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1 Model

The displacement of a fluid such as water by an injected finger of air in a narrow
tube is a classic problem of fluid mechanics. Since the early experimental and
theoretical work of Bretherton [4] and Taylor [10], there has been much research
on the injection of one fluid into a different fluid resident in a thin tube [1, 3, 6, 7].
Characterizing such flows is significant not only for small scale fluid devices but
also for modeling macroscopic two fluid flow in porous media [3, 9]. In this paper,
we consider a recent model [5] that incorporates ideas from phase field theory,
resulting in a fourth order nonlinear partial differential equation (PDE) similar to
the PDE of thin liquid films [2]. The PDE possesses a spinodal-type instability at
long wavelengths that we associate with the physical varicose or Plateau instability,
in which the cylindrical gas finger, of sufficient length and for a range of widths,
tends to break up into bubbles [7, 8].

We consider an axisymmetric flow of air displacing water in a cylindrical
capillary tube. The dependent variable, which we refer to as the saturation u, is
the cross-sectional area fraction of gas. The PDE model considered in [5] neglects
the effect of gravity (which is reasonable for a thin tube, but can have a significant
effect in wider tubes [7]) and takes the form
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@tu C @xf .u/ D @x

�
f .u/�.u/

1

Ca
@x 

�
: (1)

In this equation, the gas saturation u D u.x; t/ depends on x, the distance along the
length of the tube and time t . The flux function f is the fractional flow rate, given by

f .u/ D u

u C kw.u/
;

and depends on the relative permeability kw.u/ of water, which we take as either
kw.u/ D .1 � u/3, or kw.u/ D .1 � u/4. We write �.u/ D kw.u/

1
M
.1C .M � 1/u/,

in which the mobility number M D �w=�g > 1 is the ratio of the viscosities �w; �g
of the two fluids. The capillary number Ca D U�w=� is the ratio of viscous and
capillary forces, depending on U , a typical finger tip velocity, and � , the surface
tension between the two fluids. The function

 D C1g.u/ � C2
p
�.u/@x

�p
�.u/@xu

�
;

is the chemical potential, derived as the variational derivative of a total free energy
F.u; @xu/. This has the form F.u; @xu/ D C1F0.u/C C2�.u/.@xu/2, representing a
bulk free energy plus an interface free energy. For simplicity in this paper, we take
the bulk free energy to be a double-well quartic function of u, with

g.u/ D u.1 � u/.1 � 2u/ D F 0
0.u/I

we generally take the coefficient of interfacial energy �.u/, which is quadratic as
u ! 0, to be �.u/ D u2, as in [5]. The parameters C1; C2 are positive, and can be
chosen so that the model accommodates the Young–Laplace law for the contact line
at the tube entrance, where the gas finger attaches to the tube wall.

The objective of this paper is to outline a preliminary analysis of gas finger
solutions of the PDE (1). These are traveling waves with the unusual property of
being of finite extent, terminating at the tip of the gas finger in Fig. 1. Such traveling
waves are solutions of a third order ordinary differential equation that is singular at
the tip, where u D 0. With a change of variables, we transform the singular equation
into a system that has a regular equilibrium at u D 0, and allows the numerical
simulation of traveling waves. However, the solutions are not structurally stable,
and depend on varying a parameter, specifically the finger width. Consequently, for
each capillary number Ca in a specified range, there is a unique upstream width

Fig. 1 Schematic of a gas
finger displacing a liquid in a
capillary tube
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corresponding to a traveling wave. The range for Ca is determined by the nature
of the equilibrium at u D 0, to avoid unphysical oscillations, since the saturation u
has to remain non-negative. These properties are established in Sect. 2. In Sect. 3,
we describe PDE simulations using a finite difference code, and compare the results
to the traveling wave calculations and to experimental results of Taylor [10]. In the
short Sect. 4, we describe the varicose instability by linearizing the PDE about a
constant width finger. Finally, the results are discussed in Sect. 5.

