

L. Chen et al. (Eds.): APWeb 2014, LNCS 8709, pp. 117–128, 2014.
© Springer International Publishing Switzerland 2014

A Time-Based Group Key Management Algorithm
Based on Proxy Re-encryption for Cloud Storage

Yihui Cui, Zhiyong Peng, Wei Song*,**, Xiaojuan Li,
Fangquan Cheng, and Luxiao Ding

Computer School, Wuhan University, Wuhan, China
{cuiyihui,peng,songwei,lxj,cheng,dingluxiao}@whu.edu.cn

Abstract.Users are motivated to outsource their data into the cloud for its great
flexibility and economic saving. However, outsourcingdata to cloud also in-
creases the risk of privacy leak.A straightforward method to protect the us-
ers’privacy is to encrypt the files before outsourcing.The existing group key
management methods always presume that the server is trustworthy, but cloud
storage applications do not meet this condition. Therefore, how to manage the
group key to enable authenticated usersto access the files securely and efficien-
tlyis still a challenging problem.In our paper, wepropose a Time-basedGroup
Key Management (TGKM)algorithmforcryptographiccloud storage applica-
tions, which uses the proxy re-encryption algorithm to transfermajorcomputing-
task of the group key management to the cloud server.So, the proposed TGKM
scheme greatly reduces the user’s computation and storage overhead and makes
full use of cloud server to achieve an efficient group key management for the
cryptographic cloud storage applications.Moreover, we introduce a key seed
mechanism to generate a time-based dynamic group key which effectively
strengthens the cloud data security. Our security analysis and performance
evaluations both show that the proposed TGKM scheme is a secure and effi-
cient group key management protocol for the cloud storage applications with
low overheads of computation and communication.

Keywords: cryptographic cloud storage,proxy re-encryption,group key manage-
ment.

1 Introduction

Cloud storage is a typical service model of online outsourcing storage where data is
stored in virtualized pools which are generally hosted by third parties. Companies
need only pay for the storage they actually use. But when data is stored into cloud,
user simultaneously loses the control of his data. It makes that the unauthorized ac-
cesses from hackers even cloud service providers is inevitable. Security is one of the
most important problems that should be addressed in cloud storage applications [1].

* Corresponding author.
** This work is partially supported by National Natural Science Foundation of China No. 61202034,

61232002 and Program for Innovative Research Team of Wuhan(2014070504020237).

118 Y. Cui et al.

In recent years, many scholars have proposed the use of encryption methods to pro-
tect users' privacy in cloud storage applications [2-6]. In cryptographic cloud storage
application framework data owner encrypts files before outsourcing to protect his
privacy. Because the authorized users have the key, they could decrypt the files after
downloading. Obviously, unauthorized users, attackers, even the cloud service pro-
vider can’t breach user’s privacy without authentication. In cryptographic cloud sto-
rage, data owner need not only store files on the cloud but also shares these files to
some group users. Therefore, group key management is an important problem in
cloud storage, and it is also the main motivation of our paper.

The problem of group key management in cryptographic cloud storage environ-
ment is different from the traditional one. In a cryptographic cloud storage model,
computing tasks should be transferred to the cloud as much as possible and ensure
user privacy at the same time. The main contributions of our work are:

─ We propose a suitable group key management method of cloud storage,
which transfers calculations to the cloud computing service providers, who can’t
get the group key.
─ The data owner and authorized group users compute different group keys in
different phases with the same seed, rather than always using the same group key,
so our method is safer. Besides, because group key in a phase is computed by key
seed, the distribute group key number of times is less than traditional method

The remainder of this paper is organized as follows: in Section 2, we discuss the
related work. Then we introduce several cryptographic primitives in Section 3.
Section 4 details the TGKM. Security analyses of TGKM will be given in Section 5.
Finally, we evaluate the performance of our mechanism in Section 6, and conclude
this paper in Section 7.

2 Related Work

There are many group key management algorithms to address the problem of group
key management in the network environments, some are depended on a trusted group
key server, and others don’t need any trusted group key servers.

Xiao proposes a cryptographic file system called CKS-CFS based on the security
assumption that the CKS-CFS is trusted [7]. A trusted Group Key Server (GKS) is
introduced to manage file encryption keys in a centralized manner and to enable the
employment of flexible access control policies. But if GKS is invaded, hacker can get
all the private files.

