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Abstract. The Electroencephalogram (EEG) is a powerful instrument to collect 
vast quantities of data about human brain activity. A typical EEG experiment 
can produce a two-dimensional data matrix related to the human neuronal 
activity every millisecond, projected on the head surface at a spatial resolution 
of a few centimeters. As in other modern empirical sciences, the EEG 
instrumentation has led to a flood of data and a corresponding need for new 
data analysis methods. This paper summarizes the results of applying 
supervised machine learning (ML) methods to the problem of classifying 
emotional states of human subjects based on EEG. In particular, we compare 
six ML algorithms to distinguish event-related potentials, associated with the 
processing of different emotional valences, collected while subjects were 
viewing high arousal images with positive or negative emotional content. 98% 
inter-subject classification accuracy based on the majority of votes between all 
classifiers is the main achievement of this paper, which outperforms previous 
published results.  

Keywords: emotion valence recognition, feature selection, Event Related 
Potentials (ERPs). 

1 Introduction 

The quantification and automatic detection of human emotions is the focus of the 
interdisciplinary research field of Affective Computing (AC). In [1] a broad overview 
of the current AC systems is provided. Major modalities for affect detection are facial 
expressions, voice, text, body language and posture. Affective neuroscience is a new 
modality that attempt to find the neural correlates of emotional processes [2]. 
Literature on learning to decode human emotions from Event Related Potentials 
(ERPs) was reviewed by [3], building automatic recognition systems from EEG was 
proposed by [4] and [5]. Despite the first promising results of the affective 
neuroscience modality to decode basic human emotional states, a confident neural 
model of emotions is still not defined. The recent overview of EEG-based emotion 
recognition studies, provided in [6], show that the recognition rate ranges between 65-
90 %. Therefore, the primary motivation of the present paper is to determine a 
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framework to improve the recognition of human affective states based on brain data 
and more particularly on ERPs. ERPs are transient components in the EEG generated 
in response to a stimulus (a visual or auditory stimulus, for example). We studied six 
supervised machine learning (ML) algorithms, namely Artificial Neural Networks 
(ANN), Logistic Regression (LogReg), Linear Discriminant Analysis (LDA), k-
Nearest Neighbors (kNN), Naïve Bayes (NB), Support Vector Machines (SVM), 
Decision Trees (DT) and Decision Tree Bootstrap Aggregation (Tbagger) to 
distinguish affective valences encoded into the ERPs collected while subjects were 
viewing high arousal images with positive or negative emotional content. Our work is 
also inspired by advances in experimental psychology [7], [8] that show a clear 
relation between ERPs and visual stimuli with underlined negative content (images 
with fearful and disgusted faces). A crucial step preceding the classification process is 
to discover which spatial-temporal patterns (features) in the ERPs indicate that a 
subject is exposed to stimuli that induce emotions. We applied successfully the 
Sequential Feature Selection (SFS) technique to minimize significantly the number of 
the relevant spatial temporal patterns.  

The paper is organized as follows. In section 2 we briefly describe the data set. The 
ML feature selection and classification methods used in this study are summarized in 
section 3. The results of learning to discriminate emotional states with positive or 
negative valences across multiple subjects (inter-subject setting) are presented in 
section 4. Finally, in section 5 our conclusions are drawn.  

2 Data Set 

A total of 26 female volunteers participated in the study, 21 channels of EEG, 
positioned according to the 10-20 system and 2 EOG channels (vertical and 
horizontal) were sampled at 1000Hz and stored. The signals were recorded while the 
volunteers were viewing pictures selected from the International Affective Picture 
System. A total of 24 of high arousal (> 6) images with positive valence (7.29 +/- 
0.65) and negative valence (1.47 +/- 0.24) were selected. Each image was presented 3 
times in a pseudo-random order and each trial lasted 3500ms: during the first 750ms, 
a fixation cross was presented, then one of the images during 500ms and at last a 
black screen during the 2250ms. 

The signals were pre-processed (filtered, eye-movement corrected, baseline 
compensation and epoched using NeuroScan. The single-trial signal length is 950ms 
with 150ms before the stimulus onset. The ensemble average for each condition was 
also computed and filtered using a zero-phase filtering scheme. The maximum and 
minimum values of the ensemble average signals were detected. Then starting by the 
localization of the first minimum the features are defined as the latency and amplitude 
of the consecutive minimums and the consecutive maximums: minimums (Amin1, 
Amin2, Amin3), the first three maximums (Amax1, Amax2, Amax3), and their 
associated latencies (Lmin1, Lmin2, Lmin3, Lmax1, Lmax2, Lmax3). The ensemble 
average for each condition (positive/negative valence) was also computed and filtered 
using a Butterworth filter of 4th order with passband [0.5 - 15]Hz. The number of 
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features stored per channel is 12 corresponding to the latency (time of occurrence) 
and amplitude of either n = 3 maximums and minimums, the features correspond to 
the time and amplitude characteristics of the first three minimums occurring after T = 
0s and the corresponding maximums in between. The total number of features per 
trail is 252. The data is saved in file with the following structure: 252 columns: 12 
features for 21 channels, 52 lines: 26 people x 2 classes – 0 (negative) and 1 
(positive). 

