
Planning with Transaction Logic

Reza Basseda1, Michael Kifer1, and Anthony J. Bonner2

1 Stony Brook University, USA
{rbasseda,kifer}@cs.stonybrook.edu

2 University of Toronto, Canada
bonner@cs.toronto.edu

Abstract. Automated planning has been the subject of intensive research and is
at the core of several areas of AI, including intelligent agents and robotics. In
this paper, we argue that Transaction Logic is a natural specification language for
planning algorithms, which enables one to see further afield and thus discover bet-
ter and more general solutions than using one-of-a-kind formalisms. Specifically,
we take the well-known STRIPS planning strategy and show that Transaction
Logic lets one specify the STRIPS planning algorithm easily and concisely, and
to prove its completeness. Moreover, extensions to allow indirect effects and to
support action ramifications come almost for free. Finally, the compact and clear
logical formulation of the algorithm made possible by this logic is conducive to
fruitful experimentation. To illustrate this, we show that a rather simple modifi-
cation of the STRIPS planning strategy is also complete and yields speedups of
orders of magnitude.

1 Introduction

The classical problem of automated planning is at the core of several important areas,
such as robotics, intelligent information systems, and multi-agent systems, and it has
been preoccupying AI researchers for over forty years.

In this paper, we argue that a general logical theory, specifically Transaction Logic
(or T R) [10, 9, 8], provides multiple advantages for specifying, generalizing, and
solving planning problems. Transaction Logic is an extension of classical logic with
dedicated support for specifying and reasoning about actions, including sequential and
parallel execution, atomicity of transactions, and more. To illustrate the point, we take
the classical STRIPS planning problem [12, 19] and show that both the STRIPS frame-
work and the associated planning algorithm easily and naturally lend themselves to
compact representation in Transaction Logic.

We emphasize that this paper is not about STRIPS or about inventing new planning
strategies (although we do—as a side effect). It is rather about the advantages of T R
as a general tool for specifying a wide range of planning frameworks and strategies—
STRIPS is just an illustration. One can likewise apply T R to HTN-like planning sys-
tems [20] and to various enhancements of STRIPS, like RSTRIPS and ABSTRIPS [21].

Our contention is that precisely because STRIPS is cast here as a purely logical prob-
lem in a suitable general logic, a number of otherwise non-trivial extensions become
low-hanging fruits and we get them almost for free. In particular, STRIPS planning

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 29–44, 2014.
c© Springer International Publishing Switzerland 2014

30 R. Basseda, M. Kifer, and A.J. Bonner

can be naturally extended with intensional rules, which endows the framework with
support for ramification [14] (i.e., with indirect effects of actions), and we show that
the resulting planning algorithm is complete. Then, after inspecting the logic rules that
simulate the STRIPS algorithm, we observe that more restrictive rules can be derived,
which intuitively should involve a smaller search space. The new rules lead to a dif-
ferent STRIPS-like algorithm, which we call fast STRIPS, or fSTRIPS. We show that
fSTRIPS is also a complete planning algorithm, and our experiments indicate that it can
be orders of magnitude faster than the original.

A number of deductive planning frameworks have been proposed over the years
[2–4, 16, 11, 15, 26, 27], but only a few of these approaches support any kind of action
ramification. Most importantly, our work differs in the following respects.

– Many of the above approaches invent one-of-a-kind theories that are suitable only
for the particular problem at hand. We, on the other hand, use a general logic, which
integrates well with most other approaches to knowledge representation.

– These works typically first demonstrate how they can capture STRIPS-like actions
and then rely on a theorem prover of some sort to find plans. This type of planning
is called naive, as it has to contend with extremely large search spaces. In contrast,
we capture not merely STRIPS actions—they are part of the basic functionality in
T R—but also the actual optimized planning strategies (STRIPS, HTN, etc.), which
utilize heuristics to reduce the search space. That is, we first compactly express
these heuristics as T R rules and then use the T R theorem prover to find plans.
The effect is that the theorem prover, in fact, executes those specialized and more
efficient algorithms.

– The clear and compact form used to represent the planning heuristics is sugges-
tive of various optimizations, which lead to new and more efficient algorithms. We
illustrate this with the example of discovery of fSTRIPS.

We are also unaware of anything similar to our results in the literature on the situation
calculus or other first-order logic based methodologies (cf. [19, 22]).

Finally, several aspects found in the planning literature, like parallelization of plans
and loops [18, 17, 24], are orthogonal to the results presented here and provide a natural
direction for further extensions of our work.

This paper is organized as follows. Section 2 introduces the STRIPS planning frame-
work and its extension in support of action ramification. Section 3 provides the nec-
essary background on Transaction Logic in order to make this paper self-contained.
Section 4 casts the extended STRIPS as a problem of posing a transactional query in
Transaction Logic and shows that executing this query using the T R’s proof theory
makes for a sound and complete STRIPS planning algorithm. Section 5 introduces the
fSTRIPS algorithm, which is also cast as a transactional query in T R, and shows that
this is also a complete planning strategy. In Section 6, we present our experiments that
show that fSTRIPS can be orders of magnitude better than STRIPS both in time and
space. Section 7 concludes the paper.

Planning with Transaction Logic 31

2 Extended STRIPS-Style Planning

In this section we first remind the reader a number of standard concepts in logic and
then introduce the STRIPS planning problem.

