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Preface

Web Reasoning aims to develop semantic-based techniques for exploiting and
and making sense of data on the Web. Web data is distributed over numerous
sources, which are dynamic, heterogenous, often incomplete, possibly contradic-
tory and even unreliable. These features of web data require new methodologies
and paradigms, adequate representation languages and practically efficient and
robust algorithms. These challenging issues concern not only the Semantic Web
but more generally modern information systems.

Ontologies are at the core of Web Reasoning. They are typically specified in
languages based on description logics, rule-based formalisms, or combinations of
the two. Recent developments in the field have built on close relationships with
logic programming and databases, with a strong renewed interest for Datalog,
the language of deductive databases. In this context, ontology-based data access,
a paradigm of answering queries over data enriched with ontological knowledge,
has emerged as a prominent direction. Ontology-based data integration and ex-
change have also attracted attention from both the academia and industry. The
International Conference on Web Reasoning and Rule Systems (RR) is a major
forum for discussion of these issues, and other issues relevant to Web Reasoning,
and dissemination of the latest results in the field.

This volume contains the proceedings of the 8th RR conference, held from 15
to 17 September 2014 in Athens, Greece. The conference program featured 4 in-
vited talks: keynotes by Frank van Harmelen and Markus Krötzsch, an industry
talk by Stephan Grimm and a tutorial by Nasos Drosopoulos and Ilianna Kollia.
The 9 full papers and 9 technical communications of this volume were included
for presentation at the conference. The latter are shorter papers mainly describ-
ing preliminary and ongoing work, systems and applications, and new ideas of
interest to the RR audience.

Accepted papers were selected out of 33 submissions, which included 19 full
papers and 14 technical communications. Each submission received at least 3 re-
views. After much discussion, 9 full papers and 7 technical communications were
accepted, and further 3 full papers were accepted as technical communications,
of which one was withdrawn. The conference also hosted a Doctoral Consortium
with a number of poster presentations and 3 abstracts in these proceedings. As
in recent years, the conference was co-located with the Reasoning Web Summer
School (in the 10th edition), held just before RR in Athens.

We would like to thank the members of the Program Committee and the
additional reviewers for their efforts to produce fair and thorough evaluation
of the submitted papers, the Local Organization Committee headed by Mano-
lis Koubarakis, the general chair Axel Polleres, the sponsorship chair Giorgos
Stamou, the publicity chair Giorgos Stoilos, the Doctoral Consortium chair
Francesco Ricca and of course the authors of the scientific papers and the in-
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vited speakers. Furthermore we are grateful to the sponsors for their generous
support: NSF, Google, Artificial Intelligence Journal, Oracle, Optique, ICCS-
NTUA, EETN, Inria and Siemens. Last, but not least, we thank the people
behind EasyChair for providing resources and a marvelous conference manage-
ment system.

September 2014 Roman Kontchakov
Marie-Laure Mugnier
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Carsten Lutz Universität Bremen, Germany
Thomas Meyer CSIR Meraka and the University of

KwaZulu-Natal, South Africa
Alessandra Mileo INSIGHT Centre for Data Analytics,

NUI Galway, Ireland
Marco Montali Free University of Bozen-Bolzano, Italy
Boris Motik University of Oxford, UK
Giorgio Orsi University of Oxford, UK
Magdalena Ortiz Vienna University of Technology, Austria
Adrian Paschke Freie Universität Berlin, Germany
Andreas Pieris University of Oxford, UK
Andrea Pugliese University of Calabria, Italy
Guilin Qi Southeast University, China
Francesco Ricca University of Calabria, Italy
Riccardo Rosati Sapienza Università di Roma, Italy
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Semantic Technologies

in Selected Industrial Applications

Stephan Grimm

Siemens AG, Corporate Technology
Munich, Germany

stephan.grimm@siemens.com

Abstract. Semantic technology around knowledge representation and
reasoning offers promising methods and tools for industrial applications.
This talk will give an insight into selected projects where semantic tech-
nology has been successfully applied in innovative technology fields. It
will illustrate that research on reasoning, rule-based systems and on-
tologies does have an impact in areas like power generation, industrial
automation or health care, to name just a few.

Siemens is a leading industrial player in various innovative technology areas,
such as power generation, industrial automation, traffic control or health care
applications, to name just a few. The R&D department Corporate Technology is
layered across the Siemens business units and is organized in various technology
fields with the mission of transferring the latest research results into in-house
business innovations.

Within the technology field of Business Analytics and Monitoring also seman-
tic technologies are being researched on. They cover methods for the processing
of highly structured data like ontologies, rule-based systems and deductive as
well as abductive and inductive inference mechanisms, but also methods for
data-driven interpretation, such as natural language processing and machine
learning techniques. All those aspects of semantic technologies find an applica-
tion in many innovative technology areas, the following being an incomplete list
of examples drawn from past and ongoing research activities.

– Reasoning about ontologies in the light-weight description logic OWL EL is
applied to the diagnosing of turbine sensor data in order to detect operational
faults and to find their root causes, as reported in [6].

– Rule-based inference and complex event processing are applied in combina-
tion with ontologies for monitoring the operation of industrial manufacturing
plants, as described in [2].

– A technology stack for CEP-style reasoning with the ETALIS framework
[4] on the Gumstix1 embedded controller is sketched in [5] for condition
monitoring and diagnostics of technical devices.

1 www.gumstix.com
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– OWL DL reasoning is applied to the automated validation of plant engi-
neering models to support plant engineers in finding misconceptions prior to
building up industrial plants, as reported in [3].

– Semantic Media Wiki [7] is applied to the capturing and interactive visual-
ization of knowledge about complex industrial plants in order to support the
plant engineering phase, as e.g. reported in [1].

– An ontology of diseases and symptoms is used to infer likely diseases based
on semantic annotations to clinical data helping clinicians to make diagnoses,
as described in [8].
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P � P
Why Some Reasoning Problems Are More Tractable Than Others

Markus Krötzsch

Technische Universität Dresden, Germany

Abstract. Knowledge representation and reasoning leads to a wide range of com-
putational problems, and it is of great interest to understand the difficulty of these
problems. Today this question is mainly studied using computational complexity
theory and algorithmic complexity analysis. For example, entailment in proposi-
tional Horn logic is P-complete and a specific algorithm is known that runs in lin-
ear time. Unfortunately, tight algorithmic complexity bounds are rare and often
based on impractical algorithms (e.g., O(n2.373) for transitive closure by matrix
multiplication), whereas computational complexity results abound but are very
coarse-grained (e.g., many P-complete problems cannot be solved in linear time).

In this invited paper, we therefore advocate another approach to gauging the
difficulty of a computation: we reformulate computational problems as query an-
swering problems, and then ask how powerful a query language is needed to
solve these problems. This reduces reasoning problems to a computational model
– query answering – that is supported by many efficient implementations. It is of
immediate practical interest to know if a problem can be reduced to query an-
swering in an existing database system. On the theoretical side, it allows us to
distinguish problems in a more-fine grained manner than computational complex-
ity without being specific to a particular algorithm. We provide several examples
of this approach and discuss its merits and limitations.

1 Introduction

There are two main reasons for studying the complexity of computational problems.
On the practical side, we want to know what is needed to solve the problem: how much
time and memory will it take? On the theoretical side, we want to understand the rel-
ative difficulty of the problem as compared to others. For example, there is value in
understanding that one problem is NP-complete while another is ExpTime-complete,
even though we have no proof that the former is strictly easier than the latter.

The previous example also illustrates that computational complexity does often not
provide insights about the worst-case complexity of algorithms implementing the prob-
lem. Such insights can rather be obtained by more detailed algorithmic analysis for
specific problems. For example, it is known that the classical inference problem of com-
puting the transitive closure of a binary relation can be solved in O(n2.3729) [20].

Unfortunately, however, such detailed analysis is missing for most problems in
knowledge representation and reasoning, and we have to be content with much coarser
bounds obtained from some naive algorithm (such as the immediate O(n3) bound for
transitive closure). Indeed, the efforts required for a more in-depth analysis are substan-
tial: the study of transitive closure algorithms has a history of over four decades, and

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 1–22, 2014.
c© Springer International Publishing Switzerland 2014
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it is still unknown if the conjectured optimum of O(n2) can be reached [20]. Moreover,
the best known algorithms are of limited value in practice, since the underlying view
of transitive closure as matrix multiplication is rarely feasible. Even the existing results
thus provide little information about the actual “difficulty” of the problem.

Computational complexity is therefore often the preferred measure for the complex-
ity of reasoning problems (and many other problems) [17]. By abstracting worst-case
estimates from specific functions to general classes of functions, we obtain broad com-
plexity classes. One strength of this approach is that such classes are usually stable both
under “simple” transformations of the problem and under modifications of the underly-
ing computational model (the Turing Machine). This suggests that they really capture an
intrinsic aspect of a computational problem. Another strength of the theory is that many
(though not all) complexity classes are comparable and form a linear order. Although
we often do not know if the order is strict, this provides us with a one-dimensional scale
on which to specify computational difficulty.

The price to pay for this nice and clean theory is that it often tells us very little about
the “real” difficulty of a problem either. Complexity classes are very broad. The class of
P-complete problems, e.g., includes problems that can be solved in linear time as well
as problems that are inherently quadratic, cubic, or even worse. Moreover, important
complexity classes are based on non-deterministic models of computation that do not
correspond to existing hardware, which is one of the reasons why it is hard to explain
why exactly an NP-complete problem should be easier to implement than a PSpace-hard
problem on a real (deterministic) computer.

Summing up, we have the choice between an arduous algorithmic analysis that pro-
vides detailed results for specific cases, and a more abstract complexity analysis that
leads to more general but very coarse-grained classifications. In both cases, the practi-
cal significance of our insights will vary. The object of this paper is to explore a middle
ground in between these two extremes.

Computation as Query Answering. We propose to view computational problems as
query answering problems over a database, and to explore their “difficulty” by studying
how powerful a query language is needed to solve them. Indeed, query languages come
in a great variety – including simple conjunctive queries, regular path queries and their
extensions [18,4,6], highly expressive recursive Datalog queries [1], and a range of
expressive fragments of Datalog [2] and higher-order logic [19] – providing us with a
large space for a fine-grained classification of problems.

Databases are essentially relational structures, i.e., (hyper)graphs, and many prob-
lems admit natural representations in this format. Indeed, it is well known that the class
of constraint satisfaction problems can naturally be expressed in terms of query answer-
ing [9]. In general, such a view is particularly suggestive if the original problem is based
on a set of axioms, constraints, production rules, etc., where the actual order does not af-
fect the meaning of the problem. This is typical for logical theories. A database, viewed
as a graph, is similarly unordered, while traditional computational models require us to
impose an order on the input. It is known that this has a profound impact on the compu-
tational properties of the problem: query languages are more powerful if we provide a
total order on the elements of a database [10].
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We will adopt a fairly simple and direct view of computational problems as graphs
(databases). After this step, some query languages are sufficiently expressive to solve
the original problem, while others are not. The challenge is to make this characterisation
as tight as possible, i.e., to identify the “exact” point at which a query language becomes
too simple to express a problem. For such results to be meaningful, we need to restrict
ourselves to a relevant class of query languages that defines the space in which we
want to locate computational problems. Indeed, the space of all query languages is so
fine-grained that each problem would fall into its own class, incomparable to the others.

Our analysis will thus always be relative to a choice of query languages that provide
the desired level of detail and the connection to practical tools and scenarios. We give
two examples for such a choice. The first is the space of Datalog queries where the arity
of intensional predicates (those that occur in rule heads) is bounded by some constant.
The simplest case is monadic Datalog, where only unary predicates can appear in rule
heads. Each increase of this arity leads to a strictly more expressive query language
[2], resulting in an infinite, linear hierarchy of languages. Our second example is the
space of known navigational query languages. This space consists of specific languages
proposed in several papers, and we can apply our approach to relate relevant practical
tasks to these practical languages.

Contributions. The main contribution of this paper is to show that this approach is
indeed feasible in practice. On the one hand, we find a variety of practical problems
to which it is applicable. On the other hand, we show that it is indeed possible to ob-
tain tight classifications of these problems relative to practical query languages. This
requires a number of techniques for understanding the expressive power of query lan-
guages, which is an interesting side effect of this work. We argue that this view can
provide fresh answers to the two original questions of computational complexity:

– It can provide relevant insights into the practical feasibility of a problem. Our cho-
sen computational model – database query answering – is supported by many im-
plementations. Determining whether or not a certain problem can be expressed in
a practical query language can tell us something about its implementability that
might be just as relevant as theoretical worst-case complexity.

– It allows us to compare the relative difficulty of problems in classes that are more
fine-grained than those of complexity theory. By showing that one problem requires
strictly more query power than another, we can compare problems within the frame-
work of a relevant class of query languages. In particular, this gives us a yardstick
for comparing problems within P.

In exchange for these benefits, we must give up some of the advantages of complexity
theory and algorithmic analysis:

– The more fine-grained structure of query languages is tied to the fact that there are
many different, mutually incomparable query languages. “Difficulty,” when mea-
sured in these terms, becomes a multi-dimensional property. We can retain a one-
dimensional view by restricting the freedoms we allow ourselves for choosing a
query language.
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– Although query answering is a practical task on which plenty of practical experi-
ence is available, it does not provide specific runtime bounds in the sense of algo-
rithmic analysis. Even if we encode a problem using, e.g., conjunctive queries with
transitive closure, we do not know which transitive closure algorithm is actually
used.

– The results we obtain are not as universal or stable as those of complexity theory.
Whether a problem can be solved by a query of a certain type depends on the spe-
cific representation of the problem. Syntactic structure is relevant. In compensation,
we can often specify very precisely at which point a query language becomes too
simple to express a problem – a similar precision can rarely be attained in complex-
ity theory since the exact relationship between nearby complexity classes if often
open.

Overall, we therefore believe that our approach is, not a replacement for, but a valu-
able addition to the available set of tools. Indeed, we will show a number of concrete
examples where we gain specific insights that go beyond what other methods can tell
us.

We use the problem of computing positive and negative entailments in propositional
Horn logic as a simple example to exercise our approach. In Section 2, we introduce
this example and state our main theorem: the computation of negative entailments in
propositional Horn logic requires a strictly more expressive variant of Datalog than the
computation of positive entailments. Towards a proof of this method, Section 3 gives
formal definitions for database, query, and retrieval problem. We introduce Datalog and
its proof trees in Section 4, derive useful characteristics of its expressivity in Section 5,
and further refine this method to work with database encodings of retrieval problems in
Section 6. This allows us to prove the main theorem in Section 7. In Section 8, we give
an overview of several other results that have been obtained for Datalog using similar
methods on various ontology languages. In Section 9, we briefly review recent query-
based reasoning approaches for sub-polynomial reasoning problems, using navigational
queries instead of Datalog. Section 10 sums up our results, discusses the relationship to
adjacent areas, and gives some perspectives for the further development of this field.

2 Example: Propositional Horn Logic

For a concrete example, we will instantiate our framework for the case of reasoning with
propositional Horn logic. Given a set of propositional letters A, the set of propositional
Horn logic rules is defined by the following grammar:

Body� � | A | A ∧A (1)

Head� ⊥ | A (2)

Rule� Body→ Head (3)

The constants � and ⊥ represent true and false, respectively. We restrict to binary
conjunctions in rule bodies here; all our results extend to the case of n-ary bodies
(considered as nested binary conjunctions), but we prefer the simplest possible formu-
lation here. A propositional Horn logic theory is a set of propositional Horn logic rules.
Logical entailment is defined as usual.
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Given a Horn logic theory T we can now ask whether T is satisfiable. This is the case
whenever ⊥ is not derived starting from �. More generally, one can also ask whether
T entails some proposition b or some propositional implication a → b. All of these
problems are easily reducible to one another, and it is a classic result that all of them
can be solved in linear time [8].

In fact, a known linear-time algorithm computes the set of all propositions that T
entails to be true [8]. Interestingly, however, the situation changes if we want to compute
the set of all propositions that are entailed to be false: no linear time algorithm is known
for this case.1

What explains this unexpected asymmetry? For any given pair of propositions a and
b, we can decide whether T |= a → b in linear time. We could use this to decide
T |= a → ⊥ for all propositions a, but this would require a linear number of linear
checks, i.e., quadratic time overall. Complexity theory does not provide any help either:
any of the above decision problems (those with a yes-or-no answer) is P-complete [7].
On the one hand, P does not distinguish between linear and quadratic algorithms; on the
other hand, the problem we are interested in is not a decision problem in the first place.

Considering that we are interested in querying for a set of propositions, query lan-
guages do indeed suggest themselves as a computational formalism. Here we use Dat-
alog as one of the most well-known recursive query languages [1]. However, query
languages act on databases, while our problem is given as a set of rules.

Fortunately, there are natural ways to represent Horn logic theories as databases.
For this example, we use a simple encoding based on binary relations b (binary body),
u (unary body) and h (head), as well as unary relations t (true) and f (false). Each
rule, each propositional letter, and each of the constants � and ⊥ are represented by a
vertex in our graph. A rule ρ : c ∧ d → e is encoded by relations b(c, ρ), b(d, ρ), and
h(ρ, e), and analogously for unary rules but with u instead of b to encode the single
proposition in the body. The unary relations t and f contain exactly the vertices � and
⊥, respectively. Note that we have one explicit vertex per rule to ensure that there is
no confusion between the premises of multiple rules with the same head. A Horn logic
theory is now translated to a graph by translating each rule individually. The graphs of
several rules can touch in the same proposition vertices, while all the rule vertices are
distinct.

For the remainder of this paper, we assume that all logical theories under considera-
tion are consistent – this alleviates us from checking the special case that all entailments
are valid due to inconsistency. Now it is easy to give a Datalog query for the set of all
propositions that are entailed to be true, expressed by the head predicate T :

t(x)→ T (x) (4)

T (x) ∧ u(x, v) ∧ h(v, z)→ T (z) (5)

T (x) ∧ T (y) ∧ b(x, v) ∧ b(y, v) ∧ h(v, z)→ T (z) (6)

1 The question if this is unavoidable and why was put forward as an open problem at the re-
cent Dagstuhl Seminar 14201 on Horn formulas, directed hypergraphs, lattices and closure
systems.
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It is easy to verify that T contains exactly those propositions that are inferred to be true.
How does this compare to the problem of finding the false propositions? The following
Datalog query computes this set in the predicate F:

→ I(w,w) (7)

I(w,w) ∧ t(x)→ I(w, x) (8)

I(w, x) ∧ u(x, v) ∧ h(v, z)→ I(w, z) (9)

I(w, x) ∧ I(w, y) ∧ b(x, v) ∧ b(y, v) ∧ h(v, z)→ I(w, z) (10)

I(w, x) ∧ f (x) → F(w) (11)

We use an auxiliary binary predicate I (implication) to compute implications between
propositions. Rule (7) asserts that everything implies itself using a variable w that ap-
pears only in the head. Using such an unsafe rule here is not crucial: instead, one could
also create several rules with non-empty bodies to find all proposition vertices.

Comparing the query in lines (4)–(6) with the query in lines (7)–(11), we can see that
the only head predicate in the former is the unary T , whereas the latter also uses a binary
head predicate I. It is known that Datalog with binary head predicates is strictly more
expressive than monadic Datalog (where only unary head predicates are allowed) [2],
so in this sense our encoding of the second problem takes up more query expressivity in
this example. This might be a coincidence – maybe we just missed a simpler approach
of computing false propositions – but it turns out that it is not:

Theorem 1. To compute all propositions that are entailed to be false by a propositional
Horn theory in Datalog, it is necessary to use head predicates of arity two or more.

We prove this result in Section 7. The theorem confirms that computing false propo-
sition is in a sense inherently more difficult than computing true propositions, when
measuring difficulty relative to the expressive power of Datalog. Similar to traditional
complexity classes, this insight does not provide us with specific runtime bounds: it nei-
ther shows that true propositions can be computed in linear time, nor that false proposi-
tions require at least quadratic time. Yet, it achieves what neither complexity theory nor
algorithmic analysis have accomplished: to provably separate the two problems with
respect to a general computational model.

Of course, the result is relative to the choice of Datalog as a model of computation.
However, this covers a wide range of conceivable reasoning algorithms: almost every
deterministic, polytime saturation procedure can be viewed as a syntactic variant of
Datalog. Our result therefore suggests that every such procedure will face some inherent
difficulties when trying to compute false propositions in linear time.

To give a proof for Theorem 1, we need to introduce various other techniques first.
We begin by defining the framework of our investigation in a more rigorous way.

3 Databases, Queries, and Computational Problems

In this section, we give more precise definitions of the terms database and query that
we used rather informally until now. Moreover, we specify the general type of compu-
tational problems that our approach is concerned with, and we give a canonical way of
viewing these problems in terms of databases.
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A database signature is a finite set Σ of relation symbols, each with a fixed arity ≥ 0.
A database D overΣ consists of an active domainΔD and, for each relation symbol r ∈ Σ
of arity n, an n-ary relation rD ⊆ (ΔD)n. We require that ΔD is countable (usually it is
even finite). Other names for databases in this sense are relational structure, (predicate-
logic) interpretation, and directed hypergraph. In particular, a database over a signature
with only binary relations is the same as a directed graph with labelled edges.

In the most general sense, a query language is a decidable language (i.e., we can
decide if something is a query or not) together with an interpretation that assigns to
each query a function from databases to the results of the query over this database.

This is a very general definition. In this paper, we restrict query to mean logic-based
query under set semantics. Accordingly, a query is a formula of second-order logic,
where every second-order variable must be bound by a quantifier and first-order vari-
ables may occur bound or free. The number of free first-order variables is called the
arity of the query. For simplicity, we will not consider queries that contain constants or
function symbols. A query with arity 0 is called Boolean.

Let Q be a query of arity n, and let D be a database. A solution of Q is a mapping
μ from free variables in Q to ΔD, such that D |= μ(Q), i.e., the formula Q is satisfied
by the database (interpretation) D when interpreting each free variable x as μ(x). In
other words, we check if D is a model for “μ(Q)” under the standard second-order logic
semantics (the details are inessential here; we give the semantics for concrete cases
later). The result Q(D) of Q over D is the set of all solutions of Q over D. Boolean
queries have at most one solution (the unique function μ with empty domain), i.e., they
are either satisfied by the database or not. We tacitly identify query solutions μ with
n-tuples 〈μ(x1), . . . , μ(xn)〉, where x1, . . . , xn is the sequence of free variables ordered
by their first occurrence in Q.

In traditional complexity theory, computational problems are often phrased as word
problems: the input of the Turing machine is an arbitrary word over an input alphabet;
the task is to decide whether this string is contained in the language or not. Input strings
in this sense could be viewed as (linear) graphs, but this encoding would be impractical
if we want query languages to return the actual answer to the problem. Instead, the
graph we use should encode the logical relationships that are given in the input, rather
than a serialization of these relations in a string. At the same time, the encoding of the
problem must not make any significant changes to the formulation of the problem – in
particular, it should not pre-compute any part of the solution.

Many problems in reasoning are naturally given as sets of formulae, where each
formula has a well-defined term structure, i.e., formulae are defined as terms built using
logical operators and signature symbols. A general framework to discuss such terms are
(multi-sorted) term algebras. Instead of giving a full introduction to this field here, we
give some examples.

Example 1. Formulae of propositional logic can be viewed as terms over a set of oper-
ators: we usually use binary operators ∧, ∨, and→; unary operator ¬; and sometimes
also nullary operators � and ⊥. Formulae (terms) are formed from these operators and
a countably infinite set of propositional letters A (in algebraic terms, this set is called
generating set) in the usual way.
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Example 2. Terms of first-order logic are also terms in this sense. Here, the “operators”
are given by a signature of function symbols with associated arity (we treat constants
as functions of arity 0). Terms are constructed from a countably infinite set of variables
V (the generators): every variable x ∈ V is a term; and for every n-ary function f and
terms t1, . . . , tn, the expression f (t1, . . . , tn) is a term.

Example 3. Formulae of first-order logic can also be viewed as terms using the well-
known logical operators. In this case, the set of generators are the logical atoms, con-
structed using a first-order signature of predicate symbols and an underlying language
of first-order terms. One can view such formulae as terms over a multi-sorted algebra,
where we use multiple sorts (first-order terms, formulae, . . . ) and the arity of operators
(function symbol, predicate, logical operator) is given as the signature of a function
over sorts. For example, the operator ∧ is of type formula × formula → formula while
a ternary predicate is of type term × term × term → formula. If we introduce a sort
variable, we can view quantifiers as binary operators variable × formula→ formula.

As we are mainly interested in logic here, we use formula (rather than term) to refer to
logical expressions. There is usually some choice on how to capture a logical language
using (multi-sorted) operators and generating sets, but in all cases formulae have a
natural representation as a labelled tree structure:

Definition 1. Consider a set L of formulae over some signature of operators (which
might include predicates and function symbols). For a formula ϕ ∈ L, the set ST(ϕ)
of subterms of ϕ is defined inductively as usual: ϕ ∈ ST(ϕ) and, if ϕ = o(ϕ1, . . . , ϕn)
for some n-ary operator o, then ST(ϕi) ⊆ ST(ϕ) for each i ∈ {1, . . . , n}. Moreover, ϕ is
associated with a graph G(ϕ) defined as follows:

– G(ϕ) contains the vertex [ϕ],
– if ϕ is of the form o(ϕ1, . . . , ϕn) then [ϕ] is labelled by to and, for each i ∈ {1, . . . , n},

G(ϕ) contains an edge from [ϕ] to [ϕi] with label ri
o, and G(ϕi) ⊆ G(ϕ).

We call a finite set T ⊆ L a theory. The subterms of T are defined by ST(T ) �
⋃
ϕ∈T ST(ϕ). T is associated with a graph G(T ) �

⋃
ϕ∈T G(ϕ) over the set of vertices

{[ϕ] | ϕ ∈ ST(T )}, i.e., vertices for the same subterm are identified in G(T ).

Note that the number of vertices and edges of G(T ) is linear in the size of T . The
names we use to refer to vertices can also be of linear size, but they are only for our
reference and should not be considered to be part of the database (the query languages
we study do not “read” labels). Thus, the translation is linear overall.

Example 4. The propositional Horn rule b ∧ c → d is represented by the following
graph structure G(b ∧ c→ d), where t→ and t∧ are vertex labels:

[b ∧ c→ d]
t→

r1→ ��

r2→ ����
���

���
���

[b ∧ c]
t∧

r1∧ ��

r2∧
�����

���
[b]

[c]

[d]
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A propositional Horn theory is translated by taking the union of the graphs obtained
by translating each of its rules. For example, the translation of the theory {a → b, a →
c, b ∧ c→ d} can be visualized as follows, where we omit the vertex labels:

[d] [b ∧ c→ d]
r1→ ��r2→�� [b ∧ c]

r1∧ ��

r2∧
�����

���
[b] [a→ b]

r1→ ��r2→�� [a]

[c] [a→ c] r1→

��������r2→��

This provides us with a canonical representation of a broad class computational prob-
lems as graphs (and thus databases). Many problems are naturally given by sets of terms
or formulae, in particular most logical reasoning tasks. Sometimes a slightly simpler en-
coding could be used too (e.g., the graphs in Example 4 are more “verbose” than those
used for the intuitive introduction in Section 2), but results obtained for the canonical
encoding usually carry over to such simplifications.

It is easy to formulate decision problems with respect to this encoding. However,
our use of query languages allows us to generalise this to a broader class of retrieval
problems, which will be the main notion of computational problem we study.

Definition 2. Consider a set L of logical formulae. For n ≥ 0, an n-ary retrieval prob-
lem is given by the following:

– a set T of theories of L;
– a mapping Θ from theories T ∈ T to subsets of ST(T )n.

An n-ary retrieval problem is solved by an n-ary query Q if, for all theories T ∈ T , the
result Q(G(T )) of Q over G(T ) is exactly the set Θ(T ) (where we identify vertices [ϕ]
with subterms ϕ).

Decision problems are obtained as retrieval problems of arity n = 0. Computing all
true (respectively false) propositions in Horn logic is a unary retrieval problem. Also
note that we do not require Q to decide whether the given database is actually of the
form G(T ) for some theory T ∈ T : the query only needs to be correct for databases
that actually encode instances of our computational problem.

4 Datalog with Bounded Arity

In this paper, we mainly consider Datalog as our query language [1] and obtain a hierar-
chy of increasing expressivity by varying the maximal arity of head predicates. In this
section, we define the basic notions that we require to work with Datalog.

Let Σ be a database signature as in Section 3. A Datalog query over Σ is based on
an extended set of relation (or predicate) symbols Σ′ ⊇ Σ. Predicates in Σ are called
extensional (or extensional database, EDB), and predicates in Σ′ \ Σ are called inten-
sional (or intensional database, IDB). We also use a fixed, countably infinite set V of
variables.

A Datalog atom is an expression p(x1, . . . , xn) where p ∈ Σ′ is of arity n, and xi ∈ V
for i = 1, . . . , n. We do not consider Datalog queries with constant symbols here. An
IDB (EDB) atom is one that uses an IDB (EDB) predicate. A Datalog rule is a formula
of the form B1 ∧ . . . ∧ B� → H where Bi and H are Datalog atoms, and H is an IDB
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T ([d])

T ([b])

(14)

�����������
T ([c])

����������� r1
∧([b ∧ c], [b]), r2

∧([b ∧ c], [c]),
r1→([b ∧ c→ d], [b ∧ c]),

r2→([b ∧ c→ d], [d])

		��������������������

T ([a])

(13)





r1→([a→ b], [a]),
r2
→([a→ b], [b])

����������

T ([a])

(13)





r1→([a→ c], [a]),
r2
→([a→ c], [c])

����������

T ([�])

(13)





r1
→([� → a], [�]),
r2→([� → a], [a])

���������

T ([�])

(13)





r1
→([� → a], [�]),
r2→([� → a], [a])

���������

t�([�])

(12)





t�([�])

(12)





Fig. 1. Proof tree for Example 5 with leaf nodes combined in dotted boxes; labels (12)–(14) refer
to the rule applied in each step

atom. The premise of a rule is also called its body, and the conclusion is called its head.
A Datalog query 〈P, g〉 is a set of Datalog rules P with a goal predicate g ∈ Σ′ \ Σ.

Under the logical perspective on queries of Section 3, a Datalog query corresponds
to a second-order formula with IDB predicates representing second-order variables. For
our purposes, however, it makes sense to define the semantics of Datalog via proof trees.

Consider a database D with active domain ΔD. A ground atom for an n-ary (IDB or
EDB) predicate p is an expression of the form p(d1, . . . , dn) where d1, . . . , dn ∈ ΔD. A
variable assignment μ for D is a function V → ΔD. The ground instance of an atom
p(x1, . . . , xn) under μ is the ground atom p(μ(x1), . . . , μ(xn)).

A proof tree for a Datalog query 〈P, g〉 over a database D is a structure 〈N, E, λ〉
where N is a finite set of nodes, E ⊆ N × N is a set of edges of a directed tree, and λ
is a labelling function that assigns a ground atom to each node, such that the following
holds for each node n ∈ N with label λ(n) = p(d1, . . . , dk):

– if p is an EDB predicate, then n is a leaf node and 〈d1, . . . , dk〉 ∈ pD;
– if p is an IDB predicate, then there is a rule B1 ∧ . . . ∧ B� → H ∈ P and a variable

assignment μ such that λ(n) = μ(H) and the set of child nodes {m | 〈n,m〉 ∈ E} is of
the form {m1, . . . ,m�} where λ(mi) = μ(Bi) for each i = 1, . . . , �.

A tuple 〈d1, . . . , dk〉 is a solution of 〈P, g〉 over D if there is a proof tree for 〈P, g〉 over
D with root label g(d1, . . . , dk).

Example 5. The Datalog query (4)–(6) of Section 2 can be reformulated for the canon-
ical graphs of Section 3, as illustrated in Example 4. Note that � is a nullary operator.

t�(x)→ T (x) (12)

T (x) ∧ r1
→(v, x) ∧ r2

→(v, z)→ T (z) (13)

T (x) ∧ T (y) ∧ r1
∧(w, x) ∧ r2

∧(w, y) ∧ r1
→(v,w) ∧ r2

→(v, z)→ T (z) (14)
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Here, r1→, r2→, r1∧, r2∧, and t� are EDB predicates from Σ, and T is the only additional
IDB predicate in Σ′ \ Σ. For example, rule (14) states that, whenever x and y are true,
and there is a rule v of form x∧y → z, then z is also true. Now consider the propositional
Horn theory {� → a, a→ b, a→ c, b ∧ c→ d}, which is the same as in Example 4 but
with an added implication � → a. The proof tree of T ([d]) is shown in Fig. 1.

5 The Limits of Datalog Expressivity

To prove Theorem 1, we need to show that no monadic Datalog query can correctly
compute the false propositions from a propositional Horn theory. To accomplish this, we
first study the properties of retrieval problems that can be solved in monadic Datalog.
We can then proceed to show that some of these properties are violated by (certain
instances of) the logical entailment question that we are interested in.

Datalog has a number of general properties that we can try to exploit. Most obviously,
Datalog is deterministic, or, in logical terms, it does not support disjunctive information.
However, this feature is not immediately related to the arity of predicates. Another gen-
eral property is that Datalog is positive in the sense that it only takes positive informa-
tion into account during query evaluation: the absence of a structure cannot be detected
in Datalog. In logical terms, this corresponds to a lack of negation; in model-theoretic
terms, it corresponds to closure of models under homomorphisms. This feature is an
important tool in our investigations:

Definition 3. Consider databases D1 and D2 with active domains ΔD
1 and ΔD

2 and over
the same database signature Σ. A function μ : ΔD

1 → ΔD
2 is a homomorphism from

D1 to D2 if, for all n-ary relations r ∈ Σ and elements d1, . . . , dn ∈ ΔD
1 , we have that

〈d1, . . . , dn〉 ∈ rD1 implies 〈μ(d1), . . . , μ(dn)〉 ∈ rD2 .
Consider a query Q over Σ. Q is closed under homomorphisms if, for all databases

D1 and D2 over Σ, and every homomorphism μ : D1 → D2, we have μ(Q(D1)) ⊆ Q(D2),
where μ(Q(D1)) is the set obtained by applying μ to each element in the query result
Q(D1). In particular, if Q is Boolean and D1 is a model of Q, then D2 is a model of Q.

It is not hard to show that Datalog is closed under homomorphisms in this sense.
The utility of this observation is that it allows us to restrict attention to a much more
select class of databases. Intuitively speaking, if D1 has a homomorphism to D2, then
D1 is less specific than D2. We are interested in cases where this simplification does not
eliminate any query results. This is captured in the following notion.

Definition 4. Consider a database signature Σ. A set of databases D is a covering of a
query Q if, for all databases D over Σ, there is a database D′ ∈ D and a homomorphism
μ : D′ → D, such that Q(D) = μ(Q(D′)).

Intuitively speaking, a covering of a query represents every way in which the query
can return a result. In most cases, a minimal covering (i.e., a covering not properly
containing another covering) does not exist. Nevertheless, coverings provide a powerful
proof mechanism for showing the expressive limits of a (positive) query language. The
general strategy is: (1) show that every query of the language admits a covering that
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consists only of databases with a specific structural property, and (2) then find a retrieval
problem that does not admit a covering with this property.

For example, Datalog admits natural coverings based on proof trees. The labels of
the leaves of a proof tree define a “minimal” database in which the root of the proof
tree can be inferred. However, this sub-database can still be much more specific than
needed to obtain a correct proof tree.

Example 6. The derivation of Example 5 is possible in any database that contains the
leaf labels of the according proof tree, shown in dotted boxes in Fig. 1. The subtrees
for T ([b]) and T ([c]) both rely on the same implication � → a. Intuitively speaking,
this use of a in two different branches of the proof tree is not required by the Datalog
query: if we replace one of the uses of a by a′, e.g., by replacing the rule a → c with
{a′ → c,� → a′} then we are able to derive the same result. There is a homomorphism
from the modified database to the original one, mapping both a′ and a to a.

This idea of renaming elements that occur only in parallel branches of a proof tree
can be formalised for arbitrary Datalog queries as follows.

Definition 5. Consider a database D, a Datalog query 〈P, g〉, and a proof tree t =
〈N, E, λ〉 of 〈P, g〉 on D. The interface of a node n ∈ N is the set of constants from the
active domain ΔD of D that occur in its label λ(n).

The diversification of the proof tree t with root node nr is constructed recursively:

– for all constants d ∈ ΔD that are not in the interface of nr, introduce a fresh constant
d′ that has not yet been used in t or in this construction yet, and replace every
occurrence of d in labels of t by d′;

– apply the diversification procedure recursively to all subtrees of t that have a non-
leaf child node of nr as their root.

We tacitly assume that ΔD contains all required new constants (or we extend it accord-
ingly). Note that the replacement of constants may not be uniform throughout the tree,
i.e., several fresh constants might be introduced to replace uses of a single constant d.

Example 7. Figure 2 shows the diversified version of the proof tree for Example 5 as
shown in Fig. 1. Here, we use superscript numbers to distinguish several versions of
renamed vertices, where the number indicates the node in which the constant was intro-
duced. Note that we treat expressions like [a → b] as database constants, ignoring the
internal structure that their name suggests. Likewise, a diversified name like [a → b]2

is just a constant symbol. The two tree nodes originally labelled T ([a]) now refer to
distinct vertices [a]2 and [a]4 in the graph. The set of leaf facts shown in dotted boxes
forms a diversified database with the following structure (with vertex labels t→, t∧, and
t� omitted):

[d] [b ∧ c→ d]1

r1→

r2→��

[b ∧ c]1 r1∧ ��

r2∧ ��		
			

			
[b]1 [a→ b]2 r1→ ��r2→�� [a]2 [� → a]3 r1→ ��r2→�� [�]3

[c]1 [a→ c]4 r1→ ��r2→�� [a]4 [� → a]5 r1→ ��r2→�� [�]5
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T ([d])

T ([b]1)

(14)

��









T ([c]1)

����������� r1
∧([b ∧ c]1, [b]1), r2

∧([b ∧ c]1, [c]1),
r1→([b ∧ c→ d]1, [b ∧ c]1),

r2→([b ∧ c→ d]1, [d])

		���������������������

T ([a]2)

(13)





r1→([a→ b]2, [a]2),
r2
→([a→ b]2, [b]1)

����������

T ([a]4)

(13)





r1→([a→ c]4, [a]4),
r2
→([a→ c]4, [c]1)

����������

T ([�]3)

(13)





r1→([� → a]3, [�]3),
r2
→([� → a]3, [a]2)

���������

T ([�]5)

(13)





r1→([� → a]5, [�]5),
r2
→([� → a]5, [a]4)

���������

t�([�]3)

(12)





t�([�]5)

(12)





Fig. 2. Diversified version of the proof tree in Fig. 1

This database still allows for the fact T ([d]) to be entailed, and it can be mapped by
a homomorphism into the original database of Fig. 1 (partly illustrated in Example 4).

The previous example illustrates that diversified proof trees lead to diversified
databases. The example considered only a single solution of the query; a more general
formulation is as follows. For a Datalog query 〈P, g〉 and a database D, let T (D, P, g)
be the set of all proof trees for 〈P, g〉 over D. Let T̄ (D, P, g) be a set containing one di-
versification for each tree in T (D, P, g), where every fresh constant that was introduced
during the diversification of a proof tree is distinct from all other constants throughout
all diversified trees. Now the diversified database D|〈P,g〉 is defined as the union of all
leaf node labels of proof trees in T̄ (D, P, g).

Theorem 2. Let D be the set of all databases over a signature Σ.2 For every Datalog
query 〈P, g〉 over Σ, the set {D|〈P,g〉 | D ∈ D} is a covering for 〈P, g〉.

This theorem can be used to show the limits of Datalog expressivity. Namely, the
process of diversification is restricted by the size of the interface of a node in the proof
tree, which in turn is closely related to the IDB arity. Therefore, a bound on the maxi-
mal IDB arity of a Datalog query affects the structure of diversifications. For example,
diversifications of monadic Datalog queries are databases that can be decomposed into
graphs that touch only in a single vertex, and which form a tree-like structure (tech-
nically, this is a so-called tree decomposition where we restrict the number of nodes
that neighbouring bags may have in common). Given a query task that we conjecture to
be unsolvable for monadic Datalog, we only need to find cases that do not admit such
coverings. This occurs when diversification leads to databases for which strictly less
answers should be returned.

For the case of retrieval problems in the sense of Definition 2, however, this approach
is not quite enough yet. Indeed, a diversified database may fail to be a correct instance of

2 This is a set since we assume that every database is defined over a countable active domain.
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the original retrieval problem. For instance, the diversified database of Example 7 does
not correspond to any database that can be obtained by translating a propositional Horn
theory, since two distinct vertices [�]3 and [�]5 are labelled with the unary relation t�.

6 Finding Diversification Coverings for Retrieval Problems

To make diversification applicable to retrieval problems, we must perform renamings
in a way that guarantees that the resulting database is still (part of) a correct transla-
tion of some problem instance. Intuitively speaking, reasoning problems (and all other
problems over a set of terms or formulae) are based on certain sets of atomic symbols –
propositions, constants, predicate names, etc. – of which we have an unlimited supply.
These sets correspond to the generators in a term algebra, in contrast to the operators
of the algebra. In logic, the generators are often provided by a signature, but we con-
fine our use of this term to databases and queries, and we will speak of generators and
operators instead to make the distinction.

Example 8. For propositional Horn rules as defined in (1)–(3), the set A of proposi-
tional letters is a set of generators, whereas the constants � and ⊥ are nullary operators.
Indeed, we can freely rename propositions to create new expressions with similar prop-
erties, but there is always just a single � and ⊥.

Applied to the idea of diversification from Section 5, this means that we can easily
rename a vertex [a] to [a]′, since the latter can be understood as a vertex [a′] for a
new proposition a′. However, we cannot rename [�] to [�]′, since it is not possible to
introduce another �. Additional care is needed with vertices introduced for complex
formulae, since they are in a one-to-one relationship with all of their subterms. For
example, a vertex [b ∧ c] must always have exactly two child vertices [b] and [c] –
we cannot rename these children independently, or even introduce multiple children (a
renamed version and the original version). These informal considerations motivate the
following definition:

Definition 6. Consider a retrieval problem 〈T , Θ〉 over a language L of formulae as in
Definition 2. Let T ∈ T be an instance of this retrieval problem, let 〈P, g〉 be a Datalog
query, and let t = 〈N, E, λ〉 be a proof tree of 〈P, g〉 on G(T ). The L-interface of a node
n ∈ N is the set of generators of L that occur in the label λ(n).

The L-diversification of the proof tree t with root node nr is constructed recursively:

– for all generators d ∈ ΔD that are not in the L-interface of nr, introduce a fresh
generator a′ that has not yet been used in t or in this construction yet, and replace
every occurrence of a in labels of t by a′;

– apply the diversification procedure recursively to all subtrees of t that have a non-
leaf child node of nr as their root.

Note that we replace generator symbols that are part of vertex names of the form
[ϕ], leading to new vertices (constants), which we assume to be added to the active
domain. As before, the replacement of constants may not be uniform throughout the
tree. L-diversifications of (sets of) databases can be defined as in Section 5.
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Example 9. The L-diversification of the proof tree in Fig. 1 for L being the set of propo-
sitional Horn rules leads to the following diversified database:

[d] [b1 ∧ c1 → d]
r1→

r2→��

[b1 ∧ c1]
r1∧ ��

r2∧ ��		
			

			
[b1] [a2 → b1]

r1→ ��r2→�� [a2] [� → a2]
r1→ ��r2→�� [�]

[c1] [a4 → c1]
r1→ ��r2→�� [a4] [� → a4]

r1→

��������
r2→��

This corresponds to the propositional Horn theory {� → a2,� → a4, a2 → b1, a4 →
c1, b1 ∧ c1 → d}, which does indeed entail that d is true while being more general than
the original theory in the sense of Definition 3.

It is not hard to see that L-diversification is a restricted form of diversification that
imposes additional restrictions for renaming vertices. Therefore, Theorem 2 still holds
in this case. In addition, one can show that every L-diversified database is a subset of a
database that is a correct encoding of some instance of the retrieval problem. For this to
hold, we need to assume that the retrieval problem instances T contain all theories that
can be obtained by renaming arbitrary occurrences of generator symbols, and by taking
unions of theories in T :

Theorem 3. Consider a retrieval problem 〈T , Θ〉 over a language L, a theory T ∈ T
and a Datalog query 〈P, g〉. Let G(T )|L〈P,g〉 denote the L-diversification of G(T ), i.e.,
the database that satisfies all ground instances that occur as labels of leaf nodes of
L-diversified proof trees of 〈P, g〉 over G(T ).

If T is closed under unions of theories and replacements of generator symbols, then
there is a theory T |〈P,g〉 ∈ T such that G(T )|L〈P,g〉 ⊆ G(T |〈P,g〉).

What this tells us is that L-diversification is a valid method for producing coverings
of Datalog queries that satisfy the constraints of a certain problem encoding. It remains
to use them to obtain a proof of Theorem 1.

7 Proof of Theorem 1

In this section, we bring together the tools prepared so far to complete the proof for
the minimum arity of Datalog queries that solve the problem of retrieving all false
propositions of a Horn logic theory.

First and foremost, we must find a suitable family of problematic cases for which an
increased arity is necessary. Picking a single problem is not enough, since every finite
structure can trivially be recognised by a single Datalog rule of sufficient size. We use
Horn logic theories (Tk)k≥1 of the form

Tk � {b1 ∧ a→ ⊥, b2 → b1, b3 → b2, . . . , bk → bk−1, a→ bk}.
The structure of the graph G(Tk) of Tk is illustrated in Fig. 3. Clearly, each Tk entails a
to be false (while all other propositions might be true or false).
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[⊥] [b1 ∧ a→ ⊥]
r1→

r2→
��

[b1 ∧ a]
r1∧ ��

r2∧ ��

[b1] [b2 → b1]
r1→ ��r2→�� . . . [bk → bk−1]

r1→ ��r2→�� [bk] [a→ bk]
r2→��

r1→��[a]

Fig. 3. Illustration of the databases obtained from the propositional Horn theory Tk

Now suppose for a contradiction that there is a monadic Datalog query 〈P, g〉 that
solves the retrieval problem of computing false propositions from a propositional Horn
theory. Thus, g has arity 1 and the answer of 〈P, g〉 on Tk is {[a]}. We show that this
implies that 〈P, g〉 computes some wrong answers too. Indeed, by Theorems 2 and 3,
for any Tk we can find an L-diversification T ′k for which 〈P, g〉 still returns {[a]} as an
answer. We claim that there is Tk for which this answer must be wrong, since the correct
answer for any L-diversification of Tk would be {}.

To prove this, let m be the maximal number of EDB atoms in the body of some rule
in P. We set k to be �m/2� + 2, and consider a proof tree for the solution [a] of 〈P, g〉
over G(Tk). The root of this tree must be labelled g([a]).

Observation 1. All of the edges in G(Tk) as sketched in Fig. 3 are essential for the
entailment to hold: a substructure that lacks any of these edges could always be based
on some different theory that does not entail a to be false. Therefore, we can assume
that each atom of G(Tk) occurs as a label for a leaf node in the proof tree we consider.

Observation 2. We can assume that every rule body in P, when viewed as a graph with
variables as vertices and body atoms as edges, is connected and contains the variable
in the head of the rule. Indeed, if a rule would contain a connected component B in the
body that does not include the variable in the head, then one of three cases would apply:
(1) B does not match any database of the form G(T ) for a propositional Horn theory
T , and the whole rule can be removed; (2) B matches only graphs G(T ) for theories T
that are unsatisfiable, and the whole rule can be removed (since we restrict to satisfiable
theories); (3) B matches a part of G(T ) for some satisfiable theory T , and we can change
our problem formulation to include a disjoint copy of T in Tk so as to make B redundant.

From Observations 1 and 2 we obtain that any proof tree for g([a]) on Tk must “scan”
G(Tk) along connected subgraphs that overlap in at least one vertex. The number of
edges of these graphs is bounded by the number of body atoms in the largest body P.

Now let Gr be the graph that consists of the EDB ground atom labels of direct chil-
dren of the root of the proof tree, and let Ḡr be G(Tk) \ Gr. By our choice of k, the
number of body atoms of any rule is strictly smaller than 2k − 1, so Gr contains less
than 2k − 1 edges. Thus, Ḡr contains at least 3 edges of the cyclic structure of length
2k + 2 shown in Fig. 3. Note that the edges of Ḡr that occur in the cycle must form a
chain.
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By Observation 1, the edges of Ḡr occur as a label in the proof tree below some
child node of the root. However, all nodes have an interface of size 1 in monadic
Datalog, so only the generator symbols that occur together in a single vertex can be
preserved in Ḡr after L-diversification as in Definition 6. It is easy to see, however,
that there is no single vertex in Gr that contains enough generator symbols. For ex-
ample, one of the minimal choices for Ḡr consists of the ground atoms {r1→([bi →
bi−1], [bi]), r2→([bi+1 → bi], [bi]), r1→([bi+1 → bi], [bi+1])}. In this case, Gr contains the
vertices [bi → bi−1] and [bi+1] in the graph in its body, so it is possible that IDB
child nodes in the proof tree have these vertices in their head. However, the graph that
a subtree with [bi → bi−1] in its head matches after L-diversification has the form
Ḡ′r = {r1→([bi → bi−1], [bi]), r2→([b′i+1 → bi], [bi]), r1→([b′i+1 → bi], [b′i+1])} where bi+1

was diversified to b′i+1. Recall that Gr still uses the original node bi+1, so the cycle does
not connect in this place.

Analogously, a subtree with root vertex [bi+1] cannot recognize Ḡr either (in this
case, it is bi−1 that can be diversified). Any chain of three edges in the cycle of Fig. 3
yields a minimal graph Ḡr, so there are several more cases to consider; the arguments
are exactly the same in each of them.

Thus, we find that the diversified graph G(Tk)′ does not contain a cycle any more. By
Theorem 2, the answer of 〈P, g〉 on G(Tk)′ is still {[a]}. By Theorem 3 and Observation 1,
however, there is a theory T ′k with G(Tk)′ ⊆ G(T ′k) which does not entail a to be false.
Hence, 〈P, g〉 provides incorrect results for T ′k, which yields the required contradiction
and finishes the proof.

This completes the proof of Theorem 1. It is interesting to note that the following
modified theory T̂k would not work for the proof: {b1∧a→ ⊥, b2∧a→ b1, . . . , bk∧a→
bk−1, a → bk}. This modified theory still entails a to be false, but now every axiom
contains the generator symbol a. This prevents L-diversification of a if the Datalog
proof uses the nodes [bi+1 ∧ a → bi] in all head atoms. Indeed, one can find a monadic
Datalog query that correctly computes a to be false in all cases of this special form, and
that never computes any wrong answers.

This example illustrates the crucial difference between our framework of studying
retrieval problems and the traditional study of query language expressivity in database
theory. Indeed, monadic Datalog cannot recognize graph structures as used in T̂k, yet
it is possible in our setting by using the additional assumptions that the given database
was obtained by translating a valid input.

8 Further Applications Based on Datalog Arity

Sections 2–7 laid out a general method of classifying the difficulty of reasoning prob-
lems based on the minimal arity of IDB predicates required to solve them. This partic-
ular instance of our approach is of special interest, due to the practical and theoretical
relevance of Datalog. In this section, we give further examples where similar techniques
have been used to classify more complicated reasoning tasks, and we relate this work
to general works in descriptive complexity.

Many practical reasoning algorithms are based on the deterministic application of in-
ference rules, and those that run in polynomial time can often be formulated in Datalog.
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A prominent example is reasoning in lightweight ontology languages. The W3C Web
Ontology Language defines three such languages: OWL EL, OWL RL, and OWL QL
[16,15]. OWL RL was actually designed to support ontology-based query answering
with rules, but OWL EL, too, is generally implemented in this fashion [3,13,12].

Relevant reasoning tasks for these languages are the computation of instances and
subclasses, respectively, of class expressions in the ontology – both problems are P-
complete for OWL EL and OWL RL alike. Yet, the problems are not equivalent when
comparing the required Datalog expressivity, if we consider them as retrieval problems
that compute pairs of related elements:

Theorem 4 ([13]). For OWL EL ontologies

– retrieving all instances-of relationships requires Datalog of IDB arity at least 3;
– retrieving all subclass-of relationships requires Datalog of IDB arity at least 4.

Theorem 5 ([14]). For OWL RL ontologies retrieving all subclass-of relationships re-
quires Datalog of IDB arity at least 4.

Both theorems are interesting in that they provide practically relevant problems
where IDB arities of 2 or even 3 are not enough. This illustrates that our approach
is meaningful beyond the (possibly rather special) case of monadic Datalog. Instead,
we obtain a real hierarchy of expressivity. Nevertheless, the proof techniques used to
show these results follow the same pattern that we introduced for the simpler example
given herein; in particular, diversifications of proof trees play an important role [13,14].

The practical significance of these results is two-fold. On the one hand, experience
shows that problems of higher minimal arity are often more difficult to implement in
practice. In case of OWL EL, the arity required for class subsumption drops to 3 if a
certain feature, called nominal classes, is omitted. And indeed, this feature has long
been unsupported by reasoners [11]. Nevertheless, it is important to keep in mind that
neither complexity theory nor algorithmic complexity allow us to conclude that Datalog
of higher IDB arities is necessarily harder to implement, so we can only refer to practical
experiences here.

On the other hand, even if it is possible in theory that efficient algorithms are unaf-
fected by minimal IDB arities, our results impose strong syntactic restrictions on how
such algorithms can be expressed in rules. This is particularly relevant for the case of
OWL RL, where reasoning is traditionally implemented by rules that operate on the
RDF syntax of OWL. RDF describes a graph as a set of triples, which can be viewed as
labelled binary edges or, alternatively, as unlabelled ternary hyperedges. In either case,
however, this syntax does not provide us with the 4-ary predicates needed by Theorem 5.
This asserts that it is impossible to describe OWL RL reasoning using RDF-based rules3

as implemented in many practical systems.
Finally, it is worth noting that OWL reasoning is a very natural candidate for our

approach, since the official RDF syntax of OWL is already in the shape of a database
in our sense. In many ways, this syntax is very similar to the canonical syntax we
introduced in Section 3. The only difference is that the presence of logical operators

3 Under the standard assumption that such rules cannot add elements to the active domain of the
database during reasoning.
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of arbitrary arity in OWL necessitates the use of linked lists in the graph encoding.
However, the use of only binary operators is a special case of this encoding, so the
minimal IDB arities established here remain valid.

9 Reasoning with Navigational Query Languages

Datalog is an obvious choice for solving P-complete reasoning problems. For prob-
lems of lower complexity, however, it is more natural to consider query languages of
lower data complexity. In particular, many navigational query languages – which view
databases as a graph structure along which to navigate – are in NLogSpace for data com-
plexity. Such languages are typically contained in linear, monadic Datalog. In a recent
work, it was demonstrated how to implement this idea to solve OWL QL reasoning us-
ing the prominent SPARQL 1.1 query language [5]. Here, we give a brief overview of
these results and relate them to our general framework.

Traditionally, OWL QL reasoning is often implemented by using query rewriting,
where a reasoning task is transformed into a data access problem. This, however, is
different from our setting since the ontological schema is already incorporated for com-
puting the queries used to access the database. Bischoff et al. now introduced what they
called schema-agnostic query rewriting where the ontology is stored in the database and
not used for building the query [5]. This corresponds to our formalisation of reasoning
as a retrieval problem, with the only difference that Bischoff et al. assume the standard
RDF serialization of OWL ontologies rather than our canonical transformation.

SPARQL 1.1 is much weaker than Datalog, but it also supports a basic type of re-
cursion in the form of regular expressions that can be used to specify patterns for paths
in the RDF graph. This can be used for OWL QL reasoning. Bischoff et al. thus obtain
fixed SPARQL 1.1 queries for retrieving all subclass-of, instance-of, and subproperty-
of relationships. We omit the details here for lack of space. To provide an extremely
simplified example: in a logic that only supports a binary relation subClassOf, it is pos-
sible to retrieve the entailed subclass-of relations with a single query x subClassOf∗ y,
where ∗ denotes the Kleene star (zero or more repetitions), and x and y are variables.
It is straightforward to translate this toy example to SPARQL 1.1. Supporting all of
OWL QL requires somewhat more work.

Schema-agnostic query rewriting certainly has some practical merit, allowing us to
use SPARQL 1.1 database systems as OWL QL reasoners, but what does it tell us
about the difficulty of the problem? For one thing, SPARQL 1.1 is already a fairly
minimal navigational query language. More expressive options include nSPARQL [18],
XPath [4], and other forms of nested path queries [6]. Indeed, it turns out that one
feature of OWL QL – symmetric properties – cannot be supported in SPARQL 1.1
but in nSPARQL [5]. This is interesting since the feature does not otherwise add to the
complexity of reasoning. In fact, one can express it easily using other features that cause
no such problems for SPARQL 1.1.4

Nevertheless, the landscape of navigational query languages is less systematic than
the neat hierarchy of Datalog of increasing IDB arity. Therefore, such results are more

4 In detail, the RDF graph structure p rdfs:subPropertyOf _:b . _:b owl:inverseOf p can be
matched as part of regular path queries, while p rdf:type owl:SymmetricProperty cannot.



20 M. Krötzsch

interesting from a practical viewpoint (What is possible on existing graph database sys-
tems?) than from a theoretical one (Is one problem harder than the other in a principled
way?). However, the further development of graph query languages may lead to a more
uniform landscape that provides deeper insights.

10 Outlook and Open Problems

We have presented an approach of reformulating reasoning problems in terms of query
answering problems, which, to the best of our knowledge, has not been phrased in
this generality before. We argued that such a viewpoint presents several benefits: its
practical value is to “implement” computing tasks in the languages that are supported
by database management systems; its theoretical value is to connect the difficulty of
these tasks to the rich landscape of query language expressivity.

A new result established herein showed that the computation of all positive entail-
ments of propositional Horn logic is, in a concrete technical sense, easier than the
computation of all negative entailments, at least when relying on deterministic rules
of inference that can be captured in Datalog. Other results we cited showed how to im-
plement ontological reasoning in Datalog and SPARQL 1.1, explained why reasoning
in OWL EL seems to become “harder” when adding certain features, and showed that
schema reasoning for OWL RL cannot be described using RDF-base rules [13,14,5].
The range of these results illustrates how the proposed approach can fill a gap in our
current understanding of reasoning tasks, but many problems are still open.

Our proposal has close relationships to several other fields. The relative expressive-
ness of query languages is a traditional topic in database theory. However, as discussed
in Section 7, related results cannot be transferred naively. When using queries to solve
problems, we do not require queries to work on all databases, but only on those that actu-
ally encode an instance of the problem. This distinction is rarely important when using
Turing machines for computation, but it is exposed by our more fine-grained approach.

Another related field is descriptive complexity theory, where one also seeks to un-
derstand the relationship between problems solved by a query language and problems
solved by a certain class of Turing machines [10,9]. The big difference to our view is
that the goal in descriptive complexity is to characterize existing complexity classes us-
ing query languages. To the contrary, we are most interested in query languages that are
not equivalent to a complexity class in this sense, so as to discover more fine-grained dis-
tinctions between computational problems. Moreover, descriptive complexity focuses
on decision problems on graphs, without considering translation (and expressivity rel-
ative to a problem encoding) or retrieval problems. Nevertheless, the deep results of
descriptive complexity can provide important technical insights and methods for our
field as well.

The obvious next step in this field is to apply these ideas to additional computational
problems. Reasoning was shown to be a fruitful area of application, but sets of terms
(which we called “theories”) are also the input to problems in many other fields, such as
formal languages, automata theory, and graph theory. It will be interesting to see if new
insights in these fields can be obtained with query-based methods. In some cases, the
first step is to recognize query-based approaches as being part of this general framework.
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For example, Datalog has often been used as a rule language to solve computational
problems, but it was rarely asked if simpler query languages could also solve the task.

A practical extension of these investigations is to explore the practical utility of these
translations. Can we use existing database systems to perform complicated computa-
tions on large datasets for us? Empirical studies are needed to answer this.

Another general direction of research is to apply these ideas for the evaluation of
query languages, thus turning around the original question. Indeed, problem reductions
such as the ones we presented can motivate the need for a certain expressive feature
in a query language. Again, this study has a practical side, since it may also guide the
optimisation of query engines by providing meaningful benchmarks that are translated
from other areas.

Finally, the theory we have sketched here is still in its development, and many ques-
tions remain open. Some of the methods we introduced are fairly general already, but
their application in Section 7 was still rather pedestrian. It would be of great utility to
flesh out more general properties, possibly graph-theoretic or algebraic, that can make
it easier to see that a problem cannot be solved by means of certain queries. Another as-
pect that we ignored completely is the notion of problem reductions. Complexity theory
uses many-to-one reductions to form larger complexity classes, but it is not clear which
query languages can implement which kinds of reductions. Yet another possible exten-
sion would be to generalise the form of input problems we consider. While theories
(as finite sets of terms) capture many problems, one could also consider more general
formulations based on context-free grammars that describe problem instances.

Thus, overall, this paper is at best a starting point for further investigations in what
will hopefully remain an exciting and fruitful field of study.
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Abstract. Cultural Heritage is the focus of a great and continually increasing
number of R&D initiatives, aiming at efficiently managing and disseminating cul-
tural resources on the Web. As more institutions make their collections available
online and proceed to aggregate them in domain repositories, knowledge-based
management and retrieval becomes a necessary evolution from simple syntactic
data exchange. In the process of aggregating heterogeneous resources and pub-
lishing them for retrieval and creative reuse, networks such as Europeana and
DPLA invest in technologies that achieve semantic data integration. The result-
ing repositories join the Linked Open Data cloud, allowing to link cultural her-
itage domain knowledge to existing datasets. Integration of diverse information
is achieved through the use of formal ontologies, enabling reasoning services to
offer powerful semantic search and navigation mechanisms.

Digital evolution of the Cultural Heritage field has grown rapidly in the last few years.
Massive digitization and annotation activities have been taking place all over Europe
and the United States. The strong involvement of companies, like Google, and the posi-
tive reaction of the European Union have led to a variety of converging actions towards
digital cultural content generation from all possible sources, such as galleries, libraries,
archives, museums and audiovisual archives [7]. The creation and evolution of Euro-
peana,1 as a unique point of access to European Cultural Heritage, has been one of the
major achievements in this procedure.

The current state of the art in Cultural Heritage implements a model whereby many
aggregators, content providers and projects feed their content into a national, thematic,
or European portal, and this portal is then used by the end user to find cultural items.
Typically, the content is described with the aid of standard sets of elements of infor-
mation about resources (metadata schemas) that try to build an interoperability layer.
Europeana has been developed to provide integrated access to objects from cultural
heritage organizations, encompassing material from museums, libraries, archives and
audiovisual archives. Several cross-domain, vertical or thematic aggregators have been
deployed at regional, national and international level in order to reinforce this initiative
by collecting and converting metadata about existing and newly digitized resources.
Currently, more than 34 million cultural objects can be searched through the Europeana
portal.

The Europeana Semantic Elements2 (ESE) Model was an application profile used
by Europeana to provide a generic set of terms that could be applied to heterogeneous
materials allowing contributors to take advantage of their existing rich descriptions.

1 http://www.europeana.eu
2 http://www.europeana.eu/schemas/ese/
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The latter constitute a knowledge base that is constantly growing and evolving, both
by newly introduced annotations and digitization initiatives, as well as through the in-
creased efforts and successful outcomes of the aggregators and the content providing
organizations.

The new Europeana Data Model3 (EDM) has been introduced as a data structure
aiming to enable the linking of data and to connect and enrich descriptions in accor-
dance with the Semantic Web developments. Its scope and main strength is the adoption
of an open, cross-domain framework in order to accommodate the growing number of
rich, community-oriented standards such as LIDO (Lightweight Information Describing
Objects)4 for museums, EAD (Encoded Archival Description)5 for archives or METS
(Metadata Encoding and Transmission Standard)6 for libraries. Apart from its ability
to support standards of high richness, EDM also enables source aggregation and data
enrichment from a range of third party sources while clearly providing the provenance
of all information.

Following ongoing efforts to investigate usage of the semantic layer as a means to
improve user experience, we are facing the need to provide a more detailed seman-
tic description of cultural content. Semantic description of cultural content, accessible
through its metadata, would be of little use, if users were not in a position to pose their
queries in terms of a rich integrated ontological knowledge. Currently this is performed
through a data storage schema, which highly limits the aim of the query. Semantic query
answering refers to the finding of answers to queries posed by users, based not only on
string matching over data that are stored in databases, but also on the implicit meaning
that can be found by reasoning based on the detailed domain terminological knowledge.
In this way, content metadata can be terminologically described, semantically connected
and used in conjunction with other useful, possibly complementary content and infor-
mation, independently published on the web. A semantically integrated cultural her-
itage knowledge, facilitating access to cultural content is, therefore, achieved. The key
is to semantically connect metadata with ontological domain knowledge through ap-
propriate mappings. It is important to notice that the requirement of sophisticated query
answering is even more demanding for experienced users (professionals, researchers,
educators) in a specific cultural context.

The architecture of the system we have developed for metadata aggregation and se-
mantic enrichment [5] is depicted in Figure 1. Cultural content providers (museums,
libraries, archives) and aggregators wish to make their content visible to Europeana.
This is performed by ingesting (usually a subset of) their content metadata descriptions
to the Europeana portal. This is a rather difficult task, mainly due to the heterogeneity of
the metadata storage schemas (from both technological and conceptual point of view)
that need to be transformed to the EDM form. Using our system, the Metadata Inges-
tion module provides users with the ability to map and transform their data to EDM
elements through a friendly graphical interface that also offers useful metadata ma-
nipulation functions. The result of this module is an EDM representation of the cultural

3 http://www.europeana.eu/schemas/edm/
4 http://www.lido-schema.org
5 http://www.loc.gov/ead/
6 http://www.loc.gov/standards/mets/
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Fig. 1. The architecture of our metadata aggregation and semantic enrichment system

content metadata. Moreover, through the Semantic Enrichment module, the transformed
metadata are serialized as RDF triples [6] and stored in the Semantic Repository.

The metadata elements are represented in the semantic repository as descriptions of
individuals, i.e., connections of individuals with entities of the terminological knowl-
edge. This knowledge is an ontological representation of EDM (the EDM Ontology),
that is connected, on the one hand, to Domain Metadata Standards (Dublin Core, LIDO,
CIDOC CRM7, etc.) sharing terminology with them and providing the general descrip-
tion of ‘Who?’, ‘What?’, ‘When?’ and ‘Where?’ for every digital object and, on the
other hand, to more specific terminological axioms providing details about species, cat-
egories, properties, interrelations, etc. (e.g., brooches are made of copper or gold). The
latter knowledge (the Thematic Ontologies) is developed by the providers and aggrega-
tors and can be used both for semantic enrichment of content metadata, and for reason-
ing in the Semantic Query Answering module. Thus, it provides the user with the ability
to build complex queries in terms of the above terminology and access cultural content
effectively.

In the following we describe in more detail the main modules of the system.

Metadata Schema Mapping. The process of metadata mapping formalizes the no-
tion of ‘crosswalk’ by hiding technical details and permitting semantic equivalences
to emerge as the centrepiece. This module is based on the Metadata Interoperability
Services tool (MINT) that has been successfully used in many Europeana aggrega-
tion projects.8 It involves a graphical, web-based environment where interoperability
is achieved by letting users create mappings between an input and a target schema. In
Figure 2 a snapshot of the mapping editor of the system is shown where a LIDO schema
is mapped to an EDM schema. On the left-hand side of the mapping editor one can find
the interactive tree, which represents the snapshot of the XML schema that the user is

7 http://www.cidoc-crm.org
8 http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki
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Fig. 2. Screenshot of the mapping editor

using as input for the mapping process. Moreover, the interface provides the user with
groups of high level elements that constitute separate semantic entities of the target
schema. These are presented on the right-hand side as buttons that are then used to ac-
cess the set of corresponding sub-elements. This set is visualized on the middle part of
the screen as a tree structure of embedded boxes, representing the internal structure of
the complex element. The user is able to interact with this structure by clicking to col-
lapse and expand every embedded box that represents an element along with all relevant
information (attributes, annotations) defined in the XML schema document. To perform
an actual mapping between the input and the target schema, the user can simply drag a
source element and drop it on the respective target in the middle. User’s mapping ac-
tions are expressed through Extensible Stylesheet Language Transformations (XSLT)
that is a language used for transforming XML documents into other XML documents.
XSLT stylesheets are stored and can be applied to any user data, can be exported and
published as a well-defined, machine understandable crosswalk and shared with other
users to act as template for their mapping needs.

Using the mapping tool the provided metadata are transformed to instances of the
EDM ontology in RDF/XML serialization. An example output EDM RDF preview of a
record is shown in Figure 3.

Semantic Enrichment and Query Answering. The transformation of the data of con-
tent providers to data in terms of the EDM ontology results in a set of RDF triples that
are more like an attribute-value set for each object. Since the EDM ontology is a gen-
eral ontology referring to metadata descriptions of each object, the usage of thematic
ontologies for different domains is necessary in order to add semantically processable
information to each object. For example, the information that an object is of type vase
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Fig. 3. EDM RDF preview

may not be adequate for a specific application; one may be interested in the specific
type of vase, or, in absence of such information, in the characteristics that a vase should
have in order to be classified to a specific type. First, thematic ontologies are created in
collaboration with field experts. These ontologies include individuals which represent
objects, classes which define sets of objects and object properties defining relationships
between objects. Then the data values filling the attributes of the EDM-RDF instances
are transformed to individuals of the thematic ontologies. These individuals are then
grouped together to form classes as imposed by the thematic ontologies. The transfor-
mation of the data values to individuals is performed from a technical point of view by
mapping the data values to IRIs (International Resource Identifiers). After this trans-
formation the data is stored in a semantic repository, from where they can be extracted
through queries.

