
Differentially Private Data Release: Improving Utility
with Wavelets and Bayesian Networks �

Xiaokui Xiao

Nanyang Technological University, Singapore
xkxiao@ntu.edu.sg

Abstract. Privacy-preserving data publishing is an important problem that has
been the focus of extensive study. The state-of-the-art privacy model for this
problem is differential privacy, which offers a strong degree of privacy protec-
tion without making restrictive assumptions about the adversary. In this paper,
we review two methods, Privelet and PrivBayes, for improving utility in dif-
ferentially private data publishing. Privelet utilizes wavelet transforms to ensure
that any range-count query can be answered with noise variance that is polylog-
arithmic to the size of the input data domain. Meanwhile, PrivBayes employs
Bayesian networks to publish high-dimensional datasets without incurring pro-
hibitive computation overheads or excessive noise injection.

Keywords: Data publishing, Differential privacy, Wavelet, Bayesian network.

1 Introduction

The advancement of information technologies has made it never easier for various or-
ganizations (e.g., hospitals, bus companies, census bureaus) to create large repositories
of user data (e.g., patient data, passenger commute data, census data). Such data repos-
itories are of tremendous research value. For example, statistical analysis of patient
data can help evaluate health risks and develop new treatments; passenger commute
data provides invaluable insights into the effectiveness of transportation systems; cen-
sus data is an essential source of information for demographic research. Despite of the
research value of data, they are seldom available for public accesses, due to concerns
over individual privacy. A common practice to address this issue is to anonymize the
data by removing all personal identifiers (such as names and IDs). Nevertheless, re-
cent research [2–4, 11–14, 16] has shown that eliminating personal identifiers alone is
insufficient for privacy protection, since the remaining attributes in the data may still
be exploited to re-identify an individual. This has motivated numerous data publishing
techniques (see [1, 7, 9] for surveys) that aim to provide better privacy protection based
on formal models of privacy requirements.

Differential privacy [8] is the state-of-the-art privacy model for data publishing. In-
formally, it requires that a sensitive dataset T should be modified using a randomized
algorithm G with the following property: Even if we arbitrarily change one tuple in T
and then feed the modified data as input to G, the output of G should still be more or

� Material based on [17] and [18] appearing in TKDE and SIGMOD’14, respectively.

L. Chen et al. (Eds.): APWeb 2014, LNCS 8709, pp. 25–35, 2014.
c© Springer International Publishing Switzerland 2014

26 X. Xiao

Fig. 1. Illustration of Definition 1

less the same with the case when the original T is the input. In other words, the output
of G should only rely on the general properties of the input data, and should not be very
sensitive to any particular tuple. This ensures that, when an adversary observes the data
modified by G, he would not be able to infer much about any individual tuple in the
original data, i.e., privacy is preserved.

Meanwhile, the data generated from G can still be useful, as long as the modification
imposed byG does not significantly change the statistical properties of the original data.
The design of such an algorithm G, however, is often highly non-trivial due to stringent
requirements of differential privacy and the inherent complexity of the input/output
data. In what follows, we first formalize the concept of differential privacy, and then
demonstrate how we may utilize wavelet transforms and Bayesian networks to improve
the utility of data released under differential privacy.

2 Differential Privacy

We say that two datasets are neighboring, if they have the same cardinality and they
differ in only one tuple. The formal definition of differential privacy is as follows:

Definition 1 (εεε-Differential Privacy [8]). A randomized algorithm G satisfies ε-
differential privacy, if for any two neighboring datasets T1 and T2 and for any output O
of G, we have

Pr {G(T1) = O} ≤ eε ·Pr {G(T2) = O} . �

Note that ε is a user-specified parameter that controls the degree of privacy protection;
a smaller ε leads to stronger privacy assurance. Figure 1 illustrates Definition 1.

