τj′′+1 − τj′′ ≥ b and τl − τj′′+1 < b. However, it follows
that ϕylb does not hold at j′′+1 and ϕ1∧G(0,b]ϕ1 holds at j′′+1, which
is a contradiction.
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• There is no event in (τl − 2b, τl − b): Let the first event in [τl − b, τl) be
at position j′′. It is clear that ϕylb does not hold at j′′ and ϕ1 ∧G(0,b]ϕ1

must hold at j′′, which is a contradiction.

��

Proposition 5. For an MTL[U,S] formula ϕ, we can use the rules above to
obtain an equivalent formula ϕ̂ in which no unbounded temporal operator appears
in the scope of a bounded temporal operator.

Proof. Define the unbounding depth ud(ϕ) of a formula ϕ to be the modal depth
of ϕ counting only unbounded operators. We demonstrate a rewriting process
on ϕ which terminates in an equivalent formula ϕ̂ such that any subformula ψ̂
of ϕ̂ with outermost operator bounded has ud(ψ̂) = 0.

Assume that the input formula ϕ is in normal form. Let k be the largest un-
bounding depth among all subformulas of ϕ with bounded outermost operators.
We pick all minimal (wrt. subformula order) such subformulas ψ with ud(ψ) = k.
By applying the rules in Section 4.2, we can rewrite ψ into ψ′ where all subfor-
mulas of ψ′ with bounded outermost operators have unbounded depths strictly
less than k. We then substitute these ψ′ back into ϕ to obtain ϕ′. We repeat
this step until there remain no bounded operators with unbounding depth k.
Rules that rewrite a formula into normal form are used whenever necessary on
relevant subformulas—this will never affect their unbounding depths. It is easy
to see that we will eventually obtain such a formula ϕ∗. Now rewrite ϕ∗ into
normal form and start over again. This is to be repeated until we reach ϕ̂. ��

Given the input formula ϕ over propositions P = {p1, . . . , pn}, we can apply
the rewriting process above to obtain a formula ϕ̂. Since each rewriting rule is a
logical equivalence, we have the following theorem.

Theorem 1. L(ϕ) = L(ϕ̂).

The syntactic separation of the original formula could potentially induce a
non-elementary blow-up. However, such behaviour does not seem to be realised
in practice. In our experience, the syntactically separated formula is often of
comparable size to the original formula, which itself is typically small. For ex-
ample, consider the following formula:

G
(
ChangeGear→ F(0,30)(InjectFuel∧PInjectLubricant)

)
.

The syntactically separated version of the formula is

G
[
ChangeGear→ F(0,30)(InjectFuel∧P(0,30)InjectLubricant)

∨
(
F(0,30)(InjectFuel) ∧PInjectLubricant

)]
.

In any case, Proposition 5 and Theorem 1 imply that we may even require the
input formula to be in ‘separated form’ without sacrificing any expressiveness.
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5 Online Monitoring Procedure

Having obtained ϕ̂ = Φ(ψ1, . . . , ψm) where ψ1, . . . , ψm are bounded formulas
over P and Φ is an LTL[U,S] formula, we now introduce new propositions
Q = {q1, . . . , qm} that correspond to bounded subformulas. In this way, we
can monitor Φ as an untimed property over Q, only that now we obtain the
truth values of q1, . . . , qm by simple dynamic programming procedures. As these
propositions correspond to bounded formulas, we only need to store a ‘sliding
window’ on the input timed word.

5.1 Untimed LTL[U, S] Part

We describe briefly the standard way to construct automata that detect informa-
tive prefixes [20]. For a given LTL formula Θ, first use a standard construction [31]
to obtain a language-equivalent alternating Büchi automaton AΘ. Then redefine
its set of accepting states to be the empty set and treat it as an automaton
over finite words. The resulting automaton Atrue

Θ accepts exactly all informa-
tive good prefixes for Θ. For online monitoring, one can then determinise Atrue

Θ

with the usual subset construction. The same can be done for ¬Θ to obtain a
deterministic automaton detecting informative bad prefixes for Θ.

In our case, we first translate the LTL[U,S] formulas Φ and ¬Φ into a pair
of two-way alternating Büchi automata. It is easy to see that, with the same
‘tweaks’, we can obtain two automata that accept informative good prefixes
and informative bad prefixes for Φ (by Proposition 2). We then apply existing
procedures that translate two-way alternating automata over finite words into
deterministic automata, e.g., [8]. We call the resulting automata Dgood and Dbad

and execute them in parallel.

5.2 Bounded Metric Part

We define fr(ϕ) and pr(ϕ) (future-reach and past-reach) for an MTL[U,S] for-
mula ϕ as follows (the cases for boolean connectives are defined as expected):

– fr(true) = pr(true) = fr(p) = pr(p) = 0 for all p ∈ P
– fr(ϕ1 UI ϕ2) = sup(I) + max(fr(ϕ1), fr(ϕ2))
– pr(ϕ1 SI ϕ2) = sup(I) + max(pr(ϕ1), pr(ϕ2))
– fr(ϕ1 SI ϕ2) = max(fr(ϕ1), fr(ϕ2)− inf(I))
– pr(ϕ1 UI ϕ2) = max(pr(ϕ1), pr(ϕ2)− inf(I)).

Intuitively, these indicate the lengths of the time horizons needed to determine
the truth value of ϕ. We also define lf(ψ) = kvar · ,fr(ψ)- and lp(ψ) = kvar ·
,pr(ψ)- (recall that we assume that timed words are of bounded variability kvar).

Naïve Method. Suppose that we would like to obtain the truth value of qi
at position j in the input (infinite) timed word ρ = (σ, τ). Observe that only
events occurring between τj − pr(ψi) and τj + fr(ψi) can affect the truth value
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of ψi at j. This implies that ρ, j |= ψi ↔ ρ′, j |=f ψi, given that ρ′ is a prefix
of ρ that contains all events between τj − pr(ψi) and τj + fr(ψi). Since ρ is
of bounded variability kvar, there will be at most lp(ψi) + 1 + lf (ψi) events
between τj − pr(ψi) and τj + fr(ψi). It follows that we can simply record all
events in this interval. Events outside of this interval are irrelevant as they do
not affect whether ρ′, j |=f ψi. In particular, we maintain a two-dimensional array
of lp(ψi) + 1 + lf (ψi) + 1 rows and 1 + |ψ| columns. The first column is used to
store timestamps of the corresponding events.5 The last |ψ| columns are used
to store the truth values of subformulas. We then use dynamic programming
procedures (cf. [25]) to evaluate whether ρ′, j |=f ψi. These procedures fill up the
array in a bottom-up manner, starting from minimal subformulas. The columns
for boolean combinations can be filled in the natural way.

Now consider all propositions in Q. We can obtain the truth values of them
at all positions in the ‘sliding window’ by using an array of lQp + 1 + lQf + 1

rows and 1 + |ψ1|+ · · ·+ |ψm| columns, where lQp = maxi∈[1,m] lp(ψi) and lQf =
maxi∈[1,m] lf (ψi). Each column can be filled in time linear in its length. Overall,
we need an array of size O(kvar ·csum ·|ϕ̂|) where csum is the sum of the constants
in ϕ̂, and for each position j we need time O(kvar · csum · |ϕ̂|) to obtain the truth
values of all propositions in Q. This method is not very efficient as for each j
we need to fill all columns for temporal subformulas from scratch. Previously
computed entries cannot always be reused as certain entries are ‘wrong’—they
were computed without the knowledge of events outside of the interval.

Incremental Evaluation. We describe an optimisation which allows effective
reuse of computed entries stored in the table. The idea is to treat entries that
depend on future events as ‘unknown’ and not to fill them. By construction,
these unknown entries will not be needed for the result of the evaluation.

For a past subformula, e.g, ϕ1 S(a,b) ϕ2, we can simply suspend the column-
filling procedure when we filled all entries using the truth values of ϕ1 and ϕ2

(at various positions) that are currently known. We may continue when the
truth values of ϕ1 and ϕ2 (at some other positions) that are previously unknown
become available. The case for future subformulas is more involved. Suppose
that we are filling a column for p1 U(a,b) p2 with the naïve method. Denote the
corresponding timestamp of an index i in the column by t(i) and the timestamp
of the last acquired event by tmax. Observe that not all of the truth values at
indices j, t(j) + b > tmax can be reused later, as they might depend on future
events. However, if we know that ϕ1 does not hold at some j′, t(j′) + b > tmax,
then all the truth values at indices < j′ can be reused in the following iterations
as they cannot depend on future events. Now consider the general case of filling
the column for ψ = ϕ1 U(a,b) ϕ2. We keep an index jψ that points to the first
unknown entry in the column, and we now let tmax = min(t(jϕ1 − 1), t(jϕ2 − 1)).
In each iteration, if jϕ1 and jϕ2 are updated to some new values, tmax also
changes accordingly. If this happens, we first check if t(jψ) + b > tmax. If this
5 We assume the timestamps can be finitely represented, e.g., with a built-in data

type, and additions and subtractions on them can be done in constant time.
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is the case, we do nothing (observe the fact that ϕ1 must hold at all indices l,
t(jψ) < t(l) ≤ tmax, thus the truth value at jψ must remain unknown). Otherwise
we find the least index l′ > jψ such that t(l′) + b > tmax. Additionally, we check
if all truth values of ϕ1 between tmax and toldmax are true, starting from tmax. If ϕ1

is not satisfied at some (maximal) position j′ then start filling at max(l′, j′)− 1.
Otherwise we start filling from l′ − 1.

Observe that we can use a variable to keep track of the least index l′ > jψ
such that t(l′) + b > tmax instead of finding it each time since it increases
monotonically. Also we can keep track of the greatest index where ϕ2 holds.
With these variables, we can easily make the extra ‘sweeping’ happen only twice
(once for ϕ1 and once for ϕ2) over newly acquired truth values. Also observe
that the truth value of a subformula at a certain position will be filled only once.
These observations imply that each entry in the array can be filled in amortised
constant time. Assuming that each step of an deterministic automaton takes
constant time, we can state the following theorem.

Theorem 2. For an MTL[U,S] formula ϕ, the automata Dgood and Dbad have
size 22

O(|Φ|)
where Φ is the LTL[U,S] formula described above. Moreover, for an

infinite timed word of bounded variability kvar, our procedure uses space O(kvar ·
csum · |ϕ̂|) and amortised time O(|ϕ̂|) per event, where ϕ̂ is the syntactically
separated equivalent formula of ϕ and csum is the sum of the constants in ϕ̂.

5.3 Correctness

One may think of the monitoring process on an infinite timed word ρ ∈ TΣω
P as

continuously extending a corresponding finite timed word ρ′ ∈ TΣ∗
Q. Suppose

that, instead of Dgood and Dbad, we now execute a deterministic ω-automaton
DΦ such that L(DΦ) = L(Φ). Since we are implicitly ensuring that the truth
values of propositions in Q are valid along the way, it is easy to see that the
corresponding run on DΦ will be accepting iff ρ |= ϕ. However, for the purpose
of online monitoring, we will be more interested in deciding whether ρ |= ϕ given
only a finite prefix of ρ. In this subsection we show that our approach is both
sound and complete for detecting informative prefixes.

The following proposition is immediate since three views of the truncated
semantics coincide in this case.

Proposition 6. For a bounded MTL[U,S] formula ψ, a finite timed word ρ =
(σ, τ) and a position 1 ≤ i ≤ |ρ| such that τi + fr(ψ) ≤ τ|ρ| and τi − pr(ψ) ≥ 0,
we have

ρ, i |=+f ψ ↔ ρ, i |=f ψ ↔ ρ, i |=−f ψ .

The following lemma implies that the rewriting process outlined in Section 4
preserves the ‘informativeness’ of prefixes.

Lemma 1. For an MTL[U,S] formula ϕ, let ϕ′ be the formula obtained after
applying one of the rewriting rules in Section 4 on some of its subformula. We
have

ρ |=+f ϕ ↔ ρ |=+f ϕ′ and ρ |=−f ϕ ↔ ρ |=−f ϕ′ .
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Given the lemma above, we can state the following theorem.

Theorem 3. The set of informative good prefixes of ϕ coincides with the set of
informative good prefixes of ϕ̂. The same holds for informative bad prefixes.

Now we state the main result of the paper in the following two theorems.

Theorem 4 (Soundness). In our procedure, if we ever reach an accepting state
of Dgood (Dbad) via a finite word u ∈ Σ∗

Q, then the finite timed word ρ ∈ TΣ∗
P

that we have read must be an informative good (bad) prefix for ϕ.

Proof. For such u and the corresponding ρ (note that |u| ≤ |ρ|),

∀i ∈ [1, |u|]
(
(u, i �|=−f Θ → ρ, i �|=−f ϑ) ∧ (u, i |=+f Θ → ρ, i |=+f ϑ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). This can easily be proved
by structural induction. If u is accepted by Dgood, we have u|=+f Φ by construction.
By the above we have ρ |=+f Φ(ψ1, . . . , ψm), as desired. The case for Dbad is
symmetric. ��

Theorem 5 (Completeness). Whenever we read an informative good (bad)
prefix ρ = (σ, τ) for ϕ, Dgood (Dbad) must eventually reach an accepting state.

Proof. For the finite word u′ obtained a bit later with |u′| = |ρ|,

∀i ∈ [1, |u′|]
(
(ρ, i |=+f ϑ → u′, i |=+f Θ) ∧ (ρ, i �|=−f ϑ → u′, i �|=−f Θ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). Again, this can be proved
by structural induction (the base step holds by Proposition 3). The theorem
follows. ��

Remark 1. As pointed out in Example 1, is possible that some of the bad prefixes
for the input formula ϕ are not informative. Certain syntactic restrictions can be
imposed on ϕ to avoid such a situation. For example, it can be shown that all bad
prefixes of Safety-MTL [27] formulas will inevitably be extended to informative
bad prefixes.6

6 Conclusion

We have proposed a new trace-length independent dense-time online monitoring
procedure for MTL[U,S], based on rewriting the input MTL[U,S] formula into
an LTL[U,S] formula over a set of bounded MTL[U,S] atoms. The former is
converted into a deterministic (untimed) automaton, while the truth values of
the latter are maintained through dynamic programming. We circumvent the
6 As noted by Kupferman and Vardi [20], all Safety-MTL properties are either inten-

tionally safe or accidentally safe.
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potentially delicate issue of translating MTL[U,S] to a class of deterministic
timed automata.

We are currently investigating whether the procedure can be extended to
support more expressive modalities. Another possible direction for future work
is to improve the monitoring procedure. For example, the dynamic programming
procedures in Section 5.2 can support subformulas with unbounded past. This
can be exploited to use a smaller equivalent formula in place of ϕ̂.
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Abstract. Existing real-time monitoring approaches assume traces with
precise timestamps. Their correctness is thus indefinite when monitoring
the behavior of systems with imprecise clocks. We address this problem
for a metric temporal logic: We identify classes of formulas for which we
can leverage existing monitors to correctly reason about observed system
traces.

1 Introduction

Existing runtime-verification approaches for real-time logics, e.g., [1, 2, 5, 6], as-
sume that the monitored system emits events with precise (i.e. exact) times-
tamps. This assumption however does not hold for real-world systems, and thus
monitors may produce incorrect outputs. To account for the clocks’ imprecision,
an error may be associated with events’ timestamps. For instance, Google’s dis-
tributed database Spanner [3] associates a time interval with each event, and
Spanner guarantees that each event happened at some point in its associated
interval.

This paper poses and explores the problem of whether existing monitoring ap-
proaches for real-time logics can account for timestamp imprecision, and thereby
provide correctness guarantees for the monitors’ outputs. In our study, we focus
on the real-time temporal logic MTL [4] over a continuous dense time domain,
for which we propose a monitoring approach that accounts for imprecise times-
tamps. For monitoring, we (a) first modify the specification by syntactically
rewriting the MTL formula and (b) use an existing monitor for precise times-
tamps on the modified specification over one precisely timestamped trace that is
obtained from the given imprecisely timestamped one. We identify MTL formu-
las for which conformance with the modified specification implies conformance
with the given specification of all possible precise traces corresponding to the
given imprecise trace. We also identify formulas for which the approach provides
a weaker—but still a useful—guarantee that there is some precise trace satisfying
the specification.

In summary, our contributions are the following. (1) We raise the problem
of imprecise timestamps in runtime verification with respect to specifications in

� This work was partially supported by the Zurich Information Security and Privacy
Center (www.zisc.ethz.ch).
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real-time logics. (2) We provide correctness guarantees for the use of existing
monitors over imprecise traces for certain MTL fragments.

Related to this work are the results of Zhang et al. [8] and Wang et al. [7].
Zhang et al. [8] explore the issue of imprecise timestamps in data-stream pro-
cessing. In contrast to our approach, their solution is for a more restrictive
specification language, relies on a discrete time domain, and outputs probabilis-
tic verdicts. In runtime verification, Wang et al. [7] explore trace imprecision
due to an unknown ordering between events. Events do not have explicit times-
tamps and thus only linear time properties (in LTL) are considered. In contrast,
we monitor real-time properties (expressed in MTL). Furthermore, they pro-
pose a specialized monitoring algorithm, while we leverage existing monitoring
algorithms.

2 Preliminaries

Let T := R≥0 be the time domain and let P be a nonempty finite set of atomic
propositions. A timeline is a function π : T → 2P in which values do not change
infinitely often over bounded intervals. That is, for any bounded nonempty in-
terval I ⊆ T, there is a partition of I into nonempty intervals I1, . . . , In for some
n ≥ 1 such that π is constant on each Ii.

MTL formulas are given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕSI ϕ | ϕUI ϕ ,

where p ranges over P and I over the intervals of T with rational endpoints or
∞ as a right endpoint. Given a timeline π, a time t ∈ T, and a formula ϕ, the
satisfaction relation |= is defined as follows.

π, t |= p iff p ∈ π(t)
π, t |= ¬ϕ iff π, t �|= ϕ
π, t |= ϕ ∧ ψ iff π, t |= ϕ and π, t |= ψ
π, t |= ϕSI ψ iff there is some t′ ∈ T with t− t′ ∈ I such that

π, t′ |= ψ and π, t′′ |= ϕ, for all t′′ ∈ T with t′ < t′′ ≤ t
π, t |= ϕUI ψ iff there is some t′ ∈ T with t′ − t ∈ I such that

π, t′ |= ψ and π, t′′ |= ϕ, for all t′′ ∈ T with t ≤ t′′ < t′

Note that MTL’s time domain is dense and its semantics is continuous. We
use standard syntactic sugar. For instance, we define ϕTI ψ := ¬(¬ϕSI ¬ψ),
ϕRI ψ := ¬(¬ϕUI ¬ψ), �I ϕ := true SI ϕ, �I ϕ := false TI ϕ, �I ϕ := true UI ϕ,
and �I ϕ := false RI ϕ, with true := p ∨ ¬p and false := p ∧ ¬p, for some p ∈ P .

A timed word is a sequence (ai, τi)i∈N of tuples with ai ∈ 2P and τi ∈ T, for any
i ∈ N, such that the sequence (τi)i∈N is non-strictly ascending and progressing.
Intuitively, a timed word represents the observed, imprecisely timestamped trace,
while a timeline represents the real system behavior. In the following, we assume
a timestamp imprecision of δ ≥ 0, which we fix for the rest of the paper. For an
“observed” timed word (ai, τi)i∈N, it would be natural to additionally assume
that the τis are from a discrete infinite subset of T, in which all elements have
a finite representation. However, our results are valid without this additional
assumption.
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Given a timed word σ̄ = (ā, τ̄), the set of possible timelines of σ̄, denotedTL(σ̄),
is the set of functions π : T → 2P with

π(t) :=

{
ai if ts−1(t) = {i} for some i ∈ N,
∅ otherwise,

for any t ∈ T, where ts : N → T is an injective function such that ts(i) ∈
[τi − δ, τi + δ], for any i ∈ N. We remark that the progress condition on (τi)i∈N

ensures that the elements of TL(σ̄) are indeed timelines. Furthermore, note that
the requirement that ts is injective corresponds to the assumption that, in reality,
no two events happen at the same point in time.

Example 1. Given δ :=1 and the time word σ̄ :=({p}, 1)({q}, 1)({r}, 2)({s}, 5) . . . ,
one of the timelines in TL(σ̄) is π where π(0.6) = {q}, π(1.2) = {r}, π(1.3) = {p},
and π(t) = ∅ for t ∈ [0, 4) \ {0.6, 1.2, 1.3}. Note that the ordering of events in σ̄
differs from that in π.

3 MTL Monitoring of Imprecisely Timestamped Traces

Informally, we are interested in what can be said about the conformance of
the possible timelines of an observed timed word σ̄ with respect to a given
formula ϕ, where σ̄ is observed incrementally. Formally, we focus on the following
problems, where a problem instance consists of a formula ϕ, a timed word σ̄,
and a time t ∈ T. For � ∈ {∃, ∀}, the question is whether σ̄, t |=� ϕ holds, where
we write (i) σ̄, t |=∃ ϕ if π, t |= ϕ, for some π ∈ TL(σ̄), and (ii) σ̄, t |=∀ ϕ if
π, t |= ϕ, for all π ∈ TL(σ̄). We focus on answering these questions online, using
monitoring.

Given a formula ϕ and an iteratively presented timed word σ̄, our monitoring
approach is the following, where formal definitions are given below:
1. Transform the formula ϕ into the formula tf(ϕ).
2. Transform at runtime the timed word σ̄ into the timeline ρσ̄.
3. Monitor the timeline ρσ̄ with respect to the formula tf(ϕ).
The transformed formula tf(ϕ) accounts for timestamp imprecision by relaxing

the implicit temporal constraints on atoms, that is, relaxing “atom p holds now”
to “atom p holds within a ±δ interval”. Formally, for p ∈ P , we define tf(p) :=
( �[0,δ] p) ∨ ( �[0,δ] p) and extend tf homomorphically to non-atomic formulas.

The timeline ρσ̄ is obtained by simply ignoring timestamp imprecision. For
the timed word σ̄ = (ā, τ̄ ), we define the monitored timeline ρσ̄ as ρσ̄(t) :=⋃

i∈N
{ai | τi = t}, for any t ∈ T. Note that the timeline ρσ̄ is easily built at

runtime from the timed word σ̄. In fact, if t ∈ T is the current time, then the
value of ρσ̄ at t can be obtained as soon as a tuple (ai, τi) of elements of the
timed word σ̄ with τi > t arrives.

The following theorem states the guarantees provided by our monitoring ap-
proach. Concretely, for each of the two posed questions, we identify two classes
of formulas for which the approach provides correct answers. We define these for-
mula classes syntactically using the rules in Figure 1. We say that a formula ϕ
in negation normal form is labeled by (�) with � ∈ {∃, ∀} if ϕ : (�) is derivable
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true : (∀) false : (∀) p : (∃) ¬p : (∀)
ϕ : (∀) ψ : (∀)
ϕ op ψ : (∀)

op ∈ {∧,∨,SI ,TI ,UI ,RI}

ϕ : (∃) ψ : (∀)
ϕ ∧ ψ : (∃)

ϕ : (∃) ψ : (∃)
ϕ ∨ ψ : (∃)

ϕ : (∀) ψ : (∃)
ϕ opI ψ : (∃)

op ∈ {S,T,U,R}
ϕ : (∀)
ϕ : (∃)

Fig. 1. Labeling Rules

using the rules in Figure 1. For the negation normal form, we assume that the
formulas true and false, and the connectives ∨, T, and R are language primitives,
while the connectives �, �, �, and � are still syntactic sugar. We denote by
nnf (ϕ) the negation normal form of ϕ.

Theorem 2. Let σ̄ be a timed word, � ∈ {∃, ∀}, and ϕ a formula with nnf (ϕ)
labeled by (�). For any t ∈ T, if ρσ̄, t |= tf(ϕ), then σ̄, t |=� ϕ.

Due to space limitations, we omit the theorem’s proof, which is by induction
over the formula structure, and give instead the intuition behind the theorem
and some of the rules in Figure 1. The true and false formulas can be labeled
by (∀) as their satisfaction does not depend on the trace. Positive literals p can
only be labeled by (∃). If tf(p) is satisfied at t, then p is satisfied at some t′

within the interval [t− δ, t+ δ], and thus there is a possible timeline for which p
is satisfied at t. However, in general the other possible timelines do not satisfy p
at t. In contrast, negative literals ¬p can be labeled by (∀). If p is not satisfied
on the interval [t− δ, t+ δ] on the monitored timeline, then there is no possible
timeline satisfying p at t. Any formula of the form ϕ opψ can be labeled by (∀),
as long as ϕ and ψ can both be labeled by (∀). That is, the (∀) fragment consists
of those formulas in which atomic propositions occur only negatively. The last
rule expresses that if all possible timelines satisfy ϕ at t then there is a possible
timeline satisfying ϕ at t. Thus the (∀) fragment is included in the (∃) fragment.

By monitoring ρσ̄ with respect to tf(ϕ) and using Theorem 2, we may obtain
correctness guarantees about whether some or all timelines in TL(σ̄) satisfy ϕ.
This depends on whether the negation normal form of ϕ or ¬ϕ can be labeled,
and on the monitoring result for tf(ϕ) on ρσ̄ at t. To clarify when guarantees are
obtained, we consider the following cases.
– Neither nnf (ϕ) nor nnf (¬ϕ) can be labeled. Then we cannot apply Theo-

rem 2 to obtain the guarantees.
– Only nnf (ϕ) is labeled. If the monitoring result is positive, i.e. ρσ̄, t |= tf(ϕ),

then we simply apply Theorem 2 to obtain the guarantees. If however ρσ̄, t �|=
tf(ϕ), then nothing can be concluded about the system’s conformance with
respect to ϕ.

– Only nnf (¬ϕ) is labeled. This case is similar to the previous one, and we only
obtain the guarantees if the monitoring result is negative. That is, when
ρσ̄, t �|= tf(ϕ), we can apply Theorem 2 to ¬ϕ. This is because tf(¬ϕ) ≡
¬tf(ϕ), and thus ρσ̄, t �|= tf(ϕ) iff ρσ̄, t |= tf(¬ϕ).

– Both nnf (ϕ) and nnf (¬ϕ) are labeled. We obtain the guarantees regardless
of the monitoring result. If ρσ̄, t |= tf(ϕ) then we apply Theorem 2 to ϕ;
otherwise, we apply it to ¬ϕ.
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The last case is illustrated through the following example.

Example 3. Let ϕ := ¬p → �I q. We have that nnf (ϕ) = p ∨ (true SI q) : (∃)
and nnf (¬ϕ) = ¬p∧ (false TI ¬q) : (∀). According to Theorem 2, the guarantees
that we obtain by monitoring ρσ̄ with respect to tf(ϕ) are as follows. For any
t ∈ T, (1) if ρσ̄, t |= tf(ϕ), then there is a π ∈ TL(σ̄) with π, t |= ϕ, and (2) if
ρσ̄, t �|= tf(ϕ), then π, t �|= ϕ, for all π ∈ TL(σ̄).

We remark that one can build the monitored timeline ρσ̄ in different manners.
Instead of taking the middle of the “uncertainty” intervals [τi − δ, τi + δ] as the
representative point in the monitored timeline, one could take another point
as representative, provided that subsequent points have the same offset to the
middle of the corresponding interval. The formula transformation must then be
adjusted accordingly. However, monitoring such other timelines does not result in
new conformance (with respect to the given property) guarantees as the following
proposition demonstrates. In other words, it is sufficient to monitor the timeline
considered in Theorem 2.

We first generalize the formula transformation. Given ε ∈ [0, δ] and ∗ ∈
{+,−}, let tf∗ε(p) := ( �[0,δ ∗ ε] p)∨( �[0,δ ∗̄ ε] p), for any p ∈ P , where ∗̄ switches ∗
to its dual value. For instance, tf0(p) = tf(p) and tf−δ(p) = ( �[0,0] p)∨( �[0,2δ] p).
As before, tf∗ε(·) is extended homomorphically to non-atomic formulas.

Proposition 4. Let δ ∈ T, ε1, ε2 ∈ [0, δ], ∗1, ∗2 ∈ {+,−}, a timed word σ̄ =
(ai, τi)i∈N, and the timelines ρ1 and ρ2 be given with ρj(t) :=

⋃
i∈N

{ai | τi =
t ∗j εj}, for any t ∈ T and j ∈ {1, 2}. For any formula ϕ and any t ∈ T, we have
that ρ1, t |= tf∗1ε1(ϕ) iff ρ2, t |= tf∗2ε2(ϕ).

4 Discussion

Fragments. The (∃) fragment is practically relevant because the negation normal
form of various common specifications patterns are included in it. For instance,
consider the common specification pattern �ϕ with ϕ = (p ∧ α) → �I(q ∧ β),
for some p, q ∈ P and some formulas α and β. When nnf (¬α) is labeled by (∃)
and nnf (β) is labeled by (∀), then nnf (ϕ) is labeled by (∃). Similarly, when
nnf (α) is labeled by (∀) and nnf (¬β) is labeled by (∀), then nnf (¬ϕ) is labeled
by (∃). Observe that nnf (ϕ) and nnf (¬ϕ) can both be labeled only in some
special cases, for instance, when both nnf (α) and nnf (¬α) can be labeled and
when β = true. Furthermore, the (∃) fragment is limited in that conformance
guarantees are given for only one possible timeline. In contrast, the (∀) fragment
offers strong conformance guarantees; however, it is practically less relevant.
Note that a formula in the (∀) fragment requires that all propositions occur
negatively in ϕ. This is a strong restriction on the form of ϕ.

We do not, however, see how to extend the fragments in any significant way. For
instance, the given rules cannot be strengthened by using stronger labels. This is il-
lustrated by the following example, which shows that a rule that labels ϕ∧ψ by (∃)
wheneverϕ andψ are labeled by (∃) is not sound. Let ϕ := p∧ �[1,1] q and ψ := p∧
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�[1,1] q. Let δ := 2 and consider the timed word σ̄ := ({p}, 2)({q}, 3)({r}, 10) . . . .
We have ρσ̄(2) = {p}, ρσ̄(3) = {q}, and ρσ̄(t) = ∅, for any t ∈ [0, 5] \ {2, 3}, and
tf(ϕ ∧ ψ) ≡ ( �[0,2] �[0,2] p) ∧ ( �[0,3] �[0,1] q) ∧ ( �[0,1] �[0,3] q). Clearly ρσ̄, 2 |=
tf(ϕ ∧ ψ) but π, 2 �|= ϕ ∧ ψ, for any π ∈ TL(σ̄).

Point-based Monitoring. It is appealing to monitor directly the observed timed
word σ̄ using amonitor for the more prevalent point-wise semantics ofMTL. See [1]
for a comparison of the two semantics with respect to monitoring. However, it is
harder to obtain correctness guarantees for such a setting because one must use
two different MTL semantics, the point-wise one for the monitored traces and the
continuous one for the possible timelines. Note that monitoring precise traces with
respect to a point-wise semantics is inappropriate as there is no reference evalua-
tion point for comparing the evaluation of the observed trace with the evaluation
of the precise traces. Recall that, under a point-wise semantics, evaluation points
are event indices and these depend on the events’ occurrence times.

Conclusions. The previous discussion motivates the need for alternative ap-
proaches. We are investigating a quantitative MTL monitoring approach along
the lines explored in [8]. However, the raised problem may require not only new
algorithmic solutions, but also specification languages that allow for the explicit
reasoning about timestamp imprecision.
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Abstract. Formal verification and validation play a crucial role in making cyber-
physical systems (CPS) safe. Formal methods make strong guarantees about the
system behavior if accurate models of the system can be obtained, including mod-
els of the controller and of the physical dynamics. In CPS, models are essential;
but any model we could possibly build necessarily deviates from the real world. If
the real system fits to the model, its behavior is guaranteed to satisfy the correct-
ness properties verified w.r.t. the model. Otherwise, all bets are off. This paper
introduces ModelPlex, a method ensuring that verification results about models
apply to CPS implementations. ModelPlex provides correctness guarantees for
CPS executions at runtime: it combines offline verification of CPS models with
runtime validation of system executions for compliance with the model. Model-
Plex ensures that the verification results obtained for the model apply to the ac-
tual system runs by monitoring the behavior of the world for compliance with the
model, assuming the system dynamics deviation is bounded. If, at some point,
the observed behavior no longer complies with the model so that offline verifica-
tion results no longer apply, ModelPlex initiates provably safe fallback actions.
This paper, furthermore, develops a systematic technique to synthesize provably
correct monitors automatically from CPS proofs in differential dynamic logic.

1 Introduction

Cyber-physical systems (CPS) span controllers and the relevant dynamics of the envi-
ronment. Since safety is crucial for CPS, their models (e. g., hybrid system models [29])
need to be verified formally. Formal verification guarantees that a model is safe w.r.t. a
safety property. The remaining task is to validate whether those models are adequate,
so that the verification results transfer to the system implementation [16,38]. This pa-
per introduces ModelPlex, a method to synthesize monitors by theorem proving: it uses
sound proof rules to formally verify that a model is safe and to synthesize provably
correct monitors that validate compliance of system executions with that model.

System execution, however, provides many opportunities for surprising deviations
from the model: faults may cause the system to function improperly [39], sensors may
deliver uncertain values, actuators suffer from disturbance, or the formal verification
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may have assumed simpler ideal-world dynamics for tractability reasons or made un-
realistically strong assumptions about the behavior of other agents in the environment.
Simpler models are often better for real-time decisions and optimizations, because they
make predictions feasible to compute at the required rate. The same phenomenon of
simplicity for predictability is often exploited for the models in formal verification and
validation. As a consequence, the verification results obtained about models of a CPS
only apply to the actual CPS at runtime to the extent that the system fits to the model.

Validation, i. e., checking whether a CPS implementation fits to a model, is an in-
teresting but difficult problem. Even more so, since CPS models are more difficult to
analyze than ordinary (discrete) programs because of the physical plant, the environ-
ment, sensor inaccuracies, and actuator disturbance. In CPS, models are essential; but
any model we could possibly build necessarily deviates from the real world. Still, good
models are approximately right, i. e., within certain error margins.

In this paper, we settle for the question of runtime model validation, i. e. validating
whether the model assumed for verification purposes is adequate for a particular system
execution to ensure that the verification results apply to the current execution.1 But
we focus on verifiably correct runtime validation to ensure that verified properties of
models provably apply, which is important for safety and certification [5].

If the observed system execution fits to the verified model, then this execution is
safe according to the offline verification result about the model. If it does not fit, then
the system is potentially unsafe because it no longer has an applicable safety proof, so
we initiate a verified fail-safe action to avoid safety risks. Checking whether a system
execution fits to a verified model includes checking that the actions chosen by the (un-
verified) controller implementation fit to one of the choices and requirements of the
verified controller model. It also includes checking that the observed states can be ex-
plained by the plant model. The crucial questions are: How can a compliance monitor
be synthesized that provably represents the verified model? How much safety margin
does a system need to ensure that fail-safe actions are initiated early enough for the
system to remain safe even if its behavior ceases to comply with the model?

The second question is related to feedback control and can only be answered when
assuming constraints on the deviation of the real system dynamics from the plant model
[33]. Otherwise, i. e., if the real system can be infinitely far off from the model, safety
guarantees are impossible. By the sampling theorem in signal processing [37], such
constraints further enable compliance monitoring solely on the basis of sample points
instead of the unobservable intermediate states about which no sensor data exists.2 This
paper presents ModelPlex, a method to synthesize verifiably correct runtime validation
monitors automatically. ModelPlex uses theorem proving with sound proof rules [29] to

1 ModelPlex checks system execution w.r.t. a monitor specification, and thus, belongs to the field
of runtime verification [16]. In this paper we use the term runtime validation in order to clearly
convey the purpose of monitoring (i. e., runtime verification: monitor properties without offline
verification; ModelPlex: monitor model adequacy to transfer offline verification results).

2 When such constraints are not available, our method still generates verifiably correct runtime
tests, which detect deviation from the model at the sampling points, just not between them. A
fail-safe action will then lead to best-effort mitigation of safety risks (rather than guaranteed
safety).
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Table 1. Hybrid program representations of hybrid systems

Statement Effect

α; β sequential composition, first run hybrid program α, then hybrid program β
α ∪ β nondeterministic choice, following either hybrid program α or β
α∗ nondeterministic repetition, repeats hybrid program α n ≥ 0 times
x := θ assign value of term θ to variable x (discrete jump)
x := ∗ assign arbitrary real number to variable x
?F check that a particular condition F holds, and abort if it does not(
x′
1 = θ1, . . . , evolve xi along differential equation system x′

i = θi
x′
n = θn & F

)
restricted to maximum evolution domain F

turn hybrid system models into monitors in a verifiably correct way. Upon noncompli-
ance, ModelPlex initiates provably safe fail-safe actions. System-level challenges w.r.t.
monitor implementation and violation cause diagnosis are discussed elsewhere [8,19,41].

2 Preliminaries: Differential Dynamic Logic

For hybrid systems verification we use differential dynamic logic dL [27,29,31], which
has a notation for hybrid systems as hybrid programs. dL allows us to make statements
that we want to be true for all runs of a hybrid program ([α]φ) or for at least one run
(〈α〉φ). Both constructs are necessary to derive safe monitors: we need [α]φ proofs so
that we can be sure all behavior of a model (including controllers) are safe; we need
〈α〉φ proofs to find monitor specifications that detect whether or not system execution
fits to the verified model. Table 1 summarizes the relevant syntax fragment of hybrid
programs together with an informal semantics. The semantics ρ(α) of hybrid program
α is a relation on initial and final states of running α (defined in [27,32]). The set of
dL formulas is generated by the following grammar (∼ ∈ {<,≤,=,≥, >} and θ1, θ2
are arithmetic expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ
Differential dynamic logic comes with a verification technique to prove correctness

properties of hybrid programs (cf. [31] for an overview of dL and KeYmaera).

3 ModelPlex Approach for Verified Runtime Validation

CPS are almost impossible to get right without sufficient attention to prior analysis, for
instance by formal verification and formal validation techniques. We assume to be given
a verified model of a CPS, i. e. formula (1) is proved valid,3 for example using [27,31].

φ → [α∗]ψ with invariant ϕ → [α]ϕ s.t. φ → ϕ and ϕ → ψ (1)
3 We use differential dynamic logic (dL) and KeYmaera as a theorem prover to illustrate our

concepts throughout this paper. The concept of ModelPlex is not predicated on the use of
KeYmaera to prove (1). Other verification techniques could be used to establish validity of this
formula. The flexibility of the underlying logic dL, its support for both [α]φ and 〈α〉φ, and its
proof calculus, however, are exploited for systematically constructing monitors from proofs in
the sequel.
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Fig. 1. Use of ModelPlex monitors along a system execution

Formula (1) expresses that all runs of the hybrid system α∗, which start in states
that satisfy the precondition φ and repeat the model α arbitrarily many times, must end
in states that satisfy the postcondition ψ. Formula (1) is proved using some form of
induction, which shows that a loop invariant ϕ holds after every run of α if it was true
before. The model α is a hybrid system model of a CPS, which means that it describes
both the discrete control actions of the controllers in the system and the continuous
physics of the plant and the system’s environment.

The safety guarantees that we obtain by proving formula (1) about the model α∗

transfer to the real system, if the actual CPS execution fits to α∗. Since we want to
preserve safety properties, a CPS γ fits to a model α∗, if the CPS reaches at most those
states that are reachable by the model, i. e., ρ(γ) ⊆ ρ(α∗). However, we do not know
γ and therefore need to find a condition based on α∗ that we can check at runtime to
see if concrete runs of γ behave like α∗. Checking the postcondition ψ is not sufficient
because, if ψ does not hold, the system is already unsafe. Checking the invariant ϕ is
insufficient as well, because if ϕ does not hold the controller can no longer guarantee
safety, even though the system may not yet be unsafe. But if we detect when a CPS is
about to deviate from α∗ before leaving ϕ, we can still switch to a fail-safe controller
to avoid ¬ψ from happening.

ModelPlex derives three kinds of monitors (model monitor, controller monitor, and
prediction monitor, cf. Fig. 1). We check reachability between consecutive states in α,
αctrl, and αδplant by verifying states during execution against the corresponding monitor.

Model monitor. In each state νi we test the sample point νi−1 from the previous exe-
cution γi−1 for deviation from the single α, not α∗ i. e., test (νi−1, νi) ∈ ρ(α). If
violated, other verified properties may no longer hold for the system; the system,
however, is still safe if a prediction monitor was satisfied on νi−1. Frequent viola-
tions indicate an inadequate model that should be revised to better reflect reality.

Controller monitor. In intermediate state ν̃i we test the current controller decisions of
the implementation γctrl for compliance with the model, i. e., test (νi, ν̃i) ∈ ρ(αctrl).
Controller monitors are designed for switching between controllers similar to Sim-
plex [36]. If violated, the commands from a fail-safe controller replace the current
controller’s decisions to ensure that no unsafe commands are ever actuated.

Prediction monitor. In intermediate state ν̃i we test the worst-case safety impact of
the current controller decisions w.r.t. the predictions of a bounded deviation plant
model αδplant, which has a tolerance around the model plant αplant, i. e., check
νi+1 |= ϕ for all νi+1 such that (ν̃i, νi+1) ∈ ρ(αδplant). Note, that we simulta-
neously check all νi+1 by checking ν̃i for a characterizing condition of αδplant. If
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violated, the current control choice is not guaranteed to keep the system safe until
the next control cycle and, thus, a fail-safe controller takes over.

The assumption for the prediction monitor is that the real execution is not arbitrarily
far off the plant models used for safety verification, because otherwise guarantees can
be neither made on unobservable intermediate states nor on safety of the future sys-
tem evolution [33]. We propose separation of disturbance causes in the models: ideal
plant models αplant for correctness verification purposes, implementation deviation plant
models αδplant for monitoring purposes. We support any deviation model (e. g., piece-
wise constant disturbance, differential inclusion models of disturbance), as long as the
deviation is bounded and differential invariants can be found. We further assume that
monitor evaluations are at most some ε time units apart (e. g., along with a recurring
controller execution). Note that disturbance in αδplant is more manageable compared to
α∗, because we can focus on single runs α instead of repetitions for monitoring.

3.1 Relation between States

We systematically derive a check that inspects states of the actual CPS to detect devia-
tion from the model α∗. We first establish a notion of state recall and show that, when
all previous state pairs complied with the model, compliance of the entire execution can
be checked by checking the latest two states (νi−1, νi) (see [25, App. A] for proofs).

Definition 1 (State recall). We use V to denote the set of variables whose state we
want to recall. We use Υ−

V ≡
∧

x∈V x = x− to express a characterization of the values
of variables in a state prior to a run of α, where we always assume the fresh variables
x− to occur solely in Υ−

V . The variables in x− can be used to recall this state. Likewise,
we use Υ+

V ≡
∧

x∈V x = x+ to characterize the posterior states and expect fresh x+.

With this notation the following lemma states that an interconnected sequence of α
transitions forms a transition of α∗.

Lemma 1 (Loop prior and posterior state). Let α be a hybrid program and α∗

be the program that repeats α arbitrarily many times. Assume that all consecutive
pairs of states (νi−1, νi) ∈ ρ(α) of n ∈ N+ executions, whose valuations are re-
called with Υ i

V ≡
∧

x∈V x = xi and Υ i−1
V are plausible w.r.t. the model α, i. e.,

|=
∧

1≤i≤n

(
Υ i−1
V → 〈α〉Υ i

V

)
with Υ−

V = Υ 0
V and Υ+

V = Υn
V . Then, the sequence of

states originates from an α∗ execution from Υ 0
V to Υn

V , i. e., |= Υ−
V → 〈α∗〉Υ+

V .

Lemma 1 enables us to check compliance with the model α∗ up to the current state
by checking reachability of a posterior state from a prior state on each execution of α
(i. e., online monitoring [16], which is easier because the loop was eliminated). To find
compliance checks systematically, we construct formula (2), which relates a prior state
of a CPS to its posterior state through at least one path through the model α. 4

Υ−
V → 〈α〉Υ+

V (2)

4 Consecutive states for α∗ mean before and after executions of α (i. e., α
↓
;α

↓
;α, not within α).
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This formula is satisfied in a state ν, if there is at least one run of the model α
starting in the state ν recalled by Υ−

V and results in a state ω recalled using Υ+
V . In other

words, at least one path through α explains how the prior state ν got transformed into
the posterior state ω. The dL formula (2) characterizes the state transition relation of
the model α directly. Its violation witnesses compliance violation. Compliance at all
intermediate states cannot be observed by real-world sensors, see Section 3.5.

In principle, formula (2) would be a monitor, because it relates a prior state to a
posterior state through the model of a CPS; but the formula is hard if not impossible
to evaluate at runtime, because it refers to a hybrid system α, which includes nonde-
terminism and differential equations. The basic observation is that any formula that is
equivalent to (2) but conceptually easier to evaluate in a state would be a correct moni-
tor. We use theorem proving for simplifying formula (2) into quantifier-free first-order
real arithmetic form so that it can be evaluated efficiently at runtime. The resulting
first-order real arithmetic formula can be easily implemented in a runtime monitor and
executed along with the actual controller. A monitor is executable code that only re-
turns true if the transition from the prior system state to the posterior state is compliant
with the model. Thus, deviations from the model can be detected at runtime, so that
appropriate fallback and mitigation strategies can be initiated.

Remark 1. The complexity for evaluating an arithmetic formula over the reals for con-
crete numbers is linear in the formula size, as opposed to deciding the validity of such
formulas, which is doubly exponential. Evaluating the same formula on floating point
numbers is inexpensive, but may yield wrong results due to rounding errors; on exact
rationals the bit-complexity can be non-negligible. We use interval arithmetic to obtain
reliable results efficiently (cf. [25, App. C]).

Example 1. We will use a simple water tank as a running example to illustrate the con-
cepts throughout this section. The water tank has a current level x and a maximum level
m. The water tank controller, which runs at least every ε time units, nondeterministi-
cally chooses any flow f between a maximum outflow −1 and a maximum inflow m−x

ε .
This water tank never overflows, as witnessed by a proof for the following dL formula.

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
φ

→
[ (

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
)∗] ψ︷ ︸︸ ︷

(0 ≤ x ≤ m)

3.2 ModelPlex Monitor Synthesis

This section introduces the nature of ModelPlex monitor specifications, our approach
to generate such specifications from hybrid system models, and how to turn those spec-
ifications into monitor code that can be executed at runtime along with the controller.

A ModelPlex specification corresponds to the dL formula (2). If the current state of a
system does not satisfy a ModelPlex specification, some behavior that is not reflected in
the model occurred (e. g., the wrong control action was taken, unanticipated dynamics
in the environment occurred, sensor uncertainty led to unexpected values, or the system
was applied outside the specified operating environment).

A model monitor χm checks that two consecutive states ν and ω can be explained
by an execution of the model α, i. e., (ν, ω) ∈ ρ(α). In the sequel, BV (α) are bound
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variables in α, FV (ψ) are free variables in ψ, Σ is the set of all variables, and A\B de-
notes the set of variables being in some set A but not in some other set B. Furthermore,
we use ν|A to denote ν projected onto the variables in A.

