
An Efficient Graph Processing System

Xianke Zhou, Pengfei Chang, and Gang Chen

College of Computer Science and Technology
Zhejiang University, Hangzhou, China

{xiankz,changpeng3336,cg}@zju.edu.cn

Abstract. Conventional graph processing algorithms are not designed for those
unprecedented large graphs and result in suboptimal performance. To address
the problem, Google proposed its Pregel system, which adopts a vertex-centric
processing framework for simplifying the development of parallel graph algo-
rithms. In Pregel, the graph computation proceeds iteratively and each iteration is
called a superstep. Pregel’s processing engine adopts the Bulk Synchronous Par-
allel (BSP) model, which simplifies the synchronization mechanism and ensures
that the system reaches a global synchronization at the end of each superstep.
This strategy however significantly increases the system overhead for algorithms
that entail many iterations. In this paper, we propose a new graph processing
framework based on Pregel. It extends Pregel by introducing a new data struc-
ture, super-vertex, and a new API, internalCompute. Our system is fully compat-
ible with Pregel in that the codes of Pregel can run on it without modification.
Moreover, we allow the programmers to optimize their codes with the unique
two-phase processing strategy. We evaluated the advantages of our approach by
two popular graph algorithms, Shortest Path and PageRank, with real dataset from
twitter.

1 Introduction

MapReduce [2] has been widely adopted in various big data applications. Its simple but
flexible interface allows the programmers to develop high-performance parallel algo-
rithms without delving into the scheduling, synchronization and other non-trivial imple-
mentation issues. However, as argued in [8][9], MapReduce is inefficient in processing
graph data. Consequently, Google introduces an alternative system called Pregel [9],
which is specifically designed for large-scale graph processing.

Pregel is based on the vertex-centric computation model. The vertices communicate
with each other via messages. It defines the Compute function to process the incom-
ing messages, and adopts Bulk Synchronous Parallel (BSP) model [14] as a means to
synchronize the processing where the computation is split into multiple iterations (aka
superstep). In each superstep, the vertex retrieves its incoming messages and processes
them sequentially. Pregel monitors the status of the vertices. If all vertices consume their
messages of a given step and finish the processing, it can progress to a new superstep.
In this way, a global synchronization is achieved at the end of each iteration.

In Pregel, except the CPU cost for processing the Compute function, the main cost
consists of the message forwarding cost and synchronization cost. We use Figure 1 to
demonstrate the cost estimation. Suppose we have two workers (the compute nodes),

L. Chen et al. (Eds.): APWeb 2014, LNCS 8709, pp. 401–412, 2014.
c© Springer International Publishing Switzerland 2014

402 X. Zhou, P. Chang, and G. Chen

worker 1 worker 2

master

A

B C

D

F G

5

2

3

1

2

3

2

1

Fig. 1. Example of Graph Processing

and the graph vertices are randomly distributed to the workers. To compute the shortest
path from B to the other vertices, B forwards the initial message to A and C in the first
superstep. In the second superstep, A and C become active and update their paths to B
accordingly. To broadcast the message, C forwards its shortest path to D and F, while A
notifies D about its new path. Vertex D and F are hosted by the other worker. Therefore,
the communication incurs network overhead. At the end of superstep 2, A and C turn
inactive and vote to stop. The process has three drawbacks for the first two supersteps.

1. Vertex C sends the same message to D and F. As both D and F are located in worker
2, C generates redundant messages between worker 1 and worker 2.

2. Both vertex A and C forward their shortest paths to D. However, as C’s path is
better than A’s, it is not necessary for A to notify D.

3. The first two supersteps only involve vertices in worker 1. In fact, we can combine
them into one superstep to reduce the synchronization cost.

Moreover, at the end of each superstep, the workers communicate with the master
to reach a synchronized status (whether to start the next superstep or stop). Such syn-
chronization is costly, as straggling workers may cause the delay of the whole system in
reaching a global synchronization point. Some complex algorithms may require a few
hundreds of supersteps, and the synchronization cost is likely to dominate the total pro-
cessing cost. If we can reduce the number of required supersteps, we can significantly
boost the performance of such algorithms.