We assume denumerable sets of variables V , constants C, and predicate symbolsP—
all three sets being pairwise disjoint. The set of predicates,P , is further partitioned into
extensional (Pext) and intensional (Pint) predicates. In STRIPS, actions update the state
of a system by adding or deleting statements about predicates. In the original STRIPS,
all predicates were extensional, and the addition of intentional predicates is a major
enhancement, which allows us to deal with the so-called ramification problem [14], i.e.,
with indirect consequences of actions.

Atomic formulas (or just atoms) have the form p(t1, ..., tn), were p ∈ P and each ti
is either a constant or a variable. Extending the logical signature with function symbols
is straightforward in our framework, but we avoid doing this here in order to save space.

An atom is extensional if p ∈ Pext and intensional if p ∈ Pint. A literal is either
an atom or a negated extensional atom of the form ¬p(t1, ..., tn). Negated intensional
atoms are not allowed. (It is not too hard to extend our framework and the results to
allow negated intensional atoms, but we refrain from doing so due to space limitations).

Extensional predicates represent database facts: they can be directly manipulated (in-
serted or deleted) by actions. Intensional predicate symbols are used for atomic state-
ments defined by rules—they are not affected by actions directly. Instead, actions make
extensional facts true or false and this indirectly affects the dependent intensional atoms.
These indirect effects are known as action ramifications in the literature.

A fact is a ground (i.e., variable-free) extensional atom. A set S of literals is consis-
tent if there is no atom, atm, such that both atm and ¬atm are in S.

A rule is a statement of the form head ← body where head is an intensional atom
and body is a conjunction of literals. A ground instance of a rule, R, is any rule ob-
tained from R by a substitution of variables with constants from C such that different
occurrences of the same variable are always substituted with the same constant. Given
a set S of literals and a ground rule of the form atm← �1 ∧ · · · ∧ �m, the rule is true in
S if either atm ∈ S or {�1, . . . , �m} �⊆ S. A (possibly non-ground) rule is true in S if
all of its ground instances are true in S.

Definition 1 (State). Given a set Rof rules, a state is a consistent set S = Sext ∪ Sint

of literals such that

1. For each fact atm, either atm ∈ Sext or ¬atm ∈ Sext.
2. Every rule of R is true in S. �

Definition 2 (STRIPS Action). A STRIPS action is a triple of the form
α = 〈pα(X1, ..., Xn), P reα, Eα〉, where

– pα(X1, ..., Xn) is an intensional atom in which X1, ..., Xn are variables and pα ∈
Pint is a predicate that is reserved to represent the action α and can be used for no
other purpose;

– Preα, called the precondition of α, is a set of literals that may include extensional
as well as intensional literals;

32 R. Basseda, M. Kifer, and A.J. Bonner

– Eα, called the effect of α, is a consistent set that may contain extensional literals
only;

– The variables in Preα and Eα must occur in {X1, ..., Xn}.1 �

Note that the literals in Preα can be both extensional and intensional, while the literals
in Eα can be extensional only.

Definition 3 (Execution of a STRIPS Action). A STRIPS action α is executable in a
state S if there is a substitution θ : V −→ C such that θ(Preα) ⊆ S. A result of the
execution (with respect to θ) is the state S′ such that S′ = (S \ ¬θ(Eα)) ∪ θ(Eα),
where ¬E = {¬� | � ∈ E}. In other words, S′ is S with all effects of θ(α) applied. �

Note that S′ is well-defined since Eα is consistent. Observe also that, if α has vari-
ables, the result of an execution, S′, may depend on the chosen substitution θ.

The following simple example illustrates the above definition. We follow the stan-
dard logic programming convention whereby lowercase symbols represent constants
and predicate symbols. The uppercase symbols denote variables that are implicitly uni-
versally quantified outside of the rules.

Example 1. Consider a world consisting of just two blocks and the action pickup =
〈pickup(X,Y), {clear(X)}, {¬on(X,Y), clear(Y)}〉. Consider also the state S =
{clear(a),¬clear(b), on(a, b),¬on(b, a)}. Then the result of the execution of pickup
at state S with respect to the substitution {X → a, Y → b} is S′ = {clear(a), clear(b),
¬on(a, b),¬on(b, a)}. It is also easy to see that pickup cannot be executed at S with
respect to any substitution of the form {X → b, Y → ...}. �

Definition 4 (Planning Problem). A planning problem 〈R,A, G,S〉 consists of a set
of rules R, a set of STRIPS actions A, a set of literals G, called the goal of the planning
problem, and an initial state S. A sequence of actions σ = α1, . . . , αn is a planning
solution (or simply a plan) for the planning problem if:

– α1, . . . , αn ∈ A; and
– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that execu-

tion (for some substitution) is the state Si.

In this case we will also say that S0,S1, . . . ,Sn is an execution of σ. �

3 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the parts of Trans-
action Logic that are needed for the understanding of this paper. For further details, the
reader is referred to [7, 9, 10, 5, 8].

1 Requiring the variables of Preα to occur in {X1, ..., Xn} is not essential for us: we can easily
extend our framework and consider the extra variables to be existentially quantified.

