
W. Han et al. (Eds.): APWeb 2014 Workshops, LNCS 8710, pp. 69–81, 2014.
© Springer International Publishing Switzerland 2014

VxBPEL_ODE: A Variability Enhanced Service
Composition Engine

Chang-Ai Sun1,*, Pan Wang1, Xin Zhang1, and Marco Aiello2

1 School of Computer and Communication Engineering, University of Science and Technology
Beijing, 100083 Beijing, China
casun@ustb.edu.cn

2 Johann Bernoulli Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
m.aiello@rug.nl

Abstract. Service compositions have become a powerful development para-
digm to create distributed applications out of autonomous Web services. Since
such applications are often deployed and executed in open and dynamic envi-
ronments, variability management is a crucial enabling technique. To address
the adaptation issue of service compositions, we proposed VxBPEL, an exten-
sion of BPEL for supporting variability, and a variability-based adaptive service
composition approach which employs VxBPEL for variability implementation.
In this paper, we present a VxBPEL engine for supporting the execution of
VxBPEL service compositions. The engine is called VxBPEL_ODE and is im-
plemented by extending a widely recognized open source BPEL engine, Apache
ODE. We discuss key issues of developing VxBPEL_ODE, and three real-life
service compositions are employed to evaluate and compare its performance
with another VxBPEL engine we developed in our previous work.
VxBPEL_ODE, together with analysis, design, and run-time management tools
for VxBPEL, constitutes a comprehensive supporting platform for variability-
based adaptive service compositions.

Keywords: Service Oriented Architecture, Service Compositions, Variability
Management, VxBPEL.

1 Introduction

Service Oriented Architecture (SOA) is a mainstream paradigm for application devel-
opment in the context of the Internet and highly-scalable systems [1]. Since individual
services usually provide limited functionalities and are unable to meet in isolation the
actual demand, service compositions are a powerful mechanism for integration of data
and applications in the context of distributed, dynamic, heterogeneous environments.
A service composition can be seen as a process in which multiple individual services
participate and are coordinated to support complex business goals. Service composi-
tions are able to support rapid business re-engineering and optimization. Business
Process Execution Language (BPEL) is a process-oriented executable service
composition language which can be used to construct loosely coupled systems by

70 C.-A. Sun et al.

orchestrating a bundle of Web services [2]. Business processes implemented by such
service compositions are expected to be flexible enough to cater for frequent and
rapidly-changing requirements [3]. For instance, a service under composition may
become unavailable or fail to provide the expected functionalities. Consequently,
flexibility of service compositions is highly desirable. Unfortunately, the standard
version of BPEL is limited in supporting such an expectation [4].

To address the adaptation issue of service compositions, we have proposed a varia-
bility-based adaptive service composition approach [5]. In the proposed approach, the
changes are treated as the first-class objects, and VxBPEL [6], an extension to BPEL,
is used for specifying variation. VxBPEL provides a set of constructs for supporting
variation design, such as variation points and variants [6][7]. Since these constructs
are not of standard BPEL elements and cannot be executed by standard BPEL
engines, we developed a VxBPEL engine called VxBPEL_ActiveBPEL [8] by ex-
tending ActiveBPEL [10], a well recognized BPEL engine. To support the analysis
and maintenance of variation, we developed a tool, ValySec [9], which can be used to
automatically extract variation definitions from VxBPEL service compositions and
visualize variation configurations. With the proposed approach and tools, designers
can implement adaptive service compositions by identifying possible changes within
service compositions and specifying them with alternatives.

In this paper, we present a VxBPEL engine, VxBPEL_ODE, to further provide an
integrated supporting platform for variability-based adaptive service compositions. As
a mainstream application development platform, Eclipse provides two open source
plug-ins for BPEL, namely BPEL Designer and Apache ODE [11]. In our previous
work [5], we developed a visual VxBPEL design tool called VxBPEL Designer by
extending BPEL Designer. Since both VxBPEL_ODE and VxBPEL Designer are
implemented as Eclipse plug-ins, VxBPEL_ODE can be seamlessly integrated with
VxBPEL Designer, which facilitates the provision of an integrated supporting plat-
form for VxBPEL-based adaptive service compositions. Furthermore, VxBPEL_ODE
is significantly different in architecture from VxBPEL_ActiveBPEL that relies on
ActiveBPEL, which is no longer available as open source. In this paper, we examine
key issues relevant to development of VxBPEL_ODE and compare the performance
of VxBPEL_ODE with that of VxBPEL_ActiveBPEL using three VxBPEL service
composition cases.