3 Classification Methodology 

Predictor data is normalized to maximally ease the learning algorithms.. In order to 
maximize the training examples, leave-one-out cross-validation technique is used. 
The following supervised machine learning models are studied: Artificial Neural 
Networks (ANN), Logistic Regression (LogReg), Linear Discriminant Analysis 
(LDA), k-Nearest Neighbors (kNN), Naïve Bayes (NB), Support Vector Machines 
(SVM), Decision Trees (DT) and Decision Tree Bootstrap Aggregation (Tbagger). 

3.1 Features Normalization 

Many of the models require normalized version of the data. The rest of the models 
can highly benefit from it. Therefore this is often a good preprocessing practice. 

Feature normalization is a standard preprocessing step, that may improve the 
classification, particularly when the range of the features is dispersed. There are a 
number of normalization techniques, in this work we use the following expression: 

Xnorm = (X - Xmean) / std(X) , (1) 

The normalized data (Xnorm ) is obtained by subtracting the mean value of each feature 
from the original data set X and divided by the standard deviation std(X). Hence, the 
normalized data has zero mean and standard deviation equal to 1.  

3.2 Leave-One-Out Cross-Validation (LOOCV) 

Leave-one-out is the degenerate case of K-Fold Cross Validation, where K is chosen 
as the total number of examples. For a dataset with N examples, perform N 
experiments. For each experiment use N-1 examples for training and the remaining 1 
example for testing [9]. In our case N = 26 (pairs of classes per person). We will train 
the models with 25 people x 2 classes (50 examples) and test on the left-out 2 classes. 
We are more interested in the total prediction accuracy for each model, therefore the 
predictions are accumulated in confusion matrices for each model from each training 
experiment in the LOOCV.  
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3.3 Artificial Neural Network (ANN) 

The ANNs origin from algorithms that try to mimic the brain neuronal structure.  
ANNs are widely used ML technique as classifiers and repressors in countless 
applications. In the present work, prediction is performed by a feedforward neural 
network (FFNN) with 1 hidden layer with 12 neurons with sigmoid activation 
function and training is performed by backpropagation algorithm to compute the 
gradient [10]. 

3.4 Logistic Regression (LogReg) 

In statistics, LogReg is a type of probabilistic statistical classification model [11]. It is 
also used to predict a binary response from a binary predictor, used for predicting the 
outcome of a categorical dependent variable (i.e., a class label) based on one or more 
predictor variables (features).  

3.5 Linear Discriminant Analysis (LDA) 

Discriminant analysis is a classification method. It assumes that different classes 
generate data based on different Gaussian distributions. To train (create) a classifier, 
the fitting function estimates the parameters of a Gaussian distribution for each class. 
To predict the classes of new data, the trained classifier finds the class with the 
smallest misclassification cost. LDA is also known as the Fisher discriminant, named 
for its inventor, Sir R. A. Fisher [12].  

3.6 k-nearest Neighbor (kNN) 

Given a set X of n points and a distance function, kNN searches for the k closest 
points in X to a query point or set of points Y [13]. The kNN search technique and 
kNN-based algorithms are widely used as benchmark learning rules. The relative 
simplicity of the kNN search technique makes it easy to compare the results from 
other classification techniques to kNN results. The distance measure is Euclidean.  

3.7 Naive Bayes (NB) 

The NB classifier is designed for use when features are independent of one another 
within each class, but it appears to work well in practice even when that independence 
assumption is not valid. It classifies data in two steps: 

Training step: Using the training samples, the method estimates the parameters of a 
probability distribution, assuming features are conditionally independent given the 
class. 

Prediction step: For any unseen test sample, the method computes the posterior 
probability of that sample belonging to each class. The method then classifies the test 
sample according the largest posterior probability. 
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The class-conditional independence assumption greatly simplifies the training step 
since you can estimate the one-dimensional class-conditional density for each feature 
individually. While the class-conditional independence between features is not true in 
general, research shows that this optimistic assumption works well in practice. This 
assumption of class independence allows the NB classifier to better estimate the 
parameters required for accurate classification while using less training data than 
many other classifiers. This makes it particularly effective for datasets containing 
many predictors or features [13]. 

3.8 Support Vector Machines (SVM) 

An SVM classifies data by finding the best hyperplane that separates all data points of 
one class from those of the other class. The best hyperplane for an SVM means the 
one with the largest margin between the two classes. Margin means the maximal 
width of the slab parallel to the hyperplane that has no interior data points. We use 
radial basis function for kernel function [13]. 