The semantic query answering module of the system is based on the combination of
two other query answering systems, namely Rapid and OWL-BGP. Rapid is an efficient
query rewriting system for the OWL 2 QL and OWL 2 EL fragments [8][1]. According
to query rewriting, a query issued over a terminology and a set of instance data stored
in a data repository can be answered by first rewriting the query w.r.t. the terminologi-
cal knowledge and then answering the rewritten query over the data alone (i.e., without
taking the terminological knowledge into account). OWL-BGP9 is a framework for effi-
ciently answering SPARQL queries issued over expressive OWL 2 ontologies using the
OWL 2 Direct Semantics entailment regime of SPARQL [4][3]. Currently, the HermiT
reasoner [2] is used for performing inferences in OWL-BGP, but other reasoners could

9 https://code.google.com/p/owl-bgp/
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also be used. The input to the combined system is a SPARQL query and the output is
the answer set of mappings of query variables to entities of the queried ontology. For
example, let us assume that we have i) a terminological knowledge stating that metallic
rings (:MetallicRing) are rings (:Ring), ii) the objects :ring1, :ring2, :ring3, of which
:ring1 and :ring2 are metallic rings and are produced in :greece and :ring3 is a ring and
iii) the following SPARQL query asking for rings and the place they are produced in:

SELECT ?x, ?y WHERE { ?x rdf:type :Ring. ?x :producedIn ?y. }
where ?x,?y are variables. Note that the empty prefix is used for an imaginary example
namespace. The answers to this query are the mappings: ?x �→ :ring1, ?y �→ :greece and
?x �→ :ring2, ?y �→ :greece. Note that :ring1 and :ring2 are rings since they are metallic
rings and from the terminological knowledge we know that metallic rings are rings.
Even though :ring3 is a ring, the place of production of it is not explicitly stated, nor
can it be inferred from the given knowledge, hence, :ring3 is not returned as an answer
mapping for ?x.

This tutorial presents the state of the art in digital cultural heritage, focusing on inter-
operable content metadata aggregation and management, on thematic knowledge gener-
ation and usage for semantic search and semantic query answering over large volumes
of content. The metadata schema mapping module is being used for content ingestion in
the Europeana ecosystem, while the semantic enrichment and query answering modules
can further improve the provided cultural heritage services in fields such as research,
education, tourism.
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Abstract. Automated planning has been the subject of intensive research and is
at the core of several areas of AI, including intelligent agents and robotics. In
this paper, we argue that Transaction Logic is a natural specification language for
planning algorithms, which enables one to see further afield and thus discover bet-
ter and more general solutions than using one-of-a-kind formalisms. Specifically,
we take the well-known STRIPS planning strategy and show that Transaction
Logic lets one specify the STRIPS planning algorithm easily and concisely, and
to prove its completeness. Moreover, extensions to allow indirect effects and to
support action ramifications come almost for free. Finally, the compact and clear
logical formulation of the algorithm made possible by this logic is conducive to
fruitful experimentation. To illustrate this, we show that a rather simple modifi-
cation of the STRIPS planning strategy is also complete and yields speedups of
orders of magnitude.

1 Introduction

The classical problem of automated planning is at the core of several important areas,
such as robotics, intelligent information systems, and multi-agent systems, and it has
been preoccupying AI researchers for over forty years.

In this paper, we argue that a general logical theory, specifically Transaction Logic
(or T R) [10, 9, 8], provides multiple advantages for specifying, generalizing, and
solving planning problems. Transaction Logic is an extension of classical logic with
dedicated support for specifying and reasoning about actions, including sequential and
parallel execution, atomicity of transactions, and more. To illustrate the point, we take
the classical STRIPS planning problem [12, 19] and show that both the STRIPS frame-
work and the associated planning algorithm easily and naturally lend themselves to
compact representation in Transaction Logic.

We emphasize that this paper is not about STRIPS or about inventing new planning
strategies (although we do—as a side effect). It is rather about the advantages of T R
as a general tool for specifying a wide range of planning frameworks and strategies—
STRIPS is just an illustration. One can likewise apply T R to HTN-like planning sys-
tems [20] and to various enhancements of STRIPS, like RSTRIPS and ABSTRIPS [21].

Our contention is that precisely because STRIPS is cast here as a purely logical prob-
lem in a suitable general logic, a number of otherwise non-trivial extensions become
low-hanging fruits and we get them almost for free. In particular, STRIPS planning
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can be naturally extended with intensional rules, which endows the framework with
support for ramification [14] (i.e., with indirect effects of actions), and we show that
the resulting planning algorithm is complete. Then, after inspecting the logic rules that
simulate the STRIPS algorithm, we observe that more restrictive rules can be derived,
which intuitively should involve a smaller search space. The new rules lead to a dif-
ferent STRIPS-like algorithm, which we call fast STRIPS, or fSTRIPS. We show that
fSTRIPS is also a complete planning algorithm, and our experiments indicate that it can
be orders of magnitude faster than the original.

A number of deductive planning frameworks have been proposed over the years
[2–4, 16, 11, 15, 26, 27], but only a few of these approaches support any kind of action
ramification. Most importantly, our work differs in the following respects.

– Many of the above approaches invent one-of-a-kind theories that are suitable only
for the particular problem at hand. We, on the other hand, use a general logic, which
integrates well with most other approaches to knowledge representation.

– These works typically first demonstrate how they can capture STRIPS-like actions
and then rely on a theorem prover of some sort to find plans. This type of planning
is called naive, as it has to contend with extremely large search spaces. In contrast,
we capture not merely STRIPS actions—they are part of the basic functionality in
T R—but also the actual optimized planning strategies (STRIPS, HTN, etc.), which
utilize heuristics to reduce the search space. That is, we first compactly express
these heuristics as T R rules and then use the T R theorem prover to find plans.
The effect is that the theorem prover, in fact, executes those specialized and more
efficient algorithms.

– The clear and compact form used to represent the planning heuristics is sugges-
tive of various optimizations, which lead to new and more efficient algorithms. We
illustrate this with the example of discovery of fSTRIPS.

We are also unaware of anything similar to our results in the literature on the situation
calculus or other first-order logic based methodologies (cf. [19, 22]).

Finally, several aspects found in the planning literature, like parallelization of plans
and loops [18, 17, 24], are orthogonal to the results presented here and provide a natural
direction for further extensions of our work.

This paper is organized as follows. Section 2 introduces the STRIPS planning frame-
work and its extension in support of action ramification. Section 3 provides the nec-
essary background on Transaction Logic in order to make this paper self-contained.
Section 4 casts the extended STRIPS as a problem of posing a transactional query in
Transaction Logic and shows that executing this query using the T R’s proof theory
makes for a sound and complete STRIPS planning algorithm. Section 5 introduces the
fSTRIPS algorithm, which is also cast as a transactional query in T R, and shows that
this is also a complete planning strategy. In Section 6, we present our experiments that
show that fSTRIPS can be orders of magnitude better than STRIPS both in time and
space. Section 7 concludes the paper.
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2 Extended STRIPS-Style Planning

In this section we first remind the reader a number of standard concepts in logic and
then introduce the STRIPS planning problem.

We assume denumerable sets of variables V , constants C, and predicate symbolsP—
all three sets being pairwise disjoint. The set of predicates,P , is further partitioned into
extensional (Pext) and intensional (Pint) predicates. In STRIPS, actions update the state
of a system by adding or deleting statements about predicates. In the original STRIPS,
all predicates were extensional, and the addition of intentional predicates is a major
enhancement, which allows us to deal with the so-called ramification problem [14], i.e.,
with indirect consequences of actions.

Atomic formulas (or just atoms) have the form p(t1, ..., tn), were p ∈ P and each ti
is either a constant or a variable. Extending the logical signature with function symbols
is straightforward in our framework, but we avoid doing this here in order to save space.

An atom is extensional if p ∈ Pext and intensional if p ∈ Pint. A literal is either
an atom or a negated extensional atom of the form ¬p(t1, ..., tn). Negated intensional
atoms are not allowed. (It is not too hard to extend our framework and the results to
allow negated intensional atoms, but we refrain from doing so due to space limitations).

Extensional predicates represent database facts: they can be directly manipulated (in-
serted or deleted) by actions. Intensional predicate symbols are used for atomic state-
ments defined by rules—they are not affected by actions directly. Instead, actions make
extensional facts true or false and this indirectly affects the dependent intensional atoms.
These indirect effects are known as action ramifications in the literature.

A fact is a ground (i.e., variable-free) extensional atom. A set S of literals is consis-
tent if there is no atom, atm, such that both atm and ¬atm are in S.

A rule is a statement of the form head ← body where head is an intensional atom
and body is a conjunction of literals. A ground instance of a rule, R, is any rule ob-
tained from R by a substitution of variables with constants from C such that different
occurrences of the same variable are always substituted with the same constant. Given
a set S of literals and a ground rule of the form atm← �1 ∧ · · · ∧ �m, the rule is true in
S if either atm ∈ S or {�1, . . . , �m} �⊆ S. A (possibly non-ground) rule is true in S if
all of its ground instances are true in S.

Definition 1 (State). Given a set Rof rules, a state is a consistent set S = Sext ∪ Sint

of literals such that

1. For each fact atm, either atm ∈ Sext or ¬atm ∈ Sext.
2. Every rule of R is true in S. �

Definition 2 (STRIPS Action). A STRIPS action is a triple of the form
α = 〈pα(X1, ..., Xn), P reα, Eα〉, where

– pα(X1, ..., Xn) is an intensional atom in which X1, ..., Xn are variables and pα ∈
Pint is a predicate that is reserved to represent the action α and can be used for no
other purpose;

– Preα, called the precondition of α, is a set of literals that may include extensional
as well as intensional literals;
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– Eα, called the effect of α, is a consistent set that may contain extensional literals
only;

– The variables in Preα and Eα must occur in {X1, ..., Xn}.1 �

Note that the literals in Preα can be both extensional and intensional, while the literals
in Eα can be extensional only.

Definition 3 (Execution of a STRIPS Action). A STRIPS action α is executable in a
state S if there is a substitution θ : V −→ C such that θ(Preα) ⊆ S. A result of the
execution (with respect to θ) is the state S′ such that S′ = (S \ ¬θ(Eα)) ∪ θ(Eα),
where ¬E = {¬� | � ∈ E}. In other words, S′ is S with all effects of θ(α) applied. �

Note that S′ is well-defined since Eα is consistent. Observe also that, if α has vari-
ables, the result of an execution, S′, may depend on the chosen substitution θ.

The following simple example illustrates the above definition. We follow the stan-
dard logic programming convention whereby lowercase symbols represent constants
and predicate symbols. The uppercase symbols denote variables that are implicitly uni-
versally quantified outside of the rules.

Example 1. Consider a world consisting of just two blocks and the action pickup =
〈pickup(X,Y ), {clear(X)}, {¬on(X,Y ), clear(Y )}〉. Consider also the state S =
{clear(a),¬clear(b), on(a, b),¬on(b, a)}. Then the result of the execution of pickup
at state S with respect to the substitution {X → a, Y → b} is S′ = {clear(a), clear(b),
¬on(a, b),¬on(b, a)}. It is also easy to see that pickup cannot be executed at S with
respect to any substitution of the form {X → b, Y → ...}. �

Definition 4 (Planning Problem). A planning problem 〈R,A, G,S〉 consists of a set
of rules R, a set of STRIPS actions A, a set of literals G, called the goal of the planning
problem, and an initial state S. A sequence of actions σ = α1, . . . , αn is a planning
solution (or simply a plan) for the planning problem if:

– α1, . . . , αn ∈ A; and
– there is a sequence of states S0,S1, . . . ,Sn such that

• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that execu-

tion (for some substitution) is the state Si.

In this case we will also say that S0,S1, . . . ,Sn is an execution of σ. �

3 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the parts of Trans-
action Logic that are needed for the understanding of this paper. For further details, the
reader is referred to [7, 9, 10, 5, 8].

1 Requiring the variables of Preα to occur in {X1, ..., Xn} is not essential for us: we can easily
extend our framework and consider the extra variables to be existentially quantified.
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T R is a faithful extension of the first-order predicate calculus and so all of that
syntax carries over. In this paper, we focus on rules, however, so we will be dealing
exclusively with that subset of the syntax from now on. The most important new con-
nective that Transaction Logic brings in is the serial conjunction, denoted ⊗. It is a
binary associative connective, like the classical conjunction, but it is not commutative.
Informally, the formula φ ⊗ ψ is understood as a composite action that denotes an ex-
ecution of φ followed by an execution of ψ. The concurrent conjunction connective,
φ‖ψ, is associative and commutative. Informally, it says that φ and ψ can execute in an
interleaved fashion. For instance, (α1 ⊗ α2)‖(β1 ⊗ β2) can execute as α1, β1, α2, β2,
or as α1, β1, β2, α2, or as α1, α2, β1, β2, while (α1⊗α2)⊗ (β1⊗β2) can execute only
as α1, α2, β1, β2. When φ and ψ are regular first-order formulas, both φ ⊗ ψ and φ‖ψ
reduce to the usual first-order conjunction, φ ∧ ψ. The logic also has other connectives
but they are beyond the scope of this paper.

In addition, T R has a general, extensible mechanism of elementary updates or ele-
mentary actions, which have the important effect of taking the infamous frame problem
out of many considerations in this logic (see [9, 10, 7, 23, 6]). Here we will use only the
following two types of elementary actions, which are specifically designed on complete
STRIPS states (Definition 1): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p denotes an
extensional predicate symbol of appropriate arity and t1, ..., tn are terms.

Given a state S and a ground elementary actionα = +p(a1, . . . , an), an execution of
α at state S deletes the literal ¬p(a1, . . . , an) and adds the literal p(a1, . . . , an). Simi-
larly, executing−p(a1, . . . , an) results in a state that is exactly like S, but p(a1, . . . , an)
is deleted and ¬p(a1, . . . , an) added. In some cases (e.g., if p(a1, . . . , an) ∈ S), the ac-
tion +p(a1, . . . , an) has no effect, and similarly for −p(a1, . . . , an).

A serial rule is a statement of the form

h← b1 ⊗ b2 ⊗ . . .⊗ bn. (1)

where h is an atomic formula and b1, ..., bn are literals or elementary actions. The
informal meaning of such a rule is that h is a complex action and one way to execute h
is to execute b1 then b2, etc., and finally to execute bn.

Thus, we now have regular first-order as well as serial-Horn rules. For simplicity
(thought this is not required by T R), we assume that the sets of intentional predicates
that can appear in the heads of regular rules and those in the heads of serial rules are
disjoint. Thus, we now have the following types of atomic statements:

– Extensional atoms.
– Intentional atoms: The atoms that appear in the heads of regular rules. These two

categories of atoms populate database states and will be collectively called fluents.
We will now allow any kind of fluent to be negated in the body of a serial rule of
the form (1).

– Elementary actions: +p, −p, where p is an extensional atom.
– Complex actions: These are the atoms that appear at the head of the serial rules.

Complex and elementary actions will be collectively called actions.
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As remarked earlier, for fluents f⊗g is equivalent to f ∧g and we will often write f ∧g
for fluents even if they occur in the bodies of serial rules. Note that a serial rule all of
whose body literals are fluents is essentially a regular rule, since all the ⊗-connectives
can be replaced with ∧. Therefore, one can view the regular rules as a special case of
serial rules.

The following example illustrates the above concepts.

move(X,Y ) ← (on(X,Z) ∧ clear(X) ∧ clear(Y ) ∧ ¬tooHeavy(X))
⊗− on(X,Z)⊗+on(X,Y )⊗−clear(Y ).

tooHeavy(X) ← weight(X,W ) ∧ limit(L) ∧W < L.
?− move(blk1, blk15)⊗move(SomeBlk, blk1).

Here on, clear, tooHeavy, weight, and limit are fluents and the rest of atoms represent
actions. The predicate tooHeavy is an intentional fluent, while on, clear, and weight
are extensional fluents. The actions +on(...), −clear(...), and −on(...) are elementary
and the intentional predicate move represents a complex action. This example illustrates
several features of Transaction Logic. The first rule is a serial rule defining of a com-
plex action of moving a block from one place to another. The second rule defines the
intensional fluent tooHeavy, which is used in the definition of move (under the scope of
default negation). As the second rule does not include any action, it is a regular rule.

The last statement above is a request to execute a composite action, which is anal-
ogous to a query in logic programming. The request is to move block blk1 from its
current position to the top of blk15 and then find some other block and move it on top
of blk1. Traditional logic programming offers no logical semantics for updates, so if
after placing blk1 on top of blk15 the second operation (move(SomeBlk, blk1)) fails
(say, all available blocks are too heavy), the effects of the first operation will persist
and the underlying database becomes corrupted. In contrast, Transaction Logic gives
update operators the logical semantics of an atomic database transaction. This means
that if any part of the transaction fails, the effect is as if nothing was done at all. For
example, if the second action in our example fails, all actions are “backtracked over”
and the underlying database state remains unchanged.

This semantics is given in purely model-theoretic terms and here we will only give
an informal overview. The truth of any action in T R is determined over sequences
of states—execution paths—which makes it possible to think of truth assignments in
T R’s models as executions. If an action, φ, defined by a set of serial rules, P, evaluates
to true over a sequence of states D0, . . . ,Dn, we say that it can execute at state D0 by
passing through the states D1, ..., Dn−1, ending in the final state Dn. This is captured
by the notion of executional entailment, which is written as follows:

P,D0 . . .Dn |= φ (2)

The next example further illustrates T R by showing a definition of a recursive action.

Example 2 (Pyramid building). The following rules define a complex operation of
stacking blocks to build a pyramid. It uses some of the already familiar fluents and
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actions from the previous example. In addition, it defines the actions pickup, putdown,
and a recursive action stack.

stack(0, AnyBlock)← .
stack(N,X)← N > 0⊗move(Y,X)⊗ stack(N − 1, Y )⊗ on(Y,X).
move(X,Y )← X �= Y ⊗ pickup(X)⊗ putdown(X,Y ).
pickup(X)← clear(X)⊗ on(X,Y )⊗−on(X,Y )⊗+clear(Y ).
pickup(X)← clear(X)⊗ on(X, table)⊗−on(X, table).
putdown(X,Y )← clear(Y )⊗ ¬on(X,Z1)⊗ ¬on(Z2, X)⊗

−clear(Y )⊗+on(X,Y ).

(3)

The first rule says that stacking zero blocks on top of X is a no-op. The second rule says
that, for bigger pyramids, stacking N blocks on top of X involves moving some other
block, Y , on X and then stacking N−1 blocks on Y . To make sure that the planner did
not remove Y from X while building the pyramid on Y , we are verifying that on(Y,X)
continues to hold at the end. The remaining rules are self-explanatory. �

Several inference systems for serial-Horn T R are described in [7]—all analogous to
the well-known SLD resolution proof strategy for Horn clauses plus some T R-specific
inference rules and axioms. The aim of these inference systems is to prove statements
of the form P,D · · · � φ, called sequents. Here P is a set of serial rules and φ is a serial
goal, i.e., a formula that has the form of a body of a serial rule, such as (1). A proof of a
sequent of this form is interpreted as a proof that action φ defined by the rules in P can
be successfully executed starting at state D.

An inference succeeds if it finds an execution for the transaction φ, i.e., a sequence
of database states D1, . . . , Dn such that P,DD1 . . .Dn � φ. Here we will use the
following inference system, which we present in a simplified form—only the version
for ground facts and rules. The inference rules can be read either top-to-bottom (if top
is proved then bottom is proved) or bottom-to-top (to prove bottom first prove top).

Definition 5 (T R inference System). Let P be a set of rules (serial or regular) and D,
D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every state).
– Inference Rules

1. Applying transaction definition: Suppose t← body is a rule in P.

P,D · · · � body ⊗ rest

P,D · · · � t⊗ rest
(4)

2. Querying the database: If D |= t then

P,D · · · � rest

P,D · · · � t⊗ rest
(5)

3. Performing elementary updates: If the elementary update t changes the state
D1 into the state D2 then

P,D2 · · · � rest

P,D1 · · · � t⊗ rest
(6)
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4. Concurrency: If φi, i = 1, ..., n are serial conjunctions then

P,D · · · � φ1‖...‖φj‖...‖φn

P,D′ · · · � φ1‖...‖φ′
j‖...‖φn

(7)

for any j, 1 ≤ j ≤ n, where D′ is obtained from D and φ′
j from φj as in either

of the inference rules (4-6) above.

A proof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1, seqn,
where each seqi is either an axiom-sequent or is derived from earlier sequents by one of
the above inference rules. This inference system has been proven sound and complete
with respect to the model theory of T R [7]. This means that if φ is a serial goal, the
executional entailment P,DD1 . . .Dn |= φ holds if and only if there is a proof of
P,D · · · � φ over the execution path D,D1, . . . ,Dn, i.e., D1, . . . ,Dn is the sequence
of intermediate states that appear in the proof and D is the initial state. In this case, we
will also say that such a proof proves the statement P,DD1 . . .Dn � φ.

4 The T R-STRIPS Planner

The informal idea of using T R as a planning formalism and an encoding of STRIPS
as a set of T R rules first appeared in an unpublished report [7]. The encoding was
incomplete and it did not include ramification and intensional predicates. We extend
the original method with intentional predicates, make it complete, and formulate and
prove the completeness of the resulting planner.

Definition 6 (Enforcement Operator). Let G be a set of extensional literals. We define
Enf(G) = {+p | p ∈ G} ∪ {−p | ¬p ∈ G}. In other words, Enf(G) is the set of
elementary updates that makes G true. �

Next we introduce a natural correspondence between STRIPS actions and T R rules.

Definition 7 (Actions as T R Rules). Let α = 〈pα(X), P reα, Eα〉 be a STRIPS ac-
tion. We define its corresponding T R rule, tr(α), to be a rule of the form

pα(X)← (∧�∈Preα�) ⊗ (⊗u∈Enf(Eα)u). (8)

Note that in (8) the actual order of action execution in the last component,⊗u∈Enf(Eα)u,
is immaterial, since all such executions happen to lead to the same state.

We now define a set of T R clauses that simulate the well-known STRIPS plan-
ning algorithm and extend this algorithm to handle intentional predicates and rules. The
reader familiar with the STRIPS planner should not fail to notice that, in essence, these
rules are a natural (and much more concise and general) verbalization of the classi-
cal STRIPS algorithm [12]. However—importantly—unlike the original STRIPS, these
rules constitute a complete planner when evaluated with the T R proof theory.

Definition 8 (T R Planning Rules). Let Π = 〈R,A, G,S〉 be a STRIPS planning
problem (see Definition 4). We define a set of T R rules, P(Π), which provides a sound
and complete solution to the STRIPS planning problem. P(Π) has three disjoint parts,
PR, PA, and PG, described below.
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– The PR part: for each rule p(X)← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a rule of
the form

achieve p(X)← ‖ni=1achieve pi(X i). (9)

Rule (9) is an extension to the classical STRIPS planning algorithm and is intended
to capture intentional predicates and ramification of actions; it is the only major
aspect of our T R-based rendering of STRIPS that was not present in the original
in one way or another.

– The part PA = Pactions ∪Patoms ∪Pachieves is constructed out of the actions in A

as follows:
• Pactions: for each α ∈ A, Pactions has a rule of the form

pα(X)← (∧�∈Preα�) ⊗ (⊗u∈Enf(Eα)u). (10)

This is the T R rule that corresponds to the actionα, introduced in Definition 7.
• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:

– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the rules

achieve p(X)← p(X).
achieve not p(X)← ¬p(X).

(11)

These rules say that if an extensional literal is true in a state then that
literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each e(Y ) ∈
Eα, Penforced has the following rule:

achieve e(Y )← execute pα(X). (12)

This rule says that one way to achieve a goal that occurs in the effects of
an action is to execute that action.

• Pachieves: for each action α = 〈pα(X), P reα, Eα〉 in A, Pachieves has the
following rule:

execute pα(X)← (‖�∈Preαachieve �)⊗ pα(X). (13)

This means that to execute an action, one must first achieve the precondition of
the action and then perform the state changes prescribed by the action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (‖kgi=1achieve gi)⊗ (∧k
i=1gi). (14)

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a goal G,
Definition 8 gives a set of T R rules that specify a planning strategy for that problem.
To find a solution for that planning problem, one simply needs to place the request

?− achieveG . (15)

at a desired initial state and use the T R’s inference system of Section 3 to find a proof.
The inference system in question is sound and complete for serial clauses, and the rules
in Definition 8 satisfy that requirement.
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Example 3 (Planning rules for register exchange). Consider the classical problem of
swapping two registers in a computer from [21]. The reason this problem is interesting is
because it is the simplest problem where the original STRIPS is incomplete. Example 4
explains why and how our complete T R-based planner handles the issue.

Consider two memory registers, x and y, with initial contents a and b, respectively.
The goal is to find a plan to exchange the contents of these registers with the help of
an auxiliary register, z. Let the extensional predicate value(Reg, V al) represent the
content of a register. Then the initial state of the system is {value(x, a), value(y, b)}.
Suppose the only available action is copy = 〈copy(Src,Dest, V ), {value(Src, V )},
{¬value(Dest, V ), value(Dest, V )}〉, which copies the value V of the source reg-
ister, Src, to the destination register Dest. The old value of Dest is erased and the
value of Src is written over. The planning goal is G = {value(x, b), value(y, a)}. Per
Definition 8, the planning rules for this problem are as follows.
Due to case (10):

copy(Src,Dest, V )← value(Src, V ) ⊗
−value(Dest, ) ⊗+value(Dest, V ).

(16)

Due to (11), (12), and (13):

achieve value(R, V )← value(R, V ).
achieve not value(R, V )← ¬value(R, V ).

(17)

achieve value(Dest, V )← execute copy(Src,Dest, V ). (18)

execute copy(Src,Dest, V )← achieve value(Src, V ) ⊗
copy(Src,Dest, V ).

(19)

Due to (14):

achieveG ← (achieve value(x, b) ‖ achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a)).

(20)

Case (9) of Definition 8 does not contribute rules in this example because the planning
problem does not involve intensional fluents. �

As mentioned before, a solution plan for a STRIPS planning problem is a sequence
of actions leading to a state that satisfies the planning goal. Such a sequence can be ex-
tracted by picking out the atoms of the form pα from a successful derivation branch gen-
erated by the T R inference system. Since each pα uniquely corresponds to a STRIPS
action, this provides us with the requisite sequence of actions that constitutes a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let i1, . . . , in
be exactly those indexes in that deduction where the inference rule (4) was applied to
some sequent using a rule of the form tr(αir ) introduced in Definition 7. We will call
αi1 , . . . , αin the pivoting sequence of actions. The corresponding pivoting sequence
of states Di1 , . . . ,Din is a sequence where each Dir , 1 ≤ r ≤ n, is the state at which
αir is applied. We will prove that the pivoting sequence of actions is a solution to the
planning problem.
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All theorems in this section assume that Π = 〈R,A, G,D0〉 is a STRIPS planning
problem and that P(Π) is the corresponding set of T R planning rules as in Defini-
tion 8.

Theorem 1 (Soundness of T R Planning). Any pivoting sequence of actions in the
derivation of P(Π),D0 . . .Dm � achieveG is a solution plan.2

Completeness of a planning strategy means that, for any STRIPS planning problem, if
there is a solution, the planner will find at least one plan. Completeness of T R planning
is established by induction on the length of the plans.

Theorem 2 (Completeness of T R Planning). If there is a plan that achieves the goal
G from the initial state D0 then the T R-based STRIPS planner will find a plan.

Theorem 2 establishes the completeness of the planner that is comprised of the T R
proof theory and the rules that express the original STRIPS strategy.

Recall that the classical STRIPS planner described in [12, 21] was incomplete. The
next example illustrates the reason for this incompleteness and contrasts the situation to
the T R-based planner.

Example 4 (Register exchange, continued). Consider the register exchange problem of
Example 3. The original STRIPS planner fails to find a plan if, in the initial state,
the auxiliary register z has the value t distinct from a and b [21]. We will now illus-
trate how the T R based planner deals with this case. Let P be the set of T R rules
(16-19) that constitute the planner for the T R-based planner for this problem. Given
the planning goal G = {value(x, b), value(y, a)} and the initial state D0, where
{value(x, a), value(y, b)} ⊆ D0, we will show how the T R inference system con-
structs a derivation (and thus a plan) for the sequent P,D0 · · ·Dn � achieveG for
some Dn such that {value(x, b), value(y, a)} ⊆ Dn.

Consider the sequent P,D0 · · · � achieveG that corresponds to the query (15). Ap-
plying the inference rule (4) to that sequent using the rule (20), we get:

P,D0 · · · � (achieve value(x, b)‖achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (4) twice to the resulting sequent using the rules (18–19)
with appropriate substitutions result in:

P,D0 · · · � ((achieve value(z, b)⊗ copy(z, x, b))‖achieve value(y, a))
⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (4) once more and again using the rules (18–19) we get:

P,D0 · · · � ((achieve value(y, b)⊗ copy(y, z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

One more application of the inference rule (4) but this time in conjunction with (17)
yields:

P,D0 · · · � ((value(y, b)⊗ copy(y, z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

2 Sequents of the form P(Π),D0 . . .Dm � ... were defined at the very end of Section 3.
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Since value(y, b) ∈ D0, we can eliminate it by the inference rule (5). Then we can
replace the first copy using its definition (16) due to the inference rule (4).

P,D0 · · · � ((−value(z, )⊗ +value(z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (6) twice to the primitive updates at the front first yields

P,D1 · · · � ((+value(z, b)⊗ copy(z, x, b))
‖ achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

and then

P,D2 · · · � (copy(z, x, b)‖achieve value(y, a))⊗ (value(x, b) ∧ value(y, a))

where D1 is D0 with value(z, t) (where t denotes the old value of z) deleted and D2

is D1 with value(z, b) added.
Now we can use the inference rule (7) to explore the subgoal achieve value(y, a).

Namely, we can expand this subgoal with the inference rule (4) twice, first using (18–
19) and then using (17), obtaining

P,D2 · · · � (copy(z, x, b)‖(value(x, a)⊗ copy(x, y, a)))
⊗ (value(x, b) ∧ value(y, a))

Since value(x, a) is true in D2, it can be removed. Finally, the two copy’s can be
replaced by their definition (16) and then the remaining +value(...) and −value(...)
can be executed using the inference rule (6). This will advance the database (via three
intermediate states) to state D6 containing {value(x, b), value(y, a), value(z, b)} in
which both value(x, b) and value(y, a) are true. Therefore, the inference rule (5) can
be used to derive the T R axiom P,D6 · · · � (), thus concluding the proof. The pivoting
sequence of actions in this proof is 〈copy(y, z, b), copy(x, y, a), copy(z, x, b)〉, which
constitutes the desired plan. �

5 The fSTRIPS Planner

In this section, we introduce fSTRIPS — a modification of the previously introduced
STRIPS transform, which represents to a new planning strategy, which we call fast
STRIPS. We show that although the new strategy explores a smaller search space, it
is still sound and complete. Section 6 shows that fSTRIPS can be orders of magnitude
faster than STRIPS.

Definition 9 (T R Planning Rules for fSTRIPS). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem as in Definition 4 and P(Π) is as in Definition 8. We define Pf(Π)

to be exactly as P(Π) except for the Penforced part. For Pf(Π), we redefine Pf
enforced

(the replacement of Penforced) as follows:
For each action α = 〈pα(X), P reα, Eα〉 in A and each e(Y ) ∈ Eα, Pf

enforced has
the following rule:

achieve e(Y )← ¬e(Y )⊗ execute pα(X). (21)
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This rule says that an action, α, should be attempted only if it helps to achieve the
currently pursued, unsatisfied goal. �

The other key aspect of fSTRIPS is that it uses a modified (general, unrelated to
planning) proof theory for T R, which relies on tabling, a technique analogous to [25].
This theory was introduced in [13] and was shown to be sound and complete. Here we
use it for two reasons. First, it terminates if the number of base fluents is finite. Second,
it has the property that it will not attempt to construct plans that have extraneous loops
and thus will not attempt to large and unnecessary parts of the search space.

To construct a plan, as before, we can extract a pivoting sequence of actions and
show that the new pivoting sequence of actions is still a solution plan.

Similarly to Section 4, we assume till the end of this section that Π = 〈R,A, G,D0〉
is a STRIPS planning problem, that P(Π) is the set of planning rules in Definition 8,
and that Pf (Π) is the set of planning rules as specified in Definition 9.

Theorem 3 (Soundness of fSTRIPS). Any pivoting sequence of actions in the deriva-
tion of Pf (Π),D0 . . .Dm � achieveG is a solution plan.

Theorem 4 (Completeness of fSTRIPS). If there is a plan to achieve the goal G from
an initial state, D0, then T R will find a plan.

Theorem 5 (fSTRIPS Finds no More Plans than STRIPS). Any plan found by the
fSTRIPS planner will also be found by the STRIPS planner.

In other words, the STRIPS strategy may generate more plans than fSTRIPS. The
plans that are not generated by fSTRIPS are those that contain actions whose effects
were not immediately required at the time of the action selection. This has the effect of
ignoring longer plans when shorter plans are already found. The upshot of all this is that
STRIPS has a larger search space to explore, and this explains the inferior performance
of STRIPS compared to fSTRIPS, as the experiments in the next section show.

6 Experiments

In this section we briefly report on our experiments that compare STRIPS and fSTRIPS,
The test environment was a tabled T R interpreter [13] implemented in XSB and run-
ning on Intel R©Xeon(R) CPU E5-1650 0 @ 3.20GHz 12 CPU and 64GB memory
running on Mint Linux 14 64-bit.

The actual test cases are taken from [1] and represent so called State Modi-
fying Policies. A typical use of such a policy is to determine if a particular ac-
cess request (say, to play digital contents) should be granted. The first test case,
a Movie Store, is shown in Example 5. The second test case, a Health Care
Authorization example, is too large to be included here and can be found at
http://ewl.cewit.stonybrook.edu/planning/ along with the first test
case and all the necessary items needed to reproduce the results.

http://ewl.cewit.stonybrook.edu/planning/
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Example 5 (State Modifying Policy for a Movie Store). The following represents a pol-
icy where users can buy movies online, try them, and sell them, if not satisfied.

buy(X,M)← ¬bought( ,M)⊗+bought(X,M)
play1(X,M)← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)
keep(X,M)← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)

⊗+ happy(X,M)
play2(X,M)← played1(X,M)⊗ ¬played2(X,M)⊗+played2(X,M)
play3(X,M)← played2(X,M)⊗ ¬played3(X,M)⊗+played3(X,M)
sell(X,M)← played1(X,M)⊗ ¬played3(X,M)⊗ ¬happy(X,M)

⊗+ sold(X,M)⊗−bought(X,M)

(22)

The first rule describes an action of a user,X , buying a movie,M . The action is possible
only if the movie has not already been purchased by somebody. The second rule says
that, to play a movie for the first time, the user must buy it first and not have played it
before. The third rule deals with the case when the user is happy and decides to keep
the movie. The remaining rules are self-explanatory. �

A reachability query in a state modifying policy is a specification of a target state
(usually an undesirable state), and the administrator typically wants to check if such a
state is reachable by a sequence of actions. The target state specification consists of a set
of literals, and the reachability query is naturally expressed as a planning problem. For
instance, in Example 5, the second rule can be seen as a STRIPS action whose precon-
dition is {bought(X,M)⊗ ¬played1(X,M)} and the effect is {+played1(X,M)}.
The initial and the target states in this example are sets of facts that describe the movies
that have been bought, sold, and played by various customers.

Table 1. Results for different goal sizes (number of literals in the goals). The initial state is fixed
and has 6 extensional atoms.

Size of
Movie Store

Size of
Health Care

STRIPS fSTRIPS STRIPS fSTRIPS
goal CPU Mem CPU Mem goal CPU Mem. CPU Mem.

6 0.0160 1095 0.0080 503 3 10.0240 246520 0.0400 2011
9 0.2760 14936 0.1360 6713 4 32.9540 774824 0.2040 8647

12 9.4120 409293 5.8840 184726 5 46.1380 1060321 0.3080 13622

Table 2. Results for different sizes (number of facts) in initial states. The planning goal is fixed:
6 extensional literals in the ”movie store” case and 3 extensional literals in the ”health care” case.

Size of Movie Store Size of Health Care
initial STRIPS fSTRIPS initial STRIPS fSTRIPS
state CPU Mem CPU Mem state CPU Mem. CPU Mem.
20 9.2560 409293 5.8800 184726 3 0.148 5875 0.012 718
30 9.2600 409293 5.7440 184726 6 10.076 246519 0.04 2011
40 9.2520 409293 5.8000 184726 9 689.3750 9791808 0.124 5443
50 9.4120 409293 5.8840 184726 12 >1000 N/A 0.348 14832
60 9.3720 409293 5.8240 184726 18 >1000 N/A 0.94 38810
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The main difference between the two test cases is that the Health Care example has
many actions and intensional rules, while the movie store case has only six actions and
no intensional predicates. As seen from Tables 1 and 2, for the relatively simple Movie
Store example, fSTRIPS is about twice more efficient both in time and space.3 However,
in the more complex Health Care example, fSTRIPS is at least two orders of magnitude
better both time-wise and space-wise. While in the Movie Store example the statistics
for the two strategies seem to grow at the same rate, in the Health Care case, the fSTRIPS
time appears to grow linearly, while the time for STRIPS grows quadratically.

7 Conclusion

This paper has demonstrated that the use of Transaction Logic accrues significant ben-
efits in the area of planing. That is, the message is the benefits of T R, not any partic-
ular planning heuristic. As an illustration, we have shown that sophisticated planning
strategies, such as STRIPS, can be naturally represented in T R and that the use of this
powerful logic opens up new possibilities for generalizations and devising new, more
efficient algorithms. For instance, we have shown that once the STRIPS algorithm is
cast as a set of rules in T R, the framework can be extended, almost for free, to support
such advanced aspects as action ramification, i.e., indirect effects of actions. Further-
more, by tweaking these rules just slightly, we obtained a new, much more efficient
planner, which we dubbed fSTRIPS (fast STRIPS). These non-trivial insights were ac-
quired merely due to the use of T R and not much else. The same technique can be used
to cast even more advanced strategies such as RSTRIPS, ABSTRIPS [21], and HTN [20]
as T R rules, and the fSTRIPS optimization straightforwardly applies to the first two.

There are several promising directions to continue this work. One is to investigate
other planning strategies and, hopefully, accrue similar benefits. Other possible direc-
tions include non-linear plans and plans with loops [18, 17, 24]. For instance non-linear
plans could be represented using Concurrent Transaction Logic [8], while loops are
easily representable using recursive actions in T R.
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also thank the reviewers for valuable comments.
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4. Bibel, W., del Cerro, L.F., Fronhöfer, B., Herzig, A.: Plan generation by linear proofs: On
semantics. In: Metzing, D. (ed.) 13th German Workshop on Artificial Intelligence,
Informatik-Fachberichte, GWAI 1989, vol. 216, pp. 49–62. Springer, Heidelberg (1989)

3 Time is measured in seconds and memory in kilobytes.



44 R. Basseda, M. Kifer, and A.J. Bonner

5. Bonner, A., Kifer, M.: Transaction logic programming. In: Int’l Conference on Logic
Programming, pp. 257–282. MIT Press, Budapest (1993)

6. Bonner, A., Kifer, M.: Applications of transaction logic to knowledge representation.
In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 67–81. Springer,
Heidelberg (1994)

7. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative and
procedural knowledge). Tech. Rep. CSRI-323, University of Toronto (November 1995),
http://www.cs.toronto.edu/˜bonner/transaction-logic.html

8. Bonner, A., Kifer, M.: Concurrency and communication in transaction logic. In: Joint Int’l
Conference and Symposium on Logic Programming, pp. 142–156. MIT Press, Bonn (1996)

9. Bonner, A., Kifer, M.: A logic for programming database transactions. In: Chomicki, J.,
Saake, G. (eds.) Logics for Databases and Information Systems, ch. 5, pp. 117–166. Kluwer
Academic Publishers (March 1998)

10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer Science 133
(1994)

11. Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive plans in linear
logic. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 252–264. Springer,
Heidelberg (2000)

12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

13. Fodor, P., Kifer, M.: Tabling for transaction logic. In: Proceedings of the 12th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP
2010, pp. 199–208. ACM, New York (2010)

14. Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1964–1969 (1995)

15. Guglielmi, A.: Concurrency and plan generation in a logic programming language with a
sequential operator. In: Hentenryck, P.V. (ed.) ICLP, pp. 240–254. MIT Press (1994)

16. Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New Generation
Computing 8(3), 225–244 (1990)

17. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.) Artificial
Intelligence and Applications, pp. 387–393. IASTED/ACTA Press (2005)

18. Kahramanogullari, O.: On linear logic planning and concurrency. Information and Computa-
tion 207(11), 1229–1258 (2009); Special Issue: Martı́n-Vide, C., Otto, F., Fernau, H. (eds.):
LATA 2008. LNCS, vol. 5196. Springer, Heidelberg (2008)

19. Lifschitz, V.: On the semantics of strips. In: Georgeff, M. (ed.) Lansky, Amy (eds, pp. 1–9.
Morgan Kaufmann, San Mateo (1987)

20. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc., San Francisco (2004)

21. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publ. Co., Paolo Alto (1980)
22. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing

Dynamical Systems. MIT Press, Cambridge (2001)
23. Rezk, M., Kifer, M.: Transaction logic with partially defined actions. J. Data Semantics 1(2),

99–131 (2012)
24. Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search for generalized

plans using classical planners. In: Proceedings of the 21st International Conference on Au-
tomated Planning and Scheduling (ICAPS 2011). AAAI (June 2011)

25. Swift, T., Warren, D.: Xsb: Extending the power of prolog using tabling. Theory and Practice
of Logic Programming (2011)

26. Thielscher, M.: Computing ramifications by postprocessing. In: IJCAI, pp. 1994–2000.
Morgan Kaufmann (1995)

27. Thielscher, M.: Ramification and causality. Artificial Intelligence 89(1-2), 317–364 (1997)

http://www.cs.toronto.edu/~bonner/transaction-logic.html


A Generalization of Approximation Fixpoint Theory
and Application

Yi Bi1, Jia-Huai You2,�, and Zhiyong Feng1

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 Department of Computing Science, University of Alberta, Edmonton, Canada

you@cs.ualberta.ca

Abstract. The approximation fixpoint theory (AFT) provides an algebraic
framework for the study of fixpoints of operators on bilattices, and has been
useful in dealing with semantics issues for various types of logic programs. The
theory in the current form, however, only deals with consistent pairs on a bilat-
tice, and it thus does not apply to situations where inconsistency may be part of
a fixpoint construction. This is the case for FOL-programs, where a rule set and
a first-order theory are tightly integrated. In this paper, we develop an extended
theory of AFT that treats consistent as well as inconsistent pairs on a bilattice. We
then apply the extended theory to FOL-programs and explore various possibili-
ties on semantics. This leads to novel formulations of approximating operators,
and new well-founded semantics and characterizations of answer sets for FOL-
programs. The work reported here shows how consistent approximations may
be extended to capture wider classes of logic programs whose semantics can be
treated uniformly.

1 Introduction

AFT, also known as the theory of consistent approximations, is a powerful framework
for the study of semantics of various types of logic programs [6,13]. Under this theory,
the semantics of a logic program is defined by respective fixpoints closely related to
an approximating operator on a bilattice. The approach is highly general as it only de-
pends on mild conditions on approximating operators. The well-founded fixpoint of an
approximating operator defines a well-founded semantics (WFS) and exact stable fix-
points define an answer set semantics. As different approximating operators may rep-
resent different intuitions, AFT provides an elegant way to treat semantics uniformly
and allows to explore alternative semantics by choosing different approximating oper-
ators. We can understand the properties of a semantics even without a concrete approx-
imating operator. For example, the least fixpoint approximates all other fixpoints and,
mathematically this property holds for any approximating operator.

However, current AFT is not applicable to the types of logic programs where in-
consistency needs to be treated explicitly. FOL-programs fall into this category. An
FOL-program is a combined knowledge base KB = (L,Π), where L is a theory of a de-
cidable fragment of first-order logic and Π a set of rules possibly containing first-order
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R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 45–59, 2014.
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formulas. Recent literature has shown extensive interests in combining ASP with frag-
ments of classical logic, such as description logics (DLs) (see, e.g., [4,5,7,10,12,14,15]).
In this way, logic programs can access external knowledge bases and are able to reason
with them. In this paper, we use FOL-program as an umbrella term for approaches that
allow first-order formulas to appear in rules (the so-called tight integration), for gen-
erality. The main interest of this paper is a generalization of AFT, which is motivated
primarily by the need to allow operators to be defined on consistent as well as incon-
sistent pairs on a bilattice, and the usefulness of a uniform treatment of semantics for
these programs. In general, we are interested in semantics for FOL-programs with the
following features:

– The class of all FOL-programs are supported;
– Combined reasoning with closed world as well as open world is supported; and
– There is structural evidence that the former approximates the latter.

Under the first feature, we shall allow an atom with its predicate shared in the first-
order theory L to appear in a rule head. This results in two-way flow of information
between the knowledge base L and rule set Π , and enables inference within each com-
ponent automatically. For example, assume L contains a formula that says students are
entitled to educational discount, ∀x St(x) ⊃ EdDiscount(x). Using the notation of
DL, we would write St � EdDiscount. Suppose in an application anyone who is not
employed full time but registered for an evening class is given the benefit of a student.
We can write a rule

St(X)← EveningClass(X), not HasJob(X).

Thus, that such a person enjoys educational discount can be inferred directly from the
underlying knowledge base L.

To support all FOL-programs, we need to treat inconsistencies explicitly. For exam-
ple, consider an FOL-program, KB = (L,Π), where L = {∀xA(x) ⊃ C(x),¬C(a)}
andΠ = {A(a)← not B(a);B(a)← B(a)}. Let the Herbrand base be {A(a), B(a)}.
In an attempt to compute the well-founded semantics of KB by an iterative process, we
begin with the empty set; then, since B(a) is false by closed world reasoning, we de-
rive A(a), resulting in an inconsistency with L. This reasoning process suggests that
during an iterative process a consistent set of literals may be mapped to an inconsistent
one and, in general, whether inconsistencies arise or not is not known a priori without
actually performing the computation. The current AFT is not applicable here since we
can only define approximating operators on consistent pairs on a bilattice.

The well-founded semantics has been defined for some subclasses of FOL-programs.
The closest that one can find is the work of [10], which relies on syntactic restrictions
so that the least fixpoint is computed over consistent sets of literals. To ensure that the
construction is well-defined, it is assumed that DL axioms must be, or can be converted
to, tuple generating dependencies (which are essentially Horn rules) plus constraints.
Thus, the approach cannot be lifted to handle first-order formulas in general.

Combined reasoning is often needed in the real world. For example, we may write a
rule

PrescribeT o(X,Q)← Effective(X,Z), Contract(Q,Z),¬isAllergicT o(Q,X)
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to describe that an antibiotic is prescribed to a patient who contracted a bacterium, if
the antibiotic against that bacterium is effective and patient is not allergic to it. Though
Effective can be reasoned with under the closed world assumption, it is preferred to
judge whether a patient is not allergic to an antibiotic under the open world assump-
tion, e.g., it holds if it can be proved classically. This is in contrast with closed world
reasoning whereas one may infer nonallergic due to lack of evidence for allergy.

For answer set semantics, solutions to this problem have been proposed in [14,15,17].
Essentially, with an appropriate separation of two kinds of predicates, we can verify
whether a guess is indeed an answer set. However, we are not aware of any work in the
context of the WFS that addresses this problem. As we will see in this paper, this is a
nontrivial issue, and different possible logical treatments exist.

In the past, the general practice is to define WFS and ASP semantics separately, some-
times under different logic frameworks, study their properties, and determine which
WFS approximates which answer set semantics. The last issue is important as the for-
mer is often practically easier to compute than that of the latter, and may be applied as
an approximation, or used as constraint propagation in the computation of the latter.

As motivated above, in this paper we present the theoretical work on extending AFT
and apply it to FOL-programs. The core of the paper is preceded by some definitions
and followed by related work and remarks. The full report of this work with proofs can
be found in [3].

2 Approximation Fixpoint Theory Revisited

2.1 Background

We assume familiarity with Knaster-Tarski fixpoint theory [18]. Briefly, a lattice 〈L,≤〉
is a poset in which every two elements have a least upper bound (lub) and a greatest
lower bound (glb). A chain in a poset is a linearly ordered subset of L. A poset 〈L,≤〉
is chain-complete if it contains a least element ⊥ and if every chain C ⊆ L has a least
upper bound in L.

A complete lattice is chain-complete, but the converse does not hold in general.
However, as shown in [6], a monotone operator on a chain-complete poset possesses
fixpoints and a least fixpoint. We denote the least fixpoint of an operatorO by lfp(O).

Given a complete lattice 〈L,≤〉, 〈L2,≤,≤p〉 denotes the induced (product) bilattice,
where ≤p is called the precision order and defined as: for all x, y, x′, y′ ∈ L, (x, y) ≤p

(x′, y′) if x ≤ x′ and y′ ≤ y. The ≤p ordering is a complete lattice ordering on L2.
Below, we may refer to a lattice 〈L,≤〉 by L and the induced bilattice by L2.

We say that a pair (x, y) ∈ L2 is consistent if x ≤ y, inconsistent otherwise, and
exact if x = y. We denote the set of all consistent pairs byLc. A consistent pair (x, y) ∈
Lc defines an interval, denoted by [x, y], which is defined by the set {z | x ≤ z ≤ y}.
A consistent pair (x, y) in Lc can be seen as an approximation of every z ∈ L such
that z ∈ [x, y]. In this sense, the precision order ≤p corresponds to the precision of
approximation, while an exact pair approximates the only element in it.
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2.2 An Extended Theory of Approximations

For a generalization beyond Lc, two issues must be addressed. The first is on the no-
tion of approximating operator. As analyzed below, if we adopt the original definition,
inconsistencies will be left out. The other issue is how to make the original algebraic
manipulation based on stable revision operator work in the new context.

An approximating operator A is a ≤p-monotone operator on L2 that approximates
an operator O on L. In the original theory, it is required that A(x, x) = (O(x),O(x)),
for all x ∈ L; i.e., A extendsO on all exact pairs. If we want to allow a transition from
a consistent pair to an inconsistent one, this condition is too strong. This is because an
exact pair in general is not a maximal element in L2. For any exact pair (z, z), there
are possibly inconsistent pairs (x, y) such that (z, z) ≤p (x, y). To see this, suppose
(x, y) ∈ Lc and consider any z ∈ [x, y]. Since (x, y) ≤p (z, z), by the≤p-monotonicity
of A, we have A(x, y) ≤p A(z, z). If we further require A(z, z) = (O(z),O(z)),
then Q(z) ∈ [x, y]. This is exactly what should happen if A(z, z) is consistent, as in
this case we want (x, y) to approximate all fixpoints of O in [x, y]. But if A(z, z) is
inconsistent, it is possible that Q(z) lies outside of [x, y]. This analysis suggests the
following definition.

Definition 1. Let O be an operator on L of a complete lattice 〈L,≤〉. We say that A :
L2 → L2 is an approximating operator of O iff the following conditions are satisfied:

– For all x ∈ L, if A(x, x) is consistent then A(x, x) = (O(x),O(x)).
– A is ≤p-monotone.

Example 1. To see why the consistency condition “A(x, x) is consistent” in the defi-
nition is critical, consider a complete lattice where L = {⊥,�} and ≤ is defined as
usual. Let O be the identify function on L. Then we have two fixpoints, O(⊥) = ⊥
and O(�) = �. Let A be an identity function on L2 everywhere except A(�,�) =
(�,⊥). Thus,A(�,�) is inconsistent. It is easy to check thatA is≤p-monotone. Since
A(⊥,⊥) = (Q(⊥),Q(⊥)), and (⊥,⊥) is the only exact pair such thatA(⊥,⊥) is con-
sistent, A is an approximating operator of O. But note thatA(�,�) �= (Q(�),Q(�)),
even thoughO(�) = �. The fixpoint� ofO is not captured by the operatorA because
A(�,�) is inconsistent. If we do not strengthen the definition by the consistency condi-
tion, mappings like the operator A above will be ruled out as approximating operators,
which means we will fail to accommodate inconsistencies as we set out to do.1

SinceA is a≤p-monotone operator onL2, its least fixpoint exists, which is called the
Kripke-Kleene fixpoint of A. Note that this fixpoint may be inconsistent, in which case
it may not approximate any fixpoint of O. It however does approximate every fixpoint
x of O when A(x, x) is consistent.

Our main interest in this paper is in what are called the well-founded and stable
fixpoints of A. For this purpose, let us denote by A1 and A2 the projection of an ap-
proximating operator A : L2 → L2 on its first and second components, respectively,
i.e., A1(·, v) is A with v fixed, and A2(u, ·) is A with u fixed.

1 This example specifies a system in which states are represented by a pair of factors - high and
low. Here, all states are stable except the one in which both factors are high. This state may be
transmitted to an “inconsistent state” with the first factor high and the second low. This state
is the only inconsistent one, and it itself is stable.
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In AFT, a key algebraic manipulation is performed by what is called a stable revi-
sion operator, which we will denote by StA. A pair (u, v) can be viewed as an ap-
proximation to any exact pair in the interval [u, v], where u is a lower estimate and
v an upper estimate. The pair, generated by StA(u, v), consists of a new lower esti-
mate and a new upper estimate, which may be computed by iterative processes, x0 =
⊥, x1 = A1(x0, v), ..., xα+1 = A1(xα, v), ... and y0 = u, y1 = A2(u, y0), ..., yα+1 =
A2(u, yα), ..., respectively. It is clear that the operator A1(·, v) is defined on L, and if
A is ≤p-monotone on L2 thenA1(·, v) is monotone (i.e.,≤-monotone) on L. As L is a
complete lattice, the first iterative process above computes lfp(A1(·, v)). However, for
the second iterative process to compute the least fixpoint of A2(u, ·), we need to ensure
that A2(u, ·) is an operator on the complete lattice [u,�].

In [6], the authors identify a subset ofLc with a desirable property, calledA-reliability.
An element (u, v) ∈ Lc is said to be A-reliable if (u, v) ≤p A(u, v). With this prop-
erty, it is proved thatA2(u, ·) is an operator on the complete lattice [u,�]; thus because
A2(u, ·) is monotone, the new upper estimate can be computed as the least fixpoint of
A2(u, ·).

Now let us generalize the notion of A-reliability to L2. That is, from now on let us
call an element (u, v) ∈ L2 A-reliable if (u, v) ≤p A(u, v). Again, the current theory
is not strong enough. For example, in Example 1, all pairs (u, v) ∈ L2 are A-reliable,
but A2(u, ·) is not guaranteed to be an operator on [u,�], e.g., when (u, v) is (�,�)
(which is consistent), we have A2(�,�) = ⊥, which is outside the interval [�,�].

As we see above, that (u, v) is consistent does not guarantee that A(u, z), for any
z ∈ [u, v], is also consistent. Interestingly, for A2(u, ·) to be an operator on [u,�],
given that (u, v) is consistent, it is sufficient that A(u, u) is consistent.

Lemma 1. Let 〈L,≤〉 be a complete lattice and A : L2 → L2 an approximating
operator of an operator O on L. If a consistent pair (u, v) ∈ L2 is A-reliable and
A(u, u) is consistent, then for every x ∈ [u,�], A2(u, x) ∈ [u,�].

By Lemma 1 and the fact that A is ≤p-monotone, when both (u, v) and A(u, u) are
consistent,A2(u, ·) is a monotone operator on [u,�]. Thus the least fixpoint ofA2(u, ·)
exists. Together with the fact that A1(·, v) is a monotone operator on L, the following
notion of stable revision operator is well-defined.

Definition 2. Let O be an operator on L and A be an approximating operator of O.
Define the stable revision operator, StA : Lr → L2, where Lr is the set of A-reliable
pairs in L2, as follows:

StA(u, v) =

{
(lfp(A1(·, v)),A2(u, v)) if (u, v) or A(u, u) is inconsistent
(lfp(A1(·, v)), lfp(A2(u, ·))) otherwise

Intuitively, the definition says that in case that either (u, v) orA(u, u) is inconsistent
we will compute A2(u, v) to improve the upper bound, because in this case A2(u, ·) is
not guaranteed to be an operator on [u,�], and thus lfp(A2(u, ·)) may be ill-defined.

Note that if (u, v) is inconsistent because of v < u, by A-reliability, A(u, v) pos-
sesses an (equal or) higher degree of inconsistency. This represents a “transition” from
an inconsistent state to a possibly deeper inconsistent one. Also, StA(u, v) may be
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inconsistent even when both (u, v) and A(u, u) are consistent, because the range of
lfp(A1(·, v)) is L and it is possible that lfp(A1(·, v)) �≤ lfp(A2(u, ·)). This is rather
interesting as it represents a “transition” from a consistent state to an inconsistent one.

The computation of lfp(A1(·, v)) starts from the least element⊥ ∈ L, and in general
there is no guarantee that this least fixpoint improves u. Thus we need another desirable
property for the stable revision operator to behave as expected. We call an element
(u, v) ∈ L2 A-prudent if u ≤ lfp(A1(·, v)). Let us denote by Lrp the set of A-reliable
and A-prudent pairs in L2.

By A-reliability, a pair (u, v) ∈ Lrp is revised by operator A into a more precise
approximation, or a more inconsistent state. The next lemma states that this is the case
for the stable revision operator for all A-reliable and A-prudent pairs in L2, and any
revised pair in Lrp can be “revised even more” continuously.

Lemma 2. For every pair (u, v) ∈ Lrp, (u, v) ≤p StA(u, v), and StA(u, v) is also
A-reliable and A-prudent.

Let C be a chain in Lrp. Denote by C1 and C2, respectively, the projection of C on
its first and second elements. It is clear that (lub(C1), glb(C2)) = lub(C). By adopting
a proof of [6] (the proof of Proposition 3.10), it can be shown that for any chain C of
Lrp, (lub(C1), glb(C2)) isA-reliable andA-prudent. It follows from Lemma 2 that the
operator StA is defined on Lrp. We therefore have

Theorem 1. The structure 〈Lrp,≤p〉 is a chain-complete poset that contains the least
element (⊥,�), and the stable revision operator StA is ≤p-monotone on Lrp.

Definition 3. Let 〈L,≤〉 be a complete lattice, A an approximating operator of some
operator O on L, and StA the stable revision operator on Lrp. The least fixpoint of
StA is called the well-founded fixpoint of A, the fixpoints of StA are called the stable
fixpoints of A.

The extended theory is a nontrivial generalization of the original one, because the set
of A-reliable and A-prudent pairs in L2 in general contains inconsistent pairs.

Finally, to compare the precisions of two approximating operators A and B, we
define: A is more precise than B if for all pairs (u, v) ∈ L2, B(u, v) ≤p A(u, v).
Intuitively, that A is more precise than B implies that the stable fixpoints of A ap-
proximate the respective fixpoints of O more closely than those of B. In particular, the
well-founded fixpoint of A approximates all fixpoints of O and this approximation is
as good as the well-founded fixpoint of B, and probably better.

3 Application to FOL-Programs

3.1 Language and Notation

We assume a language of a decidable fragment of first-order logic, denoted LΣ , where
Σ = 〈Fn;Pn〉, called a signature, and Fn and Pn are disjoint countable sets of n-
ary function and n-ary predicate symbols, respectively. Constants are 0-ary functions.
Terms are variables, constants, or functions in the form f(t1, ..., tn), where each ti is a
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term and f ∈ Fn. First-order Formulas, or just formulas, are defined as usual, so are
the notions of satisfaction, model, and entailment.

Let ΦP be a finite set of predicate symbols and ΦC a nonempty finite set of constants
such that ΦC ⊆ Fn. An atom is of the form P (t1, ..., tn) where P ∈ ΦP and each ti
is either a constant from ΦC or a variable. A negated atom is of the form ¬A where A
is an atom. We do not assume any other restriction on the vocabularies, that is, ΦP and
Pn may have predicate symbols in common.

An FOL-program is a combined knowledge base KB = (L,Π), where L is a first-
order theory of LΣ and Π a rule base, which is a finite collection of rules of the form

H ← A1, . . . , Am, not B1, . . . , not Bn (1)

where H is an atom, and Ai and Bi are atoms or formulas. By abuse of terminology,
each Ai is called a positive literal and each not Bi is called a negative literal. If B in
not B is a formula, we also call not B a negative formula.

For any rule r, we denote by head(r) the head of the rule and body(r) its body, and
we define pos(r)={A1, ..., Am} and neg(r)={B1, ..., Bn}.

A ground instance of a rule r in Π is obtained by replacing every free variable with
a constant from ΦC . In this paper, we assume that a rule base Π is already grounded if
not said otherwise. When we refer to an atom/literal/formula, by default we mean it is
a ground one.

Note that the body of a ground rule may contain arbitrary first-order sentences, which
are first-order formulas with no free variables.

Given an FOL-program KB = (L,Π), the Herbrand base of Π , denoted HBΠ , is
the set of all ground atoms P (t1, ..., tn), where P ∈ ΦP occurs in KB and ti ∈ ΦC .

We denote by Ω the set of all predicate symbols appearing in HBΠ such that Ω ⊆
Pn. For distinction, we call atoms whose predicate symbols are not in Ω ordinary, and
all the other formulas FOL-formulas. If L = ∅ and Π only contains rules of the form (1)
where all H , Ai and Bj are ordinary atoms, then KB is called a normal logic program.

Any subset I ⊆ HBΠ is called an interpretation of Π . It is also called a total inter-
pretation or a 2-valued interpretation. If I is an interpretation, we define Ī = HBΠ\I .

Let Q be a set of atoms. We define ¬.Q = {¬A | A ∈ Q}. For a set of atoms and
negated atoms S, we define S+ = {A |A ∈ S}, S− = {A | ¬A ∈ S}, and S|Ω =
{A ∈ S | pred(A) ∈ Ω}, where pred(A) is the predicate symbol of A. Let LitΠ =
HBΠ ∪ ¬HBΠ . A subset S ⊆ LitΠ is consistent if S+ ∩ S− = ∅. For a first-order
theory L, we say that S ⊆ LitΠ is consistent with L if the first-order theory L∪ S|Ω is
consistent (i.e., the theory is satisfiable). Note that when we say S is consistent with L,
both S and L must be consistent. Similarly, a (2-valued) interpretation I is consistent
with L if L ∪ I|Ω ∪ ¬.Ī |Ω is consistent.

Definition 4. Let KB = (L,Π) be an FOL-program and I ⊆ HBΠ an interpretation.
Define the satisfaction relation under L, denoted |=L, as follows (the definition extends
to conjunctions of literals):

1. For any ordinary atom A ∈ HBΠ , I |=L A if A ∈ I and I |= not A if A �∈ I .
2. For any FOL-formula A, I |=L A if L ∪ I|Ω ∪ ¬.Ī|Ω |= A, and I |=L not A if

I �|=L A.
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Let KB = (L,Π) be an FOL-program. For any r ∈ Π and I ⊆ HBΠ , I |=L r if
I �|=L body(r) or I |=L head(r). I is a model of KB if I is consistent with L and I
satisfies all rules in Π .

Example 2. To illustrate the flexibility provided by the parameter Ω, suppose we have
a program KB = (L,Π) where Π contains a rule that says any unemployed with dis-
ability receives financial assistance:

Assist(X)← Disabled(X), not Employed(X)

Assume Ω = ΦP = {Assist, Employed} and ΦC = {a}. Then, the Herbrand base
is HBΠ = {Assist(a), Employed(a)}. As answer sets and WFS are based on HBΠ ,
we say that the predicates appearing in HBΠ are interpreted under the closed world
assumption. In particular, Employed is interpreted under the closed world assumption,
and as such, not Employed(a) can be established for lack of evidence of employment.
On the other hand,Disabled(a) is not in HBΠ and thus its truth requires a direct, classic
proof; in this case we say that Disabled is interpreted under the open world assumption.

3.2 Semantics of FOL-Programs under Extended AFT

We first extend the standard immediate consequence operator to FOL-programs. This
is the operator to be approximated, i.e., it is a concrete instance of operatorO in Def. 1.

Let KB = (L,Π) be an FOL-program. We define an operator on the complete lattice
〈2HBΠ ,⊆〉, KKB: 2HBΠ → 2HBΠ as follows: for any I ∈ 2HBΠ ,

KKB(I) = {head(r) | r ∈ Π, I |=L body(r)} ∪ {A ∈ HBΠ |Ω | I |=L A} (2)

This operator is essentially the standard immediate consequence operator augmented
by direct positive consequences. Notice that elements in 2HBΠ are 2-valued interpreta-
tions, which are inherently weak in representing inconsistency - if HBΠ is a fixpoint of
KKB, in general it is not indicative of whether this is the result of inconsistency, or all
the atoms in HBΠ are consistently derived. In the extended AFT, it is inconsistent pairs
that tie up this loose end, by explicitly representing negative information.

According to extended AFT, given the lattice 〈2HBΠ ,⊆〉, the induced bilattice is
〈(2HBΠ )2,⊆p〉. A pair (I, J) in (2HBΠ )2 is consistent if I ⊆ J , which represents a
partial interpretation I ∪ ¬.J̄ (also called a 3-valued interpretation), The pair (I, J) is
inconsistent if I �⊆ J . In the sequel, we will use a consistent pair (I, J) as well as the
corresponding set I ∪ ¬.J̄ to denote a partial interpretation.

Intuitively, a partial interpretation (I, J) means that the atoms in I are true, those in
J are potentially true, hence those in J̄ are false as they are not even potentially true.

Given a partial interpretation (I, J), (I ′, J ′) is said to be a consistent extension of
(I, J) if I ⊆ I ′ ⊆ J ′ ⊆ J .

Below, we define two entailment relations under partial interpretations, the first of
which is the standard entailment relation based on Kleene’s 3-valued logic and the other
is defined in terms of the first that differs only on requiring a check for FOL-formulas
by all consistent extensions.
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Definition 5. Let KB = (L,Π) be an FOL-program, (I, J) a 3-valued interpretation,
and φ a literal. We define two entailment relations below, which extends naturally to
conjunction of literals.

– (I, J) |=L φ iff
• if φ is an ordinary atom A then A ∈ I , and if φ is a negative ordinary literal
not A then A ∈ J̄;

• if φ is an FOL-formula then L ∪ I|Ω ∪ ¬.J̄ |Ω |= φ, and if φ is a negative
formula not A, then L ∪ I|Ω ∪ ¬.J̄ |Ω �|= A.

– (I, J) �L φ iff
• (I, J) |=L φ, and in addition,
• if φ is an FOL-formula then (I ′, J ′) |=L φ for every consistent extension
(I ′, J ′) of (I, J), and if φ is a negative formula not A, then (I ′, J ′) �|=L A
for every consistent extension (I ′, J ′) of (I, J).

In the extended AFT, semantics is defined by approximating operators, which map a
pair (I, J) to a pair (I ′, J ′). Roughly speaking, to guarantee stability, we want to add
those atoms to I ′ that are not only true under (I, J), but also true in any interpretation
that extends (I, J).2

3.3 Semantics by Approximating Operators

We define three closely related approximating operators on (2HBΠ )2, with approxima-
tion precisions in increasing order, but with some costs for higher precision.

In the following, given an FOL-program KB = (L,Π), a functionFKB : (2HBΠ )2 →
(2HBΠ )2 is called progressive if (I, J) ⊆p FKB(I, J).3

Approximating Operator ΦKB: Standard Semantics

Definition 6. (OperatorΦKB) Let KB = (L,Π) be an FOL-program, (I, J) ∈ (2HBΠ )2,
and FKB a progressive function. The operators Φ1

KB and Φ2
KB are defined as: If (I, J) is

inconsistent with L, then ΦKB(I, J) is inconsistent and ΦKB(I, J) = FKB(I, J); other-
wise, for all H ∈ HBΠ ,

• H ∈ Φ1
KB(I, J) iff one of the following holds

(a) (I, J) |=L H .
(b) ∃r ∈ Π with head(r) = H s.t. (I, J) �L body(r).

• H ∈ Φ2
KB(I, J) iff (I, J) �|=L ¬H and one of the following holds

(a) ∃(I ′, J ′) with I ⊆ I ′ ⊆ J ′ ⊆ J s.t. (I ′, J ′) |=L H .
(b) ∃r ∈ Π with head(r) = H s.t. for every φ ∈ body(r), there is a consistent

extension (I ′, J ′) of (I, J) such that (I ′, J ′) |=L φ.

2 Since the entailment relation for first-order theory is monotonic, the real effect is only on
negative FOL-formulas.

3 Notice that Theorem 1 only applies to A-reliable and A-prudent pairs. To be progressive is to
be A-reliable. As the function FKB is applied only once, A-prudence becomes unnecessary.
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If (I, J) is inconsistent with L, the resulting pair must be inconsistent and is deter-
mined by FKB(I, J). We leave this as a parameter to ensure flexibility and generality;
e.g., if we insist that inconsistency be treated as in classical logic, FKB(I, J) should
lead to full triviality, i.e., FKB(I, J) = (HBΠ , ∅). However, our definition allows an
inconsistent state to be handled differently as long as the function FKB is progressive
and it does not turn an inconsistent situation into a consistent one.

Otherwise, for any H ∈ Φ1
KB(I, J), either H is entailed by L and (I, J) (relative to

Ω), or for some rule r, H is derivable via r for all consistent extensions of (I, J).
On the other hand, that H ∈ Φ2

KB(I, J) requires two conditions. The first is that for
H to be potentially true, its negation should not be entailed, while in the second, to
demonstrate that H is potentially true, either it is potentially entailed (part (a)), or it is
potentially derivable (part (b)); note that here each literal in body(r) may be entailed by
a different consistent extension.

The extended AFT is applicable to the operator ΦKB, due to the following lemma.

Lemma 3. ΦKB is an approximating operator of KKB.

Example 3. Let KB = ({¬A(a)}, Π) where Π = {A(a) ← not B(a); B(a) ←
B(a); C(a)←}. Let Ω = ΦP = {A,B,C} and ΦC = {a}. The well-founded fixpoint
of ΦKB is computed by the sequence generated by the stable revision operator StΦKB :

(∅,HBΠ)⇒ ({C(a)}, {C(a)})⇒ ({C(a), A(a)}, {C(a)})⇒ ...

With the least element (∅,HBΠ), according to Def. 2, we compute the new lower and
upper estimates as (lfp(ΦKB

1(·,HBΠ)), lfp(ΦKB
2(∅, ·))) = ({C(a)}, {C(a)}). Simi-

larly, we get the next pair ({C(a), A(a)}, {C(a)}), which is inconsistent. The eventual
fixpoint is determined the function FKB. For example, if FKB maps the last pair in the
sequence to itself, then this pair is the well-founded fixpoint of ΦKB.

Note that KB even has a model, {C(a), B(a)}. Thus, existence of a model does not
guarantee that the well-founded fixpoint is a consistent set of literals.

In the next two examples, we illustrate combined reasoning with closed world as
well as open world assumptions.

