
A Top K Relative Outlier Detection Algorithm
in Uncertain Datasets

Fei Liu, Hong Yin, and Weihong Han

College of Computer, National University of Defense Technology,
410073, Changsha, Hunan, China

fliu@cse.unsw.edu.au, huiseguiji0521@yahoo.com.cn,
hanweihong@gmail.com

Abstract. Focusing on outlier detection in uncertain datasets, we
combine distance-based outlier detection techniques with classic
uncertainty models. Both variety of data’s value and incompleteness
of data’s probability distribution are considered. In our research, all
data objects in an uncertain dataset are described using x-tuple model
with their respective probabilities. We find that outliers in uncertain
datasets are probabilistic. Neighbors of a data object are different in
distinct possible worlds. Based on possible world and x-tuple models,
we propose a new definition of top K relative outliers and the RPOS
algorithm. In RPOS algorithm, all data objects are compared with
each other to find the most probable outliers. Two pruning strategies
are utilized to improve efficiency. Besides that we construct some data
structures for acceleration. We evaluate our research in both synthetic
and real datasets. Experimental results demonstrate that our method
can detect outliers more effectively than existing algorithms in uncertain
environment. Our method is also in superior efficiency.1

Keywords: outlier detection, uncertain dataset, relative, x-tuple.

1 Introduction

In recent years, outlier detection has been widely used, specially in network
intrusion detection [1], credit card abuse analysis [2], measurement result
analysis of abnormal data [2] and so on. Lots of outlier detection algorithms in
deterministic dataset have been proposed, such as model-based [3], index-based
[4], distance-based [5], density-based algorithms [6] and so on. In these years,
research has turned into uncertain datasets. Uncertainty is inherent in data
collected in various applications, such as sensor networks, marketing research,
and social science [7]. Sensors in a wireless network can be at different positions
at different times with different probabilities. Many datasets published are
deformed to hide information for privacy protection. In this case, distance
1 The authors work is sponsored by the National High Technology Research and

Development Program (863) of China (2012AA01A401 and 2012AA01A402), the
Nature Science Foundation of China (61303265).

L. Chen et al. (Eds.): APWeb 2014, LNCS 8709, pp. 36–47, 2014.
c© Springer International Publishing Switzerland 2014

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 37

among data objects, region density and many other metric are uncertain. These
properties prevent classic outlier detection methods in deterministic datasets to
be used in uncertain datasets directly.

In order to detect outliers in uncertain datasets, C. C. Aggarwal et al. [8]
propose a density-based δ-η algorithm to detect outliers in uncertain datasets.
They estimate the density of regions. For any data object, with lower probability
to be in a high density region, more likely it would be an outlier. They propose
the definition of η-probability of a data object. That is defined as the probability
that the uncertain data object lies in a region with (overall data) density at least
η [8]. An uncertain data object Xi would be a (δ,η)-outlier, if the η-probability
of Xi in some subspace is less than δ. For η-probability estimation, authors use
a sampling procedure to generate values according to some distribution. For
this intention, a value is obtained from uniform distribution as the input of the
inverse function of some cumulative density function. However, there are some
limitations. First, the data must be in some determinate distribution. But its
distribution would usually be unknown in real application. In some application,
users can not get complete data distribution. Besides that, the method assumes
that the inverse of the distribution can be calculated efficiently. It is difficult too.
Although the data is assumed to be in normal distribution in their experiments,
the sampling procedure is with heavy time cost. Similarly B. Jian et al. [7]
use kernel density estimation to get densities of uncertain objects and their
instances. In that model, value of uncertain data is dominated by conditioning
attributes. They use kernel density estimation with Gaussian kernels to estimate
the probability density of a distribution. In this method, obvious conditioning
attributes must be determined first. This limits its application. Wang et al.
[9] introduce distance-based outlier detection into uncertain dataset for the first
time. They utilize x-tuple model to describe data objects. The method enlightens
our research. Nonetheless, they don’t take into account data variety.