The rest of the paper is organized as follows. Section 2 introduces the underlying
concepts of VxBPEL. Section 3 discusses the design and implementation of
VxBPEL_ODE. Section 4 validates VxBPEL_ODE and compares its performance
with VxBPEL_ActiveBPEL through case studies. Section 5 describes related work.
The conclusion is reported in Section 6.

2 Background

BPEL [2] is a process-oriented, executable composition language which describes
control flows between activities in a business process. Activities are basic interaction
units, and divided into basic and structural activities. Basic activities are an atomic

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 71

execution step, such as assign and invoke. Structural activities are compositions of
basic activities and/or structural activities. A standard version of BPEL process speci-
fication is fixed, which means that all activities and their relationships must be exactly
defined before deployment and run-time changes are not allowed after deployment.

Variability is the ability of a software system to extend, change, customize or con-
figure itself in any particular environment [4]. The core concepts of the variability
include variation points, variants, and dependency. The variation point is the part of
the software system that may change. Typically, a variation point occurs when mul-
tiple design options are to be chosen. After one option at a variation point is selected,
a so called variant is obtained; the collection of choices at each variation point is re-
ferred to as a variation configuration. Dependency specifies constraints between the
different variations corresponding to the variant.

In order to introduce variability into service compositions, we proposed VxBPEL
which extends BPEL for modeling variability [4]. VxBPEL employs the COVAMOF
variability framework [12] and provides constructs such as variants, variation points,
and their configurations and constraints. A variant is defined using the tag
<vxbpel:Variant>. The associated name is used to identify a variant. The element
enclosed by the tag <vxbpel:VPBPELCode> is used to specify the choice contained
within the variant, which corresponds to original BPEL activity, such as an invoke
activity. A variation point is defined using the tag <vxbpel:VariationPoint>. It is iden-
tified by its unique name and may contain one or more variants enclosed by the tag
<vxbpel:Variants>. The tag <vxbepx:ConfigurableVairationPoint> is used to specify
the selection of variants associated with variation points, and the tag
<vxbpel:RequiredConfiguration> specifies the realization between the higher varia-
tion point and the lower variants. Constraints defined in the tag <vxbpex:Constraint>
provide a powerful mechanism for defining variant dependencies. To further facilitate
its adoption, an integrated supporting platform is expected. VxBPEL_ODE, a core
component of such a platform, is our proposal described next.

3 Design and Implementation

The variability-based adaptive service composition approach consists of two steps: (1)
BPEL is first used to specify service compositions, and (2) variability constructs de-
fined in VxBPEL are then used to define and configure variations of the BPEL ser-
vice compositions. The resulting service compositions are referred to as VxBPEL
processes. Obviously, VxBPEL processes cannot be executed by the existing BPEL
engines at run-time, since they contain non-standard BPEL elements. We next discuss
how to develop VxBPEL_ODE by extending Apache ODE.

3.1 Design

The key issue of developing a VxBPEL engine is how to treat newly introduced va-
riability elements in a BPEL process (i.e. a VxBPEL interpreter is needed) and how to
enforce them with the existing BPEL engine (i.e. the interaction between the BPEL

