

L. Chen et al. (Eds.): APWeb 2014, LNCS 8709, pp. 153–164, 2014.
© Springer International Publishing Switzerland 2014

Sharing-Aware Scheduling of Web Services*

Junyan Jiang1, Zhiyong Peng1, Xiaoying Wu2,** and Nan Liang1

1 Computer School, Wuhan University, China
{Jiangjy,peng}@whu.edu.cn, Ln9312@gmail.com

2 State Key Laboratory of Software Engineering, Wuhan University, China
xiaoying.wu@whu.edu.cn

Abstract. The increasing and widespread use of web services, usually represented
by database queries, is putting a strain on web database systems behind them. In
such systems web services are associated with soft-deadlines, and the success of
these systems (i.e., the user satisfaction) is better measured in terms of minimizing
the deviation from the deadline, that is, tardiness. Previous work on query sche-
duling focused on ordering the execution of independent queries while ignoring
the commonality among queries, such that a same work will be computed mul-
tiple times which can impact user satisfaction negatively. This paper proposes a
new query scheduling framework which incorporates semantic caching techniques
into the query scheduling procedure. We develop a query splitting-based strategy
to discover common sub-expressions among queries and design a sharing-aware
query scheduling algorithm GASA which minimizes average tardiness while
reducing redundant work at the same time. We experimentally compare our ap-
proach with state-of-the-art methods on TPC-H workloads. Our experimental
results show that our method can efficiently and effectively minimize average tar-
diness of a large number of data service requests.

Keywords: web services, query scheduling, semantic caching.

1 Introduction

The increasing and widespread use of web service is putting a strain on web databases
systems behind them. These web services need to support SQL-style queries from
form-based interface for strategic decision making in industries as varied as travel
reservation, financial, insurance or even social networking. With the number of inter-
net users and web services increasing, these systems are faced with loads that often
involve hundreds or thousands of queries submitted at the same time [1]. In such
highly interactive applications, user satisfaction or positive experience determines
their success. Therefore it’s crucial for such systems to prioritize execution of services
as needed in order to keep users satisfied under varying workloads.

* This work is supported by National Natural Science Foundation of China under Grant

No.61202035 and No. 61232002.
** Corresponding author.

154 J. Jiang et al.

One way to quantify a user’s satisfaction is to associate a service/query with a soft-
deadline which defines an upper bound (i.e. deadline) on the latency perceived by the
end user accessing the results. The assigned deadline is a mapping from the service
level agreements (SLAs) provided by the service provider to the end user. Hence,
the success of the system (i.e., the user satisfaction) is better measured in terms of
minimizing the deviation from the deadline, that is, tardiness.

Previous work [4, 9, 10, 11, 12, 13] on query scheduling focused on ordering of the
execution of independent queries while ignoring the commonality among queries. As
a result, a same work will be computed multiple times which negatively impacts user
satisfaction. Lots of techniques such as multi-query optimization [2] and semantic
caching [3] can discover the query relevance by identifying commonality among que-
ries and make use of intermediate results during the query execution to answer rele-
vant queries. In this paper we propose a new query scheduling framework which takes
into account of semantic caching techniques to improve user satisfaction. The intui-
tion is that reducing evaluation cost of queries can help the minimization of tardiness
of queries. Appropriately incorporating semantic caching into traditional scheduling
methods brings us the following two challenges: First, we need a mechanism to model
query relevance and develop a strategy to discover commonality among queries;
second, we need to assess the impact of local query optimization on the global query
scheduling. The following example illustrates the problem of traditional query sche-
duling method and the sharing opportunities among queries that can be exploited to
minimize average tardiness.

Fig. 1. (a) Query Examples; (b) Scheduling Example

EXAMPLE 1 . Consider three queries ܥ ,ܤ ,ܣ shown in figure 1(a), each query
has a arrival time, a deadline, and a processing time. By EDF (Earliest Deadline First)
strategy [16] we’ll run query ܣ first followed by ܤ and ܥ in that order. In this case, ܥ will miss its deadline (see figure 1(b). However we can analyze the three queries
and discover their commonalities. For example, the common sub-expressions between ܣ and ܥ are: “o_orderdata<’1995-07-01’” and “c_nation>10 and c_nation <15”.
We need to compute the common sub-expressions only once and cache their results.