Table 1. x-tuple Model

x-tuple tuple probability

T1
t1 p1
t2 p2

T2 t3 p3

Table 2. Possible Worlds

ID possible world probability
1 {} (1-p1-p2)(1-p3)
2 {t1} p1(1-p3)
3 {t2} p2(1-p3)
4 {t3} (1-p1-p2)(p3)
5 {t1t3} p1p3
6 {t2t3} p2p3

In order to overcome above problems, we propose the concept of relative
outlier and a novel distance-based outlier detection algorithm, RPOS algorithm,
focusing on top K outlier detection in uncertain datasets. In our research, all data
objects exist with independent probabilities. A data object could show various
values with different probabilities. We compare every pair of data objects to find
the one more like to be an outlier relative to the other one. Global distribution
of data value is unnecessary in our research.

38 F. Liu, H. Yin, and W. Han

2 Outlier in Uncertain Datasets

2.1 Possible World and x-tuple Model

We describe uncertain datasets using possible world semantics [10] and x-tuple
model [11]. An x-tuple containing several tuples denotes a data object. A
tuple containing several attributes denotes an instance. Every tuple has its
own probability. Tuples in different x-tuples are independent. Tuples in the
same x-tuple are mutually exclusive. Probability of an x-tuple is the product
of probabilities of tuples in the x-tuple. An x-tuple may not exist if no its
tuple exists. A subset of tuples from different x-tuples construct a possible
world. Probability of a possible world is the product of probabilities of tuples
in the possible world. An example of tuples, x-tuples, possible worlds and their
probabilities can be shown in Table 1 and 2.

2.2 Relative Outlier

Based on possible world semantics and x-tuple model, we introduce the concept
of distance-based outlier into uncertain datasets. In a possible world, every tuple
has an outlier score as defined in Definition 1. K tuples ranked at most k
according to their outlier scores in descending order are top K outliers in the
possible world. If a tuple is a top K outlier in a possible world, the x-tuple
containing the tuple would be a top K outlier in the possible world. The tuple’s
outlier score is also the x-tuple’s outlier score. Since there would be many
different possible worlds for data variety, top K outliers are uncertain.

Intuitively expected rank of an x-tuple in different possible worlds could be
used to detect outlier. But expected rank would be easily influenced by sparse
noise. For example, an x-tuple A is ranked k+1 in every possible world, another
x-tuple B is ranked 10k in a possible world but k in others. x-tuple B is more like
to be an outlier since it’s ranked in front of A in most possible world. However,
the expected rank of B may be smaller than that of A. So A would be considered
as outlier in error. Besides that, the concept of uncertain top-k query [12], that is
returning a list of k records which has the highest probability to be the top-k list
in all possible worlds, is similar with our problem. But it can also be influenced
by sparse data. For example, an x-tuple A is ranked k+1 in every possible world,
another x-tuple B is ranked k in a possible world but 10k in others. Although
A is not a top K outliers in any possible world, it’s more like to be an outlier
than B, since it’s ranked in front of B in most cases.

In this paper, We propose the concept of relative outlier based on multiple
comparisons. All x-tuples are compared with each other to evaluate their
possibilities to be outliers. Above problems can be overcome in our method
since outliers detected are more likely to have higher outlier scores than other
x-tuples. Definition 2 defines the relative outlier between two x-tuples. Definition
3 defines top K relative outliers in an uncertain dataset.

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 39

Definition 1. Outlier score of a tuple is the mean distance to its n nearest
neighbors [13,1,14].

Definition 2: For two x-tuples A and B in an uncertain dataset, if A is with
higher probability to has higher outlier score than B, A is an outlier relative to
B. Outlier score in a possible world is computed based on Definition 1.

For example, x-tuple A has higher outlier score than B with probability 0.5,
x-tuple B has higher outlier score than A with probability 0.4 and A or B does
not exit with probability 0.1. A would be an outlier relative to B.

Definition 3: Top K relative outliers in an uncertain dataset are those x-tuples.
They are ranked top K according to the amount of x-tuples relative to which
they are outliers based on Definition 2.