The Laplace mechanism [8] is the most fundamental mechanism for achieving dif-
ferential privacy. To explain, consider that we have a non-private algorithm F whose
output is a set of numeric values. Given F , the Laplace mechanism can transform F
into a differentially private algorithm, by adding i.i.d. noise (denoted as η) into each
output value of F . The noise η is sampled from a Laplace distribution Lap(λ) with the
following pdf: Pr[η = x] = 1

2λe
−|x|/λ. We refer to λ as the magnitude of the Laplace

noise.
Dwork et al. [8] prove that the Laplace mechanism ensures ε-differential privacy if

λ ≥ S(F)/ε, where S(F) is the sensitivity of F :

Differentially Private Data Release 27

Definition 2 (Sensitivity [8]). Let F be a function that maps a dataset into a fixed-size
vector of real numbers. The sensitivity of F is defined as

S(F) = max
T1,T2

‖F (T1)− F (T2)‖1 , (1)

where ‖·‖1 denotes the L1 norm, and T1 and T2 are any two neighboring datasets.

Intuitively, S(F) measures the maximum possible change in F ’s output when we
modify one arbitrary tuple in F ’s input. A large S(F) indicates that F may reveal sig-
nificant information about a certain tuple, in which case we should inject a large amount
of noise into F ’s output to protect privacy. This explains why the Laplace mechanism
sets the standard deviation of the noise proportional to S(F)/ε.

3 Differentially Private Data Publishing: A First-Cut Solution

Suppose that we are to publish a relational table T that contains d attributes
A1, A2, . . . , Ad, each of which is discrete and ordered. We define n as the number of
tuples in T , and m as the size of the multi-dimensional domain on which T is defined,
i.e., m =

∏d
i=1 |Ai|.

To releaseT under ε-differential privacy, we can first transformT into a d-dimensional
frequency matrix M with m entries, such that (i) the i-th (i ∈ [1, d]) dimension of
M is indexed by the values of Ai, and (ii) the entry in M with a coordinate vector
〈x1, x2, . . . , xd〉 stores the number of tuples t in T such that t = 〈x1, x2, . . . , xd〉. (Note:
M can be regarded as the lowest level of the data cube of T .)

Notice that if we modify a tuple in T , then (i) at most two entries in the frequency
matrix M will change, and (ii) each of those two entries will change by 1. Therefore,
if we regard M as the output of a function, then by Definition 2, the sensitivity of the
function equals 2. Hence, using the Laplace mechanism, we can ensure ε-differential
privacy by adding Laplace noise Lap(2/ε) into each entry of M .

The above noise injection approach is simple, but it fails to provide accurate results
for aggregate queries. Specifically, if we answer a range-count query using a noisy fre-
quency matrix M∗ generated with the aforementioned approach, then the noise in the
query result has a variance Θ(m/ε2) in the worst case. This is because (i) each en-
try in M∗ has a noise variance 8/ε2 (by the pdf of Lap(2/ε)), and (ii) a range-count
query may cover up to m entries in M∗. Note that m is typically an enormous num-
ber, as practical datasets often contain multiple attributes with large domains. Hence,
a Θ(m/ε2) noise variance can render the query result meaningless, especially when
the original result is small. In Section 4, we address this problem by utilizing wavelet
transforms [5, 15].

4 Differential Privacy via Wavelets

This section introduces Privelet (privacy preserving wavelet), a data publishing tech-
nique that not only ensures ε-differential privacy, but also provides accurate results for
all range-count queries. In particular, Privelet guarantees that any range-count query

28 X. Xiao

Fig. 2. One-Dimensional Haar Wavelet Transform

can be answered with a noise whose variance is polylogarithmic in m. This signifi-
cantly improves over the O(m) noise variance bound provided by the first-cut solution
in Section 3.

Overview. At a high level, Privelet works in two steps as follows. First, it derives the
frequency matrix M of the input table T , and then applies a wavelet transform on the
frequency matrix M . Generally speaking, a wavelet transform is an invertible linear
function, i.e., it maps M to another matrix C, such that (i) each entry in C is a linear
combination of the entries in M , and (ii) M can be losslessly reconstructed from C.
The entries in C are referred to as the wavelet coefficients. Second, Privelet adds an in-
dependent Laplace noise to each wavelet coefficient in a way that ensures ε-differential
privacy. This results in a new matrix C∗ with noisy coefficients. Finally, Privelet maps
C∗ back to a noisy frequency matrix M∗, which is returned as the output.

