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ABSTRACT 

The temporal stability of estimated parameters 
in multiple regression marketing models is 
important if the model is to prove useful in 
making economic inferences and in developing 
marketing strategies. OLS estimates are 
potentially distorted in the presence of 
collinear data sets that typify marketing 
models; consequently, any underlying temporal 
stability present may go undetected. This paper 
investigates the temporal stability of parameter 
estimates by comparing the results obtained from 
OLS, ridge, and latent root regression tech­
niques in the presence of ill-conditioned data. 
Ridge regression provided improved individual 
coefficient stability and slightly greater 
predictive accuracy beyond the original estimat­
ion period. 

Introduction 

While multiple regression analysis (MRA) has 
been extensively discussed and utilized in 
marketing research, much of this history 
has focused on its aggregate predictive cap­
abilities or one-time parameter estimates. 
Little has been done, as yet, to investigate 
the year to year parameter stability of MRA 
estimates for a common model specification. 
Such temporal stability of coefficient estimates 
is important if the model is to be accepted as 
theoretically sound and practically useful in 
developing a marketing plan for the future. A 
marketing manager would like to make operational 
plans, confident in the knowledge that the 
marginal impact of each major component of the 
model will remain reasonably constant even 
though the magnitude of the component itself 
will very likely change. 

The intent of this study is to investigate 
the relative temporal stability of individual 
parameter estimates generated by three alter­
native MRA techniques, namely ordinary least 
squares (OLS), ridge regression (RR), and latent 
root regression (LRR). Each of these procedures 
is employed to estimate the co-efficients of the 
same linear model specification for each year 
from 1976 through 1982. These coefficients 
represent the separate marginal effects of each 
variable. The data set employed is one that is 
vulnerable to multicollinearity, as are data 
in many marketing situations. Consequently, 
our concern is with uncovering any year to 
year "staying power" of such marginal re­
sponses in the presence of ill-conditioned 
data. 

Review of Literature 

The OLS estimator, S , is known to be the best 
linear unbiased estimator (B.L.U.E.) when the 
predictor variables are orthogonal. But when 
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there is substantial intercorrelation among 
the predictor variables, i3 tends to deviate 
from the true value of the parameters being 
estimated in unpredictable ways. The problems 
associated with the presence of collinearity 
in statistical models have been well developed 
in the literature (Farrar and Glauber 1967). 
In sum, the OLS estimated coefficients, when 
generated from ill-conditioned data, may be com­
promised in terms of sign, magnitude and/or 
significance, and hence may not reflect only the 
influence of their associatecl predictor vari­
ables. This would invalidate the marginal 
response inferences an investigator might wish 
to make, and subsequently frustrate the search 
for any underlying temporal stability of these 
estimates. 

Numerous approaches have been put forth in the 
econometric and marketing literature to address 
the problem of collineari ty. The commonly 
employed approach of deleting collinear vari­
ables from the analysis, so as to reduce the 
degree of interdependence among the remaining 
variables, may often prove very inadequate for 
several reasons. First, the investigator may be 
responding to a symptom, such as inappropriate 
sign and/or low significance, and subsequently 
delete a variable that properly belongs in the 
equation specification. Second, the deletion of 
selected variables, whether they are identified 
via an arbitrary heuristic or by a stepwise 
regression procedure, can ultimately bias the 
remaining parameter estimates ( Belsley et al 
1980). , 

Procedures for improving the conditioning of 
the data also have severe limitations, such as 
the unavailability of additional "clean" data. 
Another school calls for a form of artificial 
orthogonalization of the existing data. This 
often involves a transformation of variables 
with the resulting "new variables" no longer 
plagued by the collinearity. One such mechanism 
is factor analysis which aggregates several 
individual predictor variables into a smaller 
number of groups or factors. This results in the 
loss of some information and makes the inter­
pretation of the new variables difficult. 

Still another approach is the employment of a 
biased estimation procedure. Such techniques 
seek closer overall proximity to the true para­
meter by securing a much lower variance than a 
B.L. U .E. technique, in exchange for accepting 
their accompanying bias. If the amount of bias 
is kept small, then the estimate will be domi­
nated by the reduced variance resulting in a 
lower overall mean square error. Two biased 
techniques that have gained exposure recently in 
the marketing literature are ridge regression 
and latent root regression. 