Example 4. Consider KB = (L,Π), where

L = {∀x Certified(x) ⊃ Disabled(x)}
Π = {Assist(a)← Disabled(a), not Employed(a))}

Assume Ω = {Assist, Employed} and ΦC = {a}. Thus HBΠ = {Assist(a),
Employed(a)}. The computation starts with the least element (∅,HBΠ), and it is easy
to verify that the well-founded fixpoint of ΦKB is (∅, ∅), which implies that Assist(a)
and Employed(a) are false. Assist(a) is not potentially true because Disabled(a) is
not entailed by any consistent extension of (∅, ∅). Note that there is a model of L satis-
fying the rule in Π that extends the well-founded fixpoint of ΦKB; namely Certified(a)
and Disabled(a) in addition are false.4

4 The reasoning here is analogue to parallel circumscription [11], where the predicates
Employed and Assist are minimized with Certified and Disabled varying.
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Example 5. Consider the following FOL-program KB = (L,Π), where

L = {∀xB(x) ⊃ A(x),¬A(a) ∨C(a)}
Π = {B(a)← B(a); A(a)← (¬C(a) ∧B(a)); R(a)← not C(a), not A(a)}

Let ΦP = {A,B,R}, Ω = {A,B}, ΦC = {a}, and HBΠ = {A(a), B(a), R(a)}.
Starting with (∅,HBΠ), we get (lfp(ΦKB

1(·,HBΠ)), lfp(ΦKB
2(∅, ·))) = (∅, {R(a)}).

That R(a) is potentially true because (∅, ∅) |=L not A(a) and (∅, ∅) �|=L C(a), thus
every body literal of the last rule is entailed by some consistent extension. After the next
iteration, we get ({R(a)}, {R(a)}) as the fixpoint. Note that the FOL-formula, C(a),
because it is not in HBΠ , is not involved, positively or negatively, in the well-founded
semantics of KB.

The well-founded and answer set semantics based on the operator ΦKB are called
standard, because they are generalizations of the WFS and answer set semantics for
normal logic programs.5

Theorem 2. Let KB = (∅, Π) be a normal logic program. Then, the Φ-WFS of KB
coincides with the WFS of Π , and Φ-answer set semantics coincides with the standard
stable model semantics of Π .

We consider the formulation of ΦKB novel, because the central mechanism, namely
part (b) of Def. 6, captures the notion of unfounded set for normal logic programs, in a
much simpler manner than the D̃-well-founded semantics of [13].

Approximating Operator Θ: Enhanced Semantics. As eluded earlier, in the defini-
tion of the operator ΦKB, to derive potentially true atoms, we apply a rule if each body
literal is entailed by some consistent extension. An alternative is to require that all body
literals are entailed by some, but the same, consistent extension. This leads to a different
operator.

Definition 7. (OperatorΘKB) Let KB = (L,Π) be an FOL-program, (I, J) ∈ (2HBΠ )2,
andFKB a progressive function. The operator ΘKB is defined as: If (I, J) is inconsistent
with L, then ΘKB(I, J) is inconsistent and ΘKB(I, J) = FKB(I, J); otherwise,

• Θ1
KB(I, J) = Φ1

KB(I, J).
• ∀H ∈ HBΠ , H ∈ Θ2

KB(I, J) iff (I, J) �|=L ¬H and one of the following holds
(a) ∃(I ′, J ′) with I ⊆ I ′ ⊆ J ′ ⊆ J s.t. (I ′J ′) |=L H .
(b) ∃r ∈ Π with head(r) = H s.t. there is a consistent extension (I ′, J ′) of (I, J)

such that (I ′, J ′) |=L body(r)

Lemma 4. The operator ΘKB is an approximating operator of KKB.

Clearly, the operator Θ2
KB is at least as strict as Φ2

KB. Less potentially true atoms that
we have more false atoms there are. Thus it is not difficult to show

5 This is also in line with the well-founded semantics (WFS) for logic programs with mono-
tone and anti-monotone aggregates [1], and the WFS for dl-programs [9], both of which are
generalizations of the WFS for normal logic programs.
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Proposition 1. Let KB = (L,Π) be an FOL-program.

– For all pairs of interpretations (I, J), ΦKB(I, J) ⊆p ΘKB(I, J).
– lfp(StΦKB) ⊆p lfp(StΘKB).

Hence, according to the extended AFT, ΘKB is more precise than ΦKB. However, the
higher precision comes with a cost. The Θ-well-founded semantics is not a generaliza-
tion of the WFS for normal logic programs.

Example 6. Consider KB = (∅, Π), where Π is

P (a)← Q(a), not Q(a). Q(a)← not Q(b). Q(b)← not Q(a).

and Ω = {P,Q}. The well-founded fixpoint of ΘKB is computed by the sequence

(∅,HBΠ)⇒ (∅, {Q(a), Q(b)})⇒ (∅, {Q(a), Q(b)})

Note that {¬P (a)} is not a 3-valued model in Kleene’s 3-valued logic, as the first rule
is not satisfied.

In contrast, the Φ-well-founded semantics has all atoms undefined, as the
well-founded fixpoint of ΦKB is (∅, {Q(a), Q(b), P (a)}), which is generated as follows:
Given (∅,HBΠ), to compute the new upper estimate, we start with (∅, ∅), and then get
(∅, {Q(a), Q(b)}), followed by a derivation of P (a) as potentially true by the first rule,
where each body literal is satisfied by a different consistent extension.

By Proposition 1, if the well-founded fixpoint of ΦKB is inconsistent, so is the well-
founded fixpoint of ΘKB. Also, it is not difficult to show that Θ-answer sets are precisely
Φ-answer sets, and vice versa. For instance, the FOL-program KB above has two an-
swer sets, in both cases P (a) is false. Then, the Θ-well-founded semantics is a better
approximation to Φ-answer sets than the Φ-well-founded semantics.

Approximating Operator Ψ : Ultimate Semantics. Actually, the operator ΘKB is half
way towards what is called the ultimate semantics for logic programs [13]. We define a
similar operator for FOL-programs.

Definition 8. (Operator ΨKB) Let KB = (L,Π) be an FOL-program, (I, J) ∈ (2HBΠ )2,
andFKB a progressive function. The operator ΨKB is defined as: If (I, J) is inconsistent
with L, then ΨKB(I, J) is inconsistent and ΨKB(I, J) = FKB(I, J); otherwise,

• H ∈ Ψ1
KB(I, J) iff one of the following holds

(a) (I, J) |=L H .
(b) For each consistent extension (I ′, J ′) of (I, J), ∃r ∈ Π with head(r) = H s.t.

(I ′, J ′) |=L body(r).
• Ψ2

KB(I, J) = Θ2
KB(I, J).

The operator Ψ1
KB differs from the previous two in that different rules may be used to

derive H for different consistent extensions. For example, with KB = (∅, Π) where Π
consists of

P (a)← Q(a); P (a)← not Q(a); Q(a)← not R(a); R(a)← not Q(a).

With all predicates in Ω, the well-founded fixpoint of ΨKB is ({P (a)}, {Q(a), R(a)}).
P (a) is derived by different rules for different consistent extensions of (∅,HBΠ).
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Lemma 5. The operator ΨKB is an approximating operator of KKB.

It is clear that ΨKB is more relaxed than operator ΘKB in deriving true atoms. Com-
bined with Proposition 1, we can show the following

Proposition 2. Let KB = (L,Π) be an FOL-program.

– For all pairs of interpretations (I, J), ΦKB(I, J) ⊆p ΘKB(I, J) ⊆p ΨKB(I, J).
– lfp(StΦKB) ⊆p lfp(StΘKB) ⊆p lfp(StΨKB).

Since Ψ2
KB(I, J) = Θ2

KB(I, J), the same program in Example 6 shows that the Ψ -
well-founded semantics is not a generalization of the WFS for normal logic programs.

To some researchers, the ultimate semantics sometimes behaves counter-intuitively.
E.g., the single-rule normal program, {P (a) ← P (a)}, is not strongly equivalent to
∅. In addition, for normal logic programs the ultimate semantics has higher complex-
ity than the standard semantics [6]. Nevertheless, the ultimate semantics is interesting
because it provides the best possible approximation, in terms of information content.

4 Related Work and Discussion

Well-Supported Answer Set Semantics for FOL-Programs: In [17], the
well-supported answer set semantics is defined, based on the notion of 2-valued up to
satisfaction, which is similar to the definition of Φ1

KB, but the latter is based on 3-valued
consistent extensions. However, we are able to show the following.

Theorem 3. Let KB = (L,Π) be an FOL-program and I ⊆ HBΠ a model of KB. The
exact pair (I, I) is a stable fixpoint of ΦKB iff I is a well-supported answer set of KB.

The extended AFT provides an uniform treatment to the semantics of FOL-programs.
We now know that there are at least two principled ways (based on operators ΦKB and
ΘKB respectively) to approximate well-supported answer sets, which can be character-
ized by different approximating operators.

In the extended AFT, an inconsistent pair on a bilattice does not approximate any
exact pair. Thus, since operator ΘKB is more precise than operator ΦKB, if we know that
the Θ-well-founded semantics is inconsistent then we need not try to compute well-
supported answer sets, since they do not exist. This observation may help design an
implementation for the well-supported answer set semantics. None of the these insights
are possible by the original AFT, because none of these operators can be defined only
on consistent pairs of a bilattice.

Well-Founded Semantics: The most relevant work on the well-founded semantics for
combing rules with DLs are [9,10]. The former embeds dl-atoms in rule bodies to serve
as queries to the underlying ontology, and it does not allow the predicate in a rule head
to be shared in the ontology. In both approaches, syntactic restrictions are posted so that
the least fixpoint is always constructed over sets of consistent literals. It is also a unique
feature in our approach that combined reasoning with closed world and open world is
supported. We have seen in Section 3 that this is not a trivial issue for the construction
of a least fixpoint.
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Combining ASP with DLs or Classic Logic: The original AFT applies to dl-programs
[7], which can be represented by HEX-programs [8] and aggregate programs [13],
where an approximating operator can be defined so that the well-founded fixpoint
defines the well-founded semantics [9] and the exact stable fixpoints define the well-
supported answer set semantics [16] (also see [20]).

FO(ID) is formulated to integrate rules into classical logic FO in manner of putting
rules on top of FO [19]. A program in FO(ID) has a clear knowledge representation
“task” - the rule component is used to define concepts, whereas the FO component may
assert additional properties of the defined concepts. All formulas in FO(ID) are inter-
preted under closed world assumption. Thus, FOL-programs and FO(ID) have funda-
mental differences in basic ideas. On semantics, FOL-formulas can be interpreted under
open world and closed world flexibly. On modeling, the rule set in FO(ID) is built on
ontologies, thus information can only flow from a first order theory to rules. But in
FOL-programs, the first order theory and rules are tightly integrated, and information
can flow from each other bilaterally.

Approximation Fixpoint Theory: In [6], the authors also show that the theory of con-
sistent approximations can be applied to the entire bilattice L2, under the assump-
tion that an approximating operator A is symmetric, which is defined as: for every
(x, y) ∈ L2, A1(x, y) = A2(y, x). This symmetry behavior guarantees that the re-
striction of A to Lc is an operator on Lc, hence it does not allow a transition from
a consistent state to an inconsistent one. The theory developed in this paper does not
make this assumption. In fact, all three approximating operators defined in Section 3
of this paper are asymmetric. Finally, the theory of consistent approximations has been
extended to HEX-programs [2] that allow disjunctive heads in rules.

The extended AFT developed in this paper supports two features, one for transitions
from a consistent state to an inconsistent one, and the other for transitions from an in-
consistent state to a possibly deeper inconsistent one. In this paper we utilize the first to
define the semantics of FOL-programs. For potential applications of the second feature,
one may consider inference systems based on non-classical logic (e.g., paraconsistent
logic) or explore the idea of belief revision. In both cases we want to infer nontrivial
conclusions in case of an inconsistent theory. This is an interesting future direction.
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Abstract. The recent outburst of context-dependent knowledge on the Seman-
tic Web (SW) has led to the realization of the importance of the quads in the
SW community. Quads, which extend a standard RDF triple, by adding a new
parameter of the ‘context’ of an RDF triple, thus informs a reasoner to distin-
guish between the knowledge in various contexts. Although this distinction sep-
arates the triples in an RDF graph into various contexts, and allows the reasoning
to be decoupled across various contexts, bridge rules need to be provided for
inter-operating the knowledge across these contexts. We call a set of quads to-
gether with the bridge rules, a quad-system. In this paper, we discuss the problem
of query answering over quad-systems with expressive forall-existential bridge
rules. It turns out the query answering over quad-systems is undecidable, in gen-
eral. We derive a decidable class of quad-systems, namely context-acyclic quad-
systems, for which query answering can be done using forward chaining. Tight
bounds for data and combined complexity of query entailment has been estab-
lished for the derived class.

Keywords: Contextualized RDF/OWL knowledge, Contextualized Query An-
swering, Quads, Forall-Existential Rules, Semantic Web, Knowledge Represen-
tation.

1 Introduction

One of the major recent changes in the SW community is the transformation from a
triple to a quad as its primary knowledge carrier. As a consequence, more and more
triple stores are becoming quad stores. Some of the popular quad-stores are 4store1,
Openlink Virtuoso2, and some of the current popular triple stores like Sesame3 inter-
nally keep track of the context by storing arrays of four names (c, s, p, o) (further de-
noted as c : (s, p, o)), where c is an identifier that stands for the context of the triple
(s, p, o). Some of the recent initiatives in this direction have also extended existing
formats like N-Triples to N-Quads. The latest Billion triples challenge datasets (BTC
2012) have all been released in the N-Quads format.

1 http://4store.org
2 http://virtuoso.openlinksw.com/rdf-quad-store/
3 http://www.openrdf.org/

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 60–75, 2014.
c© Springer International Publishing Switzerland 2014
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One of the main benefits of quads over triples are that they allow users to specify
various attributes of meta-knowledge that further qualify knowledge [8], and also al-
low users to query for this meta knowledge [30]. Examples of these attributes, which
are also called context dimensions [27], are provenance, creator, intended user, creation
time, validity time, geo-location, and topic. Having defined various contexts in which
triples are dispersed, one can declare in another meta-context mc, statements such as
mc : (c1, creator, John), mc : (c1, expiryTime, “jun-2013”) that talk about the knowl-
edge in context c1, in this case its creator and expiry time. Another benefit of such a
contextualized approach is that it opens possibilities of interesting ways for querying
a contextualized knowledge base. For instance, if context c1 contains knowledge about
Football World Cup 2014 and context c2 about Football Euro Cup 2012. Then the query
“who beat Italy in both Euro Cup 2012 and World Cup 2014” can be formalized as the
conjunctive query:

c1: (x, beat, Italy) ∧ c2: (x, beat, Italy),where x is a variable.

As the knowledge can be separated context wise and simultaneously be fed to separate
reasoning engines, this approach increases both efficiency and scalability. Besides the
above flexibility, bridge rules [4] can be provided for inter-interoperating the knowledge
in different contexts. Such rules are primarily of the form:

c : φ(x)→ c′ : φ′(x)

where φ, φ′ are both atomic concept (role) symbols, c, c′ are contexts. The semantics of
such a rule is that if, for any a, φ(a) holds in context c, then φ′(a) should hold in con-
text c′, wherea is a unary/binary vector dependending on whether φ, φ′ are concept/role
symbols. Although such bridge rules serve the purpose of specifying knowledge inter-
operability from a source context c to a target context c′, in many practical situations
there is the need of interoperating multiple source contexts with multiple target targets,
for which the bridge rules of the form (1) is inadequate. Besides, one would also want
the ability of creating new values in target contexts for the bridge rules.

In this work, we consider forall-existential bridge rules that allows conjunctions and
existential quantifiers in them, and hence is more expressive than those, in DDL [4]
and McCarthy et al. [29]. A set of quads together with such bridge rules is called a
quad-system. The main contributions of this work can be summarized as:

1. We provide a basic semantics for contextual reasoning over quad-systems, and
study contextualized conjunctive query answering over them. For query answer-
ing, we use the notion of a distributed chase, which is an extension of a standard
chase [22,1] that is widely used in databases and KR for the same.

2. We show that conjunctive query answering over quad-systems, in general, is unde-
cidable. We derive a class of quad-systems called context acyclic quad-systems, for
which query answering is decidable and can be done by forward chaining. We give
both data and combined complexity of conjunctive query entailment for the same.

The paper is structured as follows: In section 2, we formalize the idea of contextual-
ized quad-systems, giving various definitions and notations for setting the background.
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In section 3, we formalize the query answering on quad-systems, define notions such
as distributed chase that is further used for query answering, and give the undecidabil-
ity results of query entailment for unrestricted quad-systems. In section 4, we present
context acyclic quad-systems and its properties. We give an account of relevant related
works in section 5, and conclude in section 6. A version of this paper with detailed
proofs is available at [23].

2 Contextualized Quad-Systems

In this section, we formalize the notion of a quad-system and its semantics. For any
vector or sequence x, we denote by ‖x‖ the number of symbols in x, and by {x} the
set of symbols in x. For any sets A and B, A → B denotes the set of all functions
from set A to set B. Given the set of URIs U, the set of blank nodes B, and the set
of literals L, the set C = U � B � L are called the set of (RDF) constants. Any
(s, p, o) ∈ C × C × C is called a generalized RDF triple (from now on, just triple).
A graph is defined as a set of triples. A Quad is a tuple of the form c : (s, p, o), where
(s, p, o) is a triple and c is a URI4, called the context identifier that denotes the context
of the RDF triple. A quad-graph is defined as a set of quads. For any quad-graph Q and
any context identifier c, we denote by graphQ(c) the set {(s, p, o)|c : (s, p, o) ∈ Q}. We
denote by QC the quad-graph whose set of context identifiers is C. Let V be the set of
variables, any element of the set CV = V∪C is a term. Any (s, p, o) ∈ CV×CV×CV

is called a triple pattern, and an expression of the form c : (s, p, o), where (s, p, o) is a
triple pattern, c a context identifier, is called a quad pattern. A triple pattern t, whose
variables are elements of the vector x or elements of the vector y is written as t(x,y).
For any function f : A → B, the restriction of f to a set A′, is the mapping f |A′ from
A′∩A to B s.t. f |A′(a) = f(a), for each a ∈ A∩A′. For any triple pattern t = (s, p, o)
and a function μ from V to a set A, t[μ] denotes (μ′(s), μ′(p), μ′(o)), where μ′ is an
extension of μ to C s.t. μ′|C is the identity function. For any set of triple patterns G,
G[μ] denotes

⋃
t∈G t[μ]. For any vector of constants a = 〈a1, . . . , a‖a‖〉, and vector of

variables x of the same length, x/a is the function μ s.t. μ(xi) = ai, for 1 ≤ i ≤ ‖a‖.
We use the notation t(a,y) to denote t(x,y)[x/a].

Bridge rules (BRs). Bridge rules (BR) enables knowledge propagation across contexts.
Formally, a BR is an expression of the form:

∀x∀z [c1: t1(x, z) ∧ ... ∧ cn: tn(x, z)→ ∃y c′1: t′1(x,y) ∧ ... ∧ c′m: t′m(x,y)] (1)

where c1, ..., cn, c
′
1, ..., c

′
m are context identifiers, x,y, z are vectors of variables s.t.

{x}, {y}, and {z} are pairwise disjoint. t1(x, z), ..., tn(x, z) are triple patterns which
do not contain blank-nodes, and whose set of variables are from x or z. t′1(x, y),
...,t′m(x,y) are triple patterns, whose set of variables are from x or y, and also does not
contain blank-nodes. For any BR, r, of the form (1), body(r) is the set of quad patterns
{c1: t1(x, z),...,cn: tn(x, z)}, and head(r) is the set of quad patterns {c′1: t′1(x,y), ...
c′m: t′m(x, y)}.

4 Although, in general a context identifier can be a constant, for the ease of notation, we restrict
them to be a URI.
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Definition 1 (Quad-System). A quad-system QSC is defined as a pair 〈QC , R〉, where
QC is a quad-graph, whose set of context identifiers is C, and R is a set of BRs.
For any quad-graph QC (BR r), its symbols size ‖QC‖ (‖r‖) is the number of symbols
required to print QC (r). Hence, ‖QC‖ ≈ 4∗|QC|, where |QC | denotes the cardinality of
the set QC . Note that |QC | equals the number of quads in QC . For a BR r, ‖r‖ ≈ 4 ∗ k,
where k is the number of quad-patterns in r. For a set of BRs R, its size ‖R‖ is given
as Σr∈R‖r‖. For any quad-system QSC = 〈QC , R〉, its size ‖QSC‖ = ‖QC‖+ ‖R‖.

Semantics. In order to provide a semantics for enabling reasoning over a quad-system,
we need to use a local semantics for each context to interpret the knowledge pertaining
to it. Since the primary goal of this paper is a decision procedure for query answering
over quad-systems based on forward chaining, we consider the following desiderata for
the choice of the local semantics:

– there exists a set of inference rules and an operation lclosure() that computes the
deductive closure of a graph w.r.t to the local semantics using the inference rules.

– given a finite graph as input, the lclosure() operation, terminates with a finite graph
as output in polynomial time whose size is polynomial w.r.t. to the input set.

Some of the alternatives for the local semantics satisfying the above mentioned criterion
are Simple, RDF, RDFS [19], OWL-Horst [20] etc. Assuming that a local semantics has
been fixed, for any context c, we denote by Ic = 〈Δc, ·c〉 an interpretation structure for
the local semantics, where Δc is the interpretation domain, ·c the corresponding in-
terpretation function. Also |=local denotes the local satisfaction relation between a local
interpretation structure and a graph. Given a quad graph QC , a distributed interpretation
structure is an indexed set IC = {Ic}c∈C, where Ic is a local interpretation structure,
for each c ∈ C. We define the satisfaction relation |= between a distributed interpretation
structure IC and a quad-system QSC as:

Definition 2 (Model of a Quad-System). A distributed interpretation structure IC =
{Ic}c∈C satisfies a quad-system QSC = 〈QC , R〉, in symbols IC |= QSC, iff all the
following conditions are satisfied:

1. Ic |=local graphQC (c), for each c ∈ C;
2. aci = acj , for any a ∈ C, ci, cj ∈ C;
3. for each BR r ∈ R of the form (1) and for each σ ∈ V → ΔC , where ΔC =⋃

c∈C Δ
c, if

Ic1 |=local t1(x, z)[σ], ..., I
cn |=local tn(x, z)[σ],

then there exists function σ′ ⊇ σ, s.t.

Ic
′
1 |=local t

′
1(x,y)[σ

′], ..., Ic
′
m |=local t

′
m(x,y)[σ′].

Condition 1 in the above definition ensures that for any model IC of a quad-graph, each
Ic ∈ IC is a local model of the set of triples in context c. Condition 2 ensures that any
constant c is rigid, i.e. represents the same resource across a quad-graph, irrespective
of the context in which it occurs. Condition 3 ensure that any model of a quad-system
satisfies each BR in it. Any IC s.t. IC |= QSC is said to be a model of QSC. A quad-
system QSC is said to be consistent if there exists a model IC , s.t. IC |= QSC , and
otherwise said to be inconsistent. For any quad-system QSC = 〈QC , R〉, it can be
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the case that graphQC(c) is locally consistent, for each c ∈ C, whereas QSC is not
consistent. This is because the set of BRs R adds more knowledge to the quad-system,
and restricts the set of models that satisfy the quad-system.

Definition 3 (Quad-System Entailment). (a) A quad-system QSC entails a quad
c : (s, p, o), in symbols QSC |= c : (s, p, o), iff for any distributed interpretation struc-
ture IC , if IC |= QSC then IC |= 〈{c : (s, p, o)}, ∅〉. (b) A quad-system QSC entails a
quad-graph Q′

C′ , in symbols QSC |= Q′
C′ iff QSC |= c : (s, p, o) for any c : (s, p, o) ∈

Q′
C′ . (c) A quad-system QSC entails a BR r iff for any IC , if IC |= QSC then IC |=

〈∅, {r}〉. (d) For a set of BRs R, QSC |= R iff QSC |= r, for every r ∈ R. (e) Fi-
nally, a quad-system QSC entails another quad-system QS′

C′ = 〈Q′
C′ , R′〉, in symbols

QSC |= QS′
C′ iff QSC |= Q′

C′ and QSC |= R′.

We call the decision problems (DPs) corresponding to the entailment problems (EPs)
in (a), (b), (c), (d), and (e) as quad EP, quad-graph EP, BR EP, BRs EP, and quad-system
EP, respectively.

3 Query Answering on Quad-Systems

In the realm of quad-systems, the classical conjunctive queries or select-project-join
queries are slightly extended to what we call Contextualized Conjunctive Queries
(CCQs). A CCQ CQ(x) is an expression of the form:

∃y q1(x,y) ∧ ... ∧ qp(x,y) (2)

where qi, for i = 1, ..., p are quad patterns over vectors of free variables x and quanti-
fied variables y. A CCQ is called a boolean CCQ if it does not have any free variables.
For any CCQ CQ(x) and a vector a of constants s.t. ‖x‖ = ‖a‖, CQ(a) is boolean. A
vector a is an answer for a CCQ CQ(x) w.r.t. structure IC , in symbols IC |= CQ(a),
iff there exists assignment μ : {y} → B s.t. IC |=

⋃
i=1,...,p qi(a,y)[μ]. A vector a

is a certain answer for a CCQ CQ(x) over a quad-system QSC, iff IC |= CQ(a), for
every model IC of QSC . Given a quad-system QSC , a CCQ CQ(x), and a vector a, DP
of determining whether QSC |= CQ(a) is called the CCQ EP. It can be noted that the
other DPs over quad-systems that we have seen are reducible to CCQ EP. Hence, in this
paper, we primarily focus on the CCQ EP.

dChase of a Quad-System. In order to do query answering over a quad-system, we em-
ploy what has been called in the literature, a chase [22,1], specifically, we adopt notion
of the skolem chase given in Marnette [28] and Cuenca Grau et al [9]. In order to fit
the framework of quad-systems, we extend the standard notion of chase to a distributed
chase, abbreviated dChase. In the following, we show how the dChase of a quad-system
can be constructed.

For any BR r of the form (1), the skolemization sk(r) is the result of replacing each
yi ∈ {y}with a globally unique Skolem function f r

i , s.t. f r
i : C‖x‖ →Bsk, where Bsk

is a fresh set of blank nodes called skolem blank nodes. Intuitively, for every distinct
vector a of constants, with ‖a‖ = ‖x‖, f r

i (a) is a fresh blank node, whose node id is a
hash of a. Let fr = 〈f r

1 , ..., f
r
‖y‖〉 be a vector of distinct Skolem functions; for any BR
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r the form (1), with slight abuse (Datalog notation) we write its skolemization sk(r) as
follows:

c1 : t1(x, z), ..., cn : tn(x, z)→ c′1 : t
′
1(x,f

r), ..., c′m : t′m(x,fr) (3)

Moreover, a skolemized BR r of the form (3) can be replaced by the following se-
mantically equivalent set of formulas, whose symbol size is worst case quadratic w.r.t
‖r‖:

{c1 : t1(x, z), ..., cn : tn(x, z)→ c′1 : t
′
1(x,f

r), (4)

...,

c1 : t1(x, z), ..., cn : tn(x, z)→ c′m : t′m(x,fr)}

Note that each BR in the above set has exactly one quad pattern with optional function
symbols in its head part. Also note that a BR with out function symbols can be replaced
with a set of BRs with single quad-pattern heads. Hence, w.l.o.g, we assume that any
BR in a skolemized set sk(R) of BRs is of the form (4). For any quad-graph QC and a
skolemized BR r of the form (4), application of r on QC, denoted by r(QC), is given
as:

r(QC)=
⋃

μ∈V→C

{
c′1 : t′1(x,f

r)[μ] | c1 : t1(x, z)[μ] ∈ QC , ..., cn : tn(x, z)[μ] ∈ QC
}

For any set of skolemized BRs R, application of R on QC is given by: R(QC) =⋃
r∈R r(QC). For any quad-graph QC , we define:

lclosure(QC) =
⋃
c∈C

{c : (s, p, o) |(s, p, o) ∈ lclosure(graphQC (c))}

For any quad-system QSC = 〈QC , R〉, generating BRs RF is the set of BRs in sk(R)
with function symbols, and the non-generating BRs is the set RI = sk(R) \RF .
Let dChase0(QSC) = lclosure(QC); for i ∈ N, dChasei+1(QSC) =

lclosure(dChasei(QSC) ∪RI(dChasei(QSC))), if RI(dChasei(QSC)) �⊆
dChasei(QSC);

lclosure(dChasei(QSC) ∪RF (dChasei(QSC))), otherwise;

The dChase of QSC, denoted dChase(QSC), is given as:

dChase(QSC) =
⋃
i∈N

dChasei(QSC)

Intuitively, dChasei(QSC) can be thought of as the state of dChase(QSC) at the end of
iteration i. It can be noted that, if there exists i s.t. dChasei(QSC) = dChasei+1(QSC),
then dChase(QSC) = dChasei(QSC). An iteration i, s.t. dChasei(QSC) is com-
puted by the application of the set of (resp. non-)generating BRs RF (resp. RI ), on
dChasei−1(QSC) is called a (resp. non-)generating iteration. The dChase
dChase(QSC) of a consistent quad-system QSC is a universal model [10] of the quad-
system, i.e. it is a model of QSC , and for any model IC of QSC , there is a homomor-
phism from dChase(QSC) to IC . Hence, for any boolean CCQ CQ(), QSC |= CQ()
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iff there exists a map μ : V(CQ) → C s.t. {CQ()}[μ] ⊆ dChase(QSC). We call the
sequence dChase0(QSC), dChase1(QSC), ..., the dChase sequence of QSC. The fol-
lowing lemma shows that in a dChase sequence of a quad-system, the result of a single
generating iteration and a subsequent number of non-generating iterations causes only
an exponential blow up in size.

Lemma 1. For a quad-system QSC = 〈QC , R〉, the following holds: (i) if i ∈ N is a
generating iteration, then ‖dChasei(QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖), (ii) sup-
pose i ∈ N is a generating iteration, and for any j ≥ 1, i+1, ..., i+j are non-generating
iterations, then ‖dChasei+j(QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖), (iii) for any iter-
ation k, dChasek(QSC) can be computed in time O(‖dChasek−1(QSC)‖‖R‖).

Proof (sketch).
(i) R can be applied on dChasei−1(QSC) by grounding R to the set of constants

in dChasei−1(QSC), the number of such groundings is of the order O( ‖dChasei−1

(QSC)‖‖R‖), ‖R(dChasei−1(QSC))‖ = O(‖R‖ ∗ ‖dChasei−1(QSC)‖‖R‖).
Since lclosure only increases the size polynomially, ‖dChasei(QSC)‖ = O(‖dChas
ei−1(QSC)‖‖R‖).

(ii) From (i) we know that ‖R(dChasei−1(QSC))‖ = O(‖dChasei−1(QSC)‖‖R‖).
Since, no new constant is introduced in any subsequent non-generating iterations, and
since any quad contains only four constants, the set of constants in any subsequent
dChase iteration is O(4 ∗ ‖dChasei−1(QSC)‖‖R‖). Since only these many constants
can appear in positions c, s, p, o of any quad generated in the subsequent iterations, the
size of dChasei+j(QSC) can only increase polynomially, which means that
‖dChasei+j(QSC)‖ = O(‖dChasei−1(QSC)‖‖R‖).

(iii) Since any dChase iteration k involves the following two operations:
(a) lclosure(), and (b) computing R(dChasek−1(QSC)). (a) can be done in PTIME
w.r.t to its input. (b) can be done in the following manner: ground R to the set of con-
stants in dChasei−1(QSC); then for each grounding g, if body(g)⊆dChasei−1(QSC),
then add head(g) to R(dChasek−1(QSC)). Since, the number of such groundings is of
the order O(‖dChasek−1(QSC)‖‖R‖), and checking if each grounding is contained in
dChasek−1(QSC), can be done in time polynomial in ‖dChasek−1(QSC)‖, the time
taken for (b) isO(‖dChasek−1(QSC)‖‖R‖). Hence, any iteration k can be done in time
O(‖dChasek−1(QSC)‖‖R‖). � 

Although, we now know how to compute the dChase of a quad-system, which can be
used for deciding CCQ EP, it turns out that for the class of quad-systems whose BRs
are of the form (1), which we call unrestricted quad-systems, the dChase can be infi-
nite. This raises the question if there are other approaches that can be used, for instance
similar problem arises in DLs with value creation, due to the presence of existential
quantifiers, whereas the approaches like the one in Glim et al. [15] provides an algo-
rithm for CQ entailment based on query rewriting.

Theorem 1. The CCQ EP over unrestricted quad-systems is undecidable.

Proof (sketch). We show that the well known undecidable problem of non-emptiness
of intersection of context-free grammars (CFGs) is reducible to the CCQ entailment



Attaining Decidability Using Acyclicity 67

problem. Given two CFGs, G1 = 〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, where
V1, V2 are the set of variables, T s.t. T ∩ (V1 ∪ V2) = ∅ is the set of terminals. S1 ∈ V1

is the start symbol of G1, and P1 are the set of PRs of the form v → w, where v ∈ V ,
w is a sequence of the form w1...wn, where wi ∈ V1 ∪ T . Similarly s2, P2 is defined.
Deciding whether the language generated by the grammars L(G1) and L(G2) have
non-empty intersection is known to be undecidable [18].

Given two CFGs G1 = 〈V1, T, S1, P1〉 and G2 = 〈V2, T, S2, P2〉, we encode gram-
mars G1, G2 into a quad-system QSc = 〈Qc, R〉, with only a single context identifier
c. Each PR r = v → w ∈ P1 ∪ P2, with w = w1w2w3..wn, is encoded as a BR of
the form: c : (x1, w1, x2), c : (x2, w2, x3), ..., c : (xn, wn, xn+1) → c : (x1, v, xn+1),
where x1, .., xn+1 are variables. For each terminal symbol ti ∈ T , R contains a BR of
the form: c : (x,rdf:type, C) → ∃y c : (x, ti, y), c : (y,rdf:type, C) and Qc is
the singleton: {c : (a,rdf:type, C)}. It can be observed that:

QSc |= ∃y c : (a, S1, y) ∧ c : (a, S2, y)⇔ L(G1) ∩ L(G2) �= ∅

We refer the reader to [23] for the complete proof. � 

4 Context Acyclic Quad-Systems: A Decidable Class

In the previous section, we saw that query answering on unrestricted quad-systems is
undecidable, in general. We in the following define a class of quad-systems for which
query entailment is decidable. The class has the property that algorithms based on for-
ward chaining, for deciding query entailment, can straightforwardly be implemented
(by minor extensions) on existing quad stores. It should be noted that the technique we
propose is reminiscent of the Weak acyclicity [12,11] technique used in the realm of
Datalog+-.

Consider a BR r of the form: c1 : t1(x,z), c2 : t2(x,z) → ∃y c3 : t3(x,y), c4 : t4(x,
y). Since such a rule triggers propagation of knowledge in a quad-system, specifically
triples from the source contexts c1, c2 to the target contexts c3, c4 in a quad-system.

c1: t1(x, z), c2: t2(x, z)→ ∃y c3: t3(x,y), c4: t4(x,y)

c1

c2

c3

c4

Fig. 1. Bridge Rule: A mechanishm for specifying propagation of
knowledge among contexts.

As shown in Fig. 1, we
can view a BR as a propa-
gation rule across distinct
compartments of knowl-
edge, divided as contexts.
For any BR of the form (1),
each context in the set
{c′1, ..., c′m} is said to de-
pend on the set of contexts
{c1, ..., cn}. In a quad-
system QSC = 〈QC , R〉,
for any r ∈ R, of
the form (1), any context
whose identifier is in the set {c | c : (s, p, o) ∈ head(r), s or p or o is an existentially
quantified variable}, is called a triple generating context (TGC). One can analyze the
set of BRs in a quad-system QSC using a context dependency graph, which is a directed
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graph, whose nodes are context identifiers in C, s.t. the nodes corresponding to TGCs
are marked with a ∗, and whose edges are constructed as follows: for each BR of the
form (1), there exists an edge from each ci to c′j , for i = 1, ..., n, j = 1, ...,m. A quad-
system is said to be context acyclic, iff its context dependency graph does not contain
cycles involving TGCs.

Example 1. Consider a quad-system, whose set of BRs R are:

c1 : (x1, x2,U1)→ ∃y1 c2 : (x1, x2, y1), c3 : (x2,rdf:type,rdf:Property) (5)

c2 : (x1, x2, z1)→ c1 : (x1, x2,U1) (6)

c3 : (x1, x2, x3)→ c1 : (x1, x2, x3)

where U1 be a URI, whose corresponding dependency graph is shown in Fig. 2. Note
that the node corresponding to the triple generating context c2 is marked with a ‘∗’
symbol. Since the cycle (c1, c2, c1) in the quad-system contains c2 which is a TGC, the
quad-system is not context acyclic.
In a context acyclic quad-system QSC, since there exists no cyclic path through any
TGC node in the context dependency graph, there exists a set of TGCs C′ ⊆ C s.t.
for any c ∈ C′, there exists no incoming path5 from a TGC to c. We call such TGCs,
level-1 TGCs. In other words, a TGC c is a level-1 TGC, if for any c′ ∈ C, there exists
an incoming path from c′ to c, implies c′ is not a TGC. For l ≥ 1, a level-l+1 TGC
c is a TGC that has an incoming path from a level-l TGC, and for any incoming path
from a level-l′ TGC to c, is s.t. l′ ≤ l. Extending the notion of level also to the non-
TGCs, we say that any non-TGC that does not have any incoming paths from a TGC

c1

c2

∗
c3

Fig. 2. Context
Dependency graph

is at level-0; we say that any non-TGC c ∈ C is
at level-l, if there exists an incoming path from a
level-l TGC to c, and for any incoming path from
a level-l′ TGC to c, is s.t. l′ ≤ l. Hence, the set of
contexts in a context acyclic quad-system can be
partitioned using the above notion of levels.

Definition 4. For a quad-system QSC, a con-
text c ∈ C is said to be saturated in
an iteration i, iff for any quad of the form
c : (s, p, o), c : (s, p, o) ∈ dChase(QSC) implies
c : (s, p, o) ∈ dChasei(QSC).

Intuitively, context c is saturated in the dChase iteration i, if no new quad of the form
c : (s, p, o) will be generated in any dChasek(QSC), for any k > i. The following
lemma gives the relation between the saturation of a context and the required number
of dChase iterations, for a context acyclic quad-system.

Lemma 2. For any context acyclic quad-system, the following holds: (i) any level-0
context is saturated before the first generating iteration, (ii) any level-1 TGC is satu-
rated after the first generating iteration, (iii) any level-k context is saturated before the
k + 1th generating iteration.

5 Assume that paths have at least one edge.
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Proof. Let QSC = 〈QC , R〉 be the quad-system, whose first generating iteration is i.
(i) for any level-0 context c, any BR r ∈ R, and any quad-pattern of the form

c : (s, p, o), if c : (s, p, o) ∈ head(r), then for any c′ s.t. c′ : (s′, p′, o′) occurs in body(r)
implies that c′ is a level-0 context and r is a non-generating BR. Also, since c′ is a level-
0 context, the same applies to c′. Hence, it turns out that only non-generating BRs can
bring triples to any level-0 context. Since at the end of iteration i−1, dChasei−1(QSC)
is closed w.r.t. the set of non-generating BRs (otherwise, by construction of dChase, i
would not be a generating iteration). This implies that c is saturated before the first
generating iteration i.

(ii) for any level-1 TGC c, any BR r ∈ R, and any quad-pattern c : (s, p, o), if
c : (s, p, o) ∈ head(r), then for any c′ s.t. c′ : (s′, p′, o′) occurs in body(r) implies that
c′ is a level-0 context (Otherwise level of c would be greater than 1). This means that
only contexts from which triples get propagated to c are level-0 contexts. From (i) we
know that all the level-0 contexts are saturated before ith iteration, and since during
the ith iteration RF is applied followed by the lclosure() operation (RI need not be
applied, since dChasei−1(QSC) is closed w.r.t. RI ), c is saturated after iteration i, the
1st generating iteration.

(iii) can be obtained from generalization of (i) and (ii), and from the fact that any
level-k context can only have incoming paths from contexts whose levels are less than
or equal to k. � 

c1

∗

c4

c2

c3

∗

..

..

..

(a)

c1

∗

c4

c2

c3

∗

..

..

..

(b)

Fig. 3. Saturation of Contexts

Example 2. Consider the dependency graph in Fig. 3a, where .. indicates part of the
graph that is not under the scope of our discussion. The TGCs nodes c1 and c3 are
marked with a ∗. It can be seen that both c2 and c4 are level-0 contexts, since they do
not have any incoming paths from TGCs. Since the only incoming paths to context c1
are from c2 and c4, which are not TGCs, c1 is a level-1 TGC. Context c3 is a level-2
TGC, since it has an incoming path from the level-1 TGC c1, and has no incoming path
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from a TGC whose level is greater than 1. Since the level-0 contexts only have incoming
paths from level-0 contexts and only appear on the head part of non-generating BRs,
before first generating iteration, all the level-0 TGCs becomes saturated, as the set of
non-generating BRs RI has been exhaustively applied. This situation is reflected in
Fig. 3b, where the saturated nodes are shaded with gray. Note that after the first and
second generating iterations c1 and c3 also become saturated, respectively.

The following lemma shows that for context acyclic quad-systems, there exists a finite
bound on the size and computation time of its dChase.

Lemma 3. For any context acyclic quad-system QSC = 〈QC , R〉, the following holds:
(i) the number of dChase iterations is finite, (ii) size of the dChase ‖dChase(QSC)‖
= O(22

‖QSC‖
), (iii) computing dChase(QSC) is in 2EXPTIME, (iv) if R and the set

of schema triples in QC is fixed, then ‖dChase(QSC)‖ is a polynomial in ‖QSC‖, and
computing dChase(QSC) is in PTIME.

Proof. (i) Since QSC is context-acyclic, all the contexts can be partitioned according
to their levels. Also, the number of levels k is s.t. k ≤ |C|. Hence, applying lemma 1,
before the k + 1th generating iteration all the contexts becomes saturated, and k + 1th
generating iteration do not produce any new quads, terminating the dChase computation
process.

(ii) In the dChase computation process, since by lemma 1, any generating itera-
tion and a sequence of non-generating iterations can only increase the dChase size
exponentially in ‖R‖, the size of the dChase before k + 1 th generating iteration is
O(‖dChase0(QSC)‖‖R‖k

), which can be written asO(‖QSC‖‖R‖k

) (†). As seen in (i),
there can only be |C| generating iterations, and a sequence of non-generating iterations.
Hence, applying k = |C| to (†), and taking into account the fact that |C| ≤ ‖QSC‖, the
size of the dChase ‖dChase(QSC)‖ = O(22

‖QSC‖
).

(iii) Since in any dChase iteration except the final one, atleast one new quad should
be produced and the final dChase can have at most O(22

‖QSC‖
) quads (by ii), the total

number of iterations are bounded by O(22
‖QSC‖

) (†). Since from lemma 1, we know
that for any iteration i, computing dChasei(QSC) is of the orderO(‖dChasei−1(QSC
)‖‖R‖). Since, ‖dChasei−1(QSC)‖ can at most be O(22

‖QSC‖
), computing dChasei(

QSC) is of the orderO(2‖R‖∗2‖QSC‖
)). Also since ‖R‖ ≤ ‖QSC‖, any iteration requires

O(22
‖QSC‖

) time (‡). From (†) and (‡), we can conclude that the time required for
computing dChase is in 2EXPTIME.

(iv) In (ii) we saw that the size of the dChase before k + 1th generating iteration
is given by O(‖QSC‖‖R‖k

) ("). Since by hypothesis ‖R‖ is a constant and also the
size of the dependency graph and the levels in it. Hence, the expression ‖R‖k in (")
amounts to a constant z. Hence, ‖dChase(QSC)‖ = O(‖QSC‖z). Hence, the size of
dChase(QSC) is a polynomial in ‖QSC‖.

Also, since in any dChase iteration except the final one, atleast one quad should be
produced and the final dChase can have at most O(‖QSC‖z) quads, the total num-
ber of iterations are bounded by O(‖QSC‖z) (†). Also from lemma 1, we know
that any dChase iteration i, computing dChasei(QSC) involves two steps: (a) com-
puting R(dChasei−1(QSC)), and (b) computing lclosure(), which can be done in
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PTIME in the size of its input. Since computing R(dChasei−1(QSC)) is of the or-
der O(‖dChasei−1(QSC)‖‖R‖), where |R| is a constant and ‖dChasei−1(QSC)‖ is
a polynomial is ‖QSC‖, each iteration can be done in time polynomial in ‖QSC‖ (‡).
From (†) and (‡), it can be concluded that dChase can be computed in PTIME. � 

Lemma 4. For any context acyclic quad-system, the following holds: (i) data complex-
ity of CCQ entailment is in PTIME (ii) combined complexity of CCQ entailment is in
2EXPTIME.

Proof. For a context acyclic quad-system QSC = 〈QC , R〉, since dChase(QSC) is fi-
nite, a boolean CCQ CQ() can naively be evaluated by grounding the set of constants
in the chase to the variables in the CQ(), and then checking if any of these ground-
ings are contained in dChase(QSC). The number of such groundings can at most be
‖dChase(QSC)‖‖CQ()‖ (†).

(i) Since for data complexity, the size of the BRs ‖R‖, the set of schema triples,
and ‖CQ()‖ is fixed to constant. From lemma 3 (iv), we know that under the above
mentioned settings the dChase can be computed in PTIME and is polynomial in the
size of QSC . Since ‖CQ()‖ is fixed to a constant, and from (†), binding the set of
constants in dChase(QSC) on CQ() still gives a number of bindings that is worst case
polynomial in the size of QSC . Since membership of these bindings can checked in
the polynomially sized dChase in PTIME, the time required for CCQ evaluation is in
PTIME.

(ii) Since in this case ‖dChase(QSC)‖ = O(22
‖QSC‖

) (‡), from (†) and (‡), binding
thesetofconstants in‖dChase(QSC‖ tovariables inCQ()amounts toO(2‖CQ()‖∗2‖QSC‖

)bindings.SincethesizeofdChaseisdoubleexponentialin‖QSC‖,checkingthemembership
ofeachof thesebindingscanbedonein2EXPTIME.Hence, thecombinedcomplexityis in
2EXPTIME.� 

Theorem 2. For any context acyclic quad-system, the following holds: (i) The data
complexity of CCQ entailment is PTIME-complete, (ii) The combined complexity of
CCQ entailment is 2EXPTIME-complete.

For PTIME-hardness of data complexity, it can be shown that the well known problem
of 3HornSat, the satisfiability of propositional Horn formulas with atmost 3 literals, and
for 2EXPTIME-hardness for the combined complexity, it can be shown that the word
problem of a double exponentially time bounded deterministic turing machine, which
is a well known 2EXPTIME-hard problem, is reducible to the CCQ entailment problem
(see [23] for detailed proof).

Reconsidering the quad-system in example 1, which is not context acyclic. Suppose
that the contexts are enabled with RDFS inferencing, i.e lclosure() = rdfsclosure().
During dChase construction, since any application of rule (5) can only create a triple in
c2 in which the skolem blank node is in the object position, where as the application
of rule (6), does not propogate constants in object postion to c1. Although at a first
look, the dChase might seem to terminate, but since the application of the following
RDFS inference rule in c2: (s, p, o)→ (o ,rdf:type, rdfs:Resource), derives a
quad of the form c2 : ( :b, rdf:type, rdfs:Resource), where :b is the skolem
blank-node created by the application of rule (5). Now by application of rule (6) leads
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to c1 : ( :b,rdf:type, U1). Since rule (5) is applicable on c1 : ( :b,rdf:type, U1),
which again brings a new skolem blank node to c2, and hence the dChase construction
doesn’t terminate. Hence, as seen above the notion of context acyclicity can alarm us
about such infinite cases.

5 Related Work

Contexts and Distributed Logics. The work on contexts began in the 80s when Mc-
Carthy [21] proposed context as a solution to the generality problem in AI. After this
various studies about logics of contexts mainly in the field of KR was done by Guha
[17], Distributed First Order Logics by Ghidini et al. [13] and Local Model Semantics
by Giunchiglia et al. [14]. Primarily in these works contexts are formalized as a first or-
der/propositional theories, and bridge rules were provided to inter-operate the various
contexts. Some of the initial works on contexts relevant to semantic web were the ones
like Distributed Description Logics [4] by Borgida et al., E-connections [26] by Kutz
et al., Context-OWL [5] by Bouqet et al., and the work of CKR [31,24] by Serafini et
al. These were mainly logics based on DLs, which formalized contexts as OWL KBs,
whose semantics is given using a distributed interpretation structure with additional se-
mantic conditions that suits varying requirements. Compared to these works, the bridge
rules we consider are much more expressive with conjunctions and existential variables
that supports value/blank-node creation.

∀∃ rules, TGDs, Datalog+- rules. Query answering over rules with universal existen-
tial quantifiers in the context of databases/KR, where these rules are called tuple gen-
erating dependencies (TGDs)/Datalog+- rules, was done by Beeri and Vardi [3] even
in the early 80s, where the authors show that the query entailment problem in gen-
eral is undecidable. However, recently many classes of such rules have been identified
for which query answering is decidable. These includes (a) fragments s.t. the result-
ing models have bounded tree widths, called bounded treewidth sets (BTS), such as
Weakly guarded rules [7], Frontier guarded rules [2], (b) fragments called finite unifi-
cation sets (FUS), such as ‘sticky’ rules [6,16], and (c) fragments called finite extension
sets (FES), where sufficient conditions are enforced to ensure finiteness of the chase
and its termination. The approach used for query answering in FUS is to rewrite the
input query w.r.t. to the TGDs to another query that can be evaluated directly on the
set of instances, s.t. the answers for the former query and latter query coincides. The
approach is called the query rewriting approach. FES classes uses certain termination
guarantying tests that check whether certain sufficient conditions are satisfied by the
structure of TGDs. A large number of classes in FES are based on tests that detects
‘acyclicity conditions’ by analyzing the information flow between the TGD rules. Weak
acyclicity [12,11], was one of the first such notions, and was extended to joint acyclic-
ity [25], super weak acyclicity [28], and model faithful acyclicity [9]. The most similar
approach to ours is the weak acyclicity technique, where the structure of the rules is ana-
lyzed using a dependency graph that models the propagation of constants across various
predicates positions, and restricting the dependency graph to be acyclic. Although this
technique can be used in our scenario by translating a quad-system to a set of TGDs;



Attaining Decidability Using Acyclicity 73

Table 1. Complexity info for various quad-system fragments

Quad-System dChase size w.r.t Data Complexity of Combined Complexity
Fragment input quad-system CCQ entailment of CCQ entailment

Unrestricted Quad-Systems Infinite Undecidable Undecidable
Context acylic Quad-Systems Double exponential PTIME-complete 2EXPTIME-complete

if the obtained translation is weakly acyclic, then one could use existing algorithms for
chase computation for the TGDs to compute the chase, the query entailment check can
be done by querying the obtained chase. However, our approach has the advantage of
straightforward implementability on existing quad-stores.

6 Summary and Conclusion

In this paper, we study the problem of query answering over contextualized RDF knowl-
edge. We show that the problem in general is undecidable, and present a decidable class
called context acyclic quad-systems. Table 1 summarizes the main results obtained. We
can show that the notion of context acyclicity, introduced in section 4 can be used to
extend the currently established tools for contextual reasoning to give support for ex-
pressive BRs with conjuction and existentials with decidability guarantees. We view
the results obtained in this paper as a general foundation for contextual reasoning and
query answering over contextualized RDF knowledge formats such as Quads, and can
straightforwardly be used to extend existing Quad stores to encorporate for-all existen-
tial BRs of the form (1).
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Abstract. We study the closely related problems of rewriting disjunc-
tive datalog programs and non-Horn DL ontologies into plain datalog
programs that entail the same facts for every dataset. We first propose
the class of markable disjunctive datalog programs, which is efficiently
recognisable and admits polynomial rewritings into datalog. Markabil-
ity naturally extends to SHI ontologies, and markable ontologies admit
(possibly exponential) datalog rewritings. We then turn our attention to
resolution-based rewriting techniques. We devise an enhanced rewriting
procedure for disjunctive datalog, and propose a second class of SHI
ontologies that admits exponential datalog rewritings via resolution. Fi-
nally, we focus on conjunctive query answering over disjunctive datalog
programs. We identify classes of queries and programs that admit datalog
rewritings and study the complexity of query answering in this setting.
We evaluate the feasibility of our techniques over a large corpus of on-
tologies, with encouraging results.

1 Introduction

Answering conjunctive queries is a key reasoning problem for many applications
of ontologies. Query answering can sometimes be implemented via rewriting into
datalog, where a rewriting of a query q w.r.t. an ontology O is a datalog program
P that preserves the answers to q for any dataset. Rewriting queries into datalog
not only ensures tractability in data complexity—an important requirement in
data-intensive applications—but also enables the reuse of scalable rule-based
reasoners such as OWLIM [4], Oracle’s Data Store [21], and RDFox [16].

Datalog rewriting techniques have been investigated in depth for Horn De-
scription Logics (i.e., DLs whose ontologies can be normalised as first-order Horn
clauses), and optimised algorithms have been implemented in systems such as
Requiem [18], Clipper [6], and Rapid [20]. Techniques for non-Horn DLs, how-
ever, have been studied to a lesser extent, and only for atomic queries.

If we restrict ourselves to atomic queries, rewritability for non-Horn DL on-
tologies is strongly related to the rewritability of disjunctive datalog programs
into datalog: every SHIQ ontology can be transformed into a (positive) disjunc-
tive datalog program that entails the same facts for every dataset (and hence

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 76–91, 2014.
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preserves answers to all atomic queries) [8].1 It is well-known that disjunctive
datalog programs cannot be generally rewritten into plain datalog. In particular,
datalog rewritings may not exist even for disjunctive programs that correspond
to ontologies expressed in the basic DL ELU [11,5], and sufficient conditions
that ensure rewritability were identified in [9]. Deciding datalog rewritability of
atomic queries w.r.t. SHI ontologies was proved NExpTime-complete in [3].

In our previous work [10], we proved a characterisation of datalog rewritability
for disjunctive programs based on linearity: a restriction that requires each rule
to contain at most one IDB atom in the body. It was shown that every linear dis-
junctive program can be polynomially rewritten into plain datalog; conversely,
every datalog program can be polynomially translated into an equivalent linear
disjunctive datalog program. We then proposed weakly linear disjunctive data-
log, which extends both datalog and linear disjunctive datalog, and which admits
polynomial datalog rewritings. In a weakly linear program, the linearity require-
ment is relaxed: instead of applying to all IDB predicates, it applies only to those
that “depend” on a disjunctive rule.

A different approach to rewriting disjunctive programs into datalog by means
of a resolution-based procedure was proposed in [5]. The procedure works by
saturating the input disjunctive program P such that in each resolution step at
least one of the premises is a non-Horn rule; if this process terminates, the pro-
cedure outputs the subset of datalog rules in the saturation, which is guaranteed
to be a rewriting of P . The procedure was shown to terminate for so-called sim-
ple disjunctive programs; furthermore, it was shown that ontologies expressed
in certain logics of the DL-Litebool family [1] can be transformed into disjunctive
programs that satisfy the simplicity condition.

If we wish to go beyond atomic queries and consider general conjunctive
queries, it is no longer possible to obtain query-independent datalog rewritings.
Lutz and Wolter [12] showed that for any non-Horn ontology (or disjunctive
program) O there exists a conjunctive query q such that answering the (fixed)
q w.r.t. (fixed) O and an input dataset is co-NP-hard; thus, under standard
complexity-theoretic assumptions no datalog rewriting for such q and O exists.
To the best of our knowledge, no rewriting techniques for arbitrary CQs w.r.t.
non-Horn ontologies and programs have been developed.

In this paper, we propose significant enhancements over existing techniques
for rewriting atomic queries [10,5], which we then extend to the setting of ar-
bitrary conjunctive queries. Furthermore, we evaluate the practical feasibility
of our techniques over a large corpus of non-Horn ontologies. Specifically, our
contributions are as follows.

In Section 3, we propose the class of markable disjunctive datalog programs,
in which the weak linearity condition from [10] is further relaxed. We show
that our extended class of programs is efficiently recognisable and that each
markable program admits a polynomial datalog rewriting. These results can
be readily applied to ontology reasoning. We first consider the “intersection”

1 Disjunctive datalog typically allows for negation-as-failure, which we don’t consider
since we focus on monotonic reasoning.
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between OWL 2 and disjunctive datalog (which we call RL�), and show that
fact entailment over RL� ontologies corresponding to a markable program is
tractable in combined complexity (and hence no harder than in OWL 2 RL [15]).
We then lift the markability condition to ontologies, and show that markable
SHI-ontologies admit a (possibly exponential) datalog rewriting.

In Section 4, we refine the resolution-based rewriting procedure from [5] by
further requiring that only atoms involving disjunctive predicates can participate
in resolution inferences. This refinement can significantly reduce the number of
inferences drawn during saturation, without affecting correctness. We then focus
on ontologies, and propose an extension of the logics in the DL-Litebool family
that admits (possibly exponential) datalog rewritings.

In Section 5, we shift our attention to conjunctive queries and propose classes
of queries and disjunctive datalog programs that admit datalog rewritings. Fur-
thermore, we discuss the implications of these results to ontology reasoning.

We have implemented and evaluated our techniques on a large ontology repos-
itory. Our results show that many realistic non-Horn ontologies can be rewritten
into datalog. Furthermore, we have tested the scalability of query answering over
the programs obtained using our techniques, with promising results.

The proofs of our technical results can be found in an extended version of the
paper available online: https://krr-nas.cs.ox.ac.uk/2014/RR/report.pdf

2 Preliminaries

We consider standard notions of terms, atoms, literals, formulae, sentences, and
entailment. A fact is a ground atom and a dataset is a finite set of facts. We
assume that equality ≈ is an ordinary predicate and that each set of formu-
lae contains the axiomatisation of ≈ as a congruence relation for its signature.
Clauses, substitutions, most general unifiers (MGUs), clause subsumption, tau-
tologies, binary resolution, and factoring are as usual [2]. Clause C θ-subsumes
D if C subsumes D and C has no more literals than D. Clause C is redundant in
a set of clauses if C is tautological or if C is θ-subsumed by another clause in the
set. A condensation of a clause C is a minimal subset that is subsumed by C.

A rule r is a function-free sentence ∀x∀z.[ϕ(x, z) → ψ(x)] where tuples of
variables x and z are disjoint, ϕ(x, z) is a conjunction of distinct equality-free
atoms, and ψ(x) is a disjunction of distinct atoms. Formula ϕ is the body of r,
and ψ is the head. Quantifiers in rules are omitted. We assume that rules are safe.
A rule is datalog if ψ(x) has at most one atom, and it is disjunctive otherwise. A
program P is a finite set of rules; it is datalog if it consists only of datalog rules,
and disjunctive otherwise. We assume that rules in P do not share variables.
For convenience, we treat � and ⊥ in a non-standard way as a unary and a
nullary predicate, respectively. Given a program P , P	 is the program with a
rule P (x1, . . . , xn) → �(xi) for each predicate P in P and each 1 ≤ i ≤ n, and
a rule → �(a) for each constant a in P . We assume that P	 ⊆ P and � does
not occur in head position in P \ P	. We define P⊥ as consisting of a rule with
⊥ as body and empty head. We assume P⊥ ⊆ P and no rule in P \ P⊥ has an
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Table 1. Normalised axioms. A,B are atomic or �, C atomic or ⊥, and R,S, T atomic.

1.
�n

i=1 Ai �
⊔m

j=1 Cj

∧n
i=1 Ai(x) →

∨m
j=1 Cj(x)

2. ∃R.A � B R(x, y) ∧A(y) → B(x)
3. A � Self(R) A(x) → R(x, x)
4. Self(R) � A R(x, x) → A(x)
5. R � S R(x, y) → S(x, y)
6. R � S− R(x, y) → S(y, x)
7. R ◦ S � T R(x, z) ∧ S(z, y) → T (x, y)

8. A � ≥mR.B A(x) → ∃≥my.(R(x, y) ∧ B(y))
9. A � ≤mR.B A(z) ∧

∧m
i=0 R(z, xi) ∧B(xi) →

∨
0≤i<j≤m xi ≈ xj

empty head or ⊥ in the body. Thus, P ∪ D |= �(a) for every a in P ∪ D, and
P ∪D is unsatisfiable iff P ∪D |= ⊥. Head predicates in P \ P	 are intensional
(or IDB) in P . All other predicates (including �) are extensional (EDB). An
atom is intensional (extensional) if so is its predicate. A rule is linear if it has
at most one IDB body atom. A program P is linear if all its rules are.

We assume familiarity with DLs. W.l.o.g. we consider normalised axioms as
in Table 1. An ontology O is a finite set of axioms. An ontology O is SHIQ if
each axiom of type 7 satisfies R = S = T ;2 it is SHI if it is SHIQ, it does not
contain axioms of type 9, and each axiom of type 8 satisfies m = 1; it is ALCHI
if it is SHI and it has no axiom of type 7; it is RL� if it does not contain
axioms of type 8, and it is RL if it is RL� and m = 1 for each axiom of type 1
and 9. Programs obtained from RL� ontologies have rules with bounded number
of variables: fact entailment is PTime-complete for RL and co-NP-complete for
RL� (in combined complexity).3

A conjunctive query (CQ) q is a datalog rule of the form ϕ(x,y) → Aq(x),
with Aq a distinguished query predicate uniquely associated with q. A CQ is
Boolean if Aq is propositional, and it is atomic if ϕ(x,y) consists of a single
atom. A (disjunctive) program P is a rewriting of q w.r.t. a set of sentences F
if for each dataset D over the signature of F and each tuple of constants a we
have F ∪ D ∪ {q} |= Aq(a) iff P ∪D |= Aq(a). Program P is a rewriting of F if
for each dataset D and each fact α over the signature of F we have F ∪ D |= α
iff P ∪ D |= α. Clearly, P is a rewriting of F if and only if P is a rewriting of
every atomic query over the signature of F . Hudstadt et al. [8] developed an
algorithm for transforming a SHIQ ontology into a disjunctive program that
preserves entailment of facts over non-transitive relations. This technique was
extended in [5] to preserve all facts. Thus, every SHIQ ontology O admits a
disjunctive datalog rewriting DD(O), which can be of exponential size.

2 SHIQ enforces additional restrictions to ensure decidability, which we omit here.
3 RL� and RL allow for nominals, which we omit. All our results immediately extend.
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P0 = {C(x) → B(x) ∨G(x) (1)

G(y) ∧E(x, y) → B(x) (2)

B(y) ∧ E(x, y) → G(x) (3)

E(y, x) → E(x, y) } (4)

B

C E

G

(1)

(1)

(2)

(3)

(3)(2) (4)

Fig. 1. A weakly linear disjunctive datalog program

3 Datalog Rewritings Based on Linearity

In [10], we proposed the class of weakly linear programs (WL), which extends
both datalog and linear disjunctive datalog. In a WL program predicates are par-
titioned into disjunctive (i.e., those whose extension may depend on a disjunctive
rule) and datalog (those that depend solely on datalog rules). A program is WL
if all rules have at most one occurrence of a disjunctive predicate in the body.

Definition 3.1. The dependency graph GP = (V,E, μ) of a program P is the
smallest edge-labeled digraph such that:

1. V contains every predicate occurring in P;
2. r ∈ μ(P,Q) whenever P,Q ∈ V , r ∈ P \ P	, P occurs in the body of r, and

Q occurs in the head of r; and
3. (P,Q) ∈ E whenever μ(P,Q) is nonempty.

A predicate Q depends on a rule r ∈ P if GP has a path that ends in Q and
involves an r-labeled edge. Predicate Q is datalog if it only depends on datalog
rules; otherwise, Q is disjunctive. Program P is weakly linear (WL for short)
if each rule body in P has at most one occurrence of a disjunctive predicate.

Consider the disjunctive program P0 and its dependency graph depicted in
Fig. 1. Predicate C is EDB, predicates B and G depend on Rule (1) and hence
are disjunctive, whereas E depends only on Rule (4) and hence it is datalog.
Each rule has at most one disjunctive body atom and the program is WL.

WL programs admit a polynomial rewriting [10]. Roughly speaking, they are
translated into datalog by “moving” all disjunctive body atoms to the head and
all disjunctive head atoms to the body while replacing their predicates with fresh
ones of higher arity; the new predicates are “initialised” using additional rules.

Markable Programs. We next propose the class of markable disjunctive data-
log programs, which extends WL programs. A key feature of a markable program
is that one can identify a subset of disjunctive predicates, called marked predi-
cates, such that the program can be translated into datalog by “moving” only
those disjunctive atoms in a rule whose predicates are marked.
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Definition 3.2. Let P be a disjunctive program. A marking of P is a set M of
disjunctive predicates in P such that:

1. Every rule in P has at most one body atom Q(t) with Q ∈M .
2. Every rule in P has at most one head atom Q(t) with Q /∈M .
3. If Q ∈M and P is reachable from Q in GP , then P ∈M .

A predicate Q is marked by M if Q ∈ M . An atom is marked if so is its
predicate. A disjunctive program is markable if it has a marking.

Markability generalises weak linearity in the following sense.

Proposition 3.3. A disjunctive program P is WL if and only if the set of all
disjunctive predicates in P constitutes a marking of P.

Let P1 extend P0 with the following rules:

V (x)→ C(x) ∨ U(x) (5) C(x) ∧ U(x)→ ⊥ (6)

The dependency graph is given next. Note that C, U , B, and G are disjunctive
as they depend on Rule (5). Thus, (6) has two disjunctive body atoms and P1

is not WL. The program, however, has markings {C,B,G} and {U,B,G}.

V B

U C E

⊥ G

(5)(5)

(6) (6)

(1)

(1)

(2)

(3)

(3)(2) (4)

Checking markability of a disjunctive program P is amenable to efficient im-
plementation via reduction to 2-SAT. To this end, we first associate with ev-
ery predicate Q in P a distinct propositional variable XQ. Then, for each rule
ϕ∧P1(s1)∧· · ·∧Pn(sn)→ Q1(t1)∨· · ·∨Qm(tm) ∈ P , where ϕ is the conjunction
of all datalog atoms in the rule, we associate the following binary clauses:

1. ¬XPi ∨ ¬XPj for all 1 ≤ i < j ≤ n ;
2. ¬XPi ∨XQj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m;
3. XQi ∨XQj for all 1 ≤ i < j ≤ m.

Clauses of the form (1) indicate that at most one body atom in the rule may
be marked. By (2), if a body atom is marked, then so must be all head atoms.
Finally, (3) ensures that at most one head atom may be unmarked. The resulting
set N of propositional clauses is quadratic in the size of P . Moreover, N is
satisfiable if and only if P has a marking, and every model I of N yields a
marking MI = {Q | Q occurs in P and XQ ∈ I }. Since 2-SAT is solvable in
linear time, we obtain the following.

Proposition 3.4. Markability can be checked in time quadratic in the size of
the input program.
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Datalog Rewritability of Markable Programs. We now show that mark-
able programs are rewritable into datalog by means of a quadratic translation
ΞM , which extends the translation for weakly linear programs given in [10].

Consider P1 and the marking M = {B,G,U}. We introduce fresh binary

predicates B
Y
, G

Y
, and U

Y
for every disjunctive predicate Y . Intuitively, if a

fact B
G
(c, d) holds in ΞM (P1) ∪ D then proving B(c) suffices for proving G(d)

in P1 ∪ D (or, in other words, we have P1 ∪ D |= B(c) → G(d)). Analogously,
for the unmarked disjunctive predicate C we introduce fresh binary predicates
CY for each disjunctive predicate Y ; these predicates have a different intuitive
interpretation: if a fact CU (c, d) holds in ΞM (P1)∪D then P1∪D entails C(c)∨
U(d). To “initialise” the extension of the fresh predicates we need the following
rules for every X ∈M and every disjunctive predicate Y .

�(x)→ X
X
(x, x) (7)

X
Y
(x, y) ∧X(x)→ Y (y) (8)

�(y) ∧ C(x)→ CY (x, y) (9)

CC(x, x) → C(x) (10)

These rules encode the intended meaning of the auxiliary predicates. For
example, Rule (8) states that if X(c) holds for some constant c and this is
sufficient to prove Y (d) for some d, then Y (d) holds. The key step is to “flip”
the direction of all rules in P1 involving the marked predicates B, G and U by
moving all marked atoms from the head to the body and vice versa while at the
same time replacing their predicates with the relevant auxiliary predicates. Thus,
Rule (2) leads to the following rules in ΞM (P1) for each disjunctive predicate Y :

B
Y
(x, z) ∧ E(x, y)→ G

Y
(y, z)

These rules are natural consequences of Rule (2) under the intended meaning of
the auxiliary predicates: if we can prove a goal Y (z) by proving first B(x), and
E(x, y) holds, then by Rule (2) we deduce that proving G(y) suffices to prove
Y (z). In contrast to (2), Rule (1) contains no disjunctive body atoms. We “flip”
this rule as follows, for each disjunctive predicate Y :

C(x) ∧B
Y
(x, y) ∧G

Y
(x, y)→ Y (y)

Similarly to the previous case, this rule follows from Rule (1): if C(x) holds and
we can establish that Y (y) can be proved from B(x) and also from G(x), then
Y (y) must hold. In contrast to marked atoms, unmarked atoms are not moved.
So, Rules (5) and (6) yield the following rules for each disjunctive predicate Y :

V (x) ∧ U
Y
(x, y)→ CY (x, y) CY (x, y)→ U

Y
(x, y)

And indeed, these rules are consequences of Rule (5) and (6), respectively, under
the intended meaning of the auxiliary predicates: V (x) and U(x)→ Y (y) imply
C(x) ∨ Y (y) by Rule (5), while C(x) ∨ Y (y) and U(x) imply Y (y) by Rule (6).

Definition 3.5. Let P be a disjunctive program, Σ the set of disjunctive pred-
icates in P \ P	, and M ⊆ Σ a marking of P. For each (P,Q) ∈ Σ2, let PQ
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and P
Q
be fresh predicates of arity arity(P )+ arity(Q). Then, ΞM (P) is the dat-

alog program with the rules given next, where ϕ is the conjunction of all datalog
atoms in a rule, ϕ	 is the least conjunction of �-atoms that makes a rule safe,
all predicates Pi, Qj are in Σ, and y, z are disjoint vectors of fresh variables:

1. every rule in P that contains no disjunctive predicates;

2. a rule ϕ	 ∧ ϕ ∧
∧m

j=1 Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y) → Q
R
(t,y) for every rule

r = ϕ∧Q(t)∧
∧m

j=1 Qj(tj)→
∨n

i=1 Pi(si) ∈ P \P	 and every R ∈ Σ, where
Q(t) is the unique marked body atom of r;

3. a rule ϕ	 ∧ ϕ ∧
∧m

j=1 Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y) → R(y) for every rule

r = ϕ ∧
∧m

j=1 Qj(tj) →
∨n

i=1 Pi(si) ∈ P \ P	 and each R ∈ Σ, where r has
no marked body atoms and no unmarked head atoms;

4. a rule ϕ	 ∧ ϕ ∧
∧m

j=1 Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y)→ PR(s,y) for every rule

r = ϕ∧
∧m

j=1 Qj(tj)→ P (s)∨
∨n

i=1 Pi(si) ∈ P \P	 and each R ∈ Σ, where
r has no marked body atoms, and P (s) is the unique unmarked head atom;

5. a rule ϕ	 → R
R
(y,y) for every R ∈M ;

6. a rule Q(z) ∧Q
R
(z,y)→ R(y) for every pair (Q,R) ∈M ×Σ;

7. a rule ϕ	 ∧Q(z)→ QR(z,y) for every pair (Q,R) ∈ (Σ \M)×Σ;
8. a rule RR(y,y)→ R(y) for every R ∈ Σ \M .