In the following, we clarify the details of Privelet. We first focus on the case when
T has only one attribute (i.e., M is a one-dimensional matrix), and introduce the one-
dimensional Haar wavelet transform (HWT). After that, we explain how this wavelet
transform can be incorporated in Privelet. Finally, we clarify how our solution can be
extended to the case when T is multi-dimensional.

One-Dimensional HWT. For ease of exposition, we assume that the number m of
entries in M equals 2l (l ∈ N) – this can be ensured by inserting dummy values into
M [15]. Given M , the one-dimensional HWT converts it into 2l wavelet coefficients as
follows. First, it constructs a full binary tree R with 2l leaves, such that the i-th leaf of
R equals the i-th entry in M (i ∈ [1, 2l]). It then generates a wavelet coefficient c for
each internal node N in R, such that c = (a1 − a2)/2, where a1 (a2) is the average
value of the leaves in the left (right) subtree of N . After all internal nodes in R are
processed, an additional coefficient (referred to as the base coefficient) is produced by
taking the mean of all leaves in R. For convenience, we refer to R as the decomposition
tree of M , and slightly abuse notation by not distinguishing between an internal node
in R and the wavelet coefficient generated for the node.

Example 1. Figure 2 illustrates an HWT on a one-dimensional frequency matrix M
with 8 entries v1, . . . , v8. Each number in a circle (square) shows the value of a wavelet
coefficient (an entry in M). The base coefficient c0 equals the mean 5.5 of the entries
in M . The coefficient c1 has a value −0.5, because (i) the average value of the leaves
in its left (right) subtree equals 5 (6), and (ii) (5− 6)/2 = −0.5. �

Differentially Private Data Release 29

Given the Haar wavelet coefficients of M , any entry v in M can be easily recon-
structed. Let c0 be the base coefficient, and ci (i ∈ [1, l]) be the ancestor of v at level i
of the decomposition tree R (we regard the root of R as level 1). We have

v = c0 +

l∑

i=1

(gi · ci) , (2)

where gi equals 1 (−1) if v is in the left (right) subtree of ci.

Example 2. In the decomposition tree in Figure 2, the leaf v2 has three ancestors c1 =
−0.5, c2 = 1, and c4 = 3. Note that v2 is in the right (left) subtree of c4 (c1 and c2),
and the base coefficient c0 equals 5.5. We have v2 = 3 = c0 + c1 + c2 − c4. �

Privelet with 1D HWT. Privelet with the one-dimensional HWT follows the three-step
paradigm mentioned previously. Given a parameter λ and a table T with a single or-
dinal attribute, Privelet first computes the Haar wavelet coefficients of the frequency
matrix M of T . It then adds to each coefficient c a random Laplace noise with magni-
tude λ/WHaar(c), where WHaar is a weight function defined as follows: For the base
coefficient c, WHaar(c) = m; for a coefficient ci at level i of the decomposition tree,
WHaar(ci) = 2l−i+1. For example, given the wavelet coefficients in Figure 2, WHaar

would assign weights 8, 8, 4, 2 to c0, c1, c2, and c4, respectively. After the noisy wavelet
coefficients are computed, Privelet converts them back to a noisy frequency matrix M∗

based on Equation 2, and then terminates by returning M∗.
By the properties of the Laplace mechanism [8], it can be proved that the above

version of Privelet ensures ε-differential privacy with ε = 2(1 + log2 m)/λ, where
λ is the input parameter [17]. In addition, it also provides strong utility guarantee for
range-count queries, as shown in the following lemma.

Lemma 1 ([17]). Let C be a set of one-dimensional Haar wavelet coefficients such
that each coefficient c ∈ C is injected independent noise with a variance at most
(σ/WHaar(c))

2. Let M∗ be the noisy frequency matrix reconstructed from C. For any
range-count query answered using M∗, the variance of noise in the answer is at most
(2 + log2 |M∗|)/2 · σ2.