Theorem 1 (Model monitor correctness). Let α∗ be provably safe, so |= φ → [α∗]ψ.
Let Vm = BV (α) ∪ FV (ψ). Let ν0, ν1, ν2, ν3 . . . ∈ Rn be a sequence of states, with
ν0 |= φ and that agree on Σ\Vm, i. e., ν0|Σ\Vm

= νk|Σ\Vm
for all k. We define

(ν, νi+1) |= χm as χm evaluated in the state resulting from ν by interpreting x+ as

νi+1(x) for all x ∈ Vm, i. e., ννi+1(x)

x+ |= χm. If (νi, νi+1) |= χm for all i < n then we
have νn |= ψ where

χm ≡
(
φ|const → 〈α〉Υ+

Vm

)
(3)

and φ|const denotes the conditions of φ that involve only constants that do not change in
α, i. e., FV (φ|const) ∩BV (α) = ∅.

Our approach to generate monitor specifications from hybrid system models takes a
verified dL formula (1) as input and produces a monitor χm in quantifier-free first-order
form as output. The algorithm, listed in [25, App. D], involves the following steps:

1. A dL formula (1) about a model α of the form φ → [α∗]ψ is turned into a specifi-
cation conjecture (3) of the form φ|const → 〈α〉Υ+

Vm
.

2. Theorem proving on the specification conjecture (3) is applied until no further proof
rules are applicable and only first-order real arithmetic formulas remain open.

3. The monitor specification χm is the conjunction of the unprovable first-order real
arithmetic formulas from open sub-goals.

Generate the monitor conjecture. We map dL formula (1) syntactically to a specifi-
cation conjecture of the form (3). By design, this conjecture will not be provable. But
the unprovable branches of a proof attempt will reveal information that, had it been
in the premises, would make (3) provable. Through Υ+

Vm
, those unprovable conditions

collect the relations of the posterior state of model α characterized by x+ to the prior
state x, i. e., the conditions are a representation of (2) in quantifier-free first-order real
arithmetic.

Example 2. The specification conjecture for the water tank model is given below. It is
constructed from the model by removing the loop, flipping the modality, and formu-
lating the specification requirement as a property, since we are interested in a relation
between two consecutive states ν and ω (recalled by x+, f+ and t+). Using theorem
proving [34], we analyze the conjecture to reveal the actual monitor specification.

ε > 0︸ ︷︷ ︸
φ|const

→
〈
f := ∗; ?

(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
〉 Υ+

Vm︷ ︸︸ ︷
(x = x+ ∧ f = f+ ∧ t = t+)

Use theorem proving to analyze the specification conjecture. We use the proof rules of
dL [27,31] to analyze the specification conjecture χm. These proof rules syntactically
decompose a hybrid model into easier-to-handle parts, which leads to sequents with
first-order real arithmetic formulas towards the leaves of a proof. Using real arithmetic
quantifier elimination we close sequents with logical tautologies, which do not need to
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be checked at runtime since they always evaluate to true for any input. The conjunction
of the remaining open sequents is the monitor specification; it implies (2).

A complete sequence of proof rules applied to the monitor conjecture of the water
tank is described in [25, App. B]. Most steps are simple when analyzing specification
conjectures: sequential composition (〈; 〉), nondeterministic choice (〈∪〉), deterministic
assignment (〈:=〉) and logical connectives (∧r etc.) replace current facts with simpler
ones or branch the proof (cf. rules in [27,32]). Challenge arise from handling nondeter-
ministic assignment and differential equations in hybrid programs.

Let us first consider nondeterministic assignment x := ∗. The proof rule for nondeter-
ministic assignment (〈∗〉) results in a new existentially quantified variable. By sequent
proof rule ∃r, this existentially quantified variable is instantiated with an arbitrary term
θ, which is often a new logical variable that is implicitly existentially quantified [27].
Weakening (Wr) removes facts that are no longer necessary.

(〈∗〉)
∃X〈x :=X〉φ
〈x := ∗〉φ

1 (∃r)
Γ � φ(θ),∃xφ(x),Δ

Γ � ∃xφ(x),Δ
2 (Wr)

Γ � Δ

Γ � φ,Δ

1 X is a new logical variable
2 θ is an arbitrary term, often a new (existential) logical variable X .

Optimization 1 (Instantiation Trigger). If the variable is not changed in the remain-
ing α, xi = x+

i is in Υ+
Vm

and X is not bound in Υ+
Vm

, then instantiate the existential
quantifier by rule ∃r with the corresponding x+

i that is part of the specification conjec-
ture (i. e., θ = x+

i ), since subsequent proof steps are going to reveal θ = x+
i anyway.

Otherwise, we introduce a new logical variable, which may result in an existential quan-
tifier in the monitor specification if no further constraints can be found later in the proof.

Example 3. The corresponding steps in the water tank proof use 〈∗〉 for the nondeter-
ministic flow assignment (f := ∗) and ∃r to instantiate the resulting existential quantifier
∃F with a new logical variable F (plant is an abbreviation for x′ = f, t′ = 1 & 0 ≤
x ∧ t ≤ ε). We show the proof without and with application of Opt. 1.

φ � 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

∃r,Wrφ � ∃F 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

〈∗〉 φ � 〈f := ∗; ?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

φ � 〈f := f+〉
〈?−1 ≤ f ≤ m−x

ε
〉〈plant〉Υ+

∃r,Wr . . .

with Opt. 1 (anticipate f = f+ from Υ+)

w/o Opt. 1

Next, we handle differential equations. Even when we can solve the differential equa-
tion, existentially and universally quantified variables remain. Let us inspect the corre-
sponding proof rule from the dL calculus [31]. For differential equations we have to
prove that there exists a duration t, such that the differential equation stays within the
evolution domain H throughout all intermediate times t̃ and the result satisfies φ at the
end. At this point we have three options:

– we can instantiate the existential quantifier, if we know that the duration will be t+;
– we can introduce a new logical variable, which is the generic case that always yields

correct results, but may discover monitor specifications that are harder to evaluate;
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(〈′〉)
∃T≥0

(
(∀0≤t̃≤T 〈x := y(t̃)〉H) ∧ 〈x := y(T )〉φ

)
〈x′ = θ&H〉φ

1 (QE)
QE(φ)

φ
2

1 T and t̃ are fresh logical variables and 〈x := y(T )〉 is the discrete assignment belonging to the
solution y of the differential equation with constant symbol x as symbolic initial value

2 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is an equivalent quantifier-
free formula computable by [7]

– we can use quantifier elimination (QE) to obtain an equivalent quantifier-free result
(a possible optimization could inspect the size of the resulting formula).

Example 4. In the analysis of the water tank example, we solve the differential equation
(see 〈′〉) and apply the substitutions f :=F and t := 0. In the next step (see ∃r,Wr), we
instantiate the existential quantifier ∃T with t+ (i. e., we choose T = t+ using Opt. 1
with the last conjunct) and use weakening right (Wr) to systematically get rid of the
existential quantifier that would otherwise still be left around by rule ∃r. Finally, we use
quantifier elimination (QE) to reveal an equivalent quantifier-free formula.

φ � F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0
QE φ � ∀0≤t̃≤T (x+ f+ t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ = t+

∃r,Wrφ � ∃T≥0((∀0≤t̃≤T (x+ f+ t̃ ≥ 0 ∧ t̃ ≤ ε)) ∧ F = f+ ∧ (x+ = x+ FT ∧ t+ = T ))
〈′〉 φ � 〈f :=F ; t := 0〉〈{x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε}〉Υ+

The analysis of the specification conjecture finishes with collecting the open sequents

from the proof to create the monitor specification χm
def≡

∧
(open sequent). The col-

lected open sequents may include new logical variables and new (Skolem) function
symbols that were introduced for nondeterministic assignments and differential equa-
tions when handling existential or universal quantifiers. We use the invertible quantifier
rule i∃ to re-introduce existential quantifiers for the new logical variables (universal
quantifiers for function symbols, see [27] for calculus details). Often, the now quanti-
fied logical variables are discovered to be equal to one of the post-state variables later
in the proof, because those variables did not change in the model after the assignment.
If this is the case, we can use proof rule ∃σ to further simplify the monitor specification
by substituting the corresponding logical variable x with its equal term θ.

(i∃)
Γ � ∃X

(∧
i(Φi � Ψi)

)
,Δ

Γ, Φ1 � Ψ1,Δ · · · Γ, Φn � Ψn,Δ
1 (∃σ)

φ(θ)

∃x (x = θ ∧ φ(x))
2

1 Among all open branches, free logical variable X only occurs in the branches Γ,Φi � Ψi, Δ
2 Logical variable x does not appear in term θ

Example 5. The two open sequents of Examples 3 and 4 use a new logical variable F
for the nondeterministic flow assignment f := ∗. After further steps in the proof, the as-
sumptions reveal additional information F = f+. Thus, we re-introduce the existential
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quantifier over all the open branches (i∃) and substitute f+ for F (∃σ). The sole open
sequent of this proof attempt is the monitor specification χm of the water tank model.

φ � −1 ≤ f+ ≤ m−x
ε
∧ x+ = x+ f+t+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .

∃σφ � ∃F (−1 ≤ F ≤ m−x
ε
∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .)

i∃φ � −1 ≤ F ≤ m−x
ε

φ � F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .

3.3 Controller Monitor Synthesis

A controller monitor χc checks that two consecutive states ν and ω are reachable with
one controller execution αctrl, i. e., (ν, ω) ∈ ρ(αctrl) with Vc = BV (αctrl) ∪ FV (ψ).
We systematically derive controller monitors from formulas φ|const → 〈αctrl〉Υ+

Vc
. A

controller monitor can be used to initiate controller switching similar to Simplex [36].

Theorem 2 (Controller monitor correctness). Let α of the canonical form αctrl;αplant.
Assume |= φ → [α∗]ψ has been proven with invariant ϕ as in (1). Let ν |= φ|const∧ϕ, as
checked by χm (Theorem 1). Furthermore, let ν̃ be a post-controller state. If (ν, ν̃) |= χc

with χc ≡ φ|const → 〈αctrl〉Υ+
Vc

then we have that (ν, ν̃) ∈ ρ(αctrl) and ν̃ |= ϕ.

3.4 Monitoring in the Presence of Expected Uncertainty and Disturbance

Up to now we considered exact ideal-world models. But real-world clocks drift, sensors
measure with some uncertainty, and actuators are subject to disturbance. This makes
the exact models safe but too conservative, which means that monitors for exact models
are likely to fall back to a fail-safe controller rather often. In this section we discuss
how we find ModelPlex specifications so that the safety property (1) and the monitor
specification become more robust to expected uncertainty and disturbance. That way,
only unexpected deviations beyond those captured in the normal operational uncertainty
and disturbance of α∗ cause the monitor to initiate fail-safe actions.

In dL, we can, for example, use nondeterministic assignment from an interval to
model sensor uncertainty and piecewise constant actuator disturbance (e. g., as in [22]),
or differential inequalities for actuator disturbance (e. g., as in [35]). Such models in-
clude nondeterminism about sensed values in the controller model and often need more
complex physics models than differential equations with polynomial solutions.

Example 6. We incorporate clock drift, sensor uncertainty and actuator disturbance into
the water tank model to express expected deviation. The measured level xs is within
a known sensor uncertainty u of the real level x (i.e. xs ∈ [x− u, x+ u]). We use
differential inequalities to model clock drift and actuator disturbance. The clock, which
wakes the controller, is slower than the real time by at most a time drift of c; it can be
arbitrarily fast. The water flow disturbance is at most d, but the water tank is allowed to
drain arbitrarily fast (even leaks when the pump is on). To illustrate different modeling
possibilities, we use additive clock drift and multiplicative actuator disturbance.

0 ≤ x ≤ m ∧ ε > 0 ∧ c < 1 ∧ 0 ≤ u ∧ 0 < d

→
[ (

xs := ∗; ? (x− u ≤ xs ≤ x+ u) ; f := ∗; ?
(
−1 ≤ f ≤ m−xs−u

dε
(1− c)

)
;

t := 0; {x′ ≤ fd, 1− c ≤ t′ & x ≥ 0 ∧ t ≤ ε}
)∗]

(0 ≤ x ≤ m)
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We analyze Example 6 in the same way as the previous examples, with the crucial
exception of the differential inequalities. We cannot use the proof rule 〈′〉 to analyze
this model, because differential inequalities do not have polynomial solutions. Instead,
we use the DR and DE proof rules of dL [28,29] to turn differential inequalities into a
differential-algebraic constraint form that lets us proceed with the proof. Rule DE turns
a differential inequality x′ ≤ θ into a quantified differential equation ∃d̃(x′ = d̃ & d̃ ≤
θ) with an equivalent differential-algebraic constraint. Rule DR turns a differential-
algebraic constraint E into another differential-algebraic constraint D , which implies
E , written D → E , as defined in [28] (cf. [25, App. B] for an example).

(DR)
D → E 〈D〉φ

〈E 〉φ
1 (DE)

∀X(∃d̃(X = d̃ ∧ d̃ ≤ θ ∧H)→ X ≤ θ ∧H)

〈∃d̃(x′ = d̃& d̃ ≤ θ ∧H)〉φ
〈x′ ≤ θ&H〉φ

2

1 differential refinement: differential-algebraic constraints D , E have the same changed variables
2 differential inequality elimination: special case of DR, which rephrases the differential in-

equalities ≤ as differential-algebraic constraints (accordingly for other or mixed inequalities
systems).

Currently, for finding model monitors our prototype tool solves differential equa-
tions by the proof rule 〈′〉. Thus, it finds model monitor specifications for differential
algebraic equations with polynomial solutions and for differential algebraic inequali-
ties, which can be refined into solvable differential algebraic equations as in Example 6.
For prediction monitors (discussed in Section 3.5) we use dL techniques for finding dif-
ferential variants and invariants, differential cuts [28], and differential auxiliaries [30]
to handle differential equations and inequalities without polynomial solutions.

3.5 Monitoring Compliance Guarantees for Unobservable Intermediate States

With controller monitors, non-compliance of a controller implementation w.r.t. the mod-
eled controller can be detected right away. With model monitors, non-compliance of the
actual system dynamics w.r.t. the modeled dynamics can be detected when they first oc-
cur. We switch to a fail-safe action, which is verified using standard techniques, in both
non-compliance cases. The crucial question is: can such a method always guarantee
safety? The answer is linked to the image computation problem in model checking
(i. e., approximation of states reachable from a current state), which is known to be not
semi-decidable by numerical evaluation at points; approximation with uniform error
is only possible if a bound is known for the continuous derivatives [33]. This implies
that we need additional assumptions about the deviation between the actual and the
modeled continuous dynamics to guarantee compliance for unobservable intermediate
states. Unbounded deviation from the model between sample points just is unsafe, no
matter how hard a controller tries. Hence, worst-case bounds capture how well reality
is reflected in the model.

We derive a prediction monitor to check whether a current control decision will be
able to keep the system safe for time ε even if the actual continuous dynamics deviate
from the model. A prediction monitor checks the current state, because all previous
states are ensured by a model monitor and subsequent states are then safe by (1).
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Definition 2 (ε-bounded plant with disturbance δ). Let αplant be a model of the form
x′ = θ&H . An ε-bounded plant with disturbance δ, written αδplant, is a plant model
of the form x0 := 0; (f(θ, δ) ≤ x′ ≤ g(θ, δ) &H ∧ x0 ≤ ε) for some f , g with fresh
variable ε > 0 and assuming x′

0 = 1. We say that disturbance δ is constant if x �∈ δ; it
is additive if f(θ, δ) = θ − δ and g(θ, δ) = θ + δ.

Theorem 3 (Prediction monitor correctness). Let α∗ be provably safe, i. e., |= φ →
[α∗]ψ has been proved using invariant ϕ as in (1). Let Vp = BV (α) ∪ FV ([α]ϕ).
Let ν |= φ|const ∧ ϕ, as checked by χm from Theorem 1. Further assume ν̃ such that
(ν, ν̃) ∈ ρ(αctrl), as checked by χc from Theorem 2. If (ν, ν̃) |= χp with χp ≡ (φ|const ∧
ϕ) → 〈αctrl〉(Υ+

Vp
∧ [αδplant]ϕ), then we have for all (ν̃, ω) ∈ ρ(αδplant) that ω |= ϕ.

Remark 2. By adding a controller execution 〈αctrl〉 prior to the disturbed plant model,
we synthesize prediction monitors that take the actual controller decisions into account.
For safety purposes, we could just as well use a monitor definition without controller
χp ≡ (φ|const ∧ ϕ) → [αδplant]ϕ. But doing so results in a conservative monitor, which
has to keep the CPS safe without knowledge of the actual controller decision.

3.6 Decidability and Computability

One useful characteristic of ModelPlex beyond soundness is that monitor synthesis is
computable, which yields a synthesis algorithm, and that the correctness of those syn-
thesized monitors w.r.t. their specification is decidable, cf. Theorem 4.

Theorem 4 (Monitor correctness is decidable and monitor synthesis computable).
We assume canonical models of the form α ≡ αctrl;αplant without nested loops, with

solvable differential equations in αplant and disturbed plants αδplant with constant
additive disturbance δ (see Def. 2). Then, monitor correctness is decidable, i. e., the
formulas χm → 〈α〉Υ+

V , χc → 〈αctrl〉Υ+
V , and χp → 〈α〉(Υ+

V ∧ [αδplant]φ) are decid-
able. Also, monitor synthesis is computable, i. e., the functions synthm : 〈α〉Υ+

V �→ χm,
synthc : 〈αctrl〉Υ+

V �→ χc, and synthp : 〈α〉(Υ+
V ∧ [αδplant]φ) �→ χp are computable.

4 Evaluation

We developed a software prototype, integrated into our modeling tool Sphinx [24], to
automate many of the described steps. The prototype generates χm, χc, and χp conjec-
tures from hybrid programs, collects open sequents, and interacts with KeYmaera [34].

To evaluate our method, we created monitors for prior case studies of non-determin-
istic hybrid models of autonomous cars, train control systems, and robots (adaptive
cruise control [18], intelligent speed adaptation [23], the European train control sys-
tem [35], and ground robot collision avoidance [22]). Table 2 summarizes the evalua-
tion. For the model, we list the dimension in terms of the number of function symbols
and state variables, and the size of the safety proof (i. e., number of proof steps and
branches). For the monitor, we list the dimension of the monitor conjecture in terms of
the number of variables, compare the number of steps and open sequents when deriving
the monitor using manual proof steps to apply Opt. 1 and fully automated w/o Opt. 1,
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Table 2. Monitor complexity case studies

Case Study Model Monitor

dim. proof size dim. steps (open seq.) proof steps size

(branches) w/ Opt. 1 auto (branches)

χ
m

Water tank 5 38 (4) 3 16 (2) 20 (2) 64 (5) 32
Cruise control [18] 11 969 (124) 7 127 (13) 597 (21) 19514 (1058) 1111
Speed limit [23] 9 410 (30) 6 487 (32) 5016 (126) 64311 (2294) 19850

χ
c

Water tank 5 38 (4) 1 12 (2) 14 (2) 40 (3) 20
Cruise control [18] 11 969 (124) 7 83 (13) 518 (106) 5840 (676) 84
Robot [22] 14 3350 (225) 11 94 (10) 1210 (196) 26166 (2854) 121
ETCS safety [35] 16 193 (10) 13 162 (13) 359 (37) 16770 (869) 153

χ
p Water tank 8 80 (6) 1 135 (4) N/A 307 (12) 43

http://www.cs.cmu.edu/˜smitsch/resource/modelplex_study.zip

and the number of steps in the monitor correctness proof. Finally, we list the monitor
size in terms of arithmetic, comparison, and logical operators in the monitor formula.
Although the number of steps and open sequents differ significantly between manual
interaction for Opt. 1 and fully automated synthesis, the synthesized monitors are log-
ically equivalent. But applying Opt. 1 usually results in structurally simpler monitors,
because the conjunction over a smaller number of open sequents (cf. Table 2) can still
be simplified automatically. The model monitors for cruise control and speed limit con-
trol are significantly larger than the other monitors, because their size already prevents
automated simplification by Mathematica. As future work, KeYmaera will be adapted
to allow user-defined tactics in order to apply Opt. 1 automatically.

5 Related Work

Runtime verification and monitoring for finite state discrete systems has received sig-
nificant attention (e. g., [9,14,20]). Other approaches monitor continuous-time signals
(e. g., [10,26]). We focus on hybrid systems models of CPS to combine both.

Several tools for formal verification of hybrid systems are actively developed (e. g.,
SpaceEx [12], dReal [13], extended NuSMV/MathSat [6]). For monitor synthesis, how-
ever, ModelPlex crucially needs the rewriting capabilities and flexibility of (nested) [α]
and 〈α〉 modalities in dL [29] and KeYmaera [34]; it is thus an interesting question for
future work if other tools could be adapted to ModelPlex.

Runtime verification is the problem of checking whether or not a trace produced
by a program satisfies a particular formula (cf. [16]). In [40], a method for runtime
verification of LTL formulas on abstractions of concrete traces of a flight data recorder is
presented. The RV system for Java programs [21] predicts execution traces from actual
traces to find concurrency errors offline (e. g., race conditions) even if the actual trace did
not exhibit the error. We, instead, use prediction on the basis of disturbed plant models
for hybrid systems at runtime to ensure safety for future behavior of the system and
switch to a fail-safe fallback controller if necessary. Adaptive runtime verification [4]
uses state estimation to reduce monitoring overhead by sampling while still maintaining

http://www.cs.cmu.edu/~smitsch/resource/modelplex_study.zip
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accuracy with Hidden Markov Models, or more recently, particle filtering [15] to fill
the sampling gaps. The authors present interesting ideas for managing the overhead of
runtime monitoring, which could be beneficial to transfer into the hybrid systems world.
The approach, however, focuses purely on the discrete part of CPS.

The Simplex architecture [36] (and related approaches, e. g., [1,3,17]) is a control
system principle to switch between a highly reliable and an experimental controller at
runtime. Highly reliable control modules are assumed to be verified with some other
approach. Simplex focuses on switching when timing faults or violation of controller
specification occur. Our method complements Simplex in that (i) it checks whether or
not the current system execution fits the entire model, not just the controller; (ii) it sys-
tematically derives provably correct monitors for hybrid systems; (iii) it uses prediction
to guarantee safety for future behavior of the system.

Further approaches with interesting insights on combined verification and moni-
tor/controller synthesis for discrete systems include, for instance, [2,11].

Although the related approaches based on offline verification derive monitors and
switching conditions from models, none of them validates whether or not the model is
adequate for the current execution. Thus, they are vulnerable to deviation between the
real world and the model. In summary, this paper addresses safety at runtime as follows:

– Unlike [36], who focus on timing faults and specification violations, we propose a
systematic principle to derive monitors that react to any deviation from the model.

– Unlike [4,15,17,21], who focus on the discrete aspects of CPS, we use hybrid sys-
tem models with differential equations to address controller and plant.

– Unlike [17,36], who assume that fail-safe controllers have been verified with some
other approach and do not synthesize code, we can use the same technical approach
(dL) for verifying controllers and synthesizing provably correct monitors.

– ModelPlex combines the leight-weight monitors and runtime compliance of online
runtime verification with the design time analysis of offline verification.

– ModelPlex synthesizes provably correct monitors, certified by a theorem prover
– To the best of our knowledge, our approach is the first to guarantee that verification

results about a hybrid systems model transfer to a particular execution of the system
by verified runtime validation. We detect deviation from the verified model when
it first occurs and, given bounds, can guarantee safety with fail-safe fallback. Other
approaches (e. g., [3,17,36]) assume the system perfectly complies with the model.

6 Conclusion

ModelPlex is a principle to build and verify high-assurance controllers for safety-critical
computerized systems that interact physically with their environment. It guarantees that
verification results about CPS models transfer to the real system by safeguarding against
deviations from the verified model. Monitors created by ModelPlex are provably correct
and check at runtime whether or not the actual behavior of a CPS complies with the
verified model and its assumptions. Upon noncompliance, ModelPlex initiates fail-safe
fallback strategies. In order to initiate those strategies early enough, ModelPlex uses
prediction on the basis of disturbed plant models to check safety for the next control
cycle. This way, ModelPlex ensures that verification results about a model of a CPS
transfer to the actual system behavior at runtime.
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Future research directions include extending ModelPlex with advanced dL proof
rules for differential equations [31], so that differential equations without polynomial
solutions, as we currently handle for prediction monitor synthesis, can be handled for
model monitor synthesis as well. An interesting question for certification purposes is
end-to-end verification from the model to the final machine code.
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Abstract. Safety-critical systems, like Unmanned Aerial Systems (UAS) that
must operate totally autonomously, e.g., to support ground-based emergency ser-
vices, must also provide assurance they will not endanger human life or prop-
erty in the air or on the ground. Previously, a theoretical construction for paired
synchronous and asynchronous runtime observers with Bayesian reasoning was
introduced that demonstrated the ability to handle runtime assurance within the
strict operational constraints to which the system must adhere. In this paper, we
show how to instantiate and implement temporal logic runtime observers and
Bayesian network diagnostic reasoners that use the observers’ outputs, on-board a
field-standard Field Programmable Gate Array (FPGA) in a way that satisfies the
strict flight operational standards of REALIZABILITY, RESPONSIVENESS, and
UNOBTRUSIVENESS. With this type of compositionally constructed diagnostics
framework we can develop compact, hierarchical, and highly expressive health
management models for efficient, on-board fault detection and system moni-
toring. We describe an instantiation of our System Health Management (SHM)
framework, rt-R2U2, on standard FPGA hardware, which is suitable to be de-
ployed on-board a UAS. We run our system with a full set of real flight data from
NASA’s Swift UAS, and highlight a case where our runtime SHM framework
would have been able to detect and diagnose a fault from subtle evidence that
initially eluded traditional real-time diagnosis procedures.

1 Introduction

Totally autonomous systems operating in hazardous environments save human lives. In
order to operate, they must both be able to intelligently react to unknown environments
to carry out their missions and adhere to safety regulations to prevent causing harm.
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NASA’s Swift Unmanned Aerial System (UAS) [6] is tasked with intelligently map-
ping California wildfires for maximally effective deployment of fire-fighting resources
yet faces obstacles to deployment, i.e., from the FAA because it must also provably
avoid harming any people or property in the air or on the ground in case of off-nominal
conditions. Similar challenges are faced by NASA’s Viking Sierra-class UAS, tasked
with low-ceiling earthquake surveillance, as well as many other autonomous vehicles,
UAS, rovers, and satellites. To provide assurance that these vehicles will not cause any
harm during their missions, we propose a framework designed to deliver runtime Sys-
tem Health Management (SHM) [7] while adhering to strict operational constraints,
all aboard a low-cost, dedicated, and separate FPGA; FPGAs are standard components
used in such vehicles. We name our framework rt-R2U2 after these constraints:

real-time: SHM must detect and diagnose faults in real time during any mission.

REALIZABLE: We must utilize existing on-board hardware (here an FPGA) providing a
generic interface to connect a wide variety of systems to our plug-and-play framework
that can efficiently monitor different requirements during different mission stages, e.g.,
deployment, measurement, and return. New specifications do not require lengthy re-
compilation and we use an intuitive, expressive specification language; we require real-
time projections of Linear Temporal Logic (LTL) since operational concepts for UASs
and other autonomous vehicles are most frequently mapped over timelines.

RESPONSIVE: We must continuously monitor the system, detecting any deviations from
the specifications within a tight and a priori known time bound and enabling mitigation
or rescue measures. This includes reporting intermediate status and satisfaction of timed
requirements as early as possible and utilizing them for efficient decision making.

UNOBTRUSIVE: We must not alter any crucial properties of the system, use commercial-
off-the-shelf (COTS) components to avoid altering cost, and above all not alter any
hardware or software components in such a way as to lose flight-certifiability, which
limits us to read-only access to the data from COTS components. In particular, we must
not alter functionality, behavior, timing, time or budget constraints, or tolerances, e.g.,
for size, weight, power, or telemetry bandwidth.

Unit: The rt-R2U2 is a self-contained unit.
Previously, we defined a compositional design for combining building blocks con-

sisting of paired temporal logic observers; Boolean functions; data filters, such as
smoothing, Kalman, or FFT; and Bayesian reasoners for achieving these goals [17].
We require the temporal logic observer pairs for efficient temporal reasoning but since
temporal monitors don’t make decisions, Bayesian reasoning is required in conjunction
with our temporal logic observer pairs in order to enable the decisions required by this
safety-critical system. We designed and proved correct a method of synthesizing paired
temporal logic observers to monitor, both synchronously and asynchronously, the sys-
tem safety requirements and feed this output into Bayesian network (BN) reasoner back
ends to enable intelligent handling and mitigation of any off-nominal operational con-
ditions [15]. In this paper, we show how to create those BN back ends and how to
efficiently encode the entire rt-R2U2 runtime monitoring framework on-board a stan-
dard FPGA to enable intelligent runtime SHM within our strict operational constraints.
We demonstrate that our implementation can significantly outperform expert human
operators by running it in a hardware-supported simulation with real flight data from a
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test flight of the Swift UAS during which a fluxgate magnetometer malfunction caused
a hard-to-diagnose failure that grounded the flight test for 48 hours, a costly disturbance
in terms of both time and money. Had rt-R2U2 been running on-board during the flight
test it would have diagnosed this malfunction in real time and kept the UAS flying.

1.1 Related Work

While there has been promising work in Bayesian reasoning for probabilistic diagnosis
via efficient data structures in software [16,18], this does not meet our UNOBTRU-
SIVENESS requirement to avoid altering software or our REALIZABILITY requirement
because it does not allow efficient reasoning over temporal traces. For that, we need
dynamic Bayes Nets, which are much more complex and necessarily cannot be RE-
SPONSIVE in real time.

There is a wealth of promising temporal-logic runtime monitoring techniques in soft-
ware, including automata-based, low-overhead techniques, i.e., [5,19]. The success of
these techniques inspires our research question: how do we achieve the same efficient,
low-overhead runtime monitoring results, but in hardware since we cannot modify sys-
tem software without losing flight certifiability? Perhaps the most pertinent is Copilot
[14], which generates constant-time and constant-space C programs implementing hard
real-time monitors, satisfying our RESPONSIVENESS requirement. Copilot is unobtru-
sive in that it does not alter functionality, schedulability, certifiability, size, weight, or
power, but the software implementation still violates our strict UNOBTRUSIVENESS re-
quirement by executing software. Copilot provides only sampling-based runtime mon-
itoring whereas rt-R2U2 provides complete SHM including BN reasoning.

BusMOP [13,10] is perhaps most similar to our rt-R2U2 framework. Exactly like
rt-R2U2, BusMOP achieves zero runtime overhead via a bus-interface and an imple-
mentation on a reconfigurable FPGA and monitors COTS peripherals. However, Bus-
MOP only reports property failure and (at least at present) does not handle future-time
logic, whereas we require early-as-possible reporting of future-time temporal properties
passing and intermediate status updates. The time elapsed from any event that triggers
a property resolution to executing the corresponding handler is up to 4 clock cycles for
BusMOP whereas rt-R2U2 always reports in 1 clock cycle. Most importantly, although
BusMOP can monitor multiple properties at once, it handles diagnosis on a single-
property-monitoring basis, executing arbitrary user-supplied code on the occurrence of
any property violation whereas rt-R2U2 performs SHM on a system level, synthesizing
BN reasoners that utilize the passage, failure, and intermediate status of multiple prop-
erties to assess overall system health and reason about conditions that require many
properties to diagnose. Also rt-R2U2 never allows execution of arbitrary code as that
would violate UNOBTRUSIVENESS, particularly flight certifiability requirements.

The gNOSIS [8] framework also utilizes FPGAs, but assesses FPGA implementa-
tions, mines assertions either from simulation or hardware traces, and synthesizes LTL
into, sometimes very large, Finite State Machines that take time to be re-synthesized
between missions, violating our REALIZABILITY requirement. Its high bandwidth, au-
tomated probe insertion, ability to change timing properties of the system, and low sam-
ple-rate violate our UNOBTRUSIVENESS and RESPONSIVENESS requirements, though
gNOSIS may be valuable for design-time checking of rt-R2U2 in the future.
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1.2 Contributions

We define hardware, FPGA encodings for both the temporal logic runtime observer
pairs proposed in [15] and the special BN reasoning units required to process their three-
valued output for diagnostics and decision-making. We detail novel FPGA implementa-
tions within a specific architecture to exhibit the strengths of an FPGA implementation
in hardware in order to fulfill our strict operational requirements; this construction incurs
zero runtime overhead. We provide a specialized construction rather than the standard
“algorithm-rewrite-in-VHDL” that may be acceptable for less-constrained systems. We
provide timing and performance data showing reproducible evidence that our new rt-
R2U2 implementation performs within our required parameters of REALIZABILITY,
RESPONSIVENESS, and UNOBTRUSIVENESS in real time. Finally, we highlight imple-
mentation challenges to provide instructive value for others looking to reproduce our
work, i.e., implementing theoretically proven temporal logic observer constructions on a
real-world UAS. Using full-scale, real flight test data streams from NASA’s Swift UAS,
we demonstrate this real-time execution and prove that rt-R2U2 would have pinpointed
in real time a subtle buffer overflow issue that grounded the flight test and stumped
human experts for two days in real life.

This paper is organized as follows: Section 2 provides the reader with theoretical
principles of our approach. Section 3 provides an overview of the various parts and
Sections 4 and 5 give more details about the hardware implementation. A real-world
test case of NASA’s Swift UAS is evaluated in Section 6. Section 7 concludes this
paper with a summary of our findings.

2 Preliminaries

Our system health models are comprised of paired temporal observers, sensor filters,
and Bayesian network probabilistic reasoners, all encoded on-board an FPGA; see [17]
for a detailed system-level overview.

2.1 Temporal-Logic Based Runtime Observer Pairs [15]

We encode system specifications in real-time projections of LTL. Specifically, we use
Metric Temporal Logic (MTL), which replaces the temporal operators of LTL with op-
erators that respect time bounds [1] and mission-time LTL [15], which reduces to MTL
with all operator bounds being between now (i.e., time 0) and the mission termination
time.

Definition 1 (Discrete-Time MTL [15]). For atomic proposition σ ∈ Σ, σ is a for-
mula. Let time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas, then so are:

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | Xϕ | ϕ UJ ψ | �Jϕ | ♦Jϕ.

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for the set
{i ∈ N0 | t ≤ i ≤ t′}. We interpret MTL formulas over executions of the form
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e : ω → 2Prop; we define ϕ holds at time n of execution e, denoted en |= ϕ, inductively
as follows:

en |= true is true, en |= σ iff σ holds in sn,
en |= ¬ϕ iff en �|=ϕ, en |= ϕ ∧ ψ iff en |= ϕ and en |= ψ,
en |= Xϕ iff en+1 |= ϕ, en |= ϕ ∨ ψ iff en |= ϕ or en |= ψ,
en |= ϕ UJ ψ iff ∃i(i ≥ n) : (i − n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ).

Since systems in our application domain are usually bounded to a certain mission
time τ ∈ N0, we also encode mission-time LTL [15]. For a formula ϕ in LTL, we create
mission-bounded formula ϕm by replacing every �, ♦, and U operator in ϕ with its
bounded MTL equivalent using the bounds J = [0, τ ]. An execution sequence for an
MTL formula ϕ, denoted by 〈Tϕ〉, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0

is a time stamp and v ∈ {true, false, maybe} is a verdict.
For every temporal logic system specification, we synthesize a pair of runtime ob-

servers, one asynchronous and one synchronous, using the construction defined and
proved correct in [15]. Asynchronous observers are evaluated with every new input, in
this case with every tick of the system clock. For every generated output tuple T we
have that T.v ∈ {true, false} and T.τe ∈ [0, n]. Since verdicts are exact evaluations
of a future-time specification ϕ, for each clock tick they may resolve ϕ for clock ticks
prior to the current time n if the information required for this resolution was not avail-
able until n. Synchronous observers are evaluated at every tick of the system clock and
their output tuples T are guaranteed to be synchronous to the current time stamp n.
Thus, for each time n, a synchronous observer outputs a tuple T with T.τe = n. This
eliminates the need for synchronization queues. Outputs of these observers are three-
valued verdicts: T.v ∈ {true, false, maybe} depending on whether we can concretely
valuate that the observed formula holds at this time point (true), does not hold (false),
or cannot be evaluated due to insufficient information (maybe). Verdicts of maybe are
later resolved concretely by the matching asynchronous observers in the first clock tick
when sufficient information is available.

2.2 Bayesian Networks for Health Models

In order to maximize the reasoning power of our health management system, we use
Bayesian networks (BN). BNs have been well established in the area of diagnostic and
health management (e.g., [12,9]) as they can cope with conflicting sensor signals and
priors. BNs are directed acyclic graphs, where each node represents a statistical vari-
able. Directed edges between nodes correspond to (local) conditional dependencies. For
our health models, we are using BNs of a general structure as shown in Figure 1A. We
do not use dynamic BNs, because all temporal aspects are being dealt with by the tem-
poral observers described above. Discrete sensor signals or outputs of the synchronous
temporal observers (true, false, maybe) are clamped to the “sensor” and “command”
nodes of the BN as observable. Since sensors can fail, they have (unobservable) health
nodes attached. As priors, these health nodes can contain information on how reliable
the component is, e.g., by using a Mean Time To Failure (MTTF) metric.
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Unobservable nodes U may describe the behavior
of the system or component as it is defined and in-
fluenced by the sensor or software information. Of-
ten, such nodes are used to define a mode or state of
the system. For example, it is likely that the UAS is
climbing if the altimeter sensor says “altitude increas-
ing.” Such (desired) behavior can also be affected by
faults, so behavior nodes have health nodes attached.
For details of modeling see [16]. The local conditional
dependencies are stored in the Conditional Probabil-
ity Table (CPT) of each node. For example, the CPT
of the sensor node S defines its probabilities given its
dependencies: P (S|U,H S).

In our health management system, we, at each time
stamp, calculate the posterior probabilities of the BN’s
health nodes, given the sensor and command values
e as evidence. The probability Pr(H S = good|e)
gives an indication of the status of the sensor or com-
ponent. Reasoning in real-time avionics applications
requires aligning resource consumption of diagnos-
tic computations with tight resource bounds [11]. We
are therefore using a representation of BNs that is
based upon arithmetic circuits (AC), which are di-

rected acyclic graphs where leaf nodes represent indicators (λ in Fig. 1) and param-
eters (θ) while all other nodes represent addition and multiplication operators. AC
based reasoning algorithms are powerful, as they provide predictable real-time perfor-
mance [2,9].

The AC is factually a compact encoding of the joint distribution into a network poly-
nomial [3]. The marginal probability (see Corollary 1 in [3]) for a variable x given
evidence e can then be calculated as Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e) where Pr(e) is the
probability of the evidence. In a first, bottom-up pass, the λ indicators are clamped ac-
cording to the evidence and the probability of this particular evidence setting is evalu-
ated. A subsequent top-down pass over the circuit computes the partial derivatives ∂f

∂λx
.

Based upon the structure of the AC, this algorithm only requires —except for the final
division by Pr(e)— only additions and multiplications. Since the structure of the AC
is determined at compile time, a fixed, reproducible timing behavior can be guaranteed.

2.3 Digital Design 101 and FPGAs

Integrated circuits (ICs) have come a long way from the first analog, vacuum tube-based
switching circuits, over discrete semiconductors to sub-micron feature size for modern
ICs. Our ability to implement rt-R2U2 in hardware is strongly based upon high-level
hardware definition languages and tools to describe the functionality of the hardware
design, and FPGAs, which make it possible to “instantiate” the hardware on-the-fly
without having to go through costly silicon wafer production.
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FPGA architecture

VHDL - Very High Speed Integrated
Circuit Hardware Definition Language.
This type-safe programming language al-
lows the concise description of con-
current systems, supporting the inherent
nature of any IC. Therefore, program-
ming paradigms are substantially different
from software programming languages,
e.g., memory usage and mapping has to be
considered explicitly and algorithms with
loops have to be rewritten into finite state
machines. In general, a lot more time and
effort has to be put into system design.

FPGA - Field Programmable Gate Array is a fast, cheap, and efficient way to pro-
duce a custom-designed digital system or prototype. Basically an FPGA consists of
logic cells (Figure 2), that can be programmed according to its intended use. A mod-
ern FPGA is composed of three main parts Configurable Logic Blocks (CLBs), long and
short interconnections with six-way programmable switches, and I/O blocks. The CLBs
are elementary Look Up Tables (LUTs) where, depending on the input values, a certain
output value is presented to the next cell. Hence, every possible combination of unary
operations can be programmed. Complex functionality can be achieved by connect-
ing different CLBs using short (between neighboring cells) and long interconnections.
These interconnections need the most space on an FPGA, because in general every cell
can be connected to every other cell. The I/O cells are also connected to this intercon-
nection grid. To be able to route the signals in all directions there is a “switch box” on
every intersection. This six-way switch is based on 6 transistors that can be programmed
to route the interconnection accordingly. In order to achieve higher performance mod-
ern FPGAs have hardwired blocks for certain generic or complex operations (adder,
memory, multiplier, I/O transceiver, etc.).

3 System Overview

Our system health models are constructed based upon information extracted from sys-
tem requirements, sensor schematics, and specifications of expected behaviors, which
are usually written in natural language. In a manual process (Figure 3) we develop the
health model in our framework, which is comprised of temporal components (LTL and
MTL specifications), Bayesian networks (BNs), and signal processing. Our tool chain
compiles the individual parts and produces binary files, which, after linking, are down-
loaded to the FPGA. The actual hardware architecture, which is defined in VHDL, is
compiled using a commercial tool chain1 and used to configure the FPGA. This lengthy
process, which can take more than 1 hour on a high-performance workstation needs to
be carried out only once, since it is independent of the actual health model.

1 http://www.xilinx.com/products/design-tools/ise-design-suite/
index.htm

http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm
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3.1 Software

The software tool chain for creating the code for the temporal logic specifications is
straightforward and only translates the given formulas to a binary representation with
mapping information. Significantly more effort goes into preparing a BN for our system.
First, the given network is translated into an optimized arithmetic circuit (AC) using the
Ace2 tool. Then, the resulting AC must be compiled and mapped for efficient execution
on the FPGA. This process, which will be described in more detail in Section 5, is
controlled with a Java GUI.

3.2 Hardware

The hardware architecture (Figure 4A) of our implementation is built out of three com-
ponents: the control subsystem, the runtime verification (RV) unit, and the runtime rea-
soning (RR) unit. Whereas the control subsystem establishes the communication link to
the external world (e.g., to load health models and to receive health results), the RV and
RR units comprise the proper health management hardware, which we will discuss in
detail in the subsequent sections. Any sensor and software data passed along the Swift
UAS bus can be directly fed into the signals’ filters and pre-processing modules of the
atChecker, which are a part of the RV unit, where they are converted into streams of
Boolean values.

Our architecture is designed in such a way that its requirements with respect to
gates and look-up tables only depend on the number of signals we monitor, not on
the temporal logic formulas or the Bayesian networks. In the configuration used for our
case study (with 12 signals), the monitoring device synthesized for the Xilinx Virtex
5 XC5VFX130T FPGA needed 28849 registers, 24450 look-up tables, 63 blocks of
RAM, and 25 digital signal processing units. These numbers clearly strongly depend
on the architecture of the FPGA, and, in our case used 35% of the registers, 29% of the
LUTs, 21% of the RAM, and 7% of the DSP blocks.

The runtime verification subsystem evaluates the compiled temporal logic formulas
over the Boolean signals prepared by the atChecker. Since evaluations of the past-time
variations of our logics (MTL and mission-time LTL) are naturally synchronous, we can
essentially duplicate the synchronous observer construction, but with past-time evalua-
tion, to add support for past-time formulas should they prove useful in the context of the

2 http://reasoning.cs.ucla.edu/ace/

http://reasoning.cs.ucla.edu/ace/
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system specifications. Depending on the type of logic encoding each individual formula
(past or future time), it is either evaluated by the past-time or future-time subsystem. As
the algorithms are fundamentally different for the two time domains we use two sep-
arate entities in the FPGA. A real time clock (RTC) establishes a global time domain
and provides a time base for evaluating the temporal logic formulas.

After the temporal logic formulas have been evaluated, the results are transferred
to the runtime reasoning (RR) subsystem, where the compiled Bayesian network is
evaluated to yield the posterior marginals of the health model. For easier debugging
and evaluation, a memory dump of the past and future time results as well as of the
posterior marginals has been implemented. After each execution cycle, the evaluation
is paused and the memory dump is transferred to the host PC for further analysis.

4 FPGA Implementation of MTL/Mission-Time LTL

As shown in Figure 4A, incoming sensor and software signals, which consist of vec-
tors of binary fixed-point numbers, are first processed and discretized by the atChecker
unit. This hardware component can contain filters to smooth the signal, Fast Fourier
Transforms, or Kalman Filters, and performs scaling and comparison operations to
yield a Boolean value. Each discretizer block can process one or two signals s1, s2
according to (±2p1 × F 2

1 (F
1
1 (s1)) ± 2p2 × F 2

2 (F
1
2 (s2))) �# c for integer constants

p1, p2, and c, filters F i
j , and a comparison operator �# ∈ {=, <,≤,≥, >, �=}. For ex-

ample, the discrete signal “UAS is at least 400ft above ground” would be specified by:
(mvg avg(altUAS) − altgnd) > 400, where the altitude measurements of the UAS
would be smoothed out by a moving average filter before the altitude of the ground is
subtracted. Note that several blocks can be necessary for thresholding, e.g., to determine
if the UAS is above 400ft, 1000ft, or 5000ft.

Each temporal logic processing unit (ptObserver, ftObserver) is implemented as a
processor, which executes the compiled formulas instruction by instruction. It contains
its own program and data memory, and finite-state-machine (FSM) based execution
unit (Figure 4B3). Individual instructions process Boolean operators and temporal logic

3 The architecture and FSM for processing the past time fragment is similar to this unit and thus
will not be discussed here.



224 J. Geist, K.Y. Rozier, and J. Schumann

operators using the stages of FETCH (fetch instruction word) followed by loading the
appropriate operand(s). Calculation of the result can be accomplished in one step (CALC)
or might require an additional state for the more complex temporal operations like U or
�[.,.]. During calculation, values for the synchronous and asynchronous operators are
updated according to the logic’s formal algorithm (see [15]). Finally, results are written
back into memory (WRITE) and the queues are updated during states (UPDATE Q1,
UPDATE Q2), before the execution engine goes back to its IDLE state. Asynchronous
temporal observers usually need local memory for keeping information like the time
stamps for the last rising transition or the start time of the next tuple in the queues,
which are implemented using a ring buffer. Internal functions feasible and aggregate
put information (timestamps) into the ring buffer, whereas a highly specialized garbage
collecting function removes time stamps that can no longer contribute to the validity
of the formula, thus keeping memory requirements low. These updates to the queues
happen during the UPDATE states of the processor ([15]).

In contrast to asynchronous observers, which require additional memory for keeping
internal history information, synchronous observers are realized as memoryless Boolean
networks. Their three-valued logic {false, true, maybe} is encoded in two binary sig-
nals as 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉, respectively.