For example, x-tuple A is an outlier relative to another 5 x-tuples and x-tuple
B is an outlier relative to another 6 x-tuple. B is more likely to be a top K outlier
than A. If there are just K x-tuples who are outliers relative to at least another
6 x-tuples, B would be included in top K outliers, but A would be excluded.
If there are K x-tuples who are outliers relative to at least another 7 x-tuples,
both A and B would not be top K outliers.

3 Basic RPOS Algorithm

In this section, we propose the basic RPOS(Relative Probability Outlier Score)
algorithm to detect the top K x-tuples most likely to be outliers. For x-tuples A
and B, we compute the probability P (A>B) meaning that A’s outlier score
is higher than B’s and P (B>A) meaning that B’s outlier score is higher
than A’s. If P (A>B)>P (B>A), A is considered as an outlier relative to
B, and vice versa. Relative Probability Outlier Score(RPOS) of x-tuple A
relative to B is 1 in this case. It’s noted as RPOS(A−→B)=1. At the same
time, RPOS(B−→A)=-1. The sum of A’s RPOSs relative to other x-tuples is
all-RPOS(A) =

∑
X∈S,X �=ARPOS(A−→X). S is the dataset. x-tuples with top

K highest all-RPOSs would be outliers.
Algorithm 1 gives details of RPOS algorithm. It compares all x-tuples

with others to calculate their all-RPOSs and sort all x-tuples in descending
order(lines 2-7). OutlierScore algorithm computes an x-tuple’s relative
probability outlier score with another x-tuple. sgn(x) = -1,if x<0; 0,if x=0;
1,if x>0.

Algorithm 2 gives details of OutlierScore algorithm. Because an x-tuple
consists of several distinct tuples, comparison between two x-tuples is actually
comparison among tuples from distinct x-tuples(lines 2-10). Unfortunately
Definition 1 can not be used to compute a tuple’s outlier score directly. Because
all tuples’ existence are uncertain, a tuple would exist in several possible
worlds with distinct probabilities. So a tuple would have different neighbors
in different possible worlds. In order to overcome this problem, we propose
relative probability outlier score of a tuple, that is a tuple’s outlier score relative

40 F. Liu, H. Yin, and W. Han

Algorithm 1. RPOS
Input: dataset S; outlier amount K
Output: queue of x-tuples Q
1: Q := ∅;
2: for each x-tuple Ti in S do
3: all-RPOS(Ti) := 0;
4: for each x-tuple Tj in S, Tj �=Ti do
5: all-RPOS(Ti)+=sgn(OutlierScore(Ti,Tj)-OutlierScore(Tj,Ti));
6: end for
7: insert T i into Q according to all-RPOS in descending order;
8: end for
9: return Q

Algorithm 2. OutlierScore
Input: x-tuple T1, T2

Output: P (T1 > T2)
1: P(T1 > T2) := 0;
2: for each tuple ti in T1 do
3: P := 0;
4: for each tuple tj in T2 do
5: if RelativeOutlierScore_Tuple(ti,tj) = 1 then
6: P := P + Probability(tj);
7: end if
8: end for
9: P(T1 > T2) += Probability(ti)·P;
10: end for
11: return P (T1 > T2)

to another tuple. RelativeOutlierScore_Tuple algorithm is used to calculate
it. If RelativeOutlierScore_Tuple returns 1, the first tuple would has higher
probability to get larger outlier score than the second tuple.

3.1 Relative Probability Outlier Score of a Tuple

We show details of RelativeOutlierScore_Tuple algorithm in this subsection.
Supposing t1i and t2j are respective tuples of x-tuples T1 and T2, score[t1i]
and score[t2j] are their deterministic outlier scores in a possible world and
score[t1i, t2j] is t1i’s relative probability outlier score toward t2j . We compute
score[t1i] and score[t2j] in every possible world first. Then score[t1i, t2j] can be
computed as follows:

score[t1i, t2j]←−1, if P (score[t1i]>score[t2j])>P (score[t2j]>score[t1i]).