3.9 Decision Tree (DT) 

Classification trees and regression trees are the two main DT techniques to predict 
responses to data. To predict a response, follow the decisions in the tree from the root 
(beginning) node down to a leaf node. The leaf node contains the response. 
Classification trees give responses that are nominal, such as 'true' or 'false' [13]. 

3.10 Decision Tree Bootstrap Aggregation (Tbagger) 

Bagging, which stands for "bootstrap aggregation," is a type of ensemble learning. To 
bag a weak learner such as a decision tree on a dataset, generate many bootstrap 
replicas of this dataset and grow decision trees on these replicas. Obtain each 
bootstrap replica by randomly selecting N observations out of N with replacement, 
where N is the dataset size. To find the predicted response of a trained ensemble, take 
an average over predictions from individual trees [13]. 

4 Features Selection 

The feature space consists of 252 features (21 channels x12 features) and the trial 
examples are 52 (2 classes x 26 people), therefore feature reduction techniques are 
required. First classification tests are made on all predictor data features (252 features) 
and the accuracy results from ML methods are set as base line to improve and 
compare. Next we try feature reduction using Principal Component Analysis (PCA) 
[14] and dimensions reduction with 99%, 95%, 75% and 50% data variation retained. 
After that we implement exhaustive feature selection and compare the results. Finally 
we construct voting ensemble bucket of models to take the prediction among all the 
models which resulted in very promising final data discrimination (98%). 
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4.1 Principal Component Analysis (SFS) 

Principal component analysis is a quantitatively rigorous method for achieving this 
simplification. The method generates a new set of variables, called principal 
components. Each principal component is a linear combination of the original 
variables. All the principal components are orthogonal to each other, so there is no 
redundant information. The principal components as a whole form an orthogonal 
basis for the space of the data [13]. 

4.2 Sequential Feature Selection (SFS) 

Sequential feature selection selects a subset of features from the data matrix X that 
best predict the data in y by sequentially selecting features until there is no 
improvement in prediction. Starting from an empty feature set, SFS creates candidate 
feature subsets by sequentially adding each of the features not yet selected. For each 
candidate feature subset, SFS performs leave-one-out cross-validation by repeatedly 
calling fun with different training subsets XTRAIN and ytrain, and test subsets XTEST and 
ytest. Each time it is called, fun must return a scalar value criterion. After computing 
the mean criterion values for each candidate feature subset, SFS chooses the candidate 
feature subset that minimizes the mean criterion value. This process continues until 
adding more features does not decrease the criterion or to predefined number of 
selected feature. In our case the criterion function is based on the accuracy of the 
model: criterion = 1 – Accuracy. Accuracy can be either 1 if it accurately predict the 
one left training example or 0 if doesn’t. Therefore the minimization cost function 
will have 1/52 = 0.0192 step. Because SFS is computationally heavy operation, not all 
models are suitable for this technique, especially TBagger and ANN. 

4.3 Voting from Ensemble Bucket of Models 

After selecting suitable features for each model, we ensemble a model consisting of 
the five models. When we predict we would train all 5 models with the training data 
and predict with all of them using the test data. We get the consensus from at least 3 
of the models to select the result. 

5 Results for Inter-Subject Classification 

5.1 Classification Using All Features 

In Table 1 are given the prediction accuracy results using all features for test and train 
data. Comparison of the prediction accuracy using all features and the selected 
features is shown on Fig. 2. 
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Table 1. Prediction accuracy results from classification models using all features 

Model ANN LogReg LDA kNN NB SVM DT Tbagger 

Accuracy XTEST 71,2 67,31 71,2 59,6 69,2 50 69,2 75 

Accuracy XTRAIN 75,6 100 100 100 93 100 96,2 100 

5.2 PCA Feature Reduction and Classification 

After calculating eigenvectors we estimate the numbers of vectors used to project the 
data with 99%, 95%, 75% and 50% data variance retained corresponding number of 
features is 43, 34, 16, and 7. Results from the prediction accuracies can be seen in 
Table 2. It is seen that we cannot improve significantly prediction accuracy using 
PCA and data projection in lower dimensionality.  

Table 2. Results from models using reduced (projected) by PCA features set 

Model ANN LogReg LDA kNN NB SVM DT Tbagger 

43 Features (99%) 53,9 67,31 65,4 59,6 61,5 57,7 48,1 57,69 

34 Features (95%) 61,5 69,23 65,4 57,7 67,3 57,7 53,9 63,46 

16 Features (75%) 57,7 71,15 67,3 55,8 65,4 63,5 63,5 69,23 

  7 Features (50%) 55,8 59,62 61,5 69,2 65,4 71,2 63,5 61,54 

5.3 Exhaustive Sequential Feature Selection (SFS) and Classification 

Exhaustive SFS is computationally very intensive operation, therefore the SFS was 
performed on a smaller set of ML models. The resulting cost function (1-accuracy) based 
on the number of selected features is depicted on Fig. 1. Note that the number  of features 
that minimizes the cost function is different for each model, typically between 5 and 10.  
 