Let us consider the following specification, which expresses that the UAS, after re-
ceiving the takeoff command must reach an altitude alt above ground of at least 600ft
within 40 seconds: cmd = takeoff → ♦[0,40s](alt ≥ 600). Obviously, synchronous and
asynchronous observers report true before the takeoff. After takeoff, the synchronous
observer immediately returns maybe until the 40-second time window has expired or
the altitude exceeds 600ft, whichever comes first. Then the formula can be decided to
yield true or false. In contrast, the asynchronous observer always yields the concrete
valuation of the formula, true or false, for every time stamp; however this result (which
is always tagged with a time stamp) might retroactively resolve an earlier point in time.

For rt-R2U2, both types of observers are important. Whereas asynchronous observers
guarantee the concrete result but might refer to an earlier system state, synchronous
observers immediately yield some information, which can be used by the Bayesian net-
work to disambiguate failures. In our example, this information can be used to express
that, with a certain (albeit unknown) probability, the UAS still can reach the desired
target in time, but hasn’t done so yet. Our Bayesian health models can reflect that fact
by using three-valued sensor and command nodes.

5 FPGA Implementation of Bayesian Networks

The BN reasoning has been implemented on the FPGA as a Multiple Instruction, Mul-
tiple Data (MIMD) architecture. This means that every processing unit calculates a part
of the AC using its individual data and program memory. That way, a high degree of
parallelism can be exploited and we can obtain a high performance and low latency
evaluation unit. Therefore, our architectural design process led to a simple, tightly cou-
pled hardware architecture, which relies on optimized instructions provided by the BN
compiler (Figure 3). The underlying idea of this architecture is to partition the entire
arithmetic circuit into small parts of constant size, which in turn are processed by a
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number of parallel execution units with the goal of minimizing inter-processor data ex-
changes and synchronization delays. We will first describe the hardware architecture
and then focus on the partitioning algorithm in the BN compiler.

BN Computing Block. We designed an elementary BN processor (BN computing
block) that can process three different kinds of small “elementary” arithmetic circuits.
A number of identical copies (the number depends on the size of the FPGA) of these
computing blocks work as slaves in a master-slave configuration. Figure 5A shows the
three different patterns. Each pattern consists of up to three arithmetic operators (addi-
tion or multiplication) and can have 2, 3, or 4 inputs. Such a small pattern can be effi-
ciently executed by a BN computing block. Figure 5B shows a BN computing block,
which is built from several separate hardware units (bus interface, local memory, in-
struction decoder, ALU, etc.). On an abstract level the calculation is based on a generic
four-stage pipeline execution (FETCH, DECODE, CALCULATE, and WRITE-BACK). To
achieve this performance-focused behavior, each subsystem runs independently. There-
fore, a handshake synchronizing protocol between each internal component is used.
As a MIMD processor, each BN computing block keeps its own instruction memory as
well as local storage for network parameters and evidence indicators. A local scratchpad
memory is used to store intermediate results.

Although probabilities are best represented using floating-point numbers according
to IEEE 754, we chose to use an 18-bit fixed-point representation, because floating-
point ALUs are resource-intensive in terms of both number of logic gates used and
power, and would drastically reduce the number of available parallel BN computing
blocks. Our chosen resolution is based on the 18-bit hardware multiplier that is available
on our Xilinx Virtex 5 FPGA. We achieve a resolution of 2−18 = 3.8 · 10−6, which is
sufficient for our purposes to represent probability values.

All slave processors are connected via a bus to the BN master processor. Besides
programming, data handling, and controlling their execution, the master also calculates
the final result Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e), because the resources needed to perform the
division are comparatively high and therefore not replicated over the slave processors.

Mapping of AC to BN computing units. Our software tool chain tries to achieve an
optimal mapping of the AC to the different BN computation units during compile time,
using a pattern-matching-based algorithm. We “tile” the entire AC with the three small
patterns (Figure 5A) in such a way that the individual BN processing units operate as
parallel as possible and communication and data transfer is reduced to a minimum. For
this task, we use a Bellman-Ford algorithm to obtain the optimal placement. Further-
more, all scheduling information (internal reloads and communication on the hardware
bus to exchange data with other computing blocks) as well as the configuration for the
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master and probability values for the Conditional Probability Table (CPT) are prepared
for the framework.

6 Case Study: Fluxgate Magnetometer Buffer Overflow

In 2012, a NASA flight test of the Swift UAS was grounded for 48 hours as system
engineers worked to diagnose an unexpected problem with the UAS that ceased vital
data transmissions to the ground. All data of the scientific sensors on the UAS (e.g.,
laser altimeter, magnetometer, etc.) were collected by the Common Payload System
(CPS). The fluxgate magnetometer (FG), which measures strength and direction of the
Earth’s magnetic field, had previously failed and was replaced before the flight test.
System engineers eventually determined that the replacement was not configured cor-
rectly; firmware on-board the fluxgate magnetometer was sending data to its internal
transmit buffer at high speed although the intended speed of communication with the
CPS was 9600 baud. As the rate was set to a higher value and the software in the mag-
netometer did not catch this error, internal buffer overflows started to occur, resulting
in an increasing number of corrupted packets sent to the CPS. This misconfiguration in
the data flow was very difficult to deduce by engineers on the ground because they had
to investigate the vast number of possible scenarios that could halt data transmission.

In this case study, we use the original data as recorded by the Swift Flight Computer
(FC) and the CPS. At this time, no publicly available report on this test flight has been
published; the tests and their resulting data are identified within NASA by the date and
location, Surprise Valley, California on May 8, 2012, starting at 7:50 am. With our rt-
R2U2 architecture, which continuously monitors our standard set of rates, ranges, and
relationships for the on-board sensors, we have been able to diagnose this problem in
real-time, and could have avoided the costly delay in the flight tests.

The available recorded data are time series of continuous and discrete sensor and
status data for navigational, sensor, and system components. From the multitude of
signals, we selected, for the purpose of this case study, the signals shown in Table 1.
We denote the total number of packets from the FG with Ntot = Ng + Nb; XR =
Xt −Xt−1 is the rate of signal X , and XN denotes the normalized vector X .

Table 1. Signals and sources used in this health model, sampled with a 1Hz sampling rate

Signal description Source
Ng number of good FG packets since start of mission CPS
Nb number of bad FG packets since start of mission CPS
Elog logging event CPS
FGx,y,z directional fluxgate magnetometer reading CPS
Hdx,y aircraft heading FC
p, q, r pitch, roll, and yaw rate FC

6.1 The Bayesian Health Model

The results of the temporal specifications S1, . . . , S6 alone are not sufficient to disam-
biguate the different failure modes. We are using the Bayesian network as shown in
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Table 2. Temporal formula specifications that are translated into paired runtime observers for the
fluxgate magnetometer (FG) health model

Description Formula
S1: The FG packet transmission rate NR

tot is
appropriate: about 64 per second.

63 ≤ NR
tot ≤ 66

S2: The number of bad packets NR
b is low, no

more than one bad packet every 30 seconds.
�[0,30](N

R
b = 0 ∨ (NR

b ≥ 1 U[0,30]NR
b = 0))

S3: The bad packet rate NR
b does not appear to

be increasing; we do not see a pattern of three
bad packets within a short period of time.

¬(♦[0,30]N
R
b ≥ 2 ∧ ♦[0,100]N

R
b ≥ 3)

S4: The FG sensor is working, i.e., the data
appears good. Here, we use a simple, al-
beit noisy sanity check by monitoring if the
aircraft heading vector with respect to the
x and y coordinates (Hdx, Hdy) calculated
by the flight computer using the magnetic
compass and inertial measurements roughly
points in the same direction (same quadrant)
as the normalized fluxgate magnetometer read-
ing (FGN

x , FGN
y ). To avoid any false positive

evaluations due to a noisy sensor, we filter the
input signal.

((Hdx ≥ 0→ FGN
x ≥ 0)∧

(Hdx < 0→ FGN
x < 0))∨

((Hdy ≥ 0→ FGN
y ≥ 0)∧

(Hdy < 0→ FGN
y < 0))

S5: We have a subformula Eul that states if
the UAS is moving (Euler rates of pitch p, roll
q, and yaw r are above the tolerance thresh-
olds θ = 0.05) then the fluxgate magnetome-
ter should also register movement above its
threshold θFG = 0.005. The formula states
that this should not fail more than three times
within 100 seconds of each other.

Eul := (|p| > θ ∨ |q| > θ ∨ |r| > θ)→
(|FGx| > θFG ∨ |FGy | > θFG∨
|FGz| > θFG)

¬(¬Eul ∧ (♦[2,100](¬Eul ∧ ♦[2,100]¬Eul)))

S6: Whenever a logging event occurs, the CPS
has received a good or a bad packet. S6 needs
a sampling rate of at least 64Hz.

Elog → ((Elog
g ∧ ¬Elog

b ) ∨ (Elog
b ∧ ¬Elog

g )

S′
6: This case study uses a 1Hz sampling rate.

We are losing precision and S6 becomes NR
g +

NR
b = NR

tot = 64.

NR
tot = 64

Figure 6A, which receives, as evidence, the results of each specification Si and pro-
duces posterior marginals of the health nodes for the various failure modes. All health
nodes are shown in Figure 6A. H FG indicates the health of the FG sensor itself. It is
obviously related to evidence that the measurements are valid (S4) and that the measure-
ments are changing over time (S5). The two causal links from these health nodes indi-
cate that relationship. Failure modes H FG TXERROR and H FG TXOVR indicate an
error in the transmission circuit/software and overflow of the transmission buffer of the
fluxgate magnetometer, respectively. The final two failure modes H FC RXOVR and
H FC RXUR concern the receiver side of the CPS and denote problems with receiver
buffer overflow and receiver buffer underrun, respectively.
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Fig. 6. A: Bayesian network for our example with legend of health nodes. B, C, D: posterior
probabilities (lighter shading corresponds to values closer to 1.0) for different input conditions.

Figure 6B shows the reasoning results of this case study, where the wrong configura-
tion setting of the fluxgate magnetometer produces an increasing number of bad pack-
ets. The posterior of the node H FG TXOVR is substantially lower, compared to the
other health nodes, indicating that a problem in the fluxgate magnetometer’s transmitter
component is most likely. So, debugging and repair attempts or on-board mitigation can
be focused on this specific component, thus our SHM could have potentially avoided
the extended ground time of the Swift UAS. This situation also indicates that, with a
smaller likelihood, this failure might have been caused by some kind of overrun of the
receiver circuit in the flight computer, or specific errors during transmission.

Figures 6C, D show the use of prior information to help disambiguate failures.
Assume that we detected that the FG data are not changing, i.e., S5 = false, de-
spite the fact that the aircraft is moving. This could have two causes: the sensor it-
self is broken, or something in the software is wrong and no packets are reaching
the receiver, causing an underrun there. When this evidence is applied (red indicates
false, green indicates true), the posterior of all nodes is close to 1 (white); only H FG
and H FC RXUR show values around 0.5 (gray), indicating that these two failures
cannot be properly distinguished. This is not surprising, since we set the priors to
P (Hsensor = ok) = P (H FC RxUR) = 0.99. Making the sensor less reliable,
i.e., P (Hsensor = ok) = 0.95, now enables the BN to clearly disambiguate both fail-
ure modes. Further disambiguation information is provided by S5, which indicates that
we actually receive valid (i.e., UAS is moving) packets.

As the case study is based on a real event, we ran it on our hardware and extracted a
trace of the sensor signals and specifications. Figure 7 shows a small snippet from this
trace. The results of the atChecker evaluation of certain sensor signals can be seen on the

τ 0 1 2 3 4 5

NR
b ≥ 3

NR
b ≥ 2

NR
b ≥ 1

NR
b = 0

τ 0 1 2 3 4 5

S3

S2

S1

τ = 1 τ = 2 τ = 3

H FC RxOVR
ok 99.47% 17.27% 65.52%
bad 0.53% 82.73% 34.48%

H FG TxOVR
ok 99.88% 81.82% 31.03%
bad 0.12% 18.18% 68.97%

H FG TxErr
ok 90.00% 90.00% 62.07%
bad 10.00% 10.00% 37.93%

Fig. 7. Recorded traces: sensor signals (left), trace of S1 . . . S3 (middle). Data of health nodes
(right) reflecting the buffer overflow situation shown in 6B.
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left. On the right we show the results of S1 to S3. The system model delivers different
health estimations during this trace. While at τ = 1 the system is perfectly healthy, at
τ = 2 the rate of bad packets drastically increases. More than 3 bad packets have been
received within 30 seconds. While the violation of S3 would suggest a receiver overrun
at this time, the indication for a buffer overflow becomes concrete at τ = 3. This is
indicated in the table on the right in Figure 7. The high probability of a transmitter
overrun at the fluxgate magnetometer side with the reduced confidence of an error-free
transition, leads to determining a root cause at the fluxgate magnetometer buffer.

7 Conclusion

We have presented an FPGA-based implementation for our health management frame-
work called rt-R2U2 for the runtime monitoring and analysis of important safety and
performance properties of a complex unmanned aircraft, or other autonomous systems.
A combination of temporal logic observer pairs and Bayesian networks makes it possi-
ble to define expressive, yet compact health models. Our hardware implementation of
this health management framework using efficient special-purpose processors allows us
to execute our health models in real time. Furthermore, new or updated health models
can be loaded onto the FPGA quickly between missions without having to re-synthesize
its entire configuration in a time-consuming process.

We have demonstrated modeling and analysis capabilities on a health model, which
monitors the serial communication between the payload computer and sensors (e.g., an
on-board fluxgate magnetometer) on NASA’s Swift UAS. Using data from an actual
test flight, we demonstrated that our health management system could have quickly
detected a configuration problem of the fluxgate magnetometer as the cause for a buffer
overflow—the original problem grounded the aircraft for two days until the root cause
could be determined.

Our rt-R2U2 system health management framework is applicable to a wide range
of embedded systems, including CubeSats and rovers. Our independent hardware im-
plementation allows us to monitor the system without interfering with the previously-
certified software. This makes rt-R2U2 amenable both for black-box systems, where only
the external connections/buses are available (like the Swift UAS), and monitoring white-
box systems, where potentially each variable of the flight software could be monitored.

There is of course a question of trade-offs in any compositional SHM framework
like the one we have detailed here: for any combination of data stream and off-nominal
behavior, where is the most efficient place to check for and handle that off-nominal
behavior? Should a small wobble in a data value be filtered out via a standard analog
filter, accepted by a reasonably lenient temporal logic observer, or flagged by the BN
diagnostic reasoner? In the future, it would be advantageous to complete a study of
efficient design patterns for compositional temporal logic/BN SHM and map the types
of checks we need to perform and the natural variances in sensor readings that we need
to allow for their most efficient implementations.

Future work will also address the challenges of automatically generating health mod-
els from requirements and design documents, and carrying out flight tests with our
FPGA-based rt-R2U2 on-board. In a next step, the output of rt-R2U2 could be con-
nected to an on-board decision-making component, which could issue commands to
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loiter, curtail the mission, execute an emergency landing, etc.. Here, probabilistic infor-
mation and confidence intervals calculated by the Bayesian networks of our approach
can play an important role in providing solid justifications for decisions made.
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TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014)

16. Schumann, J., Mbaya, T., Mengshoel, O.J., Pipatsrisawat, K., Srivastava, A., Choi, A., Dar-
wiche, A.: Software health management with Bayesian networks. Innovations in Systems
and Software Engineering 9(2), 1–22 (2013)

17. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: To-
wards real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In: Proceedings of the 2013 Annual Conference of the Prognostics
and Health Management Society (PHM 2013), pp. 381–401 (October 2013)

18. Srivastava, A.N., Schumann, J.: Software health management: a necessity for safety critical
systems. Innovations in Systems and Software Engineering 9(4), 219–233 (2013)

19. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods in System Design 41(3), 236–268 (2012)

citeseer.comp.nus.edu.sg/article/musliner95challenges.html


On-Line Monitoring for Temporal Logic Robustness

Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, USA

{adokhanc,bhoxha,fainekos}@asu.edu

Abstract. In this paper, we provide a Dynamic Programming algorithm for on-
line monitoring of the state robustness of Metric Temporal Logic specifications
with past time operators. We compute the robustness of MTL with unbounded
past and bounded future temporal operators (MTL<+∞

+pt ) over sampled traces of
Cyber-Physical Systems. We implemented our tool in Matlab as a Simulink block
that can be used in any Simulink model. We experimentally demonstrate that the
overhead of the MTL<+∞

+pt robustness monitoring is acceptable for certain classes
of practical specifications.

1 Introduction

Modern airplanes, automobiles and medical devices are prime examples of safety criti-
cal Cyber-Physical Systems (CPS). Nowadays, the majority of safety critical functions
in such systems is controlled by embedded computers. Due to the critical nature of these
components, it is of paramount importance to verify the functional correctness of the
embedded software. However, as the number of computer controlled components in-
creases so does the complexity of the verification of functional correctness. Moreover,
the verification problem of most classes of CPS is even an undecidable problem [1].

As an alternative to verification and off-line testing, runtime monitoring has been
proposed. The underlying idea is that given a set of formal requirements, these require-
ments are analyzed at runtime by an independent monitor and if a violation is detected,
it is reported to a supervisor. The supervisor can then decide on remedial actions to
fix the problem or reduce its impact to the system. The monitoring problem has been
extensively studied [2–14] for the cases where the formal requirements are expressed
in Linear Temporal Logic (LTL) [15] or in Metric Temporal Logic (MTL) [16].

In this paper, we revisit the MTL runtime monitoring problem when targeted to CPS.
In particular, we claim that the classical Boolean semantics (or even three valued se-
mantics) are not sufficiently informative for CPS behaviors. For instance, consider the
specification “After a takeoff command is received, then reach altitude of 600ft within
5 minutes” for an autonomous Unmanned Aerial Vehicle (UAV) as introduced in [8].
Clearly, knowing that the specification failed or passed at runtime is important. How-
ever, more useful information from the perspective of the supervisor would be the
knowledge of how far is the aircraft from satisfying the requirement. More specifically,
-10ft from the requirement of 600ft at 1 min away from the 5 min threshold should
potentially be less alarming than -100ft at exactly the same time. A supervisor that has
a model of the dynamics of the aircraft can determine whether the UAV can climb 100ft

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 231–246, 2014.
c© Springer International Publishing Switzerland 2014
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within 1 min or not. We remark that the determination of the climb rate can only oc-
cur at runtime since this depends on the atmospheric parameters, the payload of the
UAV, etc. Hence, the climb rate cannot be a precomputed parameter unless it is very
conservatively set.

Our goal is to construct MTL monitors for estimating the robustness of satisfaction
[17–19]. Temporal logic robustness gives a quantitative interpretation of satisfaction of
an MTL formula. In detail, if an MTL formula valuates to positive robustness ε, then
the specification is true and, moreover, the state sequences can tolerate perturbations
up to ε and still satisfy the specification. Similarly, if the robustness is negative, then
the specification is false and, moreover, the state sequences under ε perturbations still
do not satisfy the specification. Thus, robust semantics can be used to give quantitative
values to the satisfaction of MTL formulas when the target is CPS.

The challenge here is that automata based monitors [13, 14] cannot be synthesized
for computing the robustness valuations. Therefore, formula rewriting methods [11] or
dynamic programming [9] methods must be used. Here, we take the latter approach for
combined unbounded past time and bounded future time MTL specifications. Since we
are working with CPS, we assume that it is possible - if desired - to have a model pre-
dictive component in the system [20] which will provide a finite horizon prediction of
the system behavior. That finite horizon prediction could be appended with the observed
system behavior to provide a robustness estimate of a likely system behavior. Hence,
it becomes possible to monitor specifications such as “If at anytime in the past a take-
off command is issued, then within 5 min the altitude of 600ft is reached”. Thus, such
requirements can now be monitored using only the actual observed system behavior or
the observed system behavior with the predicted system behavior.

Our contributions in this paper are as follows: We provide a dynamic program-
ming algorithm for on-line monitoring of the robustness metric of MTL formulas with
bounded future and unbounded past. In addition, we provide a Matlab/Simulink tool-
box that can be used in any Simulink model for runtime monitoring of MTL robustness.
The memory usage of our method is bounded and its runtime overhead is negligible for
practical applications. Additional benefits in utilizing an on-line monitor are that it can
be used in temporal logic testing algorithms [21, 22], where it may be desirable that
the simulation stops as soon as the property is violated, as well as in feedback con-
trol for MTL specifications. Although temporal logic robustness has been considered in
previous works [17–19], the solutions were provided for off-line testing. To the best of
our knowledge, this is the first attempt to solve the on-line MTL robustness monitoring
problem efficiently.

2 Problem Formulation

In the following, we represent the set of natural numbers including zero by N and the
finite interval of N up to m by Nm = {0, 1, . . . ,m}. In this work, we consider monitoring
of Cyber-Physical Systems (CPS). We assume that we have access to some discrete time
execution or simulation traces of the CPS. We view (execution or simulation) traces as
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…

Fig. 1. Overview of the solution of the MTL<+∞
+pt on-line monitoring problem. The monitored

robustness values could be used as feedback to the CPS or it could be plotted to be observed by a
human supervisor if needed.

timed state sequences T = T0T1T2 . . . Tm = (τ0, s0) (τ1, s1) (τ2, s2) . . . (τm, sm) where
for each k ∈ Nm, τk ∈ R≥0 is a time stamp and sk ∈ S is a vector containing the
values of the state variables of the system at each sampling instance k. For example,
for m = 2, the trace T = (0, (2, 0.34))(0.1, (3, 0.356))(0.2, (2, 0.36)) captures the finite
time execution of a CPS with two state variables in the vector sk: one ranging over the
natural numbers N and the other over the reals R. That is, for k = 1, the state of the
system at time τ1 = 0.1 was s1 = (3, 0.356) ∈ N×R. We further assume that S = (S , d)
is a generalized quasi-metric space [23]. The existence of metrics is necessary so that
distances can be defined for quantitative valuations of the atomic propositions [18, 21].

Throughout the paper, the variable i, which ranges over N, is used to represent the
current simulation step or the current index of the sampling process. We assume a
fixed sampling period for the monitored system. Thus, there exists a fixed time period
between consecutive time stamps. For this fixed time period Δt > 0, for all i ≥ 0, we
have τi+1 − τi = Δt (or equivalently τi = iΔt). As a result, we can simply compute each
time stamp τi knowing the trace index (or simulation step) i by multiplication (τi = iΔt).
Therefore, we use the trace index (simulation step i) as the reference of time.

The property of interest is stated in Metric Temporal Logic (MTL) with bounded
future and unbounded past (MTL<+∞

+pt ) for timed state sequences [11]. More specifically,
at each time i, we would like to monitor safety requirements represented as MTL<+∞

+pt
formulas. These formulas capture safety properties of the system, such as bounded
reactivity, which can be periodically analyzed for violation. In our formulation, we
use the robust (quantitative) semantics [18] that quantify the distance between a given
execution trace of a CPS and all the execution traces that violate the property. The
robustness of a formula �ϕ� with respect to a trace T at time i is a value that measures
how far is the trace from the satisfaction/falsification. This measure is an extension of
boolean values representing satisfaction or falsification which is used in conventional
monitoring. A positive robustness value means that the trace satisfies the property and
a negative robustness means that the specification is not satisfied.

Our goal in this paper is to provide monitoring tools for temporal logic robustness.
We assume that at each time i, the CPS outputs its current state si along with a fi-
nite prediction si+1, si+2, . . ., si+Hrz of horizon length Hrz ∈ N (see Fig. 1). The horizon
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length Hrz will be formally defined in Sec. 4; however, informally, it is the required
number of samples after time i so that any future requirements in the MTL specification
φ are resolved, i.e., the horizon depends on the structure of the formula φ, Hrz = hrz(φ).
When dealing with CPS, there exist numerous methods by which such a prediction
horizon (forecasting) can be computed [24–26].

Next, we formally define the main problem presented in this paper.

Problem 1 (MTL<+∞
+pt Robustness Monitoring). Given an MTL<+∞+pt specification ϕ, a

sampling instance i and an execution trace T = T0T1 . . .Tm such that m = i + hrz(ϕ),
compute the current robustness estimate [[ϕ]](T , i) at time τi.

Intuitively, ϕ represents a system invariant that must hold at every point in the system
execution. This can also be viewed as testing for the specification robustness [[�ϕ]](T , 0),
where � is the operator for “always in the future” and ϕ is an arbitrary MTL<+∞

+pt specifi-
cation. However, instead of caring about the satisfaction of the formula at the beginning
of the time, we care about the potential of violating ϕ for which we design an on-line
monitor.

Overview of solution and summary of contributions: We provide an on-line moni-
toring approach for computing the robustness of an MTL<+∞

+pt formula with respect to
execution traces of a CPS. An overview of the solution for the MTL<+∞

+pt on-line mon-
itoring problem appears in Fig. 1. Our method monitors the behavior of a CPS as it
executes. Our toolbox is also useful for applications where Simulink models are actu-
ally used for process monitoring (and not simulation). In addition, it can also be used
for code generation for general MTL<+∞

+pt monitors for deployment on actual systems.
Our method computes the robustness of invariants [[ϕ]](T , i) by storing previous speci-
fication robustness values – if needed – and by only utilizing a bounded number of pairs
of the execution trace THst, . . . ,THrz where Hst ∈ Ni and it will be formally defined in
Sec. 4. Our monitor uses bounded memory and, in the worst case, it has quadratic time
complexity that depends on the magnitude of Hrz − Hst. In principle, our solution for
robustness monitoring is inspired by the boolean temporal logic monitoring algorithm
in [2].

3 Robustness of Metric Temporal Logic Specifications

In digital control and monitoring of CPS, it is inevitable that physical quantities are
measured through a sampling process. As mentioned in the Problem Formulation sec-
tion, when we mention time, we are actually referring to the corresponding sampling
index i. With a slight abuse of notation and under the assumption of constant sampling
rate, an execution trace T can also be represented by a function s : Ni+Hrz → S . The
view of the sequence s0 s1 . . . si+Hrz as a function s simplifies the presentation of the
robust semantics for MTL.

Using a metric d [23], we can define a distance function that captures how far away
a point x ∈ X is from a set S ⊆ X. Intuitively, the distance function assigns positive
values when x is in the set S and negative values when x is outside the set S . The metric
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d must be at least a generalized quasi-metric as described in [21] which also includes
the case where d is a metric as it was introduced in [18].

Definition 1 (Signed Distance). Let x ∈ X be a point, S ⊆ X be a set and d be a metric.
Then, we define the Signed Distance from x to S to be

Distd(x, S ) :=

{
− inf{d(x, y) | y ∈ S } if x � S
inf{d(x, y) | y ∈ X\S } if x ∈ S

where inf is the infimum.

Metric Temporal Logic (MTL) was introduced by Koymans [16] to reason about
the quantitative timing properties of boolean signals. In this paper, we use the standard
fragment of MTL with bounded future, but also we allow the use of past time operators.

Definition 2 (MTL<+∞
+pt Syntax). Let AP be the set of atomic propositions and I be

any non-empty interval of N, and I be any non-empty interval of N ∪ {+∞}. The set
MTL<+∞+pt formulas is inductively defined as ϕ ::= 	 | p | ¬ϕ | ψ ∨ ϕ | ψUIϕ | ψSIϕ
where p ∈ AP and 	 stands for true.

Note that we use the number of samples to represent the time interval constraints of
temporal operators. For example assume that Δt = 0.1, then the MTL formula �[0,0.5]a
where the timing constraints are over time is instead represented by �[0,5]a in MTL<+∞

+pt .
The propositional operators conjunction (∧) and implication (→) are defined the

usual way. All other bounded future temporal operators can be syntactically defined
using Until (UI), where � (Next), � (Eventually), and � (Always) are defined as �ϕ ≡
	U[1,1]ϕ, �Iϕ ≡ 	UIϕ, and �Iϕ ≡ ¬�I¬ϕ respectively. The intuitive meaning of
the ψU[a,b]ϕ operator at sampling time i is a follows: ψ has to hold at least until ϕ
becomes true within the time interval of [i + a, i + b] in the future. Similarly, all other
bounded/unbounded past temporal operators can be defined using Since (SI), where
 (Previous), � (Eventually in the past), and � (Always in the past) are defined as
ϕ ≡ 	S[1,1]ϕ, �Iϕ ≡ 	SIϕ, and �Iϕ ≡ ¬�I¬ϕ respectively. The intuitive meaning
of the ψS[a,b]ϕ operator at sampling time i is as follows: since ϕ becomes true within
the interval [i − b, i − a] in the past, ψ must hold till now (current time i).

MTL<+∞
+pt can state requirements over the observable trajectories of a CPS. In order to

capture these requirements, each predicate p ∈ AP is mapped to a subset of the metric
space X. We use an observation map O to interpret each predicate p ∈ AP. In other
words, the observation map is defined as O : AP→ P(X) such that for each p ∈ AP the
corresponding set is O(p). Here, P(S ) denotes the powerset of a set S . We define the
robust valuation of an MTL<+∞

+pt formula ϕ over a trace s as follows [17].

Definition 3 (MTL<+∞
+pt Robustness Semantics). Let s be a trace s : N → X, and O

be an observation map O : AP → P(X), then the robust semantics of any formula ϕ ∈
MTL<+∞+pt with respect to s is recursively defined as:
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[[	]](s, i) := +∞
[[p]](s, i) := Distd(s(i),O(p))

�¬ϕ�(s, i) := −�ϕ�(s, i)

�ψ ∨ ϕ�(s, i) := �ψ�(s, i) � �ϕ�(s, i)

�ψU[l,u]ϕ�(s, i) :=
⊔i+u

j=i+l

(
�ϕ�(s, j) �

� j−1

k=i
�ψ�(s, k)

)

�ψS[l′ ,u′〉ϕ�(s, i) :=
⊔i−l′

j=max{0,i−u′}

(
�ϕ�(s, j) �

�i

k= j+1
�ψ�(s, k)

)

where � stands for max, � stands for min, p ∈ AP, l, u, l′ ∈ N and u′ ∈ N ∪ {∞}.
Furthermore, the symbol 〉 in S[l′ ,u′〉 will be ) when u′ = +∞ and ] when u′ � +∞.

We should point out that we use the extended definition of maximum (�) and min-
imum (�), with slight abuse of notation, we let max(∅) = −∞ and min(∅) = +∞. i.e.,
over empty sets we treat min and max as infimum and supremum, respectively. For
exact definition of infimum and supremum see [27].

4 Robustness Monitoring of MTL<+∞
+pt

4.1 Finite Horizon and History of MTL<+∞
+pt

For each MTL<+∞
+pt formula ψ we define the finite horizon hrz(ψ) as the number of

samples we need to consider in the future. In MTL, the satisfaction of the formula
depends on what will happen in the future. In bounded MTL, the finite horizon hrz(ψ)
is the number of steps (samples) which we need to consider in the future in order to
evaluate the formula ψ at the current time i. In other words, hrz(ψ) is the number of
steps into the future for which the truth value of the sub-formula ψ depends on [2].
Similarly, we define the finite history hst(ψ) of ψ as the number of samples we need
to look into the past. That is, the number of steps in the past for which the truth value
of the sub-formula ψ depends on. Intuitively, the hst(ψ) is the size of the history we
need to consider in order to keep track of what happened in the past to evaluate the
formula ψ at present time. The finite horizon and the history can be defined recursively.
We define hrz(ψ) (similar to h(ψ) in [2]) and we add the recursive definition of hst(ψ)
in the following:
hrz(p) = 0 hst(p) = 0
hrz(¬ψ) = hrz(ψ) hst(¬ψ) = hst(ψ)
hrz(ψ OP ϕ) = max{hrz(ψ), hrz(ϕ)} hst(ψ OP ϕ) = max{hst(ψ), hst(ϕ)}
hrz(ψU[l,u]ϕ) = max{hrz(ψ) + u − 1, hrz(ϕ) + u} hst(ψU[l,u]ϕ) = max{hst(ψ), hst(ϕ)}
hrz(ψS[l′,u′〉ϕ) = max{hrz(ψ), hrz(ϕ)}

hst(ψS[l′ ,u′〉ϕ) =

{
max{hst(ψ) + u′ − 1, hst(ϕ) + u′} if u′ � +∞
max{hst(ψ) + l′ − 1, hst(ϕ) + l′} if u′ = +∞

where p ∈ AP. Here, OP is any binary operator in propositional logic, and ψ, ϕ are
MTL<+∞

+pt formulas. For the unbounded S[0,+∞) operator, the computation of finite his-
tory is more involved and needs more explanation. Namely, we need to restate the dy-
namic programming algorithm for monitoring a sub-formula ψS[0,+∞)ϕ based on the
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Table 1. Pre Vector and Robustness Table

Pre[k] Tk, j column j⇒ -2 -1 0 1 2
row k ⇓ Time(i) i − 2 i − 1 i i + 1 i + 2

ψ1 = ϕ ψ2 ∧ ψ3 �ϕ�(s, i − 2) �ϕ�(s, i − 1) �ϕ�(s, i) �ϕ�(s, i + 1) �ϕ�(s, i + 2)
ψ2 �[1,2]q �ψ2�(s, i − 2) �ψ2�(s, i − 1) �ψ2�(s, i) �ψ2�(s, i + 1) �ψ2�(s, i + 2)

�ψ3�(s, i − 3) ψ3 �[0,+∞) p �ψ3�(s, i − 2) �ψ3�(s, i − 1) �ψ3�(s, i) �ψ3�(s, i + 1) �ψ3�(s, i + 2)
ψ4 p �ψ4�(s, i − 2) �ψ4�(s, i − 1) �ψ4�(s, i) �ψ4�(s, i + 1) �ψ4�(s, i + 2)

ψ5 q �ψ5�(s, i − 2) �ψ5�(s, i − 1) �ψ5�(s, i) �ψ5�(s, i + 1) �ψ5�(s, i + 2)

following works [9, 5]. According to the robustness semantics, the robustness of
ψS[0,+∞)ϕ at time i is as follows:

�ψS[0,+∞)ϕ�(s, i) =
⊔i

j=0

(
�ϕ�(s, j) �

�i

k= j+1
�ψ�(s, k)

)

also robustness of ψS[0,+∞)ϕ at time i − 1 is

�ψS[0,+∞)ϕ�(s, i − 1) =
⊔i−1

j=0

(
�ϕ�(s, j) �

�i−1

k= j+1
�ψ�(s, k)

)

Thus, we can rewrite �ψS[0,+∞)ϕ�(s, i) as

�ψS[0,+∞)ϕ�(s, i) = �ϕ�(s, i) �
(
�ψ�(s, i) �

(⊔i−1

j=0

(�ϕ�(s, j) �
�i−1

k= j+1
�ψ�(s, k)

)))
=

= �ϕ�(s, i) �
(
�ψ�(s, i) �

(
�ψS[0,+∞)ϕ�(s, i − 1)

))

Therefore, similar to [5] we recursively update the robustness of ψS[0,+∞)ϕ at the
current time i and save it in a variable called “Pre” to reuse it for the computation of the
next time step (see [5] for more details). As a result, when we have an unbounded past
time operator, we do not need the full history table. However, if the formula contains a
nested future time operator, we need to extend the history to be long enough to contain
the actual values. In other words, although for unbounded past time operators we do not
need the whole history table, we should still extend the history to be able to store the
actual simulation values (not the predicted values) in “Pre”.

4.2 Robustness Computation Algorithm

For each MTL<+∞
+pt formula ϕ we construct a table called Robustness Table with width

of Hst + 1 + Hrz, where Hrz = hrz(ϕ) is the finite horizon of the specification formula
ϕ, and, Hst = Hrz+ hst(ϕ), where hst(ϕ) is the finite history of the specification ϕ. Hst
is extended conservatively due to the fact that “Pre” value can only store the robustness
values corresponding to the actual simulation. The height of the robustness table is the
size of the formula ϕ (|ϕ|), where |ϕ| is the number of sub-formulas of ϕ including itself.
For example, assume we have a formulaϕ = �[0,+∞)p∧�[1,2]q and we intend to compute
[[ϕ]](T , i) at each time i. In formula ϕ, Hst = 2 and Hrz = 2. Since ϕ has unbounded
past-time operators, it needs the Pre vector as well as the Robustness Table. The Pre
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Algorithm 1. On-Line Monitor
Input: ϕ, s′i = si si+1 . . . si+Hrz, d, O; Global variables: T , Pre; Output: T1,0(robustness value).

procedure Monitor(ϕ, s′i , d,O)
1: for k ← 1 to |ϕ| do
2: Pre(k) ← Tk,(−Hst+hst(ϕk ))

3: end for
4: for j← 1 − Hst to Hrz do
5: for k ← 1 to |ϕ| do
6: if ϕk = p ∈ AP then
7: Tk, j−1 ← Tk, j

8: end if
9: end for

10: end for
11: for k ← |ϕ| down to 1 do

12: if ϕk = ϕmS[l′ ,u′]ϕn then
13: for j← −Hst to Hrz do
14: Tk, j ← CR(φk, j, s′i , d,O)
15: end for
16: else
17: for j← Hrz down to − Hst do
18: Tk, j ← CR(φk, j, s′i, d,O)
19: end for
20: end if
21: end for
22: return T1,0

end procedure

vector appended to the Robustness Table is presented in Table 1. In particular, the Pre
vector contains the value of past sub-formulas from the beginning of the time up to the
current time.

In the following, we explain how the values of Table 2, the robustness table, are com-
puted using Algorithms 1 and 2. In order to make our algorithms more readable, we used
a vector to show the CPS output si, si+1, . . ., si+Hrz to the monitoring (see Fig. 1). We
define a vector s′i = si si+1 . . . si+Hrz which appends current state si with predictions si+1,
si+2, . . ., si+Hrz. In Table 1, i is the current simulation step which corresponds to column
0. At each simulation step i, for each unbounded past time sub-formula φ, we first save
the values of the column −Hst + hst(φ) in the Pre vector (Algorithm 1 lines 1-3) since
the column −Hst + hst(φ) contains the robustness value of φ from the beginning of the
simulation. We need the Pre vector to compute the robustness of φ at the next sampling
time using the dynamic programming method. In the above example, for �[0,+∞) p the
value at column −2 is saved in Pre to be used during robustness computation. Then,
we shift all the robustness table entries of the predicates by one position to the left
(Algorithm 1, lines 4-10). Then the loop (Algorithm 1, lines 11-21) recursively calls
Algorithm 2 to fill the robustness table for each sub-formula from bottom to top.

Each call of Algorithm 2 (CR) computes each table entry Tk, j (see tables 1,2) where
column j is the horizon/history index and row k is the sub-formula index. For past

Table 2. Robustness Computation of each table entries (Gray cells are unused)

Tk, j i − 2 i − 1 i i + 1 i + 2
k ⇓, j⇒ j = −2 j = −1 j = 0 j = 1 j = 2

Pre[1] T2,−2 � T3,−2 T2,−1 � T3,−1 T2,0 � T3,0 T2,1 � T3,1 T2,2 � T3,2

Pre[2] T5,−1 � T5,0 T5,0 � T5,1 T5,1 � T5,2 T5,2 +∞
Pre[3] Pre[3]�T4,−2 T3,−2 � T4,−1 T3,−1 � T4,0 T3,0 � T4,1 T3,1 � T4,2

Pre[4] Distd(si−2,O(p)) Distd(si−1,O(p)) Distd(si,O(p)) Distd(si+1,O(p)) Distd(si+2,O(p))
Pre[5] Distd(si−2,O(q)) Distd(si−1,O(q)) Distd(si,O(q)) Distd(si+1,O(q)) Distd(si+2,O(q))
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Algorithm 2. Robustness Computation (CR)
Input: ϕk, j, s′i = si si+1 . . . si+Hrz, d, O; Global variables: T , Pre; Output: Tk, j.

procedure CR(ϕk, j, s′i ,d,O)
1: if ϕk = 	 then Tk, j ← +∞
2: else if ϕk = p ∈ AP then

3: if j >= 0 then

4: Tk, j ← Distd (si+ j,O(p))

5: end if

6: else if ϕk = ¬ϕm then

7: Tk, j ← −Tm, j

8: else if ϕk = ϕm ∨ ϕn then

9: Tk, j ← Tm, j � Tn, j

10: else if ϕmU[l,u]ϕn then

11: if j + l ≤ Hrz then

12: tmpmin ←
�

j≤ j′< j+l Tm, j′

13: Tk, j = −∞
14: for j′ ← j + l to min{Hrz, u + j} do

15: Tk, j ← Tk, j � (tmpmin � Tn, j′ )

16: tmpmin = tmpmin � Tm, j′

17: end for

18: else

19: Tk, j = −∞
20: end if

21: else if ϕmS[l′ ,u′ ]ϕn then

22: if j − l′ ≥ −Hst then

23: tmpmin ←
�

j−l′< j′≤ j Tm, j′

24: if u′ � +∞ then

25: Tk, j = −∞
26: for j′ ← j−l′ down to max{−Hst, j−

u′} do

27: Tk, j ← Tk, j � (tmpmin � Tn, j′ )

28: tmpmin = tmpmin � Tm, j′

29: end for

30: else

31: if j − hst(ϕk) = −Hst then

32: tmpS ← Pre[k] � Tm, j

33: else

34: tmpS ← Tk, j−1 � Tm, j

35: end if

36: Tk, j ← (Tn, j−l′ � tmpmin) � tmpS

37: end if

38: else

39: Tk, j = −∞
40: end if

41: end if

42: return Tk, j

end procedure

sub-formulas the table entries are computed from left to right (Algorithm 1, lines 12-
15), and for future sub-formulas the table entries are computed from right to left (Algo-
rithm 1, lines 16-19). New values for predicates (according to execution traces) will be
placed in column 0 and the predicted values of the predicates will be saved in columns
1 to Hrz (Algorithm 2, lines 2-5). Table 2 shows the updates of predicate values in rows
4, and 5 which correspond to Algorithm 2, line 4.

In the following, we explain how the CR Algorithm 2 computes the MTL robustness
values for three different cases of MTL:
Case 1 (Lines 10-20): The robustness of bounded future temporal sub-formulas with
interval [l, u] at each column j is computed given the values of its operands for columns
j up-to min{ j + u,Hrz} (Line 14). For example, this case is used in table 2 to compute
the robustness of sub-formula ψ2 = �[1,2]q from right to left. Case 1 in CR Algorithm
is similar to the DP-TALIRO algorithm [28].
Case 2 (Lines 24-29): The robustness of bounded past temporal sub-formulas with in-
terval [l′, u′] at each column j is computed given the values of its operands for columns
j down-to max{ j − u′,−Hst} (Line 26).
Case 3 (Lines 30-37): The robustness of unbounded past temporal sub-formulas with
interval [l′,+∞) for column j is computed using the stored value in column j − 1
in dynamic programming fashion (Line 34) and using the Pre vector (Line 32). For
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example, Case 3 is used to compute the robustness of ψ3 = �[0,+∞] p using Pre[3] from
left to right in table 2.

Finally, we update table entries for the top row which corresponds to ψ1 = ϕ. Since
its corresponding operator ∧ is propositional (Algorithm 2 Lines 6-9), we can update
its value from any direction. The high level explanation of Algorithm 1 is described as
follows:

1. Store values of column −Hst + hst(φk) for each unbounded past sub-formula φk in
Pre[k] and shift the table entries of predicates to the left (Lines 1-10).

2. For each row i from |ϕ| to 1 compute the robustness values according to:
(a) If ϕi is a future temporal operator, for each column j from Hrz down to −Hst,

update table entry Ti, j using Algorithm 2.
(b) If ϕi is a past temporal operator, for each column j from −Hst up to Hrz update

table entry Ti, j using Algorithm 2.
3. Return the robustness (T1,0).

5 Experimental Analysis and Case Studies

5.1 Runtime Overhead

First, we measure the overhead of the proposed monitoring framework on a slightly
modified version of the Automatic Transmission (AT) model provided by Mathworks
as a Simulink demo1. The experiments were conducted on a Windows 7, Intel Core2
Quad (2.99 GHz) with 8 GB RAM.

The physical model of the AT system has two continuous (real-valued) state variables
which are also its monitored outputs: the speed of the engine ω and the speed of the
vehicle v. The model includes an automatic transmission controller that exhibits both
continuous and discrete behavior. It is a typical CPS model and specifications over both
boolean and continuous variables can be formalized. However, since the valuation of
the robustness of predicates over continuous state variables is computationally more
expensive than a boolean valuation, we consider only specifications over continuous
state variables for the impact analysis.

We introduce our MTL<+∞
+pt monitoring block in the AT model and test the perfor-

mance over a set of specifications. In order to test the runtime overhead of our work,
we artificially generate 30 different MTL<+∞

+pt formulas based on typical critical safety
formulas to show that the runtime overhead depends on both of the size of the formula
and the horizon/history. We test our method for 100 runs of monitoring algorithm for
each specification (formula), and for each run we use 100 simulation steps. Then, we
compute the mean and variance of the overhead for each simulation step which is the
execution time of Algorithm 1 in table 3. In this table, the overhead is measured on spec-
ifications that contain either nested Until operators (U columns) or nested Eventually
operators (E columns).

We generate 30 formulas according to the following templates:
1 Available at: http://www.mathworks.com/help/simulink/examples/
modeling-an-automatic-transmission-controller.html
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Table 3. The overhead on each simulation step on the Automatic Transmission model with spec-
ifications of increasing length. Table entries are in milliseconds.

# H=1,000 H=2,000 H=10,000

E U E U E U
Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

φ1(H) 2.39 0.00 4.83 0.00 8.03 0.00 15.8 0.001 188.8 0.001 358.5 0.036
φ3(H) 4.24 0.00 7.5 0.001 12.7 0.00 25.09 0.005 314.4 0.01 599 0.665
φ5(H) 4.66 0.00 8.36 0.001 14.01 0.00 27.8 0.005 309.2 0.077 650 0.014
φ7(H) 4.95 0.00 8.94 0.00 14.83 0.00 29.33 0.006 311 0.013 674.2 0.033
φ9(H) 5.23 0.00 9.46 0.001 15.4 0.001 30.56 0.007 317.5 0.011 683.5 0.698

– E formulas: φn(H) = p j −→ ψn(H/n)
where H ∈ N is the finite horizon of the formula. In table 3, we used 1,000, 2,000
and 10,000 for the size of the horizon. Here, p j is an arbitrary predicate and ψn(H/n)
is defined recursively as follows:

ψ1(h) = �[0,h] pk and ψn(h) = �[0,h](pl ∧ ψn−1(h)), for 1 < n ≤ 10
where h = H/n, i.e., the finite horizon H divided by the number of nested sub-
formulas n and pk, pl are arbitrary predicates.

– U formulas: φn(H) = p j −→ ψn(H/n)
where H ∈ N is the finite horizon of the formula. In table 3, we used 1,000, 2,000
and 10,000 for the size of the horizon of H. Here, p j is an arbitrary predicate and
ψn(H/n) is defined recursively as follows:

ψ1(h) = pkU[0,h] pl and ψn(h) = pmU[0,h](pn ∧ ψn−1(Y)), for 1 < n ≤ 10
where h = H/n and pk, pl, pm, pm are arbitrary predicates.