Mahajan et al (1977) contrast ridge coefficients 



with those of OLS and show that while the ridge 
estimates are biased, they do possess smaller 
variance than the least squares estimates. 
Erickson ( 1981 ) found ridge regression prefer­
able to OLS in handling the ill-conditioning of 
a highly autocorrelated data set as he sought to 
measure the cumulative impact of marketing 
efforts on sales beyond the period of the 
promotion's implementation. 

Latent root regression was introduced by Hawkins 
(1973) and Webster, Gunst and Mason (1974) as a 
modified least squares estimation procedure. 
LRR enables the user to detect the presence of 
near singularities and determine whether they 
possess any predictive value for the criterion 
variable. LRR estimates are obtained by 
deleting any latent vectors which are associated 
with the collinearity, and which do not ap­
preciably influence the explained variation in 
the dependent variable. Thus, the LRR estimator 
is purged of the effect of any "non-predictive" 
near singularities while retaining the influence 
of any near singularities that do contain 
substantive information about the underlying 
model. Should all near singularities identified 
be found to be "predictive", then no latent 
vectors are deleted and the LRR estimator 
coincides with the OLS estimator. 

While numerous econometric procedures for 
handling ill-conditioned data have been discus­
sed in the literature, the temporal stability 
of the coefficients estimated by such techniques 
has remained largely unexamined. The intent of 
this study is to investigate and compare the 
year-to-year parameter stability of a common 
model specification across estimation proce­
dures. 

The Model 

The vehicle for this investigation of temporal 
stability is the traditional additive multiple 
regression model Y = X S + E where E is a n x 1 
vector of random errors with mean zero and 
variance cr2. 

The data base consists of a systematic sample 
of 114 SMSA 's selected from Sales and Market­
ing Management's Survey of Buying Power for 
each of the years 1976 to 1982. The model was 
estimated annually with cross-sectional data. 
The years 1976 through 1982 cover both a period 
of relative economic prosperity from 1976 to 
1979 and a period of stagflation from 1980 to 
1982. This affords the opportunity to compare 
estimation methods under conditions in which 
some of the predictor variables have undergone 
sizable changes. 

The basic conceptual specification of the 
model can be stated as S = f(C,M) where S = 
real annual dollar sales of furniture and 
household furnishings in an SMSA, C = yearly 
capacity to buy furniture and household furnish­
ings in an SMSA, M = yearly market size of 
furniture and household furnishings in an 
SMSA. The actual predictor variables for each 
SMSA and time period include median household 
effective buying income (EBI) in constant 
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dollars, the total number of households (HH), 
the percentage of the market area's total 
population· in the age groups 18 through 24 
(YOUNG), 25 through 49 (TARGET), and 50 and 
over (OLD) , and the percentage of the market 
area's unemployed labor force (UNEMP). 

Each regressor variable is. expected to play a 
unique contributory role in influencing the 
aggregate volume of furniture sales in its 
respective SMSA. It is posited that, ceteris 
paribus, the dependent variable will be directly 
related to EBI, HH, and TARGET and inversely 
related to YOUNG, OLD and UNEMP. It is assumed 
that the prime age group for furniture is the 
TARGET group, whereas many persons in the YOUNG 
and OLD age groups are not active in the market 
for new home furnishings. To mitigate the 
influence of inflation over the seven year 
period, the dollar denominated variables were 
deflated to real terms. 

Methodology 

Given that marketing data are frequently plagued 
by multicollinearity and that our model was 
deliberately specified so as to be vulnerable to 
such ill-conditioning, we felt it appropriate to 
document the extent of the collinearity present. 
The traditional correlation matrix for our data 
set finds an average of three occurrences of .50 
or more on each side of the primary diagonal, 
per year. However , such figures may seriously 
understate the true ill-conditioning present 
within the data as they reflect only the simple 
pairwise correlations and consequently fail to 
reveal any evidence of the collinearity if the 
dependencies are group interrelations instead. 
Moreover, it would be possible for three or more 
predictor variables to be collinear while no two 
such data series exhibit high correlation. In an 
effort to capture such "package" ill-condition­
ing, we employ the "multi-collinearity index" 
(mci) of Thisted and Morris (1980). Their index 
has a closed range 1 < mci < p where p is the 
number of regressors. Orthogonal data will yield 
an index near the upper end of the spectrum while 
values near unity are associated with a high 
degree of package collineari ty. For our seven 
sets of data, mci ranged from 1. 085 to 1.141 
within a possible spectrum of 1 < mci < 6. 

