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Abstract. The increasing and widespread use of web services, usually represented 
by database queries, is putting a strain on web database systems behind them. In 
such systems web services are associated with soft-deadlines, and the success of 
these systems (i.e., the user satisfaction) is better measured in terms of minimizing 
the deviation from the deadline, that is, tardiness. Previous work on query sche-
duling focused on ordering the execution of independent queries while ignoring 
the commonality among queries, such that a same work will be computed mul-
tiple times which can impact user satisfaction negatively. This paper proposes a 
new query scheduling framework which incorporates semantic caching techniques 
into the query scheduling procedure. We develop a query splitting-based strategy 
to discover common sub-expressions among queries and design a sharing-aware 
query scheduling algorithm GASA which minimizes average tardiness while  
reducing redundant work at the same time. We experimentally compare our ap-
proach with state-of-the-art methods on TPC-H workloads. Our experimental  
results show that our method can efficiently and effectively minimize average tar-
diness of a large number of data service requests. 

Keywords: web services, query scheduling, semantic caching. 

1 Introduction 

The increasing and widespread use of web service is putting a strain on web databases 
systems behind them. These web services need to support SQL-style queries from 
form-based interface for strategic decision making in industries as varied as travel 
reservation, financial, insurance or even social networking. With the number of inter-
net users and web services increasing, these systems are faced with loads that often 
involve hundreds or thousands of queries submitted at the same time [1]. In such 
highly interactive applications, user satisfaction or positive experience determines 
their success. Therefore it’s crucial for such systems to prioritize execution of services 
as needed in order to keep users satisfied under varying workloads. 
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One way to quantify a user’s satisfaction is to associate a service/query with a soft-
deadline which defines an upper bound (i.e. deadline) on the latency perceived by the 
end user accessing the results. The assigned deadline is a mapping from the service 
level agreements (SLAs) provided by the service provider to the end user. Hence,  
the success of the system (i.e., the user satisfaction) is better measured in terms of 
minimizing the deviation from the deadline, that is, tardiness. 

Previous work [4, 9, 10, 11, 12, 13] on query scheduling focused on ordering of the 
execution of independent queries while ignoring the commonality among queries. As 
a result, a same work will be computed multiple times which negatively impacts user 
satisfaction. Lots of techniques such as multi-query optimization [2] and semantic 
caching [3] can discover the query relevance by identifying commonality among que-
ries and make use of intermediate results during the query execution to answer rele-
vant queries. In this paper we propose a new query scheduling framework which takes 
into account of semantic caching techniques to improve user satisfaction. The intui-
tion is that reducing evaluation cost of queries can help the minimization of tardiness 
of queries. Appropriately incorporating semantic caching into traditional scheduling 
methods brings us the following two challenges: First, we need a mechanism to model 
query relevance and develop a strategy to discover commonality among queries; 
second, we need to assess the impact of local query optimization on the global query 
scheduling. The following example illustrates the problem of traditional query sche-
duling method and the sharing opportunities among queries that can be exploited to 
minimize average tardiness. 

 

 

Fig. 1. (a) Query Examples; (b) Scheduling Example 

EXAMPLE 1 . Consider three queries ܥ ,ܤ ,ܣ shown in figure 1(a), each query 
has a arrival time, a deadline, and a processing time. By EDF (Earliest Deadline First) 
strategy [16] we’ll run query ܣ first followed by ܤ and ܥ in that order. In this case, ܥ will miss its deadline (see figure 1(b). However we can analyze the three queries 
and discover their commonalities. For example, the common sub-expressions between ܣ  and ܥ  are: “o_orderdata<’1995-07-01’” and “c_nation>10 and c_nation <15”. 
We need to compute the common sub-expressions only once and cache their results. 
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The cached results can be used to evaluate ܥ. This way, the evaluation cost of ܥ is 
minimized and the tardiness of these three queries becomes 0. 

Contributions. The main contributions of our paper are the followings: 

• We propose a sharing-aware approach for query scheduling which exploits com-
monalities among queries. 