As illustrated in table 3, the computational complexity of the monitoring algorithm
is closely related to the horizon and history size. Since the algorithm’s complexity is
of order O(n2) where n is the horizon/history, the added overhead (in worst case ex-
ecution) is quadratic in terms of the size of the horizon for some formulas in table 3
(like φ1(H)). Moreover, in most cases, the impact of the number of nested temporal op-
erators is not significant compared to the size of horizon/history windows. From table
3, we notice that when the horizon and history size is less than 2,000, the overhead
for each simulation step is negligible with our prototype implementation. Furthermore,
for most practical reactivity requirements, it is quite unlikely that even a window size
of 2,000 sampling points is necessary. Therefore, the method could be utilized in real
world monitoring applications.

5.2 Case Study

In the following, we utilize the monitoring method on an industrial size high-fidelity en-
gine model. The model is part of the SimuQuest Enginuity [29] Matlab/Simulink tool
package. The Enginuity tool package includes a library of modules for engine compo-
nent blocks. It also includes pre-assembled models for standard engine configurations.
In this work, we use the Port Fuel Injected (PFI) spark ignition, 4 cylinder inline en-
gine configuration. It models the effects of combustion from first physics principles on a
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cylinder-by-cylinder basis, while also including regression models for particularly com-
plex physical phenomena. The model includes a tire-model, brake system model, and a
drive train model (including final drive, torque converter and transmission). The input
to the system is the throttle schedule. The output is the normalized air-to-fuel(A/F) ra-
tio. Simulink reports that this is a 56 state model. Note that this number represents only
the visible states. It is possible that more states are present in the blackbox s-functions
which are not accessible. This is a high dimensional non-linear system for which reach-
ability analysis is very difficult. It also includes lookup tables, non-linear components,
and inputs that affect the switching guards.

Enginuity High-Fidelity Engine Model with On-Line Monitoring

on_line monitoring

lambda robustness

engine_torque

engine_speed

manifold_pressure

mass_air_flow

lambda

o2_sensor_voltage

gear

vehicle_speed

input throttle

[torque]

[manifold_press]

[mass_air_flow]

[lambda_exhaust]

[engine_speed]

[o2_sensor_voltage]

[gear_active]

[vehicle_speed]

[manifold_press]

[vehicle_speed]

[lambda_exhaust]

[mass_air_flow]

[gear_active]

[torque]

[engine_speed]

[o2_sensor_voltage]

engine speed [rpm]

manifold pressure [Pa]

mass air flow [kg/s]

torque [Nm]

vehicle speed [mph]

active gear [-]

O2 sensor voltage [V]

lambda exhaust [-]

robustness

input throttle

Fig. 2. SimuQuest [29] Enginuity Matlab Simulink engine model with the on-line monitoring
block

A specification of practical interest for an engine is the settling time for the A/F ratio,
which is the quotient between the air mass and fuel mass flow. Ideally, the normalized
A/F ratio λ should always be 1, indicating that the ratio of the air and fuel flow is the
same as the stoichiometric ratio. Under engine operating conditions, this output fluctu-
ates ±%10. We add the on-line monitoring block to the Simulink model as presented
in Fig. 2.

Our goal is to monitor the engine while allowing temporary fluctuations to λ. We
formally define the specification as follows:

φpt = (λ out of bounds)→ �[0,1] �[0,1] ¬(λ out of bounds)
Here, the formal specification states that if the A/F ratio exceeds the allowed bounds,

then the ratio should have been settled for at least one second within the last two
seconds.

Notice that an alternative presentation of the formula would be to use the future
eventually and always operators, i.e. the formula would be defined as follows:

φ f t = (λ out of bounds)→ �[0,1]�[0,1]¬(λ out of bounds)
In this case, the specification states that always, if the A/F ratio output exceeds the

allowed bounds, then within one second it should settle inside the bounds and stay there
for a second.
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Fig. 3. Runtime monitoring of specifications φpt, φ f t and φpt f t on the high-fidelity engine model.
The figure presents a normalized stoichiometric ratio, and the corresponding robustness values for
specifications φpt, φ f t and φpt f t. Note that no predictor is utilized when computing the robustness
values.

Clearly, both φpt and φ f t are equivalent in terms of the set of traces that satisfy/falsify
each specification2. However, in real-time robustness monitoring, there is an important
distinction between the two. When the specification requires future information, either
a predictor is put in place or the semantics will handle only the current information.
In this case, without a predictor, the future time formula reduces to the propositional
formula φ f t = (λ out of bounds)→ ¬(λ out of bounds) ≡ (λ out of bounds). Therefore,
past time operators should be used. Recall that when monitoring robustness, our goal
is to provide early warning on when the specification may fail by approaching dan-
gerously an undesired threshold. In other words, the past formula allows us to reason
about the robustness of the actual system observations, while the future formula in col-
laboration with a forecast model would allow us to estimate the likely robustness. This
is in contrast to many boolean monitoring algorithms which issue an “undecided until
further notice” verdict that does not provide any actionable information.

A third alternative monitoring specification is the following formula:

φpt f t = �[0,2]((λ out of bounds)→ �[0,1]�[0,1]¬(λ out of bounds))

This specification states that at some point in the last two seconds, when λ is out
of bounds then within the next second, λ will not be out of bounds and stay there for
one second. This alternative seems to be the balance between the φpt and φ f t formulas.

2 Formally, this is the case if we ignore the first 2 seconds of the execution trace as well as the
last 2 seconds – if the execution trace is finite.
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Where φpt purely relies on past information, and φ f t relies on information from a pre-
dictor, φpt f t has the advantage that it utilizes both the information from the past but also
it could include information from the predictor.

An example of real-time monitoring on the high-fidelity engine model is presented in
Fig. 3. The figure illustrates the significance of using past time operators when defining
specifications. Due to the lack of predictor information, the φ f t monitor falsely returns
falsification at about 4 seconds whereas the φpt monitor does not.

In the following, we analyze the overhead of the monitoring algorithm for this case
study. Since the runtime is influenced by numerous sources of nondeterminism, we ap-
ply the central limit theorem to form confidence intervals for the mean simulation run-
time when running the simulations with and without the monitor. To generate the results
in table 4, we collected 30 samples with 100 simulation runtimes in each sample. We
note that the difference between the estimated mean simulation runtime when adding
the monitor is 0.97%. The experimental results were generated on an Intel Xeon X5647
(2.993GHz, 8 CPUs) machine with 12 GB RAM, Windows 7, and Matlab 2012a.

Table 4. Simulation runtime statistics for the high-fidelity engine model running for 35 seconds
with simulation stepsize of 0.01s. The results include the confidence intervals for the mean sim-
ulation runtime.

Simulation runtime(sec.) Est. Mean Est. Std. Dev
95% 99%

LB UB LB UB

Without monitor 10.811 0.090 10.778 10.844 10.766 10.857

With monitor 10.987 0.086 10.955 11.019 10.944 11.030

6 Conclusions and Future Work

We have presented an algorithm for monitoring the robustness of combined past and
future MTL specifications. Our framework can incorporate predicted or estimated data
as provided by a model predictive component. We have created a Simulink toolbox
for MTL robustness monitoring which is distributed with the S-Taliro tools [30]. Our
experiments indicate that the toolbox adds minimal overhead to the simulation time of
Simulink models and it can be used for both runtime analysis of the models and for
off-line testing. Our future work will concentrate on several aspects. First, the current
version of the tool allows reasoning over timed state sequences generated under a con-
stant sampling rate. We would like to relax this constraint so that we allow arbitrary
sampling functions. Second, we would like to investigate the possibility of porting our
monitor on FPGA platforms similar to [2, 8]. Finally, we envision that utilizing infor-
mation about the system through the form of a model will permit us to move to an
event based monitoring framework while still sufficiently approximating the robustness
estimate.
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4. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)

5. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. STTT 6, 158–173 (2004)
6. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime verification of timed LTL using

disjunctive normalized equation systems. In: Proceedings of the 3rd Workshop on Run-time
Verification. ENTCS, vol. 89, pp. 1–16 (2003)

7. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech,
Y., Yovine, S. (eds.) FORMATS/2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg
(2004)

8. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014)

9. Rosu, G., Havelund, K.: Synthesizing dynamic programming algorithms from linear tem-
poral logic formulae. Technical report, Research Institute for Advanced Computer Science
(RIACS) (2001)

10. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid em-
bedded systems. In: Proceedings of the 2004 IEEE International Conference on Information
Reuse and Integration, pp. 487–492 (2004)

11. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Run-
time Verification. ENTCS, vol. 113, pp. 145–162. Elsevier (2005)
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Abstract. We present ROSRV, a runtime verification framework for
robotic applications on top of the Robot Operating System (ROS [8]),
a widely used open-source framework for robot software development.
ROSRV aims to address the safety and security issues of robots by pro-
viding a transparent monitoring infrastructure that intercepts and mon-
itors the commands and messages passing through the system. Safety
and security properties can be defined in a formal specification language,
and are ensured by automatically generated monitors. ROSRV integrates
seamlessly with ROS—no change in ROS nor the application code is
needed. ROSRV has been applied and evaluated on a commercial robot.

1 Introduction

The Robot Operating System (ROS [4]) is an open-source meta-operating system
for robot software development. With the increasing popularity of programmable
robots, ROS has become the de facto standard for robotic applications such as
perception [3], motion planning [1], object detection [2], etc. ROS provides com-
mon robot-specific libraries as well as standard operating system services such
as hardware abstraction, low-level device control, etc1. At the lowest level, ROS
offers a message passing interface that provides inter-process communication
including publish/subscribe messages and distributed parameter configuration.
The message passing is based on a graph architecture where computation takes
place in ROS processes (called nodes) that may receive, post and multiplex
messages.

With the wide adoption of ROS, however, its safety and security are becom-
ing an important concern. For instance, any node is allowed to publish/subscribe
arbitrary messages on any topic2, which can be easily abused by attackers. More-
over, ROS is designed to be highly dynamic and distributed, making it hard or
impossible to verify statically. For example, nodes running on different hardware
devices can join and leave dynamically, changing parameters and namespaces,

1 Note that ROS is not a traditional operating system. For example, it does not deal
with process scheduling.

2 In ROS, topics are communication channels between publishers and subscribers
which identify the content of the message.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 247–254, 2014.
c© Springer International Publishing Switzerland 2014



248 J. Huang et al.

and creating new message topics. A node can be killed by another node via a
shutdown command or accidentally replaced by a new node with the same name.

In this paper, we present a runtime verification framework, ROSRV, for im-
proving the safety and security of robots running ROS. ROSRV is designed to
be lightweight, expressive, and transparent, with no changes to ROS or the ap-
plication running on top of ROS. Its core is a runtime monitoring infrastructure
that intercepts, observes and optionally modifies the commands and messages
passing through the system, and performs actions upon relevant events defined
over the messages. Safety properties are implemented as monitors on top of
this infrastructure, such that all relevant messages are monitored and property-
triggered user-specified actions are performed. For example, to prevent a robot
from overturn, a safety monitor can intercept and modify the robot speed/ac-
celeration messages. ROSRV provides a specification language for safety proper-
ties, and monitors are automatically generated from specifications. For security,
ROSRV provides a specification language for access control policies and enforces
them at runtime. For example, it is possible to specify which nodes are permitted
to publish messages on certain topics or to send shutdown signals to kill other
nodes.

ROSRV integrates seamlessly with ROS and has been applied on the Land-
Shark3, an unmanned ground vehicle (UGV) robot running ROS. We illustrate
ROSRV via a case study on LandShark and demonstrate how ROSRV improves
the safety and security of LandShark through monitoring safety properties and
enforcing access control policies. All the ROSRV source code, materials, and
demos are publicly available at http://fsl.cs.illinois.edu/rosrv.

2 Robot Operating System (ROS)

We briefly overview ROS communication concepts [7], highlighting its safety and
security limitations. ROS is a peer-to-peer network of nodes that communicate
with each other using XMLRPC and custom ROS messages that are based on
TCP/IP. Each message has a type and is transported on a channel called a topic,
and each node may subscribe and publish to arbitrarily many topics. A special
node, the Master, coordinates the communication and provides global services
such as naming, registration, parameter updates and lookups.

Fig. 1 depicts the ROS communication architecture. Node communication
is initiated with a sequence of XMLRPC requests. First, nodes register with
the Master; e.g., the publisher may register that it publishes messages on topic
“chat” at address “foo:1234”, and then when a subscriber registers to topic
“chat” the Master passes it the publisher’s address. Second, the subscriber con-
tacts the publisher to obtain a topic connection and negotiate the transport
protocol. Finally, the subscriber connects to the publisher and starts receiving
messages. ROS also supports commands that query/update the system state,
such as the name, address, and published/subscribed topics of a node, query
published topics, kill a node, etc.

3 The LandShark UGV is a product of Black-i Robotics (www.blackirobotics.com).

http://fsl.cs.illinois.edu/rosrv
www.blackirobotics.com
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Publisher Subscriber

publish(“chat”, foo:1234) subscribe(“chat”)

{foo:1234}

connect(topic)

TCP server :  foo:2345

connect(foo:2345)

messages

ROS 
Master

Fig. 1. ROS Communication Architecture

Fig. 2. Safety issues: LandShark shoots itself and tips over

2.1 ROS Safety and Security Issues

Safety is often application specific and challenging to address in a generic dis-
tributed communication framework such as ROS. Also, since ROS is designed to
be open and dynamic, it lacks any security protection mechanism. For example,
an attacker can easily create a node, query the Master about the system state,
and send shutdown commands to kill any node. Moreover, nodes are uniquely
identified by their name, with newly created nodes replacing existing ones with
the same name. Thus, an attacker can easily fake a node to publish bogus mes-
sages on important topics. For instance, a navigation node in a robot may be
killed and replaced by a fake node that misdirects the robot.

The LandShark UGV has an onboard Linux box connected to various devices:
GPS, radar, cameras, motor and turret controllers, a paintball gun, etc. The
paintball gun can fire on receiving a trigger message. Each device has a driver
and a corresponding ROS node (wrapper) which publishes sensor data and/or
accepts commands as ROS messages. An operator control unit (OCU) node
listens to messages from the robot and sends it user commands.

Fig. 2 shows two scenarios where the safety of the robot is infringed. The
first, “robot shoots itself”, is motivated by the fact that no mechanism in the
LandShark or ROS prevents this behavior, so the LandShark can shoot itself (in-
advertently or maliciously, by an attacker). The second, “LandShark tips over”,
occurs when it accelerates too quickly or becomes unbalanced. This scenario is
typical for UGVs but there is no safety mechanism in ROS to prevent it.



250 J. Huang et al.

3 ROSRV

ROSRV is designed to address the safety and security issues in ROS-based robot
applications. Fig. 3 shows its architectural overview. The main difference from
ROS is the RVMaster node, which acts as both a secure layer protecting ROS
Master and as a functional layer for protecting the safety of the application: all
node requests to ROS Master can be intercepted by RVMaster and all messages
can be monitored, and thus the desirable safety and security policies enforced.

ROS 
Master

Publisher Subscriber

RVMaster

Monitor messagesmessages

publish(“chat”, foo:1234)

subscribe(“chat”)

{monitor :5678}

{foo:1234}

Fig. 3. ROSRV Architecture

For example, access control
policies such as allowing only
certain nodes to publish mes-
sages on a certain topic can be
enforced by checking the node
identity and topic name in the
request and rejecting it if they
do not match the policy. We
have developed an IP address-
based access control specifica-
tion that allows the security
policies to be enforced as sys-
tem configuration.

Monitors are generated by RVMaster from safety specifications and imple-
mented as ordinary ROS nodes that can subscribe and publish messages. How-
ever, RVMaster keeps track of all the communication requests by the other nodes
in the system and manipulates the point-to-point communication addresses so
that the generated monitors act as men-in-the-middle. For example, a monitor
can drop the triggering message of LandShark when the position of the gun is
within the range of pointing at itself, or modify the acceleration message when
the LandShark is moving too fast to prevent it from tipping.

An important property of ROSRV is that it does not require any change to
ROS or the application code. The only requirement is to configure the RVMaster
to listen at the standard port and the ROS Master to listen at a hidden port
visible only to RVMaster. This is implemented using a firewall to block access to
the ROS master port. In this way, all the ordinary nodes in the system remain
the same (sending requests to the default port, sending and receiving messages
from normal ROS nodes), and are not even aware of being monitored.

3.1 Monitoring Safety Properties

A safety property is specified by means of events and actions based on event
sequences. Fig. 4 shows a simple example to illustrate the idea. The property
we want to monitor here requires that the robot can only fire in certain safe
poses. There are two events, checkPosition and safeTrigger. Each event has
its own parameters and the topic and type of the messages being monitored. For
example, checkPosition is used to check whether the gun is at a safe position:
“position > -0.45” (not pointing at itself). It listens to topic /landshark/joint
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states with message type sensor msgs/JointState, which holds two arrays: name
and position. The second elements of these arrays are bound to variables N

and P, respectively. They are used as the parameters of the event and in the
event handler code. Event handler code is used to trigger actions under certain
conditions. For example, in checkPosition the global variable isSafeTrigger
will be set to true if and only if the gun is at an angle larger than -0.45; later
on it is used in safeTrigger to determine whether the trigger is allowed or not.

safeTrigger() {
    bool isSafeTrigger = false;
    event checkPosition(string N, double P)
           /landshark/joint_states sensor_msgs/JointState
          ‘{name[1]:N, position[1]:P}’  { 
    if (N=="turret_tilt"){if (P > -0.45){ //check gun position
                       isSafeTrigger = true;
                 }else{
                       isSafeTrigger = false;
    }     }    }
    event safeTrigger() /landshark_control/trigger
            landshark_msgs/PaintballTrigger ‘{}’  {
            if(!isSafeTrigger) return; //drop trigger message
    }

}

Fig. 4. Safe Trigger Specification

Our monitoring infras-
tructure enables us to
use any logic plugins
of Monitoring-Oriented
Programming (MOP [5])
to specify temporal prop-
erties over events, such
as regular expressions,
linear temporal logics,
context-free grammars,
etc., and to trigger ac-
tions only when certain
patterns of event se-
quences are matched, be-
cause such specifications

translate into ordinary code that implements corresponding monitors, which are
executed as event actions.

ROSRV automatically generates C++ monitoring code from all the user-
defined specifications, and creates nodes that act as monitors as explained above.
Each event generates one call back method and all the call back methods are
registered by RVMaster. Parameters of events are treated as references to fields
in monitored messages, so users can modify messages in event handler code.
Event handlers are inserted in call back methods that are called at runtime.

3.2 Enforcing Security Policies

ROSRV enforces access control based on a user-provided specification of access
policies as input configuration. On receiving any XMLRPC request, RVMas-
ter decides whether the request is allowed to go to the ROS Master according
the specification. The policies are currently categorized into four different sec-
tions: [Nodes], [Subscribers], [Publishers], and [Commands]. Under each section,
the access policy is written as a key followed by an assignment symbol and a
list of values. For [Nodes], “key” is the node name, and “value” is the machine
identity allowed to create nodes with the name “key”. For [Subscribers] and
[Publishers], “key” is the topic name and “value” is the node identity allowed
to subscribe/publish to the topic. For [Commands], “key” is the command name
and “value” is the node identity allowed to perform the command. We support
access granularity at a host level. We use the source IP address of the request
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[Groups]
localhost = 127.0.0.1 
certikos = ip1 ip2 ip3 ip4 
ocu = ip5 ip6 ip7 ip8
[Nodes]
default=localhost
/landshark_radar=certikos

[Publishers]
default=localhost certikos
/landshark_control/trigger= ocu

[Subscribers]
default = localhost certikos 
/landshark/gps = ocu

[Commands]
# Commands: full access
getSystemState = localhost certikos ocu
# Commands: limited access
lookupNode = localhost certikos
# Commands: local access only
shutdown = localhost

Fig. 5. Sample access control policy for LandShark

to identify the host, because the node name itself is self-reported. IP address
aliases and groups are also supported in our specification language.

Fig. 5 shows a snippet of the LandShark access policy. The [Group] section de-
fines three groups of IP addresses. In the [Nodes] section, “default=localhost”
means that by default “localhost” is allowed to create a node with any name,
and “/landshark_radar=certikos” that the alias “certikos” is allowed to
create a node with name “/landshark_radar”. In [Publishers], only nodes run-
ning on machine “ocu” can publish to topic “/landshark_control/trigger”.
In [Commands], “getSystemState=localhost certikos ocu” means that nodes
running on machines “localhost”, “certikos”, or “ocu” are allowed to send
“getSystemState” requests to ROS Master, and “shutdown=localhost” that
only nodes on “localhost” are allowed to “shutdown” other nodes.

4 Current Limitations and Future Work

Security The main limitation of the current implementation is the reliance on IP
addresses in particular and on network routing in general to guarantee security.
Naively trusting IP addresses does not protect against attackers who can run
processes on the same (virtual) machines as trusted nodes, or spoof packets on
physical network segments carrying unencrypted traffic. To defend against local
attacks, the RVMaster and the mutually distrustful nodes can be run on separate
(virtual) machines. To protect against spoofed IP addresses, the machines can
be configured to receive packets from other machines on distinct virtual network
interfaces, with the link between interface and machine using encrypted tunnels
or relying on the virtual machine monitor to provide private local connections.
Then routing can be configured so that only packets from specific machines can
claim recognized IP addresses, and also to prevent nodes from being accessed
directly. We intend to augment RVMaster with tools to automate the creation
and configuration of virtual machines to more easily provide this level of security.

Scalability Currently ROSRV is centralized. All the monitor nodes live in
the same multithreaded process, and all communication in the system is moni-
tored. We tested the performance of monitoring with 10+ nodes in Landshark.
The message delay caused by monitoring is on small digits of milliseconds. Al-
though this is acceptable in our current project, the centralized monitoring may
face scalability problems with a large number of nodes. We plan to investigate
decentralized mechanisms such as multimaster [6] to improve scalability. The
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multimaster approach also enriches the fault tolerance of the system, as the
current ROS master is a single point of failure.

Formal verification Currently the runtime verified system is not formally
verified. This would require a formal model of ROS itself, as well as proving that
the generated monitors and glue code guarantee the desired global system prop-
erties. At the implementation level, this would consist of showing that RVMaster
respects the given model of ROS and invokes the monitor code at correct times
to impose monitoring, and developing tools to prove that monitor code generated
from higher level specifications actually correctly monitors those specifications.

5 Conclusion

With our society increasingly depending on robots, the importance of their safe
and secure operation cannot be overstated. This paper makes first steps towards
the runtime verification of robot applications. Users provide formal safety and
security specifications, and monitors are automatically generated and incorpo-
rated in the system to ensure the safety and security of robots.
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A Demo Overview

The ROSRV tool consists of the RVMaster node written in C++, a monitor
generator (called rosmop) written in Java and JavaCC, and a set of bash scripts
to compile and start ROS. The tool works on Ubuntu 12.04 with ROS Groovy
distribution release. The user simply describes the property or a set of properties
using the monitor specification language and specifies the access control policy
in a configuration file. Taking the property specifications as input, ROSRV first
automatically generates all the monitors, with each monitor corresponding to one
property. The user can run rosmop with either a single property specification or
the directory containing a set of property specifications, to generate the monitors
and compile the whole system.

In the accompanying video, we demonstrate the use of ROSRV with three
monitors and four access control policies on the Landshark robot.

– Safe Trigger: we first show that by default the Landshark can shoot itself
when we move the gun to point at itself. We then enable the safe trigger
monitor and show the gun is no longer allowed to shoot when pointing at
Landshark, but can still shoot when pointing at the ground.

– Safe Zone: this monitor monitors the location of Landshark against a zone,
and ensures that once Landshark enters the zone it cannot move out. Within
the zone, we also show Landshark is disallowed to shoot itself, to demonstrate
that the tool can support multiple monitors working simultaneously.

– Logging: in many cases, users want to log messages in the robot to understand
the runtime behavior of the system. We show a logging monitor that, once
enabled, prints out the messages that the user is interested in, which could
be useful for debugging.

– Access control policies: we demonstrate a policy for each of the four sections
in the sample access control policies in Fig. 5. We run this demo with two
machines: one running ROSRV and all the legal nodes, and the other running
the attacker nodes. We show the attacker nodes cannot perform any action
not specified in the access control policy file, such as publishing messages on
a certain topic, killing another node, or pretending to be an existing legal
node.

The demonstration video is available at:
http://fsl.cs.illinois.edu/index.php/ROSRV

http://fsl.cs.illinois.edu/index.php/ROSRV
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Abstract. We present the Symbolic Execution Debugger for sequential
Java programs. Being based on symbolic execution, its functionality goes
beyond that of traditional interactive debuggers. For instance, debugging
can start directly at any method or statement and all program execution
paths are explored simultaneously. To support program comprehension,
execution paths as well as intermediate states are visualized.

Keywords: Symbolic Execution, Debugging, Program Execution
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1 Introduction

We present the Symbolic Execution Debugger (SED),1 a language independent
extension of the Eclipse debug platform for symbolic execution. Symbolic exe-
cution [3,4,9,10] is a program analysis technique based on the interpretation of
a program with symbolic values. This makes it possible to explore all concrete
execution paths (up to a finite depth). We describe an SED implementation that
uses KeY [2] as the underlying symbolic execution engine, supporting sequential
Java without floats, garbage collection and dynamic class loading. Our main
contributions are the SED platform, interactive symbolic execution of Java and
visualization of program behavior including unbounded loops and method calls.

The SED supports traditional debugger functionality like step-wise execution
or breakpoints, and enhances it as follows: Debugging can begin at any method
or any other statement in a program, no fixture is required. The initial state
can be specified partially or not at all. During symbolic execution all feasible
execution paths are discovered, thus it is not necessary to set up a concrete initial
program state leading to an execution where a targeted bug occurs. At any time
each intermediate state can be inspected using the SED. Intermediate states
tend to be small and simple, because symbolic execution can be started close to
the suspected location of a bug and the symbolic states contain only program
variables accessed during execution. This makes it easy for the bug hunter to
comprehend intermediate states and the actions performed on them to find the
origin of a bug. Heisenbugs [5], a class of program errors that disappear while
debugging, are avoided as the behavior of a program is correctly reflected in its
symbolic execution. Besides debugging the SED platform allows to visualize and
explore results of static analysis based on symbolic execution.
1 The website www.key-project.org/eclipse/SED provides an installation & user guide

(with instructions on how to use API classes), screencast and theoretical background.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 255–262, 2014.
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2 Symbolic Execution

Symbolic execution (SE) means to execute a program with symbolic values in
lieu of concrete values. We explain SE and how it is used interactively in the
SED by example: method eq shown in the listing in Fig. 1 compares the given
Number instance with the current one.

For a Java method to be executed it must be called explicitly. For instance, the
expression new Number().eq(new Number()); invokes eq on a fresh instance
with a different instance as argument. This results in a single execution path:
first the guard in line 5 is evaluated to true, as fields of integer type are initialized
with 0 by default. Finally, true is returned as result. To inspect another execution
path the method has to be called in a different state.

Let us execute method eq symbolically, i.e., without a concrete argument, but
a reference to a symbolic value n which can represent any object or null. In our
SE tree notation we use different icons to underscore the semantics of nodes.
As Fig. 1 shows, the root is a Start Node representing the initial state and the
program fragment (any method or any block of statements) to execute. Here a
call to eq is represented by its Method Call child node.

1 public class Number {
2 private int value;
3

4 public boolean eq(Number n) {
5 if (value == n.value) { return true; }
6 else { return false; }
7 }
8

9 // ...
10 }

<start>

self.eq(n);

if (this.value==n.value)

!n = null

self.value = n.value

return true;

<return TRUE as result of self.eq(n);>

<end>

!self.value = n.value

return false;

<return FALSE as result of self.eq(n);>

<end>

n = null

<uncaught java.lang.NullPointerException>

Fig. 1. Source code of class Number and SE tree of method eq

The if-guard, represented as a Branch Statement node, splits execution when
the field value is accessed on the symbolic object n. Because nothing is known
about n, it could be null. The Branch Condition children nodes show the con-
dition under which each path is taken. On the left, where n is not null, the
comparison in the if-guard splits execution again. If both values are the same,
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the return statement is executed, indicated by a Statement node. Now the sym-
bolic path of the method is fully executed and returns true in the Method Return
child node. This SE path ends in the Termination node. The branch where the
values are different looks similar, but false is returned instead. In the rightmost
branch the parameter n has the value null and SE ends with an uncaught
NullPointerException, visualized as an Exceptional Termination node.2

In contrast to concrete execution, SE does not require fixture code and dis-
covers all feasible execution paths (up to its execution depth). Each SE path
through an SE tree may represent infinitely many concrete executions and is
characterized by its path condition (the conjunction of all branch conditions on
it). SE may not terminate in presence of loops and recursive methods which can
be avoided by applying loop invariants or method contracts, see Section 4.

3 Basic Usage of the Symbolic Execution Debugger

The SED is realized as an Eclipse plugin. SE of a selected method or selected
statements in a method can be started via the Eclipse context menu item Debug
As, Symbolic Execution Debugger (SED). The user is then offered to switch to
the Symbolic Debug perspective, which provides all relevant views for interactive
symbolic execution (see Fig. 2).

The Debug view allows, as usual, to switch between debug sessions and to
control program execution. In case of SE, the view shows the traversed SE tree,
instead of the current stack trace. The SE tree is also visualized in the Symbolic
Execution Tree view (it is identical to the tree in Fig. 1). An SE tree sketch is
provided by the Symbolic Execution Tree (Thumbnail) view to help navigation.
The symbolic program state of a node consists of variables and their symbolic
values. It can be inspected in the Variables view. Breakpoints suspend execution
and are managed in the Breakpoints view. The details of a selected node (path
condition, call stack, etc.) are available in the Properties view. The source code
line corresponding to the selected SE tree node is highlighted in the editor. The
Symbolic Execution Settings view lets one customize SE, e.g., choose between
method inlining and method contract application.

In Fig. 2 the SE tree node return true; is selected. In the Variables view
we can see that the symbolic values of field value are identical for the objects
referenced by self (the current instance) and parameter n. This is exactly what
is enforced by the path condition. In an object-oriented setting one could think
that self and n refer to different instances, but this needs not to be the case.
The path condition is also satisfied if n and self reference the same object. Un-
intended aliasing is a source of bugs. The SED helps to find these by determining
and visualizing all possible memory layouts w.r.t. the path condition.

Selecting context menu item Visualize Memory Layouts of an SE tree node
creates a visualization of possible memory layouts as a symbolic object diagram
(see Fig. 3). It resembles a UML object diagram and shows the dependencies
2 The instantiation of the thrown exception is not visualized since we do not include

execution of Java API methods for simplicity.
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Fig. 2. Symbolic Execution Debugger: Interactive symbolic execution

between objects, the values of object fields and the local variables of the cur-
rent state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Fig. 3, the local
variables n and self refer to objects visualized as rectangles. The content of the
instance field value is shown in the lower compartment of each object.

The toolbar (near the origin of the callout) allows to select different possible
layouts and to switch between the current and the initial state of each layout. The
initial state shows how the memory layout looked before the execution started
resulting in the current state. Fig. 3 shows both possible layouts of the selected
node return true; in the current state. The second memory layout (inside the
callout) represents the situation, where n and self are aliased.

4 Usage Scenarios

Like a traditional debugger, the SED helps the user to control execution and to
comprehend each performed step. It is helpful to focus on a single branch where
a buggy state is suspected. (To change the focus to a different branch, no new
debugging session or new input values are needed). It is always possible to revisit
previous steps, because each node in the SE tree provides the full state.
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Fig. 3. Symbolic Execution Debugger: Different memory layouts

Finding the Origin of Bugs The explicit rendering of different control flow
branches in the SE tree constitutes a major advantage over traditional debug-
gers. Unexpected or missing expected branches are good candidates for possible
sources of bugs. Fig. 4a shows a buggy part of a Quicksort implementation for
sorting array numbers. Within a concrete execution of a large application a
StackOverflowError was thrown. It indicates that method sortHelper calls
itself infinitely often. Using SED we start debugging close to the suspected lo-
cation of the bug, namely, at method sort. Executing the method stepwise,
exhibits execution paths taken when invoking the method in an illegal state. Ex-
ploration of such cases can be avoided by providing a precondition which limits
the initial symbolic state. In this example, we exclude empty arrays by specify-
ing the precondition numbers != null && numbers.length >= 1 in the debug
configuration. After a few steps, the SE tree produced by SED (see Fig. 4b)
shows that the if statement is not branching. This is suspicious and deserves
closer attention. Inspecting the if guard shows that the comparison should have
been low < high and the source of the bug is found.3

Program and Specification Understanding SE trees show control and data flow
at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews
or in early prototyping phases, where the full implementation is not yet avail-
able. It works best, when partial method contracts and invariants are available
to achieve compact and finite SE trees. However, useful specifications can be
much weaker than what would be required for verification. The listing in Fig. 5
shows a buggy implementation of method indexOf with a very simple loop in-
variant written in JML. We configured the symbolic execution engine to apply

3 Without the precondition the bug can be observed as well, but a little later.
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1 public class QuickSort {
2 private int[] numbers;
3

4 public void sort() {
5 sortHelper(0, numbers.length - 1);
6 }
7

8 private void sortHelper(int low, int high) {
9 if (low <= high) {

10 int middle = partition(low, high);
11 sortHelper(low, middle);
12 sortHelper(middle + 1, high);
13 }
14 }
15

16 private int partition(int low,
17 int high) {
18 // ...
19 }
20 }

(a) Buggy Quicksort implementation (from [6])

<start>

self.sort();

sortHelper(0,this.numbers.length-1);

self.sortHelper(low,high);

if (low<=high)

int middle = partition(low,high);

(b) SE tree

Fig. 4. Quicksort example

loop invariants instead of unrolling loops, which guarantees a finite SE tree. The
resulting SE tree under precondition a != null is also shown in Fig. 5. Appli-
cation of the loop invariant splits execution into two branches. Body Preserves
Invariant represents all loop iterations and Use Case continues execution after
the loop (full branch conditions are not shown for brevity).

Without checking further details, one can see that the leftmost branch termi-
nates in a state where the loop invariant is not preserved. Now, closer inspection
shows the reason to be that, when the array element is found, the variable i is
not increased, hence the decreasing clause (a.length - i) of the invariant is
violated. The two branches below the Use Case branch correspond to the code
after the loop has terminated. In one case an element was found, in the other
not. Looking at the return node, however, we find that in both cases instead of
the index computed in the loop, the value of i is returned.

Our examples demonstrate that SE trees can be used to answer questions
about thrown exceptions or returned values. In SED the full state of each node
is available and can be visualized. Thus it is easily possible to see whether and
where new objects are created and which fields are changed when (comparison
between initial and current memory layout).

Using breakpoints, symbolic execution is continued until a breakpoint is hit
on any branch. Breakpoints can be attached to a line of code with or without
a condition or they may consist only of a condition. Thus they can be used to
find execution paths that (i) throw a specified exception, (ii) access or modify
a specified field, (iii) invoke or return from a specified method. Breakpoints can
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1 public static int indexOf(int[] a,
2 int s) {
3 int index = -1;
4 int i = 0;
5 /*@ loop_invariant i >= 0 && i <= a.length;
6 @ decreasing a.length - i;
7 @ assignable index, i;
8 @*/
9 while (index < 0 && i < a.length) {

10 if (s == a[i]) { index = i; }
11 else { i++; }
12 }
13 return i;
14 }

<start>

Arrays.indexOf(a,s);

int index = -1;

int i = 0;

invariant: i >= 0 & i <= a.length
variant: javaSubInt(a.length, i) 
assignable: index, i

Body Preserves Invariant

if (s==a[i])

a[i_0] = s

index_1=i;

<loop body end>

!a[i_0] = s

i++;

<loop body end>

Use Case

return i;

index_1_0 >  -1

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

index_1_0 < 0

<return i_0 as result of Arrays.indexOf(a,s);>

<end>

Fig. 5. Buggy and partially specified implementation of indexOf and its SE Tree

also be used to (iv) control loop unwinding and recursive method invocation and
(v) to stop at an intermediate state that has a specified property.

5 Related and Future Work

A number of recent tools implement SE for program verification [8] or test gener-
ation [1,12], which are complementary to SED. In fact, SED could be employed
to control or visualize these tools. As far as we know, EFFIGY [10] was the
first system that allowed to interactively execute a program symbolically in the
context of debugging. It did not support specifications or visualization.

The Eclipse plugin of Java Path Finder (JPF) [11] prints the analysis results
obtained from SE as a text report, but does neither provide graphical visualiza-
tion nor interactive control of SE. JPF is prototypically supported by SED as
an alternative SE engine.

The SE engine and its Eclipse integration described in [7] features non-
interactive graphic visualization of the SE tree. SED allows to interact with
the visualization as a means to control SE and to inspect symbolic states.

A prototypic symbolic state debugger that could not make use of method con-
tracts and loop invariants was presented in [6]. However, that tool was not very
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stable and its architecture was tightly integrated into the KeY system. As a con-
sequence, the SED was developed from scratch as a completely new application
featuring significant extended and new functionality. It is realized as a reusable
Eclipse extension which allows to integrate different symbolic execution engines.

We plan to use the visualization of an SE tree as an alternative GUI of the
KeY verification system [2]. The visualization capabilities and a debugger-like
interface will flatten the learning curve to use a verification system. On the
other hand, exploiting verification results during SE allows to classify execution
paths automatically as correct or wrong. Complementary techniques to SE like
backward slicing could help the user to find the origin of bugs more easily.
Visualization capabilities could be improved by grouping nodes based on code
members like methods or loop bodies. In this way more information is visualized
and fully executed groups could be collapsed.

References

1. Albert, E., Cabanas, I., Flores-Montoya, A., Gomez-Zamalloa, M., Gutierrez, S.:
jPET: An Automatic Test-Case Generator for Java. In: Proc. of the 18th Working
Conf. on Reverse Engineering, WCRE 2011, pp. 441–442. IEEE CS (2011)
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11. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per-
son, S., Pape, M.: Combining Unit-level Symbolic Execution and System-level Con-
crete Execution for Testing Nasa Software. In: Proc. of the 2008 Intl. Symposium
on Software Testing and Analysis, ISSTA 2008, pp. 15–26. ACM (2008)

12. Tillmann, N., de Halleux, J.: Pex: White Box Test Generation for .NET. In: Beckert,
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Abstract. Executable formal contracts help verify a program at run-
time when static verification fails. However, these contracts may be
prohibitively slow to execute, especially when they describe the trans-
formations of data structures. In fact, often an efficient data structure
operation with O(log(n)) running time executes in O(n log(n)) when
naturally written specifications are executed at run time.

We present a set of techniques that improve the efficiency of run-time
checks by orders of magnitude, often recovering the original asymptotic
behavior of operations. Our implementation first removes any statically
verified parts of checks. Then, it applies a program transformation that
changes recursively computed properties into data structure fields, en-
suring that properties are evaluated no more than once on a given data
structure node. We present evaluation of our techniques on the Leon
system for verification of purely functional programs.

1 Introduction

Static verifiers can demonstrate program correctness for any given input. How-
ever, their limitations prevent them from proving complex programs. Runtime
verification can be of great help in such circumstances. Unfortunately, contracts
that are good for static verification are often expensive to check at runtime, and
may even degrade program performance asymptotically.

Related Work. There have been some attempts to mitigate the performance
penalty of runtime checks. Shankar and Bod́ık [7] present DITTO, an automatic
incrementalizer for imperative data structure invariant checking. The system
memoizes results of runtime checks for data structures, and recomputes them
only when the data structure is mutated, rather than every time it is accessed.
Memoization itself is first proposed by Michie [5]. Hughes [4] introduces lazy
memo-functions, which optimize memoization by computing the results of the
memoized functions lazily. Memoization (or tabling) has also been included as a
built-in feature in XSB and other variants of Prolog [9], providing both theoret-
ical and practical benefits to performance and termination of Prolog programs.

Another popular strategy for optimizing runtime checks is partially evaluating
checks ahead of time, i.e. running a static verification step before executing the
program, in order to simplify or completely remove runtime checks. This idea
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sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left : Tree, value : Int, right: Tree) extends Tree
def insert(t: Tree, e : Int) : Tree = {
require(isBST(t))
t match {
case Leaf() ⇒ Node(Leaf(), e, Leaf())
case Node(l,v,r) ⇒ if (e == v) t
else if (e < v) Node(insert(l,e), v, r)
else Node(l, v, insert(r,e))}

} ensuring (res ⇒ isBST(res))

def isBST(t:Tree) : Boolean = t match {
case Leaf() ⇒ true
case Node(l,v,r) ⇒ isBST(l) && isBST(r) && treeMax(l) < v && v < treeMin(r) }

Fig. 1. Binary Search Tree

case class TreeFields(isBST: Boolean, treeMin : Int, treeMax : Int)
sealed abstract class Tree
case class Leaf(treeFields : TreeFields) extends Tree
case class Node(left : Tree, value : Int, right: Tree, treeFields : TreeFields) extends Tree
def makeNode(left : Tree, value : Int, right: Tree) = Node(left, value, right, {
val lmin = left.treeFields.min; val lmax = left.treeFields.max
val rmin = right.treeFields.min; val rmax = right.treeFields.max
val thisBST = left.treeFields.isBST && right.treeFields.isBST && lmax < v && v < rmin
TreeFields(thisBST, min3(lmin,value,rmin), max3(lmax,value,rmax)) }

def isBST(t:Tree) : Boolean = t.treeFields.isBST

Fig. 2. Binary Search Tree with Memoization

has been applied to partially evaluate finite-state properties [2] as well as for
dynamically typed languages and languages with expressive type systems [3].

Contributions. In this paper, we show that a particular, predictable form of
memoization, which introduces extra fields into data structures, can substantially
improve the performance of runtime checks that remain after static verification
attempts. Our system works for a purely functional subset of Scala recognized
by the Leon verification tool [1], [8]. It provides executable formal contracts in
the form of pre- and postconditions of functions, and supports algebraic data
types (ADTs). Our implementation and the benchmarks we used to evaluate it
are available at https://github.com/manoskouk/leon/tree/memoization.

Example. Consider the example in Fig. 1, which defines a tree datatype along
with a decorated insert operation in PureScala. require denotes a precondition,
whereas ensuring denotes a postcondition that takes an anonymous function that
applies to function result. isBST is a function used as a specification, denoting

https://github.com/manoskouk/leon/tree/memoization
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that its argument is indeed a binary search tree. treeMin and treeMax are full tree
traversals, so isBST would also need to traverse the whole tree when executed.
If executed directly as written, each recursive call of insert calls isBST, which
makes insert on unbalanced trees quadratic instead of linear. To avoid such costly
computation without losing any information, we add extra fields into Tree to
denote the result of isBST, treeMin and treeMax for each node. Fig. 2 sketches such
transformed version of the data structure. The information that was previously
computed using recursive functions is now available with a field lookup. We use
constructor functions such as makeNode to compute the additional fields when
creating a node, using a constant amount of additional work. The next sections
present and evaluate an automated transformation that performs such rewriting.

2 Our Approach

In our system, memoization and static verification jointly reduce the cost of
runtime checks.

2.1 Memoizing Fields for Formal Contracts

Intuitively, we memoize whatever the program’s formal contracts need, and use
the data structure itself as the storage space. A function is eligible to be mem-
oized, if 1) it is called (directly or indirectly) from a formal contract (otherwise
its value is not needed for runtime checks), 2) it has a single argument of a class
type, i.e. an ADT (to ensure that a single memoized field can indeed uniquely
describe the result of the function for the object it is applied to), 3) it is recur-
sive, possibly through mutual recursion (to make memoization worthwhile), 4)
its return type is not the same as its argument type (as a heuristic to exclude
storing large fields). Our system memoizes each function that fits the above cri-
teria by turning it into an extra field. Each invocation of the function in the
program is substituted with a field retrieval. Every instantiation of a class that
was enhanced with extra fields is modified to initialize these fields correctly.

Memoizing further fields. The above memoization technique is not specific to
runtime checks, but can also memoize bookkeeping fields for data structures
that require them, such as AVL sub-tree heights. This saves the programmer the
effort to prove that the memoized field matches a definition. Our system there-
fore supports an explicit annotation in the source code to memoize additional
functions. We have used this functionality to simplify some of our benchmarks.

2.2 Utilizing Static Verification

Memoization, although useful on its own, does not yield the optimal results in iso-
lation. This is because we often end upmemoizing fields to monitor properties that
have alreadybeen proven statically. Thismay have large associated cost, especially
when complex properties are involved (e.g. the contents of a data structure).
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Therefore, in our system, memoization is preceded by static verification. Each
statically verified postcondition is removed from the program, and each precon-
dition verified at a call site is removed from this call site. Additionally, all formal
contracts expressed as conjuncts of simpler contracts are split and the conjuncts
are verified separately, to remove as many checks as possible.

3 Evaluation

To demonstrate how this transformation can improve programs, we evaluated
it on benchmarks available at https://github.com/manoskouk/leon/tree/

memoization. We consider benchmarks where we perform a series of element
insertions to a data structure, and benchmarks where we sort a list.

In Table 1, we compare the asymptotic running time bounds for the original
version of each benchmark with the fully optimized version, where we have re-
moved statically verified formal contracts and then applied memoization. This
analysis demonstrates that our approach indeed restores the asymptotic bounds
of programs in many cases.

Table 1. Asymptotic time bounds. 1Per element insertion. 2Amortized.

Benchmark SortedList1 AVLTree1 RBTree1 AmQueue1,2 HeapSort InsertionSort
Original O(n2) O(n log n) O(n) O(n) O(n2 log n) O(n3)
Optimized O(n) O(log n) O(n) O(1) O(n log n) O(n2)

To further confirm the results, we compiled and ran these benchmarks. The
tests were compiled to JVM bytecode with the internal compiler of Leon. The
input used was a sequence of pseudorandom numbers produced by a simple
arithmetic function (using linear and mod operators). For each benchmark, we
present four sets of measurements, corresponding to the original program, and
the version of the program after applying each of our two techniques, isolated or
together (“Original”, “Memoized”, “Static” and “Static+Memoized”).

Note that the AVLTree and HeapSort benchmarks had the subtree height auto-
matically memoized rather than manually in the original version, which makes
the “Original” and “Static” versions slower; however, this influences asymptoti-
cally only the “Static” version of HeapSort (by a logarithmic factor), since in all
other cases the performance penalty is at least matched by unverified checks.
Also, we use an implementation of AmortizedQueue that uses the sizes of the front
and back stacks to decide when it has to reverse the former onto the latter [6].
So our system memoizes the size of both stacks.

The results are presented in Fig. 3. Missing measurement points mean that
the corresponding benchmark timed out with a timeout of 100 seconds.

Our techniques improved the performance of programs by orders of magni-
tude. In several of these benchmarks, all checks were removed statically; this
is because we originally started from benchmarks that were used to show the
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strengths of static verification of Leon [8]. In these cases, the memoized version
without checks performs almost identically to the non-memoized one. It is also
notable that the memoized version with all checks was always much better than
the original one, even when tracking the contents of the data structures. This in-
dicates that memoization can be useful in more difficult problems as well, where
static verification fails to remove any contracts.