Goh proposes the SiRiUS which doesn’t need a trusted group key server usually let
each user has a public and private key pairs to obtain the group key [8]. When a data
owner wants to share data, he uses the group key to encrypt the file and uses the au-
thorized user’s public keys to encrypt the group key, and then he uploads the en-
crypted file and encrypted keys to the cloud. The authorized user uses his private key
to decrypt the group key by which the authorized user decrypts the encrypted file.
This method is one of the simplest group key managements, but it requires that the

 A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption 119

data owner encrypts the group key for each user using his public key, which will
generate a great overhead of computing at the data owner. Kim proposes a secure
protocol called Tree-based Group Diffie–Hellman (TGDH) that is both simple and
fault-tolerant[9]. In order to protect the security of data, different files are encrypted
by different keys. But the processes of key negotiation in TGDH need to replace the
user's private key, so the algorithm is not suitable for group key management in cloud
storage.

3 Preliminaries

3.1 Proxy Re-encryption

Proxy re-encryption schemes are cryptosystems which allow third-parties (proxies) to
alter a ciphertext which has been encrypted for one party, so that it may be decrypted
by another. However the third-parties can’t get the secret value [10]. Blaze presents
the BBS, Elgamal-based scheme operating over two group ܩଵ,ܩଶ of prime order q
with a bilinear map ݁: ଵܩ ൈ ଵܩ ՜ ݃ ଶ. The system parameters are random generatorsܩ א ܼ ଵ andܩ ൌ ݁ሺ݃, ݃ሻ א .ଶܩ

• Key Generation(KG). The user A select random xאZq. A’s key pair is the form ݇݌௔ ൌ ݃௔, ௔݇ݏ ൌ ܽ.
• Re-Encryption Key Generation(RG). A user A delegates to B by publishing the re-

encryption key ݇ݎ஺՜஻ ൌ ݃௕/௔ א .ଵ , computed from B’s public keyܩ
• First-Level Encryption(ܧଵ). to encrypt a message ݉ א ଶܩ under ݇݌௔ in such a

way that it can only be the holder of ݇ݏ௔, output c=ሺܼ௔௞, ܼ݉௞) .
• Second-level Encryption(ܧଶ). to encrypt a message ݉ א ௔ in such a݇݌ ଶ underܩ

way it can be decrypted by user A and his delegates, output c=ሺ݃௔௞, ܼ݉௞ሻ.
• Re-Encryption(R). Anyone can change a second-level ciphertext for A into a first-

level ciphertext for B with ݇ݎ஺՜஻ . From ܿ௔ ൌ ሺ݃௔௞, ܼ݉௞ሻ , compute ݁൫݃௔௞, ݃௕ ௔⁄ ൯ ൌ ܼ௕௞ and publish ܿ௕ ൌ ሺܼ௕௞, ܼ݉௞ሻ.
• Decryption(ܦଵ, ଶ) . To decrypt a first-level ciphertext ܿ௔ܦ ൌ ሺߙ, ሻ with secret keyߚ

sk =a,compute ݉ ൌ ߚ ⁄ߙ ଵ ௔⁄ . To decrypt a second-level ciphertext ܿ௔ ൌ ሺߙ, ሻߚ

with secret key sk=a, compute m=ߚ ݁ሺߙ, ݃ሻ⁄ ଵ ௔⁄ .

3.2 Chinese Remainder Theorem

Suppose ݉ଵ,݉ଶ, …, ݉௞ are positive integers that are pairwise coprime. Then, for
any given sequence of integers ܽଵ, ܽଶ, …,ܽ௞ , there exists an integer x solving the
following system of simultaneous congruences[11].
ݔ ؠ ܽଵ ሺ݉݀݋ ݉ଵሻݔ ؠ ܽଶ ሺ݉݀݋ ݉ଶሻݔڭ ؠ ܽ௞ ሺ݉݀݋ ݉௞ሻൢ (1)

120 Y. Cui et al.

Furthermore, all solutions x of this system are congruent modulo the product
N=݉ଵ݉ଶ…݉௞, so the value of x mod N is unique.

4 TGKM: A Time-Based Group Key Management Algorithm

Table 1 shows the notations in the following of this paper.