 Sharing-Aware Scheduling of Web Services 155

The cached results can be used to evaluate ܥ. This way, the evaluation cost of ܥ is
minimized and the tardiness of these three queries becomes 0.

Contributions. The main contributions of our paper are the followings:

• We propose a sharing-aware approach for query scheduling which exploits com-
monalities among queries.

• We develop a mechanism to model query relevance and design a strategy to dis-
cover commonalities among queries.

• We design a sharing-aware query scheduling algorithm GASA which minimizes
average tardiness while reducing redundant work at the same time.

• We run extensive experiments to verify the efficiency and effectiveness of our
proposed approach.

• To the best of our knowledge, our paper is the first one that combines classical
query scheduling algorithms with semantic caching techniques.

Paper Organization. The rest of this paper is organized as follows: Section 2
presents related work. In Section 3, we describe preliminaries and our proposed prob-
lem. Section 4 illustrates our approach, and Section 5 presents the experiment. In
Section 6 we discuss the conclusions.

2 Related Work

In this section, we introduce background information, including semantic caching and
query scheduling. To our knowledge, no prior work considers both semantic caching
and query scheduling in web databases system.

2.1 Semantic Caching

There are some related works on Semantic Caching. In a client-server system, a cache
may be employed at the client-side in order to reduce the communication cost and
improve query response time. A cache located at a client can only serve queries from
the client itself, not from other clients. Such a cache is only beneficial for a query-
intensive user. All techniques in this category adopt the dynamic caching approach.
Semantic caching [3, 5] is a client-side caching model that associates cached results
with valid ranges. Upon receiving a query ܳ, the relevant results in the cache are
reported. A sub-query ܳ଴ is constructed from ܳ such that ܳ଴ covers the query re-
gion that cannot be answered by the cache. The sub-query ܳ଴ is then forwarded to
the server in order to obtain the missing results of ܳ. Dar et al. [6] focuses on seman-
tic caching of relational datasets. As an example, we assume that the dataset stores the
age of each employee and that the cache contains the result of the query “find em-
ployees with age below 30.” Now we assume that the client issues a query ܳ “find
employees with age between 20 and 40.” First, the employees with age between 20
and 30 can be obtained from the cache. Then, a sub-query ܳ଴ “find employees with
age between 30 and 40” is submitted to the server for retrieving the remaining results.

156 J. Jiang et al.

The difference between our work and semantic cache is that we exploit intermediate
results among queries while semantic cache reason queries based on pre-computed
query results.

2.2 Query Scheduling

Scheduling is a well-studied research topic and is ubiquitous in many applications [7].
When per-query scheduling decisions are made where each query has a known
execution time and deadlines, most problem instances become NP-complete [8].
Furthermore, the situation is not improved when the hard dead-lines are replaced by
minimization of the number of deadline violations [9]. Therefore, most scheduling
algorithms adopt certain heuristics. One family of such algorithms is cost-aware or
value-based scheduling algorithms. In these algorithms, the decisions on scheduling
are made so that certain costs are optimized. The costs could be defined in different
ways: they could be fixed or time-varying values assigned to different queries [10,
11]; they could be about other metrics such as fairness [12] and result quality [13]. On
minimizing average tardiness, [4] proposed an approach ASETS* efficiently mini-
mizes query’s tardiness integrating EDF and HDF/SRPT which highly relates our
objective, the intuition is: at a given time t, we divide queries into two list, EDF list
for those queries that can be finished before deadline and sorted by its deadline, and
another list (SRPT) for queries that can’t be finished before deadline sorted by its
processing time. Each time we either (i) choose the first query from the EDF list or
(ii) choose the first query from the SRPT list, the criterion to choose which query first
is based on the impact of which order incurs less tardiness. However, none of these
works considered sharing among queries during scheduling.