In this paper, we propose P++, an improved graph processing framework based on
the Pregel. P++ defines a new data structure, super-vertex, and a new processing inter-
face, internalCompute. The super-vertex represents a set of connected vertices. It main-
tains a subgraph for those vertices. A super-vertex can dynamically shrink or expand by
removing or adding new vertices, and multiple super-vertices that are connected can be
merged together. By introducing the concept of super-vertex, the computation is split
into two phases in each superstep. In phase one, we apply the internalCompute func-
tion to process the data inside each super-vertex. In phase two, the original Compute
function of Pregel is invoked to continue the computation for the whole super-vertex.

The remainder of the paper is organized as follows. In Section 2, we propose our
new framework P++ and compare it with Pregel via Shortest Path graph algorithm. We
evaluate the new framework in Section 3 and review the related work in Section 4. The
paper is concluded in Section 5.

An Efficient Graph Processing System 403

2 Computation Model of P++

Pregel adopts a vertex-centric computation model, where all interfaces are defined for
the vertices. Table 1 lists the main interfaces provided by Pregel. The user-defined pro-
cessing logic is typically implemented in the Compute function. For the space limita-
tion, the detail description of Pregel is referred to [9][14][4].

Table 1. Pregel Interfaces

Function Description
Compute(msgList) process the messages

SendMessageTo(destV, &msg) send message to neighbor vertex
VoteToHalt() vote to be inactive
superstep() get current superstep number
GetValue() get the vertex value

GetOutEdgeIterator() get the out edges

To reduce the message cost and synchronization cost, we design our new framework
P++ by extending the open-source implementation of Pregel, GPS[10]. P++ is compat-
ible with the Pregel’s interface and the users’ programs can therefore run in the new
framework without modifications. In P++, we introduce a two-phase processing model
and a new interface internalCompute. internalCompute is designed for the new compute
unit, super-vertex, which represents a set of connected vertices.

2.1 Interface of P++

In parallel graph processing, the large graph is typically partitioned into subgraphs
[11][17]. Each subgraph is assigned to a compute node and all compute nodes start
their processing in parallel. Based on the same philosophy, we define a new concept,
super-vertex, for the P++ processing framework.

Definition 1. Connected Subgraph
For the graph G = (V,E), its subgraph G′ = (V ′,E ′) is a connected subgraph, if

1. V ′ ⊂V and E ′ ⊂ E
2. ∀vi ∈V ′,∀v j ∈V ′, there is a path vi � v0 � ...� vn � v j and vx ∈V ′ for 0≤ x≤ n.

Definition 2. Super-Vertex
For a connected subgraph G′ = (V ′,E ′), we define a super-vertex S, which represents
all vertices in V ′. S maintains two types of edges, internal edge Ein and external edge
Eex. Ein = E ′, while Eex is defined as:

– If there is an edge e = (vi,v j) and vi ∈ V ′ ∧ v j �∈ V ′, then we use a new edge e′ =
(S,S′) to replace e, where S′ is the super-vertex for v j. e′ ∈ Eex.

404 X. Zhou, P. Chang, and G. Chen

5

10

2

worker 1 worker 2

worker 3

S3 ={F,G,H}

5

C D E K

C

D

E

K

X 5 9 13

5 X 4 8

9 4 X 4

13 8 4 X

15

S1 ={A,B} S2 ={C,D,E,K}

Fig. 2. Super-Vertices

For the example of Shortest Path algorithm, we transform the subgraph of each
worker to a super-vertex and the result is shown in Figure 2. The external edges of
super-vertices are the edges of the new graph. Note that there are three edges between
super-vertices S1 and S2, as they are linked by three external edges representing A � D,
B �C and B � D, respectively. Inside each super-vertex, we keep the structure of the
corresponding subgraph, namely the vertices and internal edges of the subgraph. The
transformation allows us to use the super-vertex as the processing unit in Pregel. Note
that in real scenario, each worker can have multiple connected subgraphs and hence
multiple super-vertices are created.

The super-vertex can expand or shrink adaptively via the merge and split operations.

Definition 3. Super-Vertex Merge
Two super-vertices Si and S j can be merged, if there exist edges between them. Let
Gi and G j denote the subgraphs of Si and S j, respectively. The merged super-vertex
S is generated for the new subgraph G = (Gi.V ∪G j.V,Gi.E ∪G j.E ∪Ei j), where Ei j

represents the edges between Gi and G j.

split is a reverse operation of merge, which partitions the subgraphs into two disjoint
connected subgraphs. The sizes of the subgraphs are configurable. By applying the
merge and split operations, we can adaptively tune the size of the super-vertex. To
communicate between super-vertices, we define the super-message as:

Definition 4. Super-Message
Super-message follows the format of

({(m,{v0, ...,vn}),(m′,{v′0, ...,v
′
n}), ...,},S)

where m is the message value, vi denotes the ID of a vertex and S is the receiver’s
super-vertex ID.