Further, Balsley et al (1980) construct variance­
decomposition proportions so as to identify the 
extent of the degrading impact of the multi­
collinearity. When the same singular value is 
associated with a large (>50%) proportion of the 
variance of two or more coefficient estimates, 
they cite that occurrence as "evidence that the 
corresponding near dependency is causing prob­
lems" with the "quality of the subsequent regres­
sion analysis ••• " In this study, the matrix of 
variance-decomposition proportions for each year 
was found to contain one or more instances of 
such degrading singular values. 

Parameter estimates were then derived annually 
using OLS, RR, and LRR for the same model 
specified earlier. In an effort to gauge the 
temporal stability of each individual para­
meter in the model, the coefficient of variation 



(cr I )l) over the seven annual estimates was 
employed as a unit free index of relative 
stability. The OLS results serve as a benchmark 
for comparison since it is the most commonly 
employed estimation technique.· Yet OLS is known 
to be suspect with illconditioned data. 
Specifically, the OLS estimator, S , diverges 
farther from the true population parameter, 8 , 
as the vector of regressors becomes less 
orthogonal. The primary manifestation of such 
ill-conditioning with OLS is on the individual 
parameter estimates and their respective 
variances. 

The ridge estimator: 

8(k) = (X'X + k I)-1 X' Y for o<k<1 ( 1) 

employs the dimensionless parameter k and is a 
biased estimator. The ridg~ estimator is 
similar to the OLS estimator, S , except that 
the main diagonal of the correlation matrix is 
augmented prior to inverting by a small positive 
quantity, k, where k is an index of bias. RR 
provides estimates that have lower variance and 
possible lower mean square error than § • In 
fact, Hoerl and Kennard (1970) prove that there 
always is a k > 0 such that the variance plus 
the squared bias of 8(k) is less than the 
variance plus the squared bias of the OLS 
estimator. When k is sufficiently small, the 
variance decreases faster than the increase in 
the square of the bias • Thus as k increases 
from zero, the mean square error initially 
declines and then later increases. By accepting 
no more bias than necessary to stabilize the 
coefficients, the effect of the increased bias 
is more than offset by the reduced variance, 
generating a net reduction in the mean square 
error. Estimates of parameters that have a 
lower variance deserve consideration in model 
building where the major concern is to inves­
tigate the separate effect of each of the 
potentially collinear predictor variables in 
the specification. 

The ridge estimator, founded on the hypothesis 
that the regression coefficients, other than the 
constant term, are zero, stochastically shrinks 
the estimates toward that target. Hence, the 
bias introduced is not an arbitrary, uncontrol­
led bias, but rather, a bias toward the hypothe­
sis that the regression coefficients are zero. 
This directional influence is fundamentally 
consistent with the philosophy of predictor 
variable retention within a specified model. 
The burden of proof remains with each regressor 
to demonstrate that it does make a significant 
contribution by distinguishing its estimated 
coefficient sufficiently from zero. 

The use of ridge regression necessitates the 
determination of an appropriate ridge constant, 
k. In reality the optimal k value is a function 
of the true parameter, 8 , and consequently 
cannot be established with certainty. Numerous 
mechanical techniques exist for establishing an 
acceptable k value and much controversy exists 
in the literature concerning k selection (Hoerl 
and Kennard 1970; Vinod 1978). This study 
employs the ridge trace estimate of the ridge 
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constant as initially advocated by Hoerl and 
Kennard. The trace was applied independently to 
each of the seven annual equations with the 
resulting k values ranging from 0.04 to 0.18. 

La tent root regression can be viewed as a 
modified least squares technique when both 
estimators are represented as a weighted linear 
combination of the associated latent vectors of 
the matrix of augmented correlation coefficients. 
Following the notation adopted by Webster et al 
(1974) and Sharma and James (1981) 

each estimate 

where: 

p = the number of predictor variables 
Aj = the latent roots of the augmented 

correlation matrix for j = o, 1, ••• ,p 
and ordered such that 

Ao ~ ).1 ~ • • •. ~ Ap 
Yj = the corresponding latent vectors 
Yoj = the first element of the jth vector 

= the jth vector without the first 
element, and 

Wj = 0,1 dummy deletion variables. 