• We develop a mechanism to model query relevance and design a strategy to dis-
cover commonalities among queries. 

• We design a sharing-aware query scheduling algorithm GASA which minimizes 
average tardiness while reducing redundant work at the same time. 

• We run extensive experiments to verify the efficiency and effectiveness of our 
proposed approach. 

• To the best of our knowledge, our paper is the first one that combines classical 
query scheduling algorithms with semantic caching techniques. 

Paper Organization. The rest of this paper is organized as follows: Section 2 
presents related work. In Section 3, we describe preliminaries and our proposed prob-
lem. Section 4 illustrates our approach, and Section 5 presents the experiment. In 
Section 6 we discuss the conclusions. 

2 Related Work 

In this section, we introduce background information, including semantic caching and 
query scheduling. To our knowledge, no prior work considers both semantic caching 
and query scheduling in web databases system. 

2.1 Semantic Caching 

There are some related works on Semantic Caching. In a client-server system, a cache 
may be employed at the client-side in order to reduce the communication cost and 
improve query response time. A cache located at a client can only serve queries from 
the client itself, not from other clients. Such a cache is only beneficial for a query-
intensive user. All techniques in this category adopt the dynamic caching approach. 
Semantic caching [3, 5] is a client-side caching model that associates cached results 
with valid ranges. Upon receiving a query ܳ, the relevant results in the cache are 
reported. A sub-query ܳ଴ is constructed from ܳ such that ܳ଴ covers the query re-
gion that cannot be answered by the cache. The sub-query ܳ଴ is then forwarded to 
the server in order to obtain the missing results of ܳ. Dar et al. [6] focuses on seman-
tic caching of relational datasets. As an example, we assume that the dataset stores the 
age of each employee and that the cache contains the result of the query “find em-
ployees with age below 30.” Now we assume that the client issues a query ܳ “find 
employees with age between 20 and 40.” First, the employees with age between 20 
and 30 can be obtained from the cache. Then, a sub-query ܳ଴ “find employees with 
age between 30 and 40” is submitted to the server for retrieving the remaining results. 
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The difference between our work and semantic cache is that we exploit intermediate 
results among queries while semantic cache reason queries based on pre-computed 
query results.  

2.2 Query Scheduling 

Scheduling is a well-studied research topic and is ubiquitous in many applications [7]. 
When per-query scheduling decisions are made where each query has a known  
execution time and deadlines, most problem instances become NP-complete [8].  
Furthermore, the situation is not improved when the hard dead-lines are replaced by 
minimization of the number of deadline violations [9]. Therefore, most scheduling 
algorithms adopt certain heuristics. One family of such algorithms is cost-aware or 
value-based scheduling algorithms. In these algorithms, the decisions on scheduling 
are made so that certain costs are optimized. The costs could be defined in different 
ways: they could be fixed or time-varying values assigned to different queries [10, 
11]; they could be about other metrics such as fairness [12] and result quality [13]. On 
minimizing average tardiness, [4] proposed an approach ASETS* efficiently mini-
mizes query’s tardiness integrating EDF and HDF/SRPT which highly relates our 
objective, the intuition is: at a given time t, we divide queries into two list, EDF list 
for those queries that can be finished before deadline and sorted by its deadline, and 
another list (SRPT) for queries that can’t be finished before deadline sorted by its 
processing time. Each time we either (i) choose the first query from the EDF list or 
(ii) choose the first query from the SRPT list, the criterion to choose which query first 
is based on the impact of which order incurs less tardiness. However, none of these 
works considered sharing among queries during scheduling. 

3 Preliminaries and Problem 

In this section, we’ll provide the query model and describe the system architecture. 
Finally we’ll formally define our problem. 

The query model is SQL queries associated with soft-deadline. We assume that a 
database D is given as a set of relations {ܴଵ, ܴଶ, ڮ , ܴ௡}, each relation defined on a 
set of attributes. The expression of a SQL query only includes selection predicates 
which are called tasks. Given the query expression, we next define a partial order on 
tasks, including implication and satisfiability which characterize query relevance. 