3 Preliminaries and Problem

In this section, we’ll provide the query model and describe the system architecture.
Finally we’ll formally define our problem.

The query model is SQL queries associated with soft-deadline. We assume that a
database D is given as a set of relations {ܴଵ, ܴଶ, ڮ , ܴ௡}, each relation defined on a
set of attributes. The expression of a SQL query only includes selection predicates
which are called tasks. Given the query expression, we next define a partial order on
tasks, including implication and satisfiability which characterize query relevance.

Definition 3.1(Query Relevance): We define query relevance in terms of query pre-
dicate implication and query satisfiability.

• Query Implication: A task ܽݐ௜ implies task ݐ ௝ܽሺܽݐ௜ ֜ ݐ ௝ܽሻ iff ܽݐ௜ is a conjunc-
tion of selection predicates on attributes ܣଵ, ܣଶ, ܣଷ,ܣ ,ڮ௞ of some relation R, and ݐ ௝ܽ is a conjunction of selection predicates on the same relation R and on attributes ܣଵ,ܣ ,ڮ௟ with l ൑ ݇, and it is the case that for any instance of the relation R the
result of evaluating ܽݐ௜ is a subset of the result of evaluating ݐ ௝ܽ.

• Query Satisfiaiblity: We call ܽݐ௜ ר ݐ ௝ܽ is satisfiable, if that part of ܽݐ௜’s answer is
contained in ݐ ௝ܽ.

 Sharing-Aware Scheduling of Web Services 157

ia

iQ
id

if

ip is
iT

Query

DataBase

SQL Compiler

Common Sub-
Queries Detector

Query
Scheduler

Cache
Manager

Fig. 2. Query Characteristics Fig. 3. System Architecture

Definition 3.2: We define the characteristics of a query to be (see Fig.2):

• Arrival Time (ܽ௜): The time when ௜ܳ has arrived at the database system.
• Deadline (݀௜): The ideal time by which ௜ܳ should finish execution.
• Processing Time (݌௜): The processing time needed to execute ௜ܳ . We assume that

if caching or materialization is utilized for fragments, then ௜ܳ’s processing time is
adjusted accordingly.

• Slack Time (ݏ௜): The slack time of Query ௜ܳ is the amount of time ௜ܳ can take to
finish after the deadline ݀௜. If the query cannot finish before the deadline then the
slack time of query ௜ܳ is 0.

• Tardiness (ܶሺ ௜ܳሻ): The tardiness of a query ௜ܳ is the extra amount of time ௜ܳ can
take to finish after the deadline ݀௜. Specifically, at any beginning time ݐ, ܶሺ ௜ܳሻ ൌ

,ax(0m)i idf − ,where ti if p= + is the actual completion time. Obviously, if the

query is completed before the deadline, the tardiness of query Q୧ is 0, otherwise
the tardiness is larger than 0.
Given a set of queries, from the optimizer of the underlying database system, we

can obtain the optimal plan of each query. From these plans, we can identify common
sub-expressions among queries. Based on the common sub-expressions, a query can
be split into two parts. One part is the common sub-expressions and the other is the
non-common sub-expressions. Formally we provide a notion of query splitting as
follows:
Definition 3.3(Query Splitting): Given two queries ௜ܳ and ܳ௝ , query splitting is the
process of reducing the overlapped part of the two queries. Each query contains two
parts: common sub-expression (we also call sub-queries) and non- common sub-
expression. The overlapped part of queries (common sub-expression) is ܥ௜,௝ሺܳ௝, ܳ௝ሻ
(we may also use ܥ௜,௝ for simplicity) and the non-common sub-expressions of ௜ܳ and ܳ௝ are correspondingly ௜ܰ,௝ and ௝ܰ,௜ . Note that if ܥ௜,௝ dose not exist, then ௜ܰ,௝
equals to ௜ܳ and ௝ܰ,௜ equals to ܳ௝ . The splitting strategies are presented in section
4.1. Once the query ௜ܳ is split with Query ܳ௝ , then the tardiness of the query ௜ܳ is ܶሺ ௜ܳሻ ൌ max ሺܶ൫ܥ௜,௝൯, ܶሺ ௜ܰ,௝ሻሻ
Definition 3.4(Query Processing Time Savings): Given two queries ௜ܳ and ܳ௝ ,
the query processing time saving is the extra time after the query splitting process.