2 Traveling Waves

In experiments, it is observed that the spherical tip of the gas finger travels with
constant speed, and as the finger elongates, it leaves behind a nearly uniform layer
of fluid adjacent to the tube wall [10]. To capture this behavior analytically, we seek
traveling wave solutions u.x; t/ D u.x � st/ of the PDE (1), where s is the wave
speed. Such a solution has u D 0 at the tip of the gas finger. By translation invariance
of the problem, we take this location to be x D st , without loss of generality.
If uL > 0 is the thickness of the fluid layer behind the tip, mathematically, the
saturation should approach uL as � D x�st ! �1. In summary, we have boundary
conditions

u.�1/ D uL; u.0/ D 0: (2)

Consistent with a smooth tip of the gas finger, we shall also assume that derivatives
of u are bounded as � ! 0. Moreover, derivatives of u.�/ are taken to approach zero
as � ! �1.

Substituting u D u.�/; � D x � st into (1) and integrating once, we obtain the
third order ODE

K � su C f .u/ D f .u/�.u/
1

Ca
 0;  D C1g.u/ � C2

p
�.u/

�p
�.u/u0�0

;

where K is the constant of integration. Enforcing the boundary conditions at � D
0; � D �1, we find that K D 0, and that the speed s is given by the Rankine–
Hugoniot condition

s D f .uL/

uL
:

Incidentally, these conclusions depend on the degeneracy at u D 0, specifically that
f .0/ D 0. Now we have the ODE

� su C f .u/ D 1

Ca
C1H.u/

dg.u/

du
u0 � C2 1

Ca
H.u/

�p
�.

p
�u0/0

�0
;

H.u/ D f .u/�.u/: (3)
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Equation (3) can be written as a first order system:

p
�u0.�/ D v

p
�v0.�/ D w

p
�w0.�/ D C1

C2
G.u/v C Ca

p
�.u/

C2H.u/
.su � f .u//;

(4)

where G.u/ D dg.u/
du . Since �.u/ � u2 as u ! 0, system (4) has a singularity at

u D 0. To remove the singularity, we introduce a new independent variable �. If
.u.�/; v.�/;w.�// is a traveling wave solution of (4), we set

p
�.u.�//

d

d�
D d

d�
;

and let U.�/ D u.�/; V .�/ D v.�/;W.�/ D w.�/. For convenience, we revert to the
lowercase letters, with u.�/, etc. Then, with 0 D d

d�
,

u0.�/ D v

v0.�/ D w

w0.�/ D C1

C2
G.u/v C Ca

p
�.u/

C2H.u/
.su � f .u//:

(5)

Now H.u/ D f .u/�.u/ � 1
M

u, and
p
�.u/ � u, so the vector field represented

by the right-hand side of Eq. (5) has a regular equilibrium at u D 0. Consequently,
we seek trajectories .u.�/; v.�/;w.�// from .uL; 0; 0/ (as � ! �1), to .0; 0; 0/ (as
� ! C1) with the property that u remains non-negative.

2.1 Equilibria

The system (5) has equilibria when .u0; v0;w0/ D .0; 0; 0/. Then v D w D 0, and
equilibrium values of u are solutions of su � f .u/ D 0, the intersection points of
the flux function graph y D f .u/, and the line y D su D f .uL/

uL
u. These curves

necessarily intersect at u D 0 and u D uL. Let u� be defined as the value of u for
which the tangent to the graph of f passes through the origin, shown in Fig. 2:

f .u�/
u� D f 0.u�/:

A simple calculation shows that u� D 1 � 1=
p
3. Let s� D .u� C .1 � u�/3/�1 be

the corresponding speed. For u� < uL < 1, there is a middle equilibrium uM such
that 0 < uM � u� < uL. Since f .u/ � u near u D 0, we observe that uM ! 0 as
uL ! 1.
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Fig. 2 Graph of the flux
function f .u/, showing u�

and possible equilibrium
values u D uL; uM with the
same s D f .uL/=uL
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2.2 A Necessary Condition for Non-negative Traveling Waves

To obtain physically relevant solutions, in which the saturation u remains positive,
we determine a bound on the quantity M �Ca by analyzing the linearized system at
.0; 0; 0/. Recall that near u D 0,

H.u/ D f .u/�.u/ D u.1 � u/3

u C .1 � u/3
1

M
.1C .M � 1/u/ � 1

M
u;

f 0.0/ D 1; and G.0/ D 1:

Therefore, system (5) linearized around u D v D w D 0 has the structure

2
4 u0

v0
w0

3
5 D

2
64

0 1 0

0 0 1
MCa
C2
.s � 1/ C1

C2
0

3
75

2
4 u

v
w

3
5 :