72 C.-A. Sun et al.

engine and the VxBPEL interpreter). A general rule of thumb we followed for design-
ing VxBPEL_ODE is to leverage the implementation of Apache ODE to the maxi-
mum without significantly modifying its architecture. Fig. 1 shows the architecture of
VxBPEL_ODE. VxBPEL Compiler and Configuration Management are newly intro-
duced components in order to enable the execution of VxBPEL elements.
VxBPEL_ODE first invokes ODE BPEL Compiler and VxBPEL Compiler to compile
the VxBPEL process. The former is in charge of the compilation of all standard BPEL
elements, while the latter is in charge of the compilation of VxBPEL elements, map-
ping variants to BPEL activities, and storing association of variation points and va-
riants. Configuration Management is responsible for the interactions between
VxBPEL Complier and ODE BPEL Compiler and selecting the corresponding variants
for the serialization. The compiled VxBPEL representation (i.e. Compiled Process
Definitions) is an object model similar in structure to the underlying BPEL process
document, and all variability elements are resolved after the compilation process.
Finally, ODE BPEL Runtime is used for the execution of compiled processes. We
next discuss each major component individually.

• VxBPEL Compiler is responsible for preprocessing VxBPEL-specific elements.
First, it creates an object model for all VxBPEL elements similar in structure to the
object model for BPEL elements. Second, it maps all variants of a variation point to
BPEL activities. Third, it stores the association of variation points and variants.

Fig. 1. Architecture of VxBPEL_ODE

VxBPEL Process Definitions, WSDL

ODE BPEL Compiler

VxBPEL Compiler
• Compilation of VxBPEL elements
• Mapping variants to BPEL activities
• Storing association of variation

points and variants

Compiled Process Definitions

JACOB
• Persistency of execution state
• Concurrency
• Navigation

ODE BPEL Runtime
• Instantiation of processes
• Implementation of BPEL elements
• Routing of incoming messages

ODE
Integration Layer

Web
Services

ODE
Data
Access
Object DBMS

Configuration
Management

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 73

• ODE BPEL Compiler is responsible for the conversion of standard BPEL elements
into a compiled representation.

• Configuration Management is used to manage variants associated with a variation
point. It analyzes variation configurations specified in ConfigurableVairationPoint
and provides the operations for changing the variability configuration at run-time.
During the serialization, a specific variant of a variation point is selected depending
on the variability configuration and its corresponding object is created. Through the
treatment, all VxBPEL-specific elements are resolved. The compiled representation
has resolved the various named references present in the VxBPEL, internalized the
required WSDL and type information, and generated various constructs.

• ODE BPEL Runtime is used to interpret the compiled process definitions, including
creating a new process instance, implementing the various BPEL constructs, and
delivering an incoming message to the appropriate process instance.

• ODE Data Access Objects (ODE DAOs) mediates the interaction between the ODE
BPEL Runtime and an underlying database management system DBMS. ODE
DAOs normally provides interfaces for tracking active instances, routing message,
referring to the values of BPEL variables for each instance, referring to the values
of BPEL partner links for each instance, and serializing process execution states.

• JACOB provides an application concurrency mechanism, including a transparent
treatment of process interrupt and persistency of execution state.

• ODE Integration Layer provides an execution environment by providing communi-
cation channels to interact with Web services, thread scheduling mechanisms, and
the lifecycle management for ODE BPEL Runtime.

We next examine interactions among components of the engine using a UML col-

laboration diagram, as shown in Fig. 2. Note that the name of each component is de-
scribed by texts above the box. The execution process is described as follows.

Phase 1. When the engine is started, it first configures the process deployment direc-
tory through the container in which the engine runs, and then activates Deployment-
Poller in ODE Integration Layer to check whether a VxBPEL process is deployed
(i.e. Step 1). If detected, an empty file will be created. After that, the engine employs
a utility tool to monitor this directory. If a file in this directory is updated, Deploy-
mentPoller will re-deploy the process; if the deployed process is removed, Deploy-
mentPoller is responsible for removing this process, accordingly.