Table 1. Notations

Notations Description ܭܩ௙௜௟௘ሺ௝ሻ ܵ௞௘௬ ௙ܵ௢௥௪௔௥ௗሺ௜ሻ ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ ܭ௙௢௥௪௔௥ௗሺ௝ሻ ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ ሼ݂݈݅݁ሽீ௄೑೔೗೐ ሼܵ௞௘௬ሽܲܭ஺ ܴܭ஺՜஻ ௝ܶ ݃

Files which upload in Tj is encrypted by ܭܩ௙௜௟௘ሺ௝ሻ
Key seed ܵ௞௘௬
Forward key seed in Ti is used to compute ܭ௙௢௥௪௔௥ௗ in one phase
Backward key seed in Ti is used to compute ܭ௕௔௖௞௪௔௥ௗ in one
phase
Forward assistant key in Tj is used to compute ܭܩ௙௜௟௘ in Tj
Backward assistant key in Tj is used to compute ܭܩ௙௜௟௘ in Tj

The file is encrypted by ܭܩ௙௜௟௘
The ܵ௞௘௬ is encrypted by user A’s public key
The re-encryption key from A to B
The time phase in Tj

The system parameters are random generators ݃ א ଵܩ

We design TGKM to implement an efficient and scalable group key management

service for the cloud storage applications. The TGKM system model has three parties
as follows:

(1) Data Owner: data owner encrypts his data and stores data in the cryptographic
cloud storage system, and he not only uses data but also authorizes data to other user
groups to access his data.

(2) Authorized Group Users: users who have the permission to access the en-
crypted data after authorized by the data owner to the group which the users belong
to.

(3) Cloud Service Provider: the cloud offers data storage and sharing services to
users. It follows our proposed protocol in general, but also tries to find out as much
secret information as possible.

TGKM uses two steps to share the GKfile in the authenticated group users. GKfile is
not fixed in various phases, so even GKfile is disclosed during any period, other GKfile
is still secure.

In the first step, TGKM shares the key seed Skey based on proxy re-encryption me-
chanism in the authorized group users. We use the ܵ௞௘௬ to represent the key seed
which consists of ௙ܵ௢௥௪௔௥ௗ and ܵ௕௔௖௞௪௔௥ௗ . The pair { ௙ܵ௢௥௪௔௥ௗ ,ܵ௕௔௖௞௪௔௥ௗ } can
compute file encryption group key. Then data owner and authorized users further
compute time-based group keys from Skey to enable forward security and back ward
security. Fig.1 describes TGKM for cryptographic cloud storage applications, and it is

 A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption 121

composed of three parts: data owner domain, cloud domain, and authorized user do-
main. Data owner domain is a full trusted service domain in which data owner gene-
rates key seed Skey and uploads it to the cloud after encryption. The cloud domain is an
untrusted service domain with powerful computing capability, TGKM introduces a
proxy re-encryption tree structure to efficiently share key in the authorized group
users by transferring data owner encrypted Skey to the key seed encrypted by autho-
rized group users. In TGKM structure, the authorized users in the authorized group
user domain could download the transferred encrypted Skey and decrypts it by his
private key.

Fig. 1. Time-based Group Key Management for Cryptographic Cloud Storage (TGKM)

In the second step, as shown in the Fig. 1, the authorized group users get a set of
keys Sforward(1) and Sbackward(n) from the key seed Skey. In TGKM model, every autho-
rized user group builds a hash function link to compute the GKfile. For example in
Fig. 1, U1 gets Skey which includes Sforward(1) and Sbackward(k) from cloud, and U1 can
compute Sforward(i+1) from Sforward(i) and compute Sbackward(i-1) from Sbackward(i). And then

⊕ ⊕ ⊕ ⊕⊕ ⊕

122 Y. Cui et al.

U1 can get all the pair keys Sforward(i) and Sbackward(i) (1≤i≤n) based on which further to
get GKfile(i) through ܭܩ௙௜௟௘ሺ௜ሻ ൌ ௙ܵ௢௥௪௔௥ௗሺ௜ሻ ْSbackward(i). So, by this mechanism the
key GKfile in any period is determined and enable a time-based key shared to achieve
the forward security and backward security. For the data owner and the authorized
group users can compute the same ௙ܵ௢௥௪௔௥ௗሺ௜ሻ and ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ, they can share the
same ܭܩ௙௜௟௘ሺ௜ሻ of any phase.

In this work, we just consider honest but curious cloud servers as [2] does. That is
to say, cloud servers will follow our proposed protocol in general, but try to find out
as much secret information as possible based on their inputs.

4.1 Cryptographic Cloud Storage Initialization Processes

During initial processes, the cryptographic cloud storage server generates the system
parameters which include a random generators ݃ א ܼ ,ଵܩ ൌ ݁ሺ݃, ݃ሻ א ଶ, and m1,m2ܩ
which are two positive pairwise coprime integers.