Comment on space usage. Although memoization improves the running time of
programs, it has negative impact on space usage. For most of our benchmarks
the increase is by a constant factor. This is in our opinion acceptable for JVM,
where objects already have a large footprint. The only exception is the RBTree

benchmark, where a set representing the content of each subtree had to be
memoized, resulting in asymptotically increased space usage (about 100 times
for input size 2000). In future versions of our system we will rule out memoization
of such complex properties, or better exploit the opportunities for fine-grained
sharing within memoized values, using techniques such as hash consing.

Conclusion. Overall, we have found that memoization provides orders of mag-
nitude improvements in running time of benchmarks compared to directly exe-
cuting formal contracts. It works well both in isolation, or in synergy with less
predictable techniques of static verification.

References

1. Blanc, R.W., Kneuss, E., Kuncak, V., Suter, P.: An overview of the Leon verification
system: Verification by translation to recursive functions. In: Scala Workshop (2013)

2. Bodden, E., Lam, P., Hendren, L.: Partially evaluating finite-state runtime monitors
ahead of time. ACM Trans. Program. Lang. Syst. 34(2), 7:1–7:52 (2012)

3. Flanagan, C.: Hybrid type checking. In: Morrisett, J.G., Jones, S.L.P. (eds.) POPL,
pp. 245–256. ACM (2006)

4. Hughes, J.: Lazy memo-functions. In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS,
vol. 201, pp. 129–146. Springer, Heidelberg (1985)

5. Michie, D.: Memo functions and machine learning. Nature 218(5136), 19–22 (1968)
6. Okasaki, C.: Functional data structures. In: Launchbury, J., Sheard, T., Meijer, E.

(eds.) AFP 1996. LNCS, vol. 1129, pp. 131–158. Springer, Heidelberg (1996)
7. Shankar, A., Bodik, R.: Ditto: automatic incrementalization of data structure in-

variant checks (in Java). ACM SIGPLAN Notices 42, 310–319 (2007)
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Abstract. Static state is common in object-oriented programs. How-
ever, automatic test case generators do not take into account the po-
tential interference of static state with a unit under test and may, thus,
miss subtle errors. In particular, existing test case generators do not treat
static fields as input to the unit under test and do not control the execu-
tion of static initializers. We address these issues by presenting a novel
technique in automatic test case generation based on static analysis and
dynamic symbolic execution. We have applied this technique on a suite
of open-source applications and found errors that go undetected by ex-
isting test case generators. Our experiments show that this problem is
relevant in real code, indicate which kinds of errors existing techniques
miss, and demonstrate the effectiveness of our technique.

1 Introduction

In object-oriented programming, data stored in static fields is common and po-
tentially shared across the entire program. In case developers choose to initialize
a static field to a value different from the default value of its declared type, they
typically write initialization code. The initialization code is executed by the run-
time environment at some time prior to the first use of the static field. The time
at which the initialization code is executed depends on the programming lan-
guage and may be chosen non-deterministically, which makes the semantics of
the initialization code non-trivial, even to experienced developers.

class C {
// inline
static int f0 = 19;
static int f1;

// explicit
static C() {

f1 = 23;
}

}

In C#, initialization code has the form of a static
initializer, which may be inline or explicit. The C#
code on the right shows the difference: field f0 is ini-
tialized with an inline static initializer, and field f1
with an explicit static initializer. If any static ini-
tializer exists, inline or explicit, the C# compiler al-
ways generates an explicit initializer. This compiler-
generated explicit initializer first initializes the static
fields of the class that are assigned their initial value
with inline initializers and then incorporates the code
of the original explicit initializer (if any) written by
the developer, as shown below for class C.
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// compiler -generated
static C() {

f0 = 19;
f1 = 23;

}

However, the semantics of the compiler-generated
static initializer depends on whether the developer has
indeed written an explicit initializer. If this is the case,
the compiler-generated initializer has precise seman-
tics: the body of the initializer is executed (triggered)
exactly on the first access to any (non-inherited) mem-
ber of the class (that is, static field, static method, or instance constructor).
Otherwise, the compiler-generated initializer has before-field-init semantics: the
body of the initializer is executed no later than the first access to any (non-
inherited) static field of the class [3]. This means that the initializer could be
triggered by the runtime environment at any point prior to the first static-field
access.

In Java, static (initialization) blocks are the equivalent of explicit static ini-
tializers with precise semantics in C# [8]. In C++, static initialization occurs
before the program entry point in the order in which the static fields are defined
in a single translation unit. However, when linking multiple translation units,
the order of initialization between the translation units is undefined [2].

Even though static state is common in object-oriented programs and the se-
mantics of static initializers is non-trivial, automatic test case generators do not
take into account the potential interference of static state with a unit under test.
They may, thus, miss subtle errors. In particular, existing test case generators
do not solve the following issues:

1. Static fields as input: When a class is initialized before the execution of the
unit under test, the values of its static fields are part of the state and should,
thus, be treated as inputs to the unit under test. Existing tools fail to do that
and may miss bugs when the unit under test depends on the values stored in
static fields (for instance, to determine control flow or evaluate assertions).

2. Initialization and uninitialization: Existing tools do not control whether
static initializers are executed before or during the execution of the unit
under test. The point at which the initializer is executed may affect the test
outcome since it may affect the values of static fields and any other variables
assigned to by the static initializer. Ignoring this issue may cause bugs to
be missed. A related issue is that existing tools do not undo the effect of
a static initializer between different executions of the unit under test such
that the order of executing tests may affect their outcomes.

3. Eager initialization: For static initializers with before-field-init semantics, a
testing tool should not only control whether the initializer is run before or
during test execution; in the latter case, it also needs to explore all possible
program points at which initialization of a class may be triggered (non-
deterministically).

4. Initialization dependencies: The previous issues are further complicated by
the fact that the order of executing static initializers may affect the resulting
state due to their side effects. Therefore, a testing tool needs to consider all
relevant execution orders in order not to miss bugs.
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We address these issues by designing and implementing a novel technique in
automatic test case generation based on dynamic symbolic execution [7] (concolic
testing [13]) and static analysis. Our technique treats static fields as input to the
unit under test and systematically controls the execution of static initializers.
The dynamic symbolic execution collects constraints describing the static-field
inputs that will cause the unit under test to take a particular branch in the
execution or violate an assertion. It also explores the different program points at
which a static initializer might be triggered. The static analysis improves perfor-
mance by pruning program points at which the execution of a static initializer
does not lead to any new behaviors of the unit under test.

We have implemented our technique as an extension to the testing tool Pex [14]
for .NET. We have applied it on a suite of open-source applications and found
errors that go undetected by existing test case generators. Our results show
that this problem is relevant in real code, indicate which kinds of errors existing
techniques miss, and demonstrate the effectiveness of our technique.

Related Work. Most existing automatic test case generation tools ignore the
potential interactions of a unit under test with static state. These tools range
from random testing (like JCrasher [1] for Java), over feedback-directed ran-
dom testing (like Randoop [10] for Java), to symbolic execution (like Symbolic
Java PathFinder [11]) and dynamic symbolic execution (like Pex for .NET or
jCUTE [12] for Java).

To the best of our knowledge, existing testing tools such as the above do not
take into account the interference of static state with a unit under test, with the
exception of JCrasher. JCrasher ensures that each test runs on a “clean slate”;
it resets all static state initialized by any previous test runs either by using a
different class loader to load each test, or by rewriting the program under test
at load time to allow re-initialization of static state. Nevertheless, JCrasher does
not address the four issues described above.

Unit testing frameworks, like NUnit for .NET and JUnit for Java, require
the tester to manage static state manually in set-up methods in order to ensure
the clean execution of the unit tests. Therefore, the tester must be aware of all
interactions of the unit under test with static state. As a result, these frameworks
become significantly less automatic for unit tests that interact with static state.

Static analysis tools for object-oriented languages, such as Clousot [5] for
.NET and ESC/Java [6] for Java, do not reason about static initialization. An
extension of Spec# [9] supports static verification in the presence of static ini-
tializers, but requires significant annotation overhead.

We are, therefore, not aware of any tool that automatically takes static state
into account and detects the kinds of errors described in this paper.

Outline. Sect. 2 explains how we explore static input state where all relevant
classes are initialized. Sects. 3 and 4 show we handle static initializers with
precise and before-field-init semantics, respectively. Sect. 5 demonstrates the ef-
fectiveness of this technique by applying it on a suite of open-source applications.
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2 Static Fields as Input

In this section, we address the issue of treating static fields of initialized classes
as input to the unit under test. The case that a class is not yet initialized is
discussed in the next two sections.

1 public class C {
2 public static int F;
3

4 static C() {
5 F = 0;
6 }
7

8 public static void M() {
9 F++;

10 if (F == 2) abort;
11 }
12 }

Fig. 1. A C# method accessing static state. To cover all branches, dynamic symbolic
execution must treat static field F as an input to method M and collect constraints on
its value.

The example in Fig. 1 illustrates the issue. Existing automatic test case gen-
erators do not treat static field F of class C as input to method M. In particular,
testing tools based on dynamic symbolic execution generate only one unit test
for method M since there are no branches on a method parameter of M. Since the
body of method M contains a branch on static field F (line 10), they achieve low
code coverage of M and potentially miss bugs.

Dynamic Symbolic Execution. To address this issue, we treat static fields
as inputs to the method under test and assign to them symbolic variables. This
causes the dynamic symbolic execution to collect constraints on the static fields
and use them to generate inputs that force the execution to explore all branches
in the code. As usual with the automatic generation of unit tests, these generated
inputs might not occur in any actual execution of the program; to avoid false
positives, developers may write specifications (preconditions or invariants) that
further constrain the possible values of these inputs.

Treating all static fields of a program as inputs is not practical. It is also
not modular and defeats the purpose of unit testing. Therefore, we determine at
runtime which static fields are read during the execution of a unit test and treat
only those as inputs to the unit under test.

We implement this approach in a procedure DSE(UUT , IC), which performs
dynamic symbolic execution of the unit under test UUT . IC is the set of classes
that have been initialized before the execution of the unit under test. For all other
classes, initialization may be triggered during the execution of the generated unit
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tests. The DSE procedure treats the static fields of all classes in the IC set as
symbolic inputs. It returns the set T C of classes whose initialization is triggered
during the execution of the generated unit tests. The static fields of the classes
in IC ∪ T C include all static fields that are read by the unit tests. We call
the DSE procedure repeatedly to ensure that the static fields of all of these
classes are treated as inputs to the unit under test. The precise algorithm for
this exploration as well as more details of the DSE procedure are described in
the next section.

Consider the dynamic symbolic execution DSE(M, {}) of method M from
Fig. 1. This dynamic symbolic execution generates one unit test that calls
method M. The execution of this unit test triggers the initialization of class
C due to the access to static field F (line 9). Therefore, procedure DSE returns
the singleton set {C}. As a result, our exploration algorithm will call DSE(M,
{C}). This second dynamic symbolic execution treats static field F as a symbolic
input to method M and collects constraints on its value. For instance, assuming
that the first unit test of the second dynamic symbolic execution executes M
in a state where F is zero, the conditional statement introduces the symbolic
constraint ¬(F + 1 = 2). The dynamic symbolic execution subsequently negates
and solves the symbolic constraints on M’s inputs. Consequently, a second unit
test is generated that first assigns the value 1 to field F and then calls M. The
second unit test now reaches the abort statement and reveals the bug. We will
see in the next section that, even though the second call to DSE is the one that
explores the unit under test for different values of static field F, the first call to
DSE is also important; besides determining which static fields should be treated
symbolically, it is also crucial to handle uninitialized classes.

3 Initialization with Precise Semantics

In the previous section, we addressed the issue of treating static fields of initial-
ized classes as input to the unit under test. In this section, we explain how our
technique (1) controls the execution of static initializers and (2) explores exe-
cutions that trigger static initializers. Here, we consider only static initializers
with precise semantics; initializers with before-field-init semantics are discussed
in the next section.

3.1 Controlling Initialization

In order to explore the interaction between a unit under test and static initial-
izers, we must be able to control for each execution of a unit test which classes
are initialized before the execution of the unit test and which ones are not. This
could be achieved by restarting the runtime environment (virtual machine) be-
fore each execution of a unit test and then triggering the initialization of certain
classes. To avoid the high performance overhead of this naïve approach, we in-
strument the unit under test such that the execution simulates the effects of
triggering an initializer and restarting the runtime environment.
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Initialization. We insert calls to the dynamic symbolic execution engine at
all points in the entire program where a static initializer could be triggered
according to its semantics. For static initializers with precise semantics, we in-
sert instrumentation calls to the dynamic symbolic execution engine on the first
access to any (non-inherited) member of their class. Where to insert these instru-
mentation calls is determined using the inter-procedural control-flow graph of
the unit under test. This means that we might insert an instrumentation call at
a point in the code where, along certain execution paths, the corresponding class
has already been initialized. Note that each .NET bytecode instruction triggers
at most one static initializer; therefore, there is at most one instrumentation call
at each program point.

For an exploration DSE(UUT , IC), the instrumentation calls in UUT have
the following effect. If the instrumentation call is made for a class C that is in the
IC set, then C has already been initialized before executing UUT and, thus, the
instrumentation call has no effect. Otherwise, if this is the first instrumentation
call for C in the execution of this unit test, then we use reflection to explicitly
invoke C’s static initializer. That is, we execute the static initializer no matter
if the runtime environment has initialized C during the execution of a previous
unit test or not. Moreover, we add class C to the T C set of classes returned
by procedure DSE. If the same unit test has already initialized C during its
execution, the instrumentation call has no effect.

In method M from Fig. 1, we add instrumentation calls for class C before
the two accesses to static field F, that is, between lines 8 and 9 and between
lines 9 and 10. (Our implementation omits the second instrumentation call in
this example, but this is not always possible for methods with more interesting
control flow.) Consider again the exploration DSE(M, {}). During the execution
of the generated unit test, the instrumentation call at the first access to static
field F calls C’s static initializer such that the unit test continues with F = 0.
The instrumentation call for the second access to F has no effect since this unit
test already initialized class C. DSE returns the set {C} as described above.

static C() {
if (/* this is the first call */)

return ;
// body of original
// static initializer

}

Note that an explicit call to a static
initializer is itself an access to a class
member and, thus, causes the runtime
environment to trigger another call to
the same initializer. To prevent the
initializer from executing twice (and
thereby duplicating its side effects), we
instrument each static initializer such
that its body is skipped on the first call, as shown on the right.

This instrumentation decouples the execution of a unit test from the ini-
tialization behavior of the runtime environment. Static initializers triggered by
the runtime environment have no effect and, thus, do not actually initialize the
classes, whereas our explicit calls to static initializers initialize the classes even
in cases where the runtime environment considers them to be initialized already.
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Uninitialization. To avoid the overhead of restarting the runtime environment
after each unit test, we simulate the effect of a restart through code instrumen-
tation. Since our technique does not depend on the behavior of the runtime
environment to control class initialization, we do not have to actually uninitial-
ize classes. It is sufficient to reset the static fields of all classes initialized by the
unit under test to the default values of their declared types after each execution
of a unit test. Therefore, the next execution of the static initializer during the
execution of the next unit test behaves as if it ran on an uninitialized class.

Existing automatic test case generators (with the exception of JCrasher) do
not reset static fields to their initial values between test runs. For code like
in Fig. 1, Pex emits a warning that the unit under test might not leave the
dynamic symbolic execution engine in a clean state. Therefore, the determinis-
tic re-execution of the generated unit tests is not guaranteed. In fact, the Pex
documentation suggests that the tester should mock all interactions of the unit
under test with static state. However, this requires the tester to be aware of
these interactions and renders Pex significantly less automatic.

3.2 Dynamic Symbolic Execution

The core idea of our exploration is as follows. Assume that we knew the set
classes of all classes whose initialization may be triggered by executing the unit
under test UUT . For each subset IC ⊆ classes, we perform dynamic symbolic
execution of UUT such that the classes in IC are initialized before executing
UUT and their static fields are symbolic inputs. The classes in classes \ IC are
not initialized (that is, their initializers may be triggered when executing a unit
test). We can then explore all possible initialization behaviors of UUT by testing
it for each possible partition of classes into initialized and uninitialized classes.

Algorithm. Alg. 1 is a dynamic-symbolic-execution algorithm that implements
this core idea, but also needs to handle the fact that the set of relevant classes is
not known upfront, but determined during the execution. Procedure Explore
takes as argument a unit under test UUT , which has been instrumented as de-
scribed above. Local variable classes is the set of relevant classes determined

Alg. 1 Dynamic symbolic execution for exploring the interac-
tions of a unit under test with static state.

1 procedure Explore(UUT )
2 classes ← {}
3 explored ← {}
4 while ∃IC ⊆ classes · IC �∈ explored do
5 IC ← choose({IC | IC ⊆ classes ∧ IC �∈ explored})
6 T C ← DSE(UUT , IC)
7 classes ← classes ∪ T C
8 explored ← explored ∪ {IC}
9 end while

10 end procedure
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so far, while local variable explored is the set of sets of classes that have been
treated as initialized in the exploration so far; that is, explored keeps track of
the partitions that have been explored. As long as there is a partition that has
not been explored (that is, a subset IC of classes that is not in explored), the
algorithm picks any such subset and calls the dynamic symbolic execution pro-
cedure DSE, where classes in IC are initialized and their static fields are treated
symbolically. If this procedure detects any classes that are initialized during the
dynamic symbolic execution, they are added to classes. The Explore procedure
terminates when all possible subsets of the relevant classes have been explored.

Initialization Dependencies. Alg. 1 enumerates all combinations of initial-
ized and uninitialized classes in the input state of the method under test, that
is, all possible partitions of classes into IC and classes\ IC. This includes com-
binations that cannot occur in any actual execution. If the static initializer of a
class E triggers the static initializer of a class D, then there is no input state in
which E is initialized, but D is not. To avoid such situations and, thus, false pos-
itives during testing, we trigger the static initializers of all classes in IC before
invoking the method under test. In the above example, this ensures that both
E and D will be initialized in the input state of the method under test, and D’s
initializer will not be triggered during the execution of the method. Since the
outcome of running several static initializers may depend on the order in which
they are triggered, we explore all orders among dependent static initializers.

The triggering of the static initializers of the classes in IC happens at the
beginning of the set-up code that precedes the invocation of the method under
test in every generated unit test. This set-up code is also responsible for creating
the inputs for the method under test, for instance, for allocating objects that will
be passed as method arguments. Therefore, the set-up code may itself trigger
static initializers, for instance, when a constructor reads a static field. To handle
the dependencies between set-up code and initialization, we treat set-up code
as a regular part of the unit test (like the method under test itself), that is,
apply the same instrumentation and explore all possible execution paths during
dynamic symbolic execution.

Handling dependencies between static initializers is particularly useful in
C++, where static initialization happens before the program entry point. When
linking multiple translation units, the order of initialization between the transla-
tion units is undefined. By exploring all orders of execution of dependent initial-
izers, developers can determine dependencies that may crash a program before
its entry point is reached.

Example. The example in Fig. 2 illustrates our approach. The assertion on
line 13 fails only if N is executed in a state in which class D is initialized (such
that the if-statement may be executed), the static field G is negative (such that
the if-statement will be executed and E’s initialization will be triggered), and
class E is not initialized (such that its static initializer will affect the value of G).

We will now explain how Alg. 1 reveals such subtle bugs. In the first iteration,
IC is the empty set, that is, no class is considered to be initialized. Therefore,
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1 public class D {
2 public static int G;
3

4 static D() {
5 G = 0;
6 }
7

8 public static void N() {
9 if (G < 0) {

10 E.H++;
11 G = -G;
12 }
13 assert 0 <= G;
14 }
15 }

16 public class E {
17 public static int H;
18

19 static E() {
20 H = 0;
21 D.G = 1;
22 }
23 }

Fig. 2. An example illustrating the treatment of static initializers with precise seman-
tics. We use the special assert keyword to denote Code Contracts [4] assertions. The
assertion on line 13 fails only if N is called in a state where class D is initialized, but E
is not.

when the DSE procedure executes method N, class D is initialized right before
line 9. Consequently, static field G is zero, the if-statement is skipped, and the
assertion holds. DSE returns the set {D}.

In the second iteration, IC will be {D}, that is, the static initializer of class D
is triggered by the set-up code, and static field G is treated symbolically. Since
there are no constraints on the value of G yet, the dynamic symbolic execution
executes method N with an arbitrary value for G, say, zero. This unit test passes
and produces the constraint G < 0 for the next unit test. For any such value
of G, the unit test will now enter the if-statement and initialize class E before
the access to E’s static field H. This initialization assigns 1 to G, such that the
subsequent negation makes the assertion fail, and we have detected the bug. The
call to the DSE procedure in the second iteration returns {D, E}.

The two remaining iterations of Alg. 1 cover the cases that IC is {E} or {D, E}.
The former case illustrates how we handle initialization dependencies. The static
initializer of class E accesses static field G of class D. Therefore, when E’s initializer
is called by the set-up code of the generated unit test, D’s initializer is also
triggered (recall that the set-up code and all static initializers are instrumented
like the method under test). This avoids executing N in the impossible situation
where E is initialized, but D is not. The rest of this iteration is analogous to
the first iteration, that is, class D gets initialized (this time while executing the
set-up code), the if-statement is skipped, and the assertion holds.

Finally, for IC = {D, E}, all relevant classes are initialized. The dynamic sym-
bolic execution will choose negative and non-negative values for G. The assertion
holds in either case.
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Discussion. Alg. 1 can be implemented in any testing tool based on dynamic
symbolic execution. We have implemented it in Pex, whose existing dynamic
symbolic execution engine is invoked by our DSE procedure. Alg. 1 could also
be implemented in jCUTE for testing how static fields and static blocks in Java
interact with a unit under test. Moreover, this algorithm can be adjusted to
perform all dynamic tasks statically for testing tools based on static symbolic
execution. For instance, Symbolic Java PathFinder could then be extended to
take static state into account.

By treating static fields symbolically, our technique gives meaning to specifi-
cations that refer to static fields, like assertions or preconditions. For example,
an assertion about the value of a static field is now treated as a branch by the
symbolic execution. One could also support preconditions that express which
classes are required to be initialized before the execution of a method.

As part of the integration with unit testing frameworks, many automatic test
case generators support defining set-up methods for a unit under test. Such
methods allow testers to initialize and reset static fields manually. Since set-up
methods might express preconditions on static fields (in the form of code), we
extended our technique not to override the functionality of these methods. That
is, when a set-up method assigns to a static field of a class C, we do not trigger
the initialization of class C and do not treat its static fields symbolically. We
do, however, reset the values of all static fields in class C after each execution
of a unit test such that the next execution of the set-up method starts in a
fresh state.

This technique could also be used in existing frameworks for detecting whether
a set-up method allows for any static fields to retain their values between runs of
the unit under test. This is achieved by detecting which static fields are modified
in the unit under test, but have not been manually set up. If such fields exist,
an appropriate warning could be emitted by the unit testing framework.

4 Initialization with Before-Field-Init Semantics

The technique presented in the previous section handles static initializers with
precise semantics. Static initializers with before-field-init semantics, which may
be triggered at any point before the first access to a static field of the class,
impose two additional challenges. First, they introduce non-determinism because
the static initializer of any given class may be triggered at various points in the
unit under test. Second, in addition to the classes that have to be initialized in
order to execute the unit under test, the runtime environment could in principle
choose to trigger any other static initializer with before-field-init semantics, even
initializers of classes that are completely unrelated. In this section, we describe
how we solve these challenges. Our solution uses a static program analysis to
determine the program points at which the execution of a static initializer with
before-field-init semantics may affect the behavior of the unit under test. Then,
we use a modified dynamic symbolic execution procedure to explore each of these
possibilities.
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As the running example of this section, consider method P in Fig. 3. The static
initializer of class D has before-field-init semantics and must be executed before
the access to field D.Fd on line 10. If the initializer runs on line 5 or 9, then
the assertion on line 8 succeeds. If, however, the initializer runs on line 7, the
assertion fails because the value of field C.Fc has been incremented (line 15) and
is no longer equal to 2. This bug indicates that the unit under test is affected
by the non-deterministic behavior of a static initializer with before-field-init
semantics. Such errors are particularly difficult to detect with standard unit
testing since they might not manifest themselves reproducibly.

1 public static class C {
2 static int Fc = 0;
3

4 public static void P() {
5 // static initializer of 'D'
6 Fc = 2;
7 // static initializer of 'D'
8 assert Fc == 2;
9 // static initializer of 'D'

10 if (D.Fd == 3)
11 Fc = E.Fe;
12 }
13

14 static class D {
15 public static int Fd = C.Fc ++;
16 }
17

18 static class E {
19 public static int Fe = 11;
20 }
21 }

Fig. 3. A C# example illustrating the non-determinism introduced by static initializers
with before-field-init semantics. The assertion on line 8 fails if D’s static initializer is
triggered on line 7.

Critical Points. A static initializer with before-field-init semantics may be
triggered at any point before the first access to a static field of its class. To
reduce the non-determinism that needs to be explored during testing, we use
a static analysis to determine the critical points in a unit under test, that is,
those program points where triggering a static initializer might actually affect
the execution of the unit under test. All other program points can be ignored
during testing because no new behavior of the unit under test will be exercised.

A critical point is a pair consisting of a program point i and a class C. It
indicates that there is an instance or static field f that is accessed both by the
instruction at program point i and the static initializer of class C such that the
instruction or the static initializer or both modify the field. In other words, a
critical point indicates that the overall effect of executing the static initializer
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of C and the instruction at i depends on the order in which the execution takes
place. Moreover, a pair (i, C) is a critical point only if program point i is not
dominated in the control-flow graph by an access to a static field of C, that is,
if it is possible to reach program point i without initializing C first.

In the example of Fig. 3, there are five critical points: (6, C), (6, D), (8, D),
(10, D), and (11, E), where we denote program points by line numbers. Note that
even though the static initializer of class E could be triggered anywhere before
line 11, there is only one critical point for E because the behavior of method P
is the same for all these possibilities.

We determine the critical points in a method under test in two steps. First,
we use a simple static analysis to compute, for each program point i, the set
of classes with before-field-init initializers that might get triggered at program
point i. This set is denoted by prospectiveClasses(i). In principle, it includes
all classes with before-field-init initializers in the entire program, except those
that are definitely triggered earlier. Since it is not feasible to consider all of
them during testing, we focus on those classes whose static fields are accessed
by the method under test. This is not a restriction in practice: even though
the Common Language Infrastructure standard [3] allows more initializers to be
triggered, the Common Language Runtime implementation, version 4.0, triggers
the initialization of exactly the classes whose static fields are accessed by the
method. Therefore, in Fig. 3, prospectiveClasses(8) is the set {D, E}.

Second, we use a static analysis to determine for each program point i and class
C in prospectiveClasses(i) whether (i, C) is a critical point. For this purpose, the
static analysis approximates the read and write effects of the instruction at pro-
gram point i and of the static initializers of all classes in prospectiveClasses(i).
The read effect of a statement is the set of fields read by the statement or by any
method the statement calls directly or transitively. Analogously, the write effect
of a statement is the set of fields written by the statement or by any method
the statement calls directly or transitively. The pair (i, C) is a critical point if
(1) i’s read effect contains a (static or instance) field f that is included in the
write effect of C’s static initializer, or (2) i’s write effect contains a (static or
instance) field f that is included in the read or write effect of C’s static initial-
izer. For instance, for line 8 of our example, (8, D) is a critical point because
the statement on line 8 reads field Fc, which is written by the static initializer
of class D, and D is in prospectiveClasses(8). However, even though class E is
in prospectiveClasses(8), (8, E) is not a critical point because the effects of the
statement on line 8 and of E’s static initializer are disjoint.

Read and write effects are sets of fully-qualified field names, which allows us to
approximate them without requiring alias information. Our static effect analysis
is inter-procedural. It explores the portion of the whole program it can access
(in particular, the entire assembly of the method under test) to compute a call
graph that includes information about dynamically-bound calls. Therefore, our
analysis may miss critical points (for instance, when it fails to consider a method
override in an assembly that is not accessible to the analysis) and, thus, testing
might not explore all possible behaviors. It may also yield irrelevant critical
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points (for instance, when the instruction and the static initializer both have
an instance field f in their effects, but at runtime, access f of different objects)
and, thus, produce redundant unit tests.

A critical point (i, C) indicates that the dynamic symbolic execution should
trigger the initialization of class C right before program point i. However, C’s
static initializer might lead to more critical points, because its effects may overlap
with the effects of other static initializers and because it may trigger the initial-
ization of additional classes, which, thus, must be added to prospectiveClasses.
To handle this interaction, we iterate over all options for critical points and, for
each choice, inline the static initializer and recursively invoke our static analysis.

Dynamic Symbolic Execution. We instrument the unit under test to include
a marker for each critical point (i, C). We enhance the DSE procedure called
from Alg. 1 to trigger the initialization of class C when the execution hits such
a marker. If there are several markers for one class, the DSE procedure explores
all paths of the unit under test for each possible point. Conceptually, one can
think of adding an integer argument nC to the unit under test and interpreting
the n-th marker for class C as a conditional statement if (nC == n) { initC },
where initC calls the static initializer of class C if it has not been called earlier
during the execution of the unit test. Dynamic symbolic execution will then
explore all options for the initialization of a class C by choosing different values
for the input nC .

Since (8, D) is a critical point in our example, DSE will trigger the initializa-
tion of class D right before line 8 during the symbolic execution of method P. As
a result, the assertion violation is detected.

5 Experimental Evaluation

We have evaluated the effectiveness of our technique on 30 open-source applica-
tions written in C#. These applications were arbitrarily selected from applica-
tions on Bitbucket, CodePlex, and GitHub. Our suite of applications contains a
total of 423,166 methods, 47,515 (11%) of which directly access static fields. All
classes of these applications define a total of 155,632 fields (instance and static),
28,470 (18%) of which are static fields; 14,705 of the static fields (that is, 9%
of all fields) are static read-only fields. There is a total of 1,992 static initializ-
ers, 1,725 (87%) of which have precise semantics, and 267 (13%) of which have
before-field-init semantics.

To determine which of the 47,515 methods that directly access static fields are
most likely to have bugs, we implemented a lightweight scoring mechanism. This
mechanism statically computes a score for each method and ranks all methods by
their score. The score for each method is based on vulnerability and accessibility
scores. The vulnerability score of a method indicates whether the method directly
accesses static fields and how likely it is to fail at runtime because of a static field,
for instance, due to failing assertions, or division-by-zero and arithmetic-overflow
exceptions involving static fields. This score is computed based on nesting levels
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Tab. 1. Summary of our experiments. The first column shows the name of each ap-
plication. The second column shows the total number of tested methods from each
application. The two rightmost columns show the number of errors detected without
and with treating static fields as inputs to the unit under test, respectively.

Application Methods Number of errors
init init&input

Boggle 60 - 24
Boogie 21 - 6
Ncqrs 38 1 1
NRefactory 37 - 9
Scrabble 64 - 2
Total 220 1 42

of expressions and how close a static field is to an operation that might throw
an exception. The accessibility score of a method indicates how accessible the
method and the accessed static fields are from potential clients of the applica-
tion. In particular, this score indicates the level of accessibility from the public
interface of the application, and suggests whether a potential bug in the method
is likely to be reproducible by clients of the application. The final score for each
method is the product of its vulnerability and accessibility scores.

To compare the number of errors detected with and without our technique,
we ran Pex with and without our implementation on all methods with a non-
zero score. There were 454 methods with a non-zero score in the 30 applications.
Tab. 1 summarizes the results of our experiments on the applications in which
bugs were detected. The first column of the table shows the name of each appli-
cation1. The second column shows the total number of methods with a non-zero
score for each application. The two rightmost columns of the table show the
number of errors that our technique detected in these methods. These errors do
not include errors already detected by Pex without our technique; they are all
caused by interactions of the methods under test with static state.

More specifically, column “init” shows the number of errors detected by simply
triggering static initializers at different points in the code. These errors are, thus,
caused by calling static initializers (with both semantics) during the execution of
the unit tests without treating static fields as inputs. Column “init&input” shows
the number of errors detected by our technique, that is, by treating static fields
symbolically and systematically controlling the execution of static initializers.

As shown in the last column of the table, our technique detected 42 bugs that
are not found by Pex. Related work suggests that existing test case generators
would not find these bugs either. A failed unit test does not necessarily mean
that the application actually contains code that exhibits the detected bug; this
1 The applications can be found at:

http://boggle.codeplex.com, rev: 20226
http://boogie.codeplex.com, rev: e80b2b9ac4aa
http://github.com/ncqrs/ncqrs, rev: 0102a001c2112a74cab906a4bc924838d7a2a965
http://github.com/icsharpcode/NRefactory, rev: ae42ed27e0343391f7f30c1ab250d729fda9f431
http://wpfscrabble.codeplex.com, rev: 20226

http://boggle.codeplex.com
http://boogie.codeplex.com
http://github.com/ncqrs/ncqrs
http://github.com/icsharpcode/NRefactory
http://wpfscrabble.codeplex.com


Dynamic Test Generation with Static Fields and Initializers 283

uncertainty is inherent to unit testing since methods are tested in isolation rather
than in the context of the entire application. However, all of the detected bugs
may surface during maintenance or code reuse. In particular, for 25 of the 42
detected bugs, both the buggy method and the accessed static fields are public.
Therefore, when the applications are used as libraries, client code can easily
exhibit these bugs.

We have also manually inspected static initializers from all 30 applications and
distilled their three most frequent usage patterns. Static initializers are typically
used for:

1. Initializing static fields of the same class to constants or simple computa-
tions; these initializers are often inline initializers, that is, have before-field-
init semantics. However, since they neither read static fields of other classes
nor have side effects besides assigning to the static fields of their class, the
non-determinism of the before-field-init semantics does not affect program
execution.

2. Implementing the singleton pattern in a lazy way; these initializers typically
have precise semantics.

3. Initializing public static fields that are mutable; these fields are often meant
to satisfy invariants such as non-nullness. However, since they are public,
these invariants can easily be violated by client code or during maintenance.
This pattern is especially susceptible to static-field updates after the initial-
ization, a scenario that we cover by treating static fields as inputs of the unit
under test.

In none of these common usage patterns do initializers typically have side effects
besides assigning to static fields of their class. This might explain why we did
not find more bugs that are caused by static initialization alone (column “init”
in Tab. 1); it is largely irrelevant when such initializers are triggered.

An interesting example of the third pattern was found in application Bog-
gle, which uses the Caliburn.Micro library. This library includes a public static
field LogManager.GetLog, which is initialized by LogManager’s static initial-
izer to a non-null value. GetLog is read by several other static initializers, for
instance, the static initializer of class Coroutine, which assigns the value of
GetLog to a static field Log. If client code of the Caliburn.Micro library as-
signed null to the public GetLog field before the initialization of class Coroutine
is triggered, the application might crash; Coroutine will then initialize Log
with the null value, which causes a null-pointer exception when Coroutine’s
BeginExecute method dereferences Log. Our technique reveals this issue when
testing BeginExecute; it explores the possibility that LogManager is initialized
before BeginExecute is called whereas Coroutine is not, and it treats GetLog as
an input to BeginExecute such that the dynamic symbolic execution will choose
null as a possible value. Note that this issue is indeed an initialization problem.
Since Coroutine.Log is not public, a client could not cause this behavior by
assigning null directly to Log.



284 M. Christakis, P. Emmisberger, and P. Müller

6 Conclusion

To automatically check the potential interactions of static state with a unit under
test, we have proposed a novel technique in automatic test case generation based
on static analysis and dynamic symbolic execution. Our technique treats static
fields as input to the unit under test and systematically controls the execution
of static initializers. We have implemented this technique as an extension to Pex
and used it to detect errors in open-source applications. As future work, one
could prune redundant explorations more aggressively; this is promising since
our evaluation suggests that many static initializers have very small read and
write effects and, thus, very limited interactions with the unit under test.

Acknowledgments. We are grateful to Nikolai Tillman and Jonathan “Peli” de
Halleux for sharing the Pex source code with us. We also thank Dimitar Asenov,
Valentin Wüstholz, and the reviewers for their constructive feedback.
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Abstract. Runtime verification can effectively increase the reliability of software
systems. In recent years, parametric runtime verification has gained a lot of trac-
tion, with several systems proposed. However, lack of real specifications and pro-
hibitive runtime overhead when checking numerous properties simultaneously
prevent developers or users from using runtime verification. This paper reports
on more than 150 formal specifications manually derived from the Java API doc-
umentation of commonly used packages, as well as a series of novel techniques
which resulted in a new runtime verification system, RV-Monitor. Experiments
show that these specifications are useful for finding bugs and bad software prac-
tice, and RV-Monitor is capable of monitoring all our specifications simultane-
ously, and runs substantially faster than other state-of-the-art runtime verification
systems.

1 Introduction

Runtime verification (RV) can increase the reliability of software systems by dynami-
cally verifying property specifications during program execution. Runtime verification
has gained significant interest from the research community and there are increasingly
broad uses of Runtime Verification (RV) in software development and analysis, as re-
flected, for example, by abundant approaches proposed recently ([14, 10, 4, 19, 1, 6, 7,
13, 8, 20] among others).

Runtime verification systems typically take a possibly unsafe system as input to-
gether with specifications of events and desired properties, and yield as output a modi-
fied version of the input system which checks the input specification during its execution,
possibly triggering recovery code if specifications are violated. Fig. 1 illustrates this by
means of an example using the state-of-the-art monitoring system JavaMOP [20, 15].
An event is an abstraction of an action of interest (method invocation, field access, etc.)
that occurs during program execution. A trace is a finite sequence of events, and a prop-
erty (specification) is a formal description of a set of (desired or undesired) traces. The
specification in Fig. 1 has three parameters (line 1): m, c and i. These are bound to con-
crete objects provided by events at runtime. For example, the event getI defined on

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 285–300, 2014.
c© Springer International Publishing Switzerland 2014
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1 Map_UnsafeIterator(Map m, Collection c, Iterator i) {
2 creation event getC after(Map m) returning(Collection c) :
3 ( call(Set Map+.keySet()) || ... ) && target(m) {}
4 event getI after(Collection c) returning(Iterator i) :
5 call(Iterator Iterable+.iterator()) && target(c) {}
6 event modifyM before(Map m) :
7 ( call(* Map+.clear*(..)) || ... ) && target(m) {}
8 event modifyC before(Collection c) :
9 ( call(* Collection+.clear(..)) || ... ) && target(c) {}

10 event useI before(Iterator i) :
11 ( call(* Iterator.hasNext(..)) ||
12 call(* Iterator.next(..)) ) && target(i) {}
13
14 ere : getC (modifyM | modifyC)* getI useI*
15 (modifyM | modifyC)+ useI
16
17 @match { print("Map was modified while being iterated"); }
18 }

Fig. 1. A JavaMOP specification Map_UnsafeIterator

lines 4–5 is fired when the iterator() of an Iterable implementation is invoked,
and carries two concrete objects that c and i are bound to. The property, given as an
extended regular expression (ERE) (lines 14–15), specifies bad behaviors. The @match
handler (line 17) says what to do when a trace matches the pattern, i.e., when a map
is modified while being iterated. Handlers can contain any code, for example, error re-
covery code.

Despite the usefulness of runtime verification, we believe there are a few hurdles that
make developers or users reluctant to use RV systems in practice:

1. It is not easy to write specifications for RV systems to check against;
2. Even if the specifications are available, existing RV systems usually incur large

overhead when checking multiple properties simultaneously in real world software.

We next introduce background knowledge and elaborate on the points above in detail.

Lack of Specifications: specifications are key to runtime verification. However it is not
easy to produce correct specifications, as it requires a deep understanding of the un-
derlying system. There are several hand-written specifications shipped with monitoring
systems, as well as a few specifications produced by automated specification mining
approaches. These face a few common problems: 1) Correctness. Most specifications
are written in ad-hoc ways without rigorous procedures, which make their correctness
questionable; 2) Coverage. Most existing specifications only focus on limited coverage
of the software system; 3) Reusability. Most existing specifications are specific to the
underlying software system. They cannot be applied to different software systems.

High Monitoring Overhead: producing a highly reliable system while maintaining a
low overhead was always a major concern of runtime verification. Most state-of-the-
art monitoring systems employ parametricity to ensure correctness of the monitored
behaviors. Conceptually, parametric monitoring systems maintain a separate trace for
each parameter binding and separately check if each trace matches the pattern. As an
example in Fig. 1, a useI event with an Iterator object i1 does not affect traces
that correspond to the parameter binding where i is bound to i2 while m and c can be
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Fig. 2. Indexing trees for Map_UnsafeIterator

bound to any object, denoted as 〈m �→ ∗, c �→ ∗, i �→ i2〉. Instead of maintaining traces,
an efficient monitoring system, such as JavaMOP, actually uses a monitor instance for
each parameter binding; when an event occurs, it is dispatched to every monitor instance
whose parameter binding contains concrete objects carried by the event. If no such
instances exist and the event is a creation event, a new monitor instance is created.

For fast lookup of monitor instances, JavaMOP employs indexing trees, which pre-
cisely return all the related monitor instances. An indexing tree is a multi-level map that,
at each level, indexes each concrete object of the parameter binding. For example, when
a parameter binding is 〈m �→ m1, c �→ c1, i �→ i1〉 (m is bound to m1, c is bound to c1
and i is bound to i1), one can retrieve the related monitor instance by searching for m1,
c1 and i1 at each level in the 3-level map, shown in the top-left of Fig. 2. However, not
all parameters are always bound; e.g., getI in Fig. 1 does not carry m, which makes
it ineffective to retrieve all the related instances using this map. To handle such case
efficiently, another map, shown in the top-right of Fig. 2, is constructed as well. Unlike
the 3-level map, where a leaf corresponds to one monitor instance, this 2-level map has
a set of instances at each leaf, because there can be multiple parameter bindings that
bind c and i to the same Collection and Iterator.

If an indexing tree holds a strong reference (i.e., an ordinary Java reference) to a
concrete object, this object becomes ineligible for garbage collection, which leads to a
memory leak. To avoid this, indexing trees store only weak references, which enables
the garbage collector to reclaim the referents. Since a weak reference gives indication
that the referent has been reclaimed by returning null, a monitoring system can detect
broken mappings in the indexing trees and clean them up. In addition to indexing trees,
an indexing cache that stores the previously accessed monitor instance(s) is used [20].

Even with the use of indexing trees and weak references, the runtime overhead is
still large when monitoring multiple parametric properties simultaneously. From a thor-
ough profiling of JavaMOP, [16] identifies the main remaining bottleneck to runtime
performance is the excessive memory usage, which is caused by the large size/number
of indexing trees. Indeed, when there are hundreds of properties being monitored and
each property has a few parameters, the total memory and runtime overhead associated
with all the indexing trees will dominate the program execution time. This urges us to
design new techniques to further reduce the number and memory overhead of index-
ing trees.
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In this paper, we aim to address the above problems in order to make runtime verifi-
cation practical. This paper makes the following specific contributions:

– Comprehensive formal Java API specifications: We presented a comprehensive
set (179 in total) of formal specifications which cover four of the most widely used
packages of the Java API. These specifications were manually produced following
rigorous procedures, and are publicly available [3].

– Novel optimization techniques: We re-implemented JavaMOP, separating its mon-
itoring (as a new RV system, RV-Monitor) from its event firing (as an AspectJ
front-end of RV-Monitor). We employ a series of techniques to make RV-Monitor
more efficient, especially when monitoring multiple properties simultaneously. Our
techniques can also be easily adopted by other RV systems, such as MOPBox.

– Large scale evaluation: We monitored all the Java API specifications we produced
with RV-Monitor against the DaCapo [5] benchmark suite. Results show that RV-
Monitor is capable of finding property violations (potential bugs) in DaCapo while
monitoring hundreds of properties at the same time. Our comparison also shows
that RV-Monitor runs substantially faster than other monitoring systems.

2 Formal Specifications from the Java API Specification

Almost all Java programs make use of the Java API. Moreover, misuses of the Java API
can result in runtime errors or nondeterministic behavior. It is therefore important to
obey the usage protocols of the Java API. In this section we describe our formalization
of several Java API specifications. All our tools and specifications are publicly available
and can be used and verified by any RV systems [3].

2.1 Java API Specification

A Java platform, such as Java Platform Standard Edition 6, implements various libraries
that are commonly needed to implement applications, such as data structures (e.g., List
and HashMap), and I/O functions (e.g., FileInputStream and FileOutputStream).
Besides such library implementations, a Java platform provides the API Specification,
which describes all aspects of the behavior of each method on which user’s programs
may rely. For example, the API specification for the Map interface states:

If the map is modified while an iteration over the set is in progress ... the results
of the iteration are undefined.

We believe the Java API documentation is a good source for formal specifications.
First of all, the Java API is commonly used by virtually all Java programs. Thus the
use protocols of those API methods should always be obeyed. Second, the Java API
specification is well written, clearly stating what the correct/incorrect usage of API
methods is. For example, in the above Map specification it can be inferred that any
methods that modify the Map (put(), remove(), etc.) should not be called before
the iteration of the Map is done. Violations of such properties usually indicate a bug or
bad programming practice.

We have carefully read and analyzed the complete Java API documentation for four
of the most commonly used packages: java.io, java.lang,java.net and java.util.
We employed a multi-step approach to formalizing all the specifications in these four
packages and produced 179 formal specifications. Next we describe our approach.
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2.2 Separating Specification-Implying Text

Although the API specification includes contracts (Sec. 2.1), sentences referring to dif-
ferent purposes are mingled in API specifications. As a preparation step, we marked
specification-implying text versus descriptive text using a specially defined javadoc tag.
This facilitates the review of relevant parts when writing specifications (Sec. 2.3).

While it might seem obvious to distinguish between descriptive and specification-
implying text, there are unclear cases. One case is the description of conditions involv-
ing external environments. Here is an example for the FileOutputStream constructor:

If the file exists but is a directory rather than a regular file, does not exist but
cannot be created, or cannot be opened for any other reason, then a FileNot-
FoundException is thrown.

We decided to not formalize this property, because the state of the file system can exter-
nally and dynamically change without notifying the RV system and, consequently, it is
impossible to reliably check whether a file can be created or opened.

It is difficult to formalize a specific set of rules that resolves all of the unclear cases,
but the rule of thumb was that a chunk of text is specification-implying only if a desir-
able or undesirable behavior is apparent and it is defined in terms of noticeable events,
such as class loadings, method invocations and field accesses.

2.3 Writing Formal Specifications

For each chunk of text that we marked as specification-implying, we wrote JavaMOP
specifications. We chose the JavaMOP specification syntax because JavaMOP was the
most efficient and expressive, in that it allows us to write a property in various for-
malisms. As shown in Fig. 1, a typical specification contains three parts: a set of event
definitions, a desirable or undesirable behavioral pattern (i.e., property), and a handler
for violations. An event in our specifications is mostly a method invocation, a field ac-
cess, an end of an execution, or a construction of an object. Depending on the pattern,
we chose the most intuitive formalism, among an ERE, a finte-state machine (FSM) or
a linear temporal logic (LTL) formula, for expressing a property. Our handlers simply
output a warning message in case of a violation.

There are some cases where we intentionally did not write formal specifications.
Below we explain such cases with rationales.