In one super-message, the super-vertex can send different messages to multiple ver-
tices from the same super-vertex. Moreover, the message value can be shared among
the vertices. For example, the message from S1 to S2 in Figure 2 is represented as:

({(20,{C}),(12,{D}),(15,{D})},S2)

An Efficient Graph Processing System 405

super-messages from
other super-vertices

super-messages to
other super-vertices

active

inactive

activate
super-vertex

voteToHalt

incoming
message queue

Compute

outgoing
message queue

worker A worker B

internalCompute

graphCompute

incoming
message queue

Compute

outgoing
message queue

internalCompute

graphCompute

phase 1
phase 2

Fig. 3. Two-Phase Model

2.2 Two-Phase Processing Model

If we adopt the super-vertex as the processing unit, the computation within each su-
perstep will be performed in two phases. As shown in Figure 3, the incoming super-
messages from the other super-vertices are buffered in the queue and if the super-vertex
is inactive, it will be woken up.

Algorithm 1. graphCompute(Iterable<M> supermsgs)

1: int microstep = 1
2: while !isStop() do
3: for every vertex v in this.subGraph do
4: if microstep==1 then
5: internalCompute(v, getMessage(supermsgs,v), 1)
6: else
7: internalCompute(v,getMessageFromBuffer(v), microstep)
8: microstep++

In phase 1, the messages are passed to the graphCompute function, which invokes
the new internalCompute interface to process the subgraph of the corresponding super-
vertex. The algorithms can update the internal vertices and their values, but cannot
interact or access the data in other super-vertices. internalCompute follows the same
definition as Pregel’s Compute interface. In most cases, users can directly copy their
codes from the Compute function to the internalCompute function. The only difference
between the two interfaces is that they perform computation for the vertex and super-
vertex, respectively. graphCompute specifies how the subgraph is processed. Although
users can define their own graphCompute function, we recommend them to use the
default implementation, which is shown as Algorithm 1.

graphCompute splits the processing into micro-steps. In the first micro-step, each
vertex processes messages received from other super-vertices in the last super-step and

406 X. Zhou, P. Chang, and G. Chen

send messages to its neighbors. In the following micro-steps, the vertex continues the
processing if it receives messages from vertices within the same super-vertex. Note that
there is no synchronization requirement for the micro-step and the messages are passed
to different vertices using the memory buffer. The whole process terminates when no
message is generated any more.

In phase 2, the super-vertex continues the processing by the Compute interface. It
exploits the partial results of the graphCompute. If one super-vertex needs to commu-
nicate with others, it generates the outgoing super-messages, which will be processed
in the next superstep. At the end of the Compute function, the super-vertex can vote to
stop, if all its tasks are done.

Figure 4 lists the interfaces of the super-vertex (based on GPS [10]). Some inherited
interfaces from Pregel, such as SendMessageTo, are shared between Vertex and Super-
Vertex class and are discarded in the declarations.

Fig. 4. Interface of Super-Vertex

2.3 Shortest Path Processing

In the shortest path algorithm, we use Figure 2 to illustrate how P++ processes the graph
data. The internalCompute function (Algorithm 2) defines how the normal vertex in a
super-vertex performs its computation. In fact, we follow the same processing logic as
the shortest path algorithm in Pregel. Specifically, the programmers can copy their codes
for previous Compute function to the internalCompute function with a little change for
using the new argument v. In the initial micro-step, the vertex broadcasts a new path
to its neighbors (line 1-4). In the following micro-steps, the vertex updates its shortest
path to the other vertices inside the same super-vertex progressively (line 6-13). The
SendMessageTo (line 4 and 13) buffers the messages in memory, instead of forwarding
them via the network connection.

Note that between two consecutive micro-steps, no synchronization is needed. graph-
Compute function (Algorithm 1) defines how the computation is scheduled. graphCom-
pute checks the message buffer before starting a new micro-step. If there are messages
inside the buffer, a new micro-step will start and internalCompute will be invoked im-
mediately. Otherwise, graphCompute will terminate its processing. As a result, we can

An Efficient Graph Processing System 407

obtain the shortest distance between every pair of graph vertices in a super-vertex.
Figure 2 shows the result of super-vertex S2, when graphCompute terminates.