4.2 User Basic Operations

• Register a User A. The user A gets the system parameters from cloud server first of
all, and generates a random number α א ܼ௉כ as A’s private key ܵܭ஺. Then A gene-
rates his public key PKA=[g, h=gα] and uploads PKA to cloud to finish registration.

• Create a Group. The data owner generates a random number β א ܼ௉כ as the group
private key. Then he generates ܲܭ௚௥௢௨௣ ൌ ሾ݃, ݄ ൌ ݃ఉሿ as the public key of the
group. Finally, he computes the re-encryption key ܴܭ஺՜௚௥௢௨௣ ൌ ߚ ⁄ߙ in which α
is the private key of data owner and uploads it to the cryptographic cloud storage
server. For example in Fig.1, the data owner creates three authorized groups
including: sales group, finance group, and market group.

• Authorize a User. The data owner A authorizes a user B and put it into certain
group. A gets B’s public key ܲܭ஻ ൌ ሾ݃, ݄ ൌ ݃ఊሿ from cloud. And then A computes
re-encryption key ܴܭ௚௥௢௨௣՜஻ ൌ ݃ఊ/ఉ א ଵܩ and uploads it to the cryptographic
cloud storage server.

• Revoke an Authorized User. The data owner A requests cloud server to delete the
re-encryption key of the revoking user. In Fig.1 we can see that the cloud server
deletes the edge from PKmar to U6 to revoke U6’s privilege.

• Build the Key Management Structure in Cloud. Cryptographic cloud storage
server builds the authorized tree to share resources in the authorized users. As is
shown in cloud domain in Fig.1, each data owner has an authorized tree to describe
the shared relationship of his resources. In the authorized tree, the root node stores
key seed which is encrypted by the data owner’s public key, each the child node
presents a user group which stores key seed encrypted by the group public key, and
every leaf node presents an authorized user stores the key seed encrypted by user’s
public key. And the edges describe the re-encryption operations and store the
proxy re-encryption key.

 A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption 123

4.3 The First Step of TGKM: Key Seed Distribution

The main motivation of our paper is to enable a time-based access control for the
cloud storage applications. We introduce a key seed mechanism to achieve it. In this
section, we introduce the key seed distribution.

The data owner A encrypts a key seed ܵ௞௘௬ under PKA in such a way it can be de-
crypted by A and his delegates. A uploads {ܵ௞௘௬}ܲܭ஺ to the cloud server.

{ܵ௞௘௬}ܲܭ஺=൫݃ఈ௞, ܵ௞௘௬ܼ௞൯, (2)

The TGKM cloud server masters proxy re-encryption key ܴܭ஺՜௚௥௢௨௣ ൌ ߚ ⁄ߙ and ܴܭ௚௥௢௨௣՜஻ ൌ ݃ఊ/ఉ to distribute key seeds in all the authorized groups and their users,
so that the cryptographic cloud server can transfer the key seed encrypted by data
owner to the key seed encrypted by authorized group public key. The re-encryption
from A to a group is described in equation (3) and (4) in which ݃ఉ is the group’s
public key. The transfer from a group to a user is shown in (5) and (6). ݃ఉ௞ ൌ ሺg஑୩ሻఉ/ఈ (3) ሼܵ௞௘௬ሽܲܭ௚௥௢௨௣ ൌ ൫݃ఉ௞, ܵ௞௘௬ܼ௞൯, (4) ݁൫݃ఉ௞, ݃ఊ ఉ⁄ ൯ ൌ ܼఊ௞ (5) ሼܵ௞௘௬ሽܲܭ௨௦௘௥ ൌ ൫ܼఊ௞, ܵ௞௘௬ܼ௞൯ . (6)

Through the above re-encryption, the authorized group user can decrypt key seed
from key seed encrypted by the data owner. The decryption is illustrated in equation
(7) in which ߛ is authorized user’s private key. ܵ௞௘௬ ൌ ܵ௞௘௬ܼ௞ ሺܼఊ௞ሻ⁄ ଵ ఊ⁄

, (7)

After getting the key seed, the user can compute ܭܩ௙௜௟௘ by ܭ௙௢௥௪௔௥ௗ and ܭ௕௔௖௞௪௔௥ௗ which is generated by the key seed. For example in Fig.1, the data owner
generates {ܵ௞௘௬}ܲܭ஺ and uploads it to the cloud server. The cloud server transfers ሼܵ௞௘௬ሽܲܭ஺ to ሼܵ௞௘௬ሽܲܭ௦௔௟௘௦ by ܴܭ஺՜௦௔௟௘௦ , then transfers ሼܵ௞௘௬ሽܲܭ௦௔௟௘௦ to ሼܵ௞௘௬ሽܲܭ௎ଵ by ܴܭ௦௔௟௘௦՜௎ଵ.As a result, the user U1 can decrypt ሼܵ௞௘௬ሽܲܭ௎ଵ to get
Skey.