Non-monitorable Behaviors. We considered only runtime-monitorable specifications
because we intended to use a RV system; e.g., consider the following:

The implementor must also ensure that the relation is transitive: (x.compareTo(y)
> 0 && y.compareTo(z) > 0) implies x.compareTo(z) > 0.

Although this implies a certain behavior, checking whether it holds is infeasible at run-
time. Not having a means of describing and checking it, we did not write formal speci-
fications for such cases.
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Already Enforced Behaviors. We did not write formal specifications if the desirable
behavior is already enforced by compilers. For example, consider the following, which
states the requirement of InputStream’s subclasses:

Applications that need to define a subclass of InputStreammust always pro-
vide a method that returns the next byte of input.

Java compilers enforce the requirement because read(), the method implied by the
comment, is an abstract method. Such guarantee obviates the need for additional run-
time specifications; thus, we did not formalize such cases.

Internal Behaviors. When all the events in the implied specification are never exposed
to clients (e.g., they are private method invocations or field accesses), we did not write
specifications. For example, consider the API specification for GregorianCalendar.
getYearOffsetInMillis():

This Calendar object must have been normalized.

A specification on this is feasible but useless because user’s programs cannot invoke it
anyway, due to the access control—it is defined as private. We did not write specifi-
cations in such cases because there is no benefit from a user’s perspective.

2.4 Classifying Formal Specifications

Not all violations are equally important; violations of some specifications are harmless
in certain applications and users may want to suppress them. To facilitate such filtering,
we classified our specifications into three groups: suggestion, warning and error. We
use suggestion if a violation is merely a bad practice. If a violation is not necessarily
erroneous but potentially wrong, we use warning. We use the last group, error, if a
violation indicates an error.

3 Scalable Runtime Verification

Many RV systems are able to monitor one property efficiently. However, to make run-
time verification practical, an RV system should be able to efficiently monitor multiple
properties simultaneously. In this section we present our optimizations to reduce run-
time overhead. Since JavaMOP was the most efficient RV system when this paper was
written, we built upon several of its optimizations, especially upon its indexing tree idea.
Most of our techniques focus on making the indexing tree accesses faster, which reduce
the monitoring overhead when multiple properties and monitor instances are present.

Note that the idea of using indexing trees and caches for managing multiple monitor
instances is commonly used among other RV systems. For example, MOPBox uses
JavaMOP’s indexing algorithm to map variable bindings to monitors. We believe our
improvement of JavaMOP, such as the merging of indexing trees, can also be directly
applied to other RV systems and can indirectly inspire other systems, such as the more
general RuleR or Eagle [4, 9]. Besides, some other systems propose static analysis on
top of the JavaMOP technique; those systems will also benefit from our techniques.
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3.1 Global Weak Reference Table

Even monitoring a single specification causes multiple weak references for a single
object in JavaMOP because it constructs multiple indexing trees for a specification and
each indexing tree stores its own copy of the weak reference. From the specification
shown in Fig. 1, for example, JavaMOP can create four weak references for a single
Collection object: one at the second level of the top-left tree, another at the first level
of the bottom-left tree, and so forth in Fig. 2.

When multiple specifications are monitored, redundancy is more severe because
JavaMOP creates separate indexing trees for each specification. That is, indexing trees
for another specification create their own (possibly multiple) weak references for the
same object, in addition to those already created for the first specification. For exam-
ple, both Map_UnsafeIterator and Iterator_HasNext—it states that Iterator.next()
should not be called without checking for the existence of the next element—create their
own weak references to the same Iterator objects.

We avoid such intra/inter-specification redundancy by employing a global weak ref-
erence table (GWRT) that stores only one weak reference for each distinct object. As
in string interning, however, keeping only one copy requires extra computation for
creation—it is necessary to check whether or not a weak reference for the given object
has been previously created, in order to guarantee uniqueness of weak reference. To
eliminate redundancy with little performance compromise, we use a separate GWRT
for each parameter type; e.g., three GWRTs will be used by Map_UnsafeIterator. A
GWRT functions as a dictionary where a concrete object is used as a key and a weak
reference is used as a value. That is, this table allows one to retrieve the weak reference
associated with the concrete object. Since this table is globally shared among all specifi-
cations and a key can appear at most once in it as in other typical dictionaries, it allows
only a single copy of weak reference for each object.

While the GWRT may seem to be the same as any other hashtable with weak refer-
ence values, its internal structure is further optimized to reduce memory consumption.
First, it does not hold a strong reference to a concrete object, which would cause mem-
ory leaks. More importantly, this table does not actually store pairs of objects and their
weak references; only weak references are stored because one can retrieve the object
from the weak reference by invoking WeakReference.get(). Fast lookup, achieved
using a hash function, is still viable by locating the slot based on the hash value of the
object and searching weak references in the slot.

We further reduce the memory overhead incurred from GWRTs by merging them
with the first levels of indexing trees. The first level of an indexing tree holds all the
weak references to the objects of a certain type, as does the GWRT for that type.
Therefore, the GWRT can be embedded in the first level of the indexing tree, with-
out losing any weak reference, introducing wasted space, or compromising fast lookup.
The GWRT for Map, for example, is embedded in the first level of the top-left tree
in Fig. 2, which holds entries for all the weak references, one per each Map object.
Embedding eliminates all memory overhead of said GWRT. Most GWRTs can be em-
bedded because RV-Monitor needs to create indexing trees with many different types.
For example, RV-Monitor creates at least one indexing tree for each parameter type
for Map_UnsafeIterator, as shown in Fig. 2, which allows the three GWRTs to be
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embedded. In our experiments, all GWRTs were embedded when the 137 specifica-
tions from [18] were monitored simultaneously. However, there are some theoretical
cases where embedding is not possible.

Moreover, reducing the number of invocations of System.identityHashCode()
is also beneficial. Therefore, a subclass of the WeakReference class, Java’s weak ref-
erence implementation, was created in such a way that the hash value of the referent
is computed at most once and then stored in a dedicated field by the constructor. This
subclass is used in place of the WeakReference class in both GWRTs and indexing
trees. With this subclass, calls to System.identityHashCode() can be replaced by a
field access, which is less expensive, at the cost of adding one int field to each weak
reference. Adding this field to each weak reference does not cause a significantly larger
expenditure of memory because only a single weak reference is created for each distinct
object thanks to GWRTs.

Another benefit of GWRTs is that it is easier to check if there exists a monitor in-
stance referring to a given object. Because a GWRT holds all the weak references of
one type, the lack of the weak reference for an object implies that none of specifications
have created any monitor instance for that object. For this reason, when handling a non-
creation event (see Section 1), we can safely skip the other steps of monitoring if there
are no weak references for every parameter carried by the event. In contrast, JavaMOP,
where indexing trees are separately created for each specification, must check indexing
trees for each specification that shares a given event.

3.2 Caches for the Global Weak Reference Table

GWRTs are frequently accessed because weak references for each parameter object
bound in a given event must be retrieved. As a result, optimizing this data structure has
a large impact on performance. We first reduce the number of accesses to a GWRT
by extending each indexing cache. Temporal locality is often exhibited in the access
patterns of objects related to monitoring a given specification. For example, consider
a specification that formalizes a resource management pattern on the Reader class: “a
reader can perform the read operation until it is closed.” While monitoring this specifi-
cation, it is likely that there would be a long sequence of read() calls on a particular
Reader object until close() is called. To utilize such locality, JavaMOP already has
an indexing cache that stores the recently accessed monitor instance(s).

While this cache allows for quick retrieval of the monitor instance(s), weak refer-
ences for all of the parameter objects associated with those instance(s) are often nec-
essary during the process of updating said instance(s). Quick retrieval of a monitor
instance followed by retrieving weak references for every single parameter object from
the GWRT would be contrary to the whole purpose of the indexing cache. We therefore
extended the indexing cache in such a way that, when it caches monitor instance(s),
it also caches the weak references that point to the parameter objects bound by those
monitor instance(s). As a result, when an event carries the recently handled objects,
the indexing cache can return not only the relevant monitor instance(s) but also weak
references, without the need to consult the GWRT for each bound parameter object.

Second, we add to each GWRT a cache, called the GWRTCache, which is used to
store recently requested weak references. As stated previously, multiple specifications
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Fig. 3. Indexing trees for Map_UnsafeIterator after combining

commonly share event definitions, thus a single method invocation can trigger multiple
events, one per each specification. For example, an invocation of Reader.read() trig-
gers not only an event of the aforementioned resource management specification but
also the “mark/reset” specification: “a reader’s mark position, set by Reader.mark(),
is invalidated after reading the specified number of bytes.” Without the GWRTCache,
when read() is invoked on an unprecedented Reader object, indexing caches for both
specifications will miss—while handling the two events—and both caches would query
the GWRT for the Reader object, in order to create or retrieve the weak reference
(whichever request occurs first will create the weak reference). Using the GWRTCache,
however, the first miss causes this cache to hold the created Reader object and, con-
sequently, a hash lookup in the GWRT for each subsequent request is replaced by a
lookup in this cache, which is faster.

3.3 Combining Indexing Trees

As we mentioned in Section 1, monitoring a real program causes millions of monitor
instances and, consequently, the size of indexing trees becomes large because
they store references to monitor instances at leaves. In the presence of hundreds of
specifications, the size of indexing trees is likely to become even larger, causing ex-
cessive memory overhead. To mitigate such overhead, we combine indexing trees origi-
nating from the same specification, if they share the same prefix; e.g., indexing trees
for 〈Collection, Iterator〉 and 〈Collection〉 are combined, but trees for 〈Map,
Collection, Iterator〉 and 〈Collection, Iterator〉 are not.

Consider the indexing trees for 〈Collection,Iterator〉 and 〈Collection〉, shown
in Fig. 2. Since both trees index all the Collection objects at the first level, their first
level maps contain the exactly same keys (i.e., weak references); the only difference is
that, by the same key, a second level map is mapped to in the first tree, whereas a set
of monitor instances is mapped to in the second tree. We combined these two trees by
allowing a second level map and set of monitor instances pair to be mapped to by a key,
as shown at the bottom tree of Fig. 3. Choosing which part of the pair can be done de-
pending on whether or not a Collection object is carried by an event. Three indexing
trees, shown at the top of Fig. 2, are also combined into one tree, shown at the left top
of Fig. 3, similarly. By combining compatible trees, only three trees, out of six, remain
as shown in Fig. 3.
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3.4 Fine-Grained Locking

JavaMOP uses one global lock throughout all the operations for handling an event,
which may involve multiple GWRT accesses and indexing tree lookups. This can signif-
icantly hinder concurrent execution in the presence of multiple specifications because
it is likely that more events occur simultaneously.

To reduce this hindrance, we remove the global lock, and instead use fine-grained
locking given that each of the GWRTs and indexing trees is independently accessed.
First, we synchronize each GWRT separately because GWRTs do not interfere with
each other. This enables multiple threads to run concurrently, unless they handle the
same type of parameters—recall that one GWRT is created for each parameter type.
Second, we synchronize each level of an indexing tree separately. For example, con-
sider a getC event in Fig. 1, which brings two parameters: m and c. When looking up
the left tree in Fig. 3 for retrieving monitor instances corresponding to the provided pa-
rameters, we first acquire a lock corresponding to the first level. On retrieving the node
at the second level according to the object bound to m, we immediately release the lock.
This way, another request on the first level of this tree can be served with relatively
short delay.

In order to promote concurrent execution further, we moved to thread-local storage
(TLS) two caches: the cache in each indexing tree and the GWRTCache in each GWRT
(Section 3.2). This is based on the observation that most objects bound to parameters are
solely used in a single thread. With this change, if a request is served by the cache, no
synchronization is performed, at the cost of adding a few cache entries to each GWRT
and each level of indexing trees, per thread.

4 Implementation and Evaluation

In this section we describe our implementation of RV-Monitor and evaluate the correct-
ness of all our formal specifications as well as the performance of RV-Monitor.

4.1 Implementation

We have developed RV-Monitor in such a way that it can be used as a universal plat-
form for building various monitoring systems. To achieve this, we re-implemented
JavaMOP and separated event monitoring functionality from event firing functionality.
RV-Monitor implements only the common and indispensable monitoring functionality-
such as listening to events and triggering handlers when a pattern matches. Using
RV-Monitor, one can generate a monitoring library that exposes an interface—more
specifically, a set of methods, each of which corresponds to an event definition—for
listening to events. One can then monitor a program by notifying the library of events;
i.e., inserting invocations of such methods either manually, or systematically using in-
strumentation tools. Having this separate system enables one to write a specification in
terms of virtually any event, from method invocation to monitor (in the context of lock-
ing) wait, using diverse means, such as bytecode instrumentation or JVMTI. No matter
how events are fired, monitoring can be efficient because it is entirely delegated to the
code generated by RV-Monitor.
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We also re-implemented the event firing functionality of JavaMOP as an AspectJ
front end of RV-Monitor. All the original JavaMOP specifications can be translated into
simple AspectJ code. Inside those AspectJ code, RV-Monitor event monitoring library
methods are now called. The AspectJ front end of RV-Monitor enables us to easily
compare the performance of RV-Monitor with JavaMOP.

4.2 Correctness of Formal Specifications

The correctness of specifications is vital, because incorrect specifications would miss
bugs or give out false alarms. However there is no silver bullet to guarantee the cor-
rectness of specifications other than careful inspection and thorough testing. All of our
specifications were reviewed by at least two authors who are knowledgeable about Java.
In addition to peer review, we wrote small defective Java programs and tested if the
formal specification can reveal violations. We have written more than 100 (publicly
available) small programs in total, and all the tests revealed the inserted defects, which
brings evidence that these specifications are capable of detecting errors. All our specifi-
cations and tests can be found at [3].

4.3 Runtime Overhead

Comparison with JavaMOP. To measure the efficiency of RV-Monitor, we compare
the overhead of RV-Monitor (with the AspectJ front end) with that of the latest version
of JavaMOP (v2.3). We chose JavaMOP because, at the time of writing this paper, it
was the most efficient system, to the best of our knowledge. All our experiments were
conducted on Sun Java SE 6 (build 1.6.0_35) under a system with a 3.5 GHz Intel Core
i7 and 32GB of memory running Linux 3.2.

We collected the execution time for each benchmark, as shown in Table 1, under
a steady state using DaCapo 9.12’s -converge option. We took the average time of
the last five runs. The “Original” column shows the unmonitored runs of benchmarks,
whereas the other columns show the monitored runs with all the specifications. The
“overhead” columns indicate the percentage overhead.

In average, the percentage overhead of RV-Monitor is less than half of that of Java-
MOP. In particular, improvement was significant for four benchmarks that caused ex-
cessive overheads under JavaMOP; avrora, lusearch, pmd and xalan under JavaMOP
respectively showed 150%, 654%, 797% and 2,968% overheads, but they caused only
22%, 420%, 261% and 97% overheads under RV-Monitor. On one benchmark, fop, RV-
Monitor was noticeably worse. This is because fop is single-threaded, and RV-Monitor
has been geared toward increasing concurrency, such as fine-grained locking and thread-
local storage (TLS) caches (Section 3.4), which are beneficial to multi-threaded pro-
grams but may end up adding extra computation when concurrency is not needed.

Note that in xalan, RV-Monitor performs much better than JavaMOP. The reason is
that the program itself is computation intensive. Many monitor instances are created
and used only once, incurring a large memory overhead with JavaMOP. Therefore, RV-
Monitor is able to greatly reduce the overhead by merging indexing trees and using
global caches. If we exclude this program, the average overhead of RV-Monitor will
be 143%, still better than JavaMOP with 163%. We believe the DaCapo benchmark has
been conceived as a whole, to test various aspects of the language, and established itself
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Table 1. Execution time and the number of allocations during execution

Benchmark Original JavaMOP† RV-Monitor MOPBox

time (s) time (s) overhead time (s) overhead times (s) overhead GCs

avrora 4.55 11.36 150% 5.55 22% >600 - 142
batik 0.80 0.96 20% 1.27 59% >600 - 195
eclipse 10.77 10.51 -2% 10.68 -1% >600 - 216
fop 0.23 0.92 300% 1.85 704% >600 - 193
h2 4.59 6.44 40% 10.64 132% >600 - 176
jython 1.33 2.98 124% 3.84 189% >600 - 209
luindex 0.56 0.60 7% 0.57 2% 383.76 68428% 199
lusearch 0.50 3.77 654% 2.60 420% >600 - 111
pmd 1.71 15.34 797% 6.17 261% >600 - 198
sunflow 1.31 1.77 35% 1.57 20% >600 - 73
tomcat 1.36 1.36 0% 2.09 54% 1.37 0% 18
tradebeans 6.52 6.33 -2% 6.91 6% 6.84 4% 44
tradesoap 3.88 3.91 1% 3.83 -1% 3.70 -4% 87
xalan 0.38 11.66 2,968% 0.75 97% >600 - 88

Average 364% 140% -

as the most suitable benchmark for runtime verification. Therefore, we think the huge
overhead reduction case shows a big improvement of our technique, not an isolated case.

It should be noted that the runtime overhead may look high, for some benchmarks,
but those cases are extreme: here we monitored programs that intensively use the Java
API against lots of specifications, and this is indeed a challenging task. For example,
most benchmarks emitted millions of events; in particular, avrora, h2 and pmd emitted
32,804,400, 65,647,663 and 48,866,293 events, respectively. In usual cases, however,
one can expect moderate overhead.

Comparison with MOPBox. MOPBox [21] is the most similar RV system to RV-
Monitor. MOPBox [21] requires one to construct an FSM by setting alphabets, states,
and transitions using its API and it does not support other formalisms. Because of that,
we tested only the most heavily used specification in DaCapo, Collection_UnsafeIterator,
which warns if a collection is modified while an iterator is being used.

Table 1 shows the execution time and the number of garbage collections. Even
though only one specification was monitored, most benchmarks barely finished the first
iteration in 10 minutes, except three benchmarks that fire relatively few events: tomcat,
tradebeans and tradesoap. One of reasons for such excessive overhead was memory
consumption: we noticed that an execution under MOPBox triggered garbage collec-
tions frequently as shown in Table 1, whereas that under RV-Monitor triggered merely
at most 5 garbage collections, for each iteration, in the worst case.

Overall, the result shows that the overhead of MOPBox with one specification is by
far more than that of RV-Monitor with 179 specifications. There could be many possi-
ble reasons for the big difference. First, RV-Monitor enables the monitored program to
directly pass parameters to events (through generated AspectJ code), while MOPBox
requires a VariableBinding object to be created for each parameter. This may cause
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Table 2. The number of specifications, violated specifications and violations

Package io lang net util

Severity err. warn. sugg. err. warn. sugg. err. warn. sugg. err. warn. sugg.

# of specs 19 6 5 23 11 14 31 12 1 43 11 3

# of violated specs 3 1 3 2 0 11 1 2 0 6 4 1
# of violations 19 14 12 36 0 4724 3 2 0 14 134 60

extra runtime overhead. Also, MOPBox uses the C+〈X〉 algorithm [8], which is less
efficient than D〈X〉 [8], used by RV-Monitor. Moreover, MOPBox does not use all the
efficient data structures for handling monitor instances, such as indexing trees.

We believe that our comparison with MOPBox, as well as that with JavaMOP, shows
that engineering a high-performance runtime verification system for parametric specifi-
cations is a highly challenging task.

4.4 Bug Finding

Runtime monitoring is capable of finding bugs and bad practices even from widely
used benchmarks. Compared with JavaMOP, RV-Monitor is able to monitor all the
properties simultaneously on large programs, makes it practical for finding bugs. Table 2
summarizes the number of specifications, the number of violated specifications, and the
number of violations for each severity level from all the benchmarks of DaCapo 9.12.
When we counted the number of violations, we counted all violations caused by the
same call site as one. Here we focus on the violations of specifications that are marked
as error and warning among thousands of violations.

Reader_ManipulateAfterClose, which warns if a read operation is performed after
a Reader object has been closed, was violated by 13 out of 14 benchmarks of DaCapo.
In fact, read() failed and the reader was immediately closed, but read()was invoked
again on that closed reader. The latter read() call was reached because the exception
raised at the first failure was discarded by a method and it returned as if there were no
errors. Since the Reader implementation raises IOException anyway and it is properly
handled, this violation does not result in a notable failure. Nevertheless, we believe it is
a bad practice to rely on an exception even when a violation is predictable.

ShutdownHook_LateRegister, which warns if one registers or unregisters a shut-
down hook 1 after the Java Virtual Machine (JVM)’s shutdown sequence has begun,
was violated by h2—this program attempted to unregister a shutdown hook. One may
think that such attempt would be safe as long as the resulting exception is properly
handled, but it is unsafe because registered hooks are started in unspecified order and,
consequently, the hook to be unregistered may have been already started.

Collections_SynchronizedCollection, which warns if a synchronized (thread-safe)
collection is accessed in an unsynchronized manner, was violated by jython. This pro-
gram created a synchronized collection, using Collections.synchronizedList(),
but iterated over the collection without synchronizing on it, which may result in non-
deterministic behavior, according to the API specification.

1 According to the API specification, a shutdown hook is an initialized but unstarted thread.
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Besides these violations that imply notable problems, we also found many minor yet
informative violations that static analysis might not be able to detect. One such example
is a violation of Math_ContendedRandom, which recommends one to create a separate
pseudorandom-number generator per thread for better performance if multiple threads
invoke Math.random().Another example is StringBuffer_SingleThreadUsage, which
checks if a StringBuffer object is solely used by a single thread. To detect such vi-
olations without false positives, it is necessary to accurately count how many threads
access an object or a method, which is impossible for static checkers in full generality.

4.5 Ineffectual Approaches

In this section, we discuss some ineffectual approaches that we have tried while improv-
ing the scalability of parametric monitoring. Although they turn out to be ineffectual for
parametric monitoring, some of them might be useful in different settings or they might
inspire new effectual ideas.

Combining Indexing Trees between Specifications. As mentioned in Section 3.3, we
combine indexing trees only within each specification. If we combine indexing trees for
different specifications, as well, we can reduce the number of indexing trees even more.
However, there is a lot of wasted space in the combined indexing tree. For example, an
indexing tree A maps p1 to m1 and p2 to m2, and another indexing tree B maps p2 to
m3 and p3 to m4. The combined indexing tree of A and B will map p1 to (m1,∅), p2 to
(m2,m3), and p3 to (∅,m4). All empty spaces indicated by ∅ will be wasted while the
indexing trees A and B do not have empty space. More memory overhead from wasted
space triggers more garbage collection, slowing down the monitoring.

Enhanced Indexing Cache. The indexing cache provides faster retrieval of monitors
from the indexing tree. There are several ideas to improve its hit ratio. We can apply a
multi-entry cache from Section 3.2. Also, we can cache not only monitors but also lack
thereof to save searching the indexing tree for nothing. However, since the indexing
cache already has a high hit ratio, these enhancements do not improve the ratio enough
to justify their overhead.

Indexing Tree Cleaning by GWRT. Since we can manage all weak references for each
parameter type in one place, the GWRT, we can let the GWRT clean up the indexing
trees. In this way, we can remove garbage collected parameter objects from all indexing
trees at once, eliminating the need for partial cleanups. Note that partial cleanups could
occur even when there is no garbage collected parameter object. We can also have a
bit map in the weak reference to indicate to which indexing trees the referent belongs
so that we need check only the indexing trees that actually contain it. However, this
approach only moves cleanup costs from indexing trees to the GWRT, showing no
improvement. The cleanup by the GWRT is more effective because it knows which
weak references should be removed. However, cleaning up from outside of the indexing
tree costs more because we must locate the entry before we can remove it.

Statistics-Based Indexing Tree Cleaning. As mentioned previously, partial cleanups at
indexing trees can occur even when there are no garbage collected parameter objects.
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Since we have the GWRT, we can keep statistics about garbage collected parameter
objects and use it for deciding whether to trigger a partial cleanup. However, in most
cases, there are garbage collected parameter objects. Saving a relatively small number
of partial cleanups does not compensate the overhead necessary.

5 Related Work

Producing Specifications. Many automated specification mining approaches [2, 12,
11, 17] has been proposed to reduce the considerable human effort in writing specifica-
tions. Unfortunately, they tend to have a few problems in general. First, many of them
require or assume non-trivial inputs to yield a meaningful specification [2]. Second,
many approaches support only very particular properties [12, 11]. Last but not least,
most of them do not guarantee correctness of their results [17].

Monitoring Specifications. Many approaches have been proposed for runtime verifica-
tion [10, 4, 19, 1, 6, 7, 13]. Most of them do not focus on reducing the overhead of mon-
itoring multiple properties simultaneously. Recently Purandare et al. [22] presents the
first study of overhead arising during the simultaneous monitoring of multiple
finite-state machine (FSM) specifications. Their approach reduces runtime overhead by
merging FSM monitors into bigger monitors, resulting in significant runtime overhead
reduction (∼50%) over JavaMOP v2.1; it is unknown how that compares with the more
recent JavaMOP v2.3, which added several optimizations over v2.1 that minimize the
number of created monitors. Their monitor-merging idea is orthogonal and complemen-
tary to ours techniques of merging indexing trees and using global caches, as our tech-
niques do not take into account the internal structure of each monitor.

Except for that work, most existing monitoring systems are not capable of handling
multiple specifications simultaneously, or have rudimentary support, considering each
specification separately. Since each specification is individually handled, the runtime
overhead for running them simultaneously is likely to be at least the summation of
the overheads of running each in isolation. In fact, our preliminary experiment with
JavaMOP (v2.3) showed that the overhead of monitoring several specifications simulta-
neously is higher than the summation of the overheads of monitoring each in isolation,
probably because more memory pressure and less cache hit.

6 Conclusion

Runtime verification has not been widely adopted by developers and users, mainly be-
cause of lack of usable specifications and large runtime monitoring overhead. In this
paper we have presented a set of 179 formal specifications covering most commonly
used Java packages. We have also employed a series of techniques to decrease run-
time overhead of monitoring multiple properties simultaneously, which resulted in a
new monitoring system, RV-Monitor. Results showed that: 1) our specifications help
finding bugs or bad practice coding in real world benchmarks; 2) our techniques make
RV-Monitor runs significantly faster than other state-of-the-art RV systems.
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Abstract. Dynamic detection of program invariants infers relationship
between variables at program points using trace data, but reports a large
number of irrelevant invariants. We outline an approach that combines
lightweight static analysis with dynamic inference that restricts irrele-
vant comparisons. This is achieved by constructing a variable dependence
graph relating a procedure’s input and output variables. Initial experi-
ments indicate the advantage of this approach over the dynamic analysis
tool Daikon.

Keywords: program invariants, dynamic inference, variable dependence
graph.

1 Introduction

Dynamic inference of program invariants analyzes trace data to infer likely in-
variants at program points. Inferred invariants are generally instantiated from
templates relating program variables. The Daikon tool [1,2] infers program in-
variants in the form of unary (x = k, x �= 0), binary (x ≥ y), etc. relationships
between variables. This simple yet effective approach of inferring relations from
trace data has found many applications as in [3,4]. Dynamically inferred invari-
ants have been used to summarize procedures [5,6], improve test suites [7], etc.

While dynamic analysis scales in general, there are two issues of concern:(i)
the large number of invariants reported by the analysis, and (ii) irrelevant com-
parisons between variables, leading to over-fitting or imprecision. Both issues
can affect the subsequent application of inferred invariants, in particular where
correctness of the inference matters. To tackle the large number of inferences,
Daikon allows the user to specify filters enabling/disabling families of invari-
ants, statistical justification, pruning redundant ones using logical implications
and some other heuristics. Using statistical justification, Daikon checks if some
threshold of samples have been observed for each candidate invariant. Redun-
dant ones are identified and suppressed using various heuristics e.g. whenever
both a==b and a-1==b-1 hold, the latter redundant candidate is suppressed
[1]. Nevertheless, it still reports a large number of invariants [5,6,8] forcing users
to figure out other means of filtering such invariants.
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A more serious issue is that of reporting irrelevant comparisons e.g. shoe size

< age that may escape Daikon’s heuristics. We have found such irrelevant com-
parisons almost always getting falsified by some valid test case. Even when such
comparisons turn out to be true, they are often uninteresting. A dynamic type
inference-based component within Daikon, called DynComp [9], attempts to re-
duce irrelevant comparisons. DynComp achieves this by bucketing variables based
on their inferred abstract type. However, once the variables are bucketed, Daikon
still blindly explores large number of combinations of these variables sharing the
same abstract type to report potential invariants.

When subjected to a correctness check as in [6,10], many of the inferred invari-
ants get falsified. While dynamic analysis is known to be unsound and dependent
on the test suite quality, it is desirable that the analysis reports likely invariants
such that as few as possible get falsified. Irrelevant comparisons are closely re-
lated to this set of falsified invariants, as we have observed experimentally. Note
that when a decision procedure is invoked to prune the set of inferred invariants
over the program code, it is desirable to minimize calls to the solver.

We propose to address these issues by using statically obtained program in-
formation in the form of a variable dependence graph [11]. Intuitively, a vari-
able dependence graph (VDG) allows to discover input-output relations between
variables.

1.1 Motivating Example

As an example, consider the procedure in figure 1(a), adapted from [9]1. Dyn-
Comp analysis buckets variables price, tax, shippingFee, returnValue to-
gether, while separating variables miles and year into different buckets2, as
shown in figure 2(a). With random inputs to variables miles, price, tax,
Daikon reports invariants at the exit of procedure totalCost, shown in fig-
ure 1(b)3.

Consider invariants 7, 8 and 10: they share the same abstract type yet can
be falsified with suitable inputs. Purely from a correctness point of view, we
consider these as irrelevant comparisons. We propose to reduce such comparisons
by referring to the VDG of the procedure, shown in figure 2(b). We obtain a
VDG for each modified (i.e. output) variable of the procedure at the exit point.
We propose a set of heuristics for variable comparisons based on the VDG,
one of which is: compare a variable with those in its VDG. With this heuristic,
our technique reports only relevant comparisons as potential invariants, namely,
invariants 9 and 11-13 from figure 1(b).

Intuitively, such invariants have a better chance of being proven as correct, as
the comparison is more meaningful compared to trying all possible pairs when,
statistically, all pairs appear justified.

1 We have converted the arguments of totalCost to globals.
2 Comparability values are 1,2,3 respectively.
3 Without DynComp mode, Daikon reports 22 invariants.
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int miles, price, tax;

int totalCost() {

int year = 2006;

if ((miles > 1000)

&& (year > 2000)) {

int shipFee = 10;

return price + tax + shipFee;

} else

{

return price + tax;

}

}

(a)

0) miles == orig(::miles)

1) price == orig(::price)

2) tax == orig(::tax)

3) year == orig(::year)

4) shipFee==orig(::shipFee)

5) year == 2006

6) shippingFee == 10

7) price > ::tax

8) price > ::shippingFee

9) price < return

10) tax <= ::shippingFee

11) tax < return

12) shippingFee < return

13) price+tax-return+10==0

(b)

Fig. 1. Example C procedure from [9] and invariants reported by Daikon+DynComp

Fig. 2. (a) DynComp-based variable bucketing (b) VDG

2 Relating VDG to Invariants

Given the program dependence graph (PDG) for a procedure and reaching def-
initions at the procedure exit, we can obtain the VDG for each output variable.
This requires locating the nodes corresponding to the reaching definitions and
traversing the PDG to identify control and data dependencies, akin to slicing.
The VDG obtained for the return value of the procedure in figure 1(a) is illus-
trated in figure 2(b), with labels c,d on the edges representing control and data
dependency.

We now present heuristics for relating variables using VDG to infer potential
invariants.

– For binary invariants, pair the variable with one in its VDG having data
dependency. Such comparisons relate the procedure’s output variables with
inputs. This heuristic particularly reduces comparisons between variables
within a bucket, which we have experimentally observed to be irrelevant, as
seen for the example in figure 1(a).
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– For binary invariants, compare output variables only when they share inputs.
Reporting comparisons in the absence of common inputs is another source
of irrelevant invariants, as suggested by our experiments.

– For conditional invariant p ⇒ q, use control dependency to obtain p and data
dependency to obtain q. Daikon supports a notion of conditional invariant
inference of the form p ⇒ q where p is a branch condition in the program.
This heuristic allows to generalize conditional invariants by investigating the
VDGs of p, q.

These heuristics seek to reduce noise in the dynamic analysis, over and above
Daikon’s statistical justification measures and abstract type inference. The au-
thors note in [9] that the bucketing corresponds to variables obtained via (static)
slicing (but without control dependencies). A VDG is similar to a slice. While
type inference buckets related variables, we feel the bucket sizes can be large for
programs with tens and hundreds of variables, again leading to large number of
invariants with irrelevant comparisons. The VDG analysis combined with our
heuristics can be seen as imparting structure within the inferred type bucket,
helping to restrict such comparisons. Our initial experiments in this direction
are encouraging.

3 Experiments

We built a prototype tool to validate some of our heuristics on small examples.
We chose benchmark code from [13], with invariants inferred at exit point of
an arbitrary single function in the code. The static analysis component of the
tool utilises Prism [12] to build VDGs for procedures. The dynamic analysis
component implements a subset of Daikon’s invariant detection template (unary,
binary, range) and reports invariants, given trace data.

Table 1 presents the results of our experiments. The table reports number
of invariants inferred and falsified by Daikon with DynComp mode and our
tool using the VDG approach, respectively. For a fair comparison, we restricted
Daikon’s invariants to match the template set implemented in our tool. Invari-
ants were checked for correctness using the CBMC model checker. The VDG
construction is a one-time activity and the time taken on this set of benchmark
code was a small fraction of the time taken by the decision procedure.

From the table, our tool appears to report lesser number of invariants mainly
because we suppress var==orig(var) family of invariants, whenever we can
statically figure out that var is unmodified in the procedure. Our tool reports
these invariants only when var is modified along some path and the relation
holds on the trace data. When Daikon reports these invariants, they may hold,
but are not useful, as seen in figure 1(b). Note that the two techniques can report
slightly different sets of invariants, due to the internal heuristics of Daikon.

Our technique seeks to reduce the number of potentially irrelevant com-
parisons. For this small set of experiments, our technique does better than
Daikon+DynComp. In this set of experiments, we observed we did not miss any
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Table 1. Experimental Results

code
Daikon+DynComp VDG
reported falsified reported falsified

totalCost 14 3 6 1

kundu 4 0 4 0

bist cell 9 4 5 0

pc sfifo3 4 2 1 0

relevant (correct) invariant that Daikon inferred. As this is work-in-progress, we
plan to accumulate more experimental data on larger code size to validate our
hypothesis.

4 Conclusion and Future Work

Identifying (ir)relevant invariants either dynamically or from program text (stat-
ically) remains a challenge. Our technique based on VDG construction offers new
heuristics to combine static and dynamic analysis seeking to reduce irrelevant
program invariants. We plan to conduct more experiments to understand the
tradeoffs in the technique, such as experimenting with the full invariant tem-
plate of Daikon, applying the heuristics on diverse code and analyzing precision
(retaining irrelevant invariants), false positive rate (eliminating relevant invari-
ants) and performance of our technique.

Acknowledgements. The author would like to thank Abhishek Patel, Vishwa
Patel and Divyesh Unadkat for their help in this work.
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Abstract. In this paper we present TTT, a novel active automata learn-
ing algorithm formulated in the Minimally Adequate Teacher (MAT)
framework. The distinguishing characteristic of TTT is its redundancy-
free organization of observations, which can be exploited to achieve op-
timal (linear) space complexity. This is thanks to a thorough analysis
of counterexamples, extracting and storing only the essential refining in-
formation. TTT is therefore particularly well-suited for application in a
runtime verification context, where counterexamples (obtained, e.g., via
monitoring) may be excessively long: as the execution time of a test se-
quence typically grows with its length, this would otherwise cause severe
performance degradation. We illustrate the impact of TTT’s consequent
redundancy-free approach along a number of examples.

1 Introduction

The wealth of model-based techniques developed in Software Engineering – such
as model checking [10] or model-based testing [7] – is starkly contrasted with
a frequent lack of formal models. Sophisticated static analysis techniques for
obtaining models from a source- or byte-code representation (e.g., [11]) have
matured to close this gap to a large extent, yet they might fall short on more
complex systems: be it that no robust decision procedure for the underlying
theory (e.g., floating-point arithmetics) is available, or that the system performs
calls to external, closed source libraries or remote services.

Dynamic techniques for model generation have the advantage of providing
models reflecting actual execution behavior of a system. Passive approaches
(e.g., [21]) construct finite-state models from previously recorded traces, while
active techniques (e.g., [2]) achieve this by directly interacting with (“querying”)
the system. In this paper, we focus on the latter; in particular, we consider
Angluin-style active automata learning [2], or simply active automata learning.

Active automata learning allows to obtain finite-state models approximat-
ing the runtime behavior of systems. These models are inferred by invoking
sequences of operations (so-called membership queries) on the system, and ob-
serving the system’s response. The technique relies on the following assumptions:

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 307–322, 2014.
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Fig. 1. Active automata learning setup with monitoring in the loop

– the set of operations that can be invoked has to be known a priori (e.g., from
a public API),

– the reaction of the system to a membership query must be observable,

– the system has to behave deterministically, under the chosen output abstrac-
tion, and

– a way of resetting the system is required, i.e., subsequent membership queries
have to be independent.

While some of these assumptions seem rather strong, the work of Cho et al. [8]
on inferring botnet protocols has shown that active learning is a viable technique
for obtaining useful models even in highly adverse scenarios.

A practical problem is that Angluin-style automata learning relies on coun-
terexamples for model refinement, which are to be provided by an external source.
Without such counterexamples, the inferred automata usually remain very small.
Bertolino et al. [5] have thus suggested to combine active learning with moni-
toring, continuously validating inferred hypotheses against actual system traces.
The setup is sketched in Figure 1: a learner infers an initial hypothesis through
queries. The system is further instrumented to report its executions during reg-
ular operation to a model validator component in real-time. This component
checks whether the monitored traces conform to the model. In case of a viola-
tion, a trace forming a counterexample is reported to the learner, which then
refines its hypothesis.

The problem with this approach is that counterexamples obtained through
monitoring can be very long. In the following section, by means of a simple
example we sketch why virtually all existing active learning algorithms are not
prepared to deal with such long counterexamples.
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open

close
read

chmod rw

chmod ro

chmod ro

chmod rw

open

close

read,write

(a)

open

close

read

chmod ro

chmod rw

(b)

Fig. 2. (a) Example target system, (b) inferred approximation

1.1 Practical Motivation

Consider the behavioral fragment of the system depicted in Figure 2a, repre-
senting a stripped-down version of a resource access protocol. A resource can be
opened, read from, and closed. Reading from and closing the resource is possible
only if it has been opened before. A resource can only be opened if it is closed.
Additionally, it is possible to write to a resource. This requires the access mode
of this resource to be set to read/write previously (chmod rw). It is not possible
to change the access mode of an open resource.

Active automata learning aims at inferring such a behavioral model by execut-
ing test cases and observing the outcome (i.e., whether a sequence of operations
is legal or not). The chmod rw action does not have an immediate effect: to notice
a difference, the resource needs to be opened and then written to. The model
inferred by a learning algorithm might therefore be an incorrect approximation,
as depicted in Figure 2b. If writing is a rare operation compared to reading, this
incompleteness will go unnoticed for a long time. Only if the access mode is set
to read/write and the resource is opened and written to, our hypothesis will fail
to explain the observed behavior.

If we validate the inferred model by monitoring the actual system, the causal
relationship between these three events might not at all be easily identifiable
from a counterexample trace. Consider the following trace, not supported by the
hypothesis in Fig. 2b:

prefix︷ ︸︸ ︷
open read close open read close chmod rw open read close open read close open write︸ ︷︷ ︸

suffix

When presented with such a counterexample, a learning algorithm needs to
incorporate the contained information into its internal data structures. Most
algorithms implement a variant of one of the following strategies: they identify
that the chmod rw transition in Figure 2b is wrongly routed, as a subsequent
execution of the suffix part yields a different outcome than executing the suffix
only (i.e., from the initial state). Rivest&Schapire’s algorithm [26], for example,
will add the suffix part to its internal data structures. Other algorithms, such as
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Maler&Pnueli’s [22] or NL∗ [6], will even add all suffixes of the counterexample
to their data structures.

Alternatively, a learning algorithm might recognize that the prefix part corre-
sponds to a state not yet reflected in the hypothesis, as a subsequent execution
of the single action write is successful. Kearns&Vazirani’s algorithm [20] will thus
identify the new state using the prefix part. The original L∗ algorithm will even
use all prefixes of the counterexample to ensure identification of a new state.

While this increases the space required by the internal data structures, the
much graver issue is that the stored information is used for membership queries
during subsequent refinements. The redundant open read close . . . sequences thus
have to be executed again and again, even if no valuable information can be
gained from them. Furthermore, as these redundancies appear both before and
after the actual point of interest (chmod rw), neither entirely prefix- nor entirely
suffix-based approaches will avoid this problem.

In this paper, we present the TTT algorithm, which eliminates all future
performance impacts caused by redundancies in counterexamples. In particular,
after the refinement step is completed, the internal data structures maintained
by TTT after processing the above counterexample would be completely indis-
tinguishable from those resulting from processing the stripped-down counterex-
ample chmod rw open write.

Outline. After establishing notation in the next section, the main contribution is
presented in Section 3: the description of the novel TTT algorithm, particularly
highlighting the above-described approach. Section 4 reports on the results of
a first experimental evaluation of TTT. Section 5 gives an overview on related
work in the field of active automata learning, before Section 6 concludes the
paper with an outlook on future work.

2 Preliminaries

2.1 Alphabets, Words, Languages

Let Σ be a finite set of symbols (we call such a set a (finite) alphabet). By Σ∗

we denote the set of all finite words (i.e., finite sequences) over symbols in Σ,
including the empty word ε. We define Σ+ = Σ∗ \ {ε}. The length of a word
w ∈ Σ∗ is denoted by |w|. For words w,w′ ∈ Σ∗, w · w′ is the concatenation
of w and w′. Unless we want to emphasize the concatenation operation, we will
usually omit the concatenation operator · and just write ww′.

2.2 Deterministic Finite Automata

As DFA are one of the fundamental concepts in computer science, we will only
give a very brief recount for the sake of establishing notation.

Definition 1 (DFA). Let Σ be a finite alphabet. A deterministic finite automa-
ton (DFA) A over Σ is a 5-tuple A = 〈QA, Σ, qA0 , δA, FA〉, where
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– QA is a finite set of states,
– qA0 ∈ QA is the initial state,
– δA : QA ×Σ → QA is the transition function, and
– FA ⊆ QA is the set of final (or accepting) states.

For a ∈ Σ and q ∈ QA, we call q′ = δA(q, a) the a-successor of q. Slightly abusing
notation, we extend the transition function to words by defining δA(q, ε) = q
and δA(q, wa) = δA(δA(q, w), a) for q ∈ Q, a ∈ Σ,w ∈ Σ∗.

The following shorthand notations will greatly ease presentation. For q ∈
QA, we define the output function λA

q : Σ∗ → {	,⊥} of q as λA
q (v) = 	 iff

δA(q, v) ∈ F for all v ∈ Σ∗. We denote by λA the output function of qA0 . For
the (extended) transition function, we use a notation borrowed from [20]: for
u ∈ Σ∗, A[u] = δA(qA0 , u) is the state reached by u.

We conclude this section with an important property of DFA.

Definition 2 (Canonicity). Let A be a DFA. A is canonical iff:

1. ∀q ∈ QA : ∃u ∈ Σ∗ : A[u] = q (all states are reachable)
2. ∀q �= q′ ∈ QA : ∃v ∈ Σ∗ : λA

q (v) �= λA
q′ (v) (all states are pairwisely separable,

and we call v a separator).

It is well known that canonical (i.e., minimal) DFA are unique up to isomor-
phism [24].

3 The TTT Algorithm

In this section, we will present our main contribution: a new algorithm for ac-
tively inferring DFA. We start by giving a brief recount of active automata
learning, defining the problem statement and sketching common assumptions
and techniques. After this, we will introduce our running example that will ac-
company the explanation of the key steps, given in Section 3.4. We will also use
this opportunity to provide the reader with a high-level idea of the interplay
between TTT’s data structures. Finally, we conclude the section with remarks
on complexity.

3.1 Active Automata Learning in the MAT Model

In active automata learning, the goal is to infer an unknown target DFA A over
a given alphabet Σ. For the remainder of the paper, we fix both the alphabet
and the target DFA A, which w.l.o.g. we assume to be canonical. The entity
confronted with this task is called a learner, and to accomplish this task it may
pose queries to a teacher (also called Minimally Adequate Teacher, MAT) [2].
Two kinds of queries are allowed: the Membership Query (MQ) of a word w ∈
Σ∗ corresponds to a function evaluation of λA(w). Whenever the learner has
conjectured a hypothesis DFA H, it may subject this to an Equivalence Query
(EQ). Such a query either signals success (the hypothesis is correct) or yields a
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Fig. 3. Running example: (a) target DFA A and final hypothesis H2, (b) final discrim-
ination tree T ′′

2 , (c) discriminator trie for final hypothesis

counterexample. A counterexample is a word w ∈ Σ∗ for which λA(w) �= λH(w).
If presented with a counterexample, the learner needs to refine its hypothesis
by asking additional membership queries, to conjecture a subsequent hypothesis
H′. These steps of hypothesis construction/refinement and equivalence checking
are iterated until an equivalence query signals success. Note that in this setting,
the learner is not in control over the appearance of counterexamples.

Many learning algorithms work by maintaining a finite, prefix-closed set Sp ⊂
Σ∗ identifying states in the target DFA A. Each element of Sp corresponds to a
state of the hypothesis H, and vice versa. For q ∈ QH, we call its corresponding
element u ∈ Sp the access sequence of q, denoted by .q/H, and we haveH[u] = q.
We extend this notation to arbitrary words, allowing to transform them into
access sequences: for w ∈ Σ∗, we define .w/H = .H[w]/H.

It is desirable to ensure that distinct prefixes in Sp also correspond to distinct
states in the target DFA A. To accomplish this, the learner maintains a finite
set of distinguishing suffixes (or discriminators) D ⊂ Σ∗. It then constructs Sp
in such a way that, for any distinct pair of prefixes u �= u′ ∈ Sp, there exists a
discriminator v ∈ D such that λA(u · v) �= λA(u′ · v) has been observed through
membership queries. Due to determinism in A, this implies A[u] �= A[u′]. We
denote the set of states of A that the learner has identified (or discovered)
through words in Sp by A[Sp] = {A[u] |u ∈ Sp}.

3.2 Running Example

We will now introduce our running example. We will also use this opportunity
to briefly sketch the ideas behind the TTT algorithm’s organization in terms of
data structures.

Consider the DFA A in Figure 3a, defined over the alphabet Σ = {a, b}. This
DFA accepts words containing 4i + 3 a’s, i ∈ N. The rest of Figure 3 shows
the state of TTT’s eponymous data structures for inferring this DFA as its final
hypothesis.