By Lemma 1, Privelet achieves ε-differential privacy while ensuring that the result
of any range-count query has a noise variance bounded by

(2 + log2 m) · (2 + 2 log2 m)2/ε2 = O
(
(log2 m)3/ε2

)
(3)

In contrast, under the same privacy requirement, the first-cut solution in Section 3 incurs
a noise variance of O(m/ε2) in query answers.

Finally, we point out that Privelet with the one-dimensional HWT has an O(n+m)
time complexity for construction. This follows from the facts that (i) mapping T to M
takes O(m+n) time, (ii) convertingM to and from the Haar wavelet coefficients incur
O(m) overhead [15], and (iii) adding Laplace noise to the coefficients takes O(m) time.

Extension to Multi-dimensional Datasets. For the case when M is a multi-
dimensional matrix, we apply the multi-dimensional Haar wavelet transform [15] on

30 X. Xiao

M , and then inject noise into the wavelet coefficients in a manner similar to the one-
dimensional case [17]. After that, we obtain a noisy matrix M∗ from the noisy coef-
ficients, by applying the inverse multi-dimensional Haar wavelet transform. It can be
proved that, by any range-count query answered using M∗, its noise variance is at most
O((logm)d/ε2). In addition, the time complexity of the solution is O(n+m).

5 Differential Privacy via Bayesian Networks

The Privelet approach in Section 4 suffers from the curse of dimensionality. In particu-
lar, it requires converting the input table T into a frequency matrix M whose number of
entries is exponential to the number d of attributes in T – this incurs prohibitive over-
heads even when d is moderate. In addition, its noise variance bound (for range-count
query results) is O((logm)d/ε2), which also increases exponentially with d. In fact,
these deficiencies are not unique to Privelet: most existing techniques for differentially
private data publishing require materializingM , and they provide poor data utility when
d is large.

We propose to circumvent the curse of dimensionality as follows: We first approxi-
mate the high-dimensional data distribution in T with a set of low-dimensional distribu-
tions, and then inject noise into the low-dimensional distributions for privacy protection;
after that, we use the modified distributions to reconstruct a high-dimensional dataset
T ∗, and then publish T ∗. This approach improves data utility since it performs noise in-
jection on low-dimensional data (instead of T), which is much less susceptible to noise
injection. The core of our approach is an algorithm that utilizes Bayesian networks [10]
to obtain low-dimensional approximations of high-dimensional data. In the following,
we first introduce Bayesian networks, and then clarify our approach.

Bayesian Networks. Let A be the set of attributes in T , and d be the size of A. A
Bayesian network on A is a way to compactly describe the (probability) distribution of
the attributes in terms of other attributes. Formally, a Bayesian network is a directed
acyclic graph (DAG) that (i) represents each attribute in A as a node, and (ii) models
conditional independence among attributes in A using directed edges. As an example,
Figure 3 shows a Bayesian network over a set A of five attributes, namely, age, educa-
tion, workclass, title, and income. For any two attributes X,Y ∈ A, there exist three
possibilities for the relationship between X and Y :

Case 1: Direct Dependence. There is an edge between X and Y , say, from Y to X .
This indicates that for any tuple in T , its distribution on X is determined (in part) by its
value on Y . We define Y as a parent of X , and refer to the set of all parents of X as its
parent set. For example, in Figure 3, the edge from workclass to income indicates that
the income distribution depends on the type of job (and also on title).

Case 2: Weak Conditional Independence. There is a path (but no edge) between Y and
X . Assume without loss of generality that the path goes from Y to X . Then, X and Y
are conditionally independent given X’s parent set. For instance, in Figure 3, there is
a two-hop path from age to income, and the parent set of income is {workclass, title}.
This indicates that, given workclass and job title of an individual, her income and age
are conditionally independent.