If the data owner just grants an encrypted file’s accessing privilege to a group, he
encrypts the key seed Skey by the group public key. Such as in the Fig.1, the data own-
er only allows the market group to access an encrypted file, and then he encrypts the
seed by the market group public key, and uploads{ܵ௞௘௬}PKMar in which PKMar is the
public key of group market to the cloud.

4.4 The Second Step of TGKM: Computing GKfile by Key Seed

In our TGKM scheme, we introduce key seed ܵ௞௘௬ to enable the efficient and flexible
time-based access control. The file encryption key management in TGKM is a time-
based dynamic key which uses different key to encrypt files in different period.

The data owner generates Key seed S୩ୣ୷ which consists of a forward seed ௙ܵ௢௥௪௔௥ௗ and a backward seed ܵ௕௔௖௞௪௔௥ௗ. The prior ௙ܵ௢௥௪௔௥ௗ can compute the next

124 Y. Cui et al.

௙ܵ௢௥௪௔௥ௗ by a hash function. For the same reason, the behind ܵ௕௔௖௞௪௔௥ௗ can compute
the prior ܵ௕௔௖௞௪௔௥ௗ by another hash function. ௙ܵ௢௥௪௔௥ௗሺ୧ାଵሻ ൌ ௙݂௢௥௪௔௥ௗ௛௔௦௛ ሺ ௙ܵ௢௥௪௔௥ௗሺ௜ሻሻ ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ ൌ ௕݂௔௖௞௪௔௥ௗ௛௔௦௛ ሺܵ௕௔௖௞௪௔௥ௗሺ௜ାଵሻሻ ቋ (8)

For example, in Fig.2 If data owner wants to limit a group user accessing the up-
loaded files from T1 to T3, The key seed he distributed is { ௙ܵ௢௥௪௔௥ௗሺ௜ሻ, ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ}.
If data owner wants to limit a group accessing to the uploaded files from T1 to T6, The
key seed he distributed is { S୤୭୰୵ୟ୰ୢሺ୧ሻ, Sୠୟୡ୩୵ୟ୰ୢሺ୧ାଵሻ}.

Fig. 2. Key seed mechanism to enable time-based data access control

Data owner and authorized group users use S୤୭୰୵ୟ୰ୢሺ୧ሻ and Sୠୟୡ୩୵ୟ୰ୢሺ୧ሻ to compute ܭ௙௢௥௪௔௥ௗሺ௝ሻ and ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ separately by hash function (9). Every S୤୭୰୵ୟ୰ୢሺ୧ሻ and Sୠୟୡ୩୵ୟ୰ୢሺ୧ሻ can compute K୤୭୰୵ୟ୰ୢሺ୨ሻ or Kୠୟୡ୩୵ୟ୰ୢሺ୨ሻ of one time period. ௝ܶ is the
time phase. ܭ௙௢௥௪௔௥ௗሺ௝ሻ ൌ ௛݂௔௦௛_ଶ ሺ ௙ܵ௢௥௪௔௥ௗሺ௜ሻ, ௝ܶሻ ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ ൌ ௛݂௔௦௛_ଶሺܵ௕௔௖௞௪௔௥ௗሺ௜ሻ, ௝ܶሻ ቋ (9)

In Fig.2, ௙ܵ௢௥௪௔௥ௗሺ௜ሻ can compute ܭ௙௢௥௪௔௥ௗ from T1 to T3. ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ can com-
pute ܭ௕௔௖௞௪௔௥ௗ from T1 to T3. The data owner and authorized group users shared m1
and m2 which meets ݃ܿ݀ሺ݉௜, ௝݉ሻ ൌ 1 in formula (10). When they have the same ܭ௙௢௥௪௔௥ௗሺ௝ሻ and ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ they can generate the same ܭܩ௙௜௟௘ሺ௝ሻ based on Chinese
remainder theorem. ܭܩ௙௜௟௘ሺ௝ሻ ؠ ௙௜௟௘ሺ௝ሻܭܩ ଵሻ݉ ݀݋௙௢௥௪௔௥ௗሺ௝ሻ ሺ݉ܭ ؠ ଶሻቋ (10)݉ ݀݋݉ ௕௔௖௞௪௔௥ௗሺ௝ሻሺܭ

Data owner and authorized group users can get the same { ௙ܵ௢௥௪௔௥ௗሺ௜ሻ , ܵ௕௔௖௞௪௔௥ௗሺ೔ሻ}, so they can compute the same file encrypted group key. In Fig.2

user can generate ܭ௙௢௥௪௔௥ௗሺ௝ሻ in every phases by the forward seed ௙ܵ௢௥௪௔௥ௗሺ௜ሻ, and
back forward seed ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ can generate ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ , and then generate the ܭܩ௙௜௟௘ሺ௝ሻ at a certain period.