First, some of the transitions in (a) are highlighted in bold. These transitions
form a spanning Tree, and they correspond to the prefix-closed set Sp maintained
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by TTT; here, Sp = {ε, a, aa, aaa}. Conversely, since paths in a tree are uniquely
defined, the spanning tree itself defines the access sequences of states, and can
be used to compute .·/H. States of the hypothesis correspond to leaves of the
binary tree shown in (b), the discrimination Tree (DT). This discrimination
tree maintains the information on which discriminators in D separate states: for
every distinct pair of states, a separator can be obtained by looking at the label
of the lowest common ancestor of the corresponding leaves. Thus, the labels of
inner nodes act as discriminators (or separators). As they form a suffix-closed
set, they can compactly be stored in a trie [12] – the discriminator Trie, shown
in (c): each node in this trie represents a word, and this word can be constructed
by following the path to the root.1 The root itself thus corresponds to the empty
word ε.

3.3 Discrimination Trees

Discrimination trees (DT) were first used in an active learning context by Kearns
and Vazirani [20]. They replaced the observation table used in previous algo-
rithms [2,26]: whereas an observation table requires to pose a membership query
for every pair (u, v) ∈ Sp × D, a DT is redundancy-free in the sense that only
MQs that contribute to the distinction of states have to be performed.

As can be seen in Figure 3b, a DT T is a rooted binary tree. Inner nodes
are labeled by discriminators v ∈ D, and leaves are labeled by hypothesis states
q ∈ QH. The two children of an inner node correspond to labels � ∈ {	,⊥}: we
call them the ⊥-child (dashed line) and the 	-child (solid line), respectively.

The nature of a discrimination tree is best explained by considering the oper-
ation of sifting a word u ∈ Σ∗ into the tree. Starting at the root of T , at every
inner node labeled by v ∈ D we branch to the 	- or ⊥-child depending on the
value of λA(u · v). This procedure is iterated until a leaf is reached, which forms
the result of the sifting operation. Sifting thus requires a number of membership
queries bounded by the height of the tree.

3.4 Key Steps

In this section, we will present the key steps of TTT. We will use the example
presented in Section 3.2 to clarify the effects of the presented steps. A complete
and thorough description of the algorithm is beyond the scope of this paper. For
technical details, we refer to the source code, which we made publicly available
under the GPL license at https://github.com/LearnLib/learnlib-ttt.

Hypothesis Construction. It has already been mentioned in Section 3.1 that
states are identified by means of a prefix-closed set Sp ⊂ Σ∗. Furthermore, these
states correspond to leaves in the discrimination tree. Using this information,
a hypothesis can be constructed from a set Sp and a discrimination tree T as
follows:

1 This is a slight modification to the usual interpretation of a trie, which considers
paths from the root.

https://github.com/LearnLib/learnlib-ttt
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Fig. 4. Evolution of hypotheses and discrimination trees during a run of TTT: (a) ini-
tial hypothesis H0, (b) initial discrimination tree T0, (c) second hypothesis H1 (insta-
ble), (d) discrimination tree T1 for H1, (e) discrimination tree T2 for final hypothesisH2

showing blocks in blue, (f) discrimination tree T ′
2 after first discriminator finalization

– the initial state qH0 is identified with the empty word ε ∈ Sp.
– transition targets are determined by means of sifting: given a state q ∈ QH

identified by a prefix u ∈ Sp, its a-successor (a ∈ Σ) is determined by sifting
ua into T .

– a state q ∈ QH is in FH if and only if its associated discrimination tree leaf
is in the 	-subtree of the root of T .

In the initial hypothesis H0 and discrimination tree T0, the setup is fairly
simple: the initial state is the only state in the hypothesis, hence Sp = {ε}. As
the corresponding DT leaf is in the ⊥-subtree, q0 is rejecting. Sifting ε · a and
ε · b into T0 results in q0. All transitions therefore form reflexive edges.

Hypothesis Refinement. Key to refining a hypothesis by means of a coun-
terexample, i.e., a word w ∈ Σ+ satisfying λH(w) �= λA(w), is Rivest&Schapire’s
observation [26,28] that w can be decomposed in the following way: there exist
u ∈ Σ∗, a ∈ Σ, v ∈ Σ∗ such that w = u ·a ·v and λA(.u/H a ·v) �= λA(.ua/H ·v).

Such a decomposition makes apparent that the words .u/H a and .ua/H lead
to different states in A (as their output for v differs), but to the same state in
H. Therefore, the state qold = H[ua] needs to be split. In the hypothesis, this
is achieved by introducing a new state qnew with access sequence .u/H a (note
that this preserves prefix-closedness of Sp). In the discrimination tree, the leaf
corresponding to qnew is split, introducing v as a temporary discriminator.

A possible counterexample for H0 could be w = bbbaaabbb, since λA(w) =
	 �= λH0(w). This counterexample contains a lot of redundant information: the
b symbols exercise only self loops in A, and thus do not contribute to the dis-
covery of new states. Part – but not all – of the redundant information will be
eliminated by the first counterexample analysis step, which yields the decompo-
sition 〈bbbb, a, aabbb〉. Hence, a state with access sequence a is added to the next
hypothesis H1 (Fig. 4c), and the corresponding discrimination tree T1 (Fig. 4d)
contains a new inner node labeled with aabbb.
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Hypothesis Stabilization. As a result of the previous step, it might happen
that the constructed hypothesis contradicts information that is present in the
discrimination tree. Consider, for example, the hypothesis H1 and its associ-
ated discrimination tree T1, shown in Figures 4c and d, respectively. State q1
is identified by prefix a ∈ Sp. Since it is the 	-child of the inner node labeled
with aabbb, we can deduce that λA(a · aabbb) = 	. However, the hypothesis H1

predicts output ⊥.
An important observation is that the word aaabbb again forms a counterexam-

ple. This counterexample is treated in the same way as described in the previous
step: by first decomposing it and then splitting the corresponding leaf in the dis-
crimination tree, thus introducing a new state in the hypothesis. The resulting
discrimination tree T2 can be seen in Figure 4e, and the corresponding hypoth-
esis H2 is already the final one, i.e., the automaton shown in Figure 3a. We call
a hypothesis like H1 instable, as it is refined without a call to an “external”
equivalence oracle.

Discriminator Finalization.When comparing the inferred discrimination tree
T2 (Fig. 4e) to the one shown in Figure 3b, one notices immediately that the
discriminators occurring in T2 are much longer. This is due to the fact that
the counterexample w = bbbaaabbb contained a lot of redundant information,
which is in part still present in the data structure. If these redundancies were
not eliminated, subsequent refinements (if there were any) would frequently pose
membership queries involving aabbb while sifting new transitions into the tree.
To underline the dramatic impact this has, note that any word aaabi, i ∈ N,
would have been a valid counterexample. Thus, the amount of redundancy that
is present in these discriminators is generally unbounded.

TTT treats discriminators derived directly from counterexamples as tempo-
rary (represented by the dashed outlines of the inner nodes in Fig. 4). Further-
more, in Figures 4 d through f, parts of the discrimination tree are enclosed in
rectangular regions. These correspond to maximal subtrees of the discrimination
tree with temporary discriminators, and we refer to them as blocks. The TTT
algorithm will split these blocks by subsequently replacing temporary discrimi-
nators at block roots with final ones. New final discriminators v′ are obtained
by prepending a symbol a ∈ Σ to an existing final discriminator v ∈ D, i.e.,
v′ = av. This can be understood as adding a single node to the discriminator
trie (cf. Fig. 3c). In Figure 4e, the effect of replacing the temporary discriminator
aabbb in T2 with the final discriminator a is shown, resulting in the discrimination
tree T ′

2 . Note that the replacement discriminator does not need to partition the
states in the same way as the temporary discriminators, but it needs to separate
at least two states in the respective block. In particular, aabbb still occurs in T ′′

2

(Fig. 4f), but abbb has vanished.
After replacing aabbb in T ′′

2 with the final discriminator aa, the discrimination
tree already shown in Figure 3b is obtained. As can be seen, it no longer con-
tains any redundant information (i.e., b’s) in any of the discriminators. Without
discriminator finalization, this would have required the stripped-down, minimal
counterexample aaa in the first place.
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3.5 Complexity

We now briefly report the complexity of the TTT algorithm. In particular, we
focus on three complexity measures:

– Query complexity, i.e., the number of overall membership queries posed by
the algorithm.

– Symbol complexity, i.e., the total number of symbols contained in all these
membership queries.

– Space complexity, i.e., the amount of space taken up by the internal data
structures of the algorithm.

We neglect the time spent on internal computations of the algorithm (e.g., for
organizing data structures). This is well-justified by existing reports on practical
applications of automata learning, which usually mention the time required for
either symbol executions [8], system resets [9], or the space taken up by the
observation table data structure [4] as bottlenecks.

Query and Symbol Complexity. We limit ourselves to a brief sketch of
query and symbol complexity. Basically, for both correctness and (query) com-
plexity, the same arguments as for other active learning algorithms apply
(cf., e.g., [20,28]). We assume that k is the size of the alphabet Σ, the tar-
get DFA A has n states, and the length of the longest counterexample returned
by an equivalence query is m. TTT in the worst case requires O(n) equivalence
queries and O(kn2+n logm) membership queries, each of length O(n+m). This
pessimistic estimate is due to the fact that (degenerate) DTs can be of height
O(n) (cf. Fig. 3b). This worst-case query and symbol complexity coincides with
Rivest and Schapire’s algorithm [26], though we will see in Section 4 that in
practice there is a huge gap between the two.

Space Complexity. Interesting from a theoretical perspective is the fact that
the TTT algorithm exhibits optimal space complexity, not considering the (tem-
porary) storage required for storing counterexamples. In general, the optimality
becomes apparent when looking at Figure 3. All of the data structures are (based
on) trees, which require an amount of space linear in the number of the leaves.
Thus, the space required for the complete hypothesis (with all transitions, i.e.,
Θ(kn)) dominates the overall space complexity.

Intuitively, it is obvious that every correct learning algorithm has to store
the hypothesis (as it constitutes its output), and thus requires space in Ω(kn).
Therefore, TTT has optimal space complexity. Furthermore, this space complex-
ity is significantly below the space complexity of other algorithms, such as L∗ [2],
Rivest and Schapire’s [26], or Kearns and Vazirani’s [20]. These require space in
Θ(kn · (n +m)), Θ(kn2 + nm), or Θ(kn + nm), respectively.

Let us briefly remark that to formally prove space optimality, the above intu-
ition is not sufficient. In particular, it does not take into account the reduction
of the search space due to the restriction to canonical automata only. However,
Domaratzki et al. [13] proved a lower bound of fk(n) ≥ (k − o(1))n2n−1n(k−1)n

on the number of distinct canonical DFA with n states over an input alpha-
bet of size k. This implies that encoding a canonical DFA requires, on average,
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Fig. 5. Experimental results for the CWB examples sched4, peterson2, and pots2

(top to bottom). Queries (left) and symbols (right) are shown as a function of the
counterexample length.
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Ω(log fk(n)) = Ω(nk logn) bits, which coincides with TTT’s space complexity
in the logarithmic cost model.

4 Experimental Evaluation

In this section, we report on an evaluation of our first implementation of TTT.
We have implemented TTT in the LearnLib framework,2 which is open source
and can easily be extended. Furthermore, it comes with a number of standard
algorithms, which facilitates performance comparison. The implementation of
TTT, along with the examples used as experiments and the evaluation scripts,
can be obtained from https://github.com/LearnLib/learnlib-ttt.

Target Systems. In order to assess the performance on systems with realis-
tic structure, we learned models of systems distributed with the Concurrency
Workbench:3 Milner’s scheduler for four processes (sched4, n = 97, k = 12),
Peterson’s mutual exclusion algorithm for two processes (peterson2, n = 50,
k = 18), and a model of a telephony system with two clients (pots2, n = 664,
k = 32).

Equivalence Queries. To reflect the setup shown in Figure 1, we randomly
generated traces of fixed length on the target systems. If these traces were not
supported by the hypothesis, we fed them as counterexamples to the learning
algorithm. We let the length of these traces vary between 50 and 3000 (2000 for
pots2), in increments of 50.

Metrics.We measured both the number of membership queries, and the number
of symbols contained in all of these queries combined. We averaged over 10 runs
to account for variations in the counterexample trace generation.

Comparison. We compared our implementation of TTT against algorithms
shipped with LearnLib: Rivest and Schapire’s algorithm [26] (RS), Kearns and
Vazirani’s algorithm [20] (KV), and the “discrimination tree” algorithm4 [15]
(DT), which can be described as TTT without finalizing discriminators
(cf. Sec. 3.4). The former algorithm is based on an observation table, while the
latter two are based on discrimination trees. All these algorithms have in common
that they only add a single suffix from the counterexample to the data structure.
In contrast, algorithms like L∗ [2], Suffix1by1 [18], Maler and Pnueli’s [22], or
NL∗ [6] add (nearly) all prefixes or suffixes of a counterexample to the observa-
tion table. We found that these algorithms were entirely infeasible (i.e., resulting
in OutOfMemoryErrors) for long counterexamples.

4.1 Results

The results of our evaluation on the three systems (top to bottom: sched4,
peterson2, pots2) are displayed in Figure 5. Both the number of membership

2 http://www.learnlib.de/
3 http://homepages.inf.ed.ac.uk/perdita/cwb/
4 This algorithm is also known as the Observation Pack algorithm.

https://github.com/LearnLib/learnlib-ttt
http://www.learnlib.de/
http://homepages.inf.ed.ac.uk/perdita/cwb/
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queries (left column) and the total number of symbols (right column) are plotted
as a function of the length of counterexample traces.

In terms of membership queries, TTT outperforms all other algorithms on all
examples. When compared to the DT algorithm, the difference is comparatively
small, with TTT requiring 25%–50% as many membership queries. However,
this is still remarkable when considering that the main difference between TTT
and DT is the extra effort for finalizing discriminators (cf. Sec. 3.4). We con-
clude from this that by discriminator finalization, we obtain “more general”
discriminators, which lead to better-balanced trees than the very specific, long
ones directly extracted from the counterexamples. When compared to the RS
and KV algorithms, the difference in membership queries spans several orders
of magnitude.

When looking at the number of symbols, TTT consistently beats DT. On
the sched4 and peterson2 examples, we observe a reduction in the number
of symbols by approximately one order of magnitude. On the pots2 example,
which is the largest of the systems we considered, there even is a 60× reduction!

The peterson2 example poses a special case. Here, the number of member-
ship queries apparently is nearly constant for all counterexample lengths, but
the variation for the KV algorithm is considerable. In terms of symbols, the KV
algorithm outperforms TTT when counterexamples consists of 800 symbols or
more (for a length of 3000, TTT needs roughly 4.5× as many symbols as KV).
Manual inspection of the model showed that it is structured in a DAG-like fash-
ion, with only very few loops. Hence, counterexamples on this system contain
relatively little redundant information. However, this was the only example we
investigated5 where KV performed that strongly in terms of symbols. Further-
more, especially the pots2 example underlines that preferring the KV algorithm
over TTT might be an extremely poor choice: for a counterexample length of
2000, KV on average requires 670× more symbol executions than TTT does.
When considering Rivest&Schapire, this factor increases to up to 1100×.

5 Related Work

The MAT model for active automata learning was established by Angluin [2],
along with the presentation of the famous observation table-based L∗ algorithm.
The technique gained major interest after it was discovered as a means of en-
abling model-based techniques in scenarios where no such models were available.
Notable works in this direction include its application to model checking [25], and
to model-driven test-case generation [14]. The practical applicability was further
improved by adapting the L∗ DFA learning algorithm to Mealy machines [14,27].

While much effort has been devoted to optimizations in practical scenarios
(e.g., using various filters [23]), improvements at the “pure” algorithmic level are

5 Other examples included randomly generated DFA, and instances of Figure 2a for
up to 5 resources, which we do not report upon due to size constraints. All data
necessary to run these experiments can be obtained via GitHub.
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comparably rare. Maler and Pnueli [22] suggested adding all suffixes of the coun-
terexample to the table. Rivest and Schapire [26] found that adding a single suffix
was sufficient, and that this suffix could be determined using a binary search. It
has been observed that this leads to non-canonical intermediate hypotheses [28].
Several heuristics have thus been proposed to maintain suffix-closedness of the
discriminators, such as Shahbaz’s algorithm and Suffix1by1 [18].

Kearns and Vazirani [20] were the first to employ a discrimination tree. A
general framework for active learning named Observation Packs was introduced
by Balcazar et al. [3]. This framework provides a unifying view on the afore-
mentioned algorithms. Its name has been adopted for an algorithm developed
by Howar [15], which can be summarized as combining the discrimination tree
data structure with Rivest and Schapire’s counterexample analysis.

A fairly recent contribution in the classical scenario of black-box inference of
regular languages is the NL∗ algorithm [6], inferring NFA instead of DFA. These
NFA may be exponentially more succinct than the corresponding DFA, and can
in such cases be learned with less membership queries. However, the number of
required equivalence queries grows from linear to quadratic. Furthermore, it is
unclear how (or even if) the NL∗ algorithm could be adapted to infer Mealy
machines.

6 Conclusion

We have presented TTT, an active automata learning algorithm which stores the
essential data in three tree-like data structures: a spanning tree defining unique
access sequences, embedded into the hypothesis’ transition graph, a discrimina-
tion tree for distinguishing states, and a discriminator trie for storing the suffix-
closed set of discriminators. This leads to an extremely compact representation,
as it strips all the information down to the essentials for learning. In fact, the
combined space required for all data structures is asymptotically the same as the
size of the hypothesis, Θ(kn). We demonstrated the effects of this redundancy-
free data structure on a number of examples. TTT outperformed other learning
algorithms when considering the total number of membership queries on all of
the examples. When considering the number of symbols, Kearns&Vazirani’s al-
gorithm in fact outperformed TTT in one out of three systems (even though it
required a much higher number of membership queries). However, the system
in question was the smallest one, and on all other systems, Kearns&Vazirani’s
algorithm performed poorly. On average, TTT yields a one to two orders of
magnitude reduction in terms of symbol executions, and a 50%–75% reduction
in terms of membership queries when compared to the Observation Pack algo-
rithm, which ranks second. We conclude that the “cleanup” of the internal data
structures that TTT performs is well worth the extra effort.

6.1 Future Work

There are several lines of work we want to explore. The first one is to further
investigate the impact of TTT in practical setups. A necessary step for this will
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be to adapt TTT to learn Mealy machines [14,27], an extension we expect to be
straightforward. We then plan to evaluate the life-long learning approach [5] in
larger case studies, using learning in the loop with monitoring.

The second line concerns improving the practical applicability in general set-
tings. While most of the optimizing filter techniques [23] work with any learn-
ing algorithm, an important optimization is the parallelization of membership
queries [8,16]. The challenge that presents itself here is the fact that when sifting
a word into a discrimination tree, the next query to be asked depends on the
outcome of the previous one.

The third – and probably the most challenging – line of future research
is to adapt TTT to richer modeling formalisms, in particular register au-
tomata [17,19]. Unlike approaches that separate the inference of the control
skeleton from that of the mapper responsible for handling data [1], adapting
TTT to natively infer register automata will require non-trivial modifications at
the algorithmic level.

Acknowledgement. We thank Maren Geske and Dennis Kühn for their help
with preparing the illustrations.
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Abstract. The performance of symbolic execution based verifiers relies
heavily on the quality of “interpolants”, formulas which succinctly de-
scribe a generalization of states proven safe so far. By default, symbolic
execution along a path stops the moment when infeasibility is detected
in its path constraints, a property we call “eagerness”. In this paper,
we argue that eagerness may hinder the discovery of good quality inter-
polants, and propose a systematic method that ignores the infeasibility
in pursuit of better interpolants. We demonstrate with a state-of-the-
art system on realistic benchmarks that this “lazy” symbolic execution
outperforms its eager counterpart by a factor of two or more.

1 Introduction

Symbolic execution has been largely successful in program verification, testing
and analysis [16,24,28,14,13]. It is a method for program reasoning that uses
symbolic values as inputs instead of actual data, and it represents the values
of program variables as symbolic expressions on the input symbolic values. As
symbolic execution reaches each program point along different paths, different
“symbolic states” are created. For each symbolic state, a path condition is main-
tained, which is a formula over the symbolic inputs built by accumulating con-
straints that those inputs must satisfy in order for execution to reach the state.
A symbolic execution tree depicts all executed paths during symbolic execution.

We say that a state is infeasible if its path condition is unsatisfiable, there-
fore one obviously cannot reach an error location from this state. Whenever
an infeasible state is encountered, symbolic execution will backtrack along the
edge(s) just executed. In that regard, symbolic execution by default is eager.
This eagerness has been considered as a clear advantage of symbolic execution,
in comparison with Abstract Interpretation (ai) [7] or Counterexample-Guided
Abstraction Refinement (cegar) [6], since it avoids the exploration of infeasible
paths which could block exponentially large symbolic trees in practice.

This paper considers symbolic execution in the context of software verification.
One main challenge is to address the path explosion problem. The approaches
of [16,24,15,14] tackle this fundamental issue by eliminating from the model
those facts which are irrelevant or too-specific for proving the unreachability of
the error nodes. This “learning” phase consists of computing interpolants in the
same spirit of conflict-driven learning in sat solvers. Informally, the interpolant
at a given program point can be seen as a formula that succinctly captures
the reason of infeasibility of paths which go through that program point. In
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other words it succinctly captures the reason why paths through the program
point are safe. As a result, if the program point is encountered again through
a different path such that its path condition implies the interpolant, the new
path can be subsumed, because it can be guaranteed to be safe. Interpolation
has been empirically shown to be crucial in scaling symbolic execution because
it can potentially result in exponential savings by pruning large sub-trees. It is
also generally known that the quality of interpolants greatly affects the amount
of savings provided.

This is where a conflict between eagerness and learning arises. Eagerly stop-
ping and backtracking at an infeasible state can make the learned interpolants
unnecessarily too restrictive – while the interpolant would typically capture the
reason for infeasibility of the state, the infeasibility could have nothing to do
with the safety of the program. In practice, safety properties often involve a
small number of variables whereas conditional expressions, which act as guards
by causing infeasibility in paths, could be on any unrelated variable. Ultimately,
this causes the (restrictive) interpolant to disallow subsumption in future, miti-
gating its benefit. In other words, eagerness hinders a property-directed approach.

In this paper, we propose a new method to enhance the learning of power-
ful interpolants but without losing the intrinsic benefits of symbolic execution.
Whenever an infeasible path is encountered, instead of backtracking immedi-
ately, we selectively abstract the infeasible state so that it becomes feasible, and
proceed with the search. By performing such an abstraction, we say that we have
entered speculation mode. More generally, as we progressively abstract away in-
feasibility from a symbolic path, we are exhibiting a property-directed strategy,
i.e., ignoring the infeasibility along the path until the real reason why the path
is safe is found. Note that the sole purpose of speculation is to find better inter-
polants – we already know any path with an infeasible prefix is safe.

However, since exploration of infeasible states is in general a wasteful effort,
we subject the speculation to a bound. This mitigates the potential blowup of
the speculative search, while still retaining the possibility of discovering good
interpolants. Intuitively, this bound should be at least linearly related to the
program size: anything less than this could make the speculation phase arbitrar-
ily short. It is a main contribution of this paper, that in the other direction, a
linear bound is good enough.

Finally, we remark that though this paper studies and quantifies the “en-
hanced learning” for symbolic execution in the setting of static analysis, its
impact is relevant to runtime verification as well. In our previous work [13], we
have demonstrated the benefits of interpolation in speeding up concolic testing
for better coverage. By being lazy, we expect the enhanced interpolants to result
in further speedup. As another example, Navabpour et al. [25] propose a method,
which leverages symbolic execution to predict the program’s execution path, in
order to effectively reduce the overhead of time-triggered runtime verification
(TTRV). In fact, improvements in symbolic execution, as demonstrated in this
paper, can lead to improvements in their runtime verification.
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2 Examples

We first exemplify the case when (eager) symbolic execution is clearly not an
efficient way to conduct a proof. For the programs in Fig. 1, assume (1) the
boolean expressions ei do not involve the variables x and y, and (2) the desired
postcondition is y ≤ n for some constant n > 0. A path expression is of the form
E1∧E2∧· · ·∧En where each Ei is either ei or its negation. Note that each of the
(2n) path expressions represents a unique path through each of the programs.

x = y = 0
if (e1) y++ else x++
if (e2) y++ else x++
...
if (en) y++ else x++

(a) Lazy is Good

x = y = 0
if (e1) y += 2
if (e2) y += 2
...
if (en) y += 2

(b) Eager is Good

x = y = 0
if (e1) y++ else x++
...
if (ej) y++ else y = n+1
...
if (en) y++ else x++

(c) Lazy is Still Better

Fig. 1. Proving y ≤ n: Eager vs Lazy

Given the first program in Fig. 1(a), we can reason that the postcondition y ≤ n
always holds, without considering the satisfiability of the path expressions. Us-
ing symbolic execution, in contrast, many of the unsatisfiable path expressions
need to be detected and worse, their individual reasons for unsatisfiability (the
“interpolants”) need to be recorded and managed. Note that if we used a cegar

approach [6] here, where abstraction refinements are performed only when a spuri-
ous counter-example is encountered, we would have a very efficient (linear) proof.

In the next program in Fig. 1(b), slightly modified from the previous, we
present a dual and opposite situation. Note that the program is safe just if,
amongst the path expressions that are satisfiable, less than n/2 of these involve
a distinct and positive expression ei (as opposed to the negation of ei), for i
ranging from 1 to n. This means that the number of times the “then” bodies
of the if-statements are (symbolically) executed is less than n/2. Here, it is in
fact necessary to record and manage the unsatisfiable path expressions as they
are encountered during symbolic execution. cegar, in contrast, would require
a large number of abstraction refinements in order to remove counter-examples
arising from not recognizing the unsatisfiability of “unsafe” path expressions, i.e.
those corresponding to n/2 or more increments of y.

In principle, a typical program would correspond to being in between the
above two extreme cases in Fig. 1(a) and 1(b). Our key intuition, however, is
that in fact a typical program lies closer to the first example rather than the
second, because in practice safety properties are typically on a small subset of
variables, whereas program guards, which are the cause of infeasibilities, can be
on any (unrelated) variables. This intuition is later confirmed empirically.

For the final example program in Fig. 1(c), assume that all and only the
path expressions which contain the subexpression ej are unsatisfiable. (In other
words, the only way to execute the jth if-statement is through its “then” body.)
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Here we clearly need to detect the presence of the expression ej and not any of
the other expressions. More generally, we argue that while some path expressions
must be recorded and managed, this number is small. The challenge is, of course,
is how to find these important path expressions, which is precisely the objective
of our speculation algorithm. We next exemplify this.

context1 : y = 4 ∧ x > 0
context2 : y ≤ 3 ∧ x ≤ 1

�1 if (x == 1)
�2 x++;

else
�3 x += 2;

�4 if (x + y >= 6)
�5 y += 2;

else
�6 y++;

if (y > 100) error();

y=4,x>0

x==1 x≠1

x++

x+y≥6 x +y<6

y+=2

x+=2

y≤3,x≤1

x==1 x≠1

x++ x+=2

x+y ≥6 x +y<6

y++

ι4:{x+y≥6,y≤98} 

ι2:{x+y≥5, 
y≤98} 

{y≤100} 

ι4:{x+y<6,y≤99} 

ι2:{x+y<5, 
y≤99} 

ι3:{x+y≥4, 
y≤98} 

ι3:{x+y  <4, 
   y≤99 } 

{y≤100} 

ι5:{y≤98} ι6:{y≤99} 

ι1:{y≤98,x+y≥5} 

Fig. 2. A Symbolic Execution (Eager) Tree with Learning

Consider the program fragment in Fig. 2 executed under two different initial
contexts: y = 4 ∧ x > 0 and y ≤ 3 ∧ x ≤ 1. In both contexts, the program
is safe because y ≤ 100 at the end. Throughout the example, assume weakest
preconditions (WP) are used as interpolants.

Symbolic execution (eager) would start at program point �1 with the first
context y = 4 ∧ x > 0. Assume it first takes the then branch with condition
x==1, executing x++ and reaching �4. Proceeding along the then branch from
�4, it executes y+=2 and reaches the end of the safe path, generating the (WP)
interpolant y ≤ 98 at �5. Now from �4, it finds that the else branch is infeasible as
the path condition y = 4∧x > 0∧x = 1∧x′ = x+1∧x′+y < 6 is unsatisfiable.
Being eager, symbolic execution would immediately backtrack, and to preserve
this infeasibility, it would learn the interpolant x′ + y ≥ 6. Combining the then
and else body’s interpolants, it would generate x′ + y ≥ 6 ∧ y ≤ 98 at �4 (note
that in Fig. 2 we project the formula on the original variable names). Passing
this back through WP propagation would result in x+ y ≥ 5 ∧ y ≤ 98 at �2.

Now, executing the else body x+=2 from �1, it would reach �4 with the path
condition y = 4 ∧ x > 0 ∧ x �= 1 ∧ x′ = x + 2, which implies the interpolant
x′ + y ≥ 6 ∧ y ≤ 98. Therefore the path would be subsumed (dotted line).
Propagating this interpolant through x+=2 would result in x + y ≥ 4 ∧ y ≤ 98
at �3. Now, combining the then and else body’s interpolant at �1 would result in
the disjunction: (x = 1 ⇒ (x+y ≥ 5∧y ≤ 98))∧ (x �= 1 ⇒ (x+y ≥ 4∧y ≤ 98)).
For the sake of clarity, we strengthen this to y ≤ 98 ∧ x+ y ≥ 5, but we assure
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the reader that our discussion is not affected by this. Thus, the final symbolic
execution tree explored for this context will be the one on the left in Fig. 2.

Now, when the program fragment is reached along the second context y ≤
3 ∧ x ≤ 1, subsumption cannot take place at �1 as the context does not imply
the interpolant y ≤ 98∧ x+ y ≥ 5. Symbolic execution would therefore proceed
to generate the symbolic tree shown on the right. It is worth noting that even if
the program was explored with the order of the contexts swapped, subsumption
cannot take place at the top level.

Consider now our lazy symbolic execution process invoked on this program.
We would perform symbolic execution exactly the same as before, except when
the unsatisfiable path condition y = 4 ∧ x > 0 ∧ x = 1 ∧ x′ = x+ 1 ∧ x′ + y < 6
is encountered, instead of backtracking, we selectively abstract the formula to
make it satisfiable. Since we are doing forward symbolic execution, we selectively
abstract by deleting the constraint(s) from the latest guard that we encountered
(i.e., x′ + y < 6) to make the formula satisfiable.1

ι6:{y≤99} ι5:{y≤98} 

y=4,x>0

x==1 x≠1

x++

x+y≥6 x +y<6

y++

x+=2

y≤3
x≤1

ι4:{y≤98} 

ι2:{y≤98} ι3:{y≤98} 

{y≤100} 

y+=2

{y≤100} 

ι1:{y≤98} 

Fig. 3. Lazy Symbolic Execution Tree

After performing selective abstrac-
tion, we enter “speculation mode”
with the abstracted path condition
y = 4 ∧ x > 0 ∧ x = 1 ∧ x′ = x + 1.
A problem now is that in general,
the sub-tree underneath the infeasible
branch may be exponentially large,
exploring which is wasteful as we al-
ready know that it is safe. Therefore
it is necessary to impose a bound on
the speculative search. We remark on
our design choice of such a bound in
later technical Sections.

Triggering speculation at �4, we ex-
ecute the statement y++ at �6 and
reach the end of the (safe) path. Spec-
ulation has now succeeded, hence we
annotate �6 with y ≤ 99. Combining
the interpolants at �4, we get y ≤ 98.
Propagating it back through the tree

as shown in Fig. 3 we get the interpolant y ≤ 98 at �1. Now, when the program
fragment is reached along the second context y ≤ 3 ∧ x ≤ 1, the interpolant
is implied at �1, and the entire tree can be subsumed at the top level. Note
that we applied strengthening of WP as before, but we assure that even without
strengthening the subsumption will still take place.

This example has shown that speculation can potentially result in exponen-
tial savings. The reason speculation works in practice is that safety properties

1 In principle, selective abstraction can be done in many ways, for instance, by also
deleting y = 4, x′ = x+ 1 or any combination. We defer to Section 5 the reasoning
behind our design choice of deleting the latest guard.
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are only on a small subset of variables whereas program guards that cause in-
feasibility can be on any of them. Temporarily ignoring the infeasibility helps
in discovering interpolants closely related to the safety, such as those in Fig. 3,
rather than interpolants that blindly preserve the infeasibility, such as those in
Fig. 2. In Section 5, we empirically show that the exponential gains provided by
speculation clearly outweigh its cost.

3 Preliminaries

Syntax. We restrict our presentation to a simple imperative programming lan-
guage where all basic operations are either assignments or assume operations,
and the domain of all variables are integers. The set of all program variables
is denoted by Vars . An assignment x := e corresponds to assign the evaluation
of the expression e to the variable x. In the assume operator, assume(c), if the
Boolean expression c evaluates to true, then the program continues, otherwise
it halts. The set of operations is denoted by Ops . We then model a program
by a transition system. A transition system is a quadruple [Σ, I,−→, O] where
Σ is the set of program locations and I ⊆ Σ is the set of initial locations.
−→⊆ Σ×Σ×Ops is the transition relation that relates a state to its (possible)
successors executing operations. This transition relation models the operations
that are executed when control flows from one program location to another. We

shall use �
op−−→ �′ to denote a transition relation from � ∈ Σ to �′ ∈ Σ executing

the operation op ∈ Ops . Finally, O ⊆ Σ is the set of final locations.

Symbolic Execution. A symbolic state s is a triple 〈�, σ,Π〉. The symbol
� ∈ Σ corresponds to the current program location. We will use special symbols
for initial location, �start ∈ I, final location, �end ∈ O, and error location �error
∈ O (if any). W.l.o.g we assume that there is only one initial, final, and error
location in the transition system.

The symbolic store σ is a function from program variables to terms over
input symbolic variables. Each program variable is initialised to a fresh input
symbolic variable. The evaluation �c�σ of a constraint expression c in a store σ
is defined recursively as usual: �v�σ = σ(v) (if c ≡ v is a variable), �n�σ = n
(if c ≡ n is an integer), �e opr e′�σ = �e�σ opr �e′�σ (if c ≡ e opr e′ where e, e′

are expressions and opr is a relational operator <,>,==, ! =, >=, <=), and
�e opa e′�σ = �e�σ opa �e′�σ (if c ≡ e opa e′ where e, e′ are expressions and opa
is an arithmetic operator +,−,×, . . .).

Finally, Π is called path condition, a first-order formula over the symbolic
inputs that accumulates constraints which the inputs must satisfy in order for
an execution to follow the particular corresponding path. The set of first-order
formulas and symbolic states are denoted by FOL and SymStates, respectively.
Given a transition system [Σ, I,−→, O] and a state s ≡ 〈�, σ,Π〉 ∈ SymStates,

a ‘symbolic step’ of transition t : �
op−−→ �′ returns another symbolic state s′

defined as:

s′ ≡ SYMSTEP(s, t) �
{
〈�′, σ,Π ∧ �c�σ〉 if op ≡ assume(c)
〈�′, σ[x �→ �e�σ ], Π〉 if op ≡ x := e

(1)
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Given a symbolic state s ≡ 〈�, σ,Π〉 we define �s� : SymStates → FOL as the
formula (

∧
v ∈ Vars �v�σ) ∧Π where Vars is the set of program variables.

A symbolic path π ≡ s0 · s1 · ... · sn is a sequence of symbolic states such that
∀i · 1 ≤ i ≤ n the state si is a successor of si−1, denoted as SUCC(si−1, si). A
path π ≡ s0 ·s1 · ... ·sn is feasible if sn ≡ 〈�, σ,Π〉 such that �Π�σ is satisfiable. If
� ∈ O and sn is feasible then sn is called terminal state. If �Π�σ is unsatisfiable
the path is called infeasible and sn is called an infeasible state. If there exists
a feasible path π ≡ s0 · s1 · ... · sn then we say sk (0 ≤ k ≤ n) is reachable
from s0. A symbolic execution tree contains all the execution paths explored
during the symbolic execution of a transition system by triggering Equation (1).
The nodes represent symbolic states and the arcs represent transitions between
states. Verification is done by exploring the symbolic execution tree and ensuring
that the error location �error is not reachable. Finally, we define a “selective
abstraction” operator ∇ : FOL × FOL that accepts an unsatisfiable formula Π
and returns a satisfiable formula that is an abstraction of Π .

Interpolation. The main challenge for symbolic execution is the path explosion
problem. This issue has been addressed using the concept of interpolation.

Definition 1 (Craig Interpolant). Given two formulas A and B such that
A ∧ B is unsatisfiable, a Craig interpolant [8], INTP(A,B), is another formula
Ψ such that (a) A |= Ψ , (b) Ψ ∧B is unsatisfiable, and (c) all variables in Ψ are
common to A and B.

An interpolant allows us to remove irrelevant information in A that is not
needed to maintain the unsatisfiability of A ∧ B. That is, the interpolant cap-
tures the essence of the reason of unsatisfiability of the two formulas. Efficient
interpolation algorithms exist for quantifier-free fragments of theories such as
linear real/integer arithmetic, uninterpreted functions, pointers and arrays, and
bitvectors (e.g., see [5] for details) where interpolants can be extracted from the
refutation proof in linear time on the size of the proof.

Definition 2 (Subsumption check). Given a current symbolic state s ≡
〈�, σ, ·〉 and an already explored symbolic state s′ ≡ 〈�, ·, ·〉 annotated with the
interpolant Ψ , we say s is subsumed by s′, SUBSUME(s, 〈s′, Ψ〉), if �s�σ |= Ψ .

To understand the intuition behind the subsumption check, it helps to know
what an interpolant at a node actually represents. An interpolant Ψ at a node
s′ succinctly captures the reason of infeasibility of all infeasible paths in the
symbolic tree rooted at s′. Let us call this tree T1. Then, if another state s at �
implies Ψ , it means the tree rooted at s, say T2, has exactly the same or more
(in a superset sense), infeasible paths compared to T1. In other words, T2 has
exactly the same, or less feasible paths (in a subset sense) compared to T1. Since
T1 did not contain any feasible path that was buggy, we can guarantee the same
for T2 as well, thus subsuming it.

Eager vs. Lazy. We say that a symbolic execution approach is eager if the
successor relation is defined only for feasible states. In other words, when we
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encounter an infeasible state, we immediately backtrack and compute an in-
terpolant, succinctly capturing the reason of the infeasibility. Though different
systems might employ different search strategies for symbolic execution (our for-
mulation above is called forward symbolic execution [20]), it is worth to note
that all common symbolic execution engines are indeed eager. This eagerness
has been considered as a clear advantage of symbolic execution, since it avoids
the consideration of infeasible paths, which could be exponential in number.

However, with learning (interpolation), being eager might not give us the best
performance. The intuition behind this is that we are using the learned inter-
polant from T1 to subsume T2, which has less feasible paths than T1. Therefore,
if T1 itself has very few feasible paths due to eagerness, it is unlikely that the
learned interpolant would be able to subsume many of such T2s.

4 Algorithm

We present our algorithm as a symbolic execution engine with interpolation and
speculative abstraction. In Fig. 4, the recursive procedure SymExec is of the type
SymExec : SymStates × N → FOL ∪ {ε}. It takes two parameters – a symbolic
state s typically on which to do symbolic execution, and a number representing

Assume initial state s0 ≡ 〈�start, ·, true〉
〈1〉 Initially : SymExec(s0, 0)

function SymExec(s ≡ 〈�, σ,Π〉, AbsLevel)
〈2〉 if AbsLevel > 0 then
〈3〉 if (bounds violated) or (� ≡ �error) then return ε endif
〈4〉 else if � ≡ �error then report error and halt
〈5〉 endif

〈6〉 if TERMINAL(s) then Ψ := true

〈7〉 else if ∃ s′ ≡ 〈�, ·, ·〉 annotated with Ψ s.t. SUBSUME(s, 〈s′, Ψ ′〉) then Ψ := Ψ
′

〈8〉 else if INFEASIBLE(s) then
〈9〉 s′ := 〈�, σ,∇(Π)〉
〈10〉 Ψ

′
:= SymExec(s′, AbsLevel + 1)

〈11〉 if Ψ
′ ≡ ε then Ψ := false else Ψ := Ψ

′
endif

〈12〉 if AbsLevel ≡ 0 then clear data on bounds endif
〈13〉 else
〈14〉 Ψ := true
〈15〉 foreach transition t: � −−→ �′ do
〈16〉 s′ := SYMSTEP(s, t)

〈17〉 Ψ
′
:= SymExec(s′, AbsLevel)

〈18〉 if Ψ
′ ≡ ε then return ε

〈19〉 else Ψ := Ψ ∧ INTP(Π, constraints(t) ∧ ¬ Ψ
′
)

〈20〉 endfor
〈21〉 endif
〈22〉 annotate s with Ψ and return (Ψ)
end function

Fig. 4. A Framework for Lazy Symbolic Execution with Speculative Abstraction
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the current level of speculative abstraction, which we will define soon. Its return
value is a FOL formula representing the interpolant it generated at s. A special
value of ε is used to signify failure of speculation.

Initially, SymExec is called with the initial state s0 with �start as the program
point, an empty symbolic store, and the path condition true. For clarity, ignore
lines 2-5 which we will come to later. Lines 6-12, represent the three base cases
of eager symbolic execution in general – terminal, subsumed and infeasible node
(of course, in our lazy method infeasible node is not a base case). In line 6, if the
current symbolic state s is a terminal node (defined by � being the same as �end),
we simply set the current interpolant Ψ to true, as the path is safe and there
is no infeasibility to preserve. In line 7, the subsumption check is performed to
see if there exists another symbolic state s′ at the same program point � such
that s′ subsumes s (see Definition 2). If so, the current interpolant Ψ is set to be

the same as the subsuming node’s interpolant Ψ
′
. Note that this is an important

case for symbolic execution to scale as it can result in exponential savings.
In line 8, we check if the current state s is infeasible, defined by �s�σ be-

ing unsatisfiable. Normally at this point, eager symbolic execution would simply
generate the interpolant false to denote the infeasibility of s and return. For lazy
symbolic execution, we begin our speculation procedure here. Line 9 creates a
new symbolic state s′ such that it has the same program point � and symbolic
store σ as s, but its (unsatisfiable) path condition Π is selectively abstracted
using ∇ to make the new path condition, which is satisfiable. In our implemen-
tation of ∇, since SymExec does forward symbolic execution, the path condition
would have been feasible until the preceding state whose successor is s. That
is, the state s′′ such that SUCC(s′′, s) must have been a feasible state. Hence
simply setting Π to the path condition of s′′ would make it satisfiable. This
mimics deleting the latest constraint(s) from Π that caused its infeasibility. In
Section 5, we discuss the reasons for implementing ∇ in this way.

Once the abstraction is made, we now speculate by recursively calling SymExec
with s′ and incrementing the abstraction level by 1. An abstraction level greater
than 0 means that we are under speculation mode. SymExec essentially performs
symbolic execution on the selectively abstracted state but with a condition – fo-
cus now on lines 2-5. Running under speculation mode, if at any point the bound
is violated or if the error location �error is encountered, it means the speculation
failed. In this case, we return a special value ε to signify the failure (line 3).
Of course, if we are not speculating and �error is encountered (line 4), then it is
a real error to be reported and the entire verification process halts. Otherwise,
SymExec proceeds to normally explore s and finally return an interpolant.

Now in line 10, the interpolant returned from speculation is stored in Ψ
′
. If ε

was returned, indicating that speculation failed, we simply resort to using false as
the interpolant, just like a fully eager symbolic execution procedure. Otherwise,
we use the interpolant computed by speculation (line 11). Finally, in line 12, if
the current abstraction level is 0 (i.e., we are at the ‘root’ of the speculation
tree), then regardless of whether we succeeded or not, we reset all the data that
count towards the bounds. For instance, in our implementation, we restrict the
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speculation to not explore more than one state per program point �, which would
result in a bound that is linear in the program’s size. In this case, we have to
maintain a count of the number of states explored for each program point. At
line 12 this data is cleared since the speculation has finished.

Note that there are two reasons why speculation can fail. A first reason is
simply that an abstracted guard is needed to avoid a counter-example. If this
guard corresponds to abstraction level 0, speculation resulted in nothing learnt
at this program point (but we could have learnt something from the start of spec-
ulation until encountering the counter-example, for descendant program points).
If however the guard abstraction is at a deeper level, the top-level invocation of
speculation still can learn new interpolants. The second reason why speculation
can fail is that the bound was exceeded. In this case, we put forward that, by
increasing the bound, it is not likely to result in significant learning. That is,
increasing the bound is a strategy of diminishing returns. We will return to this
point when we discuss certain statistics in Section 5.

If none of the base cases were activated, SymExec proceeds to unwind the
path, in lines 13-20. It first initialises the interpolant Ψ to true. Then, for ev-
ery transition from the current program point �, it does the following. First
it performs a symbolic step (SYMSTEP) to obtain the next symbolic state s′

along the transition t : � −−→ �′. Then, it recursively calls itself with s′ to
obtain an interpolant Ψ

′
for s′ (note that we are not speculating here so the

abstraction level is unchanged). Now, if the returned interpolant is ε, it means
further down some speculation resulted in failure. Hence it simply propagates
back this failure by returning ε (line 18). Otherwise, it computes the current
interpolant by invoking INTP on the path condition Π and the conjunction of
the constraints of the current transition, constraints(t), with the negation of

Ψ
′
(where Π ∧ constraints(t) ∧ ¬Ψ

′
is unsatisfiable). The result is conjoined

with any existing interpolant (line 19). Finally, in line 22 the current state s is
annotated with the interpolant Ψ , which is then returned. This annotation is
persistent such that the subsumption check at line 7 can utilise this information.

On loop handling: In the presence of unbounded loops, symbolic execution
might not terminate in general. Handling unbounded loops, however, is often
considered as an orthogonal problem. Indeed, we were able to incorporate the
loop handling technique proposed by [15] into the implementation of our algo-
rithm without difficulty.

We conclude this section with some insights about the new interpolants dis-
covered by speculation. At the root of speculation, the eager algorithm would
have returned false as an interpolant. Therefore any other valid interpolant is
clearly better. However, is it the case that using the new (and better) interpolant
here, results in better interpolants higher up in the tree? Intuitively the answer
is yes, provided that the interpolation algorithm is, in some sense, well behaved.
We formalize this as follows.

Definition 3 (Monotonic Interpolation). The interpolation method used in
our algorithm is said to be monotonic if for all transition t, path condition Π,
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and formulas Ψ1, Ψ2 • Ψ1 |= Ψ2 implies INTP(Π, constraints(t) ∧ ¬ Ψ1) |=
INTP(Π, constraints(t) ∧ ¬ Ψ2)

Monotonicity ensures that better interpolants at a program point translate
into better interpolants at a predecessor point. The supreme interpolation algo-
rithm, based on the weakest precondition, is of course monotonic. A more prac-
tical algorithm, however, may not be guaranteed to be monotonic. For example,
an algorithm which is based on computing an unsatisfiable core (i.e., simply
disregarding constraints which do not affect unsatisfiability), is in general not
monotonic because it can arbitrarily choose between choices of cores.