Phase 2. The engine invokes the “deploy ()” method provided by ProcessStoreImpl
in ODE Data Access Objects to deploy the VxBPEL process (i.e. Step 2). During the
deployment, major activities include parsing the VxBPEL file, creating an object
model for the execution, and serializing all relevant objects in a binary file. These
activities are implemented by DeploymentUnitDir in ODE Data Access Objects,
which encapsulates the “Compile (File bpelFile)” method provided by BpelC in ODE
BPEL Compiler. DeploymentUnitDir is in charge of a deployment unit, which corres-
ponds to a process directory. The “Compile (File bpelFile)” method is responsible for
the following tasks (i.e. Steps 3~11):

74 C.-A. Sun et al.

DeploymentPoller ProcessStoreImpl DeploymentUnitDir

BpelC

ConfVariable ConfigurationPoint

BpelObjectFactory VxBPELObjectFactory

BpelEngineImplBindingContextImpl

getConfig()

Return
process ID collection

Acquire Objects()
& deploy() compile(bpelFile)

Return process
object collection

Return process object

compile()

Parse()
Parse()

Invoke
registered process

Create service

Activate service

Check()

CreateBPELObject()
Return

compiled definitions

ODE Integration Layer

2

ODE BPEL Runtime

ODE Integration Layer ODE Data Access Objects ODE Data Access Objects

ODE BPEL Compiler VxBPEL Compiler

3

4

5
6

8

9

1011

12

13

14

1

15

Configuration ManagementConfiguration Management

ODE BPEL Compiler

7

Fig. 2. The running process of VxBPEL_ODE

(1) Parsing the VxBPEL file (i.e. Steps 3~6): This is implemented by the

“parse()” methods provided by BpelObjectFactory in ODE BPEL Compiler and
VxBPELObjectFactory in VxBPEL Compiler. This method parses the XML file and
generates Java objects for process elements. During the paring phase, it generates
objects for standard BPEL elements, and records the information about variation defi-
nitions and configurations. ConfigurationPoint in Configuration Management is re-
sponsible for parsing the VxBPEL configuration elements and providing interfaces
for the configuration modifications.

(2) Creating the binary file (i.e. Steps 7~11): Objects generated during the pars-
ing phase contains process and variation attributes. When the variation configuration
is met for the first time, a variant specified by the defaultVariant configuration is
selected. When the variation configuration is switched to a variation configuration
scheme, the engine will invoke a method provided by ConfigurationPoint to select the
specified variants. This variant selection process repeats until all variation points are
handled. After the treatment, only BPEL process objects remain because variants
associated with a variation point are of standard BPEL elements. The engine allows
for changing the variation configurations at run-time, which is implemented by me-
thods provided by ConfigurationPoint and BpelC. The variation configuration para-
meter is transferred to ConfVariable in Configuration Management, which maintains
the current variation configuration (i.e. Step 15). Finally, all process relevant objects
are serialized into a binary file.

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 75

Phase 3. The BpelEngineImpl in ODE BPEL Runtime executes the registered
process (i.e. Steps 12~14). If an object is involved in the registered process, its rele-
vant information is extracted from the binary file. For instance, when a Web service is
invoked, the engine will call interfaces provided by BpelBindContexImpl in ODE
Integration Layer to create the bound service for execution.

3.2 Implementation

We have implemented VxBPEL_ODE using the Java language. Two key issues re-
lated to the implementation are described next.
(a) Compilation and deployment of VxBPEL elements: As mentioned above, the en-

gine first needs to deploy a process before its execution. An important task of the
deployment is to compile the VxBPEL file and create an object model suitable for
execution. This compilation process involves BPEL and VxBPEL elements that
are distinguished by their name spaces. The former are handled by ODE BPEL
Compiler, while the latter are handled by VxBPEL Compiler. To deliver an iso-
morphic implementation of the engine, we referred to the implementation of ODE
BPEL Compiler during the implementation of VxBPEL Compiler.

(b) Implementation of run-time variation configuration: To support the implementa-
tion of variability, the engine first stores the variation definitions, and then selects
variants based on the variation configuration during the serialization of process
activities. The variation configuration is implemented by the component Configu-
rationPoint. It records the name of the current VxBPEL process and the informa-
tion about variation configurations, and selects the variants for execution at the
serialization phase. Furthermore, variation configuration of the VxBPEL process
can be changed at run-time via a method provided by ConfigurationPoint.