Planning with Transaction Logic 33

T R is a faithful extension of the first-order predicate calculus and so all of that
syntax carries over. In this paper, we focus on rules, however, so we will be dealing
exclusively with that subset of the syntax from now on. The most important new con-
nective that Transaction Logic brings in is the serial conjunction, denoted ⊗. It is a
binary associative connective, like the classical conjunction, but it is not commutative.
Informally, the formula φ ⊗ ψ is understood as a composite action that denotes an ex-
ecution of φ followed by an execution of ψ. The concurrent conjunction connective,
φ‖ψ, is associative and commutative. Informally, it says that φ and ψ can execute in an
interleaved fashion. For instance, (α1 ⊗ α2)‖(β1 ⊗ β2) can execute as α1, β1, α2, β2,
or as α1, β1, β2, α2, or as α1, α2, β1, β2, while (α1⊗α2)⊗ (β1⊗β2) can execute only
as α1, α2, β1, β2. When φ and ψ are regular first-order formulas, both φ ⊗ ψ and φ‖ψ
reduce to the usual first-order conjunction, φ ∧ ψ. The logic also has other connectives
but they are beyond the scope of this paper.

In addition, T R has a general, extensible mechanism of elementary updates or ele-
mentary actions, which have the important effect of taking the infamous frame problem
out of many considerations in this logic (see [9, 10, 7, 23, 6]). Here we will use only the
following two types of elementary actions, which are specifically designed on complete
STRIPS states (Definition 1): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p denotes an
extensional predicate symbol of appropriate arity and t1, ..., tn are terms.

Given a state S and a ground elementary actionα = +p(a1, . . . , an), an execution of
α at state S deletes the literal ¬p(a1, . . . , an) and adds the literal p(a1, . . . , an). Simi-
larly, executing−p(a1, . . . , an) results in a state that is exactly like S, but p(a1, . . . , an)
is deleted and ¬p(a1, . . . , an) added. In some cases (e.g., if p(a1, . . . , an) ∈ S), the ac-
tion +p(a1, . . . , an) has no effect, and similarly for −p(a1, . . . , an).

A serial rule is a statement of the form

h← b1 ⊗ b2 ⊗ . . .⊗ bn. (1)

where h is an atomic formula and b1, ..., bn are literals or elementary actions. The
informal meaning of such a rule is that h is a complex action and one way to execute h
is to execute b1 then b2, etc., and finally to execute bn.

Thus, we now have regular first-order as well as serial-Horn rules. For simplicity
(thought this is not required by T R), we assume that the sets of intentional predicates
that can appear in the heads of regular rules and those in the heads of serial rules are
disjoint. Thus, we now have the following types of atomic statements:

– Extensional atoms.
– Intentional atoms: The atoms that appear in the heads of regular rules. These two

categories of atoms populate database states and will be collectively called fluents.
We will now allow any kind of fluent to be negated in the body of a serial rule of
the form (1).

– Elementary actions: +p, −p, where p is an extensional atom.
– Complex actions: These are the atoms that appear at the head of the serial rules.

Complex and elementary actions will be collectively called actions.

34 R. Basseda, M. Kifer, and A.J. Bonner

As remarked earlier, for fluents f⊗g is equivalent to f ∧g and we will often write f ∧g
for fluents even if they occur in the bodies of serial rules. Note that a serial rule all of
whose body literals are fluents is essentially a regular rule, since all the ⊗-connectives
can be replaced with ∧. Therefore, one can view the regular rules as a special case of
serial rules.

The following example illustrates the above concepts.

move(X,Y) ← (on(X,Z) ∧ clear(X) ∧ clear(Y) ∧ ¬tooHeavy(X))
⊗− on(X,Z)⊗+on(X,Y)⊗−clear(Y).

tooHeavy(X) ← weight(X,W) ∧ limit(L) ∧W < L.
?− move(blk1, blk15)⊗move(SomeBlk, blk1).

Here on, clear, tooHeavy, weight, and limit are fluents and the rest of atoms represent
actions. The predicate tooHeavy is an intentional fluent, while on, clear, and weight
are extensional fluents. The actions +on(...), −clear(...), and −on(...) are elementary
and the intentional predicate move represents a complex action. This example illustrates
several features of Transaction Logic. The first rule is a serial rule defining of a com-
plex action of moving a block from one place to another. The second rule defines the
intensional fluent tooHeavy, which is used in the definition of move (under the scope of
default negation). As the second rule does not include any action, it is a regular rule.

The last statement above is a request to execute a composite action, which is anal-
ogous to a query in logic programming. The request is to move block blk1 from its
current position to the top of blk15 and then find some other block and move it on top
of blk1. Traditional logic programming offers no logical semantics for updates, so if
after placing blk1 on top of blk15 the second operation (move(SomeBlk, blk1)) fails
(say, all available blocks are too heavy), the effects of the first operation will persist
and the underlying database becomes corrupted. In contrast, Transaction Logic gives
update operators the logical semantics of an atomic database transaction. This means
that if any part of the transaction fails, the effect is as if nothing was done at all. For
example, if the second action in our example fails, all actions are “backtracked over”
and the underlying database state remains unchanged.

This semantics is given in purely model-theoretic terms and here we will only give
an informal overview. The truth of any action in T R is determined over sequences
of states—execution paths—which makes it possible to think of truth assignments in
T R’s models as executions. If an action, φ, defined by a set of serial rules, P, evaluates
to true over a sequence of states D0, . . . ,Dn, we say that it can execute at state D0 by
passing through the states D1, ..., Dn−1, ending in the final state Dn. This is captured
by the notion of executional entailment, which is written as follows:

P,D0 . . .Dn |= φ (2)

The next example further illustrates T R by showing a definition of a recursive action.