The OLS estimator has all Wj = 1 in equation 
(2) and hence contains all latent vectors 
regardless of their degree Of collinearity or 
predictive ability. In contrast, the LRR 
estimator will set Wj = 0 in equation (2) for 
any identified vectors associated with 
"non-predictive singularities." Thus it 
retains only predictive singular and non­
singular vectors in combination. 

The latent root estimator has also been 
compared to the ridge estimator since both are 
biased estimation procedures (Hawkins 1975). 
Sharma and James ( 1981) note that the latent 
root estimator can be thought of as the ridge 
estimator with non-uniform k values i.e., k = 
0 for predictive latent vectors (this would 
completely retain their influence) and k = "" 
for non-predictive latent vectors (this would 
completely eliminate their influence). 
However, since RR employs a uniform k value , 
it like OLS, does not distinguish between 
predictive and non-predictive singularities 
and thus becomes a weighted linear combination 
of all vectors. 

In LRR the identification of any near singu­
larities present and their associated pre­
dictive natures involves the magnitudes of the 
latent roots, Aj• and associated latent 
vectors, Yj, of the augmented correlation 
matrix. The (p + 1) latent vectors define a 
set of mutually orthogonal axes Z0 , Z1, 
••• , Zp that are an alternative to the (p + 1) 
dimensional Euclidean space defined by the 
dependent variable, Y, and the p predictor 
variables, X1, ••• , Xp• The jth latent root, 
Aj, measures the dispersion of the n data 
observations in the direction defined by the 

(2) 

jth latent vector i.e., the Zj axis. A "small" 
Aj indicates there is little variability of data 
points in the Zj direction and hence a high 



interdependence among the associated predictor 
variables. Should the "small" lc j be affiliated 
with a latent vector that indicates Zj is nearly 
orthogonal to the axis of the criterion vari­
able, i.e., "small" Y oj, then the near singu­
larity can be labeled nonpredictive as the 
collinearity present is simply among the 
predictor variables with little or no spillover 
impact on the dependent variable. In such a 
case, that latent vector can be deleted so as to 
remove the unwanted effects of the near singu­
larity from the parameter estimates involved in 
the singularity without major impact on the 
remaining estimates. The issue of just what 
constitutes "small 11 Aj and Yoj is not definitely 
resolved. Gunst et al (1976) defend a rule of 
thumb of lcj of • 3 or less coupled with a y oj of 
.1 or less, as indicators of nonpredicti ve 
singularity. The same rule of thumb is used in 
this analysis. 

Results 

Enforcing the identical specification of the 
model from year to year and across estimation 
techniques enables comparison of the temporal 
stability of the resulting coefficients with 
the OLS estimates serving as a benchmark. The 
comparison reveals a number of interesting 
differences. 

1 • In terms ·of incorrectly signed regression 
coefficients, both OLS and RR yield six 
estimates and LRR yields eight estimates 
that violate our a priori expectations. 
Interestingly, OLS and LRR failed to pick 
up the proper directional impact of the 
key variable, TARGET, that specifies the 
relative size of the true target market 
for sales of household furnishings. 
These same estimates under RR were all 
properly signed. 

2. Relative to the number of statistically 
significant and appropriately signed 
coefficients, the ridge and latent root 
estimates provided very improved results. 
We recognize that the precise distribut­
ion of the ridge estimator is unknown. 
Several simulation studies suggest that, 
for modest values of k, any departure 
from the t-distribution will likely be 
minimal (Curcio et al 1984). Obenchain 
( 1977) contends that the ridge estimator 
provides comparable F and t ratios as 
does OLS for hypothesis testing. As yet, 
an exact distributional theory and 
properties have not been derived for the 
LRR estimator since the latent roots and 
latent vectors are random variables with 
complex multi variate distributions. To 
employ the traditional F and t statis­
tics, one must presume an appropriate 
underlying distribution. Webster, Gunst 
and Mason ( 1974) conducted simulation 
tests with generated data and observed an 
approximate F-distribution in the presence 
of vector deletion. Given the favorable 
results of Webster et al, F and t-ratios for 
LRR are interpreted cautiously. Only 
seventeen of forty-two OLS estimates were 
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significant at the five percent level for a 
one-tailed test. In contrast, twenty four 
coefficients convincingly differentiated 
themselves from zero under ridge in spite of 
the bias which propels them toward zero, 
while twenty-five estimates were statistical­
ly significant under LRR. The increased 
significance for the ridge estimates and 
latent root is ?Chieved through a substantial 
reduction in the individual coefficient 
variances. 