158 J. Jiang et al.

Specifically we have ௜ܵ,௝ ൌ S൫ ௜ܳ , ܳ௝൯ ൌ max ሺ0, ሺ݌ ௜ܳሻ ൅ ൫ܳ௝൯݌ െ ௜,௝൯ܥ൫݌ െ ൫݌ ௜ܰ,௝൯ െ݌൫ ௝ܰ,௜൯ሻ, evidently we only do those splitting which yield positive savings among
queries while excluding negative ones.

3.1 System Architecture

The system architecture is shown in Fig.3. It consists of three modules including
Common Sub-Expressions Detector, Cache Manager and Query Scheduler. The
Common Sub-Queries Detector finds all the common sub-expressions among queries.
The Cache Manger decides which query results to be cached into or be discarded
from memory. The Query Scheduler utilizes several scheduling strategies to schedule
queries to minimize the average tardiness. The three modules work on top of a
database system.

3.2 Problem Statement

Next we define the query scheduling problem. Given a set of queries with the charac-
teristics defined above where common sub-expressions can be identified among the
queries, we find an order to execute the queries with the goal of minimizing the aver-
age tardiness while reducing redundant computations as much as possible. From the
optimizer of the underlying database system, we can obtain the optimal plan of each
query. From these plans, we can identify common sub-expressions among queries.
We need a way to: 1) decide the execution order of queries; 2) select a subset of the
common sub-expressions whose results need to be cached; 3) determine a subset of
the queries which can reuse the cached results. The problem is formally defined as
follows:

(Sharing-Aware Query Scheduling Problem) Given a query set Sത ൌ ሼ ௜ܳ , 1 ൑ i ൑ n}
and their query splitting Strategies ܥ ൌ ሼܥ௜,௝ሽ. Then we want to minimize the average

tardiness
ଵ௡ ∑ ܶሺ ௜ܳሻ୬୧ୀଵ by ordering queries while reducing total query processing time ∑ ௜ܵ,௝௜,௝,௜ஷ௝ as much as possible by caching common sub-queries.

4 Sharing-Aware Scheduling Approach

In this section, we present in detail our approach which explicitly takes into account
the sharing results among queries. At a high level, our approach makes use of the
following insight: we consider the most important possible sharing opportunities
among queries, together with their consequences in terms of average tardiness. First,
we present our method to discover the relevance (i.e. the sub-expressions) among
queries in section 4.1. Next we show our algorithm to schedule queries by reusing the
common sub-expressions’ results in section 4.2.

 Sharing-Aware Scheduling of Web Services 159

4.1 Discovering Common Sub-expressions among Queries

To discover common sub-expressions among queries, we need to determine whether a
given pair of queries is relevant. We first use Table-Indicator to filter those
queries which are definitely irrelevant, then we split queries based on their semantic
relationship.

(a) Table-Indicator
Because most queries don’t contain similar expressions, then we need to a fast filter
with minimal overhead during the scheduling.

Definition 4.1: A table indicator ܶܫொ exists for a selection query ܳ iff ܳ represents
SQL expression. If ܶܫ௦ exists, it’s a triple tuple ܶܫொ= [ܥொ,ܵொ,ܣொ] where

 ,ܳ ொ is the set of output columns in the selection clause ofܥ •
• ܵொ is the set of source tables (or views) in ܳ,
 .ܳ ொ is the set of attributes in the where clause ofܣ •

Using the Table-Indicator, we can quickly detect the relevance of two queries Q୧
and Q୨ by check the following conditions: 1) SQ౟ ൌ SQౠ ;2) CQ౟ ת CQౠ ് ׎ and AQ౟ ת AQౠ ് If Q୧ .׎ and Q୨ satisfy the above two conditions, then we can make

them a group.
(b) Query Splitting
Detecting commonality among queries based on queries’ table indicators, we have
groups whose queries may share common sub-expressions. Then we compute the
common predicates between each two queries using semantic caching method [5].