Definition 3.1(Query Relevance): We define query relevance in terms of query pre-
dicate implication and query satisfiability. 

• Query Implication: A task ܽݐ௜  implies task ݐ ௝ܽሺܽݐ௜ ֜ ݐ ௝ܽሻ iff ܽݐ௜  is a conjunc-
tion of selection predicates on attributes ܣଵ, ܣଶ, ܣଷ,ܣ ,ڮ௞ of some relation R, and ݐ ௝ܽ is a conjunction of selection predicates on the same relation R and on attributes ܣଵ,ܣ ,ڮ௟ with l ൑ ݇, and it is the case that for any instance of the relation R the 
result of evaluating ܽݐ௜ is a subset of the result of evaluating ݐ ௝ܽ. 

• Query Satisfiaiblity: We call ܽݐ௜ ר ݐ ௝ܽ is satisfiable, if that part of ܽݐ௜’s answer is 
contained in ݐ ௝ܽ. 
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Fig. 2. Query Characteristics                Fig. 3. System Architecture 
 

Definition 3.2: We define the characteristics of a query to be (see Fig.2): 

• Arrival Time (ܽ௜): The time when ௜ܳ  has arrived at the database system. 
• Deadline (݀௜): The ideal time by which ௜ܳ  should finish execution. 
• Processing Time (݌௜): The processing time needed to execute ௜ܳ . We assume that 

if caching or materialization is utilized for fragments, then ௜ܳ’s processing time is 
adjusted accordingly. 

• Slack Time (ݏ௜): The slack time of Query  ௜ܳ  is the amount of time ௜ܳ  can take to 
finish after the deadline ݀௜. If the query cannot finish before the deadline then the 
slack time of query ௜ܳ  is 0. 

• Tardiness (ܶሺ ௜ܳሻ): The tardiness of a query ௜ܳ  is the extra amount of time ௜ܳ  can 
take to finish after the deadline ݀௜. Specifically, at any beginning time ݐ, ܶሺ ௜ܳሻ ൌ

,ax( 0m )i idf − ,where ti if p= + is the actual completion time. Obviously, if the 

query is completed before the deadline, the tardiness of query  Q୧ is 0, otherwise 
the tardiness is larger than 0. 
Given a set of queries, from the optimizer of the underlying database system, we 

can obtain the optimal plan of each query. From these plans, we can identify common 
sub-expressions among queries. Based on the common sub-expressions, a query can 
be split into two parts. One part is the common sub-expressions and the other is the 
non-common sub-expressions. Formally we provide a notion of query splitting as 
follows: 
Definition 3.3(Query Splitting): Given two queries ௜ܳ  and ܳ௝ , query splitting is the 
process of reducing the overlapped part of the two queries. Each query contains two 
parts: common sub-expression (we also call sub-queries) and non- common sub-
expression. The overlapped part of queries (common sub-expression) is ܥ௜,௝ሺܳ௝, ܳ௝ሻ 
(we may also use ܥ௜,௝ for simplicity) and the non-common sub-expressions of ௜ܳ  and ܳ௝   are correspondingly ௜ܰ,௝  and ௝ܰ,௜ . Note that if ܥ௜,௝  dose not exist, then ௜ܰ,௝ 
equals to ௜ܳ  and ௝ܰ,௜ equals to ܳ௝ . The splitting strategies are presented in section 
4.1. Once the query ௜ܳ  is split with Query ܳ௝ , then the tardiness of the query ௜ܳ  is ܶሺ ௜ܳሻ ൌ max ሺܶ൫ܥ௜,௝൯, ܶሺ ௜ܰ,௝ሻሻ  
Definition 3.4(Query Processing Time Savings): Given two queries ௜ܳ  and ܳ௝ ,  
the query processing time saving is the extra time after the query splitting process. 
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Specifically we have ௜ܵ,௝ ൌ S൫ ௜ܳ , ܳ௝൯ ൌ max ሺ0, ሺ݌ ௜ܳሻ ൅ ൫ܳ௝൯݌ െ ௜,௝൯ܥ൫݌ െ ൫݌ ௜ܰ,௝൯ െ݌൫ ௝ܰ,௜൯ሻ, evidently we only do those splitting which yield positive savings among 
queries while excluding negative ones. 