The transformation is quadratic and the arity of predicates is at most doubled.
For P1 and the markingM = {B,G,U}, we obtain the datalog program ΞM (P1)
consisting of the following rules, where X ∈M and Y is disjunctive:

C(x) ∧B
Y
(x, y) ∧G

Y
(x, y)→ Y (y) (1’)

B
Y
(x, z) ∧E(x, y)→ G

Y
(y, z) (2’)

G
Y
(x, z) ∧ E(x, y)→ B

Y
(y, z) (3’)

V (x) ∧ U
Y
(x, y)→ CY (x, y) (5’)

CY (x, y)→ U
Y
(x, y) (6’)

E(y, x)→ E(x, y) (4)

�(x)→ X
X
(x, x) (7)

X(x) ∧X
Y
(x, y)→ Y (y) (8)

�(y) ∧ C(x)→ CY (x, y) (9)

CC(x, x)→ C(x) (10)

In total, this yields 41 rules. Additionally, ΞM (P1) contains the rules in ΞM (P1)⊥
and an axiomatisation of ≈ (which can be omitted since ≈ does not occur in the
above rules). Correctness of ΞM is established by the following theorem.

Theorem 3.6. Let P be a disjunctive program and let M be a marking of P.
Then ΞM (P) is a polynomial datalog rewriting of P.

ΞM (P) preserves answers to all atomic queries over P . If we only want to
query a specific predicate Q, we can compute a smaller program, which is linear
in the size of P and preserves the extension of Q. If Q is datalog, each proof in
P of a fact about Q involves only datalog rules, and if Q is disjunctive each such

proof involves only fresh predicates XQ and X
Q
. Thus, in ΞM we can dispense

with all rules involving auxiliary predicates XR or X
R
for R �= Q (if Q is datalog

the rewriting has no auxiliary predicates).
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Theorem 3.7. Let P be a program, M a marking of P, S a set of predicates,

and P ′ obtained from ΞM (P) by removing all rules with a predicate XR or X
R

for R /∈ S ∪ {⊥}. Then P ′ is a rewriting of P w.r.t. all atomic queries over S.

Rewriting Ontologies. Our results are directly applicable to RL�. In [10],
we showed tractability of fact entailment for the class of RL� ontologies cor-
responding to WL programs. The following theorem extends this result to the
more general class of markable programs.

Theorem 3.8. Checking O ∪ D |= α, for O an RL� ontology that corresponds
to a markable program, is PTime-complete w.r.t. data and combined complexity.

We next lift the markability condition from disjunctive programs to SHI
ontologies. Observe that the notions of dependency graph and markability natu-
rally extend to sets of first-order clauses (written as rules where function symbols
are allowed). We define a predicate to be disjunctive in O if it is disjunctive in
the set FO of clauses obtained by skolemisation; we call O markable if so is FO;
and we call a set of predicates a marking of O if it is a marking of FO.

Example 3.9. Consider the ontology O1 and its corresponding clauses FO1 :

O1 = {Person � Man  Woman,Person � ∃parent.Person,
∃married.Person � Person,Woman � Person,Man � Person}

FO1 = {Person(x)→ Man(x) ∨Woman(x),Person(x)→ parent(x, f(x)),

Person(x)→ Person(f(x)),Person(y) ∧married(x, y)→ Person(x),

Woman(x)→ Person(x),Man(x) → Person(x)}

OntologyO1 is markable since the set {Person,Man,Woman} is a marking of FO1 .

As already mentioned, every normalised SHI ontology can be rewritten into
disjunctive datalog by means of a resolution-based calculus [8,5]. The following
lemma establishes that binary resolution and factoring preserve markability.

Lemma 3.10. Let M be a marking of a set of clauses F , and let F ′ be obtained
from F using binary resolution and factoring. Then M is a marking of F ′.

Thus, markable SHI ontologies admit a (possibly exponential) rewriting.

Theorem 3.11. Let O be a SHI ontology and let M be a marking of O. Then
M is a marking of DD(O) and ΞM (DD(O)) is a datalog rewriting of O (where
DD(O) is defined as in [5]).

Corollary 3.12. Checking O ∪ D |= α, for O a markable SHI ontology is
PTime-complete w.r.t. data and in ExpTime w.r.t. combined complexity.
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Procedure 1. Compile-Horn

Input: S : set of clauses
Output: SH : set of Horn clauses

1: SH := {C ∈ S | C is a Horn clause and not a tautology}
2: SH := {C ∈ S | C is a non-Horn clause and not a tautology}
3: repeat
4: F := factors of each C1 ∈ SH non-redundant in SH ∪ SH

5: R := resolvents of each C1 ∈ SH and C2 ∈ SH ∪ SH not redundant in SH ∪ SH

6: for each C ∈ F ∪R do
7: C′ := the condensation of C
8: Delete from SH and SH all clauses θ-subsumed by C′

9: if C′ is Horn then SH := SH ∪ {C′}
10: else SH := SH ∪ {C′}
11: until F ∪R = ∅
12: return SH

4 Resolution-Based Rewritings

Resolution provides an alternative technique for rewriting disjunctive programs
into datalog [5]. Procedure 1 saturates the input program P under binary res-
olution and positive factoring, with the restriction that two Horn clauses are
never resolved together. The procedure is compatible with redundancy elimina-
tion techniques such as tautology elimination, subsumption and condensation.
If it terminates, the procedure returns the subset of Horn clauses (equivalently,
datalog rules) in the saturation, which is guaranteed to be a rewriting of P .

We show that the separation between disjunctive and datalog predicates (Def-
inition 3.1) can be exploited to refine this procedure. The idea is to further refine
resolution by ensuring that the resolved atoms involve a disjunctive predicate.

Definition 4.1. Compile-Horn-Restricted is obtained from Procedure 1 by adding
to the definition of R in step 5 the additional restriction that the predicate in
the atoms being resolved must be disjunctive in S.

Correctness of Compile-Horn-Restricted relies on the observation that resolutions
on datalog predicates can always be delegated to the datalog reasoner and hence
do not have to be performed as part of the rewriting process.

Theorem 4.2. If Compile-Horn-Restricted terminates on a disjunctive program
P with a program P ′, then P ′ is a datalog rewriting of P.

The class of disjunctive programs over which Compile-Horn-Restricted termi-
nates is incomparable with the class of markable programs. Moreover, the rewrit-
ings produced by both approaches are quite different. Markable programs lead
to polynomial rewritings, in which the arity of predicates is increased; rewritings
computed via resolution can be much larger, but since all the datalog rules in the
rewriting are logically entailed by the original program, the arity of predicates
stays the same. In Section 6 we will discuss practical implications.
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Rewriting Ontologies. The procedure Compile-Horn was shown to terminate
for a class of programs called simple [5]; furthermore, DL-LiteH,+

bool ontologies are
transformed into disjunctive programs that satisfy the simplicity condition using
the algorithm by Hustadt, Motik and Sattler [8]. We now extend this result
by devising a sufficient condition for datalog rewritability of SHI ontologies
via Compile-Horn-Restricted. Since transitivity axioms can be eliminated from
SHI ontologies by a polynomial transformation while preserving fact entailment
(see [8,5]), it suffices to formulate our condition for ALCHI.4 First, we adapt
the notion of simple rules in [5] as follows.

Definition 4.3. An axiom of the form ∃R.A � B is simple w.r.t. a set of
predicates S (or S-simple) if A /∈ S. An ontology O is S-simple if so is every
axiom of the form ∃R.A � B in O.

Note that ontology O1 from Example 3.9 is not simple w.r.t. its disjunctive
predicates due to axiom ∃married.Person � Person. If, however, we replace this
axiom with Man �Woman → ⊥, we obtain a simple ontology, which in turn is
no longer markable. The following theorem then generalises the result in [5] to
a sufficient condition for datalog rewritability of ALCHI ontologies.

Theorem 4.4. Let O be an ALCHI ontology that is simple w.r.t. its disjunctive
predicates. Then Compile-Horn-Restricted terminates on DD(O) with a datalog
rewriting of O.

5 Conjunctive Queries

By the results in [12], disjunctive programs cannot be rewritten to datalog in a
query-independent way while preserving answers to CQs. Nonetheless, rewriting
techniques for atomic queries can still be used to answer specific queries, which
can be appended to the program as additional rules.

Rewriting CQs Using Markability. This observation immediately suggests
how our markability condition in Section 3 can be applied to rewriting CQs.

Proposition 5.1. Let P be a disjunctive program, let M be a marking of P,
and let q be a CQ with at most one atom marked by M . Then, ΞM (P ∪ {q}) is
a rewriting of q w.r.t. P.

Indeed, M constitutes a marking of P ∪ {q} if and only if q contains at most
one body atom marked by M . From this, we obtain the following result, which
applies equally to disjunctive programs and RL� ontologies.

4 Note that neither Compile-Horn nor Compile-Horn-Restricted are well-suited for deal-
ing with (axiomatised) equality. Both will diverge on every disjunctive program with
equality due to the congruence axioms P (x) ∧ x ≈ y → P (y) with P disjunctive.
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Proposition 5.2. Let F be a disjunctive program (or an RL� ontology), let M
be the set of all (minimal) markings of F , and let q be a (Boolean) CQ. If there
is some M ∈M that marks at most one atom of q, then answering the (fixed) q
w.r.t. (fixed) F and an arbitrary dataset is a tractable problem.

Example 5.3. Consider the following RL� ontology O and query q:5

O = {A � B  C}
q = R(x, y) ∧R(y, z1) ∧R(y, z2) ∧B(z1) ∧ C(z2)→ Aq(x)

The empty ontology is a rewriting of O, which can be determined using marka-
bility or resolution. Indeed, for every dataset D and fact α we have O ∪ D |= α
iff D |= α. The empty ontology, however, is not a rewriting of q, as witnessed by
the following dataset D, for which O ∪D ∪ {q} |= Aq(a) but D ∪ {q} �|= Aq(a):

{R(a, b1), R(a, b2), R(b1, c1), R(b1, c2), R(b2, c2), R(b2, c3), B(c1), A(c2), C(c3)}

Clearly, M = {B} is a marking of O, and q contains one marked atom. Then
P = ΞM (O∪{q}) has the following rules, with X ∈ {B,Aq} and Y ∈ {B,C,Aq}:

A(x) ∧B
Y
(x, y)→ CY (x, y) (11)

A
Y

q (x, u) ∧R(x, y) ∧R(y, z1) ∧R(y, z2) ∧CY (z2, u)→ B
Y
(z1, u) (12)

�(x)→ X
X
(x, x) (13)

X(x) ∧X
Y
(x, y)→ Y (y) (14)

�(y) ∧ C(x)→ CY (x, y) (15)

CC(x, x)→ C(x) (16)

Figure 2 shows a derivation of Aq(a) from P ∪D.

Although this approach is immediately applicable to disjunctive programs
and hence to RL� ontologies, it only transfers to SHI(Q) ontologies if q corre-
sponds to a normalised SHI(Q) axiom. The reduction in [8,5] from SHI(Q) to
disjunctive datalog is only complete for inputs equivalent to SHIQ ontologies.

Rewriting CQs via Resolution. The resolution-based approach naturally ex-
tends to a class of CQs satisfying certain conditions closely related to simplicity.

Definition 5.4. Let S be a set of unary and binary predicates. A CQ q is S-
simple if for some variable x in q all of the following conditions are satisfied:

1. if q is not Boolean, then Aq(x) is the head atom of q;
2. Every S-atom (i.e., atom whose predicate is in S) in q is of the form B(x),

R(x, x), S(x, y), or T (y, x); and

5 This example is based on a personal communication with Carsten Lutz.
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Aq(a)

B
Aq

(c1, a)

A
Aq
q (a, a)

�(a)

(13)

R(a, b1) ∈ D CAq (c2, a)

B
Aq

(c2, a)

A
Aq
q (a, a)

�(a)

(13)

R(a, b2) ∈ D CAq (c3, a)

�(a) C(c3) ∈ D

(12)

R(b2, c2) ∈ D R(b2, c3) ∈ D

A(c2) ∈ D

(12)

R(b1, c1) ∈ D R(b1, c2) ∈ D

B(c1) ∈ D
(14)

(11)

(15)

Fig. 2. Derivation of Aq(a) from ΞM (O ∪ {q}) ∪ D in Example 5.3

3. every variable y �= x occurs in at most one S-atom in q.

Example 5.5. Consider the following RL� ontology O and queries q1, q2:

O = {Person � Man  Woman, ∃married.Person � Person}
q1 = Man(x) ∧married(x, y)→ Aq1(x)

q2 = Man(x) ∧married(x, y) ∧Woman(y)→ Aq2(x)

Ontology O is simple w.r.t. the set S = {Man,Woman} of the disjunctive pred-
icates in O. Query q1 is S-simple while q2 is not. It is straightforward to verify
that Compile-Horn-Restricted terminates on O ∪ {q1} but not on O ∪ {q2}.

Theorem 5.6. Let O be an RL� ontology that is simple w.r.t. the set S of the
disjunctive predicates in O. Then Procedure Compile-Horn-Restricted terminates
on O ∪ {q} with a datalog rewriting of q w.r.t. O for every S-simple CQ q.

Consequently, answering any (fixed) CQ q over any (fixed) ontology O satis-
fying the conditions of Theorem 5.6 is a tractable problem.

6 Evaluation

Rewritability Experiments. We have evaluated whether realistic ontologies
can be rewritten into datalog using our approaches. We analysed 118 ontologies
that use disjunctive constructs from BioPortal, the Protégé library, and the cor-
pus in [7]. To transform ontologies into disjunctive datalog we used KAON2 [14],
which succeeded to compute disjunctive programs for 103 ontologies.6 Out of the

6 We doctored the ontologies to remove constructs outside SHIQ. The modified on-
tologies can be found on
https://krr-nas.cs.ox.ac.uk/2014/RR/ontologies.tar.bz2

https://krr-nas.cs.ox.ac.uk/2014/RR/ontologies.tar.bz2
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Table 2. Average times for answering UOBM’s 15 standard queries

Linearity Resolution HermiT Pellet
dlog disj err all err all err all err

U01 <1s 12s 1 <1s 1 47s 0 147s 5
U04 <1s 87s 1 1s 1 57s 1 — —
U07 <1s 168s 2 2s 1 122s 1 — —
U10 <1s 53s 5 3s 1 196s 1 — —

103 disjunctive programs, 32 were WL, and 35 were markable. Furthermore, 26
programs could be rewritten using Compile-Horn, and 27 could be rewritten us-
ing Compile-Horn-Restricted.7 In both cases, the average time for computing a
rewriting was below 1s (where the average is taken over the successful runs).
Despite the potentially exponential blowup, the increase in program size was
modest in practice: 49% for Compile-Horn and 34% for Compile-Horn-Restricted
on average w.r.t. the number of rules.

Many of the programs obtained by KAON2 contained equality, and hence
could not be rewritten by means of resolution (see Section 4). Hence, we addi-
tionally considered simplified versions of the 103 programs where we removed
all rules containing equality. Out of these, 33 turned out to be WL, and 36
were markable; as expected the effect of equality on linearity-based approaches
is rather minor. In contrast, resolution-based approaches were significantly more
effective than before: Compile-Horn succeeded in 39 cases, and Compile-Horn-
Restricted in 41 cases. Again, computing a successful rewriting took less that 1s
on average in both cases. The increase in program size was even smaller than
before: 16% for Compile-Horn and 6% for Compile-Horn-Restricted on average.

Both Compile-Horn and Compile-Horn-Restricted succeeded on some ontolo-
gies that were not simple w.r.t. disjunctive predicates. At the same time, being
worst-case exponential, both algorithms failed to rewrite (within 1h) one simple
ontology and two that were simple w.r.t. disjunctive predicates.

The intersection between the programs rewritable using markability and res-
olution turned out to be quite large: in the general case, there were 16 programs
that could be rewritten by only one approach, and in the equality-free case only 5.
Still, taken together, the two approaches succeeded to rewrite 39 programs (38%)
in the general case and 41 programs (40%) in the equality-free case. Moreover,
on average, 73% of the predicates were datalog, and so could be queried using
a datalog engine even if the disjunctive program was not rewritable. Finally, we
found that 20 out of the 103 ontologies were RL�, out of which 17 were markable.
Of the remaining three, two could be rewritten via resolution.

CQ Answering. We have also tested scalability of CQ answering over the
UOBM benchmark [13]. We considered the RL� subset of UOBM without

7 We ran the rewritability experiments on a laptop with a 2.5GHz Intel Core i5 pro-
cessor and 8GB RAM, and set a timeout of 1h per ontology.



90 M. Kaminski, Y. Nenov, and B. Cuenca Grau

equality,8 and generated datasets for 1 to 10 universities (denoted as U01-U10).
Furthermore, we considered the 15 standard queries in the benchmark. While
not markable, our test ontology can be converted to a markable (in fact, WL)
program by the algorithm in [10]. Moreover, it is rewritable using Compile-Horn-
Restricted (but not using Compile-Horn). We used RDFox as a datalog engine,
and measured performance against HermiT [17] and Pellet [19]. We used a server
with two Intel Xeon E5-2643 processors and 128GB RAM. Systems were com-
pared on individual queries with a timeout of 10min per query. We ran RDFox on
16 threads. Table 2 shows average query answering times, and number of queries
on which a system failed.9 The time spent on computing the rewritings10 is not
included into the query answering times since query rewriting can be done in a
data-independent way.

Pellet could only answer queries on U01. It timed out on 5 queries, and was
much slower on the remaining queries than the other systems.

Using the linearity-based approach we could answer queries for all datasets.
From the 15 test queries, 7 were disjunctive (i.e., contained at least one disjunc-
tive atom), and 8 were datalog. One disjunctive query could not be rewritten.
Datalog queries were answered instantaneously (<1s) for all datasets. Disjunc-
tive queries were much harder, and performance on those was comparable to
HermiT. Memory-outs were encountered for U07 (1 query) and U10 (4 queries).
For all rewritable queries, computing the rewriting (including the conversion to
a WL program) took less that 1s.

The resolution-based approach was clearly superior to the others. Only one
query could not be rewritten, and all the remaining queries could be answered
almost instantaneously even for the largest dataset (query rewriting itself took
26s on average). In contrast to the linearity-based approach, rewritings obtained
by resolution introduce no predicates of higher arity, and thus lead to smaller
materialisations. Also, there was no significant difference in query answering
times for datalog and disjunctive queries. Once again, the increase in program
size was modest (4.6 times on average). Notably, computing the rewritings took
26s on average—considerably longer than with the linearity-based approach.

7 Conclusion

We have proposed enhanced techniques for rewriting disjunctive datalog pro-
grams and DL ontologies into plain datalog programs. Our techniques enable
the use of scalable datalog engines for data reasoning, and our experiments sug-
gest practical feasibility of our approach. In the near future, we are planning to
extend our results for CQ answering to capture larger classes of queries.

Acknowledgements. This work was supported by the Royal Society, the
EPSRC projects Score!, ExODA, and MaSI3, and the FP7 project OPTIQUE.

8 Equality makes the resolution-based approach non-applicable.
9 Average times do not reflect queries on which a system failed.

10 Query rewriting was performed with a 1h timeout per query.
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Abstract. SQL:2011, the most recently adopted version of the SQL
query language, has unprecedentedly standardized the representation of
temporal data in relational databases. Following the successful paradigm
of ontology-based data access, we develop a practical approach to query-
ing the SQL:2011-based temporal data model via the semantic layer of
OWL 2 QL. The interval-based temporal query language (TQL), which
we propose for this task, is based on naturally characterizable combina-
tions of temporal logic with conjunctive queries. As the central contribu-
tion, we present rules for sound and complete rewriting of TQL queries
into two-sorted first-order logic, and consequently, into corresponding
SQL queries, which can be evaluated in any existing relational database
management system compliant with the SQL:2011 temporal data model.
Importantly, the proposed rewriting is based on the direct reuse of the
standard rewriting techniques for conjunctive queries under OWL 2 QL.
This renders our approach modular and easily implementable. As a no-
table corollary, we show that the data complexity of TQL query answer-
ing remains in AC0, i.e., as in the usual, non-temporal case.

1 Introduction

The ability to manage the temporal aspects of information is critical for a variety
of applications. One natural and prevailing scenario is that of representing and
querying the validity time of data, i.e., the time during which data is deemed
true about the application domain. The significance of this task is particularly
visible in the area of semantic technologies, where the systematically growing
number of proposed solutions, building on different levels of the Semantic Web
architecture and differing in the flavour and depth of temporal reasoning they
support, aim at addressing essentially the same problem [15,14,5,22,7,2]. A very
similar proliferation of proposals was witnessed in the 1990s in the field of tempo-
ral databases. Intensive attempts to extend the traditional relational data model
and SQL with temporal features inspired then a large body of candidate spec-
ifications, including such extensions as TSQL2, SQL3 or SQL/Temporal [24],
which eventually failed to be adopted by the database community due to the
persistent lack of consensus as to the preferred approach. Only very recently,
that discussion has been picked up again and a compromise temporal extension
has eventually found its way into SQL:2011 [20] — the newest standardization

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 92–107, 2014.
c© Springer International Publishing Switzerland 2014
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of the SQL query language. This unprecedented circumstance offers an inter-
esting opportunity to address the problem of reasoning with temporal semantic
data from yet another angle, namely, by relating it via known links between
relational databases and semantic technologies to its analogue in the database
world, thus using the SQL:2011 standard as a leverage for the solution. In this
paper, we contribute precisely to this research agenda by proposing a novel,
temporal extension to the framework of ontology-based data access.

Ontology-based data access (OBDA) is a popular paradigm of managing in-
formation, which combines the data storage and querying capabilities offered
by relational database management systems (RDBMSs) with the semantically
enhanced view on the data provided by ontologies. The ontology language OWL
2 QL, based on the DL-Lite family of Description Logics, is a profile OWL 2
designed specifically to support optimally balanced OBDA. In a nutshell, con-
junctive queries, posed over data under an OWL 2 QL ontology, can be rewritten
into first-order logic using the ontology’s axioms, then translated to SQL and
answered within an RDBMS, in such a way as if the ontology was mediating
in the process [8]. As large portions of data available through the Web are in
fact still hosted in relational datastores, OBDA provides a crucial channel for
accessing this data from the level of the Semantic Web applications.

In this work, we establish an analogical OBDA interface between the seman-
tic layer of OWL 2 QL and temporal data model endorsed by SQL:2011. The
interval-based temporal query language (TQL), which we propose for this task,
is based on naturally characterizable combinations of temporal logic with con-
junctive queries, identified in [16]. TQL is tailored specifically to offer maximum
expressivity while preserving the possibility of reuse central to OBDA first-order
rewriting techniques and tools, developed specifically for the use with OWL
2 QL. While this technical compliance warrants the minimal implementation
overhead for our approach, its well-defined logic foundations allow us to identify
basic formal properties of TQL. In particular, we are able to demonstrate that
under the finite time domain assumption the data complexity of query entail-
ment remains in AC0, i.e., as in the case of standard (non-temporal) conjunctive
queries, even though the combined complexity increases to PSpace-complete.
As the main contribution, we develop a rewriting of TQL queries in the presence
of OWL 2 QL ontologies into two-sorted first-order logic, and consequently to
SQL, which opens the way to efficient query answering by means of existing,
commercially supported RDBMSs, such as IBM DB2 10.1, Oracle Database 11g
Workspace Manager, or Teradata — all of which have by now adopted certain
variants of the SQL:2011 standard1.

The paper is organized as follows. In the next section we lay down the prelimi-
naries. In Section 3, we introduce TQL and define the query entailment problem.
In Section 4, we present the TQL query rewriting rules and, in Section 5, we
study the formal properties of query answering queries via this rewriting. The
related work is discussed in Section 6 and the paper is concluded in Section 7.
Some proofs are included in the online technical report [19].

1 See http://www.cs.arizona.edu/~rts/sql3.html for an overview.
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2 Basic Notions

We start by recapping the logic foundations of OBDA. Then we motivate and
formally introduce the temporal extension of OBDA studied in this paper.

2.1 Ontology-Based Data Access

OWL 2 QL is a profile of OWL 2 based on the DL-Lite family of Description
Logics (DLs) [8]. A DL vocabularyΣ = (NI,NC,NR) consists of countably infinite
sets of individual names (NI), concept names (NC) and role names (NR). An ABox
A is a finite set of assertions of type A(a) and r(a, b), for a, b ∈ NI, A ∈ NC and
r ∈ NR, which we also generically denote with α(a). A TBox T is a finite set
of concept inclusions B � C and role inclusions r � s, where B,C and r, s are
possibly complex concepts and roles, respectively, built using logical constructors
allowed in OWL 2 QL, such as ∃r.�, A � B, r−, whose particulars are not of
importance for this work.2 The semantics is given in terms of DL interpretations
I = (ΔI , ·I), defined as usual [4]. An interpretation I is a model of T and A,
denoted as I |= T ,A, iff it satisfies every axiom in T and A.

In OBDA, the instance data, represented as an ABox, is accessed via an
ontology, given as a TBox, using a designated query language such as, most
commonly considered in that context, the language of conjunctive queries [13].
Let NV be a countably infinite set of variables. A conjunctive query (CQ) over a
DL vocabulary Σ is a first-order formula:

q(y) = ∃x.(
∧

1≤j≤n

αj(dj))

where y and x are sequences of, respectively, free and existentially bounded
variables occurring in q(y) and every atom αj(dj) is of the form A(d) or r(d1, d2),
where A ∈ NC, r ∈ NR, and d, d1, d2 ∈ NI ∪NV. Whenever it is not confusing, we
sometimes also abbreviate q(y) to q. By term(q) we denote the set of all terms
occurring in q and by obj(q) the set of all free variables. We call q grounded
whenever obj(q) = ∅. A grounded CQ q is satisfied in I iff there exists a mapping
μ : term(q) #→ ΔI , with μ(d) = dI for every d ∈ NI, such that μ(d) ∈ AI and
(μ(d1), μ(d2)) ∈ rI for every A(d) and r(d1, d2) in q. Further, we say that q
is entailed by T ,A, denoted as T ,A |= q iff q is satisfied in every model of
T ,A. Whenever ∅,A |= q we also write A |= q. An answer to q is a mapping
σ : obj(q) #→ NI. By σ(q) we denote the result of uniformly substituting every
occurrence of x in q with σ(x), for every x ∈ obj(q). An answer σ is called certain
over T , A iff σ(q) is entailed by T ,A.

A prominent property of CQs is their first-order (FO) rewritability in OWL
2 QL, formally defined as follows.

2 See http://www.w3.org/TR/owl2-profiles/#OWL_2_QL for full details.
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Definition 1 (FO Rewritability [8]). For every CQ q and a TBox T , there
exists a FO formula qT , called the FO rewriting of q in T , such that for every
ABox A and answer σ to q, it holds that:

T , A |= σ(q) iff db(A) � σ(qT ),

where � is the FO satisfaction relation and db(A) denotes A considered as a
database/FO interpretation, i.e., a structure (NI, ·D), where NI is the data do-
main and ·D is an interpretation function defined as αD = {a | α(a) ∈ A}, for
every α ∈ NC ∪ NR.

By the standard techniques the FO rewriting of q in T is a union of conjunc-
tive queries, i.e., a formula qT (y) =

∨
1≤i≤m

qi(y), where every qi(y) is a CQ.

FO rewritability is particularly significant from the practical perspective. It im-
plies that answering CQs in OWL 2 QL can be effectively performed in existing
RDBMSs via a translation to SQL, as the ontological component in the task
can be always compiled out in the query rewritting, without loss of soundness or
completeness. As a theoretical corollary, it follows also that the data complexity
of query answering in this setup is AC0, as in first-order logic (FOL).

In this work, we focus exclusively on OWL 2 QL TBoxes, even though some of
the presented results should clearly transfer to other fragments of DLs warranting
the FO rewritability property for CQs. Without always stating it explicitly, we
assume that every TBox or ontology mentioned in the remainder of this paper
is expressed in OWL 2 QL.

2.2 Ontology-Based Access to Temporal Data

In this paper, we study ontology-based access to temporal data, in the sense of
an extension to the OBDA paradigm whose prototypical application could be
illustrated with the following scenario.

Consider a temporal database (TDB) presented in Table 1, with columns
from and to marking the limits of the validity periods of the respective records.
Such databases can be naturally mapped to (virtual) temporal ABoxes, such as
given in Table 2. Our goal is to define a dedicated language for querying tem-
poral ABoxes, which would combine support for two essential functionalities:
representation of temporal constraints over the validity periods of data and se-
mantically enhanced access to that data via ontologies. For instance, given the
ontology T = {Emp � Person , department � worksAt , location � basedIn}, the
language should be able to support queries such as:

(Q) Find all persons X and times Y , such that X worked in a department
based in Barcelona during Y and in a department based in Madrid some
time earlier.

The expected set of answers should then include e1 as X with the associated
period [1999, 2000] as Y . The practical rationale behind ontology-based access
to temporal data defined in this way is to eventually enable such queries to be
translated to SQL and answered within existing RDBMSs.
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Table 1. SQL:2011 temporal database

Emp

id name department from to

e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002

Dep

id type location from to

d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003

Table 2. Temporal ABoxes corresponding to the temporal relations in Table 1

[1998, 2000] : Emp(e1 )
[1998, 2000] : name(e1 , john)

[1998, 2000] : department (e1 , d1 )
. . .

[1998, 1999] : Dep(d1 )
[1998, 1999] : type(d1 ,financial)
[1998, 1999] : location(d1 ,madrid)

. . .

Formally, the temporal data model under consideration is grounded in the
point- and (derived) interval-based time domains.

Definition 2 (Time Domain, Time Intervals). A time domain is a tuple
T = (T,<), where T is a nonempty set of elements called time points and < is
an irreflexive, linear ordering on T . A time interval τ = [τ−, τ+] over T is a set
of time points {t ∈ T | τ− ≤ t ≤ τ+}, where τ−, τ+ ∈ T , such that τ− ≤ τ+.
The points τ− and τ+ are called the beginning and the end of τ .3 The set of all
time intervals over T is denoted by I.

In the SQL:2011 standard, every temporal relation extends a non-temporal
one with two additional attributes storing the beginning and the end time of the
validity period of a given tuple [20] — exactly as in the example from Table 1.
Such a model supports a representation of so-called concrete TDBs, i.e., finite
syntactic encodings of temporal data. The actual meaning of these encodings is
captured by possibly infinite abstract TDBs [12]. In the OBDA setting these two
notions translate naturally into the corresponding types of ABoxes.

Definition 3 (Concrete and Abstract Temporal ABoxes). A temporal
assertion is an expression τ : α(a), where α(a) is an ABox assertion and τ ∈ I,
stating that α(a) is valid in every time point in τ . A concrete temporal ABox
(CTA) A is a finite set of temporal assertions. For a concrete temporal ABox A
there exists a corresponding abstract temporal ABox (ATA), obtained by means
of a mapping ‖ · ‖, such that ‖A‖ = (At)t∈T , where At = {α(a) | τ : α(a) ∈
A and t ∈ τ}.
3 Note that SQL:2011 adopts a closed-open semantics for the validity periods, i.e., for
any τ ∈ I it holds that τ− ∈ τ and τ+ �∈ τ . This a technically insignificant difference
which we omit here for clarity of presentation.
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The link between concrete temporal ABoxes and SQL:2011 TDBs is defined
in a strict analogy to the non-temporal OBDA.

Definition 4 (TDB). Let A be a CTA over the time domain T = (T,<). By
tdb(A) we denote A considered as a temporal database (TDB) over the signature
Γ = {Rα | α ∈ NC ∪ NR}, i.e., the structure (NI, T,<, ·D), where NI is the
data domain, (T,<) is the time domain, and ·D is the interpretation defined as
RD

α = {(a, τ−, τ+) | τ : α(a) ∈ A}, for every α ∈ NC ∪ NR.

3 Temporal Query Language

The Temporal Query Language (TQL), presented in this section, is defined using
a generic construction method for temporal query languages in DLs, explored
also in [16,3,7,18]. TQL is a combination of a temporal language with CQs,
obtained by substituting CQs for the atoms in temporal formulas. This design
allows for very flexible interleaving of data queries with temporal constraints,
while benefiting from the expressive power of both components. As the temporal
language we use first-order monadic logic of orders, which is at least as expressive
as most common linear temporal logics [23]. Two specific characteristics of TQL,
which distinguish it from other similar proposals, are:

– the use of an interval-based variant of the temporal language, rather than
a point-based, which enables direct querying of concrete TDBs, without re-
quiring intermediate translations, such as studied in [25];

– the use of the epistemic semantics for embedding CQs in the temporal lan-
guage, as suggested in [16], which renders the language more expressive and
computationally well-behaved, as explained further.

By IV we denote a countably infinite set of variables ranging over I.

Definition 5 (TQL). Temporal query language (TQL) is the smallest set of
formulas induced by the grammar:

ψ ::= [q](u) | u∗ < v∗ | ¬ψ | ψ1 ∧ ψ2 | ∃y.ψ

where q is a CQ, u, v ∈ I ∪ IV, y ∈ IV, and ∗ ∈ {−,+}. An i-substitution is a
mapping π : I ∪ IV #→ I such that π(τ) = τ , for every τ ∈ I. By obj(ψ) we denote
the set of free individual variables and by int(ψ) the set of free interval variables
in ψ. A TQL formula ψ is grounded iff obj(ψ) = int(ψ) = ∅. The satisfaction
relation for TQL formulas, w.r.t. a TBox T , a CTA A, and an i-substitution π,
is defined inductively as follows:

(†) T ,A, π |= [q](u) iff T ,At |= q, for every t ∈ π(u),
T ,A, π |= u∗ < v∗ iff π(u)∗ < π(v)∗,
T ,A, π |= ¬ψ iff T ,A, π �|= ψ,
T ,A, π |= ψ1 ∧ ψ2 iff T ,A, π |= ψ1 and T ,A, π |= ψ2,
T ,A, π |= ∃y.ψ iff there exists τ ∈ I, such that

T ,A, π[y #→ τ ] |= ψ,
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where π[y #→ τ ] denotes the i-substitution exactly as π except for that we fix
π(y) = τ . We say that T ,A entail a grounded TQL formula ψ, denoted as
T ,A |= ψ, iff there exists an i-substitution π, such that T ,A, π |= ψ.

TQL formulas with free variables can naturally serve as queries over concrete
temporal ABoxes. We refer to such formulas as concrete TQL queries (CTQs).
As an example of a CTQ, consider a rephrasing of the query (Q) from Section 2.2:

ψ(x, y) := [∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona))](y) ∧
∃v.(v+ < y− ∧ [∃z.(worksAt(x, z) ∧ basedIn(z,madrid))](v))

As one of its answers, ψ(x, y) should return {x #→ e1 , y #→ [1999, 2000]}. The
certain answer semantics for such queries is defined as expected.

Definition 6 (CTQ Answering). Let T be a TBox, A a CTA and ψ a CTQ
with free variables obj(ψ) and int(ψ). An answer to ψ is a mapping σ such that
σ : obj(ψ) #→ NI and σ : int(ψ) #→ I. By σ(ψ) we denote the result of uniformly
substituting every occurrence of x in ψ with σ(x), for every x ∈ obj(ψ) ∪ int(ψ).
An answer σ is called certain over T , A iff T ,A |= σ(ψ).

The key to the design of TQL is condition (†), in Definition 5, which ensures
the epistemic interpretation of the CQs embedded in TQL queries. The formula
[q](τ), for a grounded CQ q and τ ∈ I, reads as “q is entailed in all time
points in τ”. Analogically, ¬[q](τ) is interpreted as negation-as-failure: “it is
not true that q is entailed in all time points in τ”. This approach of combining
FO-based query languages has been originally proposed by Calvanese et al. [9],
giving rise to a family of lightweight query languages, which permit well-behaved,
modular answering algorithms and support the use of negation (interpreted as
negation-as-failure), which otherwise easily leads to undecidability in the context
of querying DL ontologies.

As a consequence, condition (†) can be effectively replaced with its equiv-
alent, which involves the standard FO rewritability techniques in the sense of
Definition 1:

T ,A, π |= [q](u) iff db(At) � qT , for every t ∈ π(u),

where qT is an FO rewriting of q in T . What it eventually means, is that all
occurrences of CQs in a CTQ can be replaced with their FO rewritings, so that
the ontology T can be dropped while the formula can be evaluated exclusively
over the temporal ABox seen as a sequence of FO interpretations. However, such
point-based rewriting strategy, also explored in [7], is highly impractical when
applied over concrete TDBs, as it necessitates either unfolding a concrete TDB
into an abstract one, or a further translation from point-based to an interval-
based language. Instead, here we pursue a direct interval-based approach, which
requires a more sophisticated rewriting technique, capable of handling the well-
known problems of computing temporal joins and coalescing, as explained in
detail in the following section.
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4 Query Rewriting

We start by defining a two-sorted first-order language, tailored specifically for
talking about temporal relations of TDBs.

Definition 7 (2FO). The language of two-sorted first-order logic (2FO) over
the signature Γ = {R1, R2, . . .} is the smallest set of formulas induced by the
grammar:

ϕ ::= R(d1, . . . , dn, t1, t2) | ¬ϕ | ϕ1 ∧ ϕ2 | t1 < t2 | ∃x.ϕ | ∃y.ϕ
where R ∈ Γ , d1, . . . , dn ∈ NI ∪ NV, t1, t2 ∈ T ∪ TV, x ∈ NV and y ∈ TV. A
d-substitution δ is a mapping δ : NI ∪ NV #→ NI, such that δ(a) = a for every
a ∈ NI. A t-substitution ν is a mapping ν : T ∪ TV #→ T , such that ν(t) = t
for every t ∈ T . A 2FO formula ϕ is called grounded whenever it does not
have any free variables. The satisfaction relation for 2FO formulas, w.r.t. a
TDB tdb(A) = (NI, T,<, ·D), a d-substitution δ and a t-substitution ν, is defined
inductively as follows:

tdb(A), δ, ν � R(d1, . . . , dn, t1, t2) iff (δ(d1), . . . , δ(dn), ν(t1), ν(t2)) ∈ RD,
tdb(A), δ, ν � ¬ϕ iff tdb(A), δ, ν �� ϕ,
tdb(A), δ, ν � ϕ1 ∧ ϕ2 iff tdb(A), δ, ν � ϕ1 and tdb(A), δ, ν � ϕ2,
tdb(A), δ, ν � t1 < t2 iff ν(t1) < ν(t2),
tdb(A), δ, ν � ∃x.ϕ iff for x ∈ NV, there exists a ∈ NI such

that tdb(A), δ[x #→ a], ν � ϕ,
tdb(A), δ, ν � ∃y.ϕ iff for y ∈ TV, there exists t ∈ T such that

tdb(A), δ, ν[y #→ t] � ϕ,

where δ[x #→ a] (ν[y #→ t]) denotes the substitution exactly as δ (ν) except for
that we fix δ(x) = a (ν(y) = t). We say that a 2FO formula ϕ is satisfied in
tdb(A), denoted as tdb(A) � ϕ, iff there exist d-/t-substitutions δ, ν, such that
tdb(A), δ, ν � ϕ.

Next, we define the rules for rewriting CTQs into 2FO formulas.

Definition 8 (2FO Rewriting of CTQs). The 2FO rewriting of a CTQ ψ
is a formula $ψ%2FO obtained from ψ by applying the transformation $·%2FO ,
defined inductively as follows:

$[q(d)](u)%2FO = ∃t1, t2.(Rcoal
qT (d, t1, t2) ∧ t1 ≤ u− ∧ u+ ≤ t2),

$u∗ < v∗%2FO = u∗ < v∗,
$¬ψ%2FO = ¬$ψ%2FO ,

$ψ1 ∧ ψ2%2FO = $ψ1%2FO ∧ $ψ2%2FO ,
$∃y.ψ%2FO = ∃y−, y+.(y− ≤ y+ ∧ $ψ%2FO ),

where the involved syntactic abbreviations are as follows:

Rcoal
qT (d, u, v) � ∃t1, t2.RqT (d, u, t1) ∧RqT (d, t2, v) ∧

¬∃t3, t4.(RqT (d, t3, t4) ∧ t3 < u ∧ u ≤ t4) ∧
¬∃t3, t4.(RqT (d, t3, t4) ∧ t3 ≤ v ∧ v < t4) ∧
¬∃t3, t4.(RqT (d, t3, t4) ∧ u < t3 ∧ t4 ≤ v ∧
¬∃t5, t6.(RqT (d, t5, t6) ∧ t5 < t3 ∧ t3 ≤ t6))

(1)
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where for qT =
∨

1≤i≤m

qi:

RqT (d, u, v) �
∨

1≤i≤m

Rqi(d, u, v) (2)

and for every qi(d) = ∃x.(
∧

1≤j≤n

αj(dj)):

Rqi(d, u, v) � ∃t1, . . . , t2n.∃x.
∧

1≤j≤n

(Rαj (dj , tj , tn+j)) ∧

u = max(t1, . . . , tn) ∧ v = min(tn+1, . . . , t2n) ∧ u ≤ v
(3)

where:
u = max(t1, . . . , tn) �

∧
1≤i≤n

((
∧

1≤j≤n

tj ≤ ti)→ u = ti)

v = min(t1, . . . , tn) �
∧

1≤i≤n

((
∧

1≤j≤n

ti ≤ tj)→ v = ti)
(4)

The pivotal part of CTQ rewriting is the translation of the embedded CQs. In
this respect, the proposed approach builds directly on the standard FO rewritings
of CQs, which are obtainable via existing techniques [8]. Given an FO rewriting
qT of a CQ q, all atoms in qT are temporalized (3) and further incorporated in
special formula templates (1)-(4), in order to meet two key challenges inherent
to querying concrete TDBs:

– computing temporal joins, i.e., identifying maximal time intervals over which
conjunctions of atoms are satisfied,

– applying coalescing, i.e., merging overlapping and adjacent intervals for the
(intermediate) query results.

To illustrate these issues and the roles played by the formula templates, con-
sider the example presented in Figure 1, which addresses the following setup:

CTA: A = {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)},
TBox: T = {D � B},
CTQ: [q(a)](u), where q(x) = B(x) ∧ C(x) and u = [1, 10].

Under the assumed TBox, the FO rewriting of q can be formulated as qT (x) =
q1(x) ∨ q2(x), where q1(x) = B(x) ∧ C(x) and q2(x) = D(x) ∧ C(x). By Defini-
tion 8, the satisfaction of condition tdb(A) � [q(a)](u) is equivalent to verifying
whether (a, t1, t2) ∈ (Rcoal

qT )D, for some t1, t2 ∈ T , such that t1 ≤ u− ≤ u+ ≤ t2.

Computing (Rcoal
qT )D can be conceptually divided into three consecutive phases.

Firstly, we compute temporal joins over the sets of ABox assertions entail-
ing each CQ qi, i.e., we identify all intervals τ , such that there exist a set of
assertions S = {τj : αj(dj) ∈ A}, where the atoms αj(dj) in S provide the
exact matches for the conjuncts of qi, while

⋂
j τj = τ . Relation Rqi , defined

via formula template (3), augmented with (4), which fixes an FO formalization
of the functions max and min, selects exactly such intervals for each answer
to each qi. In our example, Rq1 contains tuples (a, 1, 3) and (a, 3, 7), while Rq2
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Fig. 1. Computing Rqi , RqT and Rcoal
qT , for q(x) = B(x) ∧ C(x) and T = {D � B}

tuple (a, 6, 10). In the second phase, captured by the template (2), all such tu-
ples become automatically instances of the common relation RqT . Finally, RqT

is coalesced, resulting in the relation Rcoal
qT . This phase is executed by means

of the template (1), which is based on a straightforward FO formalization of
the coalescing mechanism, known in the context of TDBs [6]. Technically, for
each tuple a comprising an answer to q, the relation Rcoal

qT selects the minimal
and maximal time points, such that for every point t between the two there
exists a tuple (a, t1, t2) ∈ (RqT )

D with t1 ≤ t ≤ t2. In the presented example,
Rcoal

qT contains exactly one tuple (a, 1, 10), which is the result of coalescing tuples

(a, 1, 3), (a, 3, 7) and (a, 6, 10) in RqT . Consequently, the CTQ [q(a)](u) evaluates
to true over T and A.

Since 2FO queries, in the shape defined above, can be naturally considered
as formulas of the relational calculus, the final step of restating them into the
SQL syntax can be carried out following broadly adopted translation strategies
[17]. In practice, to ensure appropriate quantification over the time domain in
RDBMSs, one would usually need to include it as an explicitly represented (and
stored in the TDB) monadic relation RT , such that RD

T = T , which should
be further introduced in the translation of the temporal quantifiers from the
Definition 1, as follows:

$∃y.ψ%2FO = ∃y−, y+.(RT (y
−) ∧RT (y

+) ∧ y− ≤ y+ ∧ $ψ%2FO ).

Accordingly, every free temporal variable x ∈ TV occurring in a 2FO query
should be additionally guarded by the restriction RT (x) in the resulting trans-
lation, in order to be properly handled by the substitution mechanisms imple-
mented in typical RDBMSs.
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Agreeably, even though the presented rewriting is mathematically correct, as
we demonstrate in the following part, it can be expected to be suboptimal in
terms of the query answering efficiency. For instance, the naive coalescing mech-
anism, captured by the formula template (1), is known to be highly inefficient
and can be substantially improved using more sophisticated approaches [26]. The
usefulness of this and other potential optimizations, on which we also shortly
remark at the end of the next section, can be ultimately assessed only on the
grounds of empirical evaluation, which is outside the scope of the current work.

5 Query Answering via 2FO Rewriting

The next theorem ensures correctness of CTQ answering via the 2FO rewriting.

Theorem 1 (Correctness of 2FO Rewriting). For every TBox T , CTA A,
CTQ ψ, and an answer σ to ψ, it holds that:

T ,A |= σ(ψ) iff tdb(A) � $σ(ψ)%2FO .

The proof, presented in the appendix, follows by structural induction over
the syntactic cases addressed in the rewriting rules. In the technically most
demanding case of $[q(d)](u)%2FO we essentially formalize the discussion from
the previous section. The remaining ones are largely straightforward.

Importantly, the definitions of CTQs and their 2FO rewritings, guarantee
that query answering remains insensitive to the particular ways the CTAs might
encode temporal data, as long as the data is semantically equivalent. This result
is due to the fact that the semantics of CTQs is defined in terms of the underlying
ATAs, hence whenever ‖A‖ = ‖A′‖, for any two CTAs A and A′, the answers
over them must always coincide.

Theorem 2 (CTQs are ‖ · ‖-Generic). For every two CTAs A and A′ over
a time domain T = (T,<) such that ‖A‖ = ‖A′‖, a TBox T , a CTQ ψ and an
answer σ to ψ, it holds that:

1. T ,A |= σ(ψ) iff T ,A′ |= σ(ψ),
2. tdb(A) � $σ(ψ)%2FO iff tdb(A′) � $σ(ψ)%2FO .

Further, we address the complexity and algorithmic aspects of the CTQ en-
tailment. We start by observing that, similarly as in the case of CQ rewriting,
2FO rewritings of CTQs can be in principle exponential in the size of the orig-
inal queries. In fact, as the next proposition shows, this exponential blow-up is
exclusively due to the embedded CQs, as the extra temporal layer itself adds
only linearly to the overall size of the resulting 2FO formulas. This observation
follows directly by scrutinizing the rewriting rules from Definition 8.

Proposition 1 (Size of Rewriting). Let T be a TBox, and ψ a CTQ with
q1, . . . , qn being all the CQs occurring in ψ. Then the size of $ψ%2FO is linear in
the joint size of ψ and the FO rewritings qT1 , . . . , qTn of the CQs.
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Algorithm 1. Incremental computation of relations Rcoal
qT

Input: CTA A, CTQ ψ
Output: A database R = (NI, T,<, ·D) over the signature {Rcoal

qT | q ∈ cq(ψ)}
1: for all q ∈ cq(ψ) do
2: for all qi(a) ∈ cq(qT ) do
3: for all t1, t2 ∈ T such that tdb(A) � Rqi(a, t1, t2) do
4: (Rcoal

qT )D := (Rcoal
qT )D ∪ {(a, t1, t2)}

5: while applicable do {coalescing}
6: for all (a, t1, t2), (a, t3, t4) ∈ (Rcoal

qT )D do
7: if [t1, t2] ∩ [t3, t4] �= ∅ then
8: (Rcoal

qT )D := (Rcoal
qT )D \ {(a, t1, t2), (a, t3, t4)}

9: (Rcoal
qT )D := (Rcoal

qT )D ∪ {(a,min(t1, t3),max(t2, t4))}
10: end if
11: end for
12: end while
13: end for
14: end for
15: end for

Clearly, the fragment of two-sorted first-order logic used for the CTQ rewriting
is as expressive as FOL. At the same time, it is obviously not more expressive
than that, as one can apply a commonly known, linear reduction, involving
the introduction of two designated predicates for representing the respective
domains, which are used to guard the scopes of the two sorts of quantifiers (cf.
the last paragraph of the previous section). Based on these observations, we
obtain two results concerning the complexity of CTQ query entailment.

Corollary 1 (Data Complexity). The data complexity of CTQ entailment in
CTAs in the presence of TBoxes, over finite time domains, is in AC0.

The restriction to finite time domains in this and the following case is a
natural strategy of ensuring that the first-order structures, over which queries
are evaluated, are indeed finite and, consequently, that model-checking can be
effectively performed over them. Note, that in terms of data complexity, deciding
CTQ entailment via 2FO rewriting remains precisely as hard as deciding CQ
entailment via FO rewriting. The combined complexity, however, increases from
NP- to PSpace-complete.

Theorem 3 (Combined Complexity). The combined complexity of CTQ en-
tailment over CTAs in the presence of TBoxes, over finite time domains, is
PSpace-complete.

The result transfers from the entailment problem for boolean FO queries over
relational databases, which is known to be PSpace-complete [10]. However, due
to the exponential blow-up in the size of the 2FO rewritings, explained in Propo-
sition 1, answering CTQs in PSpace requires a somewhat more sophisticated
strategy than just a straightforward evaluation of the rewritten queries over a



104 S. Klarman and T. Meyer

TDB. In the approach described in the following proof, we decide the entailment
of a grounded CTQ ψ, by first incrementally computing the interpretations of
relations Rcoal

qT , for each CQ q embedded in ψ, and then evaluate over them a
restricted 2FO rewriting of ψ of at most polynomial size.

Proof. Let cq(ψ) denote all CQs occurring in ψ and grounded as in ψ, and let
cq(qT ), for every q ∈ cq(ψ), be the set of all CQs comprising the FO rewriting qT .
With every such qi(a) ∈ cq(qT ), we associate the (query) formula Rqi(a, y1, y2)
defined via the templates (3) and (4). Note that every such formula is linear
in the size of ψ. Algorithm 1 constructs a TDB R = (NI, T,<, ·D) over the
signature {Rcoal

qT | q ∈ cq(ψ)}, by collecting and coalescing all matches to the

formulas Rqi(a, y1, y2) over tdb(A). Observe that by applying coalescing on Rcoal
qT

every time another tuple is added, we guarantee that the size of each (Rcoal
qT )D,

and therefore of R, is linear in the size of T , and in fact cannot be larger then
A. Therefore the algorithm runs in PSpace. Once R is computed, we decide
R � $ψ%2FOR , where $·%2FOR is a rewriting specified exactly as $·%2FO in Defini-
tion 8, but without employing any of the formula templates (1)-(4), and instead,
retaining all Rcoal

qT as actual predicates in the resulting 2FO formulas. Clearly,

$ψ%2FOR is linear in the size of ψ. Since deciding R � $ψ%2FOR is a variant of the
(PSpace-hard [10]) entailment problem for boolean FO queries over relational
databases (observe, that $·%2FOR permits n-ary predicates, for n ≥ 1), it follows
that deciding the CTQ entailment over CTAs in the presence of TBoxes, over
finite time domains, is PSpace-complete. Note that since the interpretations of
Rcoal

qT in both R and tdb(A) must coincide, the procedure preserves soundness
and completeness of query answering. ❑

The query answering algorithm implied by the above decision procedure paves
the way towards efficient practical implementations, based on the well-known
database technique of materialized view maintenance [21], particularly in the
context of large or often changing TDBs. By maintaining the intermediate views
containing the answers to the embedded CQs, the approach should facilitate
more localized and fine-grained updating of the answers in response to database
updates and query refinements (be it on the CQ or temporal level), as well as
forms of incremental, anytime query answering.

6 Related Work

This work is naturally related to the research on TDBs, conducted largely in the
1990s [11,12]. Although the advancements in that area provide some theoretical
grounding for our proposal, they are obviously agnostic about the ontology-based
approach on the problem, which we concentrate on here.

The research on temporal extensions to OBDA has been taken up only very
recently by Borgwardt et al. [3,7] and Artale et al. [2]. In [3], the authors study
the same prototypical scenario as addressed here, but focus on its more foun-
dational aspects. They consider a more expressive DL ALC as the background
ontology language and adopt a less restrictive definition of temporal queries.
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This offers a richer setting, yet without apparent application prospects in the
context of existing TDBs. The work in [7] is closer aligned with ours. It also
considers DL-Lite ontologies and studies a rewriting approach based on the use
of standard CQ rewriting techniques. However, the authors define their query
language without involving the epistemic interpretation of embedded CQs and
consider only its positive fragment. It is not difficult to show that under OWL
2 QL, such design leads to a query language strictly less expressive from the
one proposed here. Observe, that due to the condition (†), in Definition 5, the
class of negation-free CTQs preserves the semantics regardless of the use of the
epistemic interpretation of CQs, and so it coincides with the fragment consid-
ered in [7]. Furthermore, the authors focus exclusively on abstract TDBs and do
not address the problem of direct querying of concrete representations, which is
the main goal of our work. In [2], the authors study an orthogonal approach to
temporal OBDA. Instead of adding temporal features on the query level, they
propose temporal extensions to OWL 2 QL, in the spirit of temporal DLs [1].

A number of other frameworks have been developed for managing the valid-
ity time of Semantic Web data represented natively in RDF(S)/OWL languages
[15,14,5,22]. These proposals can be seen as parallel to ours, in that they ad-
dress variants of the same problem, but focus on the use of dedicated Semantic
Web technologies, such as SPARQL and RDF triplestores, instead of involving
a semantic view on the data managed within traditional RDBMSs. This rises
interesting questions about the formal correspondences between the employed
reasoning methods, regardless of their practical implementations. Unfortunately,
most of these approaches are strongly technology-driven and often fall short of
indicating their links to the logic foundations of temporal querying.

7 Conclusions

In this work, we have proposed a principled, yet practical approach to lifting
the popular paradigm of OBDA to temporal case. The presented language TQL
allows for querying temporal data stored in SQL:2011-compliant databases via
a semantic layer of OWL 2 QL ontologies. We believe that this proposal strikes
a good balance between the theoretical strength of its formal foundations and
the feasibility of practical applications, warranted by the possibility of answering
TQL queries in commercially supported RDBMSs via a translation to SQL.

Considering the growing interest in temporal extensions of OBDA, it is crit-
ical to continue the formal study of temporal features supported by the SQL
standards, temporal extensions to logic-based query languages and ontology lan-
guages intended for use in practical OBDA scenarios, and finally, the relation-
ships holding between all of them. In this respect, as part of future research, it
is necessary to establish stronger links between the approach pursued here and
those proposed recently in [3,7,2], with the prospect of gaining a clearer view on
the landscape of technical possibilities regarding the temporal OBDA. In par-
ticular, the scenario of querying temporal data, as considered here and in [3,7],
under temporalized ontologies, such as introduced by Artale et al. [2], deserves
further attention and in-depth study.
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Abstract. In this paper we study mapping analysis in ontology-based
data access (OBDA), providing an initial set of foundational results for
this problem. We start by defining general, language-independent no-
tions of mapping inconsistency, mapping subsumption, and mapping re-
dundancy in OBDA. Then, we focus on specific mapping languages for
OBDA and illustrate techniques for verifying the above properties of
mappings.

1 Introduction

Ontology-based data access (OBDA) is a data integration paradigm that relies on
a three-level architecture, constituted by the ontology, the data sources, and the
mapping between the two [18]. The ontology is the specification of a conceptual
view of the domain, and it is the system interface towards the user, whereas the
mapping relates the elements of the ontology with the data at the sources.

In the past years, studies on OBDA have mainly concentrated on query an-
swering, and various algorithms for it have been devised, as well as tools imple-
menting them [6,20,7,16,4,27,22]. Intensional reasoning has been instead so far
limited to the ontology level only. This means that currenlty available services of
this kind in OBDA are exactly as for stand-alone ontologies (e.g., concept/role
subsumption, classification, logical implication, etc.). As a consequence, in the
specification of an OBDA system, a designer can rely only on classical off-the-
shelf ontology reasoners (e.g., [26,25,24,12]), but she cannot find tools supporting
the modeling of the other crucial component of the OBDA architecture, i.e., the
mapping.

Both industrial and research OBDA projects (see, e.g., [13,1]) have experi-
enced that mapping specification is a very complex activity, which requires a
profound understanding of both the ontology and the data sources. Indeed, data
sources are in general autonomous and pre-existing the OBDA application, and
thus the way in which they are structured typically does not reflect the ontol-
ogy, which is instead an independent representation of the domain of interest,
rather than of the underlying data sources. To reconcile this “cognitive distance”
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between the sources and the ontology, the mapping usually assumes a complex
form, and it is expressed in terms of assertions that relate queries over the on-
tology to queries over the data sources.

This form of mappings has been widely studied in data integration and data
exchange [17,9,2]. In these contexts, the research on mappings has been mainly
focused on mapping composition or inversion, whereas very few efforts have
been made towards the analysis of the specification, to verify, e.g., whether it is
redundant or inconsistent per se (i.e., independently from the source data). In
fact, in data integration and exchange, the integrated (a.k.a. global or target)
schema is in general not as expressive as an ontology, and thus analysis checks
are to some extent easier or less crucial than in OBDA.

In this paper we study mapping analysis in OBDA, with the aim of providing
the designer with services that are useful to devise a well-founded OBDA speci-
fication. We introduce our novel definitions that formalize properties of interest
for the mapping. In particular, we define when a mapping M is inconsistent
w.r.t. an ontology O and a source schema S, which intuitively means that re-
trieving data through all the assertions in M always leads to an inconsistent
OBDA specification composed by O, M and S, whatever non-empty source in-
stance is assigned to S. Also, we define when a mappingM subsumes a mapping
M′ under O and S, which intuitively means that the systems composed by O,
S, and either M or M∪M′ are equivalent (and thus M′ is redundant in the
specification). We point out that verifying such properties is indeed of crucial
importance in real-life OBDA projects, when hundreds of mapping assertions
are usually needed, and it is very likely that mappings are redundant or even
inconsistent in the sense we have described above.

After defining the mapping analysis tasks we are interested in, we discuss
techniques for verifying consistency, redundancy, and subsumption for (some
generalizations of) the so-called GAVmapping [17], when some specific languages
for querying the sources and the ontology are used in mapping assertions.

We organize our paper as follows. In Section 2 we give some preliminary
definitions on OBDA and mapping languages. In Section 3 we provide our notions
of consistency, subsumption, and redundancy for mappings. In Section 4 we
study decidability of verification tasks for some mapping languages under the
GAV paradigm. In Section 5 we add some preliminary discussions on mappings
that go beyond GAV, and in Section 6 we conclude the paper.

2 Definitions

OBDA Specifications. An OBDA specification is a triple J = 〈O,S,M〉
where O is an ontology, S is a source schema, and M is a mapping between
the two. O typically (although not necessarily) represents intensional knowledge
and is specified in a language LO, whereas S is specified in a language LS . We
denote with ΣO and ΣS the signature of O and S, respectively, and we assume
that both LO and LS are (fragments of) first-order logic (FOL). For instance,
in a typical OBDA setting, O is a Description Logic TBox and S is a relational
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schema, possibly with integrity constraints [20]. Finally, the mapping M is a set
of assertions of the form

φ(x) � ψ(x) (1)

where φ(x) is a query over ΣS and ψ(x) is a query over ΣO, both with free
variables x, which are called the frontier variables. The number of variables in x
is the arity of the mapping assertion. Given a mapping assertion m of the form
(1), we also use FR(m) do denote the frontier variables x, head(m) to denote
the query ψ(x), and body(m) to denote the query φ(x), and we assume that
both such queries are specified in (some fragment of) FOL.

Example 1. We give here an example of OBDA specification that we will use as
ongoing example throughout the paper. We refer to a setting in which the source
schema is relational and the ontology is expressed in a basic Description Logic
language [3], which actually corresponds to DL-Litecore [6]. Since S is relational,
queries in the body of mapping assertions are encoded in SQL.

Then, consider the following schema S of the database used in a zoo for
handling information about the animals and the area of the zoo they live. In the
schema, the underlined attributes represent the keys of the tables, and we also
assume that a foreing key is specified between the attribute AREA of ANM TAB
and the table AREA TAB.

ANM TAB(ANM CODE,NAME,BREED,AREA)
AREA TAB(AREA CODE,SIZE)

An ontology O modeling a very small portion of the zoo domain is as follow.

O = { Lion � Animal,Monkey � Animal, Lion � ¬Monkey,Animal � ∃name,
Animal � ∃locatedIn, ∃locatedIn− � Area,Area � ∃size}

In words, O specifies that both lions (Lion) and monkeys (Monkey) are animals
(Animal), a lion cannot be a monkey, and every animal has a name (name) and
is located in (locatedIn) an area (Area). Moreover, every area has a size (size).

An example of mapping M between O and S is as follows:

m1 : SELECT ANM CODE AS X, NAME AS Y � Animal(X) ∧ name(X,Y )
FROM ANM TAB

m2 : SELECT ANM CODE AS X, AREA AS Y � Lion(X) ∧ locatedIn(X,Y )
FROM ANM TAB WHERE BREED = ’Lion’

m3 : SELECT ANM CODE AS X, AREA AS Y � Monkey(X) ∧ locatedIn(X,Y )
FROM ANM TAB WHERE BREED = ’Monkey’

m4 : SELECT ANM CODE AS X, AREA AS Y � locatedIn(X,Y )
FROM ANM TAB

m5 : SELECT AREA CODE AS X, SIZE AS Y � Area(X) ∧ size(X,Y )
FROM AREA TAB

The semantics of an OBDA specification J is defined with respect to a source
instance that is legal for S. More precisely, a source instance D is a set of facts
over ΣS . Given such a D, we denote by ID the interpretation over ΣS that is
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isomorphic to D. Then, we say that D is legal for S if ID |= S. For example, if
S is relational, we consider as legal only the instances that satisfy the integrity
constraints on S. We assume that for each S a legal instance always exists. Then,
for each mapping assertion m ∈M we denote with π(m) the FOL formula

∀x.φ(x)→ ∃z.ψ(y, z)

where z denotes the existential variables in head(m), and we pose π(M) =
{π(m) | m ∈ M}. Then, the models of J w.r.t. D are the models of the FOL
theory O ∪ π(M) ∪ D that are isomorphic to D on the interpretation of the
predicates in S. We denote with Models(J , D) the set of models of J w.r.t. D.

Mapping Languages. In this paper we study specific cases of OBDA specifi-
cations where we fix the fragment of FOL adopted for the queries in the head
and in the body of mapping assertions. In particular, we mainly focus on the
following mapping languages:

– FO2DCQ , where, for each m ∈ M, body(m) is a FOL query over S and
head(m) is a conjunctive query over O without existential variables;

– CQ2DCQ , where, for each m ∈ M, body(m) is a conjunctive query over S
and head(m) is a conjunctive query over O without existential variables.

Obviously, FO2DCQ subsumes CQ2DCQ , and thus all defintions we give in
the following for FO2DCQ mappings also apply to CQ2DCQ mappings.

Both languages above are extended forms of the so-called GAV mapping,
which, differently from the LAV mapping, does not allow for non-free variables in
the head of assertions [17,9]. On the other-hand, GAV is the only kind of mapping
that has been used in practical OBDA and data integration applications [13,1].
An example of CQ2DCQ language is given in Example 1.

We notice that classical GAV mapping only allows for single atom queries in
the head of assertions (instead of conjunctions of atoms). However, it is easy to
see that each FO2DCQ assertion can be rephrased into a logically equivalent set
of classic GAV assertions. More precisely, let

m : ∃w.φ(x,w) � ψ(x)

be one such assertion, where we have explicited the existential variables in the
body query, then, we can rephrasem into the following set of mapping assertions

{∃xi,w.φ(xi,xi,w) � ψi(xi) | for each atom ψi(xi) in body(m)}

where xi denotes the free variables of x that do not occur in xi. Given a
FO2DCQ mapping M, we denote with Split(M) the above set of mappings.

Example 2. Consider the m1 mapping assertion of Example 1. The set Split(m1)
contains the following mapping assertions:

m1′ : SELECT ANM CODE AS X FROM ANM TAB � Animal(X)
m1′′ : SELECT ANM CODE AS X, NAME AS Y FROM ANM TAB � name(X,Y )
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Let m be a FO2DCQ mapping assertion of arity n and let t be an n-tuple
of constants. We denote by m(t) the mapping assertion obtained from m by
replacing the frontier variables of m with the constants in t. Then, let D be a
source instance, we define the facts retrieved by m on D, denoted by Retr(m,D),
as the set of ground atoms

{α | t is a tuple of constants and ID |= body(m(t)) and α occurs in head(m(t))}

Moreover, given a FO2DCQ mapping M and a source instance D, we define the
facts retrieved by M on D, denoted by Retr(M, D), as the set of ground atoms⋃

m∈M
Retr(m,D)

Finally, given an ontology predicate A, we define the extension of A retrieved by
M on D, denoted by Retr(A,M, D), as the set {t | A(t) ∈ Retr(M, D)}.

From now on, without loss of generality we assume that different mapping
assertions use different sets of variable symbols.

3 Mapping Analysis Tasks

In this section we provide the formal definitions that constitute the basis of the
mapping analysis functionalities that will be studied in Section 4. We first deal
with mapping consistency, then we turn our attention to mapping redundancy
and subsumption. If not otherwise specified, definitions and properties given in
this section apply to mappings that contain general assertions of the form (1).

3.1 Consistency

We start by providing some notions of inconsistency relative to a single mapping
assertion. Informally, with such notions we characterize the anomalous situa-
tions in which either the query in the head of an assertion has certainly an
empty evaluation in every model for the ontology O (we call this situation head-
inconsistency), or the query in the body of an assertion has certainly an empty
evaluation in every model for the source schema S (we call this situation body-
inconsistency).

Definition 1. (mapping head-inconsistency) Let 〈O,S,M〉 be an OBDA spec-
ification and m : φ(x) � ψ(x) be a mapping assertion in M. We say that m is
head-inconsistent for 〈O,S〉 if O |= ∀x.(¬ψ(x)).
Example 3. Let 〈O,S,M〉 be an OBDA specification where O and S are as in
Example 1. Suppose that the mapping M contains the following assertion:

m : SELECT ANM CODE AS X � Lion(X) ∧Monkey(X)
FROM ANM TAB

Then, m is head-inconsistent for 〈O,S〉, since we have that O |= Lion �
¬Monkey.
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Definition 2. (mapping body-inconsistency) Let 〈O,S,M〉 be an OBDA speci-
fication and m : φ(x) � ψ(x) be a mapping assertion in M. We say that m is
body-inconsistent for 〈O,S〉 if S |= ∀x.(¬φ(x)).

Example 4. Let 〈O,S,M〉 be an OBDA specification where O and S are as
in Example 1. Suppose that the mapping M contains the following mapping
assertion:

m : SELECT ANM CODE AS X � Animal(X)
FROM ANM TAB

WHERE BREED = ’Lion’ AND

BREED = ’Monkey’

Since, obviously, for every tuple in ANM TAB the attribute BREED can assume only
a single value, we can easily conclude that m is body-inconsistent for 〈O,S〉.

We compose the above two notions into the following notion of inconsistency
of a single mapping assertion.

Definition 3. (mapping inconsistency) Let 〈O,S,M〉 be an OBDA specification
and m be a mapping assertion in M. We say that m is inconsistent for 〈O,S〉
if m is head-inconsistent or body-inconsistent for 〈O,S〉.

Then, we provide a “global” notion of inconsistency, that is, inconsistency
relative to a whole mapping specification. To this aim, we first need to define
when a mapping is active on a source instance.

We say that a mapping M is active on a source instance D if, for every
mapping assertion m : φ(x) � ψ(x) in M, ID |= ∃x.φ(x) (in other words,
every mapping assertion is “activated” by D and retrieves at least one tuple
from D).

Definition 4. (global mapping inconsistency) Let J = 〈O,S,M〉 be an OBDA
specification. We say that M is globally inconsistent for 〈O,S〉 if there does
not exist a source instance D legal for S such that M is active on D and
Models(J , D) �= ∅.

Intuitively, if a mapping is globally inconsistent, then it is not possible to
simultaneously activate all its mapping assertions without causing inconsistency
of the whole specification. This is certainly an anomalous situation, as shown by
the following example.

Example 5. Let 〈O,S,M〉 be an OBDA specification where O and S are as in
Example 1. Suppose that M contains the following mapping assertions:

m1 : SELECT ANM CODE AS X FROM ANM TAB � Lion(X)
m2 : SELECT ANM CODE AS X FROM ANM TAB � Monkey(X)

It is easy to see that M is globally inconsistent for 〈O,S〉.
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The following property relates the two notions of mapping inconsistency and
global mapping inconsistency.

Proposition 1. Let 〈O,S, {m}〉 be a OBDA specification. If the mapping as-
sertion m is inconsistent for 〈O,S〉, then every mapping M that contains m is
globally inconsistent for 〈O,S〉.

Note that a mapping M that is globally inconsistent for some 〈O,S〉 may
not contain any mapping assertion m that is inconsistent for 〈O,S〉, which is
actually the case shown in Example 5. In other terms, inconsistency of a mapping
assertion is a sufficient but not necessary condition for global inconsistency.

