
Chapter 97

One More Efficient Parallel Initialization
Algorithm of K-Means with MapReduce

Bingliang Lu and Shuchao Wei

Abstract Because the main deficiencies of a k-means++ algorithm is its internal

orderliness, which restricts its applicability in the field of big data processing, we

propose an initialization algorithm called pk-means++ based oversampling tech-

nology. The initial cluster centers that are obtained using the new algorithm are

proved to be very close to the desired cluster centers used for iterative algorithms. It

is implemented based on MapReduce of Hadoop, and the experimental results

demonstrate that the improved MapReduce pk-means++ algorithm is much more

efficient than random and k-means++ initialization algorithm used in k-means

based MapReduce and can reach a good approximation.

Keywords Cloud computing • Hadoop • MapReduce • Clustering • k-means •

pk-means++

97.1 Introduction

Cluster analysis is a very important area of research on data mining [1, 2], and with

advances in technology, big data analysis and application represent general trends.

Thus, clustering studies face many new problems and challenges, such as massive

data analysis and new computing environments. K-means algorithms are good

clustering methods in terms of speed and simplicity in the field of data mining.

They have been identified as one of the top ten algorithms for data mining [3]. Some

researchers have achieved parallelization of k-means algorithms using MapReduce,

but the initial part of it that is used is a largely random initialization method, which is

easy to fall into local optima and might still not be well parallelized. (The initial value

of the inappropriate choice would result in local optimal solution. For example, the

distance of selected points randomly is very close. In this case, we have several

randomly chosen initial values and then selected the optimal solution.) Thus, the

focus of this study is to search for a better parallel initialization algorithm for k-means

B. Lu (*) • S. Wei

School of Computer, Shenyang Aerospace University, 110136, Shenyang, China

e-mail: bingliang_lu@163.com; scwade@foxmail.com

© Springer International Publishing Switzerland 2015

W.E. Wong (ed.), Proceedings of the 4th International Conference on Computer
Engineering and Networks, Lecture Notes in Electrical Engineering 355,

DOI 10.1007/978-3-319-11104-9_97

845

mailto:bingliang_lu@163.com
mailto:scwade@foxmail.com

algorithms to improve the quality and overall performance (we try to find a more

perfect and simply realization method of k-means on distributed platforms).

In this area, Arthur and Vassilvitskii proposed an initialization method called

k-means++ [4], which obtained excellent theoretical guarantees for clustering

performance. Using this method, the convergence time of Lloyd’s iteration was

reduced by means of a good set of starting centers. But the main deficiencies of the

k-means++ algorithm is its internal orderliness, so it is not parallelizable. This fact is

more serious in the field of big data processing [5].

Research efforts are being devoted to improving and realizing a k-means++

parallel method based on the MapReduce programming model. One parallel ver-

sion of the initialization algorithm called pk-means++ is proposed.

97.2 The of K-Means Algorithm

First, some notation is established. Let X¼ {x1, x2, . . ., xn} be a data set in the

d-dimensional Euclidean space. Next, let K be a number of clusters of k-means,

and the value of K is specified based on experience (this is not the focus of this

paper).

Let C¼ {c1, c2, . . ., cn} be a set of points and ||xi�xj|| denote the Euclidean

distance between xi and xj. The k-means method generates k centers by optimizing

the criterion of minimum squared error (MSE, the cost of clustering), which is

given by ϕX Cð Þ ¼
X

x2X
min
c2C

����x� c
����2:

The ultimate goal of a k-means clustering algorithm is to sample a new set C that

includes k centers in order to minimize ϕX(C). Finally, the data set X is divided into

K data sets Y, and Y¼ {Y1, . . .,Yk}, [
k

i¼1
Yi ¼ X, Yi[Yj¼∅.

One study has proven that finding ϕX(C) is an NP-hard problem [6]. A variety of

options have been researched on providing approximate solutions. Among them,

Lloyd’s algorithm is widely used in k-means algorithms.

Next, we discuss the algorithm of k-means++ in more detail (Sect. 3). Then, in

Sect. 3.1, we give a new initialization algorithm. Finally, a more precise overview

of the MapReduce mode is given in Sect. 3.2.

97.3 Parallel Initialization AlgorithmDesign of PK-Means++

The main idea of k-means++ is that the first centroid is chosen randomly, and then

subsequent centers are chosen one by one from the remaining data points [4]. The

k-means++ initialization algorithm is presented as follows:

846 B. Lu and S. Wei

Formally, k-means++ samples a single point in each pass. It runs very fast in

practice, and if the data are clustering well [7], it can guarantee a solution will be

found that is an O (log k) approximation to the optimal k-means [6].

But the major downside of the k-means++ is that it is applicable only to big data:

a parallel initialization algorithm is proposed based on the k-means++ algorithm

and oversampling technology; we call it pk-means++.