3.1 System Architecture 

The system architecture is shown in Fig.3. It consists of three modules including 
Common Sub-Expressions Detector, Cache Manager and Query Scheduler. The 
Common Sub-Queries Detector finds all the common sub-expressions among queries. 
The Cache Manger decides which query results to be cached into or be discarded 
from memory. The Query Scheduler utilizes several scheduling strategies to schedule 
queries to minimize the average tardiness. The three modules work on top of a  
database system. 

3.2 Problem Statement 

Next we define the query scheduling problem. Given a set of queries with the charac-
teristics defined above where common sub-expressions can be identified among the 
queries, we find an order to execute the queries with the goal of minimizing the aver-
age tardiness while reducing redundant computations as much as possible. From the 
optimizer of the underlying database system, we can obtain the optimal plan of each 
query. From these plans, we can identify common sub-expressions among queries. 
We need a way to: 1) decide the execution order of queries; 2) select a subset of the 
common sub-expressions whose results need to be cached; 3) determine a subset of 
the queries which can reuse the cached results. The problem is formally defined as 
follows: 

(Sharing-Aware Query Scheduling Problem) Given a query set Sത ൌ ሼ ௜ܳ , 1 ൑ i ൑ n} 
and their query splitting Strategies ܥ ൌ ሼܥ௜,௝ሽ. Then we want to minimize the average 

tardiness 
ଵ௡ ∑ ܶሺ ௜ܳሻ୬୧ୀଵ  by ordering queries while reducing total query processing time ∑ ௜ܵ,௝௜,௝,௜ஷ௝  as much as possible by caching common sub-queries. 

4 Sharing-Aware Scheduling Approach 

In this section, we present in detail our approach which explicitly takes into account 
the sharing results among queries. At a high level, our approach makes use of the 
following insight: we consider the most important possible sharing opportunities 
among queries, together with their consequences in terms of average tardiness. First, 
we present our method to discover the relevance (i.e. the sub-expressions) among 
queries in section 4.1. Next we show our algorithm to schedule queries by reusing the 
common sub-expressions’ results in section 4.2. 
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4.1 Discovering Common Sub-expressions among Queries 

To discover common sub-expressions among queries, we need to determine whether a 
given pair of queries is relevant. We first use Table-Indicator to filter those  
queries which are definitely irrelevant, then we split queries based on their semantic 
relationship. 

(a) Table-Indicator 
Because most queries don’t contain similar expressions, then we need to a fast filter 
with minimal overhead during the scheduling. 

Definition 4.1: A table indicator ܶܫொ  exists for a selection query ܳ iff ܳ represents 
SQL expression. If  ܶܫ௦ exists, it’s a triple tuple ܶܫொ= [ܥொ,ܵொ,ܣொ] where 

 ,ܳ ொ is the set of output columns in the selection clause ofܥ •
• ܵொ is the set of source tables (or views) in ܳ, 
 .ܳ ொ is the set of attributes in the where clause ofܣ •

Using the Table-Indicator, we can quickly detect the relevance of two queries Q୧ 
and Q୨  by check the following conditions: 1) SQ౟ ൌ SQౠ ;2) CQ౟ ת CQౠ ് ׎  and AQ౟ ת AQౠ ് If Q୧ .׎  and Q୨  satisfy the above two conditions, then we can make 

them a group.  
(b) Query Splitting  
Detecting commonality among queries based on queries’ table indicators, we have 
groups whose queries may share common sub-expressions. Then we compute the 
common predicates between each two queries using semantic caching method [5]. 