3. Tab le 1 reports each technique's coefficient 
of variation to facilitate the comparison of 
temporal stability of the estimates. The 
ridge estimates appear, at first glance, to 
offer only mixed results regarding relative 
stability of the coefficients over time. 
However, for EBI and HH which are statist­
ically significant under all three proce­
dures, the coefficient of variation is lowest 
for ridge estimates. While the coefficient 
of variation for TARGET is lowest under LRR, 
the LRR estimates of TARGET were consistently 
inappropriately signed. Hence, even for 
TARGET, the ridge estimates offer greater 
stability over time and are properly signed. 
Also, as the population ages and consequently 
makes the transition from the classification 
of YOUNG to that of TARGET, the combined 
impact of a one percentage point reduction in 
YOUNG and a like increase in TARGET was 
found to be substantively more stable 
over time under RR. 

TABLE 

COMPARISON OF RELATIVE STABILITY OF 
ESTIMATES ACROSS TECHNIQUES 
o/~ FOR 1976 THROUGH 1982 

Mean 
Technique With COefficient 

OLS RR LRR Least Relative for Selected 
Dis per.:!! ion Technique 

UNEMP 
YOUNG 
TARGET 
OLD 
EBI 

.878 

.26H 
1.846 

-554 
.209 

3.351 
.561 
.690 

4.196 
.172 

.863 LRR -1.412 
-369 OLS -1.46:; 
-590 RIDGE 1.940 
-592 OLS -1.094 
.207 RIDGE .00840 

HH .0632 .0478 .0621 fUDGE .j107 

Combined 
Impact or 
Transition -953 .226 1.213 RIDGE 3-33" 

From Young 
to Target 

UNEliPL .211 .087 .238 RIDGE -2.0b7 
80-82 

Furthermore, if one posits a structural 
change from the expansion years of 1976 
through 1979 to the recession years of 1980 
through 1982, one may expect a substantial­
ly different role for UNEMP in the model. 
While OLS, RR and LRR pick up on this with 
very different coefficient estimates for 
the recent period, the temporal stability 
of the recession years' coefficient is 
clearly improved with ridge. 



4. The relative ability of the OLS, RR and LRR 
models to forecast may be very distorted by 
a simple comparison of their respective R2 
values. While the average multiple cor­
relation coefficient does decline from about 
.96 for OLS and LRR to approximately .78 for 
ridge, this comparison, based entirely upon 
the estimation period, may not be indicative 
of the techniques 1 relative predictive 
capability beyond that period. 

To test each technique's ability to forecast 
furniture sales a year beyond the estimation 
period, the regression coefficients estimat­
ed using a given year's data set were 
employed employed to project the dollar 
sales volume for the subsequent year. The 
mean forecast for each technique was then 
compared to the mean actual sales for that 
year. Six such annual forecast comparisons 
were possible over the seven year data 
period. In three of the six years ( 1977, 
1978, and 1980) the mean predicted value of 
the criterion variable is closer to the 
mean actual value for RR than for OLS or 
LRR. For 1979, the forecasts were nearly 
identical for OLS, LRR and RR. In 1982, 
the closest average is obtained via LRR 
while RR and OLS are nearly indistinguish­
able. Only for 1981 did the least squares 
prediction prove more accurate. In all 
cases, the dispersion of the forecast 
distribution is less with ridge than with 
OLS or LRR. Thus, in spite of lower R2, 
the true predictive ability of RR beyond 
the estimation period is, on the whole, 
better than LRR and OLS. 

Conclusion and Summary 

It has been demonstrated in this article that 
the temporal stability of parameter estimates 
through RR is better than or at least as good as 
OLS and LRR in the presence of ill-conditioned 
data. This is particularly true for coef­
ficients of those variables with a substantial 
impact on variance explanation. RR estimates 
also result in a reduction in the incidence of 
improperly signed parameters and an increase in 
the number of statistically significant coef­
ficients. Hence, in this model, the ridge 
technique was better able to separate the 
influences of the regressor variables in spite 
of their interdependence. This permitted 
improved economic inferences and better detect­
ion of any underlying coefficient stability over 
time. Additionally, despite lower R2 values for 
RR, the package predictive ability was not in 
any way sacrificed. 
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