4 Evaluation

We report on an evaluation of VxBPEL_ODE using three VxBPEL processes. The
goal of the evaluation is three-fold: (i) testing VxBPEL_ODE; (ii) evaluating the
overhead of variability management by comparing BPEL and VxBPEL implementa-
tions for the same business scenarios, and (iii) comparing the performance of
VxBPEL_ODE with that of VxBPEL_ActiveBPEL using the same VxBPEL
processes for the same business scenarios.

4.1 Subject Programs

The travel agency process is a typical scenario describing how a travel request is
processed [5]. When constructed from distributed services, the process often involves
the composition of travel agency, hotel, flight, and banking services. These services
can be provided by independent organizations. Once the system receives a request,
the customer first chooses a travel agency, then selects the desired flights as well as
hotels, the system asks the consumer to pay the package via an online banking ser-
vice.

76 C.-A. Sun et al.

The car estimation process [5] describes a common scenario how a car repair is ne-
gotiated depending on the situation of the car and its repair cost. This process consists
of five services, namely Initial Estimate, Exterior Estimate, Interior Estimate, Power-
train Estimate, and Final Estimate. Before the repair, a company needs to know the
situation of the car, and the customer then decides to accept the reparation or not after
being informed of the costs. Once the customer submits a request for estimation, the
process first invokes an Initial Estimate service. In case of a simple estimation, the
process invokes Final Estimate and notifies the cost to the customer; in case of a
complex situation, the request is transferred to Exterior Estimate, Interior Estimate,
and Powertrain Estimate services for a deep estimation, and the process then invokes
the Final Estimate service and returns the cost.

The smart shelf process represents a complex shopping situation of shelf manage-
ment [5], where one monitors quantity as well as quality of goods. Consumers first
send a shopping request which includes the name and quantity of goods to be pur-
chased. After receiving the request, the system first creates a formal request which is
composed of service time, quantity of goods, category of goods and period of goods
and then checks the quantity, location and period of goods. Next, the system checks
the quantity, location, and period of goods, and executes various routine procedures
based on the checking results. Finally, the system responds to the consumer with a
confirmation message if quantity, location, and period are all qualified; otherwise, the
process sends a failure message to the consumers and cancels the ordering list.

4.2 Evaluation Procedure

The following procedure is used for evaluation.
1. Implementing business processes using VxBPEL: The variability-based adaptive

service composition method proposed in [5] guided us implement three subject
programs using VxBPEL. We treat the locations that changes may happen as varia-
tion points, and possible choices are identified as variants. Furthermore, constraints
are used to specify variation dependencies, which result in consistent and valid
process variants (i.e. business scenarios) at run-time. Three VxBPEL programs are
derived, as summarized in Table 1.

Table 1. A summary of subject programs

Name VxBPEL Lines of Codea Number of Web Services

travel agency 603 8
car estimation 607 7
smart shelf 1146 13

a. Measured in lines of XML code.

2. Deploying and managing VxBPEL processes using MX4B: Variation definitions

and configurations defined in the VxBPEL process improve the adaptation of ser-
vice compositions. Variation configuration switching is very complex and time-
consuming. To facilitate this process, MX4B was developed to provide an efficient
way for the deployment, configuration switching, and maintenance of VxBPEL

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 77

service compositions [5]. In this experiment, we employed MX4B for the follow-
ing tasks: (i) deploying VxBPEL process artifacts, (ii) managing VxBPEL
processes, and (iii) switching variation configurations at run-time.

3. Evaluating and comparing performance: We evaluate two aspects of the perfor-
mance: (1) for the same business scenarios, we compare the execution time of the
BPEL process running on Apache ODE with that of the VxBPEL process running
on VxBPEL_ODE; (2) for the same VxBPEL process, we compare overhead of
VxBPEL_ODE with that of VxBPEL_ActiveBPEL. The experimental setting is
described in Table 2.

Table 2. Experimental setting

CPU 2.40*4 GHz
Memory 8 GBytes
Hard Disk 750GBytes
Operating System Win7 with 64bit

4.3 Results and Analysis

We summarize the evaluation results and provide an analysis of comparative compar-
isons next.
(a) Feasibility: Through the above evaluation procedure, we observe that

VxBPEL_ODE is able to provide an executable context for VxBPEL service com-
positions. Furthermore, the engine showed a good scalability, namely it is able to
process a simple service composition of one Web service, as well as a complex one
of 13 Web services, as shown in the case of the smart shelf process.