Suppose query ଵܳ’s task ܽݐொభ ൌ ଵܲ ר ଶܲ ڮ ר ௡ܲ , and ܳଶ’s task ܽݐொమ ൌ ଵܲᇱ ר ଶܲᇱ ڮר ר ௠ܲᇱ  ( ௜ܲ  is comparison predicate with the form of “attribute operator value”). 
Hence there are three types of relationships between ଵܳ and ܳଶ(see Fig. 4). 

 

Fig. 4. Semantic relation between Query A and B 

 The first type (case 1 in Fig.4) is query containment (i.e. implication): ܳଶ’s re-
sult contain ଵܳ’s or vice versa. Suppose ଵܳ  is contained by ܳଶ  (i.e. ܽݐொభ ொమܽݐ֜ , Cொభ ك Cொమ), we have two splitting strategies: 1) we only evaluate ܳଶ on 
database, and caching ܳଶ’s result to evaluate ଵܳ; 2) we reformulate two queries 
to sub-expression Cଵ,ଶሺ ଵܳ, ܳଶሻ ൌ ଵܳ and ଵܰ,ଶሺ ଵܳ, ܳଶሻ ൌ ܳଶ ר ൓ ଵܳ. 

 The second type (case2-4 in Fig.4) is query overlap: we process query overlap 
based on the relationships of query’s output attributes and the range predicate. 
Suppose ଵܳ  and ܳଶ  are overlapped, we have three types of overlapping  
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relationship:1) vertically overlap (case 2, ܥொభ ك ொమܥ ொభܽݐ , ר  ;(ொమis satisfiableܽݐ
2) horizontally overlap (case 3, ܥொభܥځொమ ് ொభܽݐ ,׎ ֜ ொమܽݐ  ); 3) mixed over-
lap(case 3, ܥொభܥځொమ ് ொభܽݐ ,׎ ר ொమܽݐ is satisfiable). To reduce overlap between 
queries, we have three parts: ܥଵ,ଶሺ ଵܳ, ܳଶሻ ൌ ܳଶ ר ଵܳ , ଵܰ,ଶ ൌ ൓ܳଶ ר ଵܳ  and  ଶܰ,ଵ ൌ ܳଶ ר ൓ ଵܳ. 

 The last one (case 5) is no connection between two queries: we have already 
processed this type using our table-indicators. 

To facilitate our processing of detecting sub-queries, we have the following two 
heuristics to pruning the improper ones. 
• Heuristics 1(Containment size Check): Given two queries ଵܳ, ܳଶ, and ଵܳ ֜ ܳଶ, 

if ݁ݖ݅ݏሺ ଵܳሻ/݁ݖ݅ݏሺܳଶሻ ൏ ߙ) ߙ ൏ 1, here we take size of query as its result size in 
memory), then we will not cache ଵܳ’s result, because sharing ଵܳ doesn’t greatly 
improve the total performance. 

• Heuristics 2(Exclude Sub-expressions With Huge Results): Given two queries ଵܳ 
and ܳଶ ௜,௝ܥ ,  is their common sub-expression, if size൫ܥ௜,௝൯ ൐ ଵܥ  (where ܥଵ  is 
some constant), then we’ll not cache ܥ௜,௝ ’s result, because it doesn’t fit in the 
cache. 

(c) Estimating Processing Time of Queries 
An important aspect of ordering queries is to estimate queries’ processing time which 
is orthogonal to our work, and there are two method we can use to estimate it by sam-
pling the database [14] or by machine learning (ML) based method [15].The sampling 
method is to sample a small corpus from the original database as an alternative for the 
candidate queries. ML-based method is to learn the time from the training dataset. 
Considering that querying databases is time-consuming work, we adopt the sampling 
method [14] to estimate the query’s processing time due to its efficiency. 

4.2 GASA: Greedy Algorithm for Sharing-Aware Scheduling of Web Queries 

Before we present the algorithm GASA, we have the following definitions. 
The first list, EDF-List, contains all transactions that can still make their deadlines, if 
they start execution right now. 
Definition 4.2: A query ௜ܳ  with deadline ݀௜ is included in EDF-List iff, t ൅ ௜ݎ ൑ ݀௜ , 
where t is the current time. 