The nature of the equilibrium at the origin is determined by the eigenvalues
�k; k D 1; 2; 3 of the coefficient matrix. These are the three roots of the function

y.�/ D �3 � C1

C2
� � Ca

C2
M.s � 1/: (6)

Note that the �1�2�3 D Ca
C2
M.s � 1/ > 0, and �1 C �2 C �3 D 0. Consequently,

one eigenvalue is positive and the other two are either negative or are complex
conjugates and have negative real parts. The latter eigenvalues correspond to the
two-dimensional stable manifold of the equilibrium at the origin, on which the
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desired trajectory must lie. In order to prevent the gas saturation, u on this manifold
from becoming negative, all three eigenvalues must be real, since otherwise
solutions will have oscillations around u D 0, and u will not remain positive.

To determine the range of parameters for which all three eigenvalues are real,
we analyze the function y.�/ in (6). The local maximum, y.�m/, occurs at �m D
�

q
C1
3C2

.

There are three real roots when y.�m/ > 0; leading to the following lemma.

Lemma 1 Suppose there is a traveling wave solution of (1), satisfying (2) with
u � 0.

(a) Then

M � Ca < 2

3
p
3.s � 1/

s
C3
1

C2
; (7)

where s D f .uL/=uL.
(b) Suppose moreover, that s > 1 is defined by

M � Ca D 2

3
p
3.s � 1/

s
C3
1

C2
:

Then s < min.s; s�/.

The implication of part (b) is that if s < s�, then the possible range of values of the
traveling wave speed s is restricted, and consequently, the possible values of uL are
also restricted. Specifically, let uL be defined by s D f .uL/=uL. Then in order that
1 < s < s, we must have uL < uL < 1.

2.3 The Equilibrium at uL > 0

Since H.uL/ > 0, the equilibrium at u D uL is regular, and the Jacobian of F is
given by

DF.uL; 0; 0/ D

2
64

0 1 0

0 0 1
Ca

p
�.uL/

C2H.uL/
.s � f 0.uL// C1

C2
G.uL/ 0

3
75 :

The characteristic polynomial associated with this system is

y.�/ D �3 � A� � B;
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where A D C1
C2
G.uL/, and B D uLCa

C2H.uL/
.s � f 0.uL//. The eigenvalues, given by

the zeroes of y.�/, vary continuously with the coefficients A;B . For A D 0, the
three eigenvalues are (complex) cube roots of B . Consequently, if uL > u�, then
B > 0, and there is one positive real eigenvalue, and a pair of complex conjugate
eigenvalues with negative real parts.

If an eigenvalue crosses the imaginary axis as A is varied, then for some A, the
real part of the eigenvalue vanishes, so � D iˇ, ˇ 2 R. Therefore,

y.�/ D �iˇ3 � Aiˇ � B D 0;

a contradiction. We conclude that, for uL > u�, two eigenvalues of the equilibrium
at uL have negative real parts, and the third eigenvalue is real and positive. Con-
sequently, the local dynamics are described by a two-dimensional stable manifold
and a one-dimensional unstable manifold at uL. Similarly, if 0 < uL < u�, the
equilibrium at uL has a two-dimensional unstable manifold and a one-dimensional
stable manifold, since in that case, we have s < f 0.uL/ and B < 0.

Finally, we observe from the structure of DF.u/ that right eigenvectors have the
form .1; �; �2/T , for each eigenvalue � of DF.u/.

2.4 Computing the Traveling Wave Solutions

We seek a solution of system (5) that connects .uL; 0; 0/ to .0; 0; 0/ with uL >

u�. Such a solution corresponds to a trajectory that leaves .uL; 0; 0/ on its one-
dimensional unstable manifold W U .uL/, and intersects the two-dimensional stable
manifold W S.0/ of the equilibrium at u D 0. Then the entire trajectory lies in
W S.0/. However, this intersection has to be achieved by varying a parameter, sug-
gesting a shooting method. Geometrically, the intersection is codimension one. In
this sense, the corresponding traveling wave solutions of (1) are undercompressive,
as discussed in [2].