(b) Performance: Tables 3, 4 and 5 summarize the performance evaluation results in
ms of Apache ODE, VxBPEL_ODE, and VxBPEL_ActiveBPEL for three subject
programs, respectively. Column “Scenario Name” lists the name of business scena-
rios implemented using BPEL or VxBPEL; Column “Number of WS” shows the
number of Web service involved in the current scenario; Column “A: BPEL by
Apache ODE” shows the time cost of BPEL processes using Apache ODE; Column
“B: VxBPEL by VxBPEL_ODE” shows the time cost of VxBPEL processes using
VxBPEL_ODE; Column “C: VxBPEL by VxBPEL_ActiveBPEL” shows the time
cost of VxBPEL processes using VxBPEL_ActiveBPEL; Column “B/A (%)”
shows the ratio of Column “B: VxBPEL by VxBPEL_ODE” against Column “A:
BPEL by Apache ODE”; Column “B/C (%)” shows the ratio of Column “B:
VxBPEL by VxBPEL_ODE” against Column “C: VxBPEL by
VxBPEL_ActiveBPEL”. Note that the time cost in Column “A: BPEL by Apache
ODE” is the sum of deployment time and execution time of BPEL processes, while
the time cost in Columns “B: VxBPEL by VxBPEL_ODE” and “C: VxBPEL by
VxBPEL_ActiveBPEL” is the sum of variation switching time and execution time.
From Tables 3-5, we have the following observations:

• For all scenarios in three subjects, the performance of VxBPEL processes is very
close to that of BPEL processes. In the case of travel agency and car estimation, the
performance of all process scenarios implemented using BPEL is slightly higher

78 C.-A. Sun et al.

than that implemented using VxBPEL; In case of smart shelf, the performance of
most process scenarios except the “insufficient” scenario implemented using BPEL
is slightly higher than that implemented using VxBPEL. This indicates that varia-
bility management does not introduce extra performance overhead. Furthermore,
VxBPEL_ODE does not evidently decrease the performance of Apache ODE al-
though some extensions are added. An insight investigation shows that most of time
overhead of VxBPEL_ODE is dedicated to processing of standard BPEL elements.

• The performance of VxBPEL_ODE is slightly lower than that of
VxBPEL_ActiveBPEL. In the case of travel agency, the performance of the former
is comparable to that of the latter; In the case of car estimation, the performance of
the former is higher than the one of the latter for the simple scenario, while lower
for the normal or expert scenarios; in the case of smart shelf, the performance of the
former is lower than that of the latter by around 50%. More interestingly, when
the number of involved Web services in a scenario is small, the performance of the
former is higher than that of the latter, while the situations change with the increas-
ing number of involved Web services. This performance difference is mainly due to
the fact that Apache ODE and ActiveBPEL have different architectures. Apache
ODE introduces the serialization of the object models, and integrates with open
source components, while ActiveBPEL adopts a coherent architecture and design
patterns that significantly improves its performance.

Table 3. Performance evaluation results for the travel agency program

Scenario
Name

Num
ber
of WS

A:BPEL by
Apache ODE

 (ms)

B: VxBPEL by
VxBPEL_ODE

(ms)

B/A
(%)

C: VxBPEL by
VxBPEL_Active

BPEL (ms)

B/C
(%)

A 3 1508 1611 106.83 1435 112.26
B 3 1548 1608 103.88 1547 103.94
C 3 1564 1577 100.83 1660 95.00
D 3 1501 1607 107.06 1604 100.19
E 3 1475 1584 107.39 1440 110.00
F 3 1534 1569 102.28 1563 100.38