Kforward

Sbackward(i)

T1 T2 T3 T4 T5 T6

Sbackward(i+1)Kbackward

Sforward(i) Sforward(i+1)

ffordhash

fbackwordhash

fhash_2

fhash_2

timestamp

 A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption 125

Algorithm 1. Compute file encryption group key ܭܩ௙௜௟௘ሺ௝ሻ by ܵ௞௘௬
Input: ݉ଵ, ݉ଶ, ௙ܵ௢௥௪௔௥ௗሺ௜ሻ, ܵ௕௔௖௞௪௔௥ௗሺ௜ሻ, ௝ܶ
Output: File encryption key ܭܩ௙௜௟௘ሺ௝ሻ
௙௢௥௪௔௥ௗሺ௝ሻܭ .1 ൌ ௛݂௔௦௛_ଶ ሺ ௙ܵ௢௥௪௔௥ௗሺ௜ሻ, ௝ܶሻ
௕௔௖௞௪௔௥ௗሺ௝ሻܭ .2 ൌ ௛݂௔௦௛_ଶሺܵ௕௔௖௞௪௔௥ௗሺ௜ሻ, ௝ܶሻ
ܥ .3 ՚ 1.
ݑ .4 ՚ ݉ଵି ଵ ݉݀݋ ݉ଶ.
ܥ .5 ՚ ݑ ൈ .ଶ݉ ݀݋݉ ܥ
ݑ .6 ՚ ݔ,௙௢௥௪௔௥ௗሺ௝ሻܭ ՚ .ݑ
ݑ .7 ՚ ൫ܭ௕௔௖௞௪௔௥ௗሺ௝ሻ െ ܥ൯ݔ ݀݋݉ ݉ଶ,ݔ ՚ ݔ ൅ ௙௜௟௘ሺ௝ሻܭܩ ,ଵ݉ݑ ൌ ݔ
8. Return ܭܩ௙௜௟௘ሺ௝ሻ

4.5 Data Sharing to Group Users

When the data owner wants to upload a shared file, he gets the current time as the
timestamp and computes encrypted file group key ܭܩ௙௜௟௘ሺ௝ሻ in the time phase by key
seed, and encrypts file by ܭܩ௙௜௟௘ሺ௝ሻ. Finally, the data owner uploads the encrypted file
and the timestamp to the cloud server. ݏ݈݁݅ܨ௨௣௟௢௔ௗ ൌ ሾሼ݂݈݅݁ሽீ௄೑೔೗೐ሺೕሻ , (11) [݌݉ܽݐݏ݁݉݅ݐ

When an authorized group user attempts to access a file, he firstly downloads ሾሼ݂݈݅݁ሽீ௄೑೔೗೐ሺೕሻ , ݌݉ܽݐݏ݁݉݅ݐ]. After downloaded, he computes encrypted file key ܭܩ௙௜௟௘ሺ௝ሻ by the algorithm 1 and decrypts ሼ݂݈݅݁ሽீ௄೑೔೗೐ሺೕሻ.
For example in Fig. 2, when data owner uploads a file, he gets the current time as

timestamp. Then the data owner determines that accessing time phase is T6. Finally,
he computes the ܭܩ௙௜௟௘ሺ଺ሻ by ௙ܵ௢௥௪௔௥ௗሺ௜ାଵሻ and ܵ௕௔௖௞௪௔௥ௗሺ௜ାଵሻ. The authorized user
can get the timestamp from Filesupload, and he determines that time phase is T6. Con-
sequently, he can get the ܭܩ௙௜௟௘ሺ଺ሻ by ௙ܵ௢௥௪௔௥ௗሺ௜ାଵሻ and ܵ௕௔௖௞௪௔௥ௗሺ௜ାଵሻ to achieve
the time-based accessing.