Let the parameters Ca and M be fixed. We use an ODE solver in MATLAB to
approximate the trajectory leaving .uL; 0; 0/ along W U .uL/, with u.�/ decreasing.
To this end, we initiate the ODE solver by taking .u; v;w/ a small distance � >
0 away from .uL; 0; 0/ along the eigenvector �.1; �; �2/, where � is the positive
eigenvalue associated with the equilibrium at uL W

.u; v;w/.0/ D .uL; 0; 0/ � �.1; �; �2/:

We solve the system (5) in MATLAB, and track the sign of u.�/ and u0.�/ for
each choice of uL. In extreme cases, the trajectory exhibits contrasting behavior,
corresponding to missingW S.0/ on one side or the other: (a) For uL close to u D 1,
u.�/ becomes negative, and (b) for uL close to u�, u.�/ remains positive but has a
positive minimum before exceeding u D uL. These two behaviors are incorporated
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Fig. 3 Trajectories exhibiting the two behaviors seen when using the bisection method to solve
system (5). (a) u.�/ > 0 has a minimum. (b) u.�/ crosses u D 0
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Fig. 4 Traveling waves: (a) in the transformed variable �; (b) in the physical variable �

into an interval division algorithm (bisection method) to approximate the value of uL
for which u.�/ remains positive, while its minimum is pushed off towards � D 1.

Examples of trajectories with the two behaviors are shown in Fig. 3, and a typical
trajectory u D u.�/ is shown in Fig. 4a.

As we vary the capillary number Ca, we find new values of uL D uL.Ca/ for
which there is a trajectory from uL to u D 0. A plot of 1�uL against Ca is shown in
Fig. 6, together with comparisons to experiment and PDE simulations, as explained
below.

2.5 Inverting the Transformation

The trajectories in the previous subsection were obtained in the transformed
independent variable �, with a solution Qu.�/;�1 < � < 1. To convert back to the
physical variable � , which remains finite, and derive the desired function u.�/, we
first recall that the change of variables from � to � was predicated on the existence
of a solution u.�/, so that

p
�.u/

du

d�
D d Qu
d�
: (8)
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However, if the change of variables is � D �.�/, we have Qu.�.�// D u.�/. Inverting,
if � D �.�/ then from the chain rule

d�

d�
D u.�.�//:

Solving this ODE using separation of variables gives

� D �
Z 1

�

Qu. N�/d N�:

Since we assume our traveling wave solution u.�/ � 0 for � � N , for large enough
N > 0, then

� D �
Z N

�

Qu.�/d�:

The traveling wave solution with the inversion completed is shown in Fig. 4b, where
we have used �.u/ D u2 for both the ODE solver and the transformation.

2.6 Conclusion

For each Ca 2 Œ10�3; 1� and for fixed C1; C2, and M satisfying (7), the method
described in Sect. 2.4 generates a unique traveling wave solution to (1) subject to
(2). We conjecture, and find numerically, that for each Ca and fixed C1; C2, and
M there is a unique uL with a traveling wave connecting uL to 0. The numerical
method for finding uL for each value of Ca is robust, but quite sensitive, meaning
that uL has to be calculated to a large number of decimal places (around 12–14) in
order to have the flat portion near u D 0 extend as in Fig. 4a for example.

3 PDE Simulations

The PDE (1) is solved using an implicit finite difference method to model the
injection of a gas finger into a fluid filled tube. A fixed domain, x 2 Œ�L;L�, is
used with boundary conditions

u.�L; t/ D 1; u.L; t/ D 0; u0.�L; t/ D 0; u0.L; t/ D 0;

L is chosen to be large enough to assume zero gas saturation at x D L. Finite
difference simulations in Fig. 5 show a traveling wave advancing ahead of a
rarefaction wave, connected by a plateau region of residual fluid.
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Fig. 5 Finite difference
simulations of air injection
with L D 15, Ca D 0:5,
M D 10, C1 D 0:2, and
C2 D 1
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Fig. 6 Comparison of the residual fluid remaining, 1� uL, in simulations and experiments [10]

The height of the traveling wave from PDE simulations can be compared with
the traveling wave height computed from the ODE (4) and results from classical
experiments by Taylor. The PDE and ODE simulation data along with experimental
data from [10] are shown in Fig. 6. The amount of fluid left behind, between the
gas finger and tube wall, 1 � uL, is plotted against the capillary number, Ca. Both
simulations and experiments show that as Ca increases, the amount of fluid left
increases. The PDE and ODE simulations closely agree for Ca 2 Œ10�3; 1:5�. Both
simulations predict the same trend as the experimental data [10], but under-predict
the amount of fluid remaining for large capillary numbers.