5 Related Work

One category of approaches has turned to Aspect Oriented Programming (AOP) tech-
nique [13]. AdaptiveBPEL [14] is a service composition framework which leverages
AOP technique to handle various concerns that are separately specified in BPEL
processes. The adaptation process is driven by policies, namely a policy mediator is
used to negotiate a composite policy and oversee the aspects weaving to enforce the
negotiated policy, and a run-time aspect weaving middleware is integrated on top of a
BPEL engine. AOBPEL [15] is an aspect-oriented extension to BPEL, which provides
a solution for the modularization of crosscutting concerns and supporting dynamic
changes in BPEL. AOBPEL specifies extra concerns associated with business
processes as aspects, and provides generic aspect constructs. These aspect-oriented
approaches can enhance the adaptation of BPEL processes via aspects. However,

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 79

aspects split up the process logic over different files, which may cause it a difficult
task to comprehend the variation, especially when service compositions are complex.

Table 4. Performance evaluation results for the car estimation program

Scenario
Name

Num-
ber
of WS

A: BPEL by
Apache ODE

 (ms)

B: VxBPEL by
VxBPEL_ODE

 (ms)

B/A
(%)

C: VxBPEL by
VxBPEL_Active

BPEL (ms)

B/C
(%)

simple 1 441 464 105.21 1354 34.27
normal 5 2433 2514 103.33 1610 156.15
expert 5 2505 2524 100.76 1561 161.69

Table 5. Performance evaluation results for the smart shelf program

Scenario
 Name

Num
ber
of WS

A: BPEL by
Apache ODE

(ms)

B: VxBPEL by
VxBPEL_ODE

(ms)

B/A
(%)

C: VxBPEL by
VxBPEL_Active

BPEL (ms)

B/C
(%)

default 6 2539 2735 107.71 1850 147.83
location 7 2753 2803 101.81 1845 151.92
status 7 2791 2843 101.86 1995 142.50
locationstatus 8 2768 2897 104.66 1844 157.10
sufficient 9 2806 2836 101.07 2100 135.05
insufficient 9 2710 2464 90.92 1753 140.56
warelocation 10 2752 2777 100.90 1872 148.34
warestatus 10 2765 2929 105.93 1983 147.71
warelocation
status

11
2866 2932 102.30 1980 148.08

The other category of approaches is based on the proxy (or broker) mechanism.

Trap/BPEL and its predecessors [16] are a family of extensions to BPEL for enhanc-
ing robust service compositions through static, dynamic, and generic proxies, respec-
tively. Events such as faults and timeouts during the invocation of partner Web
services at run-time are monitored, and the adapted process is augmented with a
proxy that replaces failed services with predefined or newly discovered alternatives.
wsBus [17] is a framework which is capable of realizing QoS adaptation of service
compositions by means of the concept of virtual endpoints. A virtual endpoint is used
to select appropriate services based on the attached policy for execution at run-time.
All requests are sent to this virtual endpoint and redirected to the real service. The
selection of services based on the monitoring data and QoS metrics. SCENE [18] is a
service composition execution environment that supports dynamic changes discip-
lined through rules. The implementation of adaptation is based on the proxy mechan-
ism, which is used to bind the discovered services to the proxy associated with each
activity in the BPEL specifications. These proxy-based approaches implicitly imple-
ment the adaptation of processes at the messaging/event layer. Since the changes are
not treated as first-class objects and variation dependencies are not clearly handled, it
may result in variation configuration and maintenance a difficult task.

Unlike the existing efforts, our efforts have been made to achieve the adaptation of
BPEL processes through variability management [4-9]. We extended BPEL to pro-
vide a set of variability constructs for explicitly specifying variation of service com-

80 C.-A. Sun et al.

positions, and the engine presented in this paper provides an executable environment
for service composition with variability design. This engine, together with analysis,
design, and run-time management tools for VxBPEL, forms an integrated and com-
prehensive platform, which not only makes the variability-based adaptive service
composition approach viable, but also improves its efficiency.