Differentially Private Data Release 31

Fig. 3. A Bayesian network N1 over five attributes

Table 1. The attribute-parent pairs in N1

i Xi Πi

1 age ∅
2 education {age}
3 workclass {age}
4 title {age, education, workclass}
5 income {workclass, title}

Case 3: Strong Conditional Independence. There is no path between Y and X . Then,
X and Y are conditionally independent given any of X’s and Y ’s parent sets.

Formally, a Bayesian network N over A is defined as a set of d attribute-parent (AP)
pairs, (X1, Π1), . . . , (Xd, Πd), such that

1. Each Xi is a unique attribute in A;
2. Each Πi is a subset of the attributes in A \ {Xi}. We say that Πi is the parent set of
Xi in N ;
3. For any 1 ≤ i < j ≤ d, we have Xj /∈ Πi , i.e., there is no edge from Xj to Xi in
N . This ensures that the network is acyclic, namely, it is a DAG.

We define the degree of N as the maximum size of any parent set Πi in N . For
example, Table 1 shows the AP pairs in the Bayesian network N1 in Figure 3; N1’s
degree equals 3, since the parent set of any attribute in N1 has a size at most three.

Let Pr[A] denote the full distribution of tuples in database T . The d AP pairs
in N essentially define a way to approximate Pr[A] with d conditional distributions
Pr[X1 | Π1],Pr[X2 | Π2], . . . ,Pr[Xd | Πd]. In particular, under the assumption that
any Xi and any Xj /∈ Πi are conditionally independent given Πi, we have

Pr[A] = Pr[X1, X2, . . . , Xd]

= Pr[X1] · Pr[X2 | X1] · Pr[X3 | X1, X2] . . .Pr[Xd | X1, . . . Xd−1]

=

d∏

i=1

Pr[Xi | Πi]. (4)

Let PrN [A] =
∏d

i=1 Pr[Xi | Πi] be the above approximation of Pr[A] defined by
N . Intuitively, if N accurately captures the conditional independence among the at-
tributes in A, then PrN [A] would be a good approximation of Pr[A]. In addition, if the
degree of N is small, then the computation of PrN [A] is relatively simple as it requires

32 X. Xiao

only d low-dimensional distributions Pr[X1 | Π1],Pr[X2 | Π2], . . . ,Pr[Xd | Πd].
Low-degree Bayesian networks are the core of our solution to release high-dimensional
data.

Solution Overview. Our solution for releasing a high-dimensional data T under ε-
differential privacy, dubbed PrivBayes, runs in three phases:

1. Construct a k-degree Bayesian network N over the attributes in T , using an (ε/2)-
differentially private method. (k is a small value that can be chosen automatically by
PrivBayes.)
2. Use an (ε/2)-differentially private algorithm to generate a set of conditional distribu-
tions of T , such that for each AP pair (Xi, Πi) in N , we have a noisy version of the con-
ditional distribution Pr[Xi | Πi]. (We denote this noisy distribution as Pr∗[Xi | Πi].)
3. Use the Bayesian network N (constructed in the first phase) and the d noisy condi-
tional distributions (constructed in the second phase) to derive an approximate distri-
bution of the tuples in T , and then sample tuples from the approximate distribution to
generate a synthetic dataset T ∗.

In short, PrivBayes utilizes a low-degree Bayesian network N to generate a synthetic
dataset T ∗ that approximates the high dimensional input data T . The construction of
N is highly non-trivial, as it requires carefully selecting AP pairs and the value of k
to derive a close approximation of T without violating differential privacy. Interested
readers are refer to [18] for the details of the algorithm for PrivBayes’s first phase. In
the following, we provide the details of the second and third phases of PrivBayes.