97.3.1 Basic Idea of PK-Means++

The main idea of the new initialization algorithm is that it chooses O (k) points in

each pass and obtains a nearly optimal solution after a logarithmic number of

passes. Finally, O (k log n) points will be left, and experimental results show that

a constant number of passes suffices in practice.

Then we set < num[i], ci>, i¼ 1, 2, . . ., k as the weight of every centroid

selected; it represents the number of objects in set X to the centroid point of ci.
Next, we recluster these points using k-means++ initialization. Next, the points are

reclustered into k initial centers, and Lloyd’s iteration can continue. Finally, we use
a standard k-means algorithm to complete the clustering.

97.3.2 MapReduce Implementation of PK-Means++

MapReduce is a programming model for efficient distribution, but also for

processing big data sets. A typical MapReduce program consists of three stages:

the Mapper stage, Shuffle stage, and Reduce stage. Also, the data set should have

the following characteristics [5]: it can be broken into many small data sets, and

every small data set can be processed completely in parallel.

In a k-means algorithm, the distance from each element to the centroid is

calculated independently, with different elements not being linked to each other

in the course of operation. Thus, the parallelized version of Lloyd’s iterations based
MapReduce modules can be easily realized. The basic idea is that each iteration

97 One More Efficient Parallel Initialization Algorithm of K-Means with MapReduce 847

starts a MapReduce process. According to the computing needs of MapReduce, the

data are stored by row and can be sliced by row, with no correlation between the

chip data. However, this is not the focus of the present study, though it has been

achieved by some researchers [5, 8], and it will not be discussed any further.

According to the preceding analysis, the MapReduce implementation of the

pk-means++ algorithm should be divided into two stages, Mapper and Reduce.

First, in the Mapper stage, complete steps 1–7 of the pk-means++ algorithm,

including generating a temporary data set and calculating the weight of each

element of the set. Reduce the stage to complete the remaining part of the algo-

rithm. To obtain the final set of initial cluster centroids C, we integrate k-means++

algorithm with reduce methods. Please refer to the specific implementation which is

described in what follows.

As described above, several expensive distance computations can be carried out

with MapReduce. Step 7 can be performed in the following manner: each Mapper

can sample independently and merge the intermediate results. Step 8 will be given a

small set C of centers, and we can compute the value as follows: each Mapper job of

Hadoop works on an input data split and then merges these intermediate results

from all Mappers to obtain an output for Reducer.

The task of the Reducer function is to update, based on the output of the Mapper

function, update the cluster centers for the next round of the Mapper function to use.

848 B. Lu and S. Wei

Meanwhile, calculate the standard measure for the main function to determine

whether the iteration is over. The specific description of the Reducer function is

as follows:

The preceding MapReduce procedure is called in the main function. Each

iteration is applied to a new job until the square error, which is calculated by the

old centers before iteration and the new centers obtained after iteration, is less than

the given threshold value; then the iteration ends.

97.4 Experimental Results and Analysis

The parallel experiments are performed on a homogeneous Hadoop cluster running

the latest stable version of Hadoop 1.2.1. The cluster consists of four machines with

one master node and three slave nodes. Each node has one Intel Core i5-2400

3.10 GHz Quad-Core CPU, 4 GB RAM, 500 GB hard disk, Intel 82551

10/100 Mbps ethernet controller. The operating system of each node is CentOS-6.3

server 32 bit and per Hadoop daemon is allocated 1 GBmemory. This cluster consists

of one TaskTracker and one DataNode daemon running on each slave and a single

NameNode and JobTracker daemon on the master. Two map slots and two reduce

slots are configured on each node. The experiments are conducted on the

KDDCup1999 data set. This is a real data set whose size is 4.8 M; the points of the

data set are 42 dimensions in Euclidean space. In the experiments, it is assumed that

when the initialization method is finished, Lloyd’s iterations are continued implicitly.

Let us first analyze the run time of different initialization procedures in the

tables. Comparing the data in Table 97.1, it is found that when one suitable

parameter f is selected for the pk-means++ algorithm, the convergence speed of

the clustering algorithm used by pk-means++ is the fastest and the total time using

the random k-means++ is at least one-fourth that of the other algorithm. Combined

97 One More Efficient Parallel Initialization Algorithm of K-Means with MapReduce 849

with the final clustering quality analysis we found that, when f¼ 2.0 k, the perfor-

mance of the pk-means++ clustering algorithm is the best.

As described in Table 97.2 and Fig. 97.1, it is clear that pk-means++ outperforms

k-means++ by orders of magnitude. When the coefficient f¼ 0.5 k, the convergence

value of the objective function is higher than that of the k-means++ algorithm. But

when the coefficient f> 1 k, the objective function value of the algorithm exhibits a

linear downward trend, suggesting that the effect of clustering with an increasing f

value will be significantly improved. By setting the value of k to 200 and 500, we

find that the larger the value of k clusters is, the smaller the convergence value is.