Suppose query ଵܳ’s task ܽݐொభ ൌ ଵܲ ר ଶܲ ڮ ר ௡ܲ , and ܳଶ’s task ܽݐொమ ൌ ଵܲᇱ ר ଶܲᇱ ڮר ר ௠ܲᇱ (௜ܲ is comparison predicate with the form of “attribute operator value”).
Hence there are three types of relationships between ଵܳ and ܳଶ(see Fig. 4).

Fig. 4. Semantic relation between Query A and B

 The first type (case 1 in Fig.4) is query containment (i.e. implication): ܳଶ’s re-
sult contain ଵܳ’s or vice versa. Suppose ଵܳ is contained by ܳଶ (i.e. ܽݐொభ ொమܽݐ֜ , Cொభ ك Cொమ), we have two splitting strategies: 1) we only evaluate ܳଶ on
database, and caching ܳଶ’s result to evaluate ଵܳ; 2) we reformulate two queries
to sub-expression Cଵ,ଶሺ ଵܳ, ܳଶሻ ൌ ଵܳ and ଵܰ,ଶሺ ଵܳ, ܳଶሻ ൌ ܳଶ ר ൓ ଵܳ.

 The second type (case2-4 in Fig.4) is query overlap: we process query overlap
based on the relationships of query’s output attributes and the range predicate.
Suppose ଵܳ and ܳଶ are overlapped, we have three types of overlapping

160 J. Jiang et al.

relationship:1) vertically overlap (case 2, ܥொభ ك ொమܥ ொభܽݐ , ר ;(ொమis satisfiableܽݐ
2) horizontally overlap (case 3, ܥொభܥځொమ ് ொభܽݐ ,׎ ֜ ொమܽݐ); 3) mixed over-
lap(case 3, ܥொభܥځொమ ് ொభܽݐ ,׎ ר ொమܽݐ is satisfiable). To reduce overlap between
queries, we have three parts: ܥଵ,ଶሺ ଵܳ, ܳଶሻ ൌ ܳଶ ר ଵܳ , ଵܰ,ଶ ൌ ൓ܳଶ ר ଵܳ and ଶܰ,ଵ ൌ ܳଶ ר ൓ ଵܳ.

 The last one (case 5) is no connection between two queries: we have already
processed this type using our table-indicators.

To facilitate our processing of detecting sub-queries, we have the following two
heuristics to pruning the improper ones.
• Heuristics 1(Containment size Check): Given two queries ଵܳ, ܳଶ, and ଵܳ ֜ ܳଶ,

if ݁ݖ݅ݏሺ ଵܳሻ/݁ݖ݅ݏሺܳଶሻ ൏ ߙ) ߙ ൏ 1, here we take size of query as its result size in
memory), then we will not cache ଵܳ’s result, because sharing ଵܳ doesn’t greatly
improve the total performance.

• Heuristics 2(Exclude Sub-expressions With Huge Results): Given two queries ଵܳ
and ܳଶ ௜,௝ܥ , is their common sub-expression, if size൫ܥ௜,௝൯ ൐ ଵܥ (where ܥଵ is
some constant), then we’ll not cache ܥ௜,௝ ’s result, because it doesn’t fit in the
cache.

(c) Estimating Processing Time of Queries
An important aspect of ordering queries is to estimate queries’ processing time which
is orthogonal to our work, and there are two method we can use to estimate it by sam-
pling the database [14] or by machine learning (ML) based method [15].The sampling
method is to sample a small corpus from the original database as an alternative for the
candidate queries. ML-based method is to learn the time from the training dataset.
Considering that querying databases is time-consuming work, we adopt the sampling
method [14] to estimate the query’s processing time due to its efficiency.