5 Security and Performance Analysis

5.1 TGKM Correctness Guarantee

Because the data owner and the authorized group share the same timestamp, they can
determine the time phase which the timestamp is belonged to. They also get the same
pair {S୤୭୰୵ୟ୰ୢሺ୧ሻ, S ୠୟୡ୩୵ୟ୰ୢሺ୧ሻ}, so they can compute the same pair ሼK୤୭୰୵ୟ୰ୢሺ୨ሻ , Kୠୟୡ୩୵ୟ୰ୢሺ୨ሻ}. According to Chinese remainder theorem, the data owner and autho-
rized group users can get the consistent ܭܩ௙௜௟௘ሺ௝ሻ by formula (10). By the TGKM
mechanism, authorized user can only get the corresponding seed key which is gener-
ated by the data owner according to his own will. By the seed key mechanism, we
achieve a time-based access control to limit all the authorized users accessing data in
the period of time defined by the data owner.

126 Y. Cui et al.

5.2 Forward Security and Backward Security Guarantee

There are two types of security requirements on a secure group key management sys-
tem: the forward security and the backward security. The former refers to a newly
joined user cannot gain access to the past group keys. And the latter refers to after a
user has left the secure group, he should not be able to gain access to the future group
keys [14]. The proposed TGKM can fully meet the forward security and the backward
security. The forward security requires that the authorized group user can’t access any
file encryption group key ܭܩ௙௜௟௘ሺ௝ሻ before start time of key seed. This notion was first
proposed by Günther[15]. The backward security requires that a revoked user can’t
access file encryption group key ܭܩ௙௜௟௘ሺ௝ሻ after end time of key seed. In our key seed
structure, the authorized user only knows { ௙ܵ௢௥௪௔௥ௗሺ௜ሻ,ܵ௕௔௖௞௪௔௥ௗሺ௞ሻ} (i<=k), so he
can only obtain ܭ௙௢௥௪௔௥ௗ and ܭ௕௔௖௞௪௔௥ௗ from phase i to k, that is to say he just can
compute file encryption group key ܭܩ௙௜௟௘ from phase i to k. Because the front for-
ward key seed ௙ܵ௢௥௪௔௥ௗሺ௜ሻ can compute the back forward key seed S୤୭୰୵ୟ୰ୢሺ୧ାଵሻ by
hash function, but a posterior forward key seed ௙ܵ௢௥௪௔௥ௗሺ௜ାଵሻ can’t compute the prior
forward key seed ௙ܵ௢௥௪௔௥ௗሺ௜ሻ. It is as the same to the backward key’s computation.

5.3 Computing Overhead Analysis
In TGKM, most of group key management computing operations is transferred to
cloud. For computing GKfile(j) by key seed, the main computing overhead is to com-
pute GKfile(j) by Chinese remainder theorem, so the time complexity is almost linear.
And the computing overhear of cloud sever is O(h) in which h is the number of autho-
rized users. As the TGKM algorithm mentioned above, the computing overhead at the
user is related to the time of computing GKfile by forward and backward seed keys, so
it is O(1). In the experimental section, we will carry out experiments to evaluate the
performance of TGKM’s efficiency.

6 Experiments

In this section, we carry out experiments to evaluate the performance of proposed
TGKM. All the experiments are executed under Ubuntu with an Inter Pentium
2.1GHz Processor and 1GB memory. The re-encryption algorithm is used JHU-MIT
Proxy Re-cryptography Library [12]. We evaluate the efficiency of TGKM including:
cost of distribution the keys at the data owner, computing overhead on the cloud serv-
er and cost of getting the keys at the client.

In the time cost experiments of data owner distributing the keys, we compare
TGKM to SiRiUS, TGDH, and ABE. The experimental results are illustrated in the
Fig. 3. As the results shown in the Fig.3 (a), the distributing group key cost on the
data owner of SiRiUS and TGDH both rise with users’ size increasing, while
TGKM’s time cost is almost not changed. Analyzing this phenomenon, we find that
TGDH is a tree-based group key management algorithm which makes the tree
layer increasing with the number of users increasing, so that key negotiation
time increases as well. It is also in agreement with the experimental results in
Fig. 3(a). However, TGKM data owner only encrypts key seed once based on the
group, so the time cost of TGKM will not rise with user increasing. ABE is an

 A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption 127

 (a) with the change of number of users (b) with the change of number of groups

Fig. 3. Time cost of data owner distribution group key

efficient find-grained authentication method which can be a method of group key
management by treating a group as an attribute [13]. The experiments in Fig.3(b)
shows the time overhead of TGKM and ABE. With the number of user group increas-
ing, our proposed TGKM achieve a better computing performance than ABE.