Generation of Noisy Conditional Distributions. Suppose that we are given a k-degree
Bayesian network N . To construct the approximate distribution PrN [A], we need d
conditional distributions Pr[Xi | Πi] (i ∈ [1, d]), as shown in Equation (4). Algo-
rithm 1 illustrates how the distributions specified by our algorithm can be derived in a
differentially private manner. In particular, for any i ∈ [k + 1, d], the algorithm first
materializes the joint distribution Pr[Xi, Πi] (Line 3), and then injects Laplace noise
into Pr[Xi, Πi] to obtain a noisy distribution Pr∗[Xi, Πi] (Line 4-5). To enforce the
fact that these are probability distributions, all negative numbers in Pr∗[Xi, Πi] are set
to zero, then all values are normalized to maintain a total probability mass of 1 (Line
5). After that, based on Pr∗[Xi, Πi], the algorithm derives a noisy version of the con-
ditional distribution Pr[Xi | Πi], denoted as Pr∗[Xi | Πi] (Line 6). The scale of the
Laplace noise added to Pr[Xi, Πi] is set to 4(d − k)/nε, which ensures that the gen-
eration of Pr∗[Xi, Πi] satisfies (ε/2(d− k))-differential privacy, since Pr[Xi, Πi] has
sensitivity 2/n. Meanwhile, the derivation of Pr∗[Xi | Πi] from Pr∗[Xi, Πi] does not
incur any privacy cost, as it only relies on Pr∗[Xi, Πi] instead of the input data T .

Overall, Lines 2-6 of Algorithm 1 construct (d − k) noisy conditional distributions
Pr∗[Xi | Πi] (i ∈ [k + 1, d]), and they satisfy (ε/2)-differential privacy, since each
Pr∗[Xi | Πi] is (ε/2(d− k))-differentially private. This is due to the composability
property of differential privacy [6]. In particular, composability indicates that when a set
of k algorithms satisfy differential privacy with parameters ε1, ε2, . . . , εk, respectively,
the set of algorithms as a whole satisfies (

∑
i εi)-differential privacy.

Differentially Private Data Release 33

Algorithm 1. NoisyConditionals (T , N , k): returns P∗

1: Initialize P∗ = ∅
2: for i = k + 1 to d do
3: Materialize the joint distribution Pr[Xi,Πi]

4: Generate differentially private Pr∗[Xi,Πi] by adding Laplace noise Lap
(

4·(d−k)
n·ε

)

5: Set negative values in Pr∗[Xi,Πi] to 0 and normalize;
6: Derive Pr∗[Xi | Πi] from Pr∗[Xi,Πi]; add it to P∗

7: for i = 1 to k do
8: Derive Pr∗[Xi | Πi] from Pr∗[Xk+1,Πk+1]; add it to P∗

9: return P∗

After Pr∗[Xk+1 | Πk+1], . . . ,Pr
∗[Xd | Πd] are constructed, Algorithm 1 proceeds

to generatePr∗[Xi | Πi] (i ∈ [1, k]). This generation, however, does not require any ad-
ditional information from the input data T . Instead, we derive Pr∗[Xi | Πi] (i ∈ [1, k])
directly from Pr∗[Xk+1, Πk+1], which has been computed in Lines 2-7 of Algorithm 1.
Such derivation is feasible, since our algorithm [18] for constructing the Bayesian net-
work N ensures that Xi ∈ Πk+1 and Πi ⊂ Πk+1 for any i ∈ [1, k]. Since each
Pr∗[Xi | Πi] (i ∈ [1, k]) is derived from Pr∗[Xk+1, Πk+1] without inspecting T , the
construction of Pr∗[Xi | Πi] does not incur any privacy overhead. Therefore, Algo-
rithm 1 as a whole is (ε/2)-differentially private. Example 3 illustrates Algorithm 1.

Example 3. Suppose that we are given a 2-degree Bayesian network N over a
set of four attributes {A,B,C,D}, with 4 AP pairs: (A, ∅), (B, {A}), (C, {A,B}),
and (D, {A,C}). Given N , Algorithm 1 constructs two noisy joint distributions
Pr∗[A,B,C] and Pr∗[A,C,D]. Based on Pr∗[A,C,D], Algorithm 1 derives a noisy
conditional distribution Pr∗[D | A,C]. In addition, the algorithm uses Pr∗[A,B,C]
to derive three other conditional distributions Pr∗[A], Pr∗[B | A], and Pr∗[C | A,B].
Given these four conditional distributions, the input tuple distribution is approximated
as

Pr∗N [A,B,C,D] = Pr∗[A] · Pr∗[B | A] · Pr∗[C | A,B] · Pr∗[D | A,C].