Example 2 (Pyramid building). The following rules define a complex operation of
stacking blocks to build a pyramid. It uses some of the already familiar fluents and

Planning with Transaction Logic 35

actions from the previous example. In addition, it defines the actions pickup, putdown,
and a recursive action stack.

stack(0, AnyBlock)← .
stack(N,X)← N > 0⊗move(Y,X)⊗ stack(N − 1, Y)⊗ on(Y,X).
move(X,Y)← X �= Y ⊗ pickup(X)⊗ putdown(X,Y).
pickup(X)← clear(X)⊗ on(X,Y)⊗−on(X,Y)⊗+clear(Y).
pickup(X)← clear(X)⊗ on(X, table)⊗−on(X, table).
putdown(X,Y)← clear(Y)⊗ ¬on(X,Z1)⊗ ¬on(Z2, X)⊗

−clear(Y)⊗+on(X,Y).

(3)

The first rule says that stacking zero blocks on top ofX is a no-op. The second rule says
that, for bigger pyramids, stacking N blocks on top of X involves moving some other
block, Y , onX and then stackingN−1 blocks on Y . To make sure that the planner did
not remove Y fromX while building the pyramid on Y , we are verifying that on(Y,X)
continues to hold at the end. The remaining rules are self-explanatory. �

Several inference systems for serial-Horn T R are described in [7]—all analogous to
the well-known SLD resolution proof strategy for Horn clauses plus some T R-specific
inference rules and axioms. The aim of these inference systems is to prove statements
of the form P,D · · · � φ, called sequents. Here P is a set of serial rules and φ is a serial
goal, i.e., a formula that has the form of a body of a serial rule, such as (1). A proof of a
sequent of this form is interpreted as a proof that action φ defined by the rules in P can
be successfully executed starting at state D.

An inference succeeds if it finds an execution for the transaction φ, i.e., a sequence
of database states D1, . . . , Dn such that P,DD1 . . .Dn � φ. Here we will use the
following inference system, which we present in a simplified form—only the version
for ground facts and rules. The inference rules can be read either top-to-bottom (if top
is proved then bottom is proved) or bottom-to-top (to prove bottom first prove top).

Definition 5 (T R inference System). Let P be a set of rules (serial or regular) and D,
D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every state).
– Inference Rules

1. Applying transaction definition: Suppose t← body is a rule in P.

P,D · · · � body ⊗ rest
P,D · · · � t⊗ rest (4)

2. Querying the database: If D |= t then

P,D · · · � rest
P,D · · · � t⊗ rest (5)

3. Performing elementary updates: If the elementary update t changes the state
D1 into the state D2 then

P,D2 · · · � rest
P,D1 · · · � t⊗ rest

(6)

36 R. Basseda, M. Kifer, and A.J. Bonner

4. Concurrency: If φi, i = 1, ..., n are serial conjunctions then

P,D · · · � φ1‖...‖φj‖...‖φn
P,D′ · · · � φ1‖...‖φ′j‖...‖φn

(7)

for any j, 1 ≤ j ≤ n, where D′ is obtained from D and φ′j from φj as in either
of the inference rules (4-6) above.

A proof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1, seqn,
where each seqi is either an axiom-sequent or is derived from earlier sequents by one of
the above inference rules. This inference system has been proven sound and complete
with respect to the model theory of T R [7]. This means that if φ is a serial goal, the
executional entailment P,DD1 . . .Dn |= φ holds if and only if there is a proof of
P,D · · · � φ over the execution path D,D1, . . . ,Dn, i.e., D1, . . . ,Dn is the sequence
of intermediate states that appear in the proof and D is the initial state. In this case, we
will also say that such a proof proves the statement P,DD1 . . .Dn � φ.

4 The T R-STRIPS Planner

The informal idea of using T R as a planning formalism and an encoding of STRIPS
as a set of T R rules first appeared in an unpublished report [7]. The encoding was
incomplete and it did not include ramification and intensional predicates. We extend
the original method with intentional predicates, make it complete, and formulate and
prove the completeness of the resulting planner.

Definition 6 (Enforcement Operator). LetG be a set of extensional literals. We define
Enf(G) = {+p | p ∈ G} ∪ {−p | ¬p ∈ G}. In other words, Enf(G) is the set of
elementary updates that makes G true. �

Next we introduce a natural correspondence between STRIPS actions and T R rules.

Definition 7 (Actions as T R Rules). Let α = 〈pα(X), P reα, Eα〉 be a STRIPS ac-
tion. We define its corresponding T R rule, tr(α), to be a rule of the form

pα(X)← (∧�∈Preα�) ⊗ (⊗u∈Enf(Eα)u). (8)

Note that in (8) the actual order of action execution in the last component,⊗u∈Enf(Eα)u,
is immaterial, since all such executions happen to lead to the same state.

We now define a set of T R clauses that simulate the well-known STRIPS plan-
ning algorithm and extend this algorithm to handle intentional predicates and rules. The
reader familiar with the STRIPS planner should not fail to notice that, in essence, these
rules are a natural (and much more concise and general) verbalization of the classi-
cal STRIPS algorithm [12]. However—importantly—unlike the original STRIPS, these
rules constitute a complete planner when evaluated with the T R proof theory.