P (score[t1i]>score[t2j]) is the probability that t1i’s deterministic outlier score
is greater than that of t2j . P (score[t2j]>score[t1i]) is the probability that t2j ’s

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 41

deterministic outlier score is greater than that of t1i. score[t2j , t1i] = -1 at the
same time;

score[t1i, t2j] = -1, if P (score[t1i]>score[t2j])<P (score[t2j]>score[t1i]).
score[t2j , t1i] = 1 at the same time.

In a large uncertain dataset, the probability that two tuples have same
deterministic outlier score is near 0. score[t1i, t2j] can be computed as follows:

score[t1i, t2j] = 1, if P (score[t1i]>score[t2j])>0.5;
score[t1i, t2j] = -1, if P (score[t1i]>score[t2j])<0.5.

The intuitive method to compute score[t1i, t2j] is to traverse all possible
worlds, compute score[t1i] and score[t2j] and accumulate the probability
of score[t1i]>score[t2j]. However, this is unavailable in a real application.
Traversing all possible worlds would cost exponential time overhead. Suppose
S is the dataset, |S|=N and every x-tuple includes Nx tuples. For any tuple t,
the amount of possible worlds containing t’s n nearest neighbor tuples would be
at least Cn

NNx
n. In order to lower time cost, we use sampling technique to get

an approximate P (score[t1i]>score[t2j]).
Tuples in an x-tuple are sampled according to their probabilities. All tuples

sampled from different x-tuples composed a possible world. Xk is a random
variable in the kth sampling. In the possible world produced by the kth sampling,
if both t1i and t2j exist and score[t1i]≥score[t2j], we set Xk=1. Or else
Xk=0. When all tuples’ probabilities are determined, P (score[t1i]≥score[t2j])
is determined. P (score[t1i]≥score[t2j]) is named as p in short. We can get
P (Xk=1)=p, P (Xk=0)=1-p and E[Xk]=1·p+0·(1-p)=p. X1, X2,· · · ,Xm are
independent identical distribution random variables. m is sampling number.
Variable X=

∑
Xk, 1≤k≤m. So we can get E[X]=E(

∑
Xk)=

∑
E(Xk)=mp.

That means p=E[X]/m. We use X to estimate E[X] and estimate p using
X/m. In order to ensure the accuracy of estimation, sampling must satisfy some
conditions.

When p≤0.5, the probability of a wrong estimation, namely X/m>0.5, is that:

P (X > 0.5m) = P (X > 0.5mp/p) = P (X > (1 + (0.5− p)/p)mp). (1)

According to Chernoff bound :

P (X > (1 + (0.5− p)/p)mp) ≤ exp{−((0.5− p)/p)2mp/3}
= exp{−(0.5− p)2m/3p}. (2)

If m is determined, 1-exp{-(0.5-p)2m/3p} is the accuracy of the estimation.
It’s only dominated by p.

Similarly, when p>0.5, the probability of a wrong estimation is that:

P (X < 0.5m) = P (X < (1− (p− 0.5)/p)mp)

< exp{−(p− 0.5)2m/2p}. (3)

1-exp{-(p-0.5)2m/2p} is the accuracy of estimation. In summary, the
confidence of the estimate is no less than 1-exp{-(0.5-p)2m/3p}. For example,
when p=0.7 and m=100, accuracy of the estimation is no less than 0.94.

42 F. Liu, H. Yin, and W. Han

Algorithm 3. RelativeOutlierScore_Tuple
Input: tuples t1i and t2j; sampling time m
Output: outlier score of t1i relative to t2j, score[t1i,t2j]
1: score[t1i,t2j] := 0;
2: for the kth sampling, 1 ≤ k ≤ m do
3: score[t1i,t2j] += sgn(DistanceOutlierScore(t1i)k -

DistanceOutlierScore(t2j)k);
4: end for
5: score[t1i, t2j] := sgn(score[t1i, t2j]);
6: return score[t1i,t2j]

DistanceOutlierScore(t)k the deterministic outlier score of t in the possible
world produced by the kth sampling. In DistanceOutlierScore(t)k, outlier score
of the target tuple in a possible world is computed as Definition 1. However, it’s
in high time cost to detect a tuple’s n nearest neighbors like classic methods
e.g. RBRP algorithm [15] in each sampling. In order to reduce time cost, we
construct a neighbor list Lt for every tuple t. The node of Lt is a novel Neighbor
structure:

Neighbor〈tneighbor , dneighbor , tag〉
tneighbor : a neighbor tuple of t;
dneighbor : distance from tneighbor to t;
tag: it is used to state whether tneighbor is selected in the sampling.