4.2 GASA: Greedy Algorithm for Sharing-Aware Scheduling of Web Queries

Before we present the algorithm GASA, we have the following definitions.
The first list, EDF-List, contains all transactions that can still make their deadlines, if
they start execution right now.
Definition 4.2: A query ௜ܳ with deadline ݀௜ is included in EDF-List iff, t ൅ ௜ݎ ൑ ݀௜ ,
where t is the current time.

The second list, SRPT-List, contains all queries that already missed their deadlines.
Definition 4.3: A query ௜ܳ with deadline ݀௜ is included in SRPT-List iff, t ൅ ௜ݎ ൐ ݀௜,
where t is the current time.

The main idea of the algorithm is to pick one query Q1 from the heads of the two
lists and then choose another query Q2 from the remaining queries of the two lists
such that the sharing of the sub-expressions’ results of Q1 and Q2 can maximize
the savings of the total query processing time for Q1 and Q2. We now describe the
algorithm (The pseudo-code of Algorithm 1 is shown in figure 5) in detail as follows.

 Sharing-Aware Scheduling of Web Services 161

Algorithm 1. GASA(܁ത,C)

Input: A set of queries with arrival time, estimated processing time and deadline.
Output: The id of the queries to run until next scheduling point and the id of com-
mon sub-expressions to cache.

1 Begin
2 for all newly arrived queries ௜ܳ do
3 Place ௜ܳ in the appropriate queue (EDF-List or SPRT-List)
4 end for
5 resort EDF-List & resort SRPT-List
6 while(EDF-List !=null and SRPT-List!=null)
7 ଵܳ,ா஽ி ՚Top (EDF-List)
8 ଵܳ,ௌோ௉் ՚Top (SRPT-List)
9 if ݎଵ,ா஽ி ൏ ሺݎଵ,ௌோ௉் െ ܳ ଵ,ா஽ிሻ thenݏ ൌ ଵܳ,ா஽ி
10 else ܳ ൌ ଵܳ,ௌோ௉்
11 end if
12
13 ܵொ ൌ ሼܳ௝|ܳ௝ ് ܳ, ܳ௝ and ܳ is disjointሽ
14 j’=argmaxொೕאௌೂሺݏ݃݊݅ݒܽݏሺQ, Q୨ሻ),)

15 Return Q, run Q and cache ܥሺQ, Q୨’ሻ’s result
16 refresh Q୨’’ expression and re-estimate processing time
17 end while
18 End

Fig. 5. GASA: Greedy Algorithm for Sharing-Aware Scheduling

Step 1: (line 7-11 in figure 5) We consider the impact of tardiness on the total set of
queries, and compare the total tardiness of running ଵܳ,ா஽ி. first and ଵܳ,ௌோ௉் second
with running ଵܳ,ௌோ௉் first and ଵܳ,ா஽ி second, we have that if rଵ,EDF ൏ ሺݎଵ,ௌோ௉் െݏଵ,ா஽ிሻ ,then running ଵܳ,ா஽ி first will achieve lower tardiness, otherwise running ଵܳ,ௌோ௉் will have a lower tardiness. By this checking, we then decide which query to
run first.
Step 2: (line 12-14 in figure 5) To achieve sharing among queries, we need to decide
which queries to share the picked queries’ results. Suppose the picked query in the
first step is ܳ, then we check which subset Sሺܳሻ of queries shares common sub-
expressions with ܳ , and then we pick the query ܳ௝’ out of ܵሺܳሻ as the sharing
query where the processing time saving of ܳ and ܳ௝’ is the maximal one, then we do
splitting between ܳ and ܳ௝’, run query ܳ and cache their common sub-expressions’
result.
Step 3: (line 15 in figure5) We refresh ܳ௝’ after splitting and estimate its processing
time, then return to step 1 until no more queries exist.
GASA needs to be invoked in response to two types of events, the arrival and the
completion of queries. We can use the standard balanced binary search tree as the

162 J. Jiang et al.

priority queue, which requires only a time O(log N) to insert and update the priority
lists. For splitting queries, we need O(N) to find common sub-expressions.