3.2 Redundancy and Subsumption

We now deal with mapping redundancy and subsumption. First, given an ODBA
specification J = 〈O,S,M〉 where M = {m}, we consider a mapping assertion
m′ to be redundant for m, if adding m′ toM produces a specification equivalent
to J . This is formalized below.

Definition 5. (mapping redundancy) Let O be an ontology, let S be a source
schema, and let m,m′ be mapping assertions of the same arity. We say that m′

is redundant for m under 〈O,S〉 if, for every source instance D that is legal for
S, Models(〈O,S, {m}〉, D) = Models(〈O,S, {m,m′}〉, D).

Our aim now is to characterize the above notion of redundancy in terms of
composition of separate entailment checks on the source schema level and the
ontology level of the OBDA specification. We thus define the notions of head-
subsumption and body-subsumption for a pair of mapping assertions.

Definition 6. (mapping body-subsumption, mapping head-subsumption) Let S
be a source schema, let m1,m2 be mapping assertions of the same arity, let
FR(m2) = {x1, . . . , xn}, and let μ be a bijective mapping from FR(m1) to
FR(m2). We say that m1 body-subsumes m2 under S and μ if the schema
S entails the sentence ∀x1, . . . , xn(body(m2)→ μ(body(m1))). Moreover, we say
that m1 head-subsumes m2 under O and μ if the ontology O entails the sentence
∀x1, . . . , xn(head(m2)→ μ(head(m1))).

Informally, body-subsumption characterizes the case when the body of the
mapping assertion m2 entails the body of m1 under the schema S and under a
mapping μ of the frontier variables of m1 and m2. Head-subsumption is defined
in an analogous way.
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Example 6. Consider again the ontology O and the schema S of Example 1 and
the following mapping assertions:

m1 : SELECT AREA CODE AS X, SIZE AS Y � size(X,Y )
FROM AREA TAB

m2 : SELECT AREA CODE AS X, SIZE AS Y � Area(X) ∧ size(X,Y )
FROM AREA TAB WHERE SIZE > 10

m3 : SELECT ANM CODE AS X � Animal(X) ∧ name(X,Y )
FROM ANM TAB WHERE BREED = ’Monkey’

m4 : SELECT ANM CODE AS X, NAME AS Y � Lion(X) ∧ name(X,Y )
FROM ANM TAB WHERE BREED = ’Lion’

It is easy to see that m1 body-subsumes m2. Moreover, since the ontology O
entails that a lion is an animal, we have that m3 head-subsumes m4.

The relationship between the notion of redundancy and the notions of head-
and body-subsumption is stated by the following proposition.

Proposition 2. Let O be an ontology, let S be a source schema, and let m,m′

be mapping assertions of the same arity. Then, m′ is redundant for m under
〈O,S〉 iff there exists a bijective mapping μ : FR(m) → FR(m′) such that m
body-subsumes m′ under S and μ and m′ head-subsumes m under O and μ.

Notice that, for m′ to be redundant for m, we require that (under the same
bijective mapping of the frontier variables) m body-subsumes m′, whereas m′

head-subsumes m. This indeed reflects the “semantic flow” of the data: m′ is
redundant since it retrieves from the sources less data than m, and at the same
time the instantiation of ontology predicates that m′ realizes with these data is
less specific than the instantiation due to m, but implies it under O.

Example 7. Let O and S be respectively the ontology and the source schema of
Example 1. Consider the following mapping assertions:

m1 : SELECT ANM CODE AS X, NAME AS Y � name(X,Y )
FROM ANM TAB WHERE BREED = ’Monkey’

m2 : SELECT ANM CODE AS X, NAME AS Y � Animal(X) ∧ name(X,Y )
FROM ANM TAB

We have that m1 is redundant for m2 under 〈O,S〉. Indeed, it easy to see that
m2 body-subsumesm1 under S and that m1 head-subsumesm2 under O. Notice
that, if we add the atom Monkey(X) in the head of m1, the redundancy does no
longer hold, since in that case m2 head-subsumes m1.

Then, we define a more general, global notion of mapping redundancy which
is relative to a whole mapping specification.

Definition 7. (global mapping redundancy) Let O be an ontology, let S be a
source schema, and let M,M′ be mappings. We say that M′ is globally redun-
dant for M under 〈O,S〉 if, for every source instance D that is legal for S,
Models(〈O,S,M〉, D) = Models(〈O,S,M∪M′〉, D).
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Notice that global redundancy of a mapping M′ for a mapping M under
〈O,S〉 does not imply that there exists an assertion m′ in M′ and an assertion
m in M such that m′ is redundant for m under 〈O,S〉, as shown below.

Example 8. Consider the ontology O = {A1 � A,B1 � B}, the source schema
composed by the only unary predicate Q, and the following mapping assertions:

m1 : Q(X) � A1(X)
m2 : Q(X) � B1(X)
m3 : Q(X) � A(X) ∧B(X)

Then, M′ = {m3} is globally redundant for M = {m1,m2} under 〈O,S〉, but
m3 is not redundant under 〈O,S〉 for any mapping assertion in M.

Conversely, it is easy to see the if a mappingM′ contains only assertions that,
taken one by one, are redundant under 〈O,S〉 for some assertion contained in a
mapping M, then M′ is globally redundant for M under 〈O,S〉.

Finally, we define extensional predicate subsumption, a mapping-based notion
of subsumption between ontology predicates. Differently from all the other defi-
nitions and propositions given in this section, such notion applies only to GAV
mappings, and thus we give it for FO2DCQ mappings, which subsume all GAV
mappings considered in this paper.

Definition 8. (extensional predicate subsumption and emptiness) Let S be a
source schema, let M be a FO2DCQ mapping, and let A,A′ be ontology pred-
icates having the same arity. We say that A extensionally subsumes A′ under
〈S,M〉 if, for every source instance D that is legal for S, Retr(A,M, D) ⊇
Retr(A′,M, D). Moreover, given a predicate A, we say that A is extension-
ally empty under 〈S,M〉 if, for every source instance D that is legal for S,
Retr(A,M, D) = ∅.

Informally, the above notion of extensional predicate subsumption checks con-
tainment of the instances of the predicates retrieved by the mapping on every
legal source instance.

4 Verification

In this section we study the problem of decidability of the verification of the
formal properties of mappings defined in Section 3. It can be immediately ob-
served that verification for mappings expressed in the language FO2DCQ poses
a serious decidability issue independently of the ontology language LO and the
source schema language LS , since arbitrary FOL expressions can appear in the
body of such mapping assertions. Therefore, our first analysis focuses on identi-
fying sufficient conditions for the decidability of the verification of the properties
under examination.

For ease of exposition, in the rest of this section we assume that the ontology
language LO has a predefined empty predicate ⊥. More precisely, we assume the
existence of an ontology predicate⊥ of arity 0 that is false in every interpretation.
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4.1 Head-Subsumption and Head-Inconsistency

Let us consider mapping head-subsumption. In the following, letm1,m2 be either
FO2DCQ or CQ2DCQ mapping assertions of the same arity, let μ be a bijective
mapping from FR(m1) to FR(m2), and let q1 = head(m1), q2 = head(m2).

The following algorithm checks whether m2 head-subsumesm1 under S and μ:

1. freeze query μ(q1), i.e., generate a source instance (set of ground atoms)
Dμ(q1) from q1 by replacing every occurrence of a variable x with a constant
symbol cx;

2. let q′2 be the formula obtained from q2 by replacing every occurrence of a
variable x with a constant symbol cx. Notice that q′2 is a conjunction of
ground atoms;

3. if, for every ground atom α in q′2, O ∪Dμ(q1) |= α (ground atom entailment
problem in LO), then return true, otherwise return false.

It can be shown that the above algorithm is correct. This implies that map-
ping head-subsumption is decidable as soon as ground atom entailment in LO
is decidable. Conversely, undecidability of head-subsumption when ground atom
entailment in LO is undecidable can be shown by an easy reduction of ground
atom entailment in LO to mapping head-subsumption. Consequently, the follow-
ing property holds.

Theorem 1. For both FO2DCQ mappings and CQ2DCQ mappings, mapping
head-subsumption is decidable iff ground atom entailment in LO is decidable.

Mapping head-inconsistency can be immediately reduced to mapping head-
subsumption, since LO allows for the empty predicate ⊥. Then, m is head-
inconsistent for 〈O,S〉 iff m is head-subsumed by m′ under 〈O,S〉 and μ, where
m′ is the mapping obtained from m by adding the atom ⊥ in the head of m,
and μ is the identity mapping on FR(m).

Moreover, it can be shown that ground atom entailment can be reduced to
mapping head-inconsistency, under some assumptions on the ontology language
LO. In particular, we say that LO allows for binary denial formulas if, for every
pair of predicate names p, p′ in ΣO of the same arity, the formula ∀x (p(x) ∧
p′(x) → ⊥) belongs to LO. The above assumption is a sufficient condition for
reducing ground atom entailment to head-inconsistency.

Theorem 2. For both FO2DCQ mappings and CQ2DCQ mappings, mapping
head-inconsistency is decidable if ground atom entailment in LO is decidable.
Moreover, if LO allows for binary denial formulas, then ground atom entailment
in LO is decidable if mapping head-inconsistency is decidable.

4.2 Body-Subsumption and Body-Inconsistency

Body-subsumption and body-inconsistency are undecidable for FO2DCQ map-
pings (due to the undecidability of the validity problem in FOL).

Concerning CQ2DCQ mappings, the following property immediately follows
from the definitions of mapping body-subsumption.
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Theorem 3. For CQ2DCQ mappings, mapping body-subsumption is decidable
iff conjunctive query containment is decidable in LS .

Notice that several schema languages are known to satisfy the hypothesis
of the above theorem. E.g., conjunctive query containment is decidable in the
language of non-key-conflicting keys and inclusion dependencies studied in [5],
as well as in several classes of TGDs [4,15].

For mapping body-inconsistency, a similar property holds under some suffi-
cient assumptions on the language LS . In particular, we say that LS allows for
CQ-denial formulas if, for every conjunctive query q(x) over ΣS , the formula
∀x(q(x)→ ⊥) belongs to LS .

Theorem 4. For CQ2DCQ mappings, mapping body-inconsistency is decidable
iff conjunctive query containment is decidable in LS . Moreover, if LS allows for
CQ-denial formulas, then conjunctive query containment in LS is decidable if
mapping body-inconsistency is decidable.

4.3 Redundancy and Inconsistency

Given the above undecidability results for head- and body-subsumption, it ob-
viously follows that both redundancy and inconsistency of mapping assertions
are undecidable properties for FO2DCQ mappings.

However, the situation is different for CQ2DCQ mappings, In fact, it is imme-
diate to see that Proposition 2, Definition 3, Theorem 1, and Theorem 3, imply
the following properties.

Theorem 5. For CQ2DCQ mappings, mapping redundancy is decidable iff
ground atom entailment is decidable in LO and conjunctive query containment
is decidable in LS .

Theorem 6. For CQ2DCQ mappings, mapping inconsistency is decidable if
ground atom entailment is decidable in LO and conjunctive query containment
is decidable in LS . Moreover, if LS allows for CQ-denial formulas and LO allows
for binary denial formulas, then ground atom entailment is decidable in LO and
conjunctive query containment is decidable in LS if mapping inconsistency is
decidable.

4.4 Extensional Subsumption and Emptiness

We start by relating the notion of extensional predicate subsumption with the
notion of global mapping redundancy.

Let M be a mapping and let A be a predicate name. We define MA as the
mapping obtained from Split(M) by considering only the mapping assertions in
which A occurs in the head. Moreover, given such a mappingMA and a predicate
name B of the same arity as A, we defineMA(B) as the mapping obtained from
MA by replacing every occurrence of the predicate A with B.

The relationship between global mapping redundancy and extensional predi-
cate subsumption is stated by the following property.
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Theorem 7. Let A,A′ be ontology predicates of the same arity. Then, A ex-
tensionally subsumes A′ under 〈S,M〉 iff MA′(A) is redundant for MA under
〈∅,S〉.

From the above theorem, it can be easily verified that extensional predicate
subsumption is a generalization of the the notion of concept (and role) inclu-
sion in extensional constraints (also known as ABox dependencies) studied in
Description Logics [21,23,8].

As shown by the previous theorem, extensional predicate subsumption reduces
to a special case of global mapping redundancy, in which the ontology is empty.
Under this simplification, it can be easily verified that this task can be reduced
to a containment check between two unions of conjunctive queries (UCQs) in
the language LS . Consequently, the following property holds.

Theorem 8. For CQ2DCQ mappings, extensional subsumption is decidable iff
UCQ containment is decidable in LS .

Furthermore, it is immediate to verify that, for FO2DCQ mappings, exten-
sional subsumption (as well as extensional emptiness) is undecidable.

4.5 Global Mapping Inconsistency

Given the above undecidability results, it immediately follows that, for FO2DCQ
mappings, verifying global mapping inconsistency is undecidable.

For CQ2DCQ mappings, we present a technique that is able to decide global
inconsistency in the case when the source schema S is empty.

Let M be a CQ2DCQ mapping and let CM be any set of constant symbols
whose arity is the same as the number of variable symbols occurring in the bodies
of the mapping assertions in M. We call grounding of M over CM any mapping
obtained fromM by replacing, in every mapping assertion, every variable symbol
with a constant from CM.

Given such a grounding MG of M, let D(MG) be the source instance con-
taining all the ground atoms that occur in the bodies of the mapping assertions
of MG.

Theorem 9. Given an OBDA specification 〈O, ∅,M〉 where M is a CQ2DCQ
mapping, M is globally inconsistent for 〈O, ∅〉 iff there exists no grounding MG

of M over CM such that O ∪ {Retr(M, D(MG))} is satisfiable.

Notice that checking satisfiability of O∪{Retr(M, D(MG))} can be reduced
to ground atom entailment, in particular, entailment of the ground atom ⊥ with
respect to the theory O ∪ {Retr(M, D(MG))}. Therefore, from Theorem 9 it
follows that decidability of global inconsistency is implied by decidability of
ground atom entailment in LO. For the other direction, the proof easily follows
from Theorem 6 and from the fact that mapping inconsistency can be obviously
reduced to global mapping inconsistency.
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LS ∈ UCQ-dec, arbitrary LS , LS ∈ UCQ-dec,
arbitrary LO LO ∈ GAE-dec LO ∈ GAE-dec

head-subsumption/inconsistency U D D

body-subsumption/inconsistency U U U

redundancy/inconsistency U U U

ext. subsumption/emptiness U U U

global inconsistency U U U

Results for FO2DCQ mappings (D=decidable, U=undecidable).

LS ∈ UCQ-dec, arbitrary LS , LS ∈ UCQ-dec,
arbitrary LO LO ∈ GAE-dec LO ∈ GAE-dec

head-subsumption/inconsistency U D D

body-subsumption/inconsistency D U D

redundancy/inconsistency U U D

ext. subsumption D U D

global inconsistency∗ U D D

Results for CQ2DCQ mappings
(D=decidable, U=undecidable, ∗=The result holds only when S is empty).

Fig. 1. Summary of decidability/undecidabilty results

Theorem 10. For CQ2DCQ mappings and empty source schemas, global map-
ping inconsistency is decidable if ground atom entailment is decidable in LO.
Moreover, if LS allows for CQ-denial formulas and LO allows for binary denial
formulas, then ground atom entailment is decidable in LO and conjunctive query
containment is decidable in LS if global mapping inconsistency is decidable.

The results shown in this section are summarized in Figure 1. The figure re-
ports two tables: the first one is relative to the FO2DCQ mappping language,
while the second one is relative to the CQ2DCQ mapping language. In the two
tables, we denote by UCQ-dec the class of FO languages for which UCQ con-
tainment is decidable, and denote by GAE-dec the class of FO languages for
which entailment of ground atoms is decidable. We remark that the undecid-
ability results for head-inconsistency hold under the assumption that LO allows
for binary denial formulas (Theorem 2); moreover, for CQ2DCQ mappings, the
undecidability results for body-inconsistency hold under the assumption that
LS allows for CQ-denial formulas (Theorem 4), and the undecidability results
for mapping inconsistency and global mapping inconsistency hold under the as-
sumption that LO allows for binary denial formulas and LS allows for CQ-denial
formulas (Theorem 6 and Theorem 9).
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5 Beyond GAV Mappings

In this section we draw some initial considerations on extending our analysis
towards mapping languages beyond GAV. As we have seen, GAV-like mappings
enjoy useful properties when it comes to mappings analysis. However, there are
cases in OBDA systems where GAV-like mappings are insufficient. For example,
consider the simple case of relating the answers of a database query Q to the
existential restriction of a role R in a Description Logic ontology. With GAV
mappings, the only way to do so is to map Q to a new concept A in the ontology,
and add to the ontology the concept inclusion axiom A � ∃R. This may not be
desirable, as it clutters the ontology with concepts that may have little relation
to the domain being described.

In this section, we therefore consider the languages obtained from CQ2DCQ
and FO2DCQ by allowing existential variables to occur in the heads of map-
ping assertions. Doing so without restriction gives us the languages FO2CQ and
CQ2CQ, that is, the head of a mapping assertion is simply a conjunctive query
over O.

Unfortunately, such an increased expressiveness causes computational compli-
cations: for instance, for these two mapping languages the task of query unfolding
is equivalent to query answering using views [17], which is much harder than un-
folding with GAV-like mappings [14]. Furthermore, given such a mapping M, it
cannot be rephrased into a set of mapping assertions with single atoms in the
head, as existentially quantified variables may occur in multiple atoms. Thus,
Split(M) does not yield an equivalent mapping. To address these issues, we con-
sider the languages FO2CQE and CQ2CQE, where for each m ∈ M, head(m)
is a conjunctive query over O, and every existential variable in head(m) occurs
in exactly one atom. These languages allow us to map queries to existential re-
strictions of roles, but avoid the difficulties discussed. For example, it is easy to
verify that for a mappingM in either of these two languages, Split(M) produces
an equivalent mapping.

For all four languages, all the definitions of inconsistency, subsumption and
redundancy (with the exception of extensional predicate subsumption) provided
by Section 3 apply, as well as Proposition 1 and Proposition 2. For FO2CQ and
CQ2CQ, we have the following analogue of Theorem 1.

Theorem 11. For both FO2CQ and CQ2CQ mappings, mapping head-
subsumption is decidable iff conjunctive query containment is decidable in LO.

For FO2CQE and CQ2CQE we can do better. Since Split(M) produces an
equivalent mapping in these languages, checking head-subsumption can be done
atom by atom. As such, for these languages mapping head-subsumption is de-
cidable iff containment of positive single-atom queries is decidable.

By a similar argument, it is possible to show that, in order to check global
mapping inconsistency for these languages over empty source schemas, we like-
wise need entailment of ground atoms in LO.
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6 Conclusions

In this paper we have formally defined some properties of interest for the
mapping component of an OBDA specification, and we have provided several
(un)decidability results concerning the task of verifying such properties for some
typical mapping languages.

Our study is still in its initial stage, and several further issues need to be
investigated. In particular, we left as future work the study of global redundancy
and of global inconsistency for OBDA specifications with a non-empty source
schema. Furthermore, we intend to extend our analysis to forms of mapping that
go beyond the GAV setting (e.g., consider LAV and GLAV [17]), for which we
have only provided some preliminary discussion and results in Section 5. Also,
we want to study verification of the various forms of subsumption, redundancy,
and inconsistency introduced in this paper for concrete instantiations of both
the LO and the LS languages, and characterize its computational complexity.

Finally, we notice that the analysis conducted in this work is based on a ”clas-
sical” notion of equivalence and subsumption, i.e., equality/containment between
the sets of models of two specifications. Recent work in the data exchange area
[10,11,19] has studied alternative notions of equivalence for schema mappings.
One possible extension of the present work is applying these alternative semantic
approaches to the case of OBDA mappings.
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Abstract. Fuzzy Description Logics (DLs) generalize crisp ones by pro-
viding membership degree semantics for concepts and roles. A popular
technique for reasoning in fuzzy DL ontologies is by providing a reduction
to crisp DLs and then employ reasoning in the crisp DL. In this paper we
adopt this approach to solve conjunctive query (CQ) answering problems
for fuzzy DLs. We give reductions for Gödel, and Łukasiewicz variants
of fuzzy SROIQ and two kinds of fuzzy CQs. The correctness of the
proposed reduction is proved and its complexity is studied for different
fuzzy variants of SROIQ.

1 Introduction

Description Logics (DLs) are a class of knowledge representation languages with
well-defined semantics that are widely used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood
way. DLs have been successfully employed to formulate ontologies for several
knowledge domains such as bio-medical applications. DLs provide the formal
foundation for the standard web ontology language OWL, a milestone for the
Semantic Web. In this paper we focus on the DL SROIQ, the DL underlying
(full) OWL 2.

DLs represent knowledge by means of concepts that correspond to sets of
objects, and roles that relate pairs of objects. Ontology axioms are used to
restrict the possible interpretations of our domain of interest. For example, we
can express the fact that a CPU cpuA is overutilized and that a server that has
a part that is overutilized is a server with limited resources by stating:

(CPU � Overutilized)(cpuA) (1)
Server � ∃hasPart.Overutilized � ServerWithLimitedResources (2)

Some applications require to describe sets for which there exists no sharp, un-
ambiguous distinction between the members and nonmembers. In our running
example Overutilized is such a notion. We can say that cpuA is overutilized to
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Table 1. Families of fuzzy logic operators

Family t-norm a⊗b t-conorm a⊕b negation �a implication α⇒b

Gödel min(a, b) max(a, b)

{
1, a = 0

0, a > 0

{
1, a � b

b, a > b

Łukasiewicz max(a+ b− 1, 0) min(a+ b, 1) 1− a min(1− a+ b, 1)

a certain degree Overutilized(cpuA) � 0.8. To represent this kind of information
faithfully, fuzzy variants of DLs were introduced. Fuzzy DLs generalize crisp
DLs by providing membership degree semantics for their concepts and roles by
fuzzy sets. The membership degree of an individual to a fuzzy concept can be
understood as a weight extending the logic with the possibility of expressing im-
precision. Likewise, axioms describing the domain knowledge are equipped with
a weight that gives additional flexibility in the restrictions of the membership
degrees used. In fuzzy DLs, all crisp set operations are extended to the fuzzy
case. The intersection, union, complement and implication set operations are
performed by a t-norm function ⊗, a t-conorm function ⊕, a negation function
', and an implication function →, respectively. These functions or fuzzy opera-
tors are grouped in families, also simply called fuzzy logics. It is well known that
different families of fuzzy operators lead to fuzzy DLs with different properties.
In this paper we concentrate on the families of fuzzy logic operators displayed
in Table 1. We use the prefixes fG and fŁn to distinguish between Gödel and
Łukasiewicz based semantics. We investigate the reasoning task of conjunctive
query answering in these settings. Conjunctive queries are a very powerful way
to access the facts in the ontology and it has been widely studied in the recent
years for crisp DLs. We are considering finitely-valued fuzzy DLs, since unre-
stricted fuzzy DLs easily turn undecidable [1,8]. An alternative to implementing
a fuzzy DL reasoner from scratch is to reduce reasoning within fuzzy DLs to
reasoning in crisp DLs, which allows for the use of existing DL reasoners and to
benefit from new optimizations implemented in these systems.

Although there has been a significant amount of work regarding the reduction
from fuzzy to crisp DLs, this body of work concentrates mainly on the following
problems: instance checking or concept satisfiability [4,23]. In this paper we ex-
tend these reductions to the interesting problem of conjunctive query answering.
By which we can answer queries that ask for all pairs of servers and CPUs such
that the CPU is a part of the server and also is over utilized to an at least 0.6
degree:

Server(x) � 1 ∧ hasPart(x, y) � 1 ∧ CPU(y) � 1 ∧ Overutilized(y) � 0.6.

The contributions made in this paper are the following:

– We give a reduction from fuzzy SROIQ under Gödel and Łukasiewicz se-
mantics to SROIQ for answering conjunctive queries in the finitely-valued
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setting and prove its correctness. The presented proof builds on the reduc-
tions presented in [2,3,4].

– We prove that, if there exists a reduction from the fuzzy DL f -L to the
corresponding crisp DL L and there exists an algorithm for conjunctive query
answering w.r.t. L, then it can also be applied to answer conjunctive queries
w.r.t. f -L in the finitely-valued setting.

– We assess the complexity of the presented conjunctive query answering tech-
nique for different fuzzy extensions of the DL SHIQ. SHIQ is a sublan-
guage of SROIQ for which the query answering problem has been studied
and solved [12].

– Finally, in order to ensure the correctness of our approach, we have extended
the correctness proof sketched in [4] for the Łukasiewicz based extension of
SROIQ (for a detailed proof see the technical report accompanying this
paper [16]).

The rest of the paper is structured as follows: Section 2 presents the syntax and
semantics of classic and fuzzy DLs based on the DL SROIQ, along with the
reduction procedure from the fuzzy to the crisp DL. Section 3 defines the dif-
ferent types of conjunctive queries in the fuzzy setting, while Section 4 presents
the actual reduction from fuzzy to crisp conjunctive query answering, along
with a proof of its correctness. Finally, Section 5 presents the current litera-
ture on reduction techniques and conjunctive query answering for fuzzy DLs,
while Section 6 gives an overview of the paper and refers to future work and
implementations.

2 Preliminaries

We start with a brief introduction to DL syntax and semantics and present
the DL SROIQ [13]. This specific DL was chosen since: it is one of the most
expressive decidable DLs, it provides the direct model-theoretic semantics of
OWL 2, and there exists a reduction technique from fuzzy to classic SROIQ
ontologies [2,4,23]. DL ontologies are constructed from countable, and pairwise
disjoint sets of individual names NI , of concept names NC , and of role names
NR. Individuals correspond to elements of the domain, concept names are used
to describe sets of elements, and role names describe binary relations between
elements. The set NS is the subset of NR containing only simple roles. Based on
these, concept and role descriptions can be built using different constructors.

In the first and the second column of Table 2 we see most of the concept
and role constructors of the highly expressive DL SROIQ –for a more detailed
presentation of the crisp SROIQ language the reader may refer to [13], while the
Gödel and Łukasiewicz fuzzy variants of the language are thoroughly presented
in [4,23]–. In Tables 2–4 we have the following notation: o1, . . . , om, a, b ∈ NI ;
r, r1, . . . , rn ∈ NR; s ∈ NS; d1, . . . , dm, d ∈ (0, 1]O, C, D correspond to concept
descriptions, while � ∈ {�, >} and ��∈ {�, <,�, >}. As usual the simplest form
of a concept description is an element A ∈ NC .
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Table 2. Concept constructors from SROIQ

Syntax Crisp Semantics Fuzzy Semantics

Conjunction C �D CI ∩DI CI(x)⊗DI(x)
Disjunction C  D CI ∪DI CI(x)⊕DI(x)
Negation ¬C ΔI \ CI 'CI(x)
Value restriction ∀r.C {x | ∀y, (x, y) �∈ RI or y ∈ CI} inf

y∈ΔI
{RI(x, y)⇒CI(y)}

Existential restr. ∃r.C {x | ∃y, (x, y) ∈ RI and y ∈ CI} sup
y∈ΔI

{RI(x, y)⊗CI(y)}

Nominals {o} {oI} 1 if x ∈ {o}, 0 otherwise
fuzzy {d/o} — sup{d | x = oI}

At-least restr. ≥ n s.C
{
x | �{y : (x, y) ∈ sI and

y ∈ CI} � n
} sup

y1,...yn∈ΔI
(

n
min
i=1

{sI(x, yi)⊗CI(yi)})

⊗
(

⊗
1�j<k�n

{yi �= yk}
)

At-most restr. ≤ n s.C
{
x | �{y : (x, y) ∈ sI and

y ∈ CI} � n
} inf

y1,...yn+1∈ΔI
(
n+1
min
i=1

{sI(x, yi}⊗CI(yi)})

⇒
(

⊕
1�j<k�n+1

{yi = yk}
)

Table 3. SROIQ TBox axioms

Syntax Crisp Semantics Fuzzy Semantics

GCI C � D CI ⊆ DI inf
x∈ΔI

{CI(x)⇒DI(x)} = 1

fuzzy 〈C � D,�d〉 — inf
x∈ΔI

{CI(x)⇒DI(x)}� d

RI r1 . . . rn � r rI1 ◦ . . . ◦ rIn ⊆ rI inf
x,y∈ΔI

{[rI1 ◦⊗ . . . ◦⊗ rIn](x, y)⇒rI(x, y)} = 1

fuzzy 〈r1 . . . rn � r � d〉 — inf
x,y∈ΔI

{[rI1 ◦⊗ . . . ◦⊗ rIn](x, y)⇒rI(x, y)}� d

Inverse role r− {(y, x) | (x, y) ∈ rI} (r−)
I
(x, y) = rI(y, x)

Transitive role trans(r) rI ◦ rI ⊆ rI

An ontology O comprises of the intentional and extensional knowledge related
to an application domain. The intensional knowledge, i.e. general knowledge
about an application domain, is expressed via the Terminological Box (TBox) T
and the Role Box (RBox) R. The extensional knowledge, i.e. particular knowl-
edge about specific situations, is expressed via an Assertional Box (ABox) A
containing statements about individuals. Table 3 presents the syntax of state-
ments for TBoxes and Table 4 that of ABoxes for the crisp and fuzzy variants
of SROIQ. As depicted in Tables 3,4, fuzzy ABoxes and TBoxes have the same
syntax as their crisp counterparts, while they may also contain fuzzy assertions,
fuzzy General Concept Inclusions (GCIs), and fuzzy Role Inclusions (RIs). In
order to ensure decidability of the crisp DL, a set of restrictions regarding the
use of roles and simple roles in GCIs and RIs is imposed, e.g. a simple role cannot
subsume any transitive role, for more details see [13]. The same restrictions are
also adopted for the fuzzy versions of SROIQ [2,3,4].
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Table 4. SROIQ ABox axioms

Syntax Crisp Semantics Fuzzy Semantics

Concept a. C(a) aI ∈ CI CI(aI) = 1
fuzzy C(a) �� d — CI(aI) �� d

Role a. r(a, b) (aI , bI) ∈ rI rI(aI , bI) = 1
fuzzy r(a, b) �� d — rI(aI , bI) �� d

Negated role a. ¬r(a, b) (aI , bI) �∈ rI rI(aI , bI) = 0
fuzzy ¬r(a, b) �� d — 'rI(aI , bI) �� d

Inequality a. a �= b aI �= bI aI �= bI

Equality a. a = b aI = bI aI = bI

Example 1. Based on the concept assertion and inclusion axioms presented and
explained in equation 2 we can create the following crisp ABox and TBox:

A := {CPU(cpuA),Overutilized(cpuA)}
T := {Server � ∃hasPart.Overutilized � ServerWithLimitedResources}

where cpuA ∈ NI ; CPU,Overutilized, ServerWithLimitedResources,Server ∈ NC ;
and hasPart ∈ NR. As expected Server � ∃hasPart.Overutilized corresponds to a
complex concept description. A fuzzy version of the previous ABox can occur if
for example we add a degree of truth to the concept assertion Overutilized(cpuA).
The fuzzy assertionOverutilized(cpuA) � 0.8 states that cpuA is overutilized with
a degree of at least 0.8.

The semantics of crisp SROIQ are given via an interpretation I that is a
pair (ΔI , ·I) consisting of a non empty set ΔI and an interpretation function
·I mapping every individual a ∈ NI onto an element aI ∈ ΔI , every concept
name A ∈ NC to a set AI ⊆ ΔI , every atomic role r ∈ NR onto a relation
rI ⊆ ΔI × ΔI . The interpretations of complex concepts, GCIs and assertions
are presented on the third column of Tables 2,3, and 4.

In a fuzzy extension of SROIQ, concepts denote fuzzy sets of individuals
and roles denote fuzzy binary relations. Likewise fuzzy axioms may hold to some
degree. The semantics of f -SROIQ is given via interpretations I that are pairs
(ΔI , ·I) consisting of a non empty set ΔI and an interpretation function ·I
mapping every individual a ∈ NI to an element aI ∈ ΔI , every concept name
A ∈ NC onto a membership function AI : ΔI → [0, 1], every atomic role r ∈
NR onto a membership function rI : ΔI × ΔI → [0, 1]. In the finitely-valued
setting, which we consider here, the membership function mapps to a finite
subset of [0, 1]. The interpretations of complex concepts, TBox axioms, and ABox
assertions are presented on the fourth column of Tables 3,4, for the different
families of fuzzy logic operators (⊗, ⊕, ', ⇒) presented in Table 1. Based on
the semantics reasoning services can be defined. In this paper we are interested
in conjunctive query answering.

Definition 2 (Conjunctive Query for Classic DLs - CQ [12]). Let NV

be a countably infinite set of variables disjoint from NC, NR, and NI . An atom
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is an expression A(x) ( concept atom) or r(x, y) ( role atom), where A ∈ NC,
r ∈ NR, and x, y ∈ NV ∪ NI . A conjunctive query q is a non-empty set of
atoms. Intuitively, such a set represents the conjunction of its elements. We
use Var(q) to denote the set of variables occurring in the query q. Let I be an
interpretation, q a conjunctive query, and π : Var(q)→ ΔI a total function, s.t.
π(a) = aI for all a ∈ NI . We write: I |=π C(x) if π(x) ∈ CI and I |=π r(x, y) if
(π(x), π(y)) ∈ rI . If I |=π at for all atoms at ∈ q, we write I |=π q and call π a
match for I and q. We say that I satisfies q and write I |= q if there is a match
π for I and q. If I |= q for all models I of an ontology O, we write O |= q and
say that O entails q.

Finally, a union of conjunctive queries qUCQ is a set of conjunctive queries. We
write O |= qUCQ and say that O entails qUCQ if for every model I of O we have
that I |= q for some conjunctive query q ∈ qUCQ.

Reduction to the Crisp Case

The goal is to devise a reduction of answering UCQs over a fuzzy ontology O
to answer UCQs over a crisp ontology OC . The basic idea is that each concept
and role in O is mapped onto a set of concepts and roles corresponding to their
α-cuts, which is the crisp set containing all elements that belong to a fuzzy set
up to a given degree. For example, if the concept Overutilized in O maps each
CPU to the degree to which it is overutilized, then the concept Overutilized�0.6

in OC represents the set of CPUs that are overutilized to a degree of at least 0.6.
We present the reduction algorithm for the fuzzy versions of SROIQ corre-

sponding to the Gödel, and Łukasiewicz based semantics. We employ the no-
tation [0, 1]O in order to represent the finite set of degrees that appear in our
ontology. We also use the notation (a, b)O to represent the (a, b)∩ [0, 1]O subset
of [0, 1]O.

It has been proved for fuzzy ontologies under Gödel logics that the set of
degrees of truth that must be considered for any reasoning task is the set
[0, 1]O ∪ {0, 1} [4]. In order to ensure that the reduction technique can be ap-
plied for f -SROIQ with Łukasiewicz based semantics, we need restrict to a finite
number of degrees that have the form of {0, 1

n , . . . ,
n−1
n , 1} where n is a natural

number [4]. From now on when using the notation [0, 1]O we consider that the
corresponding set satisfies this restriction when referring to a Łukasiewicz based
fuzzy DL.

A compact form of the reduction rules from fuzzy to crisp SROIQ is displayed
in Table 5. It should be noted that the uppercase bold letters in this Table
correspond to the conditions illustrated in Table 6. For a detailed description of
the reduction rules the reader may refer to [3,4]. The reduced ontology OC has
the following form:

– In order to preserve the semantics of α-cuts of atomic concepts and roles the
following axioms are added to TC for every A ∈ NC , r ∈ NR:

A�di+1 � A>di A>di � A�di

r�di+1 � r>di r>di � r�di

(3)
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Table 5. Mapping of concept and role expressions in fuzzy SROIQ

Reduction of concepts
Gödel / �Lukasiewicz

and axioms

ρ(A,� d) A�d

ρ(A,� d) ¬A>d

ρ(¬C,� d) ρ(C,� 0) / ¬ρ(C,> 1 − d)

ρ(¬C,� d) ρ(C,> 0) / ρ(C,� 1 − d)

ρ(C  D,� d) ρ(C,� d)  ρ(D,� d) /
⊔

A

(
ρ(C,� d1)  ρ(D,� d2)

)

ρ(C  D,� d) ρ(C,� d) � ρ(D,� d) / ρ(¬C � ¬D,� 1 − d)

ρ(C � D,� d) ρ(C,� d) � ρ(D,� d) /

ρ(C,� d) � ρ(D,� d) �
⊔

B

(
ρ(C,� d1)  ρ(D,� d2)

)

ρ(C � D,� d) ρ(C,� d)  ρ(D,� d) / ρ(¬C  ¬D,� 1 − d)

ρ(∃r.C,� d) ∃ρ(r,� d).ρ(C,� d) /
⊔

A

(
∃ρ(r,� d1).ρ(C,� d2)

)

ρ(∃r.C,� d) ∀ρ(r,> d).ρ(C � d) / ρ(∀r.¬C,� 1 − d)

ρ(∀r.C,� d) �C

(
∀ρ(r,� d′).ρ(C,� d′)

)
�D

(
∀ρ(r,> d′).ρ(C,> d′)

)
/

�E

(
∀ρ(r,� d1).ρ(C,� d2)

)

ρ(∀r.C,� d)
⊔

F

(
∃ρ(r,> d).ρ(C,� d)

)
/ ρ(∃r.¬C,� 1 − d)

ρ(∪m
i=1{di/oi}, � d) {oi | di � d, 1 � i � m}
ρ(≥ m s.C,� d) ≥ m ρ(s,� d).ρ(C,� d) /

⊔
G

(
∃ρ(s,� d1).ρ(B1  ρ(C,� e1))  . . .

∃ρ(s,� dm).(Bm  ρ(C,� em))
)

ρ(≥ m s.C,� d) ≤ m − 1 ρ(s,> d).ρ(C,> d) /

¬
(⊔

H

(
∃ρ(s,� d1).ρ(B1  ρ(C,� e1))  . . .

∃ρ(s,� dm).(Bm  ρ(C,� em))
))

ρ(≤ n s.C,� d) ≤ n ρ(s,> 0).ρ(C,> 0) / ρ(¬(≥ n + 1 s.C),� d)

ρ(≤ n s.C,� d) ≥ n + 1 ρ(s,> 0).ρ(C,> 0) / ρ(¬(≥ n + 1 s.C),� d)

ρ(r,� d) r�d

ρ(r,� d) ¬r>d

ρ(r−,� d) r−�d

ρ(r−,� d) ¬r−>d

κ(C(a) � d) ρ(C, � d)(a)

κ(r(a, b) � d) ρ(r, � d)(a, b)

κ(〈C � D � d〉)
⋃

C

(
ρ(C,� d′) � ρ(D,� d′)

)
∪
⋃

D

(
ρ(C,> d′) � ρ(D,> d′)

)
/

⋃
I

(
ρ(C,� d1 � ρ(D,� d2)

)

κ(〈r1 . . . rn � r � d〉)
⋃

C

(
ρ(r1,� d′) . . . ρ(rn,� d′) � ρ(r,� d′)

)
∪

⋃
D

(
ρ(r1,� d′) . . . ρ(rn,� d′) � ρ(r,� d′)

)
/

⋃
J

(
ρ(r1,� d1) . . . ρ(rn,� dn) � ρ(r,� dn+1)

)

where di, di+1 correspond to every pair of degrees di, di+1 such that
(i) di+1 > di, (ii) there exists no element e ∈ [0, 1]O such that di+1 > e > di,
and (iii) the subscript >1 is not considered in any of the GCIs. For the fŁn

variant of SROIQ, since admitting for a finite truth space, we must add to
our ontology that A>di ≡ A�di+1 and r>di ≡ r�di+1 .

– For each complex concept C appearing in O the complex concept ρ(C, �� d)
in OC represents its corresponding α-cut. These complex concepts are induc-
tively defined according to the set of reduction rules presented in the first
part of Table 5.

– Each ABox axiom in A is represented by its corresponding axiom in AC
presented in the second part of Table 5.
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Table 6. Conditions corresponding to the uppercase letters of Table 5

A. for every pair d1, d2 ∈ (0, 1]O such that d1 + d2 = 1 + d.
B. for every pair d1, d2 ∈ (0, 1]O such that d1 + d2 = d.
C. for every d′ ∈ (0, 1]O such that d′ � d.
D. for every d′ ∈ [0, 1]O such that d′ < d.
E. for every pair d1, d2 ∈ (0, 1]O such that d1 = d2 + 1− d.
F. for every d′ ∈ [0, 1]O such that d′ � d.
G. for every combination of d1, e1, . . . dm, em ∈ (0, 1]O such that di+ ei = 1+d,
for i = {1, . . . ,m}.
H. for every combination of d1, e1, . . . dm, em ∈ (0, 1]O such that (i) di + ei >
1+d, for i = {1, . . . ,m}, (ii) � ∃d′ ∈ (0, 1]O such that d′ < di and d′+ ei > 1+d,
(iii) � ∃d′ ∈ (0, 1]O such that d′ < ei and d′ + di > 1 + d.
I. for every pair d1, d2 ∈ (0, 1]O such that d1 = d2 + 1− d.
J. for every combination of d1, . . . dn+1 ∈ (0, 1]O such that: d1 + . . . + dn =
dn+1 + n− d.

– Each TBox axiom in T is represented by its corresponding axiom or set of
axioms in TC according to the set of reduction rules presented in the third
part of Table 5.

3 Conjunctive Queries for Fuzzy DLs

Our main objective is to find an algorithm for answering to conjunctive queries
for fuzzy DLs based on a reduction procedure to classic ones. Different forms of
conjunctive queries for fuzzy DLs have been proposed in the literature. Accord-
ing to [19], these are classified to queries of two different types, namely threshold
conjunctive queries and general fuzzy queries. With respect to the example pro-
vided on the introduction a threshold query of the form:

Server(x) � 1 ∧ hasPart(x, y) � 1 ∧ CPU(y) � 1 ∧ Overutilized(y) � 0.6 (4)

searches for all pairs of servers and CPUs such that the CPU is a part of the
server and is also overutilized to a degree of at least 0.6. In contrast, a fuzzy
query of the form:

Server(x) ∧ hasPart(x, y) ∧ CPU(y) ∧ Overutilized(y) (5)

searches for the pairs of elements that satisfy it along with the degree of satis-
faction (provided that this degree is greater than 0).

Definition 3 (Threshold Conjunctive Query - CQθ). Let NV be a count-
ably infinite set of variables disjoint from NC, NR, and NI . A degree atom is
an expression P (X)� d where P ∈ NC ∪NR, X is an ordered tuple of elements
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of NI ∪NV having an arity of 1 if P ∈ NC and 2 if P ∈ NR, � ∈ {�, >}, and
d ∈ (0, 1]. A Threshold Conjunctive Query has the form:

λ∧
i=1

Pi(X i)�i di

We use VarIndivs(qθ) to denote the set of variables and individuals occurring in
a CQθ named qθ. Let I be an interpretation and π : VarIndivs(q)→ ΔI a total
function that maps each element a ∈ NI to aI. If P I

i (π(X i))�i di for all degree
atoms in qθ, we write I |=π qθ and call π a match for I and qθ. We say that I
satisfies qθ and write I |= qθ if there is a match π for I and qθ. If I |= qθ for
all models I of an ontology O, we write O |= qθ and say that O entails qθ.

Definition 4 (Fuzzy Conjunctive Query - CQφ). A plain atom is an ex-
pression P (X). A Fuzzy Conjunctive Query with plain atoms has the form:

λ∧
i=1

Pi(X i)

Let I be an interpretation, qφ a CQφ, π a mapping, and ⊗ a fuzzy logic t-
norm –we assume that the t-norms of the query and the DL are the same–.
If P I

i (π(X i)) = di for all atoms in qφ and ⊗κ
i=1di � d we write I |=π qφ � d

and call π a match for I and qφ with a degree of at least d. We say that I satisfies
qφ with a degree of at least d and write I |= qφ � d if there is a corresponding
match. If I |= qφ � d for all models I of a an ontology O, we write O |= qφ � d
and say that O entails qφ with a degree of at least d. The problem of determining
whether O |= qφ > d is defined analogously.

The query entailment problem for a CQθ is to decide whether O |= qθ for a
given assignment of the variables. For CQφs we may consider two variants of the
query entailment problem, namely to decide whetherO |= qφ � d for some degree
d ∈ (0, 1], and to find the degree sup{d | O |= qφ � d}. Since the fG, fŁn variants
of SROIQ admit for the finite truth space [0, 1]O we can assume without loss
of generality that the two problems can be reduced to each other. The query
answering problem requests for the specific assignments that satisfy the query,
thus the reduction can be achieved by testing all assignments, which give an
exponential blow-up. It is well-known from crisp DLs that query entailment and
query answering can be mutually reduced and that decidability and complexity
results carry over [7] modulo the mentioned blow-up.

Example 5. Suppose that we have the queries described in equations 4,5, the
ABox

A = {Server(s1) � 1, hasPart(s1, cpu1) � 1,

CPU(cpu1) � 1,Overutilized(cpu1) � 0.7}

and an empty TBox T . Then the answer to equation 4 would be the pair
(s1, cpu1), while the answer to equation 5 would be (s1, cpu1) with a degree
of at least 0.7.
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A union of CQθs is a set of CQθs. An ontology O entails such a union Uqθ ,
i.e. O |= Uqθ , when for every model I |= O there exists some qθ ∈ Uqθ such that
I |= qθ. Another type of union is one consisting of a set of CQφs. An ontology
O entails such a union Uqφ to a degree of at least d ∈ (0, 1], i.e. O |= Uqφ � d,
when for every model I |= O there exists some qφ ∈ Uqφ such that I |= qφ � d.

Remark 6. In the context of the reduction algorithms, we focus on �, > inequal-
ities appearing in threshold/fuzzy conjunctive queries. A threshold conjunctive
query with �, < inequalities would be reduced to a crisp conjunctive query con-
taining negated role atoms. Moreover, the reduction of a fuzzy conjunctive query
qφ with a less or equal degree κ(qφ,� d) would be reduced to a disjunction of
negated atoms. Since the problems of negated atoms and disjunctive queries
have not been studied for expressive classic DLs, we focus on �, > inequalities.

4 Conjunctive Query Answering by Reduction

In this section we provide the corresponding steps so as to solve the problem
of conjunctive query answering for fuzzy DLs by taking advantage of existing
crisp DL algorithms for the same problem. The solution we provide operates on
the DLs and is based on the reduction techniques presented in [4,23]. We denote
with κ the reduction process from CQθs and CQφs queries to crisp CQs and
UCQs. The reduction process operates differently for each query type.

For the CQθ described in Definition 3 the reduction process takes the following
form:

κ

(
λ∧

i=1

Pi(Xi)� di

)
=

λ∧
i=1

ρ(Pi,�di)(X i) (6)

Since Pi is either a concept name Ai ∈ NC or a role name ri ∈ NR we have that
ρ(Ai,�di) = Ai�di

or ρ(ri,�di) = ri�di
as presented on Table 5.

The reduction process for a CQφ has two inputs, the first input is the query
itself and the second input is the degree that we want to examine. In addition,
for CQφs the reduction process depends on the t-norm operator that has been
adopted to provide semantics for conjunction. For the CQφ described in Defini-
tion 4 the reduction process takes the form presented in equation 7 when the CQφ

refers to an fG-SROIQ ontology. When the CQφ refers to an fŁn
-SROIQ on-

tology the corresponding reduction is the union of conjunctive queries presented
in equation 8 (⊗ in equation 8 stands for the Łukasiewicz t-norm operator).

κ

(
λ∧

i=1

Pi(X i),� d

)
=

λ∧
i=1

ρ(Pi,� d)(X i) (7)

κ

(
λ∧

i=1

Pi(X i),� d

)
=

⋃
⊗λ

i=1di=d and di∈[0,1]O

{
λ∧

i=1

ρ(Pi,� di)(X i)

}
(8)
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Example 7. The reduced form of the CQθ presented in equation 4 follows in
equation 9. The reduced form of the CQφ in equation 5 for the degree of at least
0.75 for the fG-SROIQ logic follows in equation 10. Finally if we consider the
fŁ4

-SROIQ logic we have that [0, 1]O = {0, 0.25, 0.5, 0.75, 1} and the reduced
form of equation 5 for the degree of at least 0.75 is the UCQ presented in
equation 11:

Server�1(x) ∧ hasPart�1(x, y) ∧ CPU�1(y) ∧ Overutilized�0.6(y) (9)
Server�0.75(x) ∧ hasPart�0.75(x, y) ∧ CPU�0.75(y) ∧ Overutilized�0.75(y) (10)

{Server�0.75(x) ∧ hasPart�1(x, y) ∧ CPU�1(y) ∧ Overutilized�1(y)} ∪
{Server�1(x) ∧ hasPart�0.75(x, y) ∧ CPU�1(y) ∧ Overutilized�1(y)} ∪
{Server�1(x) ∧ hasPart�1(x, y) ∧ CPU�0.75(y) ∧ Overutilized�1(y)} ∪
{Server�1(x) ∧ hasPart�1(x, y) ∧ CPU�1(y) ∧ Overutilized�0.75(y)}

(11)

The following Theorem states that our query reduction algorithm is sound and
complete. Since we consider the fG, fŁn variants of SROIQ the theorem ap-
plies for these DLs and only. A generalization of the theorem follows in Corol-
laries 9,10.

Theorem 8. Let OC be the crisp version of the fuzzy Ontology O such that
κ(O) = OC, qθ be a CQθ and κ(qθ) its form obtained by the reduction, qφ is
a CQφ and κ(qφ,� d) its reduced form for the degree d ∈ [0, 1]O. Then the
following equivalences apply:

1. O |= qθ ⇔ OC |= κ(qθ)
2. O |= qφ � d⇔ OC |= κ(qφ,� d).

Proof (Sketch). In order to prove that OC |= κ(qθ)⇒ O |= qθ, we build for every
model I of O a non fuzzy interpretation IC = {ΔIC , ·IC} as follows:

ΔIC = ΔI AIC
�d =

{
β | AI(β)� d

}
aIC = aI rIC

�d =
{
(β, γ) | rI(β, γ)� d

}
. (12)

It is shown in [3,4] that IC is a model of the crisp ontology OC . Since IC |= OC
and OC |= κ(qθ) it applies that IC |= κ(qθ). Based on the construction of IC and
the form of κ(qθ) (equation 6), it can be verified that I |= qθ must also apply. It
can be shown in a similar way that O |= qφ � d⇒ OC |= κ(qφ,� d).

The proof of the opposite direction is performed by building a fuzzy interpre-
tation I for each model IC of OC as follows:

ΔI = ΔIC AI (β) = sup
{
d | β ∈ AIC

�d

}
∪
{
d+ | β ∈ AIC

>d

}
aI = aIC rI (β, γ) = sup

{
d | (β, γ) ∈ rIC

�d

}
∪
{
d+ | (β, γ) ∈ rIC

>d

}
(13)

where the degree d+ for the language of fG-SROIQ is defined to be some degree
in [0, 1] such that d < d+ and there exists no d′ ∈ [0, 1]O with d < d′ < d+. For
the language of fŁn

-SROIQ the degree d+ is defined in a similar way with the
main difference that it has to belong to [0, 1]O. � 
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Corollary 9. If (i) there is a reduction technique from a fuzzy DL f -L to a
crisp DL L, (ii) for each model I of an ontology O in the DL of f -L there
exists a corresponding model IC for the reduced ontology OC that can be built
based on equation 12, (iii) for each model IC of the reduced ontology OC there
exists a corresponding model I for the initial ontology O that can be built based
on equation 13, (iv) there exists a query answering algorithm for the DL of
f -L then: the reduction technique can be applied in order to answer to threshold
queries for the DL of f -L.

Corollary 10 (Generalization of Corollary 9). If f -L and L satisfy criteria
(i), (ii), (iii) presented in Corollary 9 and (iv) f -Lsub is a sub-language of f -L
(v) f -Lsub can be reduced to a sub-language Lsub of L for which there exists a
query answering algorithm, then the reduction technique can be applied in order
to answer to threshold queries for the language of f -Lsub.

Since there are algorithms for conjunctive query answering for the DLs SHIQ
[12] and Horn fragments of SROIQ [18] (both are sub-languages of SROIQ),
we can apply the reduction technique for conjunctive query answering for the
language of f -SHIQ and Horn fragments of f -SROIQ (where f correspond to
one of fG ,fŁ fuzzy logics).

Complexity Results

Complexity in the size of O. According to [3], the reduction process for the DL
fG-SROIQ creates an ontologyOC that has size O(|O|2) compared to the initial
ontology O. If we combine the latter with the facts that: i) “conjunctive query
entailment in the crisp SHIQ can be decided in time exponential in the size of the
ontology [12]”(†) ii) the language SHIQ is a sublanguage of SROIQ, we get an
exponential complexity with respect to the size of the initial ontology. Regarding
the fŁn -SROIQ DL, the size of the resulting ontology OC is O(|O| |[0, 1]O|k)
in case no number restrictions occur in O, where k is the maximal depth of the
concepts appearing in O (proof in [4]). Intuitively the depth of some A ∈ NC is
1 while the depth of ∃r.(∀r.A) is 3. The latter results are discouraging, with the
absence of number restrictions the size of OC may become exponential w.r.t. the
size of O. If we combine these results with fact (†) we get a double exponential
upper bound for threshold query answering w.r.t. a fŁn

-SHIQ ontology, even
with the absence of number restrictions.

Complexity in the size of the query. We examine the complexity w.r.t. the size
of the examined threshold/fuzzy conjunctive query. Suppose that κ(qθ) is the
reduced form of a threshold conjunctive query denoted with qθ. We have that
the size of κ(qθ) is linear to the size of qθ. The size of the reduced form κ(qφ,� d)
of a fuzzy conjunctive query also remains linear w.r.t. the size of the initial fuzzy
query qφ if we consider the fG-SHIQ semantics. For fuzzy conjunctive queries
under the Łukasiewicz semantics, the size of κ(qφ,� d) belongs to the complexity
class O(|[0, 1]O|k−1) where k is the number of conjuncts in qφ. Therefore it is
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exponential compared to the size of qφ. If we combine the latter results with
the fact that “conjunctive query entailment in SHIQ can be decided in time
double exponential in the size of the query [12]” we get a double exponential
complexity for threshold query answering and fuzzy conjunctive query answering
w.r.t. fG-SHIQ ontologies. Otherwise, we get a triple exponential upper bound
for fuzzy query answering w.r.t. a fŁn-SHIQ ontology.

Generalizing the Query Component

So far we have examined the reduction technique for answering threshold and
fuzzy CQs. These two types of queries are immediate extensions of the classic
CQ problem. Nevertheless, the existence of degrees may lead to more general
forms of fuzzy CQs in which the score of a query is computed via a monotone
scoring function:

Example 11. Lets extend the query in Equation 5 by asking for servers that have
overutilized CPU and RAM memory, while the utilization of the CPU is more
important than that of the RAM memory. The resulting query will take the
form:

Server(x)∧hasPart(x, y) ∧ CPU(y) ∧ hasPart(x, z)∧

RAM(z) ∧ 0.6 ·Overutilized(y) + 0.4 · Overutilized(z)
2

(14)

where the fraction corresponds to an aggregation scoring function that takes into
account the degree of overutilization of a CPU and the degree of overutilization
of a RAM memory with weights 0.6 and 0.4 respectively.

Such kind of queries have already been defined in the literature [19,26,27] and the
question is if the reduction technique can be applied to answer them. By taking
account the fact that the reduction technique works on finite valued fuzzy DLs,
these problems can be solved by considering for all possible combinations of
degrees in [0, 1]O. We consider the previous example for the fŁn

-SROIQ with
[0, 1]O = {0, 0.25, 0.5, 0.75, 1}, where the concepts Server,CPU,RAM and the role
hasPart are essentially crisp. The (crisp) conjunctive query

Server�1(x)∧hasPart�1(x, y) ∧ CPU�1(y) ∧ hasPart�1(x, z)∧
RAM�1(z) ∧Overutilized�0.25(y) ∧ Overutilized�0.75(z)

if applied on the reduced ontology will return the triples of Server,CPU, and
RAM that satisfy the query in Equation 14 with a degree greater or equal than
0.45 (i.e. 0.6 · 0.25 + 0.4 · 0.75).

Another interesting problem, specific to fuzzy DLs, is the top-k query answer-
ing problem presented in [25,26,27]. This variation of the fuzzy query answering
problem focuses on the k answers with the highest degrees of satisfaction. In a
naive approach to solve this problem, the reduction technique for CQφs can be
iteratively applied starting from the highest to the lowest degrees in [0, 1]O until
the limit of k answers is reached. It has to be investigated if a more sophisticated
approach can be adopted to solve this problem.
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5 Related Work

Non-fuzzy representations of fuzzy DLs have been extensively studied for sev-
eral families of DLs that can be classified based on their fuzzy and DL parts.
Reduction techniques have been proposed in [23,22,2] for the DLs of f -ALCH,
f -SHOIN , and f -SROIQ, that are based on the Zadeh fuzzy logic semantics.
An experimental evaluation of the reduction technique for the DL of fKD-SHIN
is presented in [11]. A reduction procedure for the SROIQ DL under Gödel se-
mantics is considered in [3], while in [4] the reduction technique for the finitely
many valued Łukasiewicz fuzzy Description Logic fŁn -SROIQ is studied. Based
on a different approach, a family of fuzzy DLs using α-cuts as atomic concepts
and roles is considered in [15], while a generalization of existing approaches where
a finite totally ordered set of linguistic terms or labels is assumed is presented
in [5].

Conjunctive query answering for fuzzy DLs has been mostly studied for the
fuzzy DL-Lite family of DLs. In [24,25] the problem of evaluating ranked top-k
queries in the Description logic fuzzy DL-Lite is considered, while a variety of
query languages by which a fuzzy DL-Lite knowledge base can be queried is pre-
sented in [19]. Tableaux based approaches for conjunctive query answering have
also been studied. A tableaux algorithm for conjunctive query answering for the
language of fuzzy CARIN, a knowledge representation language combining the
DL fZ-ALCNR with Horn rules, is provided in [17] . An algorithm for answer-
ing expressive fuzzy conjunctive queries is presented in [10,9]. The algorithm
allows the occurrence of both lower bound and the upper bound of thresholds
in a query atom, over the DLs fZ -ALCN , and fZ-SHIN . Finally, practical ap-
proach for storing and querying fuzzy knowledge in the semantic web have been
investigated in [21].

6 Conclusions and Future Work

This paper describes how non fuzzy representation of fuzzy DLs can be adopted
in order to solve the threshold and fuzzy conjunctive query answering problems.
Specifically, the previously mentioned problems on fuzzy DLs are reduced to their
equisatisfiable conjunctive query (or union of conjunctive queries) answering
problems on crisp DLs. The correctness of the suggested techniques is proved
and their complexity is studied for different fuzzy variants of the SROIQ DL.
As far as we know no similar theoretical results have been presented. The proofs
rely on the fact that each model of a fuzzy ontology O can be mapped to a
model of its reduced crisp form OC and vice versa (soundness and completeness
of the reduction technique), while they are based on the structure of the two
constructed models. To verify the correctness of our approach we have extended
the correctness proofs sketched in [4]. Therefore this paper can be considered
complementary to the existing literature on non fuzzy representation of fuzzy
DLs.

Our current line of works involves implementing the reduction techniques for
the fZ , fG , and fŁn variants of SROIQ. The upcoming implementation is based
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on the HermiT OWL Reasoner [20] extended with the OWL BGP SPARQL
wrapper [14] that is used for conjunctive query answering. Future work involves
evaluating the proposed reduction techniques on real data, studying their perfor-
mance, and examining if available optimizations techniques for fuzzy and crisp
DLs can be applied to improve the performance of these algorithms. Another
interesting line of work involves applying these reduction based threshold and
fuzzy query answering algorithms for the more general family of finite lattice
based fuzzy DLs presented in [6].
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Abstract. In a data exchange setting with target constraints, it is often
the case that a given source instance has no solutions. Intuitively, this
happens when data sources contain inconsistent or conflicting informa-
tion that is exposed by the target constraints at hand. In such cases,
the semantics of target queries trivialize, because the certain answers of
every target query over the given source instance evaluate to “true”. The
aim of this paper is to introduce and explore a new framework that gives
meaningful semantics in such cases by using the notion of exchange-
repairs. Informally, an exchange-repair of a source instance is another
source instance that differs minimally from the first, but has a solution.
In turn, exchange-repairs give rise to a natural notion of exchange-repair
certain answers (in short, XR-certain answers) for target queries in the
context of data exchange with target constraints.

After exploring the structural properties of exchange-repairs, we fo-
cus on the problem of computing the XR-certain answers of conjunctive
queries. We show that for schema mappings specified by source-to-target
GAV dependencies and target equality-generating dependencies (egds),
the XR-certain answers of a target conjunctive query can be rewritten
as the consistent answers (in the sense of standard database repairs)
of a union of source conjunctive queries over the source schema with
respect to a set of egds over the source schema, thus making it possi-
ble to use a consistent query-answering system to compute XR-certain
answers in data exchange. In contrast, we show that this type of rewrit-
ing is not possible for schema mappings specified by source-to-target
LAV dependencies and target egds. We then examine the general case
of schema mappings specified by source-to-target GLAV constraints, a
weakly acyclic set of target tgds and a set of target egds. The main re-
sult asserts that, for such settings, the XR-certain answers of conjunctive
queries can be rewritten as the certain answers of a union of conjunctive
queries with respect to the stable models of a disjunctive logic program
over a suitable expansion of the source schema.

Keywords: data exchange, certain answers, database repairs, consistent
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1 Introduction and Summary of Contributions

Data exchange is the problem of transforming data structured under one schema,
called the source schema, into data structured under a different schema, called
the target schema, in such a way that pre-specified constraints on these two
schemas are satisfied. Data exchange is a ubiquitous data inter-operability task
that has been explored in depth during the past decade (see [3]). This task is
formalized with the aid of schema mappingsM = (S,T, Σst, Σt), where S is the
source schema, T is the target schema, Σst is a set of constraints between S and
T, and Σt is a set of constraints on T. The most thoroughly investigated schema
mappings are the ones in which Σst is a set of source-to-target tuple-generating
dependencies (s-t tgds) and Σt is a set of target tuple-generating dependencies
(target tgds) and target equality-generating dependencies (target egds) [11].

Every schema mapping M = (S,T, Σst, Σt) gives rise to two distinct algo-
rithmic problems. The first is the existence and construction of solutions: given
a source instance I, determine whether a solution for I exists (i.e., a target in-
stance J so that (I, J) satisfies Σst∪Σt) and, if it does, construct such a “good”
solution. The second is to compute the certain answers of target queries, where
if q is a target query and I is a source instance, then certain(q, I,M) is the inter-
section of the sets q(J), as J varies over all solutions for I. For arbitrary schema
mappings specified by s-t tgds and target tgds and egds, both these problems
can be undecidable [16]. However, as shown in [11], if the set Σt of target tgds
obeys a mild structural condition, called weak acyclicity, then both these prob-
lems can be solved in polynomial time using the chase procedure. This procedure,
given a source instance I, attempts to build a “most general” solution J for I by
generating facts that satisfy each s-t tgd and each target tgd as needed, and by
equating two nulls or equating a null to a constant, as dictated by the egds. If
the chase procedure encounters an egd that equates two distinct constants, then
it terminates and reports that no solution for I exists. Otherwise, it constructs a
universal solution J for I, which can also be used to compute the certain answers
of conjunctive queries in time bounded by a polynomial in the size of I.

I J J′

Task Assignments

person task dept

peter tpsreport software

peter spaceout software

peter meetbobs exec

Departments

person dept

peter software

peter exec

Tasks

person task

peter tpsreport

peter spaceout

peter meetbobs

Departments

person dept

peter software

peter exec

Tasks

person task

peter tpsreport

peter spaceout

peter meetbobs

Stakeholders old

task stakeholder

tpsreport lumbergh

tpsreport portman

spaceout bobs

meetbobs bobs

Stakeholders new

task stakeholder

tpsreport lumbergh

tpsreport portman

spaceout bobs

meetbobs bobs

Stakeholders new

task stakeholder

tpsreport lumbergh

tpsreport portman

spaceout bobs

meetbobs bobs

Σst =

{
Task Assignments(p, t, d) → Departments(p, d) ∧ Tasks(p, t)
Stakeholders old(t, s) → Stakeholders new(t, s)

}
Σt =

{
Departments(p, d) ∧ Departments(p, d′) → d = d′

}
Fig. 1. An instance I , an inconsistent result of a chase J , and a subset-repair J ′ of J
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(I1, J1) (I2, J2) (I3, J3)

Task Assignments

person task dept

peter tpsreport software

peter spaceout software

peter meetbobs exec

Task Assignments

person task dept

peter tpsreport software

peter spaceout software

peter meetbobs exec

Task Assignments

person task dept

peter tpsreport software

peter spaceout software

peter meetbobs exec

Departments

person dept

peter exec

Tasks

person task

peter meetbobs

Departments

person dept

peter software

Tasks

person task

peter tpsreport

peter spaceout

Departments

person dept

peter software

Tasks

person task

peter tpsreport

Fig. 2. Three repairs of (I, ∅) w.r.t. Σst ∪Σt (Stakeholders tables omitted)

Consider the situation in which the chase terminates and reports that no
solution exists. In such cases, for every boolean target query q, the certain an-
swers certain(q, I,M) evaluate to “true”. Even though the certain answers have
become the standard semantics of queries in the data exchange context, there
is clearly something unsatisfactory about this state of affairs, since the certain
answers trivialize when no solutions exist. Intuitively, the root cause for the lack
of solutions is that the source instance contains inconsistent or conflicting in-
formation that is exposed by the target constraints of the schema mapping at
hand. In turn, this suggests that alternative semantics for target queries could
be obtained by adopting the notions of database repairs and consistent answers
from the study of inconsistent databases (see [5] for an overview). One concrete
possibility is to perform all chase steps involving s-t tgds and target tgds, and
then treat the result as an inconsistent target instance in need of repair. Unfor-
tunately, this exchange-then-repair approach fails to take into account how the
data in the target instance was derived, and, as a result, may give unreason-
able answers to some queries. Figure 1 gives an example in which a company,
Initech, migrates their database instance I by splitting the Task Assignments

table and applying a key constraint to the resulting Departments table requiring
that each employee belongs to no more than one department. Notice that the
subset repair J ′ places peter in the exec department, yet still has him perform-
ing tasks for the software department – the fact that tpsreport and spaceout
are derived from a tuple placing peter in the software department has been
lost. The only other repair of J similarly fails to reflect the shared origin of tu-
ples in the Tasks and Departments tables, and this disconnect manifests in the
consistent answers to queries over J . For example, in the exchange-then-repair
approach, q(p, s) = ∃t Tasks(p, t) ∧ Stakeholders new(t, s) gives (peter,bobs),
(peter,portman), and (peter,lumbergh). However, the last two tuples are derived
from facts placing peter in the software department, which in J ′ he is not.

The situation is no better if we treat data exchange as just one part of
a repair problem involving the union Σst ∪ Σt of all constraints and the
pair (I, ∅) consisting of the source instance I and the empty target instance
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(in the spirit of [14]). While the first two symmetric-difference1 repairs in Figure 2
seem reasonable, in the third symmetric-difference repair we have eliminated
Task Assignments(peter, spaceout, software), even though our key constraint
is already satisfied by the removal of Task Assignments(peter, meetbobs, exec)
alone. In symmetric-difference repairs, it is equally valid to satisfy a violated tgd
by removing a tuple as by adding a tuple. However, in a data exchange setting,
the target instance is initially empty, so it is natural to satisfy violated tgds by
deriving new tuples rather than by deleting existing tuples.

Our aim in this paper is to introduce and explore a new framework that gives
meaningful and non-trivial semantics to queries in data exchange, including cases
in which no solutions exist for a given source instance. At the conceptual level,
the main contribution is the introduction of the notion of an exchange-repair.
Informally, an exchange-repair of a source instance is another source instance
that differs minimally from the first, but has a solution. In turn, exchange-repairs
give rise to a natural notion of exchange-repair certain answers (in short, XR-
certain answers) for target queries in the context of data exchange. Note that if
a source instance I has a solution, then the XR-certain answers of target queries
on I coincide with the certain answers of the queries on I. If I has no solutions,
then, unlike the certain answers, the XR-certain answers are non-trivial.

The idea of using a repair-based semantics in cases where no solutions exist
was also considered by Cal̀ı et al. in the context of data integration [7]; more-
over, the semantics used in [7] was motivated by similar semantics for repairs
of inconsistent databases in [6]. However, the approach in [7] suffers from the
same problem as other exchange-then-repair approaches; for example, the target
instance J ′ is a possible world in their setting, but not in ours.

After exploring the structural properties of exchange-repairs, we focus on the
problem of computing the XR-certain answers of conjunctive queries. We show
that for schema mappings specified by source-to-target GAV (global-as-view) de-
pendencies and target egds, the XR-certain answers of a target conjunctive query
can be rewritten as the consistent answers (in the sense of standard database
repairs) of a union of source conjunctive queries over the source schema with
respect to a set of egds over the source schema, thus making it possible to use
a consistent query-answering system to compute XR-certain answers in data
exchange. In contrast, we show that this type of rewriting is not possible for
schema mappings specified by source-to-target LAV (local-as-view) dependen-
cies and target egds. We then examine the general case of schema mappings
specified by s-t tgds, a weakly acyclic set of target tgds and a set of target egds.
The main result asserts that, for such settings, the XR-certain answers of con-
junctive queries can be rewritten as the certain answers of a union of conjunctive
queries with respect to the stable models of a disjunctive logic program over a
suitable expansion of the source schema.

Due to space limitations, we will restrict ourselves to giving hints of proofs.

1 Subset-repairs would always leave the target instance empty. Superset-repairs would
fail whenever there is an egd violation equating two constants.
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2 Preliminaries

This section contains definitions of basic notions and a minimum amount of
background material. Detailed information about schema mappings and certain
answers can be found in [3, 11], and about repairs and consistent answers in
[4, 5].

Schema Mappings and Certain Answers. A tuple-generating dependency
(tgd) is an expression of the form ∀x(φ(x) → ∃yψ(x,y)), where φ(x) and ψ(x,y)
are conjunctions of atoms over some relational schema. Assume that we have
two disjoint relational schemas S and T, called the source schema and the target
schema. A source-to-target tgd (s-t tgd) is a tgd as above such that φ(x) is a
conjunction of atoms over S and ψ(x,y)) is a conjunction of atoms over T.

Tgds are also known as GLAV (global-and-local-as-view) constraints. Two
important special cases are the GAV constraints and the LAV constraints: the
former are the tgds of the form ∀x(φ(x) → P (x)) and the latter are the tgds of
the form ∀x(R(x)→ ∃yψ(x,y)), where P and R are individual relation symbols.