All Neighbors in Lt are sorted according to dneighbor in ascending order.
Tuples in the same x-tuple with t will not be in Lt. Let |Lt|=L. In each sampling,
we traverse Lt in order and get n nearest selected tuples noted by tags. The mean
distance of these n dneighbors is t’s outlier score. When L is large enough, Lt could
contain almost all n nearest neighbors of t in each sampling. While n nearest
neighbors may exist in the latter part of the list with a low probability. Too large
L leads to redundant memory consumption. Proper value of L should be set.

4 Pruning Strategies

In basic RPOS algorithm above, every x-tuple has to be compared with all
others. Its time cost is proportional to the square of a dataset’s cardinality. In
order to improve running speed of basic RPOS algorithm, we introduce two
pruning strategies.

4.1 Strategy 1

In order to detect outlier in high efficiency, we must find every tuple’s neighbors
quickly. Neighbors of a tuple should be close to each other. These neighbors
could construct in a cluster. Using for reference from existing methods [15,16],
we cluster all tuples in a dataset. Usually distances among tuples in a cluster
are much less than those among tuples in different clusters. n nearest neighbors

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 43

of a tuple t would be in the same cluster with t or t’s neighboring clusters. In
order to construct Lt, we check tuples in the cluster containing t first, and then
tuples in neighboring clusters. Other clusters would be in the end. The distance
from the Lth tuple in Lt to t will be a threshold in following process. We name
the threshold as h. When we check a following neighbor tuple, if its distance to
t is larger than h, it would not be inserted into Lt. On the contrary, it would
be a candidate tuple and inserted into Lt in ascending order. h is then updated.
Because we check tuples near with t first, h will always be small. Tuples far
away from t will be pruned soon. In order to accelerate clustering process, we
first partition the dataset into several large clusters and then partition every
cluster into some sub-clusters recursively.

When we check t’s neighbor t′, if Lt′ has be constructed with threshold h′,
the distance from one of t′’s n nearest neighbor tuples to t would be less than
D(t,t′)+h′. D(t,t′) is the distance from t to t′. So that h<D(t,t′)+h′. h is updated
by min{h,D(t, t′)+h′}.

Further, before checking a neighbor cluster C′ of t, we compute the maximum
and minimum distances from t to C′ first. The maximum distance from t
to C′ is MaxD(t,C′)=D(t,o′)+r′, where o′ is the center of C′ and r′ is the
radius of C′. The minimum distance from t to C′ is MinD(t,C′)=D(t,o′)-r′.
If MinD(t,C′)>h, distance from t to any tuple in C′ can not be less than
h. All tuples in C′ would not be inserted into Lt. C′ will be jumped over. If
MinD(t,C′)≤h, we will check its sub-clusters. In this way, we only need to
check a few tuples to construct Lt. Smaller search space leads to lower time cost.

4.2 Strategy 2

When we compute all-RPOS of an x-tuple, the x-tuple has to be compared with
all other x-tuples. When we compare two x-tuples, we have to compare all tuples
from two x-tuples respectively. Time complexity in this process is O(N2

xN
2). N

is the cardinality of the dataset. Nx is the amount of tuples in an x-tuple. But
in real application outliers are in minority of the entire dataset. It’s wasteful
to compare all pairs of x-tuples. Suppose there are K outliers in a dataset and
X x-tuples have been checked in RPOS algorithm. If X>K, we sort these X
x-tuples based on their all-RPOSs and use the Kth all-RPOS as the threshold
namely H . If expected value of an x-tuple’s all-RPOS is less than H , it can not
be an outlier. When new top K candidate outliers are detected, H is updated.
In above process, expected all-RPOS value of an x-tuple can be computed using
existed all-RPOS value (as that in line 5 of RPOS algorithm) of the x-tuple
plus the number of x-tuples will be compared with it.