5 Experimental Evaluation

In this section, we describe our experimental settings and report our results.

5.1 Experimental Settings

Our experiments were conducted on the hardware configuration with 4-core 2.90GHz
Intel CPU and 4GB memory running JVM 1.6.0 in Windows 7 Professional and data
were stored in PostgreSQL 9.3.

We tested our method on TPC-H 1 GB databases. We chose 5 variant of TPC-H
template queries without join predicates and aggregate predicates: #1,#4,#5 and #
6.We generated 250 queries, according to a Zipf distribution over the range[1-100]
time units with the default Zipf parameter for skewness (α) set to 0.5 which was
skewed for short queries. We chose 50,100,150,200 queries from the original 250
queries as a workload respectively. Arrival times of queries are assigned according to
a Poisson process. The arrival rate of the Poisson distribution is set to be the rate of
normal processed query number divided by the average query processing time. Each
query is assigned a deadline ݀௜ ൌ ܽ௜ ൅ ௜݌ ൅ ݇௜ כ ௜ where ݇௜݌ is a factor that deter-
mines the ration between the initial slack time of a query and its processing time. ݇௜
is generated uniformly over the range [0.0- ݇௠௔௫], where ݇௠௔௫ is a simulation
parameter with default value of 3.0.

We conduct the comparison in both the sharing and non-sharing cases. In the shar-
ing case GASA is compared with ASETS*, EDF and SRPT [4], and also LS (least
slack), under which the priority is 1/ݏ௜; in the non-sharing case, we compare GASA
with EDF-Sharing, SRPT-Sharing LS-Sharing (which are EDF,SRPT and LS adapted
with our greedy sharing strategies).

The performance of all the approaches is measured in terms of two metrics: (a) av-
erage tardiness which characterizes the total performance of our system, (b) total
processing time savings of the whole workload.

5.2 Experimental Results

• Comparison with Sharing-Nothing Polices

In our first experiment, we measured the average tardiness for the four scheduling
policies mentioned above as the number of queries increases from 0 to 250, with Zipf
parameter α ൌ 0.5 and ݇௠௔௫ ൌ 3.0.

The experiment results for the average tardiness of the 4 scheduling policies on dif-
ferent query workload are shown in Figure 6. As we can see, when the number of que-
ries is small, the system is able to meet most of the deadlines. In this case, the sharing
opportunity for computing queries is small, however GASA still performs a little bit

 Sharing-Aware Scheduling of Web Services 163

better than other policies. As the number of queries increases, the system cannot meet
all the deadlines, whereas the sharing opportunity improves, and GASA substantially
outperforms the other four polices. The maximum improvement by GASA is around
50.6% percent compared with ASETS* when the query number is 250.

Fig. 6. Comparing GASA with state of art scheduling polices

• Comparison with Baseline Sharing Polices

We compare the performance of GASA with EDF-Sharing, SRPT-Sharing and LS-
Sharing. Figure 7 shows the average tardiness comparison and figure 8 shows the
average processing time savings.

In figure 7, GASA outperforms the other three polices in all the cases. LS-Sharing
performs the worst, and the performance of SRPT-Sharing is comparable to GASA
due to the high workload (in which most queries cannot meet their deadlines). In
figure 8, the average processing time savings of all the approaches increase substan-
tially when the number of queries increases from 0 to 50; when the number of queries
is larger than 100, the savings begins to decrease. This can be explained by the fact
that the rate of reduced processing time is smaller than the increasing rate of queries.