Definition 8 (T R Planning Rules). Let Π = 〈R,A, G,S〉 be a STRIPS planning
problem (see Definition 4). We define a set of T R rules, P(Π), which provides a sound
and complete solution to the STRIPS planning problem. P(Π) has three disjoint parts,
PR, PA, and PG, described below.

Planning with Transaction Logic 37

– The PR part: for each rule p(X)← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a rule of
the form

achieve p(X)← ‖ni=1achieve pi(X i). (9)

Rule (9) is an extension to the classical STRIPS planning algorithm and is intended
to capture intentional predicates and ramification of actions; it is the only major
aspect of our T R-based rendering of STRIPS that was not present in the original
in one way or another.

– The part PA = Pactions ∪Patoms ∪Pachieves is constructed out of the actions in A

as follows:
• Pactions: for each α ∈ A, Pactions has a rule of the form

pα(X)← (∧�∈Preα�) ⊗ (⊗u∈Enf(Eα)u). (10)

This is the T R rule that corresponds to the actionα, introduced in Definition 7.
• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:

– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the rules

achieve p(X)← p(X).
achieve not p(X)← ¬p(X).

(11)

These rules say that if an extensional literal is true in a state then that
literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each e(Y) ∈
Eα, Penforced has the following rule:

achieve e(Y)← execute pα(X). (12)

This rule says that one way to achieve a goal that occurs in the effects of
an action is to execute that action.

• Pachieves: for each action α = 〈pα(X), P reα, Eα〉 in A, Pachieves has the
following rule:

execute pα(X)← (‖�∈Preαachieve �)⊗ pα(X). (13)

This means that to execute an action, one must first achieve the precondition of
the action and then perform the state changes prescribed by the action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (‖kgi=1achieve gi)⊗ (∧ki=1gi). (14)

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a goal G,
Definition 8 gives a set of T R rules that specify a planning strategy for that problem.
To find a solution for that planning problem, one simply needs to place the request

?− achieveG . (15)

at a desired initial state and use the T R’s inference system of Section 3 to find a proof.
The inference system in question is sound and complete for serial clauses, and the rules
in Definition 8 satisfy that requirement.

38 R. Basseda, M. Kifer, and A.J. Bonner

Example 3 (Planning rules for register exchange). Consider the classical problem of
swapping two registers in a computer from [21]. The reason this problem is interesting is
because it is the simplest problem where the original STRIPS is incomplete. Example 4
explains why and how our complete T R-based planner handles the issue.

Consider two memory registers, x and y, with initial contents a and b, respectively.
The goal is to find a plan to exchange the contents of these registers with the help of
an auxiliary register, z. Let the extensional predicate value(Reg, V al) represent the
content of a register. Then the initial state of the system is {value(x, a), value(y, b)}.
Suppose the only available action is copy = 〈copy(Src,Dest, V), {value(Src, V)},
{¬value(Dest, V), value(Dest, V)}〉, which copies the value V of the source reg-
ister, Src, to the destination register Dest. The old value of Dest is erased and the
value of Src is written over. The planning goal is G = {value(x, b), value(y, a)}. Per
Definition 8, the planning rules for this problem are as follows.
Due to case (10):

copy(Src,Dest, V)← value(Src, V) ⊗
−value(Dest,) ⊗+value(Dest, V).

(16)

Due to (11), (12), and (13):

achieve value(R, V)← value(R, V).
achieve not value(R, V)← ¬value(R, V).

(17)

achieve value(Dest, V)← execute copy(Src,Dest, V). (18)

execute copy(Src,Dest, V)← achieve value(Src, V) ⊗
copy(Src,Dest, V).

(19)

Due to (14):

achieveG ← (achieve value(x, b) ‖ achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a)). (20)

Case (9) of Definition 8 does not contribute rules in this example because the planning
problem does not involve intensional fluents. �

As mentioned before, a solution plan for a STRIPS planning problem is a sequence
of actions leading to a state that satisfies the planning goal. Such a sequence can be ex-
tracted by picking out the atoms of the form pα from a successful derivation branch gen-
erated by the T R inference system. Since each pα uniquely corresponds to a STRIPS
action, this provides us with the requisite sequence of actions that constitutes a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let i1, . . . , in
be exactly those indexes in that deduction where the inference rule (4) was applied to
some sequent using a rule of the form tr(αir) introduced in Definition 7. We will call
αi1 , . . . , αin the pivoting sequence of actions. The corresponding pivoting sequence
of states Di1 , . . . ,Din is a sequence where each Dir , 1 ≤ r ≤ n, is the state at which
αir is applied. We will prove that the pivoting sequence of actions is a solution to the
planning problem.

Planning with Transaction Logic 39

All theorems in this section assume that Π = 〈R,A, G,D0〉 is a STRIPS planning
problem and that P(Π) is the corresponding set of T R planning rules as in Defini-
tion 8.

Theorem 1 (Soundness of T R Planning). Any pivoting sequence of actions in the
derivation of P(Π),D0 . . .Dm � achieveG is a solution plan.2

Completeness of a planning strategy means that, for any STRIPS planning problem, if
there is a solution, the planner will find at least one plan. Completeness of T R planning
is established by induction on the length of the plans.

Theorem 2 (Completeness of T R Planning). If there is a plan that achieves the goal
G from the initial state D0 then the T R-based STRIPS planner will find a plan.