An equality-generating dependency (egd) is an expression of the form
∀x(φ(x) → xi = xj) with φ(x) a conjunction of atoms over a relational schema.

For the sake of readability, we will frequently drop the universal quantifiers
when writing tgds and egds.

A schema mapping is a quadruple M = (S,T, Σst, Σt), where S is a source
schema, T is a target schema, Σst is a finite set of s-t tgds, and Σt is a finite set
of target tgds and target egds (i.e., tgds and egds over the target schema).

We will use the notation GLAV, GAV, LAV, EGD to denote the classes
consisting of finite sets of, respectively, GLAV constraints, GAV constraints,
LAV constraints, and egds. If C is a class of sets of source-to-target dependencies
and D is a class of sets of target dependencies, then the notation C+D denotes
the class of all schema mappings M = (S,T, Σst, Σt) such that Σst is a member
of C and Σt is a member of D. For example, GLAV+EGD denotes the class
of all schema mappings M = (S,T, Σst, Σt) such that Σst is a finite set of s-t
tgds and Σt is a finite set of egds. Moreover, we will use the notation (D1, D2)
to denote the union of two classes D1 and D2 of sets of target dependencies.
For example, GAV+(GAV,EGD) denotes the class of all schema mappings
M = (S,T, Σst, Σt) such that Σst is a set of GAV s-t tgds and Σt is the union
of a finite set of GAV target tgds with a finite set of target egds.

Let M = (S,T, Σst, Σt) be a schema mapping. A target instance J is a
solution for a source instance I w.r.t.M if the pair (I, J) satisfiesM, i.e., (I, J)
satisfies Σst, and J satisfies Σt. A universal solution for I is a solution J for I
such that if J ′ is a solution for I, then there is a homomomorphism h from J
to J ′ that is the identity on the active domain of I. If M = (S,T, Σst, Σt) is an
arbitrary schema mapping, then a given source instance may have no solution or
it may have a solution, but no universal solution. However, if Σt is the union of
a weakly acyclic set of target tgds and a set of egds, then a solution exists if and
only if a universal solution exists. Moreover, the chase procedure can be used to
determine if, given a source instance I, a solution for I exists and, if it does, to
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actually construct a universal solution chase(I,M) for I in time polynomial in
the size of I (see [11] for details). The definition of weak acyclicity is as follows.

Definition 1. Let Σ be a set of tgds over a schema T. Construct a directed
graph, called the dependency graph, as follows:
– Nodes: For every pair (R, A) with R a relation symbol of the schema and A

an attribute of R, there is a distinct node; call such a pair (R, A) a position.
– Edges: For every tgd ∀x(φ(x) → ∃yψ(x,y)) in Σ and for every x in x that

occurs in ψ, and for every occurrence of x in φ in position (R, Ai):
1. For every occurrence of x in ψ in position (S, Bj), add an edge (R,Ai)→

(S,Bj) (if it does not already exist).
2. For every existentially quantified variable y and for every occurrence of y

in ψ in position (T , Ck), add a special edge (R,Ai) → (T,Ck) (if it does
not already exists).

We say that Σ is weakly acyclic if the dependency graph has no cycle going
through a special edge. We say that a tgd θ is weakly acyclic if the singleton set
{θ} is weakly acyclic.

WA-GLAV denotes the class of all finite weakly acyclic sets of target tgds.

The tgd ∀x∀y(E(x, y) → ∃z E(x, z)) is weakly acyclic; in contrast, the tgd
∀x∀y(E(x, y) → ∃z E(y, z)) is not, because the dependency graph contains a
special self-loop. Moreover, every set of GAV tgds is weakly acyclic, since the
position graph contains no special edges in this case.

We will also make heavy use of the notion of rank. Let Σ be a finite weakly
acyclic set of tgds. For every node (R,A) in the dependency graph of Σ, define
an incoming path to be any (finite or infinite) path ending in (R,A). Define
the rank of (R,A), denoted by rank(R,A), as the maximum number of special
edges on any such incoming path. Since Σ is weakly acyclic, there are no cy-
cles going through special edges; hence, rank(R,A) is finite. The rank of Σ,
denoted rank(Σ) is the maximum of rank(R,A) over all positions (R,A) in the
dependency graph of Σ.

If q is query over the target schema T and I is a source instance, then the
certain answers of q with respect to M are defined as

certain(q, I,M) =
⋂
{q(J) : J is a solution for I w.r.t. M}

Repairs and Consistent Answers. Let Σ be a set of constraints over some
relational schema. An inconsistent database is a database that violates at least
one constraint in Σ. Informally, a repair of an inconsistent database I is a
consistent database I ′ that differs from I in a “minimal” way. This notion can
be formalized in several different ways.
1. A symmetric-difference-repair of I, denoted ⊕-repair of I, is an instance I ′

that satisfiesΣ and where there is no instance I ′′ such that I⊕I ′′ ⊂ I⊕I ′ and
I ′′ satisfies Σ. Here, I ⊕ I ′ denotes the set of facts that form the symmetric
difference of the instances I and I ′.
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2. A subset-repair of I is an instance I ′ that satisfies Σ and where there is no
instance I ′′ such that I ′ ⊂ I ′′ ⊆ I and I ′′ satisfies Σ.

3. A superset-repair of I is an instance I ′ that satisfies Σ and where there is
no instance I ′′ such that I ⊃ I ′′ ⊇ I and I ′′ satisfies Σ.
Clearly, subset-repair and superset-repairs are also ⊕-repairs; however, a ⊕-

repair need not be a subset-repair or a superset-repair.
The consistent answers of a query q on I with respect to Σ are defined as:

CQA(q, I, Σ) =
⋂
{q(I ′) : I ′ is a ⊕-repair of I w.r.t. Σ}

3 The Exchange-Repair Framework

In this section, we introduce the exchange-repair framework and discuss the
structural and algorithmic properties of exchange-repairs.

Definition 2. Let M = (S,T, Σst, Σt) be a schema mapping, I a source in-
stance, and (I ′, J ′) a pair of a source instance and a target instance.
1. We say that (I ′, J ′) is a symmetric-difference exchange-repair solution (in

short, a ⊕-XR-solution) for I w.r.t. M if (I ′, J ′) satisfies M and there is no
pair of instances (I ′′, J ′′) such that I ⊕ I ′′ ⊂ I ⊕ I ′ and (I ′′, J ′′) satisfies M.

2. We say that (I ′, J ′) is a subset exchange-repair solution (in short, a subset-
XR-solution) for I with respect to M if (I ′, J ′) satisfies M and there is no
pair of instances (I ′′, J ′′) such that I ′ ⊂ I ′′ ⊆ I and (I ′′, J ′′) satisfies M.

Note that the minimality condition in the preceding definitions applies to the
source instance I ′, but not to the target instance J ′ of the pair (I ′, J ′). The
source instance I ′ of a ⊕-XR-solution (subset-XR-solution) for I is called a ⊕-
source-repair (respectively, subset source-repair) of I.

Source-repairs constitute a new notion that, in general, has different proper-
ties from those of the standard database repairs. Indeed, as mentioned earlier, a
⊕-repair need not be a subset repair. In contrast, the first result in this section
asserts that the state of affairs is different for source-repairs. Recall that, accord-
ing to the notation introduced earlier, GLAV+(WA-GLAV,EGD) denotes the
collection of all schema mappings M = (S,T, Σst, Σt) such that Σst is a finite
set of s-t tgds and Σt is the union of a finite weakly acyclic set of target tgds
with a finite set of target egds.

Theorem 1. Let M be a GLAV+(WA-GLAV,EGD) schema mapping. If I
is a source instance and (I ′, J ′) is a ⊕-XR-solution of I w.r.t. M, then (I ′, J ′)
is actually a subset-XR-solution of I w.r.t. M. Consequently, every ⊕-source-
repair of I is also a subset source-repair of I.

Proof. (Hint) We use the following property of the chase procedure: if I and
I ′ are source instances such that I ⊆ I ′, then we can chase I and I ′ with the
dependencies of M in such a way that chase(I,M) ⊆ chase(I ′,M). It follows
that if I is a source instance that has no solution w.r.t. M, then adding tuples
to I yields a source instance I ′ that also has no solution w.r.t. M. Using this
fact, it can be shown that every ⊕-XR-solution is actually a subset-XR-solution.
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From here on and in view of Theorem 1, we will use the term XR-solution to
mean subset-XR-solution; similarly, source-repair will mean subset source-repair.

Note that if M is a GLAV+(WA-GLAV,EGD) schema mapping, then
source-repairs always exist. The reason is that, since the pair (∅, ∅) trivially
satisfies M, then for every source instance I, there must exist a maximal subin-
stance I ′ of I for which a solution J ′ w.r.t. M exists; hence, (I ′, J ′) is a source
repair for I w.r.t. M.

We now claim that the following statements are true.
1. Repairs of an inconsistent result of the chase procedure are not necessarily

XR-solutions.
2. Repairs of (I, ∅) are not necessarily XR-solutions.
For the first statement, consider the pair (I, J ′) in Figure 1, where J ′ is a subset-
repair of the inconsistent result J of the chase of I. Clearly, (I, J ′) is not an XR-
solution, because J ′ is not a solution for I. For the second statement, consider
the pairs (I1, J1), (I2, J2), (I3, J3) in Figure 2, all of which are ⊕-repairs of (I, ∅).
The first two are also XR-solutions of I, but the third one is not.

It can also be shown that XR-solutions are not necessarily ⊕-repairs of (I, ∅).
We now describe an important case in which XR-solutions are ⊕-repairs of (I, ∅).
For this, we recall the notion of a core universal solution from [11]. By definition,
a core universal solution is a universal solution that has no homomorphism to a
proper subinstance. If a universal solution exists, then a core universal solution
also exists. Moreover, core universal solutions are unique up to isomorphism.

Proposition 1. Let M be a GLAV+(WA-GLAV,EGD) schema mapping. If
I is source instance and (I ′, J ′) is an XR-solution for I w.r.t. M such that J ′

is a core universal solution for I ′ w.r.t. M, then (I ′, J ′) is a ⊕-repair of (I, ∅)
w.r.t. Σst ∪Σt.

Next, we present the second key notion in the exchange-repair framework.

Definition 3. Let M = (S,T, Σst, Σt) be a schema mapping and q a query
over the target schema T. If I is a source instance, then the XR-certain answers
of q on I w.r.t. M is the set

XR-certain(q, I,M) =
⋂
{q(J ′) : (I ′, J ′) is an XR-solution for I}.

The next result provides a comparison of the XR-certain answers with the
consistent answers.

Proposition 2. Let M = (S,T, Σst, Σt) be a GLAV+(WA-GLAV,EGD)
schema mapping and q a conjunctive query over the target schema T. If I is
a source instance, then XR-certain(q, I,M) ⊇ CQA(q, (I, ∅), Σst ∪ Σt). More-
over, this containment may be a proper one.

The containment of the consistent answers in the XR-certain answers follows
from Proposition 1 and the properties of core universal solutions. To see that this
containment may be a proper one, consider the schema mapping M in Figure 1,
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the repairs of (I, ∅) in Figure 2, and the conjunctive query q(x, y) : ∃tTasks(x, t)∧
Stakeholders new(t, y). It is easy to verify that CQA(q, (I, ∅), Σst ∪ Σt) = ∅,
while XR-certain(q, I,M) = {(peter, bobs)}.

Let M = (S,T, Σst, Σt) be a schema mapping and q a Boolean query over T.
We consider two natural decision problems in the exchange-repair framework,
and give upper bounds for their computational complexity.

– Source-Repair Checking: Given a source instance I and a source instance
I ′ ⊆ I, is I ′ a source-repair of I w.r.t. M?

– XR-certain Query Answering: Given a source instance I, does
XR-certain(q, I,M) evaluate to true? In other words, is q(J ′) true on ev-
ery target instance J ′ for which there is a source instance I ′ such that (I ′, J ′)
is an XR-solution for I?

Theorem 2. Let M be a GLAV+(WA-GLAV,EGD) schema mapping.
1. The source-repair checking problem is in PTIME.
2. Let q be a conjunctive query over the target schema. The XR-certain query

answering problem for q is in coNP.
Moreover, there is a schema mapping specified by copy s-t tgds and target egds,
and a Boolean conjunctive query for which the XR-certain query answering prob-
lem is coNP-complete. Thus, the data complexity of the XR-certain answers for
Boolean conjunctive queries is coNP-complete.

Proof. (Hint) For the first part, given I and I ′ with I ′ ⊆ I, we use repeatedly
the chase to check that there is a solution for I ′, as well as for every extension
I ′ ∪ {t} of I ′ with a fact t in I \ I ′.

For the second part, the complement of the XR-certain answers is in NP,
because we can guess a source-repair I ′ of I, use the chase procedure to compute
chase(I,M), and then verify in polynomial time that q(chase(I,M)) is false.
For the matching lower bound, we use well known results about the consistent
answers of conjunctive queries w.r.t. key constraints [9, 12] and the easily checked
fact that if M is specified by copy s-t tgds and target egds, then the XR-certain
answers of a target query coincide with the consistent answers of the query on
the copy of the given source instance.

The preceding Theorem 2 implies that the algorithmic properties of exchange-
repairs are quite different from those of ⊕-repairs. Indeed, as shown in [1, 8],
for GLAV+(WA-GLAV,EGD) schema mappings, the ⊕-repair problem is in
coNP (and can be coNP-complete), while the data complexity of the consistent
answers of Boolean conjunctive queries is Πp

2 -complete.

4 CQA-Rewritability

In this section, we show that, for GAV+EGD schema mappings M =
(S,T, Σst, Σt), it is possible to construct a set of egds Σs over S such that
an S-instance I is consistent with Σs if and only if I has a solution w.r.t. M.



Exchange-Repairs: Managing Inconsistency in Data Exchange 149

We use this to show that XR-certain(q, I,M), for a conjunctive query q, co-
incides with subset-CQA(qs, I, Σs), where qs is a union of conjunctive queries.
Thus, we can employ tools for consistent query answering with respect to egds,
in order to compute XR-certain answers for GAV+EGD schema mappings.

We will use the well-known technique of GAV unfolding (see, e.g., [17]). Let
M = (S,T, Σst, Σt) be a GAV+EGD schema mapping. For each k-ary target
relation T ∈ T, let qt be the set of all conjunctive queries q(x1, . . . , xk) =
∃y(φ(y) ∧ x1 = yi1 ∧ · · · ∧ xk = yik), for φ(y) → T (yi1 , . . . , yik) a GAV tgd
belonging to Σst (recall that we frequently omit universal quantifiers in our
notation, for the sake of readability).

A GAV unfolding of a conjunctive query q(z) overT w.r.t. Σst is a conjunctive
query over S obtained by replacing each occurrence of a target atom T (z′) in
q(z) with one of the conjunctive queries in qt (substituting variables from z′ for
x1, . . . , xk, and pulling existential quantifiers out to the front of the formula).

Similarly, we define a GAV unfolding of an egd φ(x)→ xk = xl over T w.r.t.
Σst to be an egd over S obtained by replacing each occurrence of a target atom
T (z′) in φ(x) by one of the conjunctive queries in qt (substituting variables
from z′ for x1, . . . , xk, and pulling existential quantifiers out to the front of the
formula as needed, where they become universal quantifiers).

Theorem 3. Let M = (S,T, Σst, Σt) be a GAV+EGD schema mapping, and
let Σs be the set of all GAV unfoldings of egds in Σt w.r.t. Σst. Let I be an
S-instance.
1. I satisfies Σs if and only if I has a solution w.r.t. M.
2. The subset-repairs of I w.r.t. Σs are the source repairs of I w.r.t. M.
3. For each conjunctive query q over T, we have that XR-certain(q, I,M) =

CQA(qs, I, Σs), where qs is the union of GAV-unfoldings of q w.r.t. Σst.

The following result tells us that Theorem 3 cannot be extended to schema
mappings containing LAV s-t tgds.

Theorem 4. Consider the LAV+EGD schema mapping M = (S,T, Σst, Σt),
where
– S = {R} and T = {T },
– Σst = {R(x, y)→ ∃u T (x, u) ∧ T (y, u)}, and
– Σt = {T (x, y) ∧ T (x, z)→ y = z}.
Consider the query q(x, y) = ∃z. T (x, z) ∧ T (y, z) over T. There does not exist
a UCQ qs over S and a set of universal first-order sentences (in particular,
egds) Σs such that, for every instance I, we have that XR-certain(q, I,M) =
CQA(qs, I, Σs).

The proof makes use of the fact that XR-certain(q, I,M) defines a reachability
query: (a, b) ∈ certain(q, I,M) if and only if b is reachable from a along an
undirected R-path in I.

It is worth noting that the schema mappingM in the statement of Theorem 4
is such that every source instance has a solution, and hence “XR-certain” could
be replaced by “certain” in the statement.
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5 DLP-Rewritability

We saw in the previous section that the applicability of the CQA-rewriting ap-
proach is limited to GAV+EGD schema mappings. In this section, we consider
another approach to computing XR-certain answers, based on a reduction to
the problem of computing certain answers over the stable models of a disjunc-
tive logic program. Our reduction is applicable to GLAV+(WA-GLAV,EGD)
schema mappings. First, we reduce the case of GLAV+(WA-GLAV,EGD)
schema mappings to the case of GAV+(GAV,EGD) schema mappings.

Theorem 5. From a GLAV+(WA-GLAV,EGD) schema mapping M we
can construct a GAV+(GAV,EGD) schema mapping M̂ such that, from a
conjunctive query q, we can construct a union of conjunctive queries q̂ with
XR-certain(q, I,M) = XR-certain(q̂, I,M̂).

The proof of Theorem 5 is given in Section 6. Theorem 5 and Theorem 4
together imply that the CQA-rewriting approach studied in Section 4 is, in
general, not applicable to GAV+(GAV,EGD) schema mappings and unions of
conjunctive queries. In fact, a direct argument can be used to show that the same
holds even for conjunctive queries. To address this problem, we will now consider
a different approach to computing XR-certain answers, using disjunctive logic
programs.

Stable models of disjunctive logic programs have been well-studied as a way to
compute database repairs ([19] provides thorough treatment). In [7], Cal̀ı et al.
give an encoding of their loosely-sound semantics for data integration as a dis-
junctive logic program. Their encoding is applicable for non-key-conflicting sets
of constraints, a structural condition which is orthogonal to weak acyclicity, and
which eliminates the utility of named nulls. Although their semantics involves a
similar notion of minimality to the one in exchange-repairs, their setting differs
sufficiently from ours that we consider this result to be complementary.

Fix a domain Const. A disjunctive logic program (DLP) Π over a schema R
is a finite collection of rules of the form

α1 ∨ . . . ∨ αn ← β1, . . . , βm,¬γ1, . . . ,¬γk.

where n,m, k ≥ 0 and α1, . . . , αn, β1, . . . , βm, γ1, . . . , γk are atoms formed from
the relations in R∪ {=}, using the constants in Const and first-order variables.
A DLP is said to be positive if it consists of rules that do not contain negated
atoms except possibly for inequalities. A DLP is said to be ground if it consists
of rules that do not contain any first-order variables. A model of Π is an R-
instance I over domain Const that satisfies all rules of Π (viewed as universally
quantified first-order sentences). A minimal model of Π is a model M of Π
such that there does not exist a model M ′ of Π where the facts of M ′ form
a strict subset of the facts of M . More generally, for subsets Rm,Rf ⊆ R, an
〈Rm,Rf〉-minimal model of Π is a model M of Π such that there does not exist
a model M ′ of Π where the facts of M ′ involving relations from Rm form a
strict subset of the facts of M involving relations from Rm, and the set of facts
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of M ′ involving relations from Rf is equal to the set of facts of M involving
relations from Rf [15]. Although minimal models are a well-behaved semantics
for positive DLPs, it is not well suited for programs with negations. The stable
model semantics is a widely used semantics of DLPs that are not necessarily
positive. For positive DLPs, it coincides with the minimal model semantics.
For a ground DLP Π over a schema R and an R-instance M over the domain
Const, the reduct ΠM of Π with respect to M is the DLP containing, for each
rule α1∨ . . .∨αn ← β1, . . . , βm,¬γ1, . . . ,¬γk, with M �|= γi for all i ≤ k, the rule
α1 ∨ . . .∨αn ← β1, . . . , βm. A stable model of a ground DLP Π is an R-instance
M over the domain Const such that M is a minimal model of the reduct ΠM .
See [13] for more details.

In this section, we will construct positive DLP programs whose 〈Rm,Rf〉-
minimal models correspond to XR-solutions. In the light of Theorem 5, we may
restrict our attention to GAV+(GAV,EGD) schema mappings.

Theorem 6. Given a GAV+(GAV,EGD) schema mapping M =
(S,T, Σst, Σt), we can construct in linear time a positive DLP Π over a
schema R that contains S ∪ T, and subsets Rm,Rf ⊆ R, such that, for every
union q of conjunctive queries over T, and for every S-instance I, we have that
XR-certain(q, I,M) =

⋂
{q(M) |M is an 〈Rm,Rf〉-minimal model of Π ∪ I}.

In [15] it was shown that a positive ground DLP Π over a schema R, together
with subset Rm,Rf ⊆ R, can be translated in linear time to a (not necessarily
positive) DLP Π ′ over a possibly larger schema that includes R, such that
there is a bijection between the 〈Rm,Rf〉-minimal models of Π and the stable
models of Π ′, where every pair of instances that stand in the bijection agree
on all facts over the schema R. This shows that DLP reasoners based on the
stable model semantics, such as DLV [18, 2], can be used to evaluate positive
ground disjunctive logic programs under the 〈Rm,Rf〉-minimal model semantics.
Although stated only for ground programs in [15], this technique can be used
for arbitrary positive DLPs, through grounding. Note that, when a program is
grounded, inequalities are reduced to � or ⊥.

Proof (Hint). We construct a disjunctive logic program Πxrc(M) for a
GAV+(GAV,EGD) schema mapping M = (S,T, Σst, Σt) as follows:
1. For each source relation S with arity n, add the rules

Sk(x1, . . . , xn) ∨ Sd(x1, . . . , xn)← S(x1, . . . , xn)
⊥ ← Sk(x1, . . . , xn), Sd(x1, . . . , xn)

S(x1, . . . , xn)← Sk(x1, . . . , xn)

where Sk and Sd represent the kept and deleted atoms of S, respectively.
2. For each st-tgd φ(x)→ T (x′) in Σst, add the rule

T (x′)← α1, . . . , αm

where α1, . . . , αm are the atoms in φ(x), in which each relation S has been
uniformly replaced by Sk.
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3. For each tgd φ(x) → T (x′) in Σt, add the rule

T (x)← α1, . . . , αm

where α1, . . . , αm are the atoms in φ(x).
4. For each egd φ(x)→ x1 = x2, where x1, x2 ∈ x, add the rule

⊥ ← α1, . . . , αm, x1 �= x2,

where α1, . . . , αm are the atoms in φ(x).
We minimize w.r.t. Rm = {Sd | S ∈ S}, and fix Rf = {S | S ∈ S}. The

disjunctive logic program for M, denoted Πxrc(M), is a straightforward encod-
ing of the constraints in Σst and Σt as disjunctive logic rules over an indefinite
view of the source instance. Since the source instance is fixed, the rules of the
form S(x1, . . . , xn) ← Sk(x1, . . . , xn) in Πxrc(M) force the kept atoms to be
a sub-instance of the source instance. Notice that egds are encoded as denial
constraints, and that disjunction is used only to non-deterministically choose a
subset of the source instance.

We first show that the restriction of every 〈Rm,Rf〉-minimal model of
Πxrc(M) ∪ I to the schema {Sk | S ∈ S} ∪ T constitutes an exchange-repair
solution. We then show that for every exchange-repair solution, we can build a
corresponding 〈Rm,Rf〉-minimal model of Πxrc(M) ∪ I.

6 From GLAV+(WA-GLAV, EGD) to GAV+(GAV, EGD)

We will now proceed with the proof of Theorem 5, showing how to trans-
late GLAV+(WA-GLAV,EGD) schema mappings to GAV+(GAV,EGD)
schema mappings. The translation involves the concepts of skolemization and
skeletons, a first-order representation of second-order terms, similar to [10].

Let Θ be a collection of function symbols, each having a designated arity.
By a Θ-term, we mean an expression built up from variables and/or constants
using the function symbols in Θ, such that the arity of the function symbols
is respected. We will omit Θ from the notation, when it is understood from
context. The depth of a term is the maximal nesting of function symbols, with
depth(d) = 0 for d a constant or variable. The skeleton of a term is the expression
obtained by replacing all constants and variables by •, where • is a fixed symbol
that does not belong to Θ. Thus, for example, the skeleton of f(g(x, y), z) is
f(g(•, •), •). The arity of a skeleton s, denoted by arity(s), is the number of
occurrences of •, and the depth of a skeleton is defined in the same way as
for terms. If s, s′1, . . . , s

′
k are skeletons with arity(s) = k, then we denote by

s(s′1, . . . , s
′
k) the skeleton of arity arity(s′1)+· · ·+arity(s′k) obtained by replacing,

for each i ≤ k, the i-th occurrence of • in s by s′i.
Consider now a tgd of the form ∀x(φ(x) → ∃yψ(x,y)) with x = x1, . . . , xn

and y = y1, . . . , ym, and for each i ≤ m, let fi be a corresponding fresh
n-ary function symbol. By the skolemizations of this tgd, we will mean the
formulas of the form ∀x(φ(x) → α[f1(x)/y1, . . . , fm(x)/ym]) where α is a con-
junct of ψ. Here, α[f1(x)/y1, . . . , fm(x)/ym] refers to the result of replacing,
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in α, each variable yi by the term fi(x). Thus, for example, the skolemizations
of ∀xy(R(x, y) → ∃z(S(x, z) ∧ T (y, z))) are ∀xy(R(x, y) → S(x, f(x, y))) and
∀xy(R(x, y)→ T (y, f(x, y))).

Definition 4. Let M = (S,T, Σst, Σt) be a GLAV+(WA-GLAV,EGD)
schema mapping with rank r, and let ΣSko

st and ΣSko
t be the sets of skolem-

izations of the tgds in Σst and Σt, respectively, using a finite set of function
symbols Θ. The skeleton rewriting of M is the GAV+(GAV,EGD) schema
mapping M̂ = (S, T̂, Σ̂st, Σ̂t

1 ∪ Σ̂t
2 ∪ Σ̂t

3 ∪ Σ̂t
4) of M given by:

– T̂ = {Rs1,...,sn | R ∈ T and each si is a Θ-skeleton of depth at most r},
where the arity of R is n and the arity of Rs1,...,sn is arity(s1)+· · ·+arity(sn).

– Σ̂st = {φ(x) → Tt1,...,tn(x1, . . . ,xn) | φ(x) → T (t1(x1), . . . , tn(xn)) ∈
Σst

Sko}.
– Σ̂t

1 consists of all tgds of the form

φs1,...,sm(y1, . . . ,ym)→ Ts′1,...,s
′
n
(ȳ1, . . . , ȳn)

for φ(x) → T (t1(x1), . . . tn(xn) ∈ Σt
Sko with x = x1, . . . , xm, where

s1, . . . , sm are Θ-skeletons of depth at most r; each yi is a sequence of
arity(si) fresh variables; φs1,...,sm(y1, . . . ,ym) is obtained from φ by replac-
ing each atom R(xi1 , . . . , xik) by Rsi1 ,...,sik

(yi1 , . . . ,yik); s
′
i is a Θ-skeleton

of depth at most r such that s′i = ti(s1, . . . , sm); and ȳi = (yj1 , . . . ,yjk) for
xi = xj1 , . . . , xjk .

– Σ̂t
2 consists of all tgds of the form

φs1,...,sm(y, . . . ,ym)→ EQsi,sj (yi,yj)

for φ(x) → xi = xj ∈ Σt or φ(x) → xj = xi ∈ Σt, with x = x1, . . . , xm,
where s1, . . . , sm are Θ-skeletons of depth at most r, si �= •, and each yk is a
sequence of arity(sk) fresh variables. Note that, if si and sj both have depth

at least 1, then Σ̂t
2 contains also the above tgd with i, j interchanged.

– Σ̂t
3 consists of all tgds of the form

φs1,...,sm(y, . . . ,ym)→ yi = yj

for φ(x) → xi = xj ∈ Σt with x = x1, . . . , xm, where s1, . . . , sm are Θ-
skeletons of depth at most r, si = sj = •, and each yk is a sequence of
arity(sk) fresh variables.

– Σ̂t
4 consists of all tgds of the form

Rs1,...,sn(y1, . . . ,yn) ∧ EQsk,s′(yk, z)→
Rs1,...,sk−1,s′,sk+1,...,sn(y1, . . . ,yk−1, z,yk+1, . . . ,yn)

where R ∈ T ; s1, . . . , sn, s
′ are Θ-skeletons of depth at most r, with n = |R|,

depth(sk) > 0; each yi is a sequence of arity(si) fresh variables, and z is a
sequence of arity(s′) fresh variables.
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In addition, for each conjunctive query q(x) = ∃yψ(x,y) over T with x =
x1, . . . , xn and y = y1, . . . , ym, we denote by q̂(x) the union of conjunctive queries

over T̂ of the form ∃z1 . . . zmψs1,...,sn,s′1,...,s
′
m
(x1, . . . , xn, z1, . . . , zm), where s1 =

. . . = sn = •; s′1, . . . , s′m are Θ-skeletons of depth at most r; and each zi is a
sequence of fresh variables of length arity(s′i).

Theorem 7. If M = (S,T, Σst, Σt) is a GLAV+(WA-GLAV,EGD) schema
mapping and q a conjunctive query over T, then XR-certain(q, I,M) =
XR-certain(q̂, I,M̂), where M̂ and q̂ are the skeleton rewriting of M and q.

The proof of Theorem 7 uses a variant of the chase procedure (cf. [11]), which
we call exhaustive chase, and which bears similarity to the oblivious Skolem chase
introduced in [20]. Distinguishing features of the exhaustive chase procedure are
that (i) skolem terms are used to represent labeled nulls, (ii) when an egd is
applied and an equality between two null values, or between a null value and a
constant, is derived, appropriate substitutions are applied and the resulting facts
are added to the chase instance without removing any previously derived facts ;
(iii) when an egd is applied and an equality between two constants is derived,
the chase continues, and violations are reported only at the end of the process.

It is worth noting that, when a source instance I has a solution w.r.t. a
schema mapping M and the exhaustive chase terminates successfully on input
I, the output J may not be a solution for I. However, it can be shown that J is
homomorphically equivalent to a solution, and, in fact, to a universal solution.
Moreover, the exhaustive chase terminates whenever the standard chase (as con-
sidered in [11]) terminates. In particular, the result of the exhaustive chase can
be used to compute the certain answers of a conjunctive query over the target.

The target instance that is the result of chasing a source instance I w.r.t. the
skeleton rewriting M̂ of a schema mapping M can be related, in a precise way,
to the result of the exhaustive chase of I w.r.t.M. Specifically, an instance I has
a solution w.r.t. a schema mapping M if and only if it has a solution w.r.t. M̂,
and furthermore there is a bijection between the respective chase results.

The proof of Theorem 7 uses the above facts about the exhaustive chase and
its relationship to the standard chase, as well as its close relationship to skeleton
rewritings, in order to show that XR-certain(q, I,M) = XR-certain(q̂, I,M̂).

7 Concluding Remarks

In this paper, we introduced the framework of exchange-repairs and explored
the XR-certain answers as an alternative non-trivial semantics of queries in the
context of data exchange. Exchange-repair semantics differ from other proposals
for handling inconsistencies in data exchange in that, conceptually, the inconsis-
tencies are repaired at the source rather than the target. This allows the shared
origins of target facts to be reflected in the answers to target queries.

This framework brings together data exchange, database repairs, and disjunc-
tive logic programming, thus enhancing the interaction between three different
areas of research. Moreover, the results reported here pave the way for using DLP
solvers, such as DLV, for query answering under the exchange-repair semantics.
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Abstract. In OBDA an ontology defines a high level global vocabulary for user
queries, and such vocabulary is mapped to (typically relational) databases. Ex-
tending this paradigm with rules, e.g., expressed in SWRL or RIF, boosts the ex-
pressivity of the model and the reasoning ability to take into account features such
as recursion and n-ary predicates. We consider evaluation of SPARQL queries un-
der rules with linear recursion, which in principle is carried out by a 2-phase trans-
lation to SQL: (1) The SPARQL query, together with the RIF/SWRL rules, and
the mappings is translated to a Datalog program, possibly with linear recursion;
(2) The Datalog program is converted to SQL by using recursive common table
expressions. Since a naive implementation of this translation generates inefficient
SQL code, we propose several optimisations to make the approach scalable. We
implement and evaluate the techniques presented here in the Ontop system. To
the best of our knowledge, this results in the first system supporting all of the fol-
lowing W3C standards: the OWL 2 QL ontology language, R2RML mappings,
SWRL rules with linear recursion, and SPARQL queries. The preliminary but en-
couraging experimental results on the NPD benchmark show that our approach is
scalable, provided optimisations are applied.

1 Introduction

In Ontology Based Data Access (OBDA) [5], the objective is to access data trough a
conceptual layer. Usually, this conceptual layer is expressed in the form of an OWL or
RDFS ontology, and the data is stored in relational databases. The terms in the concep-
tual layer are mapped to the data layer using so-called globas-as-view (GAV) mappings,
associating to each element of the conceptual layer a (possibly complex) query over the
data sources. GAV mappings have been described as Datalog rules in the literature [17]
and formalized in the R2RML W3C standard [8]. Independently of the mapping lan-
guage, these rules entail a virtual RDF graph that uses the ontology vocabulary. This
virtual graph can then be queried using an RDF query language such as SPARQL.

There are several approaches for query answering in the context of OBDA, and a
number of techniques have been proposed [17,16,13,21,9,3]. One of such techniques,
and the focus of this paper, is query answering by query rewriting. That is, answer
the queries posed by the user (e.g., SPARQL queries) by translating them into queries
over the database (e.g., SQL). This kind of technique has several desirable features;
notably, since all data remains in the original source there is no redundancy, the system
immediately reflects any changes in the data, well-known optimizations for relational
databases can be used, etc. It has been shown that through this technique one can obtain
performance comparable or sometimes superior to other approaches when the ontology
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language is restricted to OWL 2 QL [22]. While the OWL 2 QL specification (which
subsumes RDFS in expressive power) offers a good balance between expressivity and
performance, there are many scenarios where this expressive power is not enough.

As a motivating example and to illustrate the main concepts in this paper, suppose
we have a (virtual) RDF graph over a database with information about direct flights
between locations and their respective cost. Suppose we have a flight relation in the
database, and we want to find out all the possible (direct and non-direct) routes between
two locations such that the total cost is less than 100 Euros. This problem is a particular
instance of the well-known reachability problem, where we need to be able to compute
the transitive closure over the flight relation respecting the constraint on the flight
cost. While SPARQL 1.1 provides path expressions that can be used to express the
transitive closure of a property, it may be cumbersome and prone to errors, especially
in the presence of path constraints such as the cost in our example.

Computational complexity results show that unless we limit the form of the allowed
rules, on-the-fly query answering by rewriting into SQL Select-Project-Join (SPJ)
queries is not possible [6,2]. However, as target language for query rewriting, typically
only a fragment of the expressive power of SQL99 has been considered, namely unions
of SPJ SQL queries. We propose here to go beyond this expressive power, and we advo-
cate the use of SQL99’s Common Table Expressions (CTEs) to obtain a form of linear
recursion in the rewriting target language. In this way, we can deal with recursive rules
at the level of the ontology, and can reuse existing query rewriting optimisations devel-
oped for OBDA to provide efficient query rewriting into SQL99. The languages that we
target are those that are used more extensively in the context of OBDA for Semantic
Web application, i.e., RIF and SWRL as rule language, SPARQL 1.0 as query language,
and R2RML as relational databases to RDF mapping language.

The contributions of this paper can be summarized as follows: (i) We provide trans-
lations from SWRL, R2RML, and SPARQL into relational algebra extended with a
fixed-point operator that can be expressed in SQL99’s Common Table Expressions
(CTEs); (ii) We show how to extend existing OBDA optimisation techniques that have
been proven effective in the OWL 2 QL setting to this new context. In particular, we
show that so called T-mappings for recursive programs exist and how to construct them.
(iii) We provide an implementation of such technique in the open source OBDA system
Ontop, making it the first system of its kind to support all the following W3C recom-
mendations: OWL 2 QL, R2RML, SPARQL, and SWRL; (iv) We provide a preliminary
evaluation of the techniques using an extension of the NPD benchmark (a recently devel-
oped OWL 2 QL benchmark) with rules, and show that the proposed solution competes
and sometimes outperforms existing triple stores.

2 Preliminaries

2.1 RDF

The Resource Description Framework (RDF) is a standard model for data interchange
on the Web [15]. The language of RDF contains the following pairwise disjoint and
countably infinite sets of symbols: I for IRIs, L for RDF literals, and B for blank nodes.
RDF terms are elements of the set T = I∪B∪L. An RDF knowledge base (also called
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RDF graph) is a collection of triples of the form (s, p, o), where s ∈ I, p ∈ I ∪ B, and
o ∈ T. A triple (s, p, o) intuitively expresses that s and o are related by p; when p is the
special role rdf:type, the triple (s, rdf:type, o) means that s is an instance of o.

It is sometimes convenient to define conversions between RDF graphs and sets of
(Datalog) facts. Thus, given an RDF graph G, the corresponding set of Datalog facts is:

A(G) = {o(s) | (s, rdf:type, o) ∈ G} ∪ {p(s, o) | (s, p, o) ∈ G, p �= rdf:type}

And given a set A of facts, the corresponding RDF graph is:

G(A) = {(s, rdf:type, o) | o(s) ∈ A} ∪ {(s, p, o) | p(s, o) ∈ A}

Note that G(A) discards the facts that are not unary or binary.

2.2 SPARQL

SPARQL is the standard RDF query language. For formal purposes we will use the al-
gebraic syntax of SPARQL similar to the one in [18] and defined in the standard1. How-
ever, to ease the understanding, we will often use graph patterns (the usual SPARQL
syntax) in the examples. The SPARQL language that we consider shares with RDF
the set of symbols: constants, blank nodes, IRIs, and literals. In addition, it adds a
countably infinite set V of variables. The SPARQL algebra is constituted by the fol-
lowing graph pattern operators (written using prefix notation): BGP (basic graph pat-
tern), Join , LeftJoin , Filter , and Union . A basic graph pattern is a statement of the
form:BGP(s, p, o). In the standard, a BGP can contain several triples, but since we
include here the join operator, it suffices to view BGPs as the result of Join of its
constituent triple patterns. Observe that the only difference between blank nodes and
variables in BGPs, is that the former do not occur in solutions. So, to ease the presen-
tation, we assume that BGPs contain no blank nodes. Algebra operators can be nested
freely. Each of these operators returns the result of the sub-query it describes.

Definition 1 (SPARQL Query). A SPARQL query is a pair (V, P ), where V is a set
of variables, and P is a SPARQL algebra expression in which all variables of V occur.

We will often omit V when it is understood from the context . A substitution, θ, is a
partial function θ : V #→ T. The domain of θ, denoted by dom(θ), is the subset of V
where θ is defined. Here we write substitutions using postfix notation. When a query
(V, P ) is evaluated, the result is a set of substitutions whose domain is contained in
V . For space reasons, we omit the semantics of SPARQL, and refer to [11] for the
specification of how to compute the answer of a query Q over an RDF graph G, which
we denote as �Q�G.

Example 1 (Flights, continued). Consider the flight example in the introduction. The
low cost flights from Bolzano can be retrieved by the query:

1 http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra

http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra
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Select ?x Where {
?x :tripPlanFrom :Bolzano . ?x :tripPlanTo ?y .
?x :tripPlanPrice ?z . Filter(?z < 100)

}

The corresponding SPARQL algebra expression is as follows:

Filter (?z < 100)(
Join(BGP(?x :tripPlanFrom :Bolzano .)
Join(BGP(?x :tripPlanTo ?y .) BGP(?x :tripPlanPrice ?z .))))

2.3 Rules: RIF and SWRL

We describe now two important rule languages, SWRL and RIF, and the semantics of
their combination with RDF graphs.

The Semantic Web Rule Language (SWRL) is a widely used Semantic Web language
combining a DL ontology component with rules2. Notice that the SWRL language al-
lows only for the use of unary and binary predicates. SWRL is implemented in many
systems, such as, Pellet, Stardog, and HermiT.

The Rule Interchange Format (RIF) is a W3C recommendation [12] defining a lan-
guage for expressing rules. The standard RIF dialects are Core, BLD, and PRD. RIF-
Core provides “safe” positive Datalog with built-ins; RIF-BLD (Basic Logic Dialect)
is positive Horn logic, with equality and built-ins; RIF-PRD (Production Rules Di-
alect) adds a notion of forward-chaining rules, where a rule fires and then performs
some action. In this paper we focus on RIF-Core [4], which is equivalent to Datalog
without negation, but supports an F-Logic style frame-like syntax: s[p1 → o1, p2 →
o2, . . . , pn → on] is a shorthand for the conjunction of atoms

∧
pi=rdf:type oi(s) ∧∧

pi �=rdf:type pi(s, oi). Observe that the RIF language allows for additional n-ary Dat-
alog predicates besides the unary concept names and binary role names from the RDF
vocabulary. In this paper, we make the restriction that variables cannot be used in the
place of the predicates. For instance, neither s[?p → o] nor s[rdf:type →?o] are al-
lowed.

For the sake of simplicity, in the following we will use Datalog notation, where
(SWRL or RIF) rules are simply written as

l0 :- l1, . . . , lm

where each li is an atom. Therefore we refer to a set of rules as Datalog rules. Recall
that a Datalog program Π that does not contain negation has a unique minimal model,
which can be computed via a repeated exhaustive application of the rules in it in a
bottom-up fashion [14]. We denote such model, MM(Π).

An RDF-rule combination is a pair (G,Π), where G is an RDF graph and Π is a set
of Datalog rules.

Definition 2. The RDF graph induced by an RDF-rule combination (G,Π) is defined
as G(MM(A(G) ∪Π)).

2 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/
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Example 2 (Example 1, continued). The following rules model the predicates plan,
representing the transitive closure of flights, including the total price of the trip, and
tripPlanFrom/To/Price, which project plan into triples:

plan(from, to, price, plan url) :- flightFrom(fid, from), flightTo(fid, to),
flightPrice(fid, price),
plan url = CONCAT("http://flight/",fid)

plan(from, to, price, plan url) :- plan(from, to1 , price1 , plan url1 ),
flightFrom(fid , to1 ), flightTo(fid , to),
flightPrice(fid , price2 ),
price = price1 + price2 ,
plan url = CONCACT(plan url1 , "/", fid)

tripPlanFrom(plan url, from) :- plan(from, to, price, plan url)
tripPlanTo(plan url, to) :- plan(from, to, price, plan url)
tripPlanPrice(plan url, price) :- plan(from, to, price, plan url)

Observe that rules not only boost the modelling capabilities by adding recursion, but
also allow for a more elegant and succinct representation of the domain using n-ary
predicates.

2.4 SPARQL and Rules: Entailment Regime

The RIF entailment regime specifies how RIF entailment can be used to redefine the
evaluation of basic graph patterns. The evaluation of complex clauses is computed by
combining already computed solutions in the usual way. Therefore, in this section we
can restrict the attention to queries that consist of a single BGP.

The semantics provided in [10] is defined in terms of pairs of RIF and RDF interpre-
tations. These models are then used to define satisfiability and entailment in the usual
way. Combined entailment extends both entailment in RIF and entailment in RDF. To
ease the presentation, we will present a simplified version of such semantics based on
Datalog models seen as RDF graphs (c.f. Section 2.1).

Definition 3. Let Q be a BGP, G an RDF graph, and Π a set of rules. The evaluation
of Q over G and Π , denoted �Q�G,Π , is defined as the evaluation of Q over the induced
RDF graph of (G,Π), that is

�Q�G,Π = �Q�G(MM(A(G)∪Π)).

Example 3 (Example 2, continued). Suppose we have the following triples in our RDF
graph:

AF22 :flightFrom :Bolzano . AF23 :flightTo :Dublin .
AF22 :flightTo :Milano . AF22 :flightPrice 45 .
AF23 :flightFrom :Milano . AF23 :flightPrice 45 .

It is easy to see that these triples, together with the rules in Example 2 “extend” the
original RDF with the following triples:

http://flight/AF22/AF23 :tripPlanFrom :Bolzano .
http://flight/AF22/AF23 :tripPlanTo :Dublin .
http://flight/AF22/AF23 :tripPlanPrice 90 .
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rr:tripleMap rr:SubjectMap

rr:LogicalTable

rr:PredicateObjectMap

IRI

rr:PredicateMap

rr:ObjectMap

rr:logicalTable

rr:subjectMap

rr:predicateObjectMap

rr:class

rr:predicateMap

rr:objectMap

*

*

+

+

Fig. 1. A well formed R2RML mapping node

This implies that we get the following two substitutions by evaluating the query in
Example 1: {x #→ http://flight/AF22}, {x #→ http://flight/AF22/AF23}.

2.5 R2RML: Mapping Databases to RDF

R2RML is a W3C standard [8] defining a language for mapping relational databases
into RDF data. Such mappings expose the relational data as RDF triples, using a struc-
ture and vocabulary chosen by the mapping author.

An R2RML mapping is expressed as an RDF graph (in Turtle syntax), where a well-
formed mapping consists of one or more trees called triple maps with a structure as
shown in Figure 1. Each tree has a root node, called triple map node, which is linked to
exactly one logical table node, one subject map node and one or more predicate object
map nodes. Intuitively, each triple map states how to construct a set of triples (subject,
predicate, object) using the information contained in the logical table (specified as an
SQL query).

The R2RML syntax is rather verbose, therefore, due to the space limitations, in this
paper we represent triple maps using standard Datalog rules of the form:

predicate(subject , object) :- body concept(subject) :- body

where body is a conjunction of atoms that refers to the database relations, possibly
making use of auxiliary relations representing the SQL query of the mapping, when the
semantics of such query cannot be captured in Datalog. For the formal translation from
R2RML to Datalog, we refer to [23].

Example 4 (Example 2, continued). We present the R2RML rules mapping a relational
database to the relations flightFrom and flightPrice. Recall that the relations
tripPlanFrom, tripPlanTo, etc. are defined by rules. Suppose we have a table
flight in the database, with attributes: id , departure , arrival , segment , and cost .
Then the mappings are as follows:

flightFrom(id, departure) :- flight(id, departure, arrival, cost)
flightPrice(id, cost) :- flight(id, departure, arrival, cost)

Next we define the RDF graph induced by a set of mapping rules and a database.
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Definition 4 (Virtual RDF Graph via R2RML Mapping). LetM be a set of R2RML
mappings (represented in Datalog), and I a relational database instance. Then the
virtual RDF graph M(I) is defined as the RDF graph corresponding to the minimal
model of M∪ I , i.e., M(I) = G(MM(M∪ I)).

3 Answering SPARQL over Rules and Virtual RDF

In this section we describe how we translate SPARQL queries over a rule-enriched vo-
cabulary into SQL. The translation consists of two steps: (i) translation of the SPARQL
query and RIF rules into a recursive Datalog program, and (ii) generation of an SQL
query (with CTEs) from the Datalog program.

3.1 SPARQL to Recursive Datalog

The translation we present here extends the one described in [18,19,23], where the au-
thors define a translation function τ from SPARQL queries to non-recursive Datalog
programs with stratified negation. Due to space limitations, we do not provide the de-
tails of the translation τ , but illustrate it with an example, and refer to [18,19] for
its correctness. Note, in this paper we only consider BGPs corresponding to atoms in
SWRL or RIF rules; in other words, triple patterns like (t1, ?x, t2) or (t, rdf:type, ?x)
are disallowed (cf. the restrictions on RIF in Section 2.3).

Example 5. Consider the query (V, P ) in Example 1, for which we report below the
algebra expression in which we have labeled each sub-expression Pi of P .

Filter (?z < 100)( # P1

Join( # P2

BGP(?x :tripPlanFrom :Bolzano .) # P3

Join( # P4

BGP(?x :tripPlanTo ?y .) # P5

BGP(?x :tripPrice ?z .)))) # P6

The Datalog translation contains one predicate ansi representing each algebra sub-
expression Pi. The Datalog program τ(V, P ) for this query is as follows:

ans1(x) :- ans2(x, y, z), Filter(z > 100)
ans2(x, y) :- ans3(x), ans4(x, y, z)
ans3(x) :- tripPlanFrom(x, :Bolzano)
ans4(x, y, z) :- ans5(x, y), ans6(x, z)
ans5(x, y) :- tripPlanTo(x, y)
ans6(x, z) :- tripPrice(x, z)

The overall translation of a SPARQL query and a set of rules to recursive Datalog is
defined as follows.

Definition 5. Let Q = (V, P ) be a SPARQL query and Π a set of rules. We define the
translation of Q and Π to Datalog as the Datalog program μ(Q,Π) = Π ∪ τ(V, P ).
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Observe that while τ(V, P ) is not recursive, Π and therefore μ(Q,Π) might be so.

Proposition 1. Let (G,Π) be an RDF-rule combination, Q a SPARQL query, and θ a
solution mapping. Then

θ ∈ �Q�G,Π if and only if μ(Q,Π) ∪ A(G) |= ansQ(θ)

where ansQ is the predicate in μ(Q,Π) corresponding to Q.

Proof. Let Q = (V, P ). By definition, τ(V, P ) is a stratified Datalog program and we
assume that it has a stratification (S0, . . . , Sn). As Π is a positive program, clearly
(Π ∪ A(G), S0, . . . , Sn) is a stratification of μ(Q,Π) ∪ A(G). Then the following
statements are equivalent:

– θ ∈ �Q�G,Π = �Q�G(MM(A(G)∪Π))

– (By the correctness of the translation τ(V, P ) [19])
ansQ(θ) ∈ MM(τ(V, P ) ∪MM(A(G) ∪Π))

– (By the definition of GL-reduction)
ansQ(θ) ∈ MM(τ(V, P )MM(A(G)∪Π))

– (By the definition of model of a stratified Datalog program)
ansQ(θ) ∈ MM(τ(V, P ) ∪A(G) ∪Π) = MM(μ(Q,Π) ∪ A(G))

– μ(Q,Π) ∪ A(G) |= ansQ(θ) � 

Considering that R2RML mappings are represented in Datalog, we immediately ob-
tain the following result.

Corollary 1. Let Q = (V, P ) be a SPARQL query, Π a set of rules, M a set of R2RML
mappings, I a database instance, and θ a solution mapping. Then

θ ∈ �Q�M(I),Π if and only if μ(Q,Π) ∪M∪ I |= ansQ(θ)

3.2 Recursive Datalog to Recursive SQL

In this section, we show how to translate to SQL the recursive Datalog program obtained
in the previous step. Note that translation from Datalog to SQL presented in [23] does
not consider recursive rules. Here we extend such translation to handle recursion by
making use of SQL common table expressions (CTEs). We assume that the extensional
database (EDB) predicates (i.e., those not appearing in the heads of Datalog rules) are
stored in the database.

Fixpoint Operator, Linear Recursive Query and CTE. We recall first how relational
algebra can be extended with a fixpoint operator [1]. Consider an equation of the form
R = f(R), where f(R) is a relational algebra expression over R. A least fixpoint of
the equation above, denoted LFP(R = f(R)), is a relation S such that

– S = f(S)
– if R is any relation such that R = f(R), then S ⊆ R.
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In order to ensure the existence of a fixpoint (and hence of the least fixpoint), f must be
monotone.

Consider now the equation R = f(R1, . . . , Rn, R), making use of a relational
algebra expression over R and other relations. Such equation is a linear recursive ex-
pression, if R occurs exactly once in the expression f . Then, we can split f into a non-
recursive part f1 not mentioning R, and a recursive part f2, i.e., f(R1, . . . , Rn, R) =
f1(R1, . . . , Rn) ∪ f2(R1, . . . , Rn, R). In this case, LFP(R = f(R1, . . . , Rn, R)) can
be expressed using a common table expression (CTE) of SQL99:

WITH RECURSIVE R AS {
[block for base case f1]

UNION
[block for recursive case f2]

}

We remark that CTEs are already implemented in most of the commercial databases,
e.g, Postgres, MS SQL Server, Oracle, DB2, H2, HSQL.

Example 6. Suppose we have the database relation Flight (f , for short), with attributes
id , source, destination , and cost (i, s, d, c, for short) and we want to compute all the
possible routes such that the total cost is less that 100. To express this relation plan we
can use the following equation with least fixpoint operator:

plan = LFP(f∗ = πvar1(f) ∪ πvar2(ρcount(σfil (f � f∗))))

where

var1 = f.s, f.d, f.c count = (f.c+ f∗.c)/c
var2 = f.s, f∗.d, c fil = f.c+ f∗.c < 100, f.s = f∗.d

It can be expressed as the following CTE:

WITH RECURSIVE plan AS (
SELECT f.s, f.d, f.c FROM f

UNION
SELECT plan.s, f.d, f.c + plan.c AS c
FROM f, plan
WHERE f.c + plan.c < 100 AND f.s = plan.d

)

Now we proceed to explain how to translate a recursive program into a fixpoint
relation algebra expression.

The dependency graph for a Datalog program is a directed graph representing the
relation between the predicate names in a program. The set of nodes are the relation
symbols in the program. There is an arc from a node a to a node b if and only if a
appears in the body of a rule in which b appears in the head. A program is recursive if
there is a cycle in the dependency graph.

We say that a Datalog program Π is SQL99 compatible if (i) there are no cycles in
the dependency graph of Π apart from self-loops; and (ii) the recursive predicates are
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restricted to linear recursive ones. For the sake of simplicity, and ease the presentation,
we assume that non-recursive rules have the form

p(x) :- atom1(x1), . . . , atomn(xn), cond(z) (1)

where each atomi is a relational atom, and cond(z) is a conjunction of atoms over built-
in predicates. Moreover, for each recursive predicate p, there is a pair of rules defining
p of the form

p(x) :- atom0(x0), p(y), cond1(z1)
p(x) :- atom1(x1), . . . , atomn(xn), cond2(z2)

(2)

In addition, we assume that equalities between variables in the rules are made explicit
in atoms of the form x = y. Thus, there are no repeated variables in non-equality atoms.

The intuition behind the next definition is that for each predicate p of arity n in the
program, we create a relational algebra expression RA(p).

Definition 6. Let p be a predicate and Π a set of Datalog rules.

– If p is an extensional predicate, then

RA(p(x)) = p

– If p is a non-recursive intensional predicate, let Πp be the set of rules in Π defining
p. For such a rule r, which is of the form (1), let

RA(r) = σcond(RA(atom1(x1)) � · · · � RA(atomn(xn)))

where cond is the condition corresponding to the conjunction of atoms cond(z)
in (1). Then

RA(p(x)) =
⋃

r∈Πp
RA(r)

– If p is a recursive intensional predicate defined by a pair of rules of the form (2),
then

RA(p(x)) = LFP(p = σcond1
(RA(atom0(x0)) � p) ∪

σcond2
(RA(atom1(x1)) � · · · � RA(atomn(xn))))

where again cond1 and cond2 are the conditions corresponding to the conjunctions
of atoms cond1(z1) and cond2(z2) in the two rules defining p.

The next proposition shows that if the rule component of an RDF-rule combination is
SQL99 compatible, then the Datalog transformation of the combination is also SQL99
compatible.

Proposition 2. Let (G,Π) be an RDF-rule combination,Q = (V, P ) a SPARQL query,
M a set of R2RML mapping. If Π is SQL99 compatible, then μ(Q,Π) ∪ M is also
SQL99 compatible.

Proof (Sketch). This can be easily verified by checking the layered structure of
μ(Q,Π)∪M = τ(V, P )∪Π ∪M. Observe that (1) τ(V, P ) andM are non-recursive
Datalog programs, and (2) there is no arc from the head predicates of Π (resp. τ(V, P ))
to the body predicates ofM (resp. Π) in the dependency graph of μ(Q,Π)∪M. There-
fore no additional cycles in the dependency graph will be introduced except the ones
already in Π (if any).
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4 Embedding Entailments in Mappings Rules

A first naive implementation of the technique described above was unable to generate
SQL queries, due to the blowup caused by the processing of mappings, i.e., by unfold-
ing the predicates defined in the heads of mapping rules with the corresponding queries
in the bodies. Thus, it was necessary to optimize the rules and the mappings before
unfolding the query. In this section, we present two optimizations based on the key ob-
servation that we can optimize the rules together with R2RML mappings independently
of the SPARQL queries.

1. For the recursive rules, we can pre-compute the relational algebra expression (i.e.,
the recursive common table expressions (CTEs) in SQL).

2. For the non-recursive rules, we introduce a method to embed entailments into the
mapping rules.

4.1 Recursion Elimination

The presence of recursion in the Datalog representation of the SPARQL query gives
rise to a number of issues e.g., efficiently unfolding the program using SLD resolution,
and managing the different types of variables. For this reason, before generating SQL
for the whole set of rules, (i) we pre-compute CTEs for recursive predicates, making
use of the expressions in relational algebra extended with fixpoints provided in Defini-
tion 6, (ii) we eliminate the recursive rules and replace the recursive predicates by fresh
predicates; these fresh predicates are defined by cached CTEs.

4.2 T-Mappings for SWRL Rules

We introduce now an extension of the notion of T-mappings [20] to cope with SWRL
rules. T-mappings have been introduced in the context of OBDA systems in which
queries posed over an OWL 2 QL ontology that is mapped to a relational database,
are rewritten in terms of the database relations only. They allow one to embed in the
mapping assertions entailments over the data that are caused by the ontology axioms,
and thus to obtain a more efficient Datalog program. In our setting, T-mappings extend
the set of mapping to embed entailments caused by (recursive) rules into the mapping
rules. Formally:

Definition 7 (SWRL T-Mappings). Let M be a set of mappings, I a database in-
stance, and Π a set of SWRL rules. A T-mapping for Π w.r.t. M is a set MΠ of
mappings such that: (i) every triple entailed by M(I) is also entailed by MΠ(I); and
(ii) every fact entailed by Π ∪ A(M(I)) is also entailed by MΠ(I).

A T-mapping for SWRL rules can be constructed iteratively, unlike OWL 2 QL-based
T-mappings, using existing mappings to generate new mappings that take into account
the implications of the rules3. In Algorithm 1, we describe the construction process
which is similar to the classical semi-naive evaluation for Datalog programs.

3 Recall that SWRL allows only for unary and binary predicates.
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Algorithm 1. T-Mapping(Π ,M)
Input: a set Π of (SWRL) rules; a set M of R2RML mappings
Output: T-Mapping MΠ of M w.r.t. Π
ΔM ← M; MΠ ← ∅;
while ΔM �= ∅ do

MΠ ← MΠ ∪ΔM; ΔM′ ← ∅;
foreach mapping m ∈ ΔM do

foreach rule r ∈ Π do
if m and r resolves then

ΔM′ ← ΔM′ ∪ res(m,r) ; � res(m,r) is a set of
mappings

ΔM ← ΔM′;

return MΠ

Theorem 1. Let M be a set of mappings and Π a set of SWRL rules. Then there exists
always a T-mapping for Π w.r.t. M .

Proof (sketch). Let I be a database instance. The Datalog program M∪ Π ∪ I does
not contain negation, therefore, it has a unique minimal model, which can be computed
via a repeated exhaustive application of the rules in it in a bottom-up fashion.

Since the rules in M act as links between the atoms in Π and the ground facts in
I , it is clear that if a predicate A in Π does not depend on an intensional predicate
in M, every rule containing A can be removed without affecting the minimal model
of M∪ Π ∪ I . Thus, we can safely assume that every predicate in Π depends on an
intensional predicate in M. Thus, if every predicate in a rule is defined (directly or
indirectly) by mappings in M, we can always replace the predicate by its definition,
leaving in this way rules whose body uses only database relations. � 

5 Implementation

The techniques presented here are implemented in the Ontop4 system. Ontop is an open-
source project released under the Apache License, developed at the Free University of
Bozen-Bolzano and part of the core of the EU project Optique5. Ontop is available as
a plugin for Protege 4, as a SPARQL end-point, and as OWLAPI and Sesame libraries.
To the best of our knowledge, Ontop is the first system supporting all the following
W3C recommendations: OWL 2 QL, R2RML, SPARQL, and SWRL6. Support for RIF
and integration of SWRL and OWL 2 QL ontologies will be implemented in the near
future.

In Figure 2, we depict the new architecture that modifies and extends our previous
OBDA approach, by replacing OWL 2 QL with SWRL. First, during loading time, we

4 http://ontop.inf.unibz.it
5 http://www.optique-project.eu/
6 SWRL is a W3C submission, but not a W3C recommendation yet.

http://ontop.inf.unibz.it
http://www.optique-project.eu/


Rules and Ontology Based Data Access 169

SWRL Rules

Mappings M

+

T-Mappings

Datalog Π1

SPARQL q

Datalog q′

SQL q′′

data D

+

Unfolding

DB

Fig. 2. SWRL and Query processing in the Ontop system

translate the SWRL rules and the R2RML mappings into a Datalog program. This set
of rules is then optimised as described in Section 4. This process is query independent
and is performed only once when Ontop starts. Then the system translates the SPARQL
query provided by the user into another Datalog program. None of these Datalog pro-
grams is meant to be executed. They are only a formal and succinct representation of
the rules, the mappings, and the query, in a single language. Given these two Data-
log programs, we unfold the query with respect to the rules and the mappings using
SLD resolution. Once the unfolding is ready, we obtain a program whose vocabulary is
contained in the vocabulary of the datasource, and therefore can be translated to SQL.
The technique is able to deal with all aspects of the translation, including URI and
RDF Literal construction, RDF typing, and SQL optimisation. However, the current im-
plementation supports only a restricted form of queries involving recursion: SPARQL
queries with recursion must consist of a single triple involving the recursive predicate.
This preliminary implementation is meant to test performance and scalability.

6 Evaluation

To evaluate the performance and scalability of Ontop with SWRL ontologies, we
adapted the NPD benchmark. The NPD benchmark [7] is based on the Norwegian
Petroleum Directorate7 Fact Pages, which contains information regarding the petroleum
activities on the Norwegian continental shelf. We used PostgreSQL as the underlying
relational database system. The hardware consisted of an HP Proliant server with 24 In-
tel Xeon X5690 CPUs (144 cores @3.47GHz), 106GB of RAM and a 1TB 15K RPM
HD. The OS is Ubuntu 12.04 LTS.

The original benchmark comes with an OWL ontology8. In order to test our tech-
niques, we translated a fragment of this ontology into SWRL rules by (i) converting the
OWL axioms into rules whenever possible; and (ii) manually adding linear recursive
rules. The resulting SWRL ontology contains 343 concepts, 142 object properties, 238

7 http://www.npd.no/en/
8 http://sws.ifi.uio.no/project/npd-v2/

http://www.npd.no/en/
http://sws.ifi.uio.no/project/npd-v2/
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Table 1. Evaluation of Ontop on NPD benchmark

Load q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 r1

NPD Ontop 16.6 0.1 0.09 0.03 0.2 0.02 1.7 0.1 0.07 5.6 0.1 1.4 2.8 0.25
Stardog - 2.06 0.65 0.29 1.26 0.20 0.34 1.54 0.70 0.06 0.07 0.11 0.15 -

NPD Ontop 17.1 0.12 0.13 0.10 0.25 0.02 3.0 0.2 0.2 5.7 0.3 6.7 8.3 27.8
(×2) Stardog - 5.60 1.23 0.85 1.89 0.39 2.29 2.41 1.47 0.34 0.36 1.78 1.52 -

NPD Ontop 16.7 0.2 0.3 0.17 0.67 0.05 18.08 0.74 0.35 6.91 0.55 162.3 455.4 237.6
(×10) Stardog - 8.89 1.43 1.17 2.04 0.51 4.12 5.84 5.30 0.42 0.72 3.03 3.86 –

data properties, 1428 non-recursive SWRL rules, and 1 recursive rule. The R2RML file
includes 1190 mappings. The NPD query set contains 12 queries obtained by interview-
ing users of the NPD data.

We compared Ontop with the only other system (to the best of our knowledge) of-
fering SWRL reasoning over on-disk RDF/OWL storage : Stardog 2.1.3. Stardog9 is
a commercial RDF database developed by Clark&Parsia that supports SPARQL 1.1
queries and OWL 2/SWRL for reasoning. Since Stardog is a triple store, we needed
to materialize the virtual RDF graph exposed by the mappings and the database using
Ontop. In order to test the scalability w.r.t. the growth of the database, we used the
data generator described in [7] and produced several databases, the largest being ap-
proximately 10 times bigger than the original NPD database. The materialization of
NPD (x2) produced 8,485,491 RDF triples and the materialization of NPD (x10) pro-
duced 60,803,757 RDF triples. The loading of the last set of triples took around one
hour.

The results of the evaluation (in seconds) are shown in Table 1. For queries q1 to
q12, we only used the non-recursive rules and compared the performance with Stardog.
For the second group (r1), we included recursive rules, which can only be handled by
Ontop.

Discussion. The experiments show that the performance obtained with Ontop is com-
parable with that of Stardog and in most queries Ontop is faster. There are 4 queries
where Ontop performs poorly compared to Stardog. Due to space limitations, we will
analyze only one of these 4; however, the reason is the same in each case. Consider
query 12, which is a complex query that produces an SQL query with 48 unions. The
explosion in the size of the query is produced by interaction of long hierarchies below
the concepts used in the query and multiple mappings for each of these concepts. For
instance npdv:Wellbore has 24 subclasses, and npdv:name has 27 mappings defining
it. Usually just a join between these two should generate a union of 24×27 = 648 SQL
queries. Ontop manages to optimize this down to 48 unions but more work needs to be
done to get better performance. This problem is not a consequence of the presence of

9 http://stardog.com/

http://stardog.com/
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rules, but is in the very nature of the OBDA approach, and is one of the main issues to
be studied in the future. For Stardog, the situation is slightly easier as it works on the
RDF triples directly and does not need to consider mappings.

7 Conclusion

In this paper we have studied the problem of SPARQL query answering in OBDA in
the presence of rule-based ontologies. We tackle the problem by rewriting the SPARQL
queries into recursive SQLs. To this end we provided a translation from SWRL rules
into relational algebra extended with fixed-point operators that can be expressed in
SQL99’s Common Table Expressions (CTEs). We extended the existing T-mapping
optimisation technique in OBDA, proved that for every non-recursive SWRL program
there is a T-mapping, and showed how to construct it. The techniques presented in
this paper were implemented in the system Ontop. We evaluated its scalability and
compared the performance with the commercial triple store Stardog. Result shows that
most of the SQL queries produced by Ontop are of high quality, allowing fast query
answering even in the presence of big data sets and complex queries.
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grating project (IP) Optique (Scalable End-user Access to Big Data), grant agreement
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Abstract. Access to Earth Observation products remains difficult for
end users in most domains. Although various search engines have been
developed, they neither satisfy the needs of scientific communities for
advanced search of EO products, nor do they use standardized vocab-
ularies reusable from other organizations. To address this, we present
the Prod-Trees platform, a semantically-enabled search engine for EO
products enhanced with EO-netCDF, a new standard for accessing Earth
Observation products.

1 Introduction and Motivation

The demand for aerial and satellite imagery, and products derived from them
has been increasing over the years, in parallel with technological advances that
allow producing a bigger variety of data with an increasing quality and accuracy.
As a consequence of these advances, and the multiplication of deployed sensors,
the amount of Earth Observation (EO) data collected and stored has exploded.

However, access to EO products remains difficult for end users in most sci-
entific domains. Various search engines for EO products, generally accessible
through Web portals, have been developed. For example, see the interfaces of-
fered by the European Space Agency portal for accessing data of Copernicus, the
new satellite programme of the European Union1 or the EOWEB portal of the
German Aerospace Center (DLR)2. Typically these search engines allow search-
ing for EO products by selecting some high level categories (e.g., the mission
from which the product was generated, the satellite instrument that was used
etc.) and specifying basic geographical and temporal filtering criteria. Although
this might suit the needs of very advanced users who know exactly what dataset

� This work was supported by the Prod-Trees project funded by ESA ESRIN.
1 http://gmesdata.esa.int/web/gsc/home
2 https://centaurus.caf.dlr.de:8443/eoweb-ng/template/default/welcome/

entryPage.vm
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they are looking for, other scientific communities or the general public require
more application-oriented means to find EO products. Other related work in this
area is the RESTo framework3 (REstful Semantic search Toolkit for geOspatial),
a web interface that allows EO search through OpenSearch APIs using natural
language queries.

In this paper, we present a semantically-enabled search engine for EO products
currently under development by the project Prod-Trees funded by the European
Space Agency. The system uses semantic technologies to allow users to search
for EO products in an application-oriented way using free-text keywords (as in
search engines like Google), their own domain terms or both, in conjuction with
the well-known interfaces already available for expert users. A specific innova-
tion of the presented system is the use of a new standard called EO-netCDF,
currently under development in Prod-Trees and expected to be submitted to
OGC, for accessing EO products annotated with netCDF. netCDF is a well-
known standard consisting of set of self-describing, machine-independent data
formats and software libraries that support the creation, access, and sharing of
array-oriented scientific data.4

The Prod-Trees system has been developed using state of the art semantic
technologies developed by the partners of the project: the company Space Ap-
plications Services, the National and Kapodistrian University of Athens and the
research institute CNR.

2 The Prod-Trees Platform

The Prod-Trees platform is a semantically-enabled EO products search engine. It
allows end-users to search for EO products using filtering criteria provided by the
EO-netCDF specification and the EO vocabulary designed and implemented in
the Prod-Trees project5. Figure 1 depicts the architecture of the platform, which
partially re-uses components from the RARE platform6.