The model (1) assumes the relative permeability of the water, �w, has the form
�w D .1 � u/3. The agreement between model simulations and experimental data
for larger Ca, in the range Œ10�1; 1:5�, can be improved by changing the form of �w

to a quartic function, �w D .1 � u/4. This changes f .u/ and �.u/ in (1) to

f .u/ D u

u C .1 � u/4
; �.u/ D .1 � u/4

1

M
.1C .M � 1/u/:

Refining the choice of C1 and C2 can also better fit the simulations to experimental
results.



Two Fluid Flow in a Capillary Tube 159

4 Varicose Instability

The Rayleigh–Plateau instability causes long gas fingers to break into bubbles, as
observed in experiments in [7]. To compare this physical instability to the stability of
the PDE we analyze (1) linearized about a constant u0. For u.x; t/ D u0 C � Qu.x; t/,
with � << 1, the linearized PDE is

Qut C f 0.u0/Qux D H.u0/

Ca

�
C1g

0.u0/Quxx � C2u20 Quxxxx
�
: (9)

To find the dispersion relation between the frequency, !.�/, and wave number � ,
we assume a perturbation of the form Qu.x; t/ D ei.�xC!t/ and substitute into (9)
resulting in

!.�/ D �f 0.u0/� C i
H.u0/

Ca

�
C1g

0.u0/�2 C C2u
2
0�
4
	
: (10)

The perturbation decays with time if and only if Im ! > 0. This results in the
stability restriction

0 <
H.u0/

Ca

�
C1g

0.u0/�2 C C2u
2
0�
4
	
: (11)

In order for perturbations to decay for all wave numbers, � , g0.u0/ must be positive.
However, for the choice of nonlinearity in this paper, g0.u/ < 0 in the range 0:212 <
u < 0:788. Thus, the solutions can be expected to develop long wave instabilities in
this range.

We can also determine the wavelengths that increase in amplitude in this range
of u. The wavelength, �, is related to the wave number, � , by the

� D 2	

�
:

To find the range of unstable �, we determine the values of � such that (11) is
not satisfied. At u D 0:5, g0.u/ attains its minimum value, g.0:5/ D �0:5. For
definiteness, let C1 D 1, C2 D 0:1, values used in the simulations. Then Im! < 0

when j�j � p
20. Therefore the range of unstable wavelengths in this particular case

is � � 2	p
20

� 1:4.

5 Discussion

In this paper, we have verified that the phase field model of [5] captures the structure
of a gas finger being forced into a capillary tube filled with water. The model
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PDE describes the evolution of the gas saturation assuming an axisymmetric cross-
section through the gas and water. It incorporates a bulk free energy and an
interfacial energy, with surface tension incorporated into a capillary number Ca.
The structure of the PDE solution is approximately a spreading rarefaction wave
attached to the tube entrance, preceded by the finger, which is a traveling wave that
terminates at the finger tip. To calculate the traveling wave, we use a change of
variables which sends the tip to infinity and makes the zero saturation limit at the
tip a regular equilibrium for the associated ODE system.

The ODE solution has to remain positive in order to be physical, and this entails
a maximum capillary number. Below this threshold, we calculate a value of the
finger width (more precisely the saturation uL) in the traveling wave using a shooting
method. The structure of the wave is similar to that observed in driven thin liquid
films, also modeled with a fourth order PDE [2]. The values of uL compare well with
those observed in finite difference simulations of the PDE, and with experimental
observations of Taylor [10].

In all of these comparisons, simple constitutive functions have been used,
specifically, g.u/ D u.u � 1/.1 � 2u/, and �.u/ D u2. The varicose instability,
generated as a result of the non-monotonicity of g.u/, can be tuned using different
functions g.u/, and calibrated against the range of finger widths at which the
instability is observed experimentally. The function �.u/ should admit a spherical
cap at the finger tip. It is reasonable to choose this function so that stationary
bubbles attached to the tube wall are solutions of the PDE. At zero contact angle,
this requires �.u/ D cu2.1 � u/, with c > 0 depending on the form of g.u/.
At other contact angles, there is a corresponding formula. These changes in the
constitutive laws are easily incorporated into both the ODE and PDE solvers, and
will be reported on in the future.
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