Theorem 2 establishes the completeness of the planner that is comprised of the T R
proof theory and the rules that express the original STRIPS strategy.

Recall that the classical STRIPS planner described in [12, 21] was incomplete. The
next example illustrates the reason for this incompleteness and contrasts the situation to
the T R-based planner.

Example 4 (Register exchange, continued). Consider the register exchange problem of
Example 3. The original STRIPS planner fails to find a plan if, in the initial state,
the auxiliary register z has the value t distinct from a and b [21]. We will now illus-
trate how the T R based planner deals with this case. Let P be the set of T R rules
(16-19) that constitute the planner for the T R-based planner for this problem. Given
the planning goal G = {value(x, b), value(y, a)} and the initial state D0, where
{value(x, a), value(y, b)} ⊆ D0, we will show how the T R inference system con-
structs a derivation (and thus a plan) for the sequent P,D0 · · ·Dn � achieveG for
some Dn such that {value(x, b), value(y, a)} ⊆ Dn.

Consider the sequent P,D0 · · · � achieveG that corresponds to the query (15). Ap-
plying the inference rule (4) to that sequent using the rule (20), we get:

P,D0 · · · � (achieve value(x, b)‖achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (4) twice to the resulting sequent using the rules (18–19)
with appropriate substitutions result in:

P,D0 · · · � ((achieve value(z, b)⊗ copy(z, x, b))‖achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (4) once more and again using the rules (18–19) we get:

P,D0 · · · � ((achieve value(y, b)⊗ copy(y, z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

One more application of the inference rule (4) but this time in conjunction with (17)
yields:

P,D0 · · · � ((value(y, b)⊗ copy(y, z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

2 Sequents of the form P(Π),D0 . . .Dm � ... were defined at the very end of Section 3.

40 R. Basseda, M. Kifer, and A.J. Bonner

Since value(y, b) ∈ D0, we can eliminate it by the inference rule (5). Then we can
replace the first copy using its definition (16) due to the inference rule (4).

P,D0 · · · � ((−value(z,)⊗ +value(z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (6) twice to the primitive updates at the front first yields

P,D1 · · · � ((+value(z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

and then

P,D2 · · · � (copy(z, x, b)‖achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

where D1 is D0 with value(z, t) (where t denotes the old value of z) deleted and D2

is D1 with value(z, b) added.
Now we can use the inference rule (7) to explore the subgoal achieve value(y, a).

Namely, we can expand this subgoal with the inference rule (4) twice, first using (18–
19) and then using (17), obtaining

P,D2 · · · � (copy(z, x, b)‖(value(x, a)⊗ copy(x, y, a)))
⊗ (value(x, b) ∧ value(y, a))

Since value(x, a) is true in D2, it can be removed. Finally, the two copy’s can be
replaced by their definition (16) and then the remaining +value(...) and −value(...)
can be executed using the inference rule (6). This will advance the database (via three
intermediate states) to state D6 containing {value(x, b), value(y, a), value(z, b)} in
which both value(x, b) and value(y, a) are true. Therefore, the inference rule (5) can
be used to derive the T R axiom P,D6 · · · � (), thus concluding the proof. The pivoting
sequence of actions in this proof is 〈copy(y, z, b), copy(x, y, a), copy(z, x, b)〉, which
constitutes the desired plan. �

5 The fSTRIPS Planner

In this section, we introduce fSTRIPS — a modification of the previously introduced
STRIPS transform, which represents to a new planning strategy, which we call fast
STRIPS. We show that although the new strategy explores a smaller search space, it
is still sound and complete. Section 6 shows that fSTRIPS can be orders of magnitude
faster than STRIPS.

Definition 9 (T R Planning Rules for fSTRIPS). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem as in Definition 4 and P(Π) is as in Definition 8. We define Pf(Π)

to be exactly as P(Π) except for the Penforced part. For Pf(Π), we redefine Pf
enforced

(the replacement of Penforced) as follows:
For each action α = 〈pα(X), P reα, Eα〉 in A and each e(Y) ∈ Eα, Pf

enforced has
the following rule:

achieve e(Y)← ¬e(Y)⊗ execute pα(X). (21)

Planning with Transaction Logic 41

This rule says that an action, α, should be attempted only if it helps to achieve the
currently pursued, unsatisfied goal. �

The other key aspect of fSTRIPS is that it uses a modified (general, unrelated to
planning) proof theory for T R, which relies on tabling, a technique analogous to [25].
This theory was introduced in [13] and was shown to be sound and complete. Here we
use it for two reasons. First, it terminates if the number of base fluents is finite. Second,
it has the property that it will not attempt to construct plans that have extraneous loops
and thus will not attempt to large and unnecessary parts of the search space.

To construct a plan, as before, we can extract a pivoting sequence of actions and
show that the new pivoting sequence of actions is still a solution plan.

Similarly to Section 4, we assume till the end of this section thatΠ = 〈R,A, G,D0〉
is a STRIPS planning problem, that P(Π) is the set of planning rules in Definition 8,
and that Pf (Π) is the set of planning rules as specified in Definition 9.

Theorem 3 (Soundness of fSTRIPS). Any pivoting sequence of actions in the deriva-
tion of Pf (Π),D0 . . .Dm � achieveG is a solution plan.

Theorem 4 (Completeness of fSTRIPS). If there is a plan to achieve the goal G from
an initial state, D0, then T R will find a plan.