The web interface of the Prod-Trees platform allows the users to submit free-
text queries, navigate to the ontology browser, select applications terms defined
in the supported ontologies and finally, search for EO product by specifing EO-
netCDF parameters and controlled (bounding box, time, range) search criteria.
When the user has filled the search form, the Query Analyzer is responsible for
displaying a number of different interpretations for the inserted free-text. After
the user has selected the semantics she wants to be used for the search, the
backend service is called, generates one or more queries and sends them to GI-cat
through its EO-netCDF Profiler. GI-cat searches for the matching EO products
and returns back the metadata. Depending on the nature of each product (JPG,
XML, HDF, etc.), this may be either visualized on-line or downloaded on the
local system. The following paragraphs describe in more detail the components
of the Prod-Trees architecture and their interaction.
3 http://mapshup.info/resto/
4 http://www.unidata.ucar.edu/software/netcdf/
5 http://deepenandlearn.esa.int/tiki-index.php?page=Prod-Trees+Project
6 http://deepenandlearn.esa.int/tiki-index.php?page=RARE%20Project

http://mapshup.info/resto/
http://www.unidata.ucar.edu/software/netcdf/
http://deepenandlearn.esa.int/tiki-index.php?page=Prod-Trees+Project
http://deepenandlearn.esa.int/tiki-index.php?page=RARE%20Project
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Fig. 1. The Prod-Trees Platform architecture

The Rapid Response7 Client (RRC) provides the user interface to the
Prod-Trees platform and communicates with several backend services. It dis-
plays a search form, where a user can give as input EO-specific search criteria
or free text and can navigate to the supported ontologies through the Cross-
Ontology Browser. This component is a browser for ontologies expressed in
SKOS that allows the users to exploit the knowledge contained in the supported
ontologies. It provides relevant information for each concept and highlights the
connections between different (but related) concepts belonging to the same or
other ontologies. Its role is to support the user in the query creation phase, as a
disambiguation and discovery tool. The browser is accessed via the RRC search
page.

GI-Sem [4] is a middleware which is in charge of interconnecting heteroge-
neous and distributed components. Its main role in the Prod-Trees platform is
to create a connection between the Cross-Ontology Browser and the supported
ontologies. GI-Sem performs remote queries to Strabon and returns the results
to the Cross-Ontology Browser. It can also be omitted from the system by using
a version of the Cross Ontology Browser that calls Strabon directly.

Strabon [3] is a well-known spatiotemporal RDF store. It holds the sup-
ported ontologies and the cross-ontology mappings appropriately encoded in
RDF. The supported SKOS ontologies are the GSCDA, GEOSS, GEMET and
NASA GCMD. The mappings between these ontologies were created using an
algorithm developed in the scope of Prod-Trees [2].

All the interactions with the backend modules go through the Rapid Re-
sponse Server (RRS). In case a query string entered by the user needs to
be disambiguated, the RRS invokes the Query Analyzer (QA). The QA pro-
cesses the query string, identifying the words that may be mapped to application
terms, location names (toponyms), time constraints, or other types of named en-
tities. In order to carry out this task, the QA interacts with GI-Sem (using an

7 The name “Rapid Response” comes from project RARE where the main application
of the developed system was rapid response for various emergencies (e.g., humani-
tarian or environmental). Similarly, for the Rapid Response Server mentioned below.
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Fig. 2. Search results for the keyword “water”

OpenSearch8 interface), Internet Resources such as gazetteers, as well as external
databases such as Wordnet.

After the disambiguation process, if the user has selected an ontology concept,
the RRS interacts with the EO-netCDF Reasoner to obtain the filter criteria
for the search. The reasoner uses reasoning rules to map an ontology concept
to EO-netCDF search criteria. These rules have been built manually with the
consultation of experts in the context of the project Prod-Trees and the previous
project RARE. RSS uses the returned results to build an appropriate query that
is sent to GI-cat.

GI-cat [1] is an implementation of a catalogue service, which can be used to
access various distributed sources of Earth Observation products. In Prod-Trees,
it has been extended to support products compliant with the EO-netCDF con-
vention. Thus, it provides an EO-netCDF enabled discovery and access engine,
so that products annotated with EO-netCDF are searchable and accessible to
the users.

3 Demonstration Overview

We will now present three core scenarios that show how a user can perform a
semantic search for EO products using the Prod-Trees platform.

In the first scenario the user inserts a free-text query, for example “water”.
The system replies by presenting a number of different interpretations for the
inserted text, which are provided by the Query Analyzer during the disambigua-
tion phase. This way it is clear for the user what are the semantics of the text on

8 http://www.opensearch.org/Home

http://www.opensearch.org/Home
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which the search will be based. The default interpretation for “water” maps this
text to the concept “water” of GSCDA ontology. In case the user is not satisfied
with this interpretantion, she can select another one from a proposed list, for
example “water use”, “water temperature”, “ocean level” and more. Another
option is to use the inserted text without any specific interpretation. In this
case, a simple text-based search will be performed. The EO-netCDF reasoner is
used to map the concept “water” of GSCDA to EO-netCDF parameters with
specific values. This is done using appropriate mapping rules which allow us to
connect concepts of an ontology (in this case water of GSCDA) to EO-netCDF
parameters with specific values (in this case combinations of satellite sensor type,
resolution, polarization etc.). As a result, GI-cat returns only the EO products
that include EO-netCDF parameters with these values. Figure 2 displays the
first two results of the keyword search for “water”.

Fig. 3. The Cross-Ontology Browser displaying the GSCDA ontology

Instead of the text queries, the user can also use the ontology browser to select
terms he wants to search for. Figure 3 displays the interface of the browser.
The selected concept is copied back to the initial text area. Assuming the user
has selected the concept “agriculture” of GEOSS ontology, she can add then
more keywords (toponyms, date etc.) to the text area in order to restrict the
search, for example “agriculture Bahamas 2010”. Keywords with toponyms are
also disambiguated using the Geonames gazetteer. Afterwards, the workflow is
similar to the one described above.

Finally, the third scenario will show how to search using EO-related search
criteria. This option might be more appropriate for expert users. In particu-
lar, the user can search using specific metadata attributes such as sensor type,
bounding box, time, etc. and by specifying one or more EO-netCDF parameters.
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The search will be based on these attributes and will return only EO products
that satisfy them. For example, selecting the parameter “Sensor Type” an op-
tional value would be “optical” or “radar”. As the EO-netCDF parameter is
provided directly by the user, the EO-netCDF reasoner is bypassed and only the
GI-cat component is invoked to return the relevant resources.

A video demonstrating the above functionality is available at
http://bit.ly/ProdTreesPlatform.

4 Conclusions

In this paper we presented the Prod-Trees platform, a semantically-enabled
search engine for EO products. Given the huge growth of EO data collected
daily, Prod-Trees addresses the data glut problem of this domain. In addition,
we go one step further by proposing a new standard called EO-netCDF for ac-
cessing EO products annotated with netCDF. As a result, Prod-Trees brings a
standardized solution that substantially improves the ability of EO experts to
explore, understand and, finally, exploit the vast amount of data that is available
nowadays.
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Abstract. Airports today can constitute a perfect environment for de-
veloping novel digital marketplaces offering location-specific and seman-
tically rich context-aware services, such as personalized marketing cam-
paigns, last minute, discounted airline tickets while helping users access
the airport and speed through the airport process.

Underpinning the above vision is the ability to target service content
to users’ current context, e.g., their location, intent, environment, in real
time. The contribution of this work is that it uses a pervasive computing
system with three key ingredients: (a) a data model, comprising user and
service content entities, (b) a user context model and (c) rules for simple
pattern matching on service content and user context event streams. This
modus operandi is encapsulated inside a SOA architecture, the Common
Airport Portal - CAP and it is illustrated through the description of a
real application, Offers and Coupons Services that was deployed recently
at Athens International Airport (AIA) (http://airpoint.gr).

Keywords: airport information systems, context-awareness, real-time
analytics, personalisation, rule-based reasoning, system implementation.

1 Introduction

Airports nowadays form an integral part of urban spaces, and have become
more than just a place where you fly from. They provide the technology sub-
strate for commercial stakeholders (e.g., airport companies, shipping companies,
retail shops, etc.) to offer added-value services to potential consumers of the
airport community (visitors, passengers and airport employees) and for airport
stakeholders (e.g., airport authorities) to improve airport infrastructure, redesign
existing services and take strategic decisions about the future.

An airport can collect and provide valuable information in the form of event
streams (feeds), to location-constrained stakeholders about passenger flows, user

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 179–184, 2014.
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travel status, alerts, flight data and time-schedules; this data is instrumental
in developing spatial, temporal and context-aware personalized services, seam-
lessly operating over a variety of distribution channels such as web, sms, email,
IPTV, info-kiosks. Such added-value services include but are not restricted to,
personalised route calculation from a user’s current position to their departure
gate, personalised marketing campains involving offers and discount coupons, last
minute air-tickets and personalised alerts. The above services are personalised
and context-aware, i.e., relevant to user role, device, location, departure gate etc.
Personalised marketing campaigns provide offers and dynamic recommendations
based on what other users with similar profile are currently purchasing. These
are relevant to the above parameters while abiding by constraints that are in-
herent in the airport domain: for example, passengers flying to middle Eastern
destinations should not be targeted for offers on alcoholic beverages, while, airport
visitors escorting passengers should not be targeted for Duty Free discounts.

Three successful paradigms exist in the literature that can be leveraged in
order to achieve these goals: Data Analytics [1], context-awareness and person-
alisation [2] and Service Oriented Architecture (SOA) [3]: Big data helps busi-
nesses understand the data and extract patterns in order to become smarter.
Context-awareness advocates that applications should be aware of user context
in order to best serve them. Service Oriented Architecture (SOA), provides struc-
tured collections of discrete software modules, known as services that collectively
provide the complete functionality of an application, with the ability of being
reusable and composable into complex applications.

Combining the above paradigms leads to the definition of airport context
analytics: User generated data such as position and device usage can be col-
lected, analyzed and correlated with other airport sources in order to make
service content provisioning aware of user context. The contribution of this work
is that it uses the Rete algorithm [20] as the analytics engine. Rete is a very fast
algorithm for matching data tuples (“facts”) against productions (“rules”). By
reducing certain types of redundancy through the use of node sharing and by
storing partial matches when performing joins between fact types, Rete avoids
the complete re-evaluation of all facts each time changes are made to working
memory, thus increasing performance and scalability.

The rest of this paper is structured as follows: Section 2 presents a context
model for the airport domain. Section 3 discusses the ACA service its implemen-
tation using web services. Section 4 discusses literature and concludes.

2 Context Model

Due to restrictions very specific to the airport community culture, e.g. the sensi-
tive nature of passenger flight data, context that is not available can be inferred.
For this reason the context model contains both static (user profile and prefer-
ences) and dynamic predicates. Dynamic predicates can be either low-level, di-
rectly available from the sources, or high-level, indirectly derived from low-level
attributes, by mining or inference. Examples of low-level dynamic predicates are
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location (user and device locations) and user activity (user clicks, user requests,
coupon redeems). Examples of high-level predicates are user colocation. Dynamic
predicates that are infrequently changing, (frequent flyer) are stored in generic
placeholders in the database, as opposed to frequently changing ones (location)
that is stored in memory. Next, a formal definition using Hoare logic is given.

Data Model comprises User and Generic Service Content, representing
generic content that is eligible for processing and provisioning within the air-
port environment (e.g., Offers, Coupons, LM tickets, etc.). An Offer is a type
of advertisement of discounted products on sale while a Discount Coupon needs
to be redeemed at the time of purchase. LM Tickets are specialized Offers for
airline tickets departing within the next 48 hours.

Static context entities include Role(rid , description) and Target Group.
An AIA User is an employee of the airport authority, Airport User is an em-
ployee of the associated companies and a Company Admin is a privileged user
that can authorize service content updates. Target Group represents a com-
bination of roles. Also included are: Product Category Prefs , Company Prefs ,
Distribution Channel Prefs .

Dynamic, frequently changing, context entities include
Location(zone id , description, < x , y, z >), where < x, y, z > are positions en-
coded in the AIA GIS coordinate system and zone id are locations at airport
zone granularity. Intent(uid , description) refers to airport uses: an AIA User
(Role) may be traveling as a regular passenger (Intent) and therefore be el-
igible for Duty Free offers. Trip Status models the nature of the trip, e.g.,
{business, economy, traveling with family}. Trip Phase results from associ-
ating airport zones with the airport processes: {before check in, after security,
at lounge, at departure gate}. User Activity can be inferred from logged infor-
mation and user location (e.g.,has requested offer).

Dynamic, infrequently changing, context entities represent features
that are mined from historic context instances and include Frequent Traveler
(uid , description), Frequent Shopper (uid , description), Technology Savviness
(uid , description, level). The latter is determined by device type (conventional or
smart phone), frequency of service use andmethod of coupon redemption (printed
or electronic coupons.) Such knowledge can be used, for example, for creating
discounts campaigns targeted only to frequent shoppers.

Data Model and contextualization. User and Service content, when as-
sociated with context entities, becomes contextualized. For example, the contex-
tualized Generic Service Content predicate is specified as follows:

Generic Service Content(gscid , args, tgid , rid , dcid , oid)

where {tgid , rid , pcid , compid , dcid , oid } represent the context predicates:
{Target Group, Role, Product Category Prefs , Distribution Channel Prefs , Opt ins}.

Matching contextualized service content to eligible users is implemented by
the following simple rule:

User(uid , profile, context id [])

∧Offer(gsid , oid ,prod cat)
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Fig. 1. ACA Service Component Diagram

∧Generic Service Content(gsid , context id [])

∧User .context id [] = offer .context id []

where context id [] represent matching context predicates between users and ser-
vice content (e.g., offers for AIA Users).

3 Airport Context Analytics Service (ACA)

The ACA Service modus operandi is the following:

1. Offer Matching: On reception of a request from any of the services shown
in Figure 1 (top), containing (a) a description of the offer or coupon or related
content to be dispatched, (b) the unique id of the current user and (c) a set
of optional eligibility parameters, respond by returning a list of requested
content that is eligible for that user, based on the supplied parameters. This
is the primary operation.

2. Recommendation Matching: On reception of a request from one of the
CAP components shown in Figure 3, containing (a) an ordered list of rec-
ommendations to be dispatched, (b) the unique id of the current user and
(c) a set of optional eligibility parameters, respond by returning a subset of
the ordered list of recommendations that is eligible for that user, based on
the supplied parameters.

3. Offer Notification: On insertion, deletion, update, cancellation of an Of-
fer, Coupon, LMT Offer or similar content entity, respond by repeating the
matching process and generating a new set of eligible content. This mecha-
nism is based on publish/subscribe.
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Fig. 2. ACA Implementation

Implementation (Figure 2) includes three basic web services:CAP Drools
Server, CAP Context Service, CAP Context Notify Service. CAP Drools Server
integrates Drools [13], a business rule management system based on theRete
algorithm. CAP Context Service receives the service requests, extracts service
parameters and queries the CAP database for the most up-to-date data. Next
it constructs contextualized facts, encodes them in HTTP POST messages and
inserts them in the Drools Server, triggering a matching cycle. The CAP Con-
text Notify Service implements publish/subscribe. First, it registers with the
CAP Event Server, subscribing to databases changes (inserts, updates, deletes,
cancellations, rejects) to the tables Users, Offers and Coupons. Next, it listens
asynchronously for any such events, in which case it invokes the CAP Drools
Server, making all relevant updates to the affected facts and re-triggering a
matching cycle. In this way, when queried by the service layer, it is up-to-date.

4 Related work

Several definitions for context have been proposed in the literature [4–8], in-
cluding the author’s previous work [21, 22]. Certain mobile applications [15–18]
use context for selecting the best communication channel per device and appli-
cation. [11] proposes a platform for executing web services that adapt to appli-
cation QoS, under changing conditions. [19] discusses an airport knowledge-base
system designed with the CommonKADS methodology. None of these works are
directly applicable here. CAP (http://airpoint.gr/en) goes far beyond previous
efforts bringing an integrated solution, a new paradigm for service management
in indoors spaces.
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Abstract. Linked Data seem to play a seminal role in the establishment of the 
Semantic Web as the next-generation Web. This is even more important for dig-
ital object collections and educational institutions that aim not only to promote 
and disseminate their content but also to aid its discoverability and contextuali-
zation. Having already ‘semantified’ a popular digital repository system, 
DSpace, in this paper we show how repository metadata can be exposed as 
Linked Data, thus enhancing their machine understandability and contributing 
to the LOD cloud. Our effort comes complete with an updated UI that allows 
for reasoning-based search and navigation between linked resources within and 
outside the scope of the digital repository.  

1 Introduction 

Linked and Open Data (LOD) [2] appear to be the “silver-bullet” in the forming Se-
mantic Web ecosystem, that promise to breathe new life to the latter’s benefits for 
real-world web applications. This is often combined with lightweight semantics [3] so 
that known scalability problems and reasoning inefficiencies could be sidestepped and 
still to retain some essence of the knowledge discovery capabilities of ontologies. 
However, tried-and-true systems like digital repositories for educational and other 
institutions need a little more incentive to embark on such a migration and to get 
tempted to adopt this new paradigm.  

In this paper we present our work for publishing Linked Data and navigating 
among resources of a popular digital repository system, DSpace. Semantics play a 
crucial role and this is exhibited by an OWL 2 inference-based knowledge acquisition 
mechanism that lies at the core of this implementation, aka Semantic Search for 
DSpace [6]. Challenges for imposing semantic searching over otherwise semantically-
oblivious systems are well-known and have been discussed earlier (e.g. [5]). Further, 
Linked Data provision requires a careful replication design for existing resource  
descriptions; a data linking and resolution mechanism; and a content negotiation strat-
egy to serve information both to end-users and machines. 
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Next, in Section 2 we describe the process of publishing and minting Linked Data 
out of DSpace resources; Section 3 presents the semantic querying interface and the 
Linked Data facility; and Section 4 summarizes our conclusions and future work. 

Semantic Search is hosted and maintained as a Google Code project 1  and is  
listed as an official DSpace add-on2. A working demo of this implementation is also 
available3. 

2 Linking Data for DSpace 

2.1 Publication and Linking of Entities 

Linked Data principles are in essence a few simple rules that foster the idea of an 
interlinked ‘Web of Data’. In our context this means that resource URIs need to be 
dereferenceable, to provide meaningful information for users and services alike and to 
give references (or links) to other related entities whenever possible. 

 

Fig. 1. Example repository item and its relationships to other entities 

In DSpace the main unit of information is the ‘item’, i.e. a publication or learning 
object that is described with a set of metadata based on Dublin Core (DC). During the 
mapping to OWL however, we identify additional implicit entities and assign resolv-
able URIs to them too (see below, section 2.2).  Further, these entities are linked 
together or refer to other external datasets like DBpedia (see section 3.2). Fig.1 illu-
strates a sample instance of the resulting DSpace ontology and the way it gets inter-
linked with other entities and/or datasets. Using the Jersey framework4, the reference 
implementation of the Java API for RESTful services, both HTML as well as 

                                                           
1 http://code.google.com/p/dspace-semantic-search/ 

2 https://wiki.duraspace.org/display/DSPACE/Extensions+and+ 
 Addons+Work#Extensionsand AddonsWork-SemanticSearchforDSpacev2.0 
3 http://apollo.hpclab.ceid.upatras.gr:8000/dspace-ld 
4 https://jersey.java.net/ 
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RDF/XML representations are accommodated and the following URI pattern has been 
established: 

─ http://{repositoryURL}/semantic-search/resource/{entity-id} 
─ http://{repositoryURL}/semantic-search/page/{entity-id}(HTML) 
─ http://{repositoryURL}/semantic-search/data/{entity-id}(RDF) 

Moreover, these URIs are dereferenceable by using Jersey’s content negotiation 
capability and performing HTTP 303 See Other redirects. 

2.2 Exposing Educational Metadata into OWL 

The first step towards providing Linked Data is to unleash resource information and 
metadata that are hidden within databases. To maximize the semantic value of ex-
ported metadata as well as to maintain interoperability, a careful and elaborate process 
has to be conducted. This process includes an exhaustive mapping of the inherent 
DSpace metadata application profile to the DC metadata terms (DCTerms), part of 
which is shown in Table 1. This mapping provides for the following:  

─ Other than the default, additional elements are exported.  
─ Map everything under the DCTerms namespace, rather than mixing DC with 

DCTerms, which is generally not advisable [1].  
─ Provide additional Learning Object mappings to DCTerms (in case LOM metadata 

exist). 
─ Assign types to non-literal values. 

Mapped metadata can then be exposed and harvested through the supported OAI-
PMH interface [7].  

Table 1. Snippet of the performed mapping of DSpace internal metadata to DCTerms 

DSpace internal metada-
ta representation 

Provided mapping 
 

Notes 

dc.contibutor.author dspace-ont:author 
dcterms:contributor 

‘author’ is not compatible 
with QDC. However it is a 
subproperty of ‘contributor’  

dc.subject dcterms:subject We use  the DCTerms names-
pace 

dc.identifier.uri dcterms:identifier type= 
http://www.w3.org/2001/XML
Schema#anyURI 

Literals get typed when possi-
ble 

Bitstream metadata dcterms:format 
dcterms:extent Not exposed by default 

lom.intendedenduser 
role 

dcterms:audience 
type="lom:IntendedEndUser 
Role" 

LOM specific mapping 

 
Having exported as much available DSpace metadata as possible, the next step is to 

translate them into full-fledged RDF/OWL triples. During this semantic translation, 
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certain implicit entities (like items, collections, authors, sponsors) are reified and 
become individual nodes themselves instead of mere literals, thus resulting into an 
OWL 2 DSpace ontology [5]. Most of these entities are assigned resolvable identifi-
ers, so that it would be easy for them to get dereferenced within the individual Navi-
gation Pane (see below). In addition, this is when URLs to the DBpedia Lookup  
service5 are injected, in order to enrich reified entities such as authors, contributors, 
sponsors and item types. 

3 Semantic Search and Navigation 

In what follows, we summarize the semantic search interface’s main features (3.1) 
and then we detail the newly implemented Linked Data facility (3.2). A more tho-
rough account of the architecture, methodology and design principles behind Seman-
tic Search v2 can be found in [6]. 

3.1 An Interface for Semantic Querying Educational Resources  

The main idea used by our semantic search interface, lies behind the deconstruction of 
a semantic query into smaller building parts (query atoms) that are assigned to differ-
ent fields of a dynamic UI. Query crumbs that are provided through these fields are 
then assembled by the underlying mechanism to create valid Manchester Syntax  
expressions [4] (see fig. 2). Each such expression is an atomic or anonymous class in 
the Web Ontology Language (OWL) [8] and its (both inferred and asserted) members 
are the answers to the query. Search results are presented as a browsable list of linka-
ble entities/resources. Effective querying of the knowledge base is accomplished by 
interconnecting to an appropriate inference engine, capable of reasoning with OWL 2 
ontologies. 

 

Fig. 2. The auto-complete and query construction mechanisms of the semantic search interface 

                                                           
5 http://wiki.dbpedia.org/Lookup 
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New features in the upcoming version 2.4 include: a) syntax highlighting for Man-
chester Syntax, implemented through the CodeMirror Javascript component, b) a 
history subsystem that keeps track of the last ten input queries, c) a RESTful Linked 
Data provider that exposes resources’ metadata as resolvable entities, and d) a DBpe-
dia URL injection facility.  

When an entity is selected, the corresponding individual’s navigation pane that 
gathers the resource’s semantic metadata is produced on the fly. This ontological 
information is formed as Linked Data and is presented in either an HTML or an RDF 
format, depending on whether the request was made by a person or a service, respec-
tively. It is important to notice that this holds not only for DSpace items themselves, 
but also for every other (implicit) entity in the repository model that gets reified dur-
ing the semantic translation phase. 

3.2 Navigation and Data Linking 

The main objective of the navigation pane is not only to give a detailed reference to 
the resources’ ontological information (semantic metadata) but also to allow users to 
further explore and navigate among interlinked information in the LOD cloud. To 
achieve this, information is structured in the form of resolvable URIs, as much as 
possible. 

All non-literal metadata values are denoted as URIs, which can be dereferenced on 
the web. In particular, each class redirects back to the semantic search page with the 
specific class already predefined and its members appearing on the result list. In the 
case of object properties, the corresponding values are resolvable entities that lead to 
the particular entity’s navigation pane. And even for data properties, where mere text 
values mostly apply, a datatype of xsd:AnyURI is rendered as a resolvable link. 
This is useful for example to maintain context with the original DSpace item view or 
with external references, such as the DBpedia Lookup service.  

 

Fig. 3. The navigation pane - The DBpedia lookup service is triggered for author “Tom Scott” 
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More specifically, a DBpedia icon is automatically placed next to specific reified 
entities (contributor, author, type, sponsor) and next to the object property values 
(within an item’s navigation pane) that correspond to these entities. When the icon is 
clicked, the DBpedia Lookup service is triggered for this entity, leading to a keyword-
based search against DBpedia. This label matching process inevitably includes a cer-
tain extent of ambiguity. In order to resolve this, a dynamic tooltip is presented to the 
user, including up to five matching DBpedia resource URIs (see fig. 3). Moreover, the 
dcterms:subject and dcterms:publisher literal values are also linked to 
DBpedia in the same way.  

All information gathered in the navigation pane can also be obtained in a machine-
readable RDF format. An RDF icon next to the entity points to our REST Linked 
Data service and requests the RDF representation of the entity’s data. 

4 Conclusions and Future Work 

We soon intend to release this feature-set in the upcoming version of our Semantic 
Search plugin for DSpace. The combination of a reasoning-based knowledge acquisi-
tion mechanism with a Linked Data service can help educational institutions to pro-
vide new discovery capabilities for their content and to be part of the greater LOD 
cloud effortlessly. DBpedia is naturally a nodal point of the latter, but interconnecting 
with other data sources would also be useful, like for example DBLP. What is more, 
data from these sources can be brought back into our model, so that we could reason 
with them and reveal a whole new set of correlations between repository assets and 
the outside world.  
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Abstract. Information Diffusion is a classical problem in Social Net-
work Analysis, where it has been deeply investigated for single social
networks. In this paper, we begin to study it in a multi-social-network
scenario, where many social networks coexist and are strictly connected
to each other, thanks to those users who join more social networks. In
this activity, Answer Set Programming provided us with a powerful and
flexible tool for an easy set-up and implementation of our investigations.

1 Introduction

Information Diffusion has been largely investigated in Social Network Analysis
[5,7,8,10,11]. However, all the investigations about this problem performed in the
past analyze single social networks, whereas the current scenario is multi-social-
network [2,4]. Here, many social networks coexist and are strictly connected
to each other, thanks to those users who join more social networks, acting as
bridges among them. But, what happens to the Information Diffusion problem
when passing to this new scenario? New aspects must be taken into account and
new considerations are in order. In this paper1 we investigate the problem of
Information Diffusion in a multi-social-network scenario (MSNS, for short). For
this purpose, first we propose a graph-based model for an MSNS. This model
takes into account the existence of more social networks, as well as the presence
of bridges and topics of interest for MSNS users. Then, we provide a formal defi-
nition of the Information Diffusion problem in an MSNS. In order to implement
our approach, and perform an analysis on real world data, we applied Answer
Set Programming [1,6] (ASP). ASP is an ideal framework for the rapid devel-
opment and implementation of programs solving complex problems [9] given its
declarativity, expressive power, and availability of efficient ASP systems [12].
After describing the ASP specification solving the Information Diffusion prob-
lem, we also present the results of an experimental campaign conducted on an

1 A preliminary version was submitted to SEBD 2014, which has informal proceedings.
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MSNS based on four social networks, namely LiveJournal, Flickr, Twitter and
YouTube. As far as the system for running our logic program is concerned, we
used the ASP system DLV [12]. Our experimental campaign allowed us to draw
an identikit of the best nodes for spreading information in an MSNS.

2 Our ASP-Based Approach to Information Diffusion in
an MSNS

An MSNS Ψ , consisting of n social networks {S1, S2, . . . , Sn}, can be modeled
by a pair 〈G, T 〉. Here, T is a list {t1, t2, . . . , tp} of topics of interest for the users
of Ψ . It is preliminarily obtained by performing the union/reconciliation of the
topics related to the social networks of Ψ . G is a graph and can be represented
as G = 〈V,E〉. V is the set of nodes. A node vi ∈ V represents a user account in
a social network of Ψ . E = Ef ∪Em is a set of edges. Ef is the set of friendship
edges; Em is the set of me edges. An edge ej ∈ E is a triplet 〈vs, vt, Lj〉. vs and vt
are the source and the target nodes of ej, whereas Lj is a list of p pairs 〈tjk , wjk〉,
where tjk is a topic and wjk is a real number between 0 and 1 representing the
corresponding weight. This weight depends on both tjk and the ability of the
user associated with vt to propagate, to the user associated with vs, information
related to tjk .

Thus, an MSNS models a context where several social networks coexist and
are strictly connected to each other, thanks to those users who join more social
networks. Indeed, when a user joins more social networks, her multiple accounts
allow these networks to be connected. We call bridge user each user joining more
social networks, bridge (node) each account of such a user and me edge each edge
connecting two bridges.

The Information Diffusion problem in an MSNS takes as input: (i) An MSNS
Ψ , consisting of n social networks {S1, . . . , Sn}. (ii) A list D of n elements. The
generic element Dh of D consists of a tuple 〈Sh, ph, ch〉. Here, ph denotes the
priority of Sh and is an indicator of the relevance of this social network in Ψ . It
is an integer from 1 to n, where 1 (resp., n) is the maximum (resp., minimum)
priority. ch is the minimum desired coverage for Sh, i.e., the minimum number
of nodes of Sh which must be reached by the information to spread throughout
Ψ . (iii) A list τ of q elements. The generic element τ [k] of τ is a pair 〈tk, ωk〉.
Here, tk corresponds to the kth element of the set of topics T of Ψ . ωk is a real
number, belonging to the interval [0, 1] and indicating the weight of tk in the
information to spread throughout Ψ . The Information Diffusion problem in Ψ
requires to find the minimum set of the nodes of Ψ allowing the maximization
of the coverage of the social networks of Ψ , taking into account the minimum
allowed network coverage, the network priorities (as expressed in D), and the
topics characterizing the information to spread (as expressed in τ).

Our ASP-based solution of this problem is based on the following guidelines.
First, a support graph G′ = 〈N ′, E′〉 is constructed starting from G. Specifically,
there is a node n′ ∈ N ′ for each node ni ∈ N , and an edge e′j = 〈vs, vt, wj〉 ∈ E′

for each edge ej = 〈vs, vt, Lj〉 ∈ E. wj is obtained as: wj =
∑p

k=1 wjkωk. In other
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words, wj measures the relevance of e′j in the current Information Diffusion ac-
tivity. It depends on both the importance of each topic of T in the information
to spread throughout Ψ and the ability, of the user associated with vt, to prop-
agate, to the user associated with vs, the topics of T . The Information Diffusion
model adopted in our approach is the well known Linear Threshold one [8]. In
this model, a node is considered active if the sum of the weights of the friend-
ship edges from it to the already active nodes is higher than a certain threshold.
In an MSNS, the Linear Threshold model must be extended in such a way as
to consider me edges. Given a me edge from a bridge bs to a bridge bt, our ex-
tension requires that the information to spread propagates from bs to bt if the
weight associated with the me edge is higher than a certain threshold (different
from the one concerning friendship edges). Starting nodes are randomly selected.
However, since in an MSNS the number of bridges is extremely low [3] w.r.t. the
number of non-bridges, we first state the percentage of bridges and non-bridges
which must be present in the set of starting nodes, and then randomly select the
two kinds of node accordingly.

The problem we are considering is extremely complex. Since this paper repre-
sents a first attempt of investigating the possibility of using ASP in this context,
in the following we perform some simplifications. Specifically, we assume that all
the topics of Ψ have the same weight in the information to spread; this implies
the removal of the topic dependency of the problem which, thus, becomes only
structural. The important consequence of this choice is that all the friendship
edges in G′ have the same weight (we assign a weight equal to 1 to them). As
for me edges, we assume that all of them always propagate the information to
spread. Also in this case, the consequence is that we assign a weight equal to 1
to all me edges. A final simplification regards the node activation policy. In fact,
we assume that a node is activated when at least two edges, outgoing from it,
are pointing to already activated nodes. This corresponds to set the threshold
to 2 in the Linear Threshold Information Diffusion model mentioned above.

It is important to stress that the adoption of ASP allowed an easy and fast
set-up of the approach implementation, while attaining acceptable performances.
The logic program designed to solve our problem is as follows (see [1] for a nice
introduction to ASP):

1. in(X) v out(X) <- starting node(X).
2. active(X) <- in(X).
3. active(X) <- active(X1),edge(X,X1,me).
4. active(X) <- edge(X,X1,friendship),edge(X,X2,friendship), X1!=X2,

active(X1),active(X2).
5. hasActiveNodes(Sn)<-node(N,Sn),active(N).
6. <- D(Sh,Ph, Ch), Ch!=0, not hasActiveNodes(Sh).
7. <- D(Sh,Ph,Ch), #count{N:active(N),node(N,Sh)}<Ch.
8. <∼ in(X). [1:2]
9. <∼ node(N,Sh), not active(N). [1:1]

Here, the input is given as a set of facts of the form edge(X,X1,K) mod-
eling edges from X to X1, where K specifies the edge kind (me or friendship);
node(N,Sn) denotes the set of nodes in the social network Sn; starting node(X)

is the set of starting nodes. Finally, D(Sh,Ph,Ch) identifies the desiderata. Rule
1. guesses the nodes that must be selected in the best solution. Rules 2. to 4.
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Table 1. Effectiveness of our approach

Number of Social Networks 2 3 4

Percentage of activated nodes 70% 81% 81%

Number of necessary starting nodes 2 3 3

compute active nodes, based on the guess; in particular, a node is active if either
it is a selected one, or it reaches an active node through a me edge, or, finally,
it reaches two active nodes through friendship edges. Constraint rules 5. to 7.

impose admissibility conditions, as specified in D. Weak constraint rules 8. and
9. implement the optimality requirements for consistent solutions, so that the
minimum sets of nodes providing consistent solutions are identified first (8.),
and, among them, the ones minimizing non-active nodes are selected (9.).

3 Experimental Campaign

To test our Information Diffusion approach we performed an experimental cam-
paign on an MSNS consisting of four social networks, namely LiveJournal,
Flickr, Twitter and YouTube. Our MSNS has 93177 nodes and 146957 edges.
All the corresponding data can be downloaded from the following address:
www.ursino.unirc.it/RR2014.html. The password the Referee must specify
is “85749236”. We performed a large number of runs of our ASP program. In
these runs we considered different configurations of the starting nodes. They
differed for the number of nodes, the percentage of bridges (this, very impor-
tant, parameter ranged from 0 to 100 with a step of 10), and the number of the
social networks to cover (this number ranged from 2 to 4). We constructed more
sets of starting nodes for the same configuration in such a way as to reduce the
influence of possible outliers. The whole number of runs we have performed was
576. These runs allowed us to carry out several investigations, the most signifi-
cant of whom are reported below (the other ones cannot be shown due to space
limitations).

In a first test we computed the percentage of the nodes of our MSNS activable
by our approach that were really activated by it, as well as the number of nodes
necessary for this activation, against the number of social networks to cover.
The corresponding results are shown in Table 1. This table evidences that our
approach is really effective. Interestingly, 3 starting nodes are sufficient to cover
4 social networks. This could not have been obtained without the presence of
bridges. In fact, without this kind of node, at least 8 nodes would have been
necessary to cover 4 social networks.

In a second test we computed the variation of the average percentage of bridges
present in the optimal solution of runs against the variation of the average per-
centage of bridges present in the sets of starting nodes. Obtained results are

www.ursino.unirc.it/RR2014.html
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Fig. 1. Average percentage of bridges in the optimal solutions

Table 2. Composition of optimal solutions

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

75% 24% 86% 22% 75% 86% 0 % 11% 14% 87%

shown in Figure 1. Observe that the percentage of bridges in the optimal solu-
tions is generally higher, or much higher, than the percentage of bridges in the
sets of starting nodes. This information is precious for drawing an identikit of
the most influential nodes for Information Diffusion in an MSNS.

In a third test we computed the following statistics about the composition
of optimal solutions: (i) average percentage of bridges; (ii) average percentage
of the direct neighbors of bridges; (iii) average percentage of power users; (iv)
average percentage of the direct neighbors of power users; (v) average percentage
of nodes being both bridges and power users; (vi) average percentage of nodes
being bridges or power users; (vii) average percentage of nodes being bridges but
not power users; (viii) average percentage of nodes being power users but not
bridges; (ix) average percentage of nodes being neither bridges nor power users;
(x) average Jaccard coefficient2 of bridges and power users. The corresponding
results are reported in Table 2. From the analysis of this table we can observe that
99% of the nodes in the optimal solutions are either bridges or direct neighbors of
bridges. Analogously, 98% of the nodes in the optimal solutions are either power
users or direct neighbors of power users. Furthermore, all the bridges involved in
the optimal solutions are power users, and almost all the power users involved
in the optimal solutions are bridges. Finally, only a little fraction of the nodes
present in the optimal solutions are neither bridges nor power users.

2 We recall that the Jaccard Coefficient J(A,B) between two sets A and B is defined
as J(A,B) = A∩B

A∪B
.
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4 Conclusion

In this paper we have investigated Information Diffusion problem in a Multi-
Social-Network Scenario. We have applied ASP and analyzed the properties of
real MSNSs using real-world data. In the future, we plan to remove the simplifi-
cations applied to the approach introduced in this paper, design other predictive
models for Information Diffusion, and, finally, apply ASP for extending Social
Network Analysis investigations from single social networks to MSNSs.
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Abstract. We propose a framework for reasoning about dynamic Web data,
based on probabilistic Answer Set Programming (ASP). Our approach, which is
prototypically implemented, allows for the annotation of first-order formulas as
well as ASP rules and facts with probabilities, and for learning of such weights
from examples (parameter estimation). Knowledge as well as examples can be
provided incrementally in the form of RDF data streams. Optionally, stream data
can be configured to decay over time. With its hybrid combination of various
contemporary AI techniques, our framework aims at prevalent challenges in re-
lation to data streams and Linked Data, such as inconsistencies, noisy data, and
probabilistic processing rules.

Keywords: Web Reasoning, Uncertainty Stream Reasoning, Answer Set Pro-
gramming, RDF, Probabilistic Inductive Logic Programming, Machine Learning.

1 Introduction and Related Work

Many real-world applications on the Web involve data streams (e.g., messaging events,
web searches, or sensor data), but while stream processing and data stream mining are
already established research areas, stream reasoning [28] is still a very young research
field. Challenges in this regard are not only incremental reasoning in the presence of
rapidly changing dynamic information, but also provisions for inconsistencies, inco-
herence and noise in stream data, and stream reasoning using probabilistic background
knowledge (e.g., probabilistic rules). Probabilistic logic programing, and the ability to
learn facts and rules from possibly incomplete or noisy data, can provide an attractive
approach to stream reasoning, since it combines the deduction capability and declar-
ative nature of logic programming with probabilistic inference abilities traditionally
modeled using Bayesian or Markov networks. In particular nonmonotonic probabilistic
(inductive) logic programming [18,1,25,4,16] is promising in this regard, as it already
provides for concepts useful for dealing with dynamic knowledge by means of, e.g.,
default reasoning. In this paper, we present a novel approach to probabilistic inductive
logic programming based on Answer Set Programming (ASP) [9]. In contrast to ex-
isting approaches, it provides a unified framework for probabilistic inference as well
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as for parameter estimation (hypotheses weight learning) from examples, using incre-
mentally provided stream data as input. In the design of our framework and in use case
examples provided, we focus on streams on the Web of Data, given the opportunities it
offers in terms of linking data for sharing and re-use. Although we cannot report yet on
scalability and performance results, we are already able to exhibit how the prototypical
implementation of our approach deals with streaming RDF and uncertain sensor data.

Our framework consists of a probabilistic reasoning core based on ASP (for inference
and induction) and a client for incrementally feeding RDF stream data (prefiltered by
CEQLS [12]) into the core reasoning module. The stream reasoning architecture of our
prototype software is described in Sect. 3, whereas our probabilistic logic programming
language and reasoning core is presented in the next section (a shortened account of a
more detailed description in [16]).

Works related to the reasoning core include [26,17,5,7,10,11,22,20,24]. While none
of these approaches supports nonmonotonic logic programming, [18,1,25,4] are based
on nonmonotonic logics. Like P-log [1], our approach computes probability distribu-
tions over answer sets. However, P-log (as well as [25]) does not allow for annotating
arbitrary formulas (including FOL formulas) with probabilities. [4] allows to associate
probabilities (only) with abducibles and to learn both rules and probabilistic weights
from given data (in form of literals).

While a large number of stream processing and stream data mining approaches ex-
ist (such as [12]), including some which allow for probabilistic inference, e.g., using
Bayesian Networks or fuzzy logic (e.g., [23,29]), only a few stream frameworks for the
Web provide true (logical) reasoning capabilities (if we do not count simple SPARQL
entailment) - see [14] for a recent survey. Some approaches allow for non-monotonic
reasoning [8,15,6], but none accounts for probabilistic uncertainty. [2] allows for (OWL-
based) deductive reasoning and machine learning (prediction of assertions, learned from
RDF streams), but not nonmonotonic reasoning or logic programming. To our best
knowledge, no other approach combines nonmonotonic logic programming with prob-
abilistic inference and inductive learning in a unified framework such as ours.

2 Probabilistic Inductive Answer Set Programming

Before we turn to stream reasoning, we briefly introduce our language for probabilis-
tic non-monotonic logic programming, called Probabilistic Answer Set Programming
(PrASP ). A more detailed introduction can be found in [19,16].

PrASP is a Nilsson-style probabilistic logic language, with the main enhancement in
relation to normal ASP and other probabilistic approaches to ASP being the possibility
to annotate any formulas (formulas in first-order syntax as well as AnsProlog rules and
facts) with probabilities. Given a probabilistic logic program, it can infer unconditional
as well as conditional probabilities of any formulas (if the program is probabilistically
consistent), as well as learn the probabilities of formulas from examples.

A PrASP program is a non-empty finite set {([pi]fi)} of annotated formulas. The
[pi] are the weights of the formulas and directly represent point-valued probabilities.
If the weight is omitted, weight 1 is assumed. Such weighted formulas can intuitively
seen as constraints which specify which possible worlds (in the form of answer sets) are
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indeed possible, and with which probability. The formulas fi are either in FOL syntax
(supported by means of a transformation into ASP syntax described in [13]) or plain
AnsProlog syntax, e.g., [0.5] win :- coin(heads). In addition to that, conditional
probabilities are supported, using syntax [p|c] f (this asserts Pr(f |c) = p).

A PrASP program induces a probability distribution over possible worlds. The pos-
sible worlds correspond to the answer sets of a certain plain answer set program (the
so-called spanning program) which is automatically generated from the original PrASP
program and which reflects the (unweighted) nondeterminism induced by the PrASP
program. To make this tractable, any formulas which do not contribute to the proba-
bility of the query (the formula whose probability or truth value we want to infer from
the given PrASP program) are omitted from the spanning program, by means of a de-
pendency analysis. After generating the spanning program, the probability distribution
over possible worlds (the answer sets of the spanning program) is basically computed by
solving a system of linear equalities involving probabilities (the formula weights). How-
ever, because this system typically has multiple or even infinitely many solutions and
direct computation can be very costly, the PrASP inferencer applies several optimiza-
tion steps besides dependency analysis, including optional sampling and the maximum
entropy principle [27].

Given a probabilistic distribution over possible worlds, probabilistic inference (com-
puting probabilities of the forms Pr(φ) and Pr(φ|c)) becomes a model counting task
where each model has a weight: we can compute the probability of any query formula φ
by summing up the probabilities (weights) of those possible worlds (answer sets) where
φ is true. For a more detailed description of the semantics and inference process, please
refer to [16,19]. Examples in the context of stream reasoning are provided in Sect. 4.

As a very simple example for a PrASP program (which does not require any of the
inference optimization steps mentioned above), consider the following dice game:
face(1..6).
[[:]] result(F) :- face(F).
1{ result(F): face(F) }1.
win :- result(6).
[0.8|win] happy.
:- happy, not win.

At this, [[:]] result(F) :- face(F) is syntactic sugar for defining a uni-
form distribution over the six possible dice throwing results (each face comes up with
the same probability). The spanning program (which contains a little syntactic noise
introduced by the current generation algorithm) is
face(1..6).
result(6) :- {not result(6)}0,true.
result(5) :- {not result(5)}0,true.
result(4) :- {not result(4)}0,true.
result(3) :- {not result(3)}0,true.
result(2) :- {not result(2)}0,true.
result(1) :- {not result(1)}0,true.
1{result(F):face(F)}1 :- true.
win :- result(6).
happy :- {not happy}0,true.
:- happy, not win.
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...which defines the following list of possible worlds (predicate face/1 omitted):
{result(1)}, {result(2)}, {result(3)}, {result(4)}, {result(5)}, {result(6), win},
{result(6), win, happy}.

Over these possible worlds, a probability distribution is computed (using the for-
mula weights in the PrASP program) which is then used to calculate query proba-
bilities. Concretely, the probabilities of the possible worlds above are approximately
0.167, 0.167, 0.167, 0.167, 0.167, 0.033, 0.133. With this distribution, query happy re-
sults in approximately 0.133 (by summation of the probabilities of those possible worlds
in which happy holds), and queryPr(happy|result(6)) results in 0.8, which is simply
computed as Pr(happy∧result(6)

result(6) .
PrASP can also be used for parameter estimation tasks (learning of formula weights

from examples). Generally, the task of parameter learning in probabilistic inductive
logic programming is to find probabilistic parameters (weights) of logical formulas
(hypotheses) which maximize the likelihood given some data (learning examples) [21].
In our case, the hypothesis H (a set of formulas without weights) is provided by an
expert, optionally together with some PrASP program as background knowledge B.
The goal is then to discover weights w of the formulas H such that Pr(E|Hw ∪ B) is
maximized given example formulas E = e1, e2, .... Formally, we compute

argmaxw(Pr(E|Hw ∪ B)) = argmaxw(
∏
ei∈E

Pr(ei|Hw ∪B)) (1)

(Making the usual i.i.d. assumption regarding the individual examples in E. Hw de-
notes the hypothesis weighted with weight vector w.) PrASP learns such weights using
a variant of the Barzilai and Borwein method [3], a gradient approach with possibly
superlinear convergence. For details, see [19,16].

3 Probabilistic Reasoning about Data Streams on the Web

PrASP can be provided with data (beliefs, learning examples) in the same way as a
conventional inductive logic programming tool, but additionally it can reason about
streamed RDF data. The overall PrASP stream reasoning architecture is shown in Fig. 1.
With stream data as input, PrASP acts like an uncertainty reasoning server which is step-
by-step supplied with a sequence (of undetermined, theoretically even infinite, length)
of new beliefs (certain or uncertain facts and rules) and learning examples (typically
unweighted literals). Streamed beliefs are incrementally added to an initially loaded
PrASP program, whereas streamed example formulas add to the set of learning exam-
ples (see Sect. 2). Optionally, each streamed belief or example can have a specified life-
time (number of streaming steps after which the belief or example is forgotten), in order
to allow for time-decay and sliding window reasoning (but it is also possible to retract
formulas explicitly). After each step, PrASP returns updated query and/or learning re-
sults. While this resembles systems for reactive answer set programming like oClingo
[8], no reactive ASP solver is currently used (as these are incompatible with proba-
bilistic reasoning) - instead, the current PrASP prototype implementation uses standard
ASP solvers and recognizes repeated window prefixes (windows being the floating sub-
sequences of streams visible to the reasoner) using a caching mechanism, in order to
make stream reasoning more efficient.
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Fig. 1. PrASP probabilistic stream reasoning framework

RDF streams are preprocessed using CQELS [12], an extended SPARQL query tool
for stream processing. Query results delivered by CQELS are translated into PrASP
syntax using a simple pattern language which we insert directly into queries written
using CQELS’ SPARQL dialect. An example for such an extended stream query (trans-
lation pattern in bold typeface) is

PREFIX lv: <http://deri.org/floorplan/>
SELECT ?person1 ?loc1

PRASP E5 atPos(?person1,?loc1,TIMESTAMP).
[OMIT http://deri.org/dblp/persons/]

FROM NAMED <http://deri.org/floorplan/> WHERE {
GRAPH <http://deri.org/floorplan/>
{?loc1 lv:connected ?loc2}
STREAM <http://deri.org/streams/rfid> [NOW]
{?person1 lv:detectedAt ?loc1} }

The translation pattern (the bold lines above) specifies how the query results received
from CQELS are translated into a form which can be processed by PrASP (essentially
ASP facts or rules, optionally with weights). The query refers to streams of RFID loca-
tion sensor data - e.g., a single ground fact within the stream send to PrASP could be
atPos(paul_erdoes, d010, 1), telling that person paul_erdoes is at location
(room) d010 at time 1. E5 in the translation pattern specifies that the formula should be
provided as a learning example with restricted time of validity (floating window size),
namely only for the duration of five time steps. After each reception of a new learning
example, PrASP updates the weights of given hypotheses - please see the next section
for how this looks concretely.
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Alternatively to dealing with streams of machine learning examples as above, it is
also possible to let the stream incrementally supply certain or probabilistic beliefs and
let PrASP perform probabilistic inference using these beliefs. The translation pattern
within the query is analogous, but uses Bn [weight] in place of En as above.

Due to the use of CQELS as a filter engine, the RDF data flow is similar to that in
the StreamRule framework [15], however StreamRule does not allow for any uncer-
tainty reasoning or learning. On the other hand, uncertainty stream reasoning using our
prototype implementation of PrASP is currently much slower than any form of non-
probabilistic stream reasoning.

4 Examples and Conclusions

Our implementation of PrASP is still preliminary, but we can already illustrate how our
system deals with incrementally provided finite fragments of a data stream and reasons
about uncertain knowledge, typical of open and uncontrolled environment such as the
Web of Data and the Internet of Things (IoT).

The first example considers streams of RFID loca-
tion sensor data in form of RDF triples of the form
http://deri.org/dblp/persons/Paul_Erdoes detectedAt D011 where
D011 is the number of the room in which the person was detected.1

Background knowledge (in form of a simple PrASP program in FOL syntax) con-
tains only one rule, the commonsense rule

L1 == L2 <- atPos(P,L1,T) & atPos(P,L2,T) & person(P)
& location(L1) & location(L2) & time(T).

which states that a person cannot be at two different locations at the same time.
We use detected positions returned from the stream query processing engine2 as ex-

amples (or observations) for learning the location of a person expressed as a hypothesis.
This is a key capability under the assumption that sensor data might be noisy or incon-
sistent. This learning process starts from the hypothesis and updates its weight based
on the observed examples.

In the sample execution trace below, PrASP is launched with hypothesis
atPos(paul_erdoes, d010, 1) and it updates the weight of this hypothesis after
each incoming example (the lines starting with E5):

E5 atPos(paul_erdoes,d010,1).
Server: [0.9999999999999999] atPos(paul_erdoes, d010, 1).
E5 atPos(paul_erdoes,d011,1).
Server: [0.4999999999999996] atPos(paul_erdoes, d010, 1).
E5 atPos(cecil_kochler,e017,1).
Server: [0.4999999999999996] atPos(paul_erdoes, d010, 1).
...

1 URI prefix http://deri.org/floorplan/ as per example query in Sect. 3 has been
omitted for readability.

2 Using a translation pattern like that in Sect. 3, but now we assume that multiple position dates
with the same time stamp can occur in the stream, e.g., from different sensors.
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The next example (also about localization but using different background knowl-
edge and data) shows how probabilistic reasoning can make use of semantically richer
streams of weighted (that is, uncertain) beliefs, such as weighted sensor data. However,
since data streams with RDF triples do not provide any triple weights, we now assume
stream data directly in PrASP syntax3.

We consider the problem of estimating the position of a moving target (such as a car)
on a static map (such as a road grid) by using uncertain input data about the position
of the car at different timestamps and the sensed speed, which are added incrementally.
Sensor data is assumed to be uncertain because of factors such as noise or fusion of
multiple sensors. The expressiveness of the framework enables non-monotonic prob-
abilistic inference such as considering variation of speed w.r.t. a default speed, or the
possibility of having invalid locations (such as inaccessible areas).

The reasoning capabilities illustrated in this example are closely related to stream
reasoning since we can deal with aspects such as assertion and retraction of beliefs,
and time-decay model as well as sliding window. For simplicity, we consider a 3 × 3
location grid and a time range 1..5 within a time window.

The program below encodes the localization problem through a generate and test
specification that is typical of Answer Set Programming. The generation part (line 5)
specifies that a target can be in only one location at a time (provided that this location is
not invalid). The test part is modeled by two parts: one of them specifies what locations
are invalid (line 6) so that default negation in the generation part can eliminate them
from the model; the other one defines an integrity constraint (line 7) stating that a
location cannot be plausible if it is not coherent with the speed. What it means to be
speed-coherent is inductively defined in lines 8-10. Uncertain a priori information
about the target being at position loc(1,1) of the grid at time 1 is stated in line 11.

1 time(1..5).
2 row(1..3).
3 col(1..3).
4 location(loc(X,Y)) :- row(X), col(Y).
5 1{atPos(L,T) : location(L) : not invalid(L)}1 :- time(T).
6 invalid(L) :- 1{wall(L), locked(L) }, location(L).
7 :- atPos(L,T), not speed_coherent(L,T), time(T).
8 speed_coherent(L,1) :- atPos(L,1), location(L).
9 speed_coherent(L,T) :- speed(X,T-1), atPos(L1,T-1),

distanceT(L,L1,X,T).
10 distanceT(loc(X,Y),loc(U,V),#abs(X-U) + #abs(Y-V),T)

:- atPos(loc(X,Y),T), atPos(loc(U,V),T-1).
11 [0.8] atPos(loc(1,1),1).
12 sensedspeed(1,1).
13 speed(S,T) :- sensedspeed(S,T).
14 speed(X,T) :- speed(X,T-1), not n_speed(X,T), time(T).
15 n_speed(X,T) :- sensedspeed(Z,T), speed(X,T-1), Z!=X.

In order to explore inference capabilities of our system, we ask for the weights of
certain facts (queries), given a number of incrementally supplied uncertain belief up-
dates. Firstly, if we ask our system to infer probabilities for the target being at position

3 These weights could also be attached automatically when translating triples to PrASP syntax.
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loc(2,2) at times 1, 3 and 5 respectively, assuming default speed is equal to 1, we
obtain

[0.03870967741935094] atPos(loc(2,2),1).
[0.4483870967741945] atPos(loc(2,2),3).
[0.2989247311827963] atPos(loc(2,2),5).

We now want to observe how the variations of speed (provided as belief updates),
may affect our inferred beliefs about possible target positions. Adding as new belief
that a sensed speed equal to 3 was observed at time 2 with weight 0.7
(B [0.7] sensedspeed(3,2)), results in new (lower) probabilities for the target lo-
cations at time steps 3 and 5:

[0.21601941747572903] atPos(loc(2,2),3).
[0.14401294498381956] atPos(loc(2,2),5).

Providing another new belief B1[0.7]sensedspeed(1,4) indicates speed is equal
to one at time four with weight0.7, while the number after theB indicates that this belief
decays after one time step. This update followed by a similar belief but with different
weight (B1 [0.5] sensedspeed(1,4)) changes the results of the weighted beliefs
for the positions at time 5 first to ca. [0.26502748141] atPos(loc(2,2),5) and
afterwards to [0.23302618816682907] atPos(loc(2,2),5) .

We have introduced a framework for uncertainty reasoning about Web stream data,
including both deductive and inductive reasoning (parameter estimation), based on ASP.
Our framework is motivated by our belief that semantically rich reasoning about dy-
namic data on the Web requires support for non-monotonic reasoning approaches such
as belief revision and default reasoning, as well as the ability to deal with uncertainty
and data inconsistencies, making Web stream reasoning an ideal application field for
probabilistic ASP. Future work will mainly focus on the improvement of our current
early-stage prototype implementation, in order to make it usable for uncertainty reason-
ing about very large, real-world data streams.

References

1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory Pract.
Log. Program. 9(1), 57–144 (2009)

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Huang, Y., Tresp, V., Rettinger, A., Wermser,
H.: Deductive and inductive stream reasoning for semantic social media analytics. IEEE
Intelligent Systems, 32–41 (2010)

3. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal.
(1988)

4. Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in nonmonotonic
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Abstract. In the last years ontologies have been applied increasingly as
a conceptual view facilitating the federation of numerous data sources
using different access methods and data schemes. Approaches such as
ontology-based data integration (OBDI) are aimed at this purpose. Ac-
cording to these approaches, queries formulated in an ontology describing
the knowledge domain as a whole are translated into queries formulated
in vocabularies of integrated data sources. In such integrative environ-
ments the increasing number of heterogeneous data sources increases the
risk of inconsistencies. These inconsistencies become a serious obstacle
for leveraging the full potential of approaches like OBDI since inconsis-
tencies can be hardly identified by existing reasoning algorithms, which
mostly have been developed for processing of locally available knowledge
bases. In this paper we present an alternative approach for efficient fed-
erated debugging. Our solution relies on the generation of so called clash
queries that are evaluated over all integrated data sources. We further ex-
plain how these queries can be used for pinpointing those assertions that
cause inconsistencies and discuss finally some experimental evaluation
results of our implementation.

Keywords: Inconsistency Detection, Clash Queries, DL-LiteA, Feder-
ated Querying, Ontology-based Data Integration (OBDI), Query Rewrit-
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1 Introduction

Dealing with distributed and heterogeneous data sources has become an impor-
tant research topic since the amount of available data grows continuously in
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companies and in the public sector. To handle the resulting challenges of data
integration the approach of ontology-based data access (OBDA) has been pro-
posed. In OBDA an ontology serves as conceptual view that comprises and pos-
sibly extends the semantics of each integrated data source. Mappings between
this conceptual view and the different data schemes that describe the diverse
data sources are used to transform original queries referring to the ontology into
queries referring to the related vocabulary of each data source. Thus, on formu-
lating queries clients do not have to be aware of each specific data schema. In the
traditional OBDA approach, the data sources itself are assumed to be relational
databases that are accessible via SQL. However, the approach of OBDA can also
be adapted to all kinds of data sources and is in this setting also known under
the designation ontology-based data integration (OBDI) [1, 9, 11].

Given in this context a set of distributed, heterogeneous DL-LiteA knowledge
bases. Even though each data source is self-consistent, the integrative knowledge
base over all (or some of) these distributed sources may contain inconsistencies.
We will illustrate this by the following example. Given a central ontology T and
two distributed data sources DSA and DSB . For the sake of simplicity we assume
that DSA and DSB use the same ontology T . Note that our example can easily
be extended to the case where DSA and DSB use different terminologies that
are linked by equivalence or subsumption axioms in the central ontology T .

Example 1. Our terminology T contains the following axioms that describe per-
sons and their blood relationships:

Woman � Person ∃hasRelative � Person

Man � Person ∃hasRelative � Person

Woman � ¬Man hasAncestor � hasRelative

(funct hasBirthday) hasDescendant � hasRelative

ρ(hasBirthday) � xsd:dateTime hasDescendant � hasAncestor

Person � δ(hasBirthday) hasAncestor � ¬hasAncestor
(funct hasDNA) hasDescendant � ¬hasDescendant

(funct hasDNA ) gaveBirthTo � hasDescendant

∃hasDNA � DNA Person � ∃hasAncestor
Person � ∃hasDNA ∃gaveBirthTo �Woman

The two data sources mentioned above contain the following assertions:

DSA DSB

Man(Homer) gaveBirthTo(Homer,Lisa)

Man(Bart) gaveBirthTo(Marge,Lisa)

Woman(Lisa) hasRelative(Maggie,Lisa)

Woman(Marge) ...
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Since in DSB Homer is defined as someone who gaveBirthTo somebody,
according to T Homer is implicitly defined to be a Women. However, at the
same time we have Man(Homer) ∈ DSA. Due to Woman � ¬Man ∈ T we
have obviously a contradiction between DSA and DSB .

To detect such contradictions the data of each integrated data source needs to
be taken into account. Using traditional approaches, like tableau-based reasoning
algorithms, requires to have all the data at a place before the algorithm can
be applied. This makes such approaches hardly applicable in the context of
huge amounts of distributed data. To facilitate identification of contradictions
in distributed data sources, we propose an alternative approach. We identify
all possible types of inconsistencies and formulate appropriate queries in terms
of the central ontology. Furthermore, we reformulate these queries in order to
take into account all logical consequences for each of the concepts, roles and
attributes addressed in these queries and evaluate the rewritten queries, more
precisely its query atoms at each integrated data source. To enable high efficiency
of reasoning tasks and query answering we exploit a specific family of Description
Logics, called DL-Lite, which has been especially developed for this aim.

The rest of the paper is organized as follows. In Section 2.1 we describe the
task of inconsistency detection in DL-LiteA knowledge bases. Sections 2.2 and
2.3 shows our approach for clash query generation and federation of clash queries,
correspondingly. In Section 2.4 we further describe an algorithm for inconsistency
detection and generation of its explanations. Before concluding this paper in
Section 4, we discuss some experimental evaluation results in Section 3.

2 Inconsistency Detection

In this section we first explain different clash types that may occur in a DL-
LiteA-based knowledge base. Basing on that, we define a translation function
that is used in our approach to generate queries for inconsistency detection.
Before describing our algorithm for inconsistency detection and generation of
its explanations we elucidate the previously defined clash queries for distributed
environments.

2.1 Inconsistency Detection in DL-LiteA Knowledge Bases

The consistency of a knowledge base can be determined by searching for obvious
contradictions (also known as clashes) in the ABox. According to the work of
Lembo et al. [7], in a DL-LiteA knowledge base clashes can be caused by only
six different reasons, where ABox assertions contradicting TBox assertions, more
precisely negative inclusions, value-domains, role or attribute functionalities.

Detection of such clashes requires that not only explicit but also implicit
knowledge has to be taken into consideration. Since in our approach the focus is
on distributed environments like in OBDI, implicit knowledge can be not only
derived from the ontologies of each data source but also from the conceptual
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and centralized view. To obtain this complete knowledge especially by querying
there exist two different ways to compute the certain answers.

One way is the materialization of ABoxes, where a materialized ABox is an
original ABox extended by all assertions that can be additionally implied by
the TBox(es) defined locally but also centrally. Queries will then be evaluated
against the materialized ABox. This method, which is known as forward-chaining
(or also bottom-up), requires the duplication of information. Like in data ware-
housing the redundant data have to be kept up-to-date on each modification
and requires therewith additional resources. For that reasons such an approach
is intractable in our application scenario.

Instead, we apply the method of backward-chaining (also known as top-down)
where the ABoxes can be kept in the original state. The original query is refor-
mulated (rewritten) with respect to the TBox to the effect that all knowledge
relevant for the computation of the certain answers to that query is compiled
into a set of rewritten queries (unions of conjunctive queries). Roughly speaking,
if a query atom addresses individuals of a specific concept, the rewritten queries
will contain atoms addressing all possible concepts, roles and attributes that also
provide individuals of the originally requested concept. Especially for DL-LiteA
such rewritings can be done in PTIME and query answering in AC0 each in size
of the TBox and ABox, respectively [5, 9].

To utilize this feature of computing certain answers to a query by its rewriting
our approach of inconsistency detection comprises the generation of so called
clash queries.

2.2 Clash Query Generation

According to the clash definitions given by Lembo et al. [7] and based on the
work of Calvanese et al. [1] we are able to define a translation function τ that
generates queries for inconsistency detection from negative inclusions, function-
ality assertions or value-domain inclusions in T , denoted by Tn. If any of such
clash queries delivers non-empty result sets, we can conclude that the delivered
individuals cause inconsistencies with respect to elements in Tn addressed by the
atoms of the generated query. For DL-LiteA, the translation function τ and all
required kinds of generated clash queries are listed below in Datalog notation:

(i) τ(B1 � ¬B2) = q(x ) ← b1, b2, where bi = Ai(x ) if B i = Ai, bi = Pi(x, )
if B i = ∃P i, bi = Pi( , x) if B i = ∃P i , and bi = Ui(x, ) if B i = δ(U i)

(ii) τ(R1 � ¬R2) = q(x, y) ← r1, r2, where r i = P i(x, y) if Ri = P i, r i =
P i(y, x ) if Ri = P i , and r i = U i(x, y) if Ri = U i

(iii) τ(ρ(U ) � Ti) = q(x, y) ← U(x, y),Ti �= datatype(y)
(iv) τ((funct R)) = q(x, y, z ) ← r1, r2, y �= z, where r1 = P(x, y) if R = P,

r1 = P(y, x ) if R = P , r1 = U (x, y) if R = U, r2 = P(x, z ) if R = P, r2
= P(z, x ) if R = P , and r2 = U (x, z ) if R = U
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For our running example defined in Section 1 the following clash query can
be derived: q(x) ← Man(x),Woman(x). Now we have to apply the rewriting
techniques introduced above, which results in the following Datalog program:

q(x)←Woman(x),Man(x)

q(x)← gaveBirthTo(x, ),Man(x)

By identification of query parts that return some results due to an inconsistency
in the knowledge base, it is possible to pinpoint those ABox assertions that are re-
sponsible for the inconsistency. In case of our example above, the last query part
will return Homer and for that reason we know that {gaveBirthTo(Homer, ),
Man(Homer)} is an explanation for the inconsistency. Since the translation
function may produces query atoms containing unbound variables (denoted by
), the derived ABox assertions are not complete. This is the case especially for

existential restrictions in clash query type (i). For this special case a subsequent
query to select the unbound values can be formulated. Another option is to ex-
pand this specific type of generated clash queries by new distinguished variables
for each unbound variable.

2.3 Clash Query Federation

Considering the distributive environment, the generated clash queries will be
evaluated through a simple federation algorithm for our first experiments. The
processing of a query starts with its rewriting according to the method of
backward-chaining, taking the semantics of the central ontology into account.
In the more general case mappings to external ontologies are also taken into
account within this step. This results in unions of conjunctive queries that are
equivalent to the original query. Since a query, i.e., its atoms may address several
data sources each query atom is sent to all sources and its results are federated.

2.4 Generating Explanations

Algorithm 1 is based on similar Consistent algorithms proposed by Calvanese et
al. [1,2] and summarizes our approach for computing all federated inconsistency
explanations for a DL-LiteA-based knowledge base K = 〈T ,A〉. We first iterate
over Tn, which is the set of all negative inclusions, functionality assertions and
value-domain inclusions in T . In Algorithm 1 Tn is set by the function Deter-
mineTn. For each element α in Tn we apply the translation function τ to generate
the corresponding clash query. Since the semantics of DL-LiteA does not contain
specializations of elements in functionality assertions, we only have to rewrite
clash queries for negative inclusions and value-domain inclusions according to the
method of backward-chaining. Implementations of such rewriting algorithms are
for example PerfectRef given by Calvanese et al. [1] or TreeWitness constituted
by Kontchakov et al. [6], which is more efficient than PerfectRef. Both algorithms
are part of the –ontop– framework1 that is used within our implementation. For
the experimental evaluation in Section 3 we used the TreeWitness.

1 http://ontop.inf.unibz.it

http://ontop.inf.unibz.it
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Algorithm 1. InconsistencyDetection(K)
Input: DL-LiteA knowledge base K = 〈T ,A〉
Output: all inconsistency explanations C
begin

C ← ∅;
Tn ← DetermineTn(T );
foreach α ∈ Tn do

q ← τ (α);

qS ← ∅;
if α is a negative inclusion or a value-domain inclusion then

qS ← Rewrite(q, T );
else

qS ← {q};
foreach ϕ ∈ qS do

RS ← Answ(ϕ,A);

if RS �= ∅ then
C′ ← TransformIntoAssertions(RS, ϕ);
C ← C ∪ C′;

return C;
end

This rewriting step results in unions of conjunctive queries (qS). We execute
each conjunctive query ϕ of qS separately, as explained in the previous section.
If the result of ϕ is not empty, we use the query result RS and the query itself
to transform all result tupels into a set of clashing ABox assertions C′, that
represents a set of all inconsistency explanations related to that query result
(TransformIntoAssertions in Algorithm 1). We omit the TBox elements in these
explanations since we assume that T is commonly accepted and kept constantly.
We collect all explanations C′ of each conjunctive query ϕ in a overall set C of
all inconsistency explanations.

Since Tn, the set of all negative inclusions, functionality assertions and value-
domain inclusions in T is finite and the termination of Rewrite(q, T ) (such as
PerfectRef or TreeWitness) is assumed to be already established, the termination
of this algorithm is given.

Proposition 1. Let K = 〈T ,A〉 be a DL-LiteA knowledge base, where A is the
union of distributed data sources. Then InconsistencyDetection(K) generates the
set of all inconsistency explanations for K.

Repairing the detected inconsistencies, i.e., deciding which assertions should
be eliminated, is beyond the scope of this paper. Several approaches have been
already proposed to solve this problem [3]. Depending on the specifics of the
setting one might, for example, be interested to remove a minimum number of
assertions causing inconsistencies by computing a smallest minimal hitting set
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over all explanations. In most of these approaches it is required to have access to
the set of all inconsistency explanations, which are generated by our approach.

3 Experimental Evaluation

In order to evaluate the performance of our approach we compare our implemen-
tation of algorithm InconsistencyDetection, called ClashSniffer, to the reasoning
system Pellet [10]. Pellet offers a specific service for computing inconsistency
explanation and can thus be directly compared to our approach. Moreover, we
are conducting experiments with the Black-Box algorithm for computing expla-
nations, which is implemented as component in the OWL API, using HermiT [4]
as underlying reasoner. We have artificially generated some RDF datasets com-
prising 500, 5000, 10000, 50000 and 100000 ABox assertions according to the
TBox definition of our running example. The collection of datasets is available
at http://www.researchgate.net/publication/263051841 ClashSniffer

Evaluation Datasets. Each dataset contains some assertions that will cause
inconsistencies and are generated randomly with a rate about 2% of the com-
plete number of assertions. All possible clash types referred in Section 2.1 may
occur within these datasets. Since the OWL 2 QL profile2 is based on DL-Lite,
we use it as specification language of our defined TBox.

Pellet and HermiT can only be applied to the non-distributed version of the
dataset. For that reason we run our algorithm both in a local setting using a
central repository that contains the complete dataset (ClashSnifferL), and in
a distributed environment (ClashSnifferF ). In the distributed environment the
ABox assertions are randomly distributed over four data sources, represented by
instances of Virtuoso (Open-Source Edition)3. In this setting we sent each query
atom to all data sources and federated the results.

The results of our experimental evaluation are depicted in Table 1. It illus-
trates that first of all, the runtimes for the local and the distributed settings of
our algorithm differ significantly. This is caused by the latency in the network
and also by the fashion how the federated queries are executed. Since in our im-
plementation we use ARQ, a query engine for Apache Jena, for each tupel that
is returned as an answer for a query atom of a federated query, a new subquery
for the next query atom that is related to the first one will be generated for all
assigned data sources by default. Its also interesting to see that the runtimes for
the distributed settings increase linear with respect to the problem size. This is
not the case for the local setting, where the size of the ABox has only a minor
impact on the overall runtime.