6 Conclusion and Future Work

We have presented a VxBPEL engine, VxBPEL_ODE, by extending an open source
BPEL engine, Apache ODE, to enable the execution of VxBPEL processes.
VxBPEL_ODE is a core component of an integrated supporting platform which facili-
tates the adoption of the variability-based adaptive service composition approach. In
this paper, we examined the key issues of the design and implementation of such an
engine, and validated its effectiveness through case studies. Furthermore, we eva-
luated the performance of VxBPEL_ODE and compared it with that of
VxBPEL_ActiveBPEL. From the experimental results, we observe that
VxBPEL_ODE shows a comparable performance of VxBPEL_ActiveBPEL while
benefits an integrated design and execution environment for VxBPEL processes.

For future work, we plan to extend VxBPEL to support unplanned changes of ser-
vice compositions at run-time via the dynamic binding technique, which will accor-
dingly require the further extension of VxBPEL_ODE for binding abstract services
with concrete services searched at run-time. We are also interested in examining the
variability-based adaptive service composition approach in the development of social
network analysis tools that desire the adaptation ability.

Acknowledgment. This research is supported by the National Natural Science Foun-
dation of China (Grant No. 61370061), the Beijing Natural Science Foundation of
China (Grant No. 4112037), the Fundamental Research Funds for the Central Univer-
sities (Grant No. FRF-SD-12-015A), and the Beijing Municipal Training Program for
Excellent Talents (Grant No. 2012D009006000002).

References

1. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a re-
search roadmap. International Journal on Cooperative Information Systems 17(2), 223–255
(2008)

2. OASIS. Web services business process execution language version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Aiello, M., Bulanov, P., Groefsema, H.: Requirements and Tools for Variability Manage-
ment. In: Proceedings of REFS 2010, pp. 245–250. IEEE Computer Society (2010)

4. Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting variability for Web
services in BPEL. Information and Software Technology 51(2), 258–269 (2009)

5. Sun, C., Wang, K., Xue, T., Aiello, M.: Variability-Based Adaptive Service Compositions
(submitted for publication, 2014)

 VxBPEL_ODE: A Variability Enhanced Service Composition Engine 81

6. Sun, C., Aiello, M.: Towards variable service compositions using VxBPEL. In: Mei, H.
(ed.) ICSR 2008. LNCS, vol. 5030, pp. 257–261. Springer, Heidelberg (2008)

7. Sun, C., Rossing, R., Sinnema, M., Aiello, M.: Modeling and managing the variability of
Web service-based systems. Journal of Systems and Software 83(3), 502–516 (2010)

8. Sun, C., Xue, T., Hu, C.: Vxbpelengine: A change-driven adaptive service composition
engine. Chinese Journal of Computers 36(12), 2441–2454 (2013)

9. Sun, C., Xue, T., Aiello, M.: ValySeC: A Variability Analysis Tool for Service Composi-
tions Using VxBPEL. In: Proceedings of APSCC 2010, pp. 307–314 (2010)

10. ActiveBPEL, Active Endpoints (2007), http://www.activebpel.org
11. Apache, Apache ODE (2006), http://ode.apache.org/
12. Sinnema, M., Deelstra, S., Nijhuis, J., Dannenberg, R.B.: COVAMOF: a framework for

modeling variability in software product families. In: Nord, R.L. (ed.) SPLC 2004. LNCS,
vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Erradi, A., Maheshwari, P.: AdaptiveBPEL: a Policy-Driven Middleware for Flexible Web
Services Compositions. In: Proceedings of International Workshop on Middleware for
Web Services (MWS 2005), pp. 5–12 (2005)

15. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-Oriented Extension to BPEL. World Wide
Web Journal 10(3), 309–344 (2007)

16. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL-A Framework for Dynamic Adaptation of
Composite Services. Proceedings of WEBIST (1), 216–221 (2007)

17. Erradi, A., Maheshwari, P.: wsBus: QoS-aware middleware for reliable web services inte-
raction. In: Proceedings of EEE 2005, pp. 634–639. IEEE Computer Society (2005)

18. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: a service composition execution environ-
ment supporting dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)

	VxBPEL_ODE: A Variability Enhanced Service Composition Engine
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Design
	3.2 Implementation

	4 Evaluation
	4.1 Subject Programs
	4.2 Evaluation Procedure
	4.3 Results and Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