Algorithm 2. internalCompute(Vertex v, Iterable<M> msgs, int mno)

1: if mno == 1 then
2: for every neighbor vertex vi of v do
3: Path P = new Path(v, vi, getWeight(v, vi))
4: SendMessageTo(vi , P)
5: else
6: for M msg : msgs do
7: Path P = (Path)msg
8: Path P′ = getShortestPath(P.root)
9: if P′.weight> P.weight then

10: v̄.setShortestPath(P.root, P)
11: for every neighbor vertex vi of v do
12: Path nextP = new Path(P′.root, vi, getWeight(v, vi))
13: SendMessageTo(vi , nextP)

In the processing, each super-vertex may receive multiple shortest paths from the last
superstep. It will iteratively generate all new paths and only the shortest one is selected.
More formally, if super-vertex Si receives a path set P from the last superstep, it can
compute its shortest paths as follows. Let g(p) return the last vertex in a path p. We
retrieve a corresponding subset of vertices θ (g(p)) from Si. Vertices in θ (g(p)) are
directly connected to g(p) with an edge. We use f (vk,v j) to denote the shortest path
from vk to v j, which is computed in graphCompute. The shortest paths of Si can be
computed as:

{min(p ◦ f (vk,v j))|∀p ∈ P,∀vk ∈ θ (g(p)),∀v j ∈ Si}
where min returns the path with the shortest distance and ◦ denotes the concatenation
of two paths.

By adopting the two-phase processing strategy, we reduce the number of supersteps
to three and the inter-vertex messages to four, which is a significant improvement over
the original algorithm. The key difference is that by iteratively evoking internalCompute
function, we obtain the shortest distance paths for every pair of inside vertices, instead
of waiting for the next superstep to generate the results. Compared to the original Pregel,
the number of supersteps is reduced from O(N) to O(N′) in P++, where N and N′ are
the number of graph vertices and super-vertices, respectively.

3 Performance Evaluation

To show the superior performance of P++, we implement the Shortest Path algorithm
discussed in Section 3 and PageRank algorithm from [15], with the real dataset from
Twitter. Twitter dataset has about 40 million vertices and more than 1 billion edges
[5]. The user profiles were crawled from July 6th to July 31st, 2009. For the dataset,

408 X. Zhou, P. Chang, and G. Chen

Table 2. Experiment Settings

Parameter Range and Default Value
Cluster Size 50

Memory Buffer per Super-Vertex 10M
Twitter Graph Size 4M-32M (32M)
HDFS Chunk Size 64M

we generate some synthetic datasets by only using the first K vertices and their edges.
The synthetic dataset was used to evaluate the scalability of P++. The experiments were
conducted on our in-house cluster. Each cluster node (machine) is powered with an intel
Xeon 2.4GHZ CPU, 8GB memory and 512GB disk. All cluster nodes are connected via
a high-speed 1GB Cisco switch. To reduce resource contention, each cluster node only
hosts one P++ worker. The metrics used in the experiments are processing time and
number of supersteps. Table 2 lists the configurations of the cluster and the experiments.

3.1 Shortest Path

In the shortest path algorithm, we randomly select a vertex as the root and compute the
shortest pathes from the other vertices to the root. In above experiments, we show the
average performance. In fact, the selection of root significantly affects the performance.
Some root has many out-edges and thus triggers a large number of messages. Some root
has few neighbors and the pathes are easy to compute.

Figure 5 and 6 show the effect of data size. P++ is more scalable and provide a stable
performance. The processing time of both approaches does not increase linearly with
the data size. Because increasing data size in Twitter does not necessarily lead to a
higher processing cost for those users, as their reachable users are limited.

In Figure 7 and Figure 8, the performance of GPS is affected by the root selection.
Twitter has a skewed user-base. Some popular users will incur very high computation
cost, while some inactive users only require a few super-steps. By employing P++, we
can effectively reduce the performance variance. The popular users and their friends
are grouped into one super-vertex, where the computation is performed by internal-
Compute. The data skewness is neutralized by the adoption of super-vertex structure.