A surprising result is related to the performance of Pellet and HermiT. For
the smallest dataset Pellet requires significantly more time to compute all expla-
nations than our algorithm, in both the local and the distributed setting. Pellet
takes more than five hours to compute explanations for the data set comprising

2 http://www.w3.org/TR/owl2-profiles
3 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

http://www.researchgate.net/publication/263051841_ClashSniffer_Evaluation_Datasets
http://www.researchgate.net/publication/263051841_ClashSniffer_Evaluation_Datasets
http://www.w3.org/TR/owl2-profiles
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
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Table 1. Experimental Evaluation Results

ABox Size 500 5,000 10,000 50,000 100,000

Pellet
Execution (ms) 1,713,901 >18,000,000 – – –

�Explanations 20 (13) – – – –

HermiT
Execution (ms) [Error] – – – –

�Explanations – – – – –

Clash
SnifferL

Execution (ms) 359 563 718 1,313 2,171

�Explanations 13 113 191 1,050 2,121

Clash
SnifferF

Execution (ms) 29,360 234,878 464,973 2,227,466 4,541,140

�Explanations 13 113 191 1,050 2,121

5000 assertions. We stopped the experiment after five hours. Contrary to Pel-
let, HermiT ends up on 500 assertions with an OutOfMemoryError despite of an
assigned memory of 4GB. We are currently missing an appropriate explanation
for this behaviour.

Comparing the generated inconsistency explanations of Pellet to the ones that
are produced by our algorithm, it can be observed that both approaches detected
the same explanations. However, Pellet generates (particularly concerning incon-
sistencies on attributes) explanation sets that are not minimal, i.e., some of the
generated sets are supersets of (minimal) explanations. Since supersets of the
same explanation are computed in some cases, Pellet produces a higher num-
ber of explanations. We have manually analysed the explanations generated by
Pellet for the test case with 500 assertions. After mapping each superset of an
explanation on the minimal explanation that was contained in the superset, the
results for Pellet and our approach were the same. Restricting the number of
explanations to small numbers (e.g., 5 or 10) the Black-Box approach is also
capable of generating an output. However, again, the generated sets are often
proper supersets of an explanation and the algorithm cannot generate such sets
if we increase the number of requested explanations. Moreover, our algorithm
generates in both, the local and the distributed setting, the same explanations,
which is in line with our theoretical considerations.

4 Conclusions and Future Work

In this paper we have described an approach of efficient inconsistency detection
in distributed knowledge bases based on DL-LiteA. The described approach re-
lies on the generation of clash queries that are evaluated over all integrated data
sources. We have further depicted an algorithm that detects existing inconsis-
tencies and generates explanations to them. We have also shown experimental
evaluation results for our algorithm.

Since in this paper we cover only one part of ontology debugging, namely the
identification of inconsistencies and its explanations, in our future work we will
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address the generation of extended explanations, e.g., comprising the correspond-
ing data sources, and the task of proposing some repair plans. Furthermore, we
will evaluate our approach by using “real” instead of artificially generated data
sets. In addition we plan to compare our approach of inconsistency detection also
against some DL-Lite tailored solutions, such as the OBDA management system
Mastro4. Due to the fact that we have used just a simple federation algorithm
we will integrate the proposed approach into the federation engine ELITE [8].
ELITE was developed with the purposes of efficient and complete processing of
federated queries in distributed environments. Especially the use of the R-Tree-
based index of ELITE guarantee that only those query parts are evaluated that
probably deliver some results. By this means the task of inconsistency detection
in distributed environments can be solved more efficient.
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Abstract. Answering conjunctive queries over Description Logic (DL) knowl-
edge bases is known to be 2ExpTime-hard for the DLs ALCI , SH, and their
extensions. In this technical note, we revisit these results to identify other equally
hard settings. In particular, we show that a simple adaptation of the proof for
SH proves that query answering is 2ExpTime-hard already for ALC if we con-
sider more expressive query languages such as positive existential queries and
(restricted classes of) conjunctive regular path queries.

1 Introduction

Ontology-based data access, and the related setting of query answering over Descrip-
tion Logic (DL) knowledge bases (KBs), has received considerable attention in the DL
community. Most work has been devoted to the so-called lightweight DLs of the DL-
Lite and EL families, but expressive DLs like ALC and its extentions have also been
considered, cf. [13] and its references. The first query answering algorithms for the lat-
ter kind of DLs had the common feature of requiring double exponential time [8,4,3],
and the question of whether this was worst-case optimal remained open for a while.
For all extensions of ALC that support inverse roles, this gap was closed by Lutz, who
proved 2EXPTIME-hardness of answering conjunctive queries (CQs) in ALCI [9]. An
orthogonal 2EXPTIME-hardness result was later shown for CQs over SH knowledge
bases [5], closing the gap for all DLs that support transitive roles and role hierarchies.
Recently, 2EXPTIME-hardness was also proved for DL-LiteHbool , a DL that does include
fullALC, but does support inverse roles and role hierarchies [2]. In contrast, answering
unions of CQs (UCQs) is feasible in single exponential time for ALCH and ALCHQ,
and even for SH if suitable restrictions on the occurrences of transitive roles in the
queries are imposed [12,9,6]. This shows that, for plain CQs and UCQs, the culprits for
2EXPTIME-hardness are indeed inverse roles, and transitive roles in combination with
role hierarchies.

The aforementioned lower bounds are for plain CQs. However, recent works have
gone beyond CQs and unions thereof, by investigating more expressive query languages
like regular path queries and their extensions [4,3,11,1], or restricted classes of Datalog
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queries [10]. To our knowledge, it had not been investigated whether for these more ex-
pressive query languages, 2EXPTIME-hardness holds already in the absence of inverse
roles, transitive roles, and role hierarchies. To tackle the issue, in this this technical note
we revisit the proof in [5] to show that 2EXPTIME-hardness holds already for ALC in
the following extensions of UCQs:

• positive existential queries (PQs),
• conjunctive regular path queries (CRPQs) without the Kleene star, and
• conjunctive 2-way regular path queries (C2RPQs) without the Kleene star and with

only 2 variables.

2 Query Languages

We assume familiarity with DLs, and in particular with ALC KBs. Their semantics is
given by interpretations I = 〈ΔI , ·I〉. We call I tree-shaped if the graph with nodes
ΔI and edges (d, e) for all (d, e) ∈ rI for a role name r, is a tree in the usual sense.

We focus here on Boolean queries of the form ∃x.ϕ(x), where x is a tuple of vari-
ables and ϕ(x) is a formula whose syntax depends on the considered query language.
In positive queries (PQs), ϕ(x) is built using ∧ and ∨ from atoms of the forms A(x)
and r(x, y), where A is a concept name, r a role name, and x, y are variables from x. A
conjunctive query (CQ) is a positive query built using only ∧, and a union of CQs is a
positive query that is in DNF, that is, it is a disjunction of conjunctions. Conjunctive reg-
ular path queries (CRPQs) are defined analogously to CQs, but atoms may additionally
take the form E(x, y), where E is a regular expression over the alphabet of role names.
Conjunctive 2-way regular path queries (C2RPQs) are similar, but regular expressions
are over the alphabet of role names r and their inverses r−. In this technical note we also
consider a restricted class of C(2)RPQs that we call (◦,∪)-queries, which only allow
for concatenation ◦ and union ∪ in complex roles, but disallows the Kleene star ∗. We
note that (◦,∪)-queries are closely related to PQs. Indeed, every (◦,∪)-query can be
rewritten as a PQ by using sequences of binary atoms in the place of ◦, and disjunction
in the place of ∪. However, this requires the use of additional variables and may result
in a larger query.

The semantics of queries is defined in terms of matches, which are mappings from
the variables in x to objects inΔI that make the query true; the latter notion is defined in
the natural way, see e.g.,[4]. Here we consider the query non-entailment problem, which
consists on deciding whether there exists a model of a given KBK that admits no match
for a given query q, in symbolsK �|= q. It is well known that every satisfiable ALC KB
Kwith only one ABox individual has a tree-shaped model, and that this extends to query
non-entailment:K �|= q iff there is a tree-shaped model of K that admits no match for q
(cf. [5,9]). All complexity bounds mentioned here are for combined complexity, i.e., the
complexity measured in terms of the combined sizes of K and q.

3 2EXPTIME-Hardness of CQs in SH Revisited

We recall the proof of 2EXPTIME-hardness of answering CQs over SH KBs in [5].
It is done by a reduction from the word problem of an exponentially space bounded
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Alternating Turing Machine M, that is, the problem of deciding for each input word w
toM, whether there is an accepting computation ofM on w that uses at most 2|w| tape
cells. The reduction builds a KB Kw and a query qw such that M accepts w iff Kw �|=
qw. Since a computation of an ATM is naturally represented as a tree of configurations,
the KB Kw is such that its tree-shaped models resemble accepting computations of M
on w. We next recall the construction of Kw and qw from [5]. The construction uses a
very simple ABox of the form A(a), for a an individual and A a concept name, hence
we can restrict our attention to tree-shaped models. We relax slightly the construction
of Kw to be an ALC KB, by omitting the (sole) use of a transitive role to connect a
node and its child to a common successor, for some nodes of the tree-shaped models of
Kw. Hence our description of Kw uses a single role r.

Configuration nodes. Intuitively, the tree-shaped models Kw are trees of nodes repre-
senting configurations of M. For a configuration Kh in which M is in state q and
its head in position i reading a symbol a, there is a (q, a, i)-configuration node n that
represents Kh. The node n stores Kh, and as a technical trick, it additionally stores an-
other configuration Kp such thatM may move from Kp to Kh; that is, n contains both
the current configuration Kh and a possible previous configuration Kp. To properly
store the current and previous configurations Kh and Kp, each (q, a, p)-configuration
node n is in turn the root of a binary tree of depth |w| whose 2|w| leaves correspond
to the tape cell positions, and store their |w|-bit address using a set of concept names
B = {B1, . . . B|w|}. All arcs in this tree are r-arcs. Each leaf � with address i, which
is called an i-cell (or just a cell if i is unimportant) has a child �h and a child �p that
store the symbol on tape position i in Kh and in Kp, respectively If i is the position of
the head of M in Kh, then �h also stores the state q of M, otherwise it stores a special
marker nil which intuitively means ‘the head is not on this position’. Similarly for Kp

and �p. For these labels we use concept names for alphabet symbols, states of M, and
the special marker nil .
Kw contains axioms that ensure that the configurations Kh and Kp are described

correctly: e.g., there is exactly one symbol on each tape position, the head is at exactly
one position, and M is in exactly one state. There are also axioms in Kw to ensure that
Kh is the result of correctly applying from Kp a transition of M.

Computation trees. A tree-shaped model Ic of Kw is called a computation tree and it
is a tree of configuration nodes connected via the role r. Its root n0 has an r-successor
that is a (q0, a0, 0)-configuration node describing (as current configuration) the initial
configuration of M. Each (q, a, p)-configuration node n with q an existential state has
a 2-step r-successor n′ that is a (q′, a′, p + M)-configuration node, for some tran-
sition (q, a, q′, a′,M) of M (here the transition is read as follows: M is in state q
and reading a, it writes a, moves to state q′, and the head moves in direction M ∈
{−1, 0, 1}). Similarly, each (q, a, p)-configuration node n with q a universal state, has
a 2-step r-successor n′ that is a (q′, a′, p + M)-configuration node for each transition
(q, a, q′, a′,M) of M. The axioms of Kw also ensure that every configuration node
with no successors is in an accepting state. Figure 1 illustrates a fragment of a compu-
tation tree with four configuration trees. A configuration tree with a magnified i-cell is
illustrated in Figure 2.
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Fig. 2. A configuration tree with a magnified cell

Proper computation trees. To have a one to one correspondence between the tree-shaped
models Ic of Kw and the accepting computations c of M on input w, it suffices to en-
sure that for each pair n, n′ of successive configuration nodes, the current configuration
of n coincides with the previous configuration of n′. This is captured by the notion of
properness, which states that for every counter i value up to 2|w|, the node �h of the
i-cell of n and the node �p of the i-cell of n′ satisfy exactly the same concepts corre-
sponding to head position, written symbol, and state ofM. Properness is not guaranteed
by the axioms of Kw alone, and a tree-shaped model Ic of Kw (i.e., a computation tree)
may be proper or not. Here where the query comes into play, by testing a computation
tree is proper. More precisely, qw should have a match in a computation tree Ic iff Ic is
not proper. In this way each computation tree with no match corresponds to an accept-
ing computation of M on w, and we obtain that there is a tree-shaped model Ic of Kw

where there is no match for qw iff there is an accepting computation of M on w. This
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(together with the tree-model property of ALC) suffices to ensure that Kw �|= q iff M
accepts w as desired.

By using suitable auxiliary nodes and labels, properness can be characterized in such
a way that it can easily tested by the query. We use a set Z of concept names Za,q for
a an alphabet symbol and q either a state M or the special marker nil . We have said
that every i-cell � has two children �p and �h, which respectively correspond to the i-th
tape position in the previous and in the current configuration. By adding auxiliary r-
children �′f to �f and �′′f to �′f for f ∈ {h, p}, and labeling all �f and �′f with suitable
values for the concepts B ∪ Z (exactly as done in [5]), one can obtain the following
characterization. Two cells � and m are called A-conspicuous, where A is a concept
name, if (c1) A is true at the �h-node of n and the mp-node of n′, or (c2) A is true
at the �′h-node of n and the m′

p-node of n′. In Proposition 4 of [5] it is proved that a
computation tree is not proper iff the following property (∗) holds:
(∗) There exits a cell � in a configuration tree, and a cell m in a successive configuration
tree, such that � and m are A-conspicuous for all A ∈ B ∪ Z.

To test (∗) with the query, we ensure that each �′′f satisfies a special concept Gf , but
we relax condition (c) in Definition 1 of [5], which requires that �′′f is also a child of
�f , and that the arcs from �f to �′′f and from �′f to �′′f are t-arcs for a transitive role t.
Instead, we only require �′′f to be an r-child of �′f . The queries testing for (∗) are similar
to those in [5], but differ slightly according to the query language being considered.

Positive Queries. We can define the query qw that tests (∗) as a PQ as follows. As
in [5], we obtain qw by taking the conjunction of a CQ q(A, u, v) for each A ∈ B ∪ Z,
where the variables u, v are shared by all q(A, u, v), and the remaining variables are
disjoint. That is, qw = ∃u, v.

∧
A∈B∪Z q(A, u, v), where q(A, u, v) is as follows:

q(A, u, v) = ∃xA
1 , x

A
2 , x

A
3 , y

A
0 , . . . y

A
|w|+1, z

A
0 , . . . z

A
|w|+3 .

r(xA
1 , y

A
0 ) ∧ r(xA

1 , z
A
0 ) ∧

r(yA0 , y
A
1 ) ∧ · · · ∧ r(yA|w|, y

A
|w|+1) ∧ A(yA|w|+1) ∧

r(zA0 , z
A
1 ) ∧ · · · ∧ r(zA|w|+2, z

A
|w|+3) ∧ A(zA|w|+3) ∧(

r(yA|w|+1, u) ∨
(
r(yA|w|+1, x

A
2 ) ∧ r(xA

2 , u)
))
∧Gh(u) ∧(

r(zA|w|+3, v) ∨
(
r(zA|w|+3, x

A
3 ) ∧ r(xA

3 , v)
))
∧Gp(v)

The basic query q(A, u, v) is illustrated in the left-hand-side of Figure 3, and the full
query qw on the right-hand-side. For readability, most labels have been omitted in the
depiction of qw. Each arc represents an atom of the form r(x, y). The double dashed
arcs between yA|w|+1 and u, and between zA|w|+3 and v, represent a disjunction. The only
difference between this q(A, u, v) and the one in [5] is that the disjunction of atoms
r(yA|w|+1, u)∨

(
r(yA|w|+1, x

A
2 )∧ r(xA

2 , u)
)

replaces the atom t(yA|w|+1, u), and similarly

r(zA|w|+3, v) ∨
(
r(zA|w|+3, x

A
3 ) ∧ r(xA

3 , v)
)

replaces t(zA|w|+3, v).
Intuitively, q(A, u, v) deals with A-conspicuousness, and qw tests (∗) by taking the

conjunction for all A ∈ B∪Z. Note that the shared variables u, v are needed to ensure
that all the components q(A, u, v) speak about the same pair of cells �, m.

To see that qw has a match iff (∗) holds, let �, m be cells of two successive configura-
tions that are A-conspicuous for all A ∈ B∪Z. We can find a match for qw as follows.
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Fig. 3. The basic query q(A, u, v) and the full query qw

First we match u on the �′′h node of �, which satisfies Gh, and v on the m′′
p node of m,

which satisfies Gp. Consider an arbitrary A ∈ B ∪ Z. We distinguish two cases:
– If (c1) applies, we match yA|w|+1 on the �h node of �, xA

2 on the �′h node of �, zA|w|+3

on mp node of m, and xA
3 on m′

p node of m.
– Otherwise, if (c2) applies, we match yA|w|+1 on the �′h node of � and zA|w|+3 on m′

p

node of m. In this case, the matches for xA
2 and xA

3 become irrelevant.
The matches of all other variables are then uniquely determined by conjunctions of
atoms r(z, z′), in such a way that xA

1 will be matched to the root of the configuration
node of � in the latter case, and to its parent in the former. As the zAi chains are exactly
two r-arcs longer than the yAi chains, m must be a leaf in a configuration node that
follows that of �. We can argue analogously that every match for qw, the variables u
and v are respectively matched to the nodes �′′h and m′′

p of a pair �, m of cells of two
successive configurations that are A-conspicuous for all A ∈ B ∪ Z.

In this way we obtain that, for every computation tree Ic, we have Ic is proper iff
Ic |= qw. This ends the reduction to PQ entailment in ALC.

Note that converting qw into a union of CQs (i.e., into DNF) results in an exponen-
tially larger formula. This blow-up may be unavoidable. In fact, for CQs, it has been
shown that query entailment is feasible in EXPTIME for ALCH and ALCHQ, and
even for SH if suitable restrictions on the occurrences of transitive roles in the queries
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are imposed [12,9,6]. It follows from these results that there is no CQ whose size is
polynomial in w and M that can test for properness of computation trees.

(◦,∪)-Queries. Defining the query qw as a (◦,∪)-query is straightforward. We only
need to replace in q(A, u, v) the disjunction r(yA|w|+1, u)∨

(
r(yA|w|+1, x

A
2 ) ∧ r(xA

2 , u)
)

by the atom
(
r∪(r◦r)

)
(yA|w|+1, u), and the disjunction r(zA|w|+3, v)∨

(
r(zA|w|+3, x

A
3 )∧

r(xA
3 , v)

)
by the atom

(
r ∪ (r ◦ r)

)
(zA|w|+3, v) (and we can drop the variables xA

2 and

xA
2 ). Then we can define qw as above, as the conjunction of the (modified) q(A, u, v)

for all A ∈ B ∪ Z. A match for this modified qw in a computation tree is a match for
the positive query above, and vice versa.

An alternative (◦,∪)-query for testing properness is obtained by replacing in each
q(A, u, v) the sequence of atoms r(xA

1 , y
A
0 ) ∧ r(yA0 , y

A
1 ) ∧ · · · ∧ r(yA|w|, y

A
|w|+1) by a

single atom r ◦ · · · ◦ r(xA
1 , y

A
|w|+1) for a chain r ◦ · · · ◦ r of length |w| + 2, and the

sequence r(xA
1 , z

A
0 ) ∧ r(zA0 , z

A
1 ) ∧ · · · ∧ r(zA|w|, z

A
|w|+3) by r ◦ · · · ◦ r(xA

1 , z
A
|w|+3) for

a chain of length |w| + 4; note that we can get rid of all but one variable yAi , and all
but one zAi . Using the test constructor A? for a name A sometimes allowed in CRPQs
(with semantics A?I = {e, e | e ∈ AI}) we can even replace in q(A, u, v) the whole
sequence of atoms from xA

1 to u by a single atom, and the whole sequence from xA
1 to

v by another atom, using only one variable xA additionally to u and v. However, the
number of variables in the resulting qw still depends linearly on |w| and M.

Using the inverse roles allowed in C2RPQs, we can even go one step further and
write the whole query q′(A, u, v) as one single atom with variables u and v:

q′(A, u, v) = Gh?◦(r−∪r−◦r−)◦A?◦r− ◦ · · · ◦ r−︸ ︷︷ ︸
|w|+2 times

◦ r ◦ · · · ◦ r︸ ︷︷ ︸
|w|+4 times

◦A?◦
(
r∪(r◦r)

)
(u, v)

The conjunction of these queries also gives a query qw that correctly tests properness,
but using only two variables. We note that in C2RPQs the tests A? add no expressive
power, as they can be simulated by adding a axiom A � ∃rA to the KB for a fresh role
rA, and replacing A? by rA ◦ r−A . Summing up, we obtain:

Theorem 1. Query entailment in ALC is 2EXPTIME-hard for:

1. positive queries,
2. any extension of CQs that allows for atoms of the form

(
r ∪ (r ◦ r)

)
(z, z′) for a

role name r and variables z, z′,
3. the class of ∗-free CRPQs, and
4. the class of ∗-free C2RPQs with only two variables.

We note that for PQs and CRPQs (with no inverses), it is not clear whether the re-
duction can be done using a bounded number of variables. The same holds for the lower
bounds forALCI and SH [9,5]. In contrast, CQ entailment in SHI is 2EXPTIME-hard
already for queries with only two variables [7], similarly to C2RPQs in ALC.

4 Conclusions

We have seen that query answering in ALC and its extensions becomes 2EXPTIME-
hard even for rather restricted settings. However, once this 2EXPTIME-hard boundary
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has been crossed, one can significantly extend both the DL and the query language
without an additional increase in complexity. Query entailment remains in 2EXPTIME

even for positive 2-way regular path queries, which extend all the query languages men-
tioned above, and for ZIQ, ZOQ ad ZOI, which respectively extend the well known
SHIQ, SHOQ and SHOI [4,3].

In this paper we have focused on identifying query languages for which query en-
tailment in ALC is 2EXPTIME-hard. It would also be interesting to study which are the
minimal DL constructs needed to show 2EXPTIME-hardness, similarly as done in [2],
but trying to avoid the combined use of role hierarchies and inverse roles. In line with
aforementioned paper, it is worth remarking that the presence of disjunction is crucial.
Indeed, even C2RPQs in (disjunction-free) Horn-SHOIQ can be answered in single
exponential time [11]. For a more detailed discussion of the topic, and references to
other related results, the reader may refer to [13].
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Abstract. In this paper we describe the desctop ontology for con-
tainer terminal operations. It is a semantic-based representation of the
main functions of a container terminal, in order to formally represent the
operational flows which the terminal operators should be supported in.

1 Context and Motivation

A Container Terminal (CT) is a place where containers – also known as, In-
termodal Transport Units (ITUs) – are transshipped between diverse transport
vehicles, e.g., vessels and trucks. As reported in [7] (among others), a CT is
mainly composed of three interacting systems: a land-side system, aimed to
manage ITUs arrive and depart by trucks; a yard storage and handling system,
to govern the (temporary) ITU storage and transfer between quayside and land-
side; and a quayside system, to deal with the management of berths and quay
cranes when a vessel arrives.

A container terminal is a very complex environment: terminal operators must
take several key decisions to cope with different scheduling and planning is-
sues, involving different equipments and their interaction. The main target of
such decisions is to improve both the efficiency and the effectiveness of the con-
tainer terminal with respect to some well-established performance indicators.
In order to deal with such critical decisions, terminal operators can leverage
on Decision Support Systems (DSSs, see, e.g, [14]), computer-based information
systems aimed to support decision-making activities (see, e.g., [11] for DSSs in
the context of container terminal).

This paper presents an ontology for the semantic-based representation of the
operations in a container terminal, focusing on the operational flows related to
the yard storage and the quayside system. This ontology here described aims to
be the conceptual layer of the knowledge-based DSS designed in the context of
the desctop (DEcision Support for Container Terminal OPerations) project1,
which is finalized to design a DSS to improve the efficiency of the CT operations
at the Cagliari International Container Terminal (CICT, http://www.cict.it).
We can report several success stories about the usage of ontologies to support
decision-making in the context of intermodal logistics – see, e.g., [5] –, as well

1 http://visionlab.uniss.it/desctop
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(a) (b) (c)

Fig. 1. Container terminal equipment: (a) a Quay Crane (serving a vessel); (b) the
container Storage Yard; and (c) a Rubber-Tyred Gantry crane

as in other application domains, e.g., in the clinical one [2,12] and in systems
diagnostics [6].

The work here presented builds on and extend part of the work presented
in [3]. We describe the desctop ontology in Section 2 and we conclude the
paper in Section 3 with some final remarks.

2 The DESCTOP Ontology

In this section we describe the desctop ontology, which represents the knowl-
edge layer of the DSS investigated in the project. In particular, the usage of an
ontology allows us to design an Ontology-Based Data Access (OBDA) informa-
tion system, in order to effectively accomplish tasks such as:

– Monitoring the terminal informations by means of the computation of critical
Key Performance Indicators (KPIs).

– Information search and retrieval for reporting purpose.
– Discover new relevant data that could be used for the optimization of ter-

minal operations.

By means of the desctop ontology we can represent all the necessary knowl-
edge to monitor the activities related to both yard storage and quayside systems.
In a few words, ITUs are stored in the storage yard, in rectangular regions called
blocks, and they can be stacked one on top of the other. There are two main
typologies of operations in a container terminal, namely unloading and loading.
Considering the first, ITUs arrive at the container terminal via vessels. They
are unloaded from the vessel to an internal truck whereby a Quay Crane (QC).
Such truck will shuttle the ITU to a Rubber-Tyred Gantry (RTG) crane that
will pick up the ITU from the truck and place it into the assigned position in
the storage yard. In the case of a loading operation the flow is in the other way
round. In Figure 1 we show some container terminal equipment.

The information system leverages the conceptual layer represented by the
desctop ontology allowing for an operator to monitor several kinds of KPIs,
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involving different components of the terminal, e.g., trucks, ITUs, vessels, yard
cranes. Examples of monitored KPIs are quay crane rate – i.e., the relationship
between the total amount of ITUs moved from a vessel with respect to the quay
crane working time – and the average waiting time of a truck in order to be
loaded in a given period. These KPIs are implemented as SPARQL 1.1 queries.

About the ontology language, our choice fall to OWL2 QL – see [10] – because
it guarantees that (i) conjunctive query answering can be implemented using
efficient algorithms with respect to the size of data, and (ii) the consistency of
the ontology can be evaluated using efficient algorithms with respect to the size
of the ontology itself. Furthermore, because of OWL2 QL falls in a Description
Logics (DLs) of the DL-Lite family, it enables to implement the OBDA approach
called, in the words of [9], OBDA with databases, that allows a reduction of
conjunctive queries over ontologies to first-order queries over standard relational
databases [4,13,1,8].

In Figure 2 we present a graphical outline of the TBox of the desctop on-
tology. Looking at the figure, we pinpoint the following classes:

Driver is the class representing the equipment drivers.
ITU denotes the goods packaged in containers. It has relationships with classes

representing type, size, and weight of a container.
ManagedVessel is the vessel subject of ITUs loading/unloading. This class is

also in relationship with classes representing line, sail direction, and services
related to a vessel.

OperationType represents the kind of operation involving ITUs (load, unload,
move).

QC is devoted to Quay Cranes representation.
QCMove aims at monitoring Quay Crane activities (and compute related KPIs).
RTG represents Rubber-Tyred Gantry cranes.
RTGMove is devoted to monitoring RTG activities (and compute related KPIs).
SYBlock models the position of a ITU in the Storage Yard. SYBlock is the

domain of data properties related to columns, lane, block, and height in the
storage yard.

Truck is the internal truck representation.
TruckTransport is devoted to monitor internal trucks activities (and compute

related KPIs).
WorkingDay denotes a working day, represented by both a day and a shift.

Concerning the object properties, we describe in the following the ones related
to QCMove as domain. The object properties related to the remaining equipment
are organized in a similar way and the can be found in detail in the full docu-
mentation of the desctop ontology.

QCInteractsWithTruck allows a relation with the class Truck, in order to keep
trace which truck has been used to load/unload during a move.

QCInteractsWithVessel allows a relation with the class ManagedVessel, in
order to record which QC was working during a load/unload operation.
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QCMoveExecutedOnDay relates to WorkingDay, to take into account day and shift
of a given QC move.

QCMoveOperation relates to OperationType.
QCMovePerformedBy relates to Driver, in order to allow the computation of

KPIs related to the drivers productivity.
QCMovePerformedUsing specifies the QC used for the considered move.
QCMovesITU relates a QC move with a specific ITU.

The OWL file related to the desctop ontology is available at
http://visionlab.uniss.it/desctop/rr14.

3 Conclusions

This paper described an ontology for the representation of container terminal
operations. The full documentation of the desctop ontology is available at the
website: http://visionlab.uniss.it/desctop/ontodesctop.

In order to implement the OBDA with databases approach on
the desctop information system, it has been also developed the re-
lated Relational Database schema. It is available for download at:
http://visionlab.uniss.it/desctop/rr14, while the full documentation
of the PostgreSQL Database schema implementation is available at:
http://visionlab.uniss.it/desctop/desctopdb.html.

To conclude, we are currently working on a simulator based on Operational
Research techniques aimed to produce realistic raw data to populate the ABox.
The resulting data will be made available as a benchmark for OBDA systems.
Finally, we are designing a more expressive version of the desctop ontology,
including, e.g., cardinality constraints.

Acknowledgments. The author wish to thank the anonymous reviewers for
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partially supported by Regione Autonoma della Sardegna e Autorità Portuale di
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Abstract. This system description paper introduces the OWL 2 query
answering system Hydrowl. Hydrowl is based on novel hybrid techniques
which in order to compute the query answers combine at run-time a rea-
soner ans1 supporting a (tractable) fragment of OWL 2 (e.g., OWL 2 QL
and OWL 2 RL) with a fully-fledged OWL 2 DL reasoner ans2. The mo-
tivation is that if most of the (query answering) work is delegated to the
(usually) very scalable system ans1 while the interaction with ans2 is kept
to a bare minimum, then we can possibly provide with scalable query
answering even over expressive fragments of OWL 2 DL. We discuss the
system’s architecture and we present an overview of the techniques used.
Finally, we present some first encouraging experimental results.

1 Introduction

Conjunctive query (CQ) answering over ontological knowledge expressed in the
OWL 2 DL language has attracted the interest of many researchers as well as
application developers the last decade [1, 2]. Unfortunately, query answering over
OWL 2 DL ontologies is of very high computational complexity [3, 4] and even
after modern optimisations and intense implementation efforts [5] OWL 2 DL
systems are still not able to cope with datasets containing billions of data.

The need for efficient query answering has motivated the development of sev-
eral fragments of OWL 2 DL [6], like OWL 2 EL, OWL 2 QL, and OWL 2 RL
for which query answering can be implemented (at-most) in polynomial time
with respect to the size of the data. Consequently, for many of these languages
there already exist highly scalable systems which have been applied successfully
to industrial-strength applications, like OWLim [1] and Oracle’s RDF Semantic
Graph [7]. The attractive properties of these systems have led application de-
velopers to use them even in cases where the input ontology is expressed in the
far more expressive OWL 2 DL language. Clearly, in such cases these systems
would most likely be incomplete—that is, for some user query and dataset they
will fail to compute all certain answers. However, techniques that attempt to
deliver complete query answering even when using scalable systems that are not
complete for OWL 2 DL have also been proposed [8, 9].

In this system description paper we present the architecture and main
characteristics of the Hydrowl1 query answering system. Hydrowl supports

1 http://www.image.ece.ntua.gr/~gstoil/hydrowl/

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 230–238, 2014.
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expressive ontology languages and like the latter mentioned approaches it is
based on novel techniques which attempt to use scalable but possibly incom-
plete systems as much as possible in order to achieve favourable performance.
All inferences involving “problematic” constructors of OWL 2 DL that these
systems do not support (e.g., existential restrictions and disjunctions) are either
explicated (“materialised”) at a pre-processing step as additional axioms or are
restricted as much as possible during on-line query evaluation. Our first exper-
imental evaluation using Hydrowl has provided with many encouraging results
several of which we report in Section 4.

We have so far tried to keep the design of Hydrowl as modular as possible.
Hence, we feel that one of its interesting features is that any application de-
veloper can plug his/her system into Hydrowl with minimum implementation
effort and, moreover, many different combinations of systems are possible. This
is also supported by the fact that we have already provided implementations in
Hydrowl that combine the OWL 2 RL reasoner OWLim [1] with HermiT [10],
with HermiT-BGP [5], and with Rapid [11].

2 Techniques Used in Hydrowl

In the current section we briefly outline the techniques used in Hydrowl.
As mentioned above, for a given OWL 2 DL ontology T , dataset A, and query

Q, Hydrowl still tries to use as much as possible an incomplete but scalable system
ans to compute the certain answers of Q over T ∪A. Clearly, in that case, there
can be entailments of T ∪ A related to Q that ans will miss. To recover such
missing inferences Hydrowl follows two different but not necessarily incompatible
approaches.

In the first approach, inferences involving unsupported constructors are expli-
cated (“materialised”) in a form that ans can eventually “recognise”. For exam-
ple, let ans be an OWL 2 RL system and let T = {A � ∃R, ∃R � B}. Since ans
is an OWL 2 RL system it cannot handle axioms with existential restrictions in
the right hand side. Hence, Hydrowl will compute for ans a new set of axioms
R that will contain the axiom A � B, i.e., it will materialise the entailment
T |= A � B. It can be verified that when ans is applied over T ∪ R it is able
to return all answers to every ground query and every datasets over T—that is,
for every ground CQ Q and A we have cert(Q, T ∪ A) ⊆ ans(Q, T ∪ R ∪ A).2

Such a set of axioms R is called the repair of T for ans [8, 12] and the process
of computing it repairing.

However, repairing captures only ground entailments hence even after repair-
ing ans is still incomplete for queries containing existential variables (which in
the following we call non-SPARQL queries). To also support such queries we
need to further materialise the non-ground inferences that are related to the ex-
istential variables of the query. Hydrowl accomplishes this by combining ans with
a second system ans′ which can explicate such type of information. One such

2 Note that this allows ans to be unsound, i.e., return wrong answers. However, to the
best of our knowledge, the vast majority of OWL 2 RL systems are sound.
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family of systems are query rewriting systems which take as input a (possibly
non-SPARQL) query Q and a TBox T and compute a so-called query rewriting
Rew [13–15]. Roughly speaking, a rewriting Rew for Q, T consists of two parts, a
set of datalog rules RewD which captures ground entailments of T and a union
of conjunctive queries RewQ which captures all inferences related to non-ground
entailments. Consequently, for RewQ �RewD a rewriting for a non-SPARQL CQ
Q over a TBox T we have that cert(Q, T ∪ A) ⊆ ans(RewQ, T ∪ R ∪ A) for every
dataset A. Summarising, this approach of Hydrowl to query answering follows
the following three steps:

1. Compute a repair R of T for ans.
2. Load the dataset A, the input TBox T , and the repair R to ans.
3. For a CQ Q, if Q is SPARQL then directly evaluate it over ans; otherwise

compute a rewriting RewD � RewQ for Q, T and evaluate RewQ over ans.

Note that steps 1 and 2 are usually required to be performed only once as a pre-
processing (changes in A can be handled incrementally). Moreover, note that
the important component both in computing R as well as in computing RewQ

is a query rewriting system [8, 12]. Hence, we call this approach rewriting-based
query answering.

Interestingly, by recent theoretical results [16–18], it follows that for systems
complete for OWL 2 RL repairs always exists for ontologies expressed in Horn-
SHIQ (a fairly expressive fragment of OWL 2) and they might also exist even
for arbitrary OWL 2 DL ontologies. Unfortunately, there can be ontologies where
a repair does not exist. The second approach followed by Hydrowl can work even
if no repair has been pre-computed at all (although some best effort “partial”
repair can be assumed). Instead, for an ontology T and a system ans, Hydrowl
first constructs the set U of atomic (concept and role) queries over T for which
ans is complete, called query base of ans for T . Then, for an arbitrary query Q,
the query base can be used to efficiently determine if ans is complete for Q (and
any dataset A) or not [19]; in the former case, Hydrowl uses ans to evaluate Q,
while in the latter it resorts to a fully-fledged OWL 2 DL reasoner ans′. There
are three benefits here. First, it is trivial to see that in theory query bases always
exist.3 Second, ans is expected to be mostly complete (T usually includes few
“problematic” constructors) leaving few queries that need to be evaluated using
the fully-fledged OWL 2 DL system. Third, it has been shown [19] that even in
cases that Hydrowl needs to use ans′, the scalable system can still be exploited
in order to speed up the evaluation by ans′. We call this approach of Hydrowl
hybrid query answering and is summarised by the following three steps:

1. Load the dataset A and the input TBox T to ans.
2. Compute a query base U of ans for T .
3. For a (ground) CQ Q, if it can be determined using U that ans is complete

for Q then directly evaluate Q using ans; otherwise evaluate Q using a fully-
fledged OWL 2 DL reasoner ans′ together with ans.

3 Note, however, that there are limitation in automatically extracting them.
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Note that indeed the two previous approaches are not incompatible. For ex-
ample, before computing a query base one can pre-compute some partial repair
R and also load it to ans. Then clearly, the more the partial R approximates the
(full) repair the smaller the query base of ans for T is. Moreover, a query rewrit-
ing system can also be used in Step 3 of the hybrid query answering approach in
order to capture some non-ground entailments and hence provide some support
for non-SPARQL CQs, however, this has not been forulated and implemented
yet.

3 Architecture of Hydrowl

Hydrowl is implemented in JAVA and is available under the AGPL license.
Figure 1 presents its main components, where JAVA classes are marked as
rectangles, procedures by ovals and data-flow (TBox) with light-blue arrows.
The two approaches outlined in the previous section are implemented by the
two main classes HybridEvaluator and RewritingBasedEvaluator. As illustrated,
to implement these approaches the methods use internally an incomplete and
a complete reasoner and this communication is performed through interfaces,
namely IncompleteReasoner and CompleteReasoner in the case of HybridEvalu-
ator and IncompleteReasoner and QueryRewritingSystem in the case of Rewrit-
ingBasedEvaluator. HybridEvaluator is using an additional componenent called
(Q,T)-CompletenessChecker with which it decides whether the user query can
be evaluated using the incomplete reasoner or the complete one needs to be
employed.

The use of interfaces makes the architecture highly modular as by imple-
menting them one can readily use the query answering techniques of Hydrowl

Fig. 1. Main components of Hydrowl



234 G. Stoilos

with their reasoner of choice. So far we have provided implementations of Com-
pleteReasoner using the standard HermiT reasoner [10] and HermiT-BGP [5], an
implementation of QueryRewritingSystem using Rapid [11], and an implemen-
tation of IncompleteReasoner using OWLim, however, we envision that OWL 2
DL systems such as Pellet, query rewriting systems such as Ontop and Clipper,
as well as OWL 2 RL systems and triple stores such as Apache Jena, RDFox,
and Stardog can be easily integrated.

For both approaches to work, a repair R or a query base U for the incomplete
system ans used in query answering should have been computed previously at
a pre-processing step. This can be done using the repairing package of Hydrowl.
Internally, this package uses a rewriting system, an OWL 2 DL reasoner and the
system ans with which it again communicates through an interface. The rewrit-
ing system is used to produce an initial repair (i.e., some first materialisation of
the ground inferences of T ) while both the OWL 2 DL reasoner and ans are used
as minimisation steps to produce the final repairR. The existing implementation
uses again Rapid and HermiT but the choice of these systems compared to the
ones used as implementations of CompleteReasoner and QueryRewritingSystem
is irrelevant (i.e., one can use completely different systems during query answer-
ing). However, clearly, the incomplete reasoner used in this step to produce R
or U must be the same (or at least equivalent in expressivity) as the one used
during query answering.

Subsequently, the query base is used by (Q,T)-CompletenessChecker to de-
termine if the incomplete reasoner is (in)complete for the given user query while
the repair needs to be loaded to QueryRewritingSystem in order for the incom-
plete system to be complete for all ground entailments over the input ontology
and data. As mentioned in the previous section, in the hybrid query answering
approach one can also compute and load some partial (or even full) repair to the
incomplete reasoner. In that case, the “more complete” the partial repair the
smaller the query base would be compared to the one computed using T (e.g.,
if the partial repair captures all ground entailments for a concept A then the
query base won’t contain the atomic query :-A(x)).

Finally, due to the systems integrated so far in Hydrowl we note that, the
rewriting-based query answering approach supports repairing and query answer-
ing (of arbitrary CQs) over ontologies expressed in the ELHI fragment of OWL 2
DL (a limitation stemming from Rapid which currently supports ELHI), while
the hybrid query evaluation approach supports query answering of SPARQL
queries over OWL 2 DL ontologies.

4 Evaluation

We report on some experimental evaluations using the HybridEvaluator and
RewritingBasedEvaluator classes of Hydrowl to answer queries. We used OWLim
as an implementation of IncompleteReasoner, the standard HermiT reasoner as
an implementation of CompleteReasoner and Rapid as an implementation of
QueryRewritingSystem.
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Table 1. Query Answering Times

LUBM UOBM

Query 1 3 8 9 3 4 9 11 12 14

HermiT-BGP 2.5 1.4 1.4 105 204 5.8 21.6 1.7 1.2 48.7

Hydrowl .07 .07 .24 .13 .02 .01 .01 .07 .04 35.3

4.1 Hybrid Query Answering

First, using the repairing package of Hydrowl we computed query bases for
OWLim for ontologies LUBM and UOBM. For LUBM we required 14.5 sec-
onds while for UOBM we required 48.7 seconds. Some additional manual editing
was required for UOBM in order to remove the atomic queries :-Woman(x) and
:-PeopleWithManyHobbies(x) from the query base as OWLim is incomplete for
them but this is not recognised automatically by the Compute QueryBase pro-
cedure of Hydrowl. This is because this procedure is based on a computation of a
repair using Rapid which currenlty only supports ELHI while these queries re-
quire reasoning over disjunctions and functional number restrictions. Second, we
used HybridEvaluator in order to evaluate all the test queries of LUBM (we used
5 universities) and of UOBM (we used 1 department) and we compared against
the HermiT-BGP system [5]. Table 1 presents the results (in seconds) for all the
interesting queries (for the rest both systems have similar response times). In
grey colour we have marked those queries where Hydrowl uses both OWLim and
HermiT. As can be seen, in all queries the hybrid query answering approach of
Hydrowl is faster than HermiT-BGP. In some cases the difference is quite signifi-
cant and this is even in the cases where Hydrowl uses both HermiT and OWLim.
It is worth noting query 3 over UOBM which requires non-deterministic rea-
soning. HermiT-BGP non-deterministicaly checks whether many individuals are
instances of the class Student while Hydrowl using both HermiT and OWLim
manages to restrict this search space to only a few individuals. Similarly, evalu-
ating query 14 requires non-deterministic reasoning over the class Woman.

4.2 Repairing-Based Query Answering

First, we wanted to evaluate whether repairs for large and complex ontologies
can be computed efficiently in practice. Using the repairing package of Hydrowl
we managed to compute repairs for 151 out of the 152 ontologies of our dataset.
In the vast majority of cases a repair could be computed in less than a few
minutes (usually within seconds) and only for the very large ones we required
several minutes; Table 2 presents results for the latter. Despite their size and
complexity we see that we can compute repairs for them in less than 1 hour
which, given that this usually occurs once, we feel is a reasonable amount of
time. Actually, if we discard a very expensive minimisation step of repairing,
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Table 2. |T | (|R|): number of axioms of the input TBox (repair), t: time in seconds

T |T | |R| t T |T | |R| t

Not-Galen 5471 3015(4153) 298(42) Galen-doc 4229 6051(6176) 1152(28)

Fly 19845 10361(12368) 2884(178) Galen 4229 3012(3062) 257(24)

Table 3. Loading times for Fly and UOBM for the various ABoxes

Universities

1 2 5 10 20

UOBM 4.1 6.8 16.2 31.9 73.2

UOBM∪R 4.4 8.3 24.3 44.9 108.1

A 2×A 3×A 4×A 5×A
Fly 14.0 21.9 22.7 27.9 31.5

Fly∪R 31.9 55.1 68.5 93.0 119.3

Fly∪R− 33.2 62.1 70.1 100.6 118.2

(a) UOBM (b) Fly

then we can compute some (non-minimal) repair very efficiently while its size is
not considerably larger than the minimal one (see Table 2 numbers in brackets).

Next, we loaded the repairs we computed for UOBM and Fly into OWLim;
Table 3 presents loading times of the original ontology with (i) data of various
sizes (for UOBM we used 1 to 20 universities and for Fly we multiplied the
original ABox up to 5 times) and (ii) with and without the computed repairs.
As can be seen, the overhead introduced by additionally loading the repair (R)
is significant only in the Fly ontology, mostly due to its size, however, note
that loading is also usually performed only once. In Fly we have also loaded
the non-minimal repair (R−) and as it turns out there is no significant dif-
ference compared to the minimal one (recall that computing it is much more
efficient).

Table 4. Results for Answering the Fly Queries

Q1 Q2 Q4 Q5

tRapid tOWLim tRapid tOWLim tRapid tOWLim tRapid tOWLim

0.31 0.31 0.90 1.28 0.07 0.04 0.05 0.02

Finally, we have used RewritingBasedEvaluator to answer all 4 non-SPARQL
queries of Fly (using the original ABox); Table 4 presents the results where tRapid
is the time required by Rapid and tOWLim the time required by OWLim (total
time is their sum). As we can see in most cases we were able to compute and
evaluate a rewriting almost instantaneously. The good behaviour of Hydrowl can
be attributed to the fact that most hard work is pushed to a pre-processing step
that is materialising all ground entailments into the repair and explicating them
by loading the ontology, the repair, and the data into OWLim.
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Abstract. Question Answering (QA) systems aim at providing answers
to Natural Language questions in an open domain context and can pro-
vide a solution to the problem of response accuracy. This paper describes
an answer extraction method based on ontologies. Our goal consists on
performing an efficient question answering by extracting answers based
on the question graph, lexico-syntactic patterns and score computation.

Keywords: Answer extraction, ontology, lexico-syntactic patterns.

1 Ontology-Based Answer Extraction Method

Question Answering (QA) systems are considered as advanced information re-
trieval systems, allowing the user to ask a question in Natural Language (NL) and
returning the precise answer instead of a set of documents. The aim of this paper
is to design, implement and experiment a new answer extraction method based
on ontologies. The proposed system relies on two main components: question
analysis component and answer extraction component. The goal is to perform
an efficient similar question search and a detailed question analysis [1] in order
to obtain useful information for the answer extraction. First, the user submits a
question in NL to obtain the reformulated question, submitted to a search en-
gine (on the web or on a document collection) and relevant phrases are extracted
from the retrieved documents. Using the questions typed attributed graph, the
system extracts relevant passages and then relevant answers containing the ques-
tions subject. If exists an answer that satisfies the pattern reformulated question,
the answer will be directly returned to the user (6) and stored in the question
base (7), otherwise, a score computation will take place for each answer (8) and
the ordered list of potential answers will be displayed to the user along with
their scores (9). This feedback gives the opportunity for answer validation (10)
and the update of the patterns stored in the question base (12).

The score measure relies on two criteria: the rank of the document from which
the candidate answer was extracted and the similarity between the answer and
the reformulated question. The similarity used in this score computation is the
overall similarity used in the similar question search component. In fact, it is the
average between semantic similarity (calculated using WordNet distance) and
statistic similarity. It is calculated using Vector Space Model [2] and dynamically
defined vectors representing both candidate answer and reformulated question.
A stop words elimination and a lemmatization processes are previously applied,
the vectors are built and a cosine similarity gives the final results.
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Fig. 1. General system’s architecture

2 Similar Question Search and Answer Extraction
Evaluation

During the experimentations, we calculate the similarities between the user’s
question and each question extracted from the question base after filtering. We
extract the most similar questions to the user’s question and we return an ordered
set of answers. For performance evaluation, we use the measures: (1) Success
at n (S@n), which means the percentage of queries for which we return the
correct similar question in the top n (1, 2, 5, and 10) returned results, (2) Mean
Reciprocal Rank (MRR) calculated over all tested questions and (3) Precision
which is the proportion of the number of correct answers to the number of
returned answers.

As example experiments for s@1=64%shows that the correct answer is extracted
from the first rank. The precision results show a good performance with 0,53.

3 Conclusion and Future Work

This paper presents a new answer extraction method based on ontologies. Our
contribution can be summarized in extracting answers from documents automat-
ically. Experiments were conducted and showed an improvement of the precision,
success and MRR of the extracted results. As perspectives, we plan to integrate
modular ontologies and Case-based Reasonning to the QA proposed system.
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1 Introduction

In software repository analysis, researchers are confronted with the problem
of having to perform similar analyses on heterogeneous data sources, e.g., in
order to verify their findings on data from different projects. Complete data
translation is often not feasible due to the size of the underlying repositories and
the complexity of the translation process. From an effort-benefit-ratio point of
view, query translation is a more efficient choice.

To be carried out automatically, a translation requires an alignment between
the source and target data sources, i.e., the ontologies describing them. Though
the necessary matching tasks can be partially automated, progress in this field
is currently slowing down [3]. One of the proposed additions that could further
improve the completeness of alignments is user involvment. Current matching
tools limit the involvement mainly to providing yes/no answers on suggested cor-
respondences. On the contrary, Ellis et al. presented an approach that integrates
the matching into an information retrieval task that provides immediate bene-
fits for the users [1]. We follow their core idea and integrate ontology matching
into the task of query translation. The direct output of this task is a translated
query that users can readily execute on the target data source. Simultaneously,
the steps taken during translation allow the extraction of an alignment between
the underlying ontologies. These alignments are reused in future translation tasks
so users only have to match elements without existing correspondence. To col-
lectivize the matching efforts, we implemented our approach as a platform called
RepMine, where users can benefit from and share the resulting alignments.

2 Query Translation and Alignment Extraction

As shown in Figure 1, a query parser first creates a conceptual, graph-based
representation of an input query issued on repository R1 [2]. This graph contains
the entities touched by a query, their relations amongst each other, as well as
attribute constraints. Supported by automated matching tools, users transform
this query graph (QG1) into an output graph (QG1’) that reflects an equivalent
query on the output repository. By transforming the graph, users simultaneously
share their knowledge about correspondences between ontology elements.
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Fig. 1. Concept of using query translations for simultaneous ontology matching

Two cases have to be distinguished: Re-labeling and re-structuring of the
query graph. If labels are exchanged (e.g., ’Developer’ ⇔ ’Programmer’), equiv-
alence of the concepts is assumed. Complex label substitutions express subsump-
tions (e.g., ’ProjectMember’ ⇔ ’Developer ∪ Manager’). If re-labeling does not
suffice, restructuring has to take place. It provides instructions for instance con-
struction, e.g., a ’hasEdited’ relation between a user and a file can be assumed, if
a file revision that belongs to the file has been created by the user. Alternatively,
it can also indicate subsumptions, e.g., if a ’Bug’ translates to an ’Issue’ with a
’Label’ named ’bug’, we can infer that Bug ⊂ Issue.

Our system uses existing alignments to support subsequent query translations.
Firstly, only elements without existing correspondences have to be translated.
Secondly, OWL inference is used to determine transitive alignments. Given a
third repository R3 and alignments between OR1 and OR2, as well as OR2 and
OR3, translation of queries between OR1 and OR3 is possible without requiring
further manual transformation input.

A challenge in this setup are conflicting alignments resulting from query graph
transformations. We aim to reduce these issues by alerting users if their query
transformations would invalidate existing correspondences and requiring them to
resolve the conflicts before accepting the changes, e.g., by deleting one alignment.
Our system is currently based on a simple rule set. In future work, we will
formalize the alignment extraction process and test it by recreating previous
software repository mining studies on different repositories by means of query
translation and using the resulting alignment for data transformation.
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1 Introduction

RDF is a data model whose relevance is growing in the last years. Recently,
some proposals have enriched the model with integrity constraints, well known
within relational databases. In this work we extend an existing framework [1,3]
with two new types of integrity constraints of disjunctive nature, inspired by
similar kinds of dependencies studied for the relational model. The problem of the
logical implication for the two novel categories is also analyzed. Moreover, as an
application scenario, we propose a complete and independent set of constraints to
model the context in RDF, where the context is a notion employed in databases
to perform information filtering on the basis of the user’s current situation.

2 Disjunctive Constraints for RDF

In the following we consider two pairwise disjoint sets U and V . The former is a
recursive enumerable infinite set of URIs, and the latter a recursive enumerable
infinite set of variables ; variables are denoted prefixing their names with $. A
term is either a URI or a variable. An RDF-graph G is a finite set of triples (s,
p, o), subject, property, object, s, p, o ∈ U . An embedding of a finite set S of
triples of terms in an RDF-graph G is a total function e : VS ∪U → U , such that:
(a) e(u) = u for each u ∈ U , (b) if (t1, t2, t3) ∈ S then (e(t1), e(t2), e(t3)) ∈ G.
Given an RDF graph G and a constraint C, the notation G |= C indicates that G
satisfies C. The definitions of the two novel categories of constraints follow:

Definition 1 (DEGC). A disjunctive equality generating constraint (DEGC)
is a pair (S, {E1, . . . , En}), where: S is a finite set of triples of terms, and
E1 . . . En are finite sets of equalities in the form (t1 = t2), with t1, t2 ∈ VS ∪ U .

Definition 2 (DEGC Satisfaction). A graph G satisfies the DEGC (S, {E1,
. . . , En}) iff for every embedding e of S in G, there exists Ei ∈ {E1, . . . , En}
such that for every (t1 = t2) ∈ Ei holds that e(t1) = e(t2).

Example 1. Consider C1 = DEGC({($x, a, $y)}, {{($x = b), ($y = c)}, {($x =
d), ($y = e)}}). {(f, g, h)} � C1, {(b, a, c)} � C1, {(d, a, e)} � C1, {(b, a, e)} � C1.
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Definition 3 (DTGC). A disjunctive triple generating constraint (DTGC) is
a pair (S, {S1, . . . , Sn}) where S, S1, . . . , Sn are finite sets of triples of terms.

Definition 4 (DTGC Satisfaction). An RDF-graph G satisfies the DTGC
(S, {S1, . . . , Sn}) if for every embedding e of S in G there exist Si ∈ {S1, . . . , Sn}
and an embedding e′ of S ∪ Si in G such that for all (t1, t2, t3) ∈ S holds
(e(t1), e(t2), e(t3)) = (e′(t1), e

′(t2), e
′(t3)).

Example 2. Consider C2 = DTGC({($x, a, b)}, {{($x, a, c)}, {($x, d, $y)}}). {(e,
a, f)} � C2, {(e, a, b), (e, d, g)} � C2, {(e, a, b), (e, a, c)} � C2, {(e, a, b)} � C2.
SPARQL ASK queries can be employed to check whether an RDF graph satisfies
a given DEGC or DTGC.

One of the most important questions studied within relational constraints is
logical implication. The problem is now analyzed in the RDF framework for the
new classes of constraints introduced above. Let SC be a finite set of constraints
and C be a constraint. As in [3], C is a logical consequence of SC iff for all graphs
G holds (∀C′ ∈ SC(G � C′)) ⇒ G � C. We study whether a single constraint of
one of the two new types is a logical consequence of a set of constraints of the
same type. Our results are summarized by the following theorems, proven in [4]:

Theorem 1. The implication problem for DEGCs is decidable.

Theorem 2. The implication problem for DTGCs is undecidable.

As an application, DEGCs and DTGCs are employed with other types of con-
straints to define a complete and independent set of constraints for an RDFS
representation of context schemas. Context schemas [2] are trees with nodes of
two kinds (black and white), used to describe the available contexts in a given
scenario. Here we just provide two sample constraints on our representation:
1) the only allowed classes are Node and its subclasses WhiteNode, BlackN-
ode, Root, Leaf: DEGC({($x, type, $y)}, {{($y=Node)}, {($y=WhiteNode)}, {($y=
BlackNode)}, {($y=Root)}, {($y=Leaf)}}); 2) each non-root node has at least one
parent: DTGC({($x, type, Node)}, {{($x, type, Root)}, {($x, childOf, $y)}}).
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Lots of Earth Observation (EO) data has become available at no charge in Eu-
rope and the US recently and there is a strong push for more open EO data.
Linked data is a new data paradigm which studies how one can make RDF
data available on the Web, and interconnect it with other data with the aim
of increasing its value. In the last few years, linked geospatial data has received
attention as researchers and practitioners have started tapping the wealth of
geospatial information available on the Web. As a result, the linked open data
(LOD) cloud has been rapidly populated with geospatial data some of it de-
scribing EO products (e.g., CORINE Land Cover and Urban Atlas published
by project TELEIOS). The abundance of this data can prove useful to the new
satellite missions (e.g., Sentinels) as a means to increase the usability of the
millions of images and EO products that are expected to be produced by these
missions.

However, open EO data that are currently made available by space agencies
such as ESA and NASA are not following the linked data paradigm. Therefore,
from the perspective of a user, the EO data and other kinds of geospatial data
necessary to satisfy his or her information need can only be found in different
data silos, where each silo may contain only part of the needed data. Opening
up these silos by publishing their contents as RDF and interlinking them with
semantic connections will allow the development of data analytics applications
with great environmental and financial value.

Our earlier project TELEIOS (http://www.earthobservatory.eu/) concen-
trated on developing data models, query languages, scalable query evaluation
techniques, and efficient data management systems that can be used to
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prototype applications of linked EO data. However, developing a methodology
and related software tools that support the whole life-cycle of linked open EO
data (e.g., publishing, interlinking etc.) has not been tackled by this project. The
main objective of the European project “Linked Open Earth Observation Data
for Precision Farming” (LEO) presented in this paper is to go beyond TELEIOS
by designing and implementing software supporting the life-cycle of linked open
EO data and its combination with linked geospatial data, and by developing a
precision farming application that heavily utilizes such data.

The scientific and technical objectives of LEO can be briefly described as
follows:

1. To specify the whole life-cycle of linked open EO data and auxiliary geospa-
tial data (e.g., maps, meteorological data) that are typically made available
by public bodies and utilized in EO applications (e.g., precision farming)
and publish the developed tools as an infrastructure that can be easily used
by data publishers and application developers.

2. To design and implement an extraction and transformation tool that takes as
input vector or raster EO data and open geospatial data and their metadata
available in some well-known format (e.g., a shapefile), transforms it into
RDF and makes it available on the LOD cloud.

3. To develop concepts, techniques and tools that will allow data publishers to
discover geospatial, temporal and similarity relations among open EO data
and other open geospatial data and metadata. The developed linking tool
will be an extension of the well-known tool Silk (http://silk.wbsg.de/)
which currently does not support the discovery of such kind of relations.

4. To develop tools for (i) cross-platform searching over linked EO metadata
using keywords expressing a user information need, time predicates and spa-
tial predicates, and (ii) a tool for browsing and visualizing time evolving
linked geospatial data and the creation, sharing, and collaborative editing
of ‘temporally-enriched’ thematic maps which are produced by combining
different sources of such data and other geospatial information available in
standard OGC file formats (e.g., KML). The latter tool will be an extension
of the tool Sextant (http://sextant.di.uoa.gr/) developed in TELEIOS
which will be re-developed for mobile platforms (tablets and smartphones).

5. To demonstrate the value of the developed tools by (i) performing large-
scale publication and linking of open EO data from the GMES Space Com-
ponent Data Access warehouse managed by ESA, and geospatial datasets
made available by other public bodies in Europe, and (ii) developing a pre-
cision farming application that shows how geo-information services based
on linked open EO data, linked geospatial data and specialized algorithms
can contribute to an environmentally friendly increase in the efficiency of
agricultural production.

Acknowledgements. This work has been funded by the FP7 project LEO
(611141) (http://linkedeodata.eu/).
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Abstract. The paper presents a novel method for extending automated
reasoners for first order logic with both fuzzy and probabilistic reasoning.
We encode probabilities in object logic and avoid meta-logic altogether,
thus simplifying the task of extending existing provers. The paper focuses
on achieving high efficiency while tackling probabilistic reasoning tasks.
The motivation and examples for the presented method stem from the
practical experience of calculating object categories and tags from the
large amounts of crowdsourced tourism data harvested, extracted and
aggregated from the web.

Keywords: crowdsourced categorization, tagging, web harvesting.

1 Introduction

The context of the proposed method is building a world-wide database of the
sightseeing popularity of concrete places (POI-s) and wider areas in the world,
using purely crowd-sourced data. By sightseeing popularity we mean the estimate
of a number of people visiting the place and considering it as an interesting place
for sightseeing, as opposed to very popular places with no or little potential for
sightseeing, like hospitals, schools, gas stations, bus stops and airports. The
sightseeing popularity database we build is used by our Sightsmap system [6]
(see also http://sightsmap.com) for showing a zoomable and pannable touristic
popularity heatmap for any area in the world as an overlay on the standard
Google maps.

The problem targeted by the current paper is writing rules for combining
different kinds of crowd-sourced category information into a set of properly
weighted tags usable for beforementioned purposes. Experience has shown that
attempts to combine a fuzzy measure with a probability-based measure into a
single “confidence” score is satisfiable only in very simple cases. When we start
to consider cumulating evidence, the principal differences between fuzzy logic
and probabilities create inconsistencies.

It is worth noting that a significant number of different theories and methods
for probabilistic reasoning have been developed, see [2], [5], but due to widely
different requirements in actual tasks and real-world domains, no single leading
approach has emerged. Several systems use probabilities or a fuzzy criteria to
recommend the items. In article by [4] a similarity coefficient is offered to find

R. Kontchakov and M.-L. Mugnier (Eds.): RR 2014, LNCS 8741, pp. 247–248, 2014.
c© Springer International Publishing Switzerland 2014

http://sightsmap.com


248 T. Tammet and A. Luberg

the best suitable point of interests for the given user. The similarity is calculated
by the profile and the item vectors. The similarity is larger if the angle between
the vectors is smaller. [1] have presented an uncertainty of situations based on
the contextual conditions. [3] are creating rules by the recommendation process.

2 Proposed Rule System

The purpose of the current paper is to propose a rule system combining fuzzy
and probabilistic logic in object logic. In other words, we do not propose a new
logic but show a practical way to encode both fuzzy and probabilistic logic in
classical first order reasoning systems. The encoding is suitable for presenting
object categorization rules in the context of uncertain information and does not
significantly increase the complexity of the derivation algorithms, i.e. does not
slow down the provers.

The first principle of the approach is to avoid metalogic and encode as much
as possible in classical first order logic.

The second principle is to avoid combining fuzzy and probabilistic measures
into a common “confidence” measure, keeping them separated at all stages dur-
ing the inference process.

Acknowledgments. This research has been supported by the European Re-
gional Development Fund.
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b.nardi@mat.unical.it

1 Introduction

Answer Set Programming (ASP) [1, 2] is a declarative programming paradigm which
has been proposed in the area of non-monotonic reasoning and logic programming. The
applications of ASP range from classical scientific applications in the field of Artificial
Intelligence [1] to real-world applications [3]. Although modeling in ASP is often not
particularly difficult, the task of writing ASP programs is still mostly performed by
expert programmers and is uncomfortable for novices. In order to facilitate the design
of ASP applications, some editors and programming environment were proposed in
the last few years [4–7]. However, the task of designing an ASP program consists of
writing text files (more or less computer-assisted), and could be daunting to the begin-
ners due to its “cryptic” syntax. A similar problem was solved by Query By Example
(QBE) graphical interfaces [8] in the field of databases. QBE tools are nowadays well-
recognized solutions to this issue (e.g., a QBE tool is the default in the user-oriented
Microsoft Access). Following this idea, we have developed a new visual editor proto-
type conceived for easing the design of ASP programs that is preliminarily described
in this paper. It is worth noting that existing programming tools for ASP do not provide
satisfactory solutions in this respect. Indeed, existing graphical tools are either limited
to modeling domain entities [7], or feature extensions of QBE interfaces, as in [6], that
do not capture in an intuitive graphical form way the richer language of ASP. Moreover
old visual logic languages [9] can serve only as a source of inspiration, since the main
language constructs of ASP were not considered.

2 Visual Editor

The ASP programmer does not need to provide an algorithm for solving a problem;
rather, he specifies the properties of the desired solution for its computation by means
of a collection of logic rules called logic program. Consider as an example the well-
known NP-complete problem 3-COLORING: given an undirected graph G = (V,E),
assign each vertex one of three colors – say, red, green, or blue – such that adjacent
vertices always have distinct colors. 3-COLORING can be encoded in ASP as follows:

node(v). edge(i,j). ∀v ∈ V ∀(i,j) ∈ E
col(X,red) v col(X,blue) v col(X,yellow) <- node(X).
<- edge(X,Y), col(X,C), col(Y,C).
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Fig. 1. 3-Colorability encoding in the new visual editor

The first line asserts facts representing the input graph G, the second line states that
each vertex needs to have some color. The last line contains a constraint that disallows
situations in which two connected vertices are associated with the same color. This logic
program can be also represented in a graphical way and composed by a programmer by
exploiting our new graphical environment.

In Figure 1 it is reported a snapshot of our tool in which the ASP encoding for
the well-known 3-colorability problem is depicted in a new visual syntax. In particular,
rules are represented by means of a graph in the new graphic language, where atoms are
boxes and are connected by edges symbolizing logical connectives. Predicate arguments
can be specified in apposite boxes, and are immediately visible. Joins between variables
can be created by dragging and dropping variables.

The visual editor prototype is already integrated in the ASPIDE [6] environment,
and it currently supports disjunctive ASP programs with constraints. As future work we
will develop a visual syntax for advanced constructs, such as aggregates, and functions.
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1 Introduction and Motivation

Over the last few years, numerous efforts [1–4, 7] have been proposed based on
SPARQL-like query languages on harvesting Linked Stream Data (LSD) process-
ing in RDF and related formats. While each existing processor has advantages,
neither of them wins in diverse settings. They differ on a wide range of aspects
including the execution method, operational semantics, streaming operators and
more. Considering state-of-the-art solutions, recent evaluations by [5, 6, 8] show
that C-SPARQL [2] suffers from duplicate results for simple queries and misses
some certain output in complex queries but provides more correct results than
others. On the otherhand CQELS [7] performs better than others in terms of
throughput and functionalities [6]. This diversity in output result is true for
other processors including EP-SPARQL [1] and StreamingSPARQL [3].

2 Bridging the Gap between LSD Processing and Real
Life Applications

In this research we investigate existing LSD processors to selectively combine the
strength based on the applications requirements and data properties. The main
goal is to bridge the gap between LSD query processing and real world applica-
tions, creating an adaptive layer which allows to react to changing requirements
for better performance and quality of results. Our approach to achieve this goal is
to consider differences and similarities of existing engines at a granular level and
see how data properties and application requirements affects those dimensions.
The initial set of dimensions I plan to consider for adaptability is originated
by my initial analysis of state-of-the-art engines and their fine-grained charac-
teristics. Such list of dimensions include query execution strategy, time model,
abstract operators for the processing model, quality of service/quality of infor-
mation, log management and privacy requirements. I also intend to contribute to
RDF Stream Processing (RSP) in W3C community designing a standard model
for LSD and make sure that it can support adaptive stream query processing.

� This research has been partially supported by Science Foundation Ireland (SFI)
under grant No. SFI/12/RC/2289 and EU FP7 CityPulse Project under grant
No.603095. http://www.ict-citypulse.eu.
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1 Introduction and Motivation

To model complex knowledge, for solving knowledge intensive problems, one
needs formalisms and systems that can represent this knowledge in a natural,
compact and modular way. Business Rule Systems (BRS) are a widespread way
of modelling knowledge intensive problems, with many applications in, among
others, planning, supply chain management and expert systems. These systems
model knowledge in the form of “if-then” rules “if body then head”. This for-
malism is used in academic as well as industrial context, mostly because of its
readability and the ease with which one can modify the behaviour of rules. Rich
interface tools are available, like for example IBM’s JRules and Drools. A second
advantage of this formalism is the ease to reason with the rules in an automated
way for which efficient algorithms exist.

From our point of view, the rigid rule based formulation of the knowledge
has some major disadvantages. The knowledge that is modelled in a system, is
strictly packed in these procedural style rules. These rules are equipped with a
procedural style semantics. As a result, the only method of inference on these
rules is execution (given information that occurs in the body of some of the rules,
infer new information occurring in the heads of these rules). These limitations
are not just an issue of the specific Business Rule System, but of the underlying
rules and the ambiguity in their semantics. Take these two rules:

– if Raining then Wet(Car)
– if Age(Person1) > Age(Person2) then Older(Person1, P erson2)

These two rules behave the same semantically, as long as forward reasoning
(execution) is used. If it is raining, the car will be wet and if the age of the first
person is larger than the age of the second one, we will call the first one older.
We notice however that the intended semantics can be different if the knowledge
is used in a different direction. Say that Ann is older than Bob, it can be derived
that the age of Ann is a larger number than the age of Bob. If the car is wet on
the other hand, it doesn’t have to rain.

Alternatively, formalisms based on first order logic could be used to model
business logic. They result in an increase in expressive power, but one might be
concerned about the impact on the efficiency since an increase in expressivity
can imply an increase in complexity. However, a lot of improvements on these
computational tools have been made since these formalisms were developed.
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Where once it was thought it was impossible to solve real life problems with
first order logic, research now shows otherwise [1].

In what follows we propose two new ways of reasoning in the context of
BRS that are going to be investigated in this research. The first new way of
reasoning, is called Exploration of specification. When developing a rule
set for a Business Rule System, an important part is testing the system for
correctness. To do this properly, a user should be able to ask questions like
“Given partial information X, is result Y ever possible?”.

Another inference we want to study is Generation of explanations. A rule
system is in many contexts used for decision problems. In many cases, it is very
interesting for a user to know why a certain decision is made. This is not only
useful for debugging purposes, this can also be a rich feature in the day to day
use of such a system.

Another aspect of this research is solving the problems a rule system has
when reasoning with incomplete information. In many real life applications, large
amounts of data can be relevant to the problem at hand. However, sometimes, a
small fraction of that data can be enough to take a decision. In the current state
of the art, a business rule system is not capable of reasoning with incomplete
information in a general way.

2 Completed and Future Work

In our research group, the reasoning tool IDP is developed, based on FO(·),
a set of conservative extensions of first order logic [2]. We believe this tool is
perfectly suited for addressing the issues mentioned above since (1) the FO(·)
logic is specifically developed for handling incomplete knowledge ; (2) the IDP
system can be easily extended with new inferences and language constructs; (3)
multiple concepts and constructs that are needed are already incorporated in
the IDP system.

A feasibility study of modelling Business Rule knowledge in FO(·) has been
done. In [3] it is also studied what features the IDP system has that extend the
current BR systems and what features are still missing in the IDP system to
correctly formalize BR knowledge. The next stage of the research, the develop-
ment of the new language constructs from the ICLP publication is followed by
the development of the new inferences, discussed above.
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