Theorem 5 (fSTRIPS Finds no More Plans than STRIPS). Any plan found by the
fSTRIPS planner will also be found by the STRIPS planner.

In other words, the STRIPS strategy may generate more plans than fSTRIPS. The
plans that are not generated by fSTRIPS are those that contain actions whose effects
were not immediately required at the time of the action selection. This has the effect of
ignoring longer plans when shorter plans are already found. The upshot of all this is that
STRIPS has a larger search space to explore, and this explains the inferior performance
of STRIPS compared to fSTRIPS, as the experiments in the next section show.

6 Experiments

In this section we briefly report on our experiments that compare STRIPS and fSTRIPS,
The test environment was a tabled T R interpreter [13] implemented in XSB and run-
ning on Intel R©Xeon(R) CPU E5-1650 0 @ 3.20GHz 12 CPU and 64GB memory
running on Mint Linux 14 64-bit.

The actual test cases are taken from [1] and represent so called State Modi-
fying Policies. A typical use of such a policy is to determine if a particular ac-
cess request (say, to play digital contents) should be granted. The first test case,
a Movie Store, is shown in Example 5. The second test case, a Health Care
Authorization example, is too large to be included here and can be found at
http://ewl.cewit.stonybrook.edu/planning/ along with the first test
case and all the necessary items needed to reproduce the results.

http://ewl.cewit.stonybrook.edu/planning/

42 R. Basseda, M. Kifer, and A.J. Bonner

Example 5 (State Modifying Policy for a Movie Store). The following represents a pol-
icy where users can buy movies online, try them, and sell them, if not satisfied.

buy(X,M)← ¬bought(,M)⊗+bought(X,M)
play1(X,M)← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)
keep(X,M)← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)

⊗+ happy(X,M)
play2(X,M)← played1(X,M)⊗ ¬played2(X,M)⊗+played2(X,M)
play3(X,M)← played2(X,M)⊗ ¬played3(X,M)⊗+played3(X,M)
sell(X,M)← played1(X,M)⊗ ¬played3(X,M)⊗ ¬happy(X,M)

⊗+ sold(X,M)⊗−bought(X,M)

(22)

The first rule describes an action of a user,X , buying a movie,M . The action is possible
only if the movie has not already been purchased by somebody. The second rule says
that, to play a movie for the first time, the user must buy it first and not have played it
before. The third rule deals with the case when the user is happy and decides to keep
the movie. The remaining rules are self-explanatory. �

A reachability query in a state modifying policy is a specification of a target state
(usually an undesirable state), and the administrator typically wants to check if such a
state is reachable by a sequence of actions. The target state specification consists of a set
of literals, and the reachability query is naturally expressed as a planning problem. For
instance, in Example 5, the second rule can be seen as a STRIPS action whose precon-
dition is {bought(X,M)⊗ ¬played1(X,M)} and the effect is {+played1(X,M)}.
The initial and the target states in this example are sets of facts that describe the movies
that have been bought, sold, and played by various customers.

Table 1. Results for different goal sizes (number of literals in the goals). The initial state is fixed
and has 6 extensional atoms.

Size of
Movie Store

Size of
Health Care

STRIPS fSTRIPS STRIPS fSTRIPS
goal CPU Mem CPU Mem goal CPU Mem. CPU Mem.

6 0.0160 1095 0.0080 503 3 10.0240 246520 0.0400 2011
9 0.2760 14936 0.1360 6713 4 32.9540 774824 0.2040 8647

12 9.4120 409293 5.8840 184726 5 46.1380 1060321 0.3080 13622

Table 2. Results for different sizes (number of facts) in initial states. The planning goal is fixed:
6 extensional literals in the ”movie store” case and 3 extensional literals in the ”health care” case.

Size of Movie Store Size of Health Care
initial STRIPS fSTRIPS initial STRIPS fSTRIPS
state CPU Mem CPU Mem state CPU Mem. CPU Mem.
20 9.2560 409293 5.8800 184726 3 0.148 5875 0.012 718
30 9.2600 409293 5.7440 184726 6 10.076 246519 0.04 2011
40 9.2520 409293 5.8000 184726 9 689.3750 9791808 0.124 5443
50 9.4120 409293 5.8840 184726 12 >1000 N/A 0.348 14832
60 9.3720 409293 5.8240 184726 18 >1000 N/A 0.94 38810

Planning with Transaction Logic 43

The main difference between the two test cases is that the Health Care example has
many actions and intensional rules, while the movie store case has only six actions and
no intensional predicates. As seen from Tables 1 and 2, for the relatively simple Movie
Store example, fSTRIPS is about twice more efficient both in time and space.3 However,
in the more complex Health Care example, fSTRIPS is at least two orders of magnitude
better both time-wise and space-wise. While in the Movie Store example the statistics
for the two strategies seem to grow at the same rate, in the Health Care case, the fSTRIPS
time appears to grow linearly, while the time for STRIPS grows quadratically.