Further Acceleration 1: Efficiency of pruning process above would be
influenced by H . Quickly H increases, more x-tuples could be pruned early.
We sort all x-tuples according to expected all-RPOS in descending order.

Further Acceleration 2: In order to avoid redundant comparison in pairs of
x-tuples, we record all x-tuples have been compared with and the intermediate
result of every x-tuple’s all-RPOS.

44 F. Liu, H. Yin, and W. Han

5 Experiments

In this section, we evaluate our RPOS algorithm in synthetic and real datasets.
All algorithms are implemented in Java. Our experiments are ran on a machine
with 2 Intel Core 2 Duo E8400 3GHZ CPUs and 8.1GB RAM running Linux 3.8
Ubuntu 13.04. In our research, all attributes of data are numerical and the value
of each attribute is a real number. We compare RPOS algorithm with RBRP
[15] and δ-η [8] algorithms. B.Jiang’s work [7] focuses on condition attributes
and B. Wang’s work [9] neglects data diversity. It’s hard to compare them
with our work. In order to use RBRP algorithm to detect outliers in uncertain
datasets, we pretreat uncertain data for experiments. All tuples in an x-tuple
are transformed into a tuple. The value of the new tuple in every dimension is
the weighted mean value of all tuples of the x-tuple in the dimension. Weight of
a tuple is its probability.

5.1 Dataset

Synthetic Dataset. In order to test the effectiveness and efficiency of different
outlier detection algorithms, we construct several synthetic datasets. The
synthetic data includes Nd attributes. Every data entity is an x-tuple including
several tuples. A tuple’s value in every attribute is numeric. We produce some
normal regions in the Nd-dimension space. Normal tuples are allocated in
these regions. On the contrary, outliers will not be in normal regions. Besides
synthetic data values, we also produce the probability for every tuple. We define
NR normal regions in Nd dimensions respectively. Ri is the normal region
in dimension i. Ri=[LOW (Ri),UP (Ri)]. R′

i∗ is a sub-region of Ri. R′
i∗⊂Ri.

Nd sub-regions construct a Nd-dimension normal region 〈R′
1∗,R′

2∗· · ·R′
Nd∗〉.

r=R′
i∗/Ri determines the size of sub-region R′

i∗. We produce NR Nd-dimension
normal regions in this way. Data objects outside of these NR regions is abnormal.
First we produce normal x-tuples in normal regions produced above. Then we
produce outlier x-tuples with at least N ′

x abnormal tuples in each x-tuple. In
order to evaluate performance of RPOS algorithm, we insert some counterfeit
outliers into the dataset as disturbance. A counterfeit outlier x-tuple contains
several abnormal tuples. The tuples may be allocated far away from normal
regions. But their quantity is small and their probabilities are smaller than those
of abnormal tuples in real outliers x-tuples.

Real Dataset. We choose the real MiniBooNE dataset2 provided by UCI.
Number of entities in this dataset is 130000. Number of attributes is 50. Attribute
characteristics are real. We transform the original dataset into an uncertain
dataset for our experiments. Every entity in the original dataset is an x-tuple
containing one tuple in the uncertain dataset. We fluctuate the value of a tuple
to produce other tuples in the x-tuple. The value of a tuple in every dimension
fluctuates with probability pf . Fluctuation range is controlled by rf . There are
at most Nx tuples in an x-tuple. We add every tuple’s probability as in synthetic
dataset.
2 http://archive.ics.uci.edu/ml/datasets