 

Fig. 1. Features selection: Cost function on numbers of features selected 
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Table 3. Features selected by SFS for each model 

Features  LDA   kNN   NB   SVM   DT   

Number Ch. Feature Ch. Feature Ch. Feature Ch. Feature Ch. Feature 

1 1 amp5 4 amp1 1 amp4 1 amp6 1 amp4 

2 3 amp1 5 amp1 2 latency4 3 latency1 12 amp3 

3 5 latency2 8 latency3 3 amp1 5 latency4 14 amp2 

4 6 latency3 10 amp1 4 amp6 5 latency5 20 latency4 

5 6 latency4 10 amp6 9 amp2 11 latency6

6 11 amp3 13 amp3 20 latency4 13 amp2 

7 13 amp1 14 latency4

8 13 amp6 20 amp2 

9 17 latency6 

10 20 latency4                 

Table 4. Prediction accuracy on test and train data for models trained using the selected 
features from Table 2 

Model LDA kNN NB SVM DT 

Accuracy XTEST 92,3 90,38 86,5 88,5 88,5 

Accuracy XTRAIN 94,2 100 91,2 100 97,4 

5.4 Voting from Ensemble Bucket of Models 

The combination of SFS and the five ML classifiers in the previous section brought 
already results very close or even slightly better than the best classification rates 
published in previous related researches. However, we made an intuitive step ahead to 
build an ensemble classifier based on the majority vote among the five trained 
models. Thus, the prediction rates achieved by the individual classifiers in the range 
of [87 – 92] %. were significantly improved and achieved 98%, see Table 4.  

4). Finally we can observe and compare the prediction accuracy on all features and 
selected features and ensemble bucket models vote in fig. 2.  

Table 5. Accuracy and confusion matrix on test data using voting from models trained using 
the selected features from Table 2 

Accuracy XTEST True 1 False 1 False 0 True 0 

98,08 26 0 1 25 

 
Discussion of the Results 
We used supervised ML methods to predict two human emotions based on 252 
features collected from 21 channels EEG.  The achieved prediction accuracy based on 
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all features is in the range of 60-75% (see Table 1). These results are similar to other 
related studies, [6] and they can be explained by the limited examples in the data set 
(2 examples per subject, 26 subjects, that corresponds to 52 examples in total) and the 
very high dimensional feature space (252). It was expected that predictions based on 
reduced number of features will perform better. While the PCA feature reduction did 
not bring any improvement (see Table 2), the Sequential Feature Selection (SFS) 
reduced the feature set to 4-10 features (see Fig. 1 and Table 2) and significantly 
improve the prediction accuracy of all studied ML models in the range of 88-92 % 
(Table 3). Finally, our empirical approach of combining the five previous classifiers 
in an ensemble bucket of models and use the majority vote as the final attributed class 
further improve substantially the prediction accuracy to 98% (Table 4). This is the 
main contribution of this paper, because such inter-subject classification accuracy was 
never before reported. The influence of the SFS is visualized on Fig. 2. We may also 
argue that our models can be used in real time, because after finding off-line the right 
features and training, the feature generation from monitored EEG signals is less than 
1000ms and prediction is instantaneous. 

 

 
Fig. 2. Classification accuracy on test data. 5 classifiers (LDA, kNN, NB, SVM, DT) and their 
majority vote combination (VOTE). 

6 Conclusion 

In this paper, we have presented results demonstrating the feasibility of ML classification 
techniques to distinguish the processing of stimuli with positive and negative emotion 
valence based on ERPs observations. This problem is interesting both because of its 
relevance to studying human emotions, and as a case study of supervised machine 
learning (ML) in high dimensional data settings.  The focus of our work was to explore 
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the feasibility of training cross-subject classifiers to make predictions across multiple 
human subjects. Feature selection is an important aspect in the design of the recognition 
systems, particularly in the inter-subject framework. The combination of adequate 
features and channel selection has the potential to reduce the inter-subject variability and 
improve the learning of representative models valid across multiple subjects.  

It can be concluded that ML is a powerful technique to reveal the brain activity and 
to interpret human emotions. There are many additional opportunities for ML 
research in the context of affective neuroscience, such as discrimination of more than 
two emotional states related not only with the emotional valence but also with the 
emotional arousal. Discrimination of high versus low neurotic type of personality is 
also a challenging problem that ML can deal. 
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