3.2 PageRank

P++ is fully compatible with the Pregel (GPS) interface. If the users does not define the
internalCompute, P++ will adopt the original processing logic defined in the Compute
function. But P++ still provides a better performance because P++ groups vertices into
super-vertices and no message exchange is required inside a super-vertex. To illustrate
the benefit of P++, we use GPS-P++ to denote the performance of original GPS codes
running on P++. We remove the diagram of GPS, as it always performs worse than
GPS-P++. In the PageRank computation, we set a stop threshold ε . When the changes
of rank values of all vertices are bounded by ε in a consecutive super-step, we assume
that the algorithm converges and terminate the computation. On the other hand, we set
a maximal super-step number S. If the PageRank algorithm does not converge after N
super-steps, we will stop it forcedly. The initial rank value of a vertex is set to 1

N , where

An Efficient Graph Processing System 409

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Vertices (million)

GPS
P++

Fig. 5. Shortest Distance for Varied Data
Size (Processing Time)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

N
um

be
r

of
 S

up
er

st
ep

s

Number of Vertices (million)

GPS
P++

Fig. 6. Shortest Distance for Varied Data
Size (# of Super-Steps)

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Root ID

GPS
P++

Fig. 7. Shortest Distance for Varied Roots
(Processing Time)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 S

up
er

st
ep

s

Root ID

GPS
P++

Fig. 8. Shortest Distance for Varied Roots
(# of Super-Steps)

N is the total number of vertices in the dataset. In the experiments, the default values of
ε and S are 10E − 8 and 50, respectively.

Figure 9 and Figure 10 show the effect of data size. It costs more time for P++ to
process a large graph, because its internalCompute needs to handle more local PageR-
ank computation. However, the performance of GPS-P++ seems to be less affected by
the data size. In fact, that is because GPS-P++ cannot converge before 50 iterations. We
stop it before it can provide the satisfied PageRank results.

In Figure 11 and Figure 12, we vary the threshold from 10E − 3 to 10E − 9. Perfor-
mance of P++ is only slightly affected by the threshold, as the local PageRank values are
computed in the internalCompute. GPS-P++ can terminate faster for a loose threshold,
as it triggers few super-steps before completion. However, when the threshold becomes
tighter, the performance of GPS-P++ drops dramatically. Clearly, for a tight stop thresh-
old, P++ shows superior performance than GPS-P++.

3.3 Comparison with GraphLab

Due to the recent interest generated by asynchronized processing model, we also com-
pare the performance of P++ with GraphLab. In this experiment, we only run the
PageRank algorithm to measure the loading cost and query processing cost. Figure 13
shows the results. P++ incurs less loading cost, as its partitioning technique is well

410 X. Zhou, P. Chang, and G. Chen

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Vertices (million)

P++

GPS-P++

Fig. 9. PageRank for Varied Data Size (Pro-
cessing Time)

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

N
um

be
r

of
 S

up
er

st
ep

s

Number of Vertices (million)

P++
GPS-P++

Fig. 10. PageRank for Varied Data Size (#
of Super-Steps)

 0

 50

 100

 150

 200

 250

 300

10E-3 10E-4 10E-5 10E-6 10E-7 10E-8 10E-9

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

PageRank Threshold

P++

GPS-P++

Fig. 11. PageRank for Varied Threshold
(Processing Time)

 0

 10

 20

 30

 40

 50

 60

10E-3 10E-4 10E-5 10E-6 10E-7 10E-8 10E-9

N
um

be
r

of
 S

up
er

st
ep

s

PageRank Threshold

P++
GPS-P++

Fig. 12. PageRank for Varied Threshold (#
of Super-Steps)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

G
ra

ph
L

ab

P+
+

G
ra

ph
L

ab

P+
+

G
ra

ph
L

ab

P+
+

G
ra

ph
L

ab

P+
+

Pr
oc

es
s i

ng
 T

im
e

(s
ec

)

4M Vertices 8M Vertices 16M Vertices 32M Vertices

processing time
loading time

Fig. 13. P++ VS GraphLab of PageRank

integrated with Pregel, whereas GraphLab uses a sophisticated vertex-cut partition-
ing approach [3]. For the PageRank algorithm, P++ outperforms GraphLab for large
datasets. Its two-phase strategy speeds up the convergence of the PageRank algorithm
and no synchronization cost is incurred for computing the local PageRank values of

An Efficient Graph Processing System 411

each subgraph. In our ongoing work, we are extending and incorporating the P++’s
two-phase model into GraphLab.