http://archive.ics.uci.edu/ml/datasets

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 45

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

recall

pr
ec

is
io

n

RPOS
δ−η 0.8−0.3
δ−η 0.9−0.1
RBRP

(a) Nd=5

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

RPOS
δ−η 0.8−0.3
δ−η 0.9−0.1
RBRP

(b) Nd=10

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

RPOS
δ−η
RBRP

(c) NR=10 δ=0.9 η=0.1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

RPOS
δ−η
RBRP

(d) NR=20 δ=1 η=0.3

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

RPOS
δ−η
RBRP

(e) NR=70 δ=0.9 η=0.1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

RPOS
δ−η
RBRP

(f) NR=80 δ=0.9 η=0.1

Fig. 1. Effectiveness of different algorithms

5.2 Effectiveness Evaluation

In this sub-section, we show the evaluation result of different algorithms’
effectiveness to detect outliers. Because no instance in real datasets is labeled as
an outlier, effectiveness evaluation is performed only in synthetic datasets. Some
parameters are modified to produce different datasets.

In order to test the influence of the data dimensionality, we perform
experiments in 5 and 10 dimensions respectively. We set NR=100,
Nx=5. Amount of outliers Noutlier=0.01N . Amount of counterfeiters
Ncounterfeiter=0.05N . N is the cardinality of a dataset. For RPOS algorithm
we set parameters L=200 and m=100 (see section 3). For δ-η algorithm we
do experiments in two situations. First, parameter δ is set to be 0.8 and η is
set to be 0.3, and then δ is set to be 0.9 and η is set to be 0.1. Space lack
for more parameter setting. But they do not influence experimental results. In
Figure 1(a), dimensions amount is Nd=5. Nd=10 in Figure 1(b). Precision and
recall ratio are two test indexes. As shown in these figures, in various amount
of dimensions, RPOS algorithm always performs best in three algorithms. With
same recall rate, RPOS algorithm detects outliers in high precision.

We then change parameter NR to produce different uncertain synthetic
datasets to evaluate the effectiveness of different algorithms. Data is processed
in these experiments with Nd=5. NR is set to be different values with r=0.5.
δ and η are set arbitrarily. Results can be found in Figure 1(c-f). As shown in
above figures, RPOS algorithm performs best in almost all experiments.

5.3 Efficiency Evaluation

In this sub-section, we show evaluation results of different algorithms’ time cost.
Our experiments perform in both synthetic and real datasets. We implement

46 F. Liu, H. Yin, and W. Han

basic RPOS algorithm (RPOS), RPOS with pruning strategy 1 (RPOS1),
RPOS with pruning strategy 2 (RPOS2), RPOS with both pruning strategies
1 and 2 (RPOS12), δ-η algorithm and RBRP algorithm in every experiment.
Time complexity of O(NlogN) and O(N2) are shown for comparison.

Synthetic datasets are produced with NR=100, r=0.5, Nx=5. We change
Nd in different experiments. In RPOS algorithm, the rate K/N=rk=0.02. For
instance, in a dataset containing 10000 x-tuples, K is 200. rk is set to be a
constant to avoid its influence. Similarly, we set the rate between amount of
clusters and dataset cardinality rC=0.25 to ensure stability of pruning effect.
In δ-η algorithm, we set δ=0.06 and η=0.5. Experiments results in 5 and
20 dimensions are shown in Figure 2(a,b). Data size increases in X-axis and
corresponding time cost is shown in Y-axis.

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8x 10
6

data size

tim
e c

os
t (

m
ill

i s
ec

on
d) δ−η

RBRP
RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(a) Nd=5

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8x 10
6

data size

tim
e c

os
t (

m
ill

i s
ec

on
d) RBRP

RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(b) Nd=20

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8x 10
6

data size
tim

e c
os

t (
m

ill
i s

ec
on

d) δ−η
RBRP
RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(c) Nd=5

0 0.5 1 1.5 2
x 10

4

0

2

4

6

8x 10
6

data size

tim
e c

os
t (

m
ill

i s
ec

on
d) RBRP

RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(d) Nd=20

0 0.5 1 1.5 2
x 10

4

0

1

2

3

4

5x 10
6

data size

tim
e c

os
t (

m
ill

i s
ec

on
d) δ−η

RBRP
RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(e) pf=0.3, rf=0.3

0 0.5 1 1.5 2
x 10

4

0

1

2

3

4

5x 10
6

data size

tim
e c

os
t (

m
ill

i s
ec

on
d) δ−η

RBRP
RPOS12
RPOS
RPOS1
RPOS2

N2

Nlog(N)