The second list, SRPT-List, contains all queries that already missed their deadlines. 
Definition 4.3: A query ௜ܳ  with deadline ݀௜ is included in SRPT-List iff, t ൅ ௜ݎ ൐ ݀௜, 
where t is the current time. 

The main idea of the algorithm is to pick one query Q1 from the heads of the two 
lists and then choose another query Q2 from the remaining queries of the two lists 
such that the sharing of the sub-expressions’ results of Q1 and Q2 can maximize  
the savings of  the total query processing time for Q1 and Q2. We now describe the 
algorithm (The pseudo-code of Algorithm 1 is shown in figure 5) in detail as follows. 
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Algorithm 1. GASA(܁ത,C) 

Input: A set of queries with arrival time, estimated processing time and deadline. 
Output: The id of the queries to run until next scheduling point and the id of com-
mon sub-expressions to cache. 

1 Begin 
2 for all newly arrived queries ௜ܳ  do    
3     Place ௜ܳ  in the appropriate queue (EDF-List or SPRT-List) 
4 end for 
5 resort EDF-List & resort SRPT-List 
6 while(EDF-List !=null and SRPT-List!=null) 
7      ଵܳ,ா஽ி ՚Top (EDF-List) 
8     ଵܳ,ௌோ௉் ՚Top (SRPT-List) 
9      if ݎଵ,ா஽ி ൏ ሺݎଵ,ௌோ௉் െ ܳ ଵ,ா஽ிሻ thenݏ ൌ ଵܳ,ா஽ி  
10          else ܳ ൌ ଵܳ,ௌோ௉் 
11      end if 
12  
13      ܵொ ൌ ሼܳ௝|ܳ௝ ് ܳ, ܳ௝ and ܳ is disjointሽ 
14      j’=argmaxொೕאௌೂሺݏ݃݊݅ݒܽݏሺQ, Q୨ሻ), ) 

15      Return Q, run Q and cache ܥሺQ, Q୨’ሻ’s result 
16      refresh Q୨’’ expression and re-estimate processing time 
17 end while 
18 End 

Fig. 5. GASA: Greedy Algorithm for Sharing-Aware Scheduling 

Step 1: (line 7-11 in figure 5) We consider the impact of tardiness on the total set of 
queries, and compare the total tardiness of running ଵܳ,ா஽ி.  first and ଵܳ,ௌோ௉் second 
with running ଵܳ,ௌோ௉்  first and  ଵܳ,ா஽ி second, we have that if  rଵ,EDF ൏ ሺݎଵ,ௌோ௉் െݏଵ,ா஽ிሻ ,then running ଵܳ,ா஽ி  first will achieve lower tardiness, otherwise running ଵܳ,ௌோ௉் will have a lower tardiness. By this checking, we then decide which query to 
run first.  
Step 2: (line 12-14 in figure 5) To achieve sharing among queries, we need to decide 
which queries to share the picked queries’ results. Suppose the picked query in the 
first step is ܳ, then we check which subset Sሺܳሻ of queries shares common sub-
expressions with ܳ , and then we pick the query ܳ௝’  out of  ܵሺܳሻ as the sharing 
query where the processing time saving of ܳ and ܳ௝’ is the maximal one, then we do 
splitting between ܳ and ܳ௝’, run query ܳ and cache their common sub-expressions’ 
result. 
Step 3: (line 15 in figure5) We refresh ܳ௝’ after splitting and estimate its processing 
time, then return to step 1 until no more queries exist. 
GASA needs to be invoked in response to two types of events, the arrival and the 
completion of queries. We can use the standard balanced binary search tree as the 
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priority queue, which requires only a time O(log N) to insert and update the priority 
lists. For splitting queries, we need O(N) to find common sub-expressions. 

5 Experimental Evaluation 

In this section, we describe our experimental settings and report our results. 

5.1 Experimental Settings 

Our experiments were conducted on the hardware configuration with 4-core 2.90GHz 
Intel CPU and 4GB memory running JVM 1.6.0 in Windows 7 Professional and data 
were stored in PostgreSQL 9.3. 