To describe the experimental data of Table 97.2 in a more intuitive way, the

following description uses a line chart. As described in Fig. 97.1:

Table 97.1 Total clustering

time (minutes) of k-means
Initialization algorithm

k (number of clusters)

200a 500a

Random 320.0 474.8

k-means++ 408.5 1,027.2

pk-means++, f¼ 0.5 k 66.5 44.5

pk-means++, f¼ 1.0 k 73.6 87.2

pk-means++, f¼ 2.0 k 64.2 82.5

pk-means++, f¼ 4.0 k 79.5 104.2
aThe experimental results can be easily observed and contrasted

Table 97.2 Clustering cost

(MSE-scaled down by 1010)

of different algorithms for

r¼ 5

Initialization algorithm

k (number of clusters)

200a 500a

Random 6.7E + 7 6.5E + 7

k-means++ (alg-1) 7.2 2.0

pk-means++, f¼ 0.5 k (alg-2) 18.5 5.3

pk-means++, f¼ 1.0 k (alg-3) 7.5 2.2

pk-means++, f¼ 2.0 k (alg-4) 5.1 1.6

pk-means++, f¼ 4.0 k (alg-5) 5.75 1.52
aThe experimental results can be easily observed and contrasted

alg-1 alg-2 alg-3 alg-4 alg-5
0

5

10

15

20

Different algorithms for r =5

M
S

E
 (s

ca
le

d
do

w
n

by
 1

010
)

k=200
k=500

Fig. 97.1 Clustering cost

(MSE) of different

algorithms for r¼ 5

850 B. Lu and S. Wei

Next, Let us evaluate the influence of different settings of parameter carefully.

The experiment is conducted with a changing value of a k-based data set that

represents a 10 % sample of KDDCup1999. The detailed data are as follows:

As described in Fig. 97.2, when f¼ 2 k, we find that the MSE shows a downward

trend with the increased number of passes. Further, it is found that even a small

number of passes is enough to reduce the final convergent cost substantially. The

total clustering cost is the cost after the completion of Lloyd’s iteration, and when,

after a certain value of r is reached, the r value is changed again, and the change in

the clustering cost becomes very negligible.

Conclusion

In this paper, we develop an efficient k-means++ initialization algorithm with

MapReduce, and a parallelized version based on MapReduce called

pk-means++ is proposed. The standard k-means++ initialization is also

applied to the Reducer phase of pk-means++.

For the Reducer of MapReduce projects, the new algorithm saves consid-

erable communication and I/O costs. Extensive experiments on real data were

conducted. The results indicate that the proposed MapReduce pk-means++

algorithm is much more efficient and random than k-means++ and demon-

strates that the improved MapReduce pk-means++ algorithm is much more

efficient and can obtain good approximations.

References

1. Moise D, Shestakov D, Gudmundsson G, Amsaleg L. Indexing and searching 100 m images

with map-reduce. In: Proceedings of the 3rd ACM Conference on Multimedia Retrieval; ACM,

New York; 2013. p. 17–24.

2. Xu Z, Ke Y, Wang Y, Cheng H, Cheng J. A model-based approach to attributed graph

clustering. In: Proceedings of the 2012 ACM SIGMOD International Conference on Manage-

ment of Data; ACM, New York; 2012. p. 505–16.

1 3 5 8 10
10

10

10
11

10
12

10
13

10
14

10
15

10
16

The num of Lioyds iterations until Convergence

M
S

E

k=17 f/k=2
k=65 f/k=2
k=129 f/k=2

Fig. 97.2 Effect of

different parameter settings

on final cost of algorithm

97 One More Efficient Parallel Initialization Algorithm of K-Means with MapReduce 851

3. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu

PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D. Top 10 algorithms in data mining. Knowl

Inf Syst. 2008;14(1):1–37.

4. Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. In: Proceeding of the

Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and

Applied Mathematics, Minneapolis,. 2007; p. 1027–35.

5. Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. In: Proceedings of

the 1st International Conference on Cloud Computing; Springer, Berlin, Heidelberg; 2009.

p. 674–79.

6. Aloise D, Deshpande A, Hansen P, Popat P. NP-hardness of Euclidean sum-of-squares cluster-

ing. Mach Learn. 2009;75(2):245–48.

7. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S. Scalable k-means++. PVLDB.

2012;5(7):622–33.

8. Lloyd SP. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28(2):129–36.

852 B. Lu and S. Wei

	Chapter 97: One More Efficient Parallel Initialization Algorithm of K-Means with MapReduce
	97.1 Introduction
	97.2 The of K-Means Algorithm
	97.3 Parallel Initialization Algorithm Design of PK-Means++
	97.3.1 Basic Idea of PK-Means++
	97.3.2 MapReduce Implementation of PK-Means++

	97.4 Experimental Results and Analysis
	Conclusion
	References