(f) pf=0.7, rf=0.7

Fig. 2. Time cost in synthetic datasets(a,b) and real datasets(c-f)

As shown in Figure 2(a), pruning strategies 1 and 2, especially strategy
2 can accelerate RPOS algorithm. Time cost of basic RPOS algorithm and
RPOS1 are higher than O(N2). The main time consumption is from comparison
among tuples and x-tuples. Time cost of RPOS2 and RPOS12 are lower than
O(N2) but higher than O(NlogN). Pruning strategies can improve basic RPOS
algorithm obviously. Speedup using pruning strategies in 20 dimensions is similar
as in 5 dimensions.

Time cost are also evaluated in real datasets. First we set parameters pf=0.5,
rf=0.5. Other parameters keep consistent with those in synthetic datasets.
Experiments are implemented in 5 and 20 dimensions respectively. Results of
time cost can be shown in Figure 2(c,d). Basic RPOS algorithm runs with higher
time complexity than O(N2). pruning strategy 2 can improve RPOS algorithm
greatly.

A Top K Relative Outlier Detection Algorithm in Uncertain Datasets 47

We then change pf and rf to produce different uncertainty with Nd=20. Time
cost is shown in Figure 2(e,f). We can find that results are similar in different
experiments. With various values of pf and rf , RPOS12 performs better than
others in time cost.

References

1. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework
for unsupervised anomaly detection. In: Applications of Data Mining in Computer
Security, pp. 77–101. Springer (2002)

2. Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Outlier detection in arbitrarily
oriented subspaces. In: 12th International Conference on Data Mining (ICDM),
pp. 379–388. IEEE (2012)

3. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection, vol. 589.
Wiley.com (2005)

4. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan
Kaufmann (2006)

5. Aggarwal, C.C., Yu, P.: An effective and efficient algorithm for high-dimensional
outlier detection. The VLDB Journal 14(2), 211–221 (2005)

6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. ACM Sigmod Record, 93–104 (2000)

7. Jiang, B., Pei, J.: Outlier detection on uncertain data: Objects, instances, and
inferences. In: ICDE, pp. 422–433. IEEE (2011)

8. Aggarwal, C.C., Yu, P.: Outlier detection with uncertain data. In: SDM,
pp. 483–493 (2008)

9. Wang, B., Xiao, G., Yu, H., Yang, X.C.: Distance-based outlier detection on
uncertain data. In: CIT, pp. 293–298. IEEE (2009)

10. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. The
VLDB Journal 16(4), 523–544 (2007)

11. Parag, A., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: A system for data uncertainty and lineage. In: VLDB (2006)

12. Hua, M., Pei, J., Zhang, W.J., Lin, X.M.: Efficiently answering probabilistic
threshold top-k queries on uncertain data. In: ICDE, vol. 8, pp. 1403–1405 (2008)

13. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
Transactions on Knowledge and Data Engineering 17(2), 203–215 (2005)

14. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM
SIGKDD, pp. 29–38. ACM (2003)

15. Ghoting, A., Parthasarathy, S., Otey, M.E.: Fast mining of distance-based outliers
in high-dimensional datasets. Data Mining and Knowledge Discovery 16(3),
349–364 (2008)

16. Vu, N.H., Gopalkrishnan, V.: Efficient pruning schemes for distance-based outlier
detection. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 160–175. Springer, Heidelberg
(2009)

	A Top K Relative Outlier Detection Algorithm in Uncertain Datasets
	1 Introduction
	2 Outlier in Uncertain Datasets
	2.1 Possible World and x-tuple Model
	2.2 Relative Outlier

	3 Basic RPOS Algorithm
	3.1 Relative Probability Outlier Score of a Tuple

	4 Pruning Strategies
	4.1 Strategy 1
	4.2 Strategy 2

	5 Experiments
	5.1 Dataset
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation

	References