 Fig. 7. Comparison of sharing-based polices Fig. 8. Average Processing Time Savings

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

x 10
4

#Number of queries

A
ve

ra
ge

 t
ar

di
ne

ss
(m

ill
is

ec
on

ds
)

GSAS

ASETS*

SRPT
EDF

LS

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

4

#Number of queries

A
ve

ra
ge

 t
ar

di
ne

ss
(m

ill
is

ec
on

ds
)

GSAS

SRPT-Sharing

EDF-Sharing

LS-Sharing

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

#Number of queries

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
S

av
in

g(
m

ill
is

ec
on

ds
)

GSAS

SRPT-Sharing

EDF-Sharing

LS-Sharing

164 J. Jiang et al.

6 Conclusions

In this paper we proposed the problem of sharing-aware scheduling of web services.
We propose a sharing-aware approach for query scheduling which exploits commo-
nalities among queries. We develop a mechanism to model query relevance and de-
sign a strategy to discover commonalities among queries. We design a sharing-aware
query scheduling algorithm GASA which minimizes total tardiness while reducing
redundant work at the same time. We run extensive experiments to verify the effi-
ciency and effectiveness of our proposed approach. To the best of our knowledge,
our paper is the first one that combines classical query scheduling algorithms with
semantic caching techniques.

References

1. Unterbrunner, P.: Elastic, Reliable, and Robust Storage and Query Processing with Cres-
cando /RB. PhD thesis, ETH Zurich (2012)

2. Zhou, J., Larson, P.-A., Freytag, J.C., Lehner, W.: Efficient Exploitation of Similar Subex-
pression for Query Processing. In: Proc. SIGMOD 2007, pp. 533–544 (2007)

3. Chidlovskii, B., Borghoff, U.M.: Semantic Caching of Web Queries. The VLDB Jour-
nal 9(1), 2–17 (2000)

4. Guirguis, S., Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A., Pruhs, K.: Adaptive schedul-
ing of web transactions. In: Proc. ICDE, pp. 357–368 (2009)

5. Ren, Q., Dunham, M.H., Kumar, V.: Semantic Caching and Query Processing. IEEE
Transactions on Knowledge and Data Engineering 15(1), 192–210 (2003)

6. Dar, S.,Franklin, M.J., Þór Jónsson, B., Srivastava, D., Tan, M. : Semantic Data Caching
and Replacement. In Proc. VLDB 1996, pp.330–341(1996).

7. Brucker, P.: Scheduling algorithms, 5th edn. Springer (2007)
8. Ullman, J.D.: Np-complete scheduling problems. J. Computer. Syst. Sci. 10(3), 384–393

(1975)
9. Peha, J.M.: Scheduling and dropping algorithms to support integrated services in packet-

switched networks. PhD thesis, Stanford University (1991)
10. Haritsa, J.R., Carey, M.J., Livny, M.: Value-based scheduling in real-time database sys-

tems. In: Proc. VLDB 1993, pp. 117–152 (1993)
11. Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing Risk and Reward in a Market-Based Task

Service. In: Proc. 13th IEEE Int’l Symp. High Performance Distributed Computing,
pp. 160–169 (2004)

12. Gupta, C., Mehta, A., Wang, S., Dayal, U.: Fair, effective, efficient and differentiated
scheduling in an enterprise data warehouse. In: Proc. EDBT (2009)

13. He, Y., Elnikety, S., Larus, J., Yan, C.: Zeta: Scheduling interactive services with partial
execution. In: Proc. SOCC 2012 (2012)

14. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hakan, H., Naughton, J.F.: Predicting Query Ex-
ecution Time:Are Optimizer Cost Models Really Unusable? In: Proc. ICDE 2013,
pp. 1081–1092 (2013)

15. Malic, T., Rurns, R., Chawla, N.: A Black-Box Approach to Query Cardinality Estimation.
In: Proc. CIDR 2007, pp. 56–67 (2007)

16. Schroeder, B., Harchol-Balter, M.: Web servers under overload: How scheduling can help.
ACM Trans. Inter. Tech. 6(1), 20–52 (2006)

	Sharing-Aware Scheduling of Web Services*
	1 Introduction
	2 Related Work
	2.1 Semantic Caching
	2.2 Query Scheduling

	3 Preliminaries and Problem
	3.1 System Architecture
	3.2 Problem Statement

	4 Sharing-Aware Scheduling Approach
	4.1 Discovering Common Sub-expressions among Queries
	4.2 GASA: Greedy Algorithm for Sharing-Aware Scheduling of Web Queries

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusions
	References