Generation of Synthetic Data. Even with the simple closed-form expression in Equa-
tion 4, it is still time and space consuming to directly sample from Pr∗N [A] by comput-
ing the probability for each element in the domain of A. Fortunately, the Bayesian
network N provides a means to perform sampling efficiently without materializing
Pr∗N [A]. As shown in Equation 4, we can sample each Xi from the conditional distri-
bution Pr∗[Xi | Πi] independently, without considering any attribute not in Πi∪{Xi}.
Furthermore, the properties of N ensure that Xj /∈ Πi for any j > i. Therefore, if we
sample Xi (i ∈ [1, d]) in increasing order of i, then by the time Xj (j ∈ [2, d]) is to be
sampled, we must have sampled all attributes in Πj , i.e., we will be able to sample Xj

from Pr∗[Xj | Πj] given the previously sampled attributes. That is to say, the sampling
of Xj does not require the full distribution Pr∗N [A].

With the above sampling approach, we can generate an arbitrary number of tuples
from Pr∗N [A] to construct a synthetic database T ∗. In this paper, we consider the size
of T ∗ is set to n, i.e., the same as the number of tuples in the input data T .

34 X. Xiao

Privacy Guarantee. The correctness of PrivBayes directly follows the composabil-
ity property of differential privacy [6]. In particular, the first and second phases of
PrivBayes require direct access to the input database, and each of them consumes ε/2
privacy budget. No access to the original database is invoked during the third (sam-
pling) phase. The results of first two steps, i.e., the Bayesian network N and the set
of noisy conditional distributions, are sufficient to generate the synthetic database T ∗.
Therefore, we have the following theorem.

Theorem 1 ([18]). PrivBayes satisfies ε-differential privacy.

6 Conclusion

This paper reviews the concept of differential privacy as well as two methods, Privelet
and PrivBayes, for improving utility in differentially private data publishing. Privelet
utilizes wavelet transforms to ensure that any range-count query can be answered with
noise variance that is polylogarithmic to the size of the input data domain. Meanwhile,
PrivBayes employs Bayesian networks to publish high-dimensional datasets without
incurring prohibitive computation overheads or excessive noise injection.

References

1. Sarwate, A.D., Chaudhuri, K.: Signal processing and machine learning with differential pri-
vacy: theory, algorithms, and challenges (September 2013)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography, pp. 181–190 (2007)

3. Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749. New York Times,
August 9 (2006)

4. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You might also
like:” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy,
pp. 231–246 (2011)

5. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query processing
using wavelets 10(2-3), 199–223 (2001)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

7. Dwork, C.: Differential privacy in new settings. In: SODA, pp. 174–183 (2010)
8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private

data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

9. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of
recent developments. ACM Comput. Surv. 42(4) (2010)

10. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press (2009)

11. Narayanan, A., Paskov, H., Gong, N.Z., Bethencourt, J., Stefanov, E., Shin, E.C.R., Song, D.:
On the feasibility of internet-scale author identification. In: IEEE Symposium on Security
and Privacy, pp. 300–314 (2012)

12. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE
Symposium on Security and Privacy, pp. 111–125 (2008)

Differentially Private Data Release 35

13. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: IEEE Symposium on
Security and Privacy, pp. 173–187 (2009)

14. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: using social network as a side-
channel. In: ACM Conference on Computer and Communications Security, pp. 628–637
(2012)

15. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and ap-
plications. Morgan Kaufmann Publishers Inc. (1996)

16. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

17. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. TKDE 23(8),
1200–1214 (2011)

18. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data
release via bayesian networks. In: SIGMOD (2014)

	Differentially Private Data Release: Improving Utility with Wavelets and Bayesian Networks
	1 Introduction
	2 Differential Privacy
	3 Differentially Private Data Publishing: A First-Cut Solution
	4 Differential Privacy via Wavelets
	5 Differential Privacy via Bayesian Networks
	6 Conclusion
	References