Nevertheless, we noticed in our experiments, detailed in Section 5, that new
interpolants from speculation do translate into better interpolants and this, in
turn, produces more subsumption. This indicates that the interpolation algo-
rithm employed in [14], is indeed relatively well behaved. Some random inspec-
tions of the interpolants obtained in the experiments showed that we often have
monotonic behavior in practice, although not theoretically. We show via concrete
statistics that as a result of this, we obtain fewer and yet better interpolants.

5 Implementation and Evaluation

We implemented our lazy algorithm on top of tracer [14], an eager symbolic
execution system, and made use of the same interpolation method and theory
solver presented in [14]. Let us now remark on our two design choices.

Selective Abstraction: in principle, selective abstraction (∇) can be done in
many ways, formally, by deleting any “correction subset” [19] of the unsatisfiable
formula. We implemented selective abstraction by deleting constraint(s) from the
latest guard that we encountered during forward symbolic execution. The reason is
two-fold. Firstly, deleting the latest guard guarantees the formula to become satis-
fiable without requiring to compute any of its correction subsets (the latest guard
is trivially aminimal correction subset), which could be expensive. Secondly, given
an incremental theory solver, deleting the latest constraints can be implemented
more efficiently than deleting those encountered earlier. Although we believe that
more sophisticated analysis can be employed to make a well-informed decision,
the empirical results show that this approach works well in practice.

Speculation Bound: we used a linear bound for the speculation. In particular,
during speculation if a program point is visited more than once and it cannot
be subsumed, we stop the speculative search, and use the interpolant false at
the latest speculation point. Intuitively, anything less than a linear bound could
make speculation arbitrarily short, hence we need to give each program point
at least one chance to be explored. Our experiments confirm that often, a linear
bound that gives each program point at most one chance, is good enough.

We used as benchmarks sequential C programs from a varied pool – five device
drivers from the ntdrivers-simplified category of SV-COMP 2013 [2]: cdaudio,
diskperf, floppy, floppy2 and kbfiltr, two linux drivers qpmouse and tlan, an air
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Table 1. Verification Statistics for Eager and Lazy SE (A T/O is 180s (3 mins))

Bench- CPA IMP TRACER
mark Time Time Time (sec) States #Interpolants

(sec) (sec) EAG LZY Speedup EAG LZY Red. EAG LZY Red.

cdaudio 19 30 41 23 1.78 4396 2864 35% 3854 2689 30%
diskperf 28 149 53 19 2.79 4309 1617 62% 4012 1514 62%
floppy 27 36 25 12 2.08 3535 1635 54% 3208 1534 52%
floppy2 98 40 42 29 1.45 5063 3153 38% 4536 2863 37%
kbfiltr 3 8 4 3 1.33 973 756 22% 860 691 20%
qpmouse 3 8 32 15 2.13 1313 779 41% 1199 723 40%
tlan T/O T/O 41 26 1.58 3895 2545 35% 3542 2324 34%
nsichneu 5 41 40 5 8.00 4481 1027 77% 4379 1018 77%
statemate 2 T/O 72 5 14.40 6680 616 91% 4370 471 89%
tcas 2 11 19 1 19.00 5500 369 93% 5248 348 93%
Total 367 683 369 138 2.67 40145 15361 62% 35208 14175 60%

traffic collision avoidance system tcas, and two programs from the Mälardalen
WCET benchmark [21] statemate and nsichneu for which the safety property was
the approximate WCET. We chose only safe programs for our benchmarks as
they ensure a full search of the program’s state space. With unsafe programs,
if the error is encountered very early in the search process (e.g., due to good
heuristics), hardly any useful comparison can be drawn. All experiments are
carried out on an Intel 2.3 Ghz machine with 2GB memory.

To give a perspective of where tracer stands in the spectrum of verifi-
cation tools, we compare its performance with two competitive verifiers cpa-

checker [30] (ABM version) and impact [23]. Of these, impact implements
an interpolation-based model checking procedure, whereas cpa-checker is a
hybrid of smt-based search and cegar. Since impact is not publicly available,
we use cpa-checker’s implementation of the impact algorithm [23].

For each benchmark, we record in the shaded columns in Table 1 the veri-
fication time (in seconds) of cpa-checker (CPA), impact (IMP) and tracer

with eager symbolic execution (TRACER EAG.), respectively. As it can be seen
tracer is generally faster than impact but sometimes slower than cpa-checker

so it can be roughly positioned between the two (closer to cpa-checker) in
terms of performance. This comparison is to show that we chose a competi-
tive verifier to implement our algorithm and we expect the same benefits to be
provided to other similar verifiers.

We now present the main results in the rest of Table 1. In the set of columns
labelled Time (sec) we show the verification time of tracer in seconds for each
benchmark. In this, the (shaded) column EAG which we just saw, performed
eager symbolic execution, while the LZY column performed lazy symbolic exe-
cution, and Speedup is the ratio of the two. It can be seen that in all programs,
laziness makes the verification much faster, providing an average speedup of
2.67. This also makes lazy tracer perform much better than eager tracer.
We notice enormous improvement for nsichneu, statemate and tcas, as these are
programs with a large number of infeasible paths and the safety property on a
small number of variables, the perfect scenario for our speculation to shine.
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We move on to a more fine-grained measurement than time in the next set of
columns States, which shows the number of symbolic states tracer encountered
during verification. In total, we found that 40145 states were encountered with-
out speculation (EAG) and just 15361 states with speculation (LZY), a reduction
of about 62%. This shows that speculation results in more subsumption, which
thereby causes a reduction in the search space.

Next, we measure the improvement in memory provided by speculation. In the
set of columns #Interpolants, we show the total number of interpolants stored by
tracer at the end of the verification process. Interpolants typically contribute
to a major part of memory used by modern symbolic execution verifiers. In this
regard, laziness reduced the number of interpolants in tracer from 35208 (EAG)
to 14175 (LZY), a reduction of 60% across all benchmarks.

We focus on the two metrics seen above: number of interpolants (#Inter-
polants), and amount of subsumption, in terms of states (States) encountered.
The critical point is the inverse relationship: laziness provided a much smaller
number of interpolants while simultaneously increasing subsumption. In other
words, the quality of interpolants discovered through speculation is enhanced.

We conclude this section with a few more statistics which, while not directly
linked to absolute performance, nevertheless shed additional insight. First, con-
sider the number of distinct program variables that are involved in the inter-
polants. In the case without speculation, we noticed across all benchmarks that
there were 363 such variables. In contrast, with speculation, the number is only
229. This means that many (134) variables were not required to determine the
safety of the program. They were being needlessly tracked by interpolants simply
to preserve infeasible paths.

Next consider the “success rate” of speculation: how often does speculation
find an alternative interpolant? For simplicity, consider only those speculations
triggered at the top-level of the algorithm (from abstraction level 0 to 1). We
found, across the benchmark programs, a rate of 40-90%, more often at the
higher end. This means that speculation returns something useful most of the
time. However, note importantly that even when speculation was not successful
at the top-level, there is likely to have been interpolants discovered at the lower
levels. These are interpolants one would have not found without speculation.

To elaborate on the success rate of 40-90%, programs having large number
of infeasible paths tend to produce a high success rate, because as per our key
intuition, many such paths will be unrelated to the safety. Similarly, programs
with few infeasible paths produce a low success rate. In our experiments, the
highest success rates (90%) were from nsichneu, tcas and statemate, which have
a large number of infeasible paths as mentioned before.

Finally, reconsider the bound. The above success rate also indicates that there
are a significant, though minor, number of failures. We wish to mention that
when we do fail, the overwhelming reason is not the bound, but instead, the
(spurious) counter-examples. In summary, the rather high rate of success, and the
rather low rate of failure caused by the bound, together suggest that increasing
the bound would be a strategy of diminishing returns.
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6 Related Work and Concluding Discussion

Symbolic execution [17] has been widely used for program understanding and
program testing. We name a few notable systems: KLEE [3], Otter [26], and
SAGE [11]. Traditionally, execution begins at the first program point and then
proceeds according to the program flow. Thus symbolic execution is actually
forward execution. Recently, [20] proposed a variation, directed symbolic execu-
tion, making use of heuristics to guide symbolic execution toward a particular
target. This has shown some initial benefits in program testing.

For the purpose of having scalability in program verification, however, sym-
bolic execution needs to be equipped with learning, particularly in the form of
interpolation [16,24,15,14,1]. Due to the requirement of exhaustive search, as in
the case of this paper, these systems naturally implement forward symbolic ex-
ecution. Recently, interpolation has also been applied to the context of concolic
testing [13]. All the above-mentioned approaches can be classified as eager sym-
bolic execution. In other words, we do not continue a path when the accumulated
constraints are enough to decide its infeasibility.

In the domain of sat solving and hardware verification, property directed
reachability (PDR) [10] has recently emerged as an alternative to interpolation
[22]. Some notable extensions of PDR are [12,4,29]. However, the impact of
PDR to the area of software verification is still unclear. While such “backward”
execution has merits in terms of being goal directed, it has lost the advantage
of using the (forward) computation to limit the scope of consideration.

In contrast, our lazy symbolic execution preserves the intrinsic benefits of
symbolic execution while at the same time, by opening the infeasible paths se-
lectively, it enables the learning of property directed interpolants. We believe this
is indeed the reason for the efficiency achieved and demonstrated in Section 5.

The traditional cegar-based approach to verification may also be thought
of a “lazy”. This is because it starts from a coarsely abstracted model and
subsequently refines it. Such concept of laziness is, therefore, different from what
discussed in this paper. In the context of this paper, given a refined abstract
domain, a cegar-based approach is in fact considered as eager, since it avoids
traversal of infeasible paths, which are blocked by the abstract domain. Some of
such paths are indeed counter-examples learned from the previous phases. The
work [24] discussed this as a disadvantage of cegar-based approaches: they
might not recover from over-specific refinements. Our contribution, therefore, is
plausibly applicable in a cegar-based setting.

There is now an emerging trend of employing generic smt solvers for (bounded)
symbolic execution, and since modern smt solvers, e.g. [9], do possess the sim-
ilar power of interpolation – in the form of conflict clause learning or lemma
generation – we now make a few final comments in this regard.

First, note that lazy symbolic execution has no relation with the concept of
lazy smt. In particular, the dominating architecture dpll(T ), which underlies
most state-of-the-art smt tools, is based on the integration of a sat solver and
one (or more) T -solver(s), respectively handling the Boolean and the theory-
specific components of reasoning. On the one hand, the sat solver enumerates



Lazy Symbolic Execution for Enhanced Learning 337

truth assignments which satisfy the Boolean abstraction of the input formula.
On the other hand, the T -solver checks the consistency in T of the set of literals
corresponding to the assignments enumerated. This approach is called lazy (en-
coding), and in contrast to the eager approach, it encodes an smt formula into
an equivalently-satisfiable Boolean formula and feeds the result to a sat solver.
See [27] for a survey.

Second, we note that though the search strategies used in modern dpll-based
smt solvers would be more dynamic and different from the forward symbolic ex-
ecution presented in this paper, it is safe to classify these smt solvers as eager
symbolic execution. This is because, in general, whenever a conflict is encoun-
tered, a dpll-based algorithm would analyze the conflict, learn and/or propagate
new conflict clauses or lemmas, and then immediately backtrack (backjump) to
some previous decision, dictated by its heuristics [18].

We believe that for the purpose of program verification, the benefit of be-
ing lazy by employing speculative abstraction, would also be applicable to smt

approaches. This is because, in general, we can always miss out useful (good)
interpolants if we have not yet seen the complete path. In this paper, we have
demonstrated that in verification, property directed learning usually outper-
forms learning from “random” infeasible paths. Eagerly stopping when the set
of constraints is unsatisfiable might prevent a solver from learning the conflict
clauses which are more relevant to the safety of the program. In smt solvers,
the search, however, is structured around the decision graph. Therefore, some
technical adaptations to our linear bound need to be reconsidered. For example,
a bound based on the number of decisions seems to be a good possibility. More-
over, in smt setting, there are no error locations. One possible idea is, when
compiling a verification problem into smt input format, we specially “mark”
the constraints guarding the error locations, so that unsatisfiable cores involving
marked constraints can be favored over those not.

7 Conclusion

We presented a systematic approach to perform speculative abstraction in sym-
bolic execution in pursuit of program verification. The basic idea is simple: when
a symbolic path is first found to be infeasible, we abstract the cause of infeasibil-
ity and enter speculation mode. In continuing along the path, more abstractions
may be performed, while remaining in speculation mode. Crucially, speculation
is only permitted up to a given bound, which is a linear function of the program
size. A number of reasonably sized and varied benchmark programs then showed
that our speculative abstraction produced speedups of a factor of two and more.
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Abstract. This paper investigates the combined use of abstraction and
probabilistic learning as a means to enhance statistical model checking
performance. We are given a property (or a list of properties) for ver-
ification on a (large) stochastic system. We project on a set of traces
generated from the original system, and learn a (small) abstract model
from the projected traces, which contain only those labels that are rele-
vant to the property to be verified. Then, we model-check the property
on the reduced, abstract model instead of the large, original system. In
this paper, we propose a formal definition of the projection on traces
given a property to verify. We also provide conditions ensuring the cor-
rect preservation of the property on the abstract model. We validate our
approach on the Herman’s Self Stabilizing protocol. Our experimental
results show that (a) the size of the abstract model and the verification
time are drastically reduced, and that (b) the probability of satisfaction
of the property being verified is correctly estimated by statistical model
checking on the abstract model with respect to the concrete system.

1 Introduction

Statistical Model-Checking (SMC) [12,17,24,27] has recently emerged as an al-
ternative to standard model-checking to avoid exhaustive exploration of the
state-space and its associated explosion problem. SMC combines Monte-Carlo
simulation [11] on model traces with statistical techniques in order to decide
whether some stochastic model satisfies a given property or to compute its sat-
isfaction probability. Nowadays, SMC is getting increased industrial attention
[4] and several modeling and/or analysis frameworks include it amongst their
(usually, most successful) analysis techniques [5,16,15,3].

SMC is however not a panacea for automated verification. As many other
analysis techniques, it still encounters significant difficulties when used on real-
life systems. First, the stochastic modeling of these systems might be extremely
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cumbersome. Actually, high expertise is generally required to produce any kind
of meaningful formal models. For stochastic models, besides functional aspects,
they must include stochastic information in form of probabilities. These are
hardly available and usually incomprehensible by an average system designer.
Second, whenever such stochastic models exist, they can be very detailed and
contain too much information than actually needed for verification purposes.
This is usually the case when stochastic system models are automatically gen-
erated from higher level descriptions, e.g., as part of various designs/analysis
flows [2]. In this case, Monte-Carlo simulation becomes problematic as individ-
ual simulation time (time to obtain a single execution trace) could be very long.
Henceforth, it could not be possible to obtain any but only a limited number
of traces and consequently, prevent the use of SMC techniques. Moreover, it is
worth mentioning that for verification of system-level properties, the observation
of any such trace in detail is rarely needed. Most of the time, such properties
are expressed in terms of few observable actions/states of the system while the
remaining are completely irrelevant and can be safely ignored.

Our aim is to improve general applicability of SMC techniques. In this work,
we propose the combined use of abstraction and learning techniques to automat-
ically construct faithful abstractions of system models and therefore to overcome
the issues discussed earlier. Nowadays, machine learning is an active field of re-
search and learning algorithms are constantly developed and improved in order
to address new challenges and new classes of problems (see [26] for a recent
survey on grammatical inference). In our context, learning is combined with ab-
straction as follows. Given a property of interest and a (usually large) sample
of partial traces generated from a concrete system (model), we first use abstrac-
tion to restrict the amount of visible information on traces to the minimum
required to evaluate the property and then, use learning to construct an ab-
stract, probabilistic model which conforms to the abstracted sample set. Under
some additional restrictions discussed later, the resulting model is a sound ab-
straction of the concrete model with respect to the satisfaction of the property.
Hence, it can be used to correctly predict/generate the entire abstract behavior
of the model, in particular, as an input model for SMC.

The above approach has multiple benefits. First of all, the sample set of traces
can be generated directly from an existing black-box implementation of the
system, as opposed to a concrete detailed model. In many practical situations,
such detailed system models simply do not exist and the cost for building them
using reverse-engineering could be prohibitive. In such cases, learning provides an
effective, automated way to obtain a model and to get some valuable insight on
the system behavior. The use of projection is also mostly beneficial. In most of the
cases, the complexity of the learning algorithms as well as the complexity of the
resulting models are directly correlated to the the number of distinct observations
(the alphabet) of traces. Moreover, under normal considerations, a large alphabet
requires a large size for the sample set. Intuitively, the more complex the final
model is, the more traces are needed to learn it correctly. Nevertheless, one
should mention that a bit of care is needed to meaningfully combine abstraction



342 A. Nouri et al.

and learning. That is, abstraction may change a deterministic model into a
non-deterministic one, and henceforth has an impact on the learning algorithms
needed for it.

The contributions of the paper are as follows. We propose a general approach
to compute abstract stochastic models using learning and projection and discuss
conditions under which the obtained model is a correct abstraction of the original
system.We provide a first simple definition for a projection operator on execution
traces given an LTL property and an implementation of the whole procedure.
We finally validate the approach on the Herman’s Self Stabilizing protocol. The
obtained results show an important reduction of the model size, the SMC time,
and accurate probability estimations of the verified properties.

The remainder of this paper is organized as follows. The basic formalisms for
probabilistic modeling and learning techniques are briefly recalled in Section 2.
In Section 3, we present our contribution, that is the joint use of abstraction
and learning as a means to speed-up statistical model checking. We discuss the
restrictions needed for convergence and correctness. In Section 4, we present the
experimental set-up and concrete results. Related work is discussed in Section 5.
Finally, conclusions and directions for future research are presented in Section 6.

2 Background

Let AP be a finite set of atomic propositions. We define the alphabet Σ = 2AP

and denote the elements of Σ (subsets of AP ) as symbols. The empty symbol is
denoted by τ . As usual, we denote by Σω (resp. Σ∗) the sets of infinite (resp.
finite) words over Σ. For an infinite word σ = σ0σ1... and i ≥ 0, we define the
ith suffix (resp. prefix) of σ as σ[i..] = σiσi+1... (resp. as σ[..i] = σ0...σi).

2.1 Probabilistic Models

Definition 1. A labeled Markov chain (LMC) M is a tuple 〈S, ι, π, L〉 where,

– S is a finite set of states,
– ι : S → [0, 1] is the initial states distribution such that

∑
s∈S ι(s) = 1,

– π : S × S → [0, 1] is the probability transition function such that for each
s ∈ S,

∑
s′∈S π(s, s′) = 1 and

– L : S → Σ is a state labeling function.

A run is a possible behavior (infinite execution) of the LMC. A trace is the
sequence of labels associated to the states of the run. Formally:

Definition 2. Let M = 〈S, ι, π, L〉 be a LMC. A run of M is an infinite se-
quence of states s0s1...snsn+1... such that ι(s0) > 0 and π(si, si+1) > 0, for
all i ≥ 0. A trace σ associated to a run s0s1...snsn+1... is the infinite word
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L(s0)L(s1)...L(sn)L(sn+1).... A finite run (resp. finite trace) is any finite prefix
of a run (resp. trace).

We denote by Runs(M) the set of runs and by Traces(M) the set of traces of
M . Moreover, we denote by PrM the underlying probability measure induced by
M on the set of its traces. This measure is well-defined in the context of Markov
chains (see [1]). Two LMCs M1 and M2 are called equivalent, and denoted M1 ≈
M2 if they have identical probability measures on traces, that is, PrM1 = PrM2 .

A labeled Markov chain is deterministic (DLMC) iff (i) ∃s0 ∈ S such that
ι(s0) = 1, and (ii) ∀s ∈ S, ∀σ ∈ Σ there exists at most one s′ ∈ S such that
π(s, s′) > 0 and L(s′) = σ.

Probabilistic finite automata (PFA) are an alternative model for probabilistic
systems. They are defined similarly to LMC with the following modification: π
is now defined on S × S ∪ {$} and π(s, $) stands for the probability to termi-
nate execution at state s. Henceforth, the associated notions of runs and traces
correspond to finite runs and finite traces for a LMC. The probability of a finite
run s = s0s1...sn of a PFA is Pr(s) = ι(s0) · (

∏n−1
i=0 π(si, si+1)) · π(sn, $). Deter-

ministic PFA are denoted as DPFA.

Example. We consider the Craps Gambling Game [1] as an illustrative example.
A player starts by rolling two fair six-sided dice. The outcome of the two dice
determines whether he wins or not. If the outcome is 7 or 11, the player wins. If
the outcome is 2, 3, or 12, the player looses. Otherwise, the dice are rolled again
taking into account the previous outcome (called point). If the new outcome is 7,
the player looses. If it is equal to point, he wins. For all other outcome, the dice
are rolled again and the process continue until the player wins or looses. Figure 1
illustrates the DLMC model that describes the game behavior. A possible run
of the DLMC below is r = S0S5S5S7S7 . . . The corresponding trace is t = start
point6 point6 won won . . . and Pr(t) = 1× 5

36 × 25
36 × 5

36 × 1× . . . = 0.0277.

won

1/12

1/12

3/4 3/4 13/18 13/18 25/36

1/9
5/36

5/36

1/92/9

25/36

1/9

1/12
1/12 1/6

1/9 1/6 5/36
1/6

1/9 1/6
5/36

1/6

1 1

1/6

start

point4 point10 point5 point9 point6 point8

lost

ι(S0) = 1

S = {S0, S1, , ..., S8}
L(S0) = start, . . . , L(S8) = lost

S0

S1
S2 S3

S4 S5 S6

S8S7

π =

⎛
⎜⎜⎜⎝
S0 S1 · · · S8

S0 0 1
12 · · · 1

9

S1 0 3
4 · · · 1

12... ... ... . . . ...
S8 0 0 · · · 1

⎞
⎟⎟⎟⎠

Fig. 1. A DLMC model for the Craps Gambling Game
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2.2 Probabilistic Linear Time Temporal Logic (PLTL)

The linear time temporal logic (LTL) formula ϕ built over a set of atomic propo-
sitions AP is defined by the following syntax:

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | Nϕ | ϕ1Uϕ2 | ϕ1U
iϕ2 (p ∈ AP )

N,U and U i are respectively the next, until and bounded until operators.
Additional Boolean operators can be inferred from negation ¬ and conjunction
∧. Moreover, temporal operators such as G (always) and F (eventually) are
defined as Fϕ ≡ true Uϕ and Gϕ ≡ ¬F¬ϕ. The bounded fragment of LTL
(denoted BLTL) restricts the use of the until operator U to its bounded variant
U i. LTL formula are interpreted on infinite traces σ = σ0σ1 . . . ∈ Σω as follows:

– σ � true; σ � p iff p ∈ σ0; σ � ¬ϕ iff σ � ϕ;
– σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2; σ � Nϕ iff σ[1..] � ϕ;
– σ � ϕ1Uϕ2 iff ∃k ≥ 0 s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[ holds σ[j..] � ϕ1;
– σ � ϕ1U

iϕ2 iff ∃k ∈ [0, i] s.t. σ[k..] � ϕ2 and ∀j ∈ [0, k[ holds σ[j..] � ϕ1.

Definition 3. Given an LMC M and an LTL property ϕ, the probability for M
to satisfy ϕ denoted by Pr(M � ϕ) is given by the measure PrM{σ ∈ Traces(M) |
σ |= ϕ}. In addition, we say that M satisfies ϕ denoted by M � ϕ iff ∀σ ∈
Traces(M), σ � ϕ.

Example. Given the Craps Gambling Game model in Figure 1, one could check
for instance the following probabilistic (B)LTL properties. The probability to
eventually loose is Pr(F lost) = 0.51, and the probability to win in two steps is
Pr(true U2 won) = 0.3.

2.3 Statistical Model Checking (SMC)

Consider a stochastic system S and a property ϕ. SMC refers to a series of
simulation-based techniques that can be used to answer two questions : (1)
Qualitative : Is the probability for S to satisfy ϕ greater or equal to a certain
threshold? and (2) Quantitative : What is the probability for S to satisfy ϕ?
Contrary to numerical approaches, the answer is given up to some correctness
precision. In the sequel, we overview two SMC techniques. Let Bi be a discrete
random variable with a Bernoulli distribution of parameter p. Such a variable
can only take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p.
In our context, each variable Bi is associated with one simulation of the system.
The outcome for Bi, denoted bi, is 1 if the simulation satisfies ϕ and 0 otherwise.

Qualitative Answer. The main approaches [27,24] proposed to answer the qual-
itative question are based on hypothesis testing. Let p = Pr(ϕ), to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probabil-
ity of error. The strength of a test is determined by two parameters, α and β,
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such that the probability of accepting K (respectively, H) when H (respectively,
K) holds, called a Type-I error (respectively, a Type-II error ) is less or equal
to α (respectively, β). A test has ideal performance if the probability of the
Type-I error (respectively, Type-II error) is exactly α (respectively, β). How-
ever, these requirements make it impossible to ensure a low probability for both
types of errors simultaneously (see [27] for details). A solution is to use an in-
difference region [p1, p0] (given some δ, p1 = θ − δ and p0 = θ + δ) and to test
H0 : p≥ p0 against H1 : p≤ p1. We now sketch the Sequential Probability Ratio
Test (SPRT). In this algorithm, one has to choose two values A and B (A > B)
that ensure that the strength of the test is respected. Let m be the number of
observations that have been made so far. The test is based on the following quo-

tient: p1m

p0m
=

∏m
i=1

Pr(Bi=bi|p=p1)
Pr(Bi=bi|p=p0)

=
pdm
1 (1−p1)

m−dm

pdm
0 (1−p0)m−dm

, where dm =
∑m

i=1 bi. The

idea is to accept H0 if p1m

p0m
≥ A, and H1 if p1m

p0m
≤ B. The algorithm computes

p1m

p0m
for successive values of m until either H0 or H1 is satisfied. This has the

advantage of minimizing the number of simulations.

Quantitative Answer. In [12,17] Peyronnet et al. propose an estimation pro-
cedure to compute the probability p for S to satisfy ϕ. Given a precision δ,
Peyronnet’s procedure, which we call PESTIM, computes a value for p′ such
that |p′ − p|≤δ with confidence 1− α. The procedure is based on the Chernoff-
Hoeffding bound [14]. Let m be the number of simulations of the system and
p′ = (

∑m
i=1 bi)/m, then Chernoff-Hoeffding bound [14] gives Pr(|p′ − p| > δ) <

2e−
mδ2

4 . As a consequence, if we take m≥ 4
δ2 log(

2
α ), then Pr(|p′−p|≤δ) ≥ 1−α.

2.4 Probabilistic Learning

Learning probabilities distributions over traces is a hard problem [7] with po-
tential applications in a wide range of domains, far beyond formal verification.
Many methods have been proposed in the research literature and are continu-
ously improved and challenged on learning research competitions [26]. The family
of state merging techniques is one of the most successful nowadays. Intuitively,
these techniques proceed by first constructing some large automata-based rep-
resentation of the set of input traces and then progressively compacting them,
by merging states, into a smaller automaton, while preserving as much as possi-
ble trace occurrence frequencies/probabilities. Different algorithms in this family
can learn either DPFA models [6,9,8] or general PFA models [25,22,10].

In this paper, we use AAlergia [19] which is a state merging algorithm that
exclusively learn deterministic models. Given a sample of traces, the algorithm
proceeds in three steps. It first builds an intermediate representation, a Fre-
quency Prefix Tree Acceptor (FPTA), which is a restricted form of DPFA that
represents all the traces in the input sample and their corresponding frequencies.
Seconds, based on a compatibility criterion parametrized by αA (automatically
computed, as explained in [19]), it iteratively merges states of the FPTA having
the same labels and similar probability distributions until reaching a compact
DPFA. Finally, it transforms the obtained DPFA into a DLMC model.
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AAlergia is proven to converge to the correct model in the limit [19] if the
input traces are generated, with random lengths, from an LMC model. A first
consequence concerns verification on DLMCs and ensures that, in the limit (with
sufficiently big sample set of traces), a given LTL property will hold on the orig-
inal and the learned model with the same probability. This result is partially
extended to LMC. That is, for arbitrary Markov chain models, the algorithm
might not converge to the good model in general. In the case of input traces
from a non-deterministic LMC model (which moreover, does not have an equiv-
alent deterministic representation), as the sample size increases, AAlergia will
build a sequence of DLMCs (usually, of increasing size) tending to approximate
the original model. It is however proven that, in the limit, these learned DLMC
models provide an increasingly better approximation for the initial (prefix) be-
havior, and hence preserve the satisfaction of bounded LTL properties.

3 Learning Abstract Models

The verification problem in the stochastic setting amounts to compute Pr(M |=
ϕ) for an LMC model M and an LTL property ϕ. Moreover, M might not be
explicitly known, that is, it could be a black-box probabilistic system which can
be executed arbitrarily many times in order to produce arbitrarily long traces.

Due to the reasons introduced earlier, we would like to avoid the verification
of ϕ on the original model M . Instead, we would like to perform it on a smaller,
abstract model M � which preserves the satisfaction probability of ϕ, that is,
Pr(M |= ϕ) = Pr(M � |= ϕ). We propose hereafter a method to compute such
an abstraction M � by combining learning and a projection operator on traces
parametrized by the property ϕ. The idea is based on the simple observation
that, when checking a model against a property, only a subset of the atomic
propositions is really relevant. In fact, only the atomic propositions mentioned
explicitly in the property are useful while the others can be safely ignored.

traces (Learning)(Execution)

(Learning)traces

(Relabeling)

(Execution)

T M ′

Ta (M � ≈ Ma)Ma = 〈S, τ, π, La〉

(M ′ ≈ M)M = 〈S, τ, π, L〉

M �

(Projectionϕ)

Fig. 2. Learning abstract models: approach overview

The proposed approach is depicted in Figure 2. It consists of initially gen-
erating a finite set of random finite traces T (with random lengths) from M
(Sampling). In a second step, a projection is applied on traces T in order to
restrict the atomic propositions to the ones needed for the evaluation of the
property ϕ. The projection is detailed below. Third, the set of projected traces
is used as an input to a learning algorithm. For experiments, we have used AAler-
gia [19], however, any other algorithm could be used. The output of the learning
denoted M � on Figure 2 will be used to evaluate the property of interest ϕ.
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It is worthwhile to mention that, in our approach, the sampling step (which
could be time consuming) is done only once, while the following steps could
be repeated given different properties. Our approach ensures a significant time
reduction with respect to applying SMC directly on the black-box system since
it generally requires trace re-sampling every time. In [24], re-sampling is avoided
but raises confidence level issues as discussed in Section 5. In addition, some
SMC algorithms, besides their termination guarantee, might potentially need a
huge number/length of traces depending on the required confidence level.

The soundness of this approach is however justified only under particular con-
siderations. Note that a projection may potentially introduce non-deterministic
behavior at the level of traces. We then need to distinguish several cases. The first
one is when the traces are generated from a DLMC and the projection operation
does not introduce any non-determinism. In this case any learning algorithm
should work, for instance, AAlergia. Another case is when the traces are gener-
ated from an LMC and/or the projection introduces non-determinism. This case
is divided into two sub-cases depending on the type of non-determinism. If the
non-deterministic model has an equivalent deterministic one, then any learning
algorithm can be used. Otherwise, one needs to use learning algorithms capable
to learn non-deterministic models such as [25,10]. We detail the main steps of
the approach and illustrate them on the running example. The correctness is
formally established by Theorem 1.

3.1 Main Steps

Projection. The projection is defined on traces so as to reduce the number of
labels and henceforth, later on, the number of states in the learned model. We
introduce a first syntactic definition of a projection operator. It basically consists
of ignoring the atomic propositions that are not relevant to the property under
verification as formally defined below.

Definition 4. Let Vϕ ⊆ AP called the support of ϕ be the set of atomic propo-
sitions occurring explicitly in ϕ. The projection Pϕ : Σ∗ → Σ∗ is defined as
Pϕ(σ0σ1...σn) = σ′

0σ
′
1...σ

′
n where σ′

i = σi ∩ Vϕ for all i ∈ [0, n].

Example. Given a set T of traces generated from the Craps Gambling Game
model in Figure 1 and the properties ϕ1 = F won and ϕ2 = F (won ∨ lost),
Definition 4 is applied to compute the corresponding sets of projected traces Ta1

and Ta2 : T = {start won, start lost lost, start won won won won won won won won

won, start point5, start point10 point10 point10 point10 point10, start point9 point9,

. . .}; Ta1 = {τ won, τ τ τ , τ won won won won won won won won won, τ τ , τ τ τ τ τ τ ,

τ τ τ , . . .}; Ta2 = {τ won, τ lost lost, τ won won won won won won won won won,

τ τ , τ τ τ τ τ τ , τ τ τ , . . .}

Learning. We briefly illustrate the learning phase using AAlergia on the run-
ning example. Figure 3 shows three learned models of the Craps Gambling Game
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obtained using the set T of 5000 traces generated from the model in Figure 1. One
can note, out of this figure, the important reduction of the obtained models sizes
with respect to the original one. Figure 3a shows the model learned by AAlergia
taking as input the set Ta2 , that is, with respect to property ϕ2 = F (won∨lost).
Figure 3b is obtained by applying AAlergia on the set Ta1 , that is, projected
with respect to ϕ1 = F won. Remark that this model is not equivalent but only
an approximation of the original model in Figure 1. That is, in the latter there
exists some non null probability to never reach the won state. Whereas, in the
learned model the won state is reachable with probability 1. This approximation
could however improve if a larger set of traces is used for learning as stated in the
previous section. Finally, the third learned model shown in Figure 3c is equally
obtained from Ta1 but when using an algorithm able to learn non-deterministic
models such as the one proposed by Stolcke [25].

1 1

0.110.67
0.22

0.72

0.170.11

lostwon
S3

S0

S2

τ

S1

τ

(a) Scenario 1

1

0.47 0.53

0.37
0.63

won

S1

S2

τ

S0

τ

(b) Scenario 2

1 1

0.110.67
0.22

0.72

0.170.11

won
S2

S1
τ

S3

τ

S0
τ

(c) Scenario 3

Fig. 3. Learned Markov Chains for Craps Gambling Game using 5000 traces

Statistical Model Checking. The last step evaluates the considered property on
the learned model. Table 1 provides results of verifying the property ϕ1 = F won
on the Craps Gambling Game models. It shows that the model in Figure 3a
exhibits similar probability to the original Craps model, whereas the one in
Figure 3b shows different ones. The reason is that the projection introduced
a non-determinism in the input sample. In addition, it seems that in this case
there is no equivalent deterministic model that could be learned by AAlergia.

Table 1. Verifying ϕ1 on the original and the learned Craps Gambling Game models
using SMC (PESTIM)

Models Pr(ϕ1)

Scenario 1(Figure 3a) 0.485

Scenario 2 (Figure 3b) 1

Original Model (Figure 1) 0.493
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3.2 Correctness

The correctness of our approach is formally stated as follows.

Theorem 1. Let M be an LMC model and let ϕ be an LTL property. Let M �

be the learned model from a sample set of traces generated from M and projected
according to ϕ as in definition 4. Then, in the limit, M � is a correct abstraction
for the verification of ϕ, that is Pr(M |= ϕ) = Pr(M � |= ϕ) if either

i) ϕ belongs to the bounded fragment BLTL and the learning algorithm con-
verges for DLMC models, or

ii) the learning algorithm converges for arbitrary LMC models

Proof. First, let us remark that M � is constructed as illustrated by the thick line
in Figure 2. Let us moreover observe that any sample set of projected traces Ta

obtained from M is equally obtained from Ma, that is, the ”abstracted” version
of M where only the labeling function has changed from L into La by taking
La(s) = L(s)∩Vϕ, for all s ∈ S. In other words, the left-hand side of the diagram
shown in Figure 2 commutes. Henceforth, M and Ma are identical with respect to
the satisfaction of ϕ. The underlying set of runs and their associated probabilities
are the same in M and Ma. As the atomic propositions occurring in ϕ are
preserved by relabeling, it obviously holds that Pr(M |= ϕ) = Pr(Ma |= ϕ).

Moreover, learning from the sample set Ta leads eventually to Ma. That is,
under particular restrictions specific to the learning algorithms and limit condi-
tions, the learned model M � will be an equivalent representation of Ma, that is,
M � ≈ Ma. We distinguish two cases depending on the learning algorithm:

i) In the case of deterministic models learning (e.g., AAlergia), the learned
model M � is provable equivalent only for a deterministic input model Ma.
But, in addition, for the general case, this models is also providing good
approximations for the initial (prefix) behavior of Ma and hence preserve the
probability of satisfaction for properties in the BLTL fragment (see Theorem
3 in [19]). Thereof, by using AAlergia or a similar learning algorithm, it holds
that Pr(Ma |= ϕ) = Pr(M � |= ϕ) whenever ϕ belongs to BLTL.

ii) In the general case of non-deterministic models learning, it is guaranteed in
the limit that Ma ≈ M �. Thereof, one can safely conclude that Pr(Ma |=
ϕ) = Pr(M ′

a |= ϕ) for any ϕ.

Henceforth, in both cases it holds Pr(M |= ϕ) = Pr(M � |= ϕ). ��

4 Case Study: Herman’s Self Stabilizing Protocol

To experiment our approach, we use the Herman’s Self Stabilizing Protocol [13].
The goal of such a protocol is to perform fault tolerance by enabling a distributed
system starting in an arbitrary state to converge to a legitimate one in a finite
time. Given a token ring network where the processes are indexed from 1 to N (N
must be odd) and ordered anticlockwise, the algorithm operates synchronously.
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Processes can possess tokens, which circulate in one direction around the ring. At
every step, each process with a token tosses a coin. Depending on the outcome,
it decides to keep it or to pass it on to the right neighbor. When a process holds
two tokens, they are eliminated. Thus, the number of tokens remains odd. The
network is said to be stable if exactly one process has a token. Once such a
configuration is reached, the token circulate forever, fairly, around the ring.

We apply our abstraction approach to several configurations (N = 7, 11, 19, 21)
of the protocol. Note that as the number of processes increases, the state space
becomes very large and makes the verification quite heavy even using simulation-
based methods such as SMC. We use AAlergia for learning and show that
we are able to reduce the state space while still accurate for several prop-
erties. We consider the bounded properties ϕL = Pr(true UL stable) and
ψL
N = Pr(tokenN UL stable) where N is the number of processes in the net-

work and L is a bound. The first property states that the protocol reaches the
stable state in L steps whatever the intermediate ones are. The second specifies
in addition that the protocol directly moves from N tokens to the stable state
(1 token), that is, all the states before stable are tokenN. We first apply the
projection on the traces generated from the different configurations using the
properties supports VϕL = {stable} and VψL

N
= {tokenN, stable}. Then, we use

AAlergia to learn the corresponding models shown in Figure 4. The models for
N = 19, 21 are similar to N = 11 and are omitted for space constraints.
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Fig. 4. Learned (AAlergia) Herman’s models for N = 7 (a,b) and N = 11 (c,d)

Table 2 summarizes the learned models characteristics, AAlergia performance
when combined with projection, and properties verification results using PRISM
[16]. In this table, the first two columns list the used configurations and their
corresponding sizes. The third column depicts the properties under considera-
tion. Information about the learning process are then detailed: αA is the AAlergia
compatibility criterion parameter, Size is the learned model size, and Time is the
learning time in seconds. The last part concerns the comparison of the original
and the learned model in term of properties probabilities and verification time.
The verification part relies on the PESTIM algorithm which is parametrized by
two confidence parameters δ and α.
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The results in Table 2 point out two important facts. The first is the drastic
reduction of the learned models sizes and SMC time compared to the original
Herman’s Self Stabilizing protocol. Figure 5 summarizes the SMC time of ϕ10

for the learned and the original models when increasing N . The figure and the
table allow us to see how big is the SMC time of the original model with respect
to the learned one. Figure 5 shows in addition the learning time which is also
far below the SMC time of the original model for N > 11. Moreover, one can
see that the time to learn plus SMC the learned model is below the SMC time
of the original model for N > 11 which confirms the pertinence of our approach
for big models. For instance, for N = 19, the learning took about 83 seconds
and SMC the learned model about 0.307 seconds while SMC the original one
took about 13 hours. Furthermore, since the sampling step is done only once
in our approach, its time impact is reduced when considering many properties.
The second fact is that, besides this reduction, the models are quite accurate in
terms of probability measures as clearly shown in the table and Figures 6a,6b
and 6c. These figures show the verification results of ϕL (for different L) on the
original protocol versus the learned model for all the considered configurations.

Table 2. Abstraction and verification results of ϕ10 and ψ30 using PESTIM

Size Prop.
Learning SMC

δ, α
Learned Model Original Model

αA Size Time(s) Pr Time(s) Pr Time

N = 7 27

ϕ10 [2−9, 20] 3 69.70
10−2, 10−1 0.874 0.180 0.874 3.40 s
10−2, 10−2 0.880 0.320 0.873 5.44 s

ψ30 [2−6, 26] 3 45.98
10−2, 10−1 0.112 0.050 0.112 0.93 s
10−2, 10−2 0.109 0.111 0.111 1.51 s

φ [2−8, 20] 4 167.50 – 0.160 0.005 0.167 0.02 s
Sample Size = 5000

N = 11 211

ϕ10 [2−4, 26] 2 54.67
10−2, 10−1 0.517 0.250 0.543 33.1 s
10−2, 10−2 0.518 0.440 0.543 58.3 s

ψ30 [2−6, 26] 3 60.22
10−2, 10−1 0.011 0.039 0.012 12.1 s
10−2, 10−2 0.012 0.070 0.011 21.7 s

Sample Size = 5000

N = 19 219

ϕ10 [2−4, 26] 2 82.95
10−2, 10−1 0.197 0.180 0.148 8.1 h
10−2, 10−2 0.191 0.307 0.151 13.3 h

ψ30 [2−6, 26] 3 172.58
10−2, 10−1 0.000 0.040 0.0001 5.7 h
10−2, 10−2 0.000 0.074 0.0008 10.1 h

Sample Size = 10000

N = 21 221
ϕ10 [2−10, 20] 3 253.71

10−2, 10−1 0.169 0.355 0.172 34 h
10−2, 10−2 0.163 0.616 − > 5 d

Sample Size = 10000
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Fig. 5. PESTIM (10−2, 10−2) time: original vs. learned Herman’s model for ϕ10
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Fig. 6. ϕL verification results using PESTIM for N = 7, 11, 19, and 21. The results for
N = 21 are obtained with PESTIM (5.10−2, 5.10−3).

Table 3. SPRT (10−3, 10−3) of ψL
N on the original and the learned models

L
Original Model Learned Model

θ Traces Time(s) θ Traces Time(s)

N = 7
L = 1 [0.109, 0.110[ 622018 25.643 [0.107, 0.108[ 588357 1.363
L = 30 [0.111, 0.112[ 622834 25.749 [0.108, 0.109[ 533885 1.282
L = 65 [0.111, 0.112[ 651434 26.756 [0.108, 0.109[ 476883 1.118

N = 11
L = 1 [0.011, 0.012[ 147178 85.135 [0.012, 0.013[ 163600 0.411
L = 30 [0.011, 0.012[ 105362 60.206 [0.013, 0.014[ 098493 0.262
L = 65 [0.011, 0.012[ 137469 80.648 [0.013, 0.014[ 248300 0.564

In addition to PESTIM, we used the SPRT technique to validate with more
confidence the results of the property ψL

N = Pr(tokenN UL token1) >= θ for
N = 7, 11. We fixed the confidence parameters to α = β = 10−3 and δ = 10−3.
Table 3 shows the verification results and performance (verification time and
number of traces) for different L values. Note that for this experiment, we used
the same model learned previously. In this table, θ is the probability range to
satisfy ψL

N , Traces is the number of traces used by SPRT, and Time is the SMC
time. This table confirms the observation made in the previous experiment, that
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Fig. 7. Learned Herman’s protocol model (N = 7) using AAlergia given φ

is, the reduction of the SMC time when using the abstract model while the
probability estimation still accurate.

We did an additional property φ = Pr(X(token5 U stable)) for Herman’s
protocol with N = 7 in order to investigate the usability of this instance of the
approach for unbounded properties (all the considered properties so far where
bounded). The corresponding learned model is shown in Figure 7 and the verifi-
cation results are depicted in Table 2. The obtained results show that the proba-
bility of satisfying φ is almost the same for the learned and the original protocol.
This is possible (to check unbounded LTL properties on a learned model with
a good accuracy) because, in this case, there exist an equivalent deterministic
model to the original Herman’s protocol that AAlergia succeed to learn. Since
φ is unbounded, we rely on classical probabilistic model checking using PRISM.

5 Related Work

We first review some applications of learning techniques for systems verifica-
tion. For more details, we refer the reader to the literature survey from Martin
Leucker [18]. Pena et al. propose to use learning for the purpose of state reduc-
tion in incompletely specified finite state machines [21]. Based on Angluin’s L*
algorithm, which computes the minimal DFA in polynomial time, the authors
propose a learning technique that produces an equivalent, reduced finite state
machine. In contrast, our work relies on the AAlergia algorithm and assumes
that the input data is generated from an LMC. Peled et al. propose to combine
model checking, testing, and learning to automatically check properties of sys-
tems whose structure is unknown [20]. This paper motivates black-box checking
where a user performs acceptance tests and does not have access to the design,
nor to the internal structure of the system. The authors, however, conclude that
the complexity of their algorithms could be reduced if an abstract model of the
system would be available. Additionally, the authors pointed out the need to
take into account the property of interest to tackle verification complexity.

Among the works aiming to improve SMC applicability, we mention Sen et al.
SMC algorithm for black-box systems [24]. In this work, systems are assumed
to be uncontrolled, that is, traces can not be generated on demand. Hence, the
approach cannot guarantee a correct answer within required error bounds. It
computes instead a p-value as a confidence measure. While our approach is not
making such an assumption, it also uses a pre-generated set of traces to learn
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an abstract model which is given as input to SMC. In contrast, [24] uses the
pre-generated traces as direct input to their SMC algorithm. This raises the
confidence issue but makes it faster since no learning is performed.

6 Conclusion

Reducing the SMC time of a given LTL property on a large stochastic system is
the primary benefit of our abstraction approach. This gain is achieved through
the combined use of projection on traces and learning. Projection is performed
by considering the support of the property of interest, that is, the set of symbols
explicitly appearing in that property. The approach could be instantiated with
any learning algorithm. Although, this must respect the conditions discussed
earlier to produce accurate models preserving the probability of the property
under verification. Experimental results show that (1) verifying the properties
of interest on the abstract model is faster than the original one, and that (2)
the estimation of the probability of satisfying these properties is accurate with
respect to the one obtained on the original system.

The proposed projection definition is currently quite simple. It allowed us to
instantiate our methodology and to implement it for validation. As future work,
we plan to improve it such that to obtain coarser abstractions, yet preserving
the probability of the underlying property (as opposed to a class of properties
currently). This could be potentially achieved by taking into account the LTL
operators semantics. We shall also apply the approach to other real-life systems
and consider using other algorithms able to learn non-deterministic models. Fur-
thermore, our proposed approach is applicable to discrete stochastic systems. An
interesting direction to investigate is its extension to continuous systems, such
as continuous time Markov chains [23] or probabilistic timed automata.
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