4 Related Work

To process large-scale graphs, previous work transformed the graph algorithms into a
set of MapReduce jobs[1] which are executed sequentially. However, MapReduce is not
designed for such iterative processing. For this purpose, Google introduced its Pregel
[9] for large-scale graphs processing. In Pregel, the programmers write codes for each
vertex. Many graph algorithms, such as PageRank and KMeans, can be implemented in
a few lines in Pregel. Pregel has become another popular tool after MapReduce.

Similar to Pregel, GraphLab [7][8], PowerGraph [3] and Graph-Chi [6], provide
alternative graph processing model. The main difference between Pregel and others
is the synchronization model. For example, Pregel splits the processing into multiple
supersteps and requires a global synchronization at the end of each superstep, while
GraphLab does not have such requirement and it is completely asynchronous. GraphLab
provides three different consistent models: full, edge, and vertex consistency.

Recently, some memory-based distributed processing platforms, such as Spark [18]
and Trinity [12], are proposed as high-performance data analytical systems. They share
some similar design philosophy with the Pregel-like systems. We can simulate Pregel on
top of Spark or Trinity. However, to improve the efficiency, those systems maintain the
graph structures or intermediate results in memory to reduce the I/O cost. Our technique
can benefit those systems by avoiding the unnecessary iterations as in the Pregel system.
Some recent works[16][13] also proposed the idea similar with super-vertex, but they
differ from our vertex construction and computing processing model.

5 Conclusion

Pregel was recently proposed as a processing engine for large graphs. In Pregel, the al-
gorithm is invoked iteratively and each iteration is called a superstep. All vertices need
to reach the same status at the end of each superstep, which incurs high synchronization
cost. To address this problem, we have extended Pregel to our new framework P++.
P++ introduces a new data structure, the super-vertex, and a new processing interface,
internalCompute. The super-vertex represents a set of graph vertices and is hosted by a
single cluster node. All computations within the super-vertex can be processed locally
within each superstep. and hence, the algorithm requires fewer supersteps to complete.
Consequently, the synchronization cost is greatly reduced. P++ is completely compati-
ble with the Pregel in that all Pregel codes can run in the P++ without modification in
order to gain performance improvement. We used shortest path algorithm to illustrate
the benefit of P++. P++ is evaluated using real datasets and the results demonstrate its
superior performance.

412 X. Zhou, P. Chang, and G. Chen

Acknowledgement. This research has been supported by The National Key Tech-
nology R&D Program of the Ministry of Science and Technology of China (Grant
No. 2013BAG06B01) and the National Science Foundation of China (NSFC Grant
61202047).

References

1. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce. In: SIG-
MOD (2011)

2. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: OSDI
(2004)

3. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Distributed graph-
parallel computation on natural graphs. In: OSDI (2012)

4. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelli-
gence. In: IJCAI (1973)

5. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media?
In: WWW (2010)

6. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: Large-scale graph computation on just a pc.
In: OSDI (2012)

7. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Graphlab: A
new framework for parallel machine learning. In: UAI (2010)

8. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed
graphlab: A framework for machine learning in the cloud. PVLDB 5(8) (2012)

9. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)

10. Salihoglu, S., Widom, J.: Gps: A graph processing system. In: Technical Report, Stanford
(2012)

11. Schloegel, K., Karypis, G., Kumar, V.: Parallel multilevel algorithms for multi-constraint
graph partitioning. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000.
LNCS, vol. 1900, p. 296. Springer, Heidelberg (2000)

12. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud. In: SIG-
MOD (2013)

13. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From ”think like a vertex”
to ”think like a graph”. PVLDB 7(3), 193–204 (2013)

14. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM 33(8)
(1990)

15. Wang, Y., DeWitt, D.J.: Computing pagerank in a distributed internet search engine system.
In: VLDB (2004)

16. Xie, W., Wang, G., Bindel, D., Demers, A.J., Gehrke, J.: Fast iterative graph computation
with block updates. PVLDB 6(14), 2014–2025 (2013)

17. Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large
graphs. In: SIGMOD (2012)

18. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster comput-
ing with working sets. In: HotCloud (2010)

	An Efficient Graph Processing System
	1 Introduction
	2 Computation Model of P++
	2.1 Interface of P++
	2.2 Two-Phase Processing Model
	2.3 Shortest Path Processing

	3 Performance Evaluation
	3.1 Shortest Path
	3.2 PageRank
	3.3 Comparison with GraphLab

	4 Related Work
	5 Conclusion
	References