We tested our method on TPC-H 1 GB databases. We chose 5 variant of TPC-H 
template queries without join predicates and aggregate predicates: #1,#4,#5 and # 
6.We generated 250 queries, according to a Zipf distribution over the range[1-100] 
time units with the default Zipf parameter for skewness (α) set to 0.5 which was 
skewed for short queries. We chose 50,100,150,200 queries from the original 250 
queries as a workload respectively. Arrival times of queries are assigned according to 
a Poisson process. The arrival rate of the Poisson distribution is set to be the rate of 
normal processed query number divided by the average query processing time. Each 
query is assigned a deadline ݀௜ ൌ ܽ௜ ൅ ௜݌ ൅ ݇௜ כ ௜ where ݇௜݌  is a factor that deter-
mines the ration between the initial slack time of a query and its processing time. ݇௜  
is generated uniformly over the range [0.0- ݇௠௔௫ ], where ݇௠௔௫  is a simulation  
parameter with default value of 3.0. 

We conduct the comparison in both the sharing and non-sharing cases. In the shar-
ing case GASA is compared with ASETS*, EDF and SRPT [4], and also LS (least 
slack), under which the priority is 1/ݏ௜; in the non-sharing case, we compare GASA 
with EDF-Sharing, SRPT-Sharing LS-Sharing (which are EDF,SRPT and LS adapted 
with our greedy sharing strategies). 

The performance of all the approaches is measured in terms of two metrics: (a) av-
erage tardiness which characterizes the total performance of our system, (b) total 
processing time savings of the whole workload. 

5.2 Experimental Results 

• Comparison with Sharing-Nothing Polices 

In our first experiment, we measured the average tardiness for the four scheduling 
policies mentioned above as the number of queries increases from 0 to 250, with Zipf 
parameter α ൌ 0.5 and ݇௠௔௫ ൌ 3.0.  

The experiment results for the average tardiness of the 4 scheduling policies on dif-
ferent query workload are shown in Figure 6. As we can see, when the number of que-
ries is small, the system is able to meet most of the deadlines. In this case, the sharing 
opportunity for computing queries is small, however GASA still performs a little bit 
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better than other policies. As the number of queries increases, the system cannot meet 
all the deadlines, whereas the sharing opportunity improves, and GASA substantially 
outperforms the other four polices. The maximum improvement by GASA is around 
50.6% percent compared with ASETS* when the query number is 250. 

 

 

Fig. 6. Comparing GASA with state of art scheduling polices 

• Comparison with Baseline Sharing Polices 

We compare the performance of GASA with EDF-Sharing, SRPT-Sharing and LS-
Sharing. Figure 7 shows the average tardiness comparison and figure 8 shows the 
average processing time savings. 

In figure 7, GASA outperforms the other three polices in all the cases.  LS-Sharing 
performs the worst, and the performance of SRPT-Sharing is comparable to GASA 
due to the high workload (in which most queries cannot meet their deadlines). In  
figure 8, the average processing time savings of all the approaches increase substan-
tially when the number of queries increases from 0 to 50; when the number of queries 
is larger than 100, the savings begins to decrease. This can be explained by the fact 
that the rate of reduced processing time is smaller than the increasing rate of queries. 

 

  

    Fig. 7. Comparison of sharing-based polices    Fig. 8. Average Processing Time Savings 
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6 Conclusions 

In this paper we proposed the problem of sharing-aware scheduling of web services. 
We propose a sharing-aware approach for query scheduling which exploits commo-
nalities among queries. We develop a mechanism to model query relevance and de-
sign a strategy to discover commonalities among queries. We design a sharing-aware 
query scheduling algorithm GASA which minimizes total tardiness while reducing 
redundant work at the same time. We run extensive experiments to verify the effi-
ciency and effectiveness of our proposed approach. To the best of our knowledge,  
our paper is the first one that combines classical query scheduling algorithms with 
semantic caching techniques. 
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