7 Conclusion

This paper has demonstrated that the use of Transaction Logic accrues significant ben-
efits in the area of planing. That is, the message is the benefits of T R, not any partic-
ular planning heuristic. As an illustration, we have shown that sophisticated planning
strategies, such as STRIPS, can be naturally represented in T R and that the use of this
powerful logic opens up new possibilities for generalizations and devising new, more
efficient algorithms. For instance, we have shown that once the STRIPS algorithm is
cast as a set of rules in T R, the framework can be extended, almost for free, to support
such advanced aspects as action ramification, i.e., indirect effects of actions. Further-
more, by tweaking these rules just slightly, we obtained a new, much more efficient
planner, which we dubbed fSTRIPS (fast STRIPS). These non-trivial insights were ac-
quired merely due to the use of T R and not much else. The same technique can be used
to cast even more advanced strategies such as RSTRIPS, ABSTRIPS [21], and HTN [20]
as T R rules, and the fSTRIPS optimization straightforwardly applies to the first two.

There are several promising directions to continue this work. One is to investigate
other planning strategies and, hopefully, accrue similar benefits. Other possible direc-
tions include non-linear plans and plans with loops [18, 17, 24]. For instance non-linear
plans could be represented using Concurrent Transaction Logic [8], while loops are
easily representable using recursive actions in T R.

Acknowledgments. This work was supported, in part, by the NSF grant 0964196. We
also thank the reviewers for valuable comments.

References

1. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM Trans. Inf.
Syst. Secur. 13(3), 20:1–20:28 (2010)

2. Bibel, W.: A deductive solution for plan generation. New Generation Computing 4(2),
115–132 (1986)

3. Bibel, W.: A deductive solution for plan generation. In: Schmidt, J.W., Thanos, C. (eds.)
Foundations of Knowledge Base Management. Topics in Information Systems, pp. 453–473.
Springer, Heidelberg (1989)

4. Bibel, W., del Cerro, L.F., Fronhöfer, B., Herzig, A.: Plan generation by linear proofs: On
semantics. In: Metzing, D. (ed.) 13th German Workshop on Artificial Intelligence,
Informatik-Fachberichte, GWAI 1989, vol. 216, pp. 49–62. Springer, Heidelberg (1989)

3 Time is measured in seconds and memory in kilobytes.

44 R. Basseda, M. Kifer, and A.J. Bonner

5. Bonner, A., Kifer, M.: Transaction logic programming. In: Int’l Conference on Logic
Programming, pp. 257–282. MIT Press, Budapest (1993)

6. Bonner, A., Kifer, M.: Applications of transaction logic to knowledge representation.
In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 67–81. Springer,
Heidelberg (1994)

7. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative and
procedural knowledge). Tech. Rep. CSRI-323, University of Toronto (November 1995),
http://www.cs.toronto.edu/˜bonner/transaction-logic.html

8. Bonner, A., Kifer, M.: Concurrency and communication in transaction logic. In: Joint Int’l
Conference and Symposium on Logic Programming, pp. 142–156. MIT Press, Bonn (1996)

9. Bonner, A., Kifer, M.: A logic for programming database transactions. In: Chomicki, J.,
Saake, G. (eds.) Logics for Databases and Information Systems, ch. 5, pp. 117–166. Kluwer
Academic Publishers (March 1998)

10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer Science 133
(1994)

11. Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive plans in linear
logic. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 252–264. Springer,
Heidelberg (2000)

12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

13. Fodor, P., Kifer, M.: Tabling for transaction logic. In: Proceedings of the 12th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP
2010, pp. 199–208. ACM, New York (2010)

14. Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1964–1969 (1995)

15. Guglielmi, A.: Concurrency and plan generation in a logic programming language with a
sequential operator. In: Hentenryck, P.V. (ed.) ICLP, pp. 240–254. MIT Press (1994)

16. Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New Generation
Computing 8(3), 225–244 (1990)

17. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.) Artificial
Intelligence and Applications, pp. 387–393. IASTED/ACTA Press (2005)

18. Kahramanogullari, O.: On linear logic planning and concurrency. Information and Computa-
tion 207(11), 1229–1258 (2009); Special Issue: Martı́n-Vide, C., Otto, F., Fernau, H. (eds.):
LATA 2008. LNCS, vol. 5196. Springer, Heidelberg (2008)

19. Lifschitz, V.: On the semantics of strips. In: Georgeff, M. (ed.) Lansky, Amy (eds, pp. 1–9.
Morgan Kaufmann, San Mateo (1987)

20. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc., San Francisco (2004)

21. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publ. Co., Paolo Alto (1980)
22. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing

Dynamical Systems. MIT Press, Cambridge (2001)
23. Rezk, M., Kifer, M.: Transaction logic with partially defined actions. J. Data Semantics 1(2),

99–131 (2012)
24. Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search for generalized

plans using classical planners. In: Proceedings of the 21st International Conference on Au-
tomated Planning and Scheduling (ICAPS 2011). AAAI (June 2011)

25. Swift, T., Warren, D.: Xsb: Extending the power of prolog using tabling. Theory and Practice
of Logic Programming (2011)

26. Thielscher, M.: Computing ramifications by postprocessing. In: IJCAI, pp. 1994–2000.
Morgan Kaufmann (1995)

27. Thielscher, M.: Ramification and causality. Artificial Intelligence 89(1-2), 317–364 (1997)

http://www.cs.toronto.edu/~bonner/transaction-logic.html

	Planning with Transaction Logic
	1 Introduction
	2 Extended STRIPS-Style Planning
	3 Overview of Transaction Logic
	4 The TR-STRIPS Planner
	5 The fSTRIPS Planner
	6 Experiments
	7 Conclusion
	References