Fig.4 shows the time cost of authorized user’ computing the group key. The time
cost of TGKM and SiRiUS is approximately equal. The time cost is decrypt group
key by authorized user private key. And the time cost of TGKM is almost not
changed with authorized user number increasing. But the time cost of TGDH is in-
crease with authorized user number increase. The authorized user needs to negotiate
with other group user.

Fig.5 shows cloud computing time cost. The overload is transfer from data owner
to cloud. To the first group user, cloud has two proxy re-encryption operations. To the
other users of the same group, cloud just has one proxy re-encryption operation.

Fig. 4. Time cost for a user to get his key Fig. 5. Cloud computing time

7 Conclusion

When enterprises or individuals use cryptographic cloud storage applications to out-
source their sensitive data, how to efficiently share data in the authorized group users
without privacy leak is still one of the most challenging tasks. In this paper, we pro-
pose a novel time-based group key management (TGKM) in cryptographic cloud

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Number of authorized users

T
im

e
C

os
t(

m
s)

 TGKM
 SiRiUS
 TGDH

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

Number of groups

T
im

e
C

os
t(

m
s)

TGKM
ABE

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

 Number of authorized users

 T
im

e
C

os
t(

m
s)

 TGKM
 TGDH
 SiRiUS

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of authorized users

T
im

e
C

os
t(

m
s)

TGKM

128 Y. Cui et al.

storage. TGKM transfers much workload of key management to the cloud and pre-
vents the cloud to master any group key. Furthermore, to enhance the scalability of
TGKM with dynamic group, we propose the key seed mechanism to enable a time-
based key management. Even if an attacker gets a file encryption key GKfile, he still
can’t decrypt any other files out of the time window. Through experiments, we find
TGKM can greatly improve the efficiency of key management and can be applied to
the cryptographic cloud storage applications.

References

1. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-Preserving Multi-Keyword Ranked
Search over Encrypted Cloud Data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233
(2014)

2. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable and fine-grained data ac-
cess control in cloud computing. In: Proceedings of IEEE INFOCOM 2010, pp. 15–19
(2010)

3. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling Public Auditability and Data Dy-
namics for Storage Security in Cloud Computing. IEEE Trans. Parallel Distrib. Syst. 22(5),
847–859 (2011)

4. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R., Dietrich,
S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops. LNCS,
vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

5. Hong, C., lv, Z., Zhang, M., Feng, D.: A Secure and Efficient Role-Based Access Policy
towards Cryptographic Cloud Storage. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T.
(eds.) WAIM 2011. LNCS, vol. 6897, pp. 264–276. Springer, Heidelberg (2011)

6. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Over-
encryption: Management of access control evolution on outsourced data. In: Proc. of
VLDB 2007, Vienna, Austria (2007)

7. Xiao, D., Shu, J.-W., Xue, W., Liu, Z.-C., Zheng, W.-M.: Design and implementation of a
group key server-based cryptographic file system. Chinese Journal of Computers 31(4),
600–610 (2008)

8. Goh, E.-J., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: Securing Remote Untrusted
Storage. In: NDSS 2003 (2003)

9. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf. Syst.
Secur. 7(1), 60–96 (2004)

10. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In: NDSS 2005 (2005)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. The Chinese remainder theorem, sec.31.5, pp. 873–876. MIT Press and McGraw-Hill
(2001) ISBN 0-262-03293-7

12. http://spar.isi.jhu.edu/~mgreen/prl/
13. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryption. In:

28th IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)
14. Yang, Y.R., Lam, S.S.: A Secure Group Key Management Communication Lower Bound,

University of Texas at Austin, Austin, TX (2000)
15. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J., Vandewalle, J.

(eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990)

	A Time-Based Group Key Management Algorithm Based on Proxy Re-encryption for Cloud Storage
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Proxy Re-encryption
	3.2 Chinese Remainder Theorem

	4 TGKM: A Time-Based Group Key Management Algorithm
	4.1 Cryptographic Cloud Storage Initialization Processes
	4.2 User Basic Operations
	4.3 The First Step of TGKM: Key Seed Distribution
	4.4 The Second Step of TGKM: Computing GKfile by Key Seed

	4.5 Data Sharing to Group Users

	5 Security and Performance Analysis
	5.1 TGKM Correctness Guarantee
	5.2 Forward Security and Backward Security Guarantee
	5.3 Computing Overhead Analysis

	6 Experiments
	7 Conclusion
	References

