
123

Valeri Mladenov
Chrisina Jayne
Lazaros Iliadis (Eds.)

15th International Conference, EANN 2014
Sofia, Bulgaria, September 5–7, 2014
Proceedings

Engineering Applications
of Neural Networks

Communications in Computer and Information Science 459

Communications
in Computer and Information Science 459

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Valeri Mladenov Chrisina Jayne
Lazaros Iliadis (Eds.)

Engineering Applications
of Neural Networks

15th International Conference, EANN 2014
Sofia, Bulgaria, September 5-7, 2014
Proceedings

13

Volume Editors

Valeri Mladenov
Technical University of Sofia, Bulgaria
E-mail: valerim@tu-sofia.bg

Chrisina Jayne
Coventry University, UK
E-mail: ab1527@coventry.ac.uk.

Lazaros Iliadis
University of Thrace, Orestiada, Greece
E-mail: liliadis@fmenr.duth.gr

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-319-11070-7 e-ISBN 978-3-319-11071-4
DOI 10.1007/978-3-319-11071-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947387

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The EANN conference promotes neural networks and associated techniques and
the significant benefits that can be derived from their use. The conference is not
only for reporting advances, but also for showing how neural networks provide
practical solutions in a wide range of applications.

The 15th EANN conference was held at the Technical University in Sofia,
Bulgaria, during September, 2014. The sponsors for the conference were the
Technical University in Sofia, the International Neural Network Society (INNS),
and the John Atanasoff Union of Automation and Informatics. EANN 2014
attracted delegates from 16 countries across the world: France, Greece, Cyprus,
USA, Italy, UK, Brazil, Bangladesh, Turkey, Japan, China, Portugal, Bulgaria,
Norway, Mexico, and Finland.

This volume includes the papers that were accepted for presentation at the
conference. The papers demonstrate a variety of applications of neural networks
and other computational intelligence approaches to challenging problems rele-
vant to society and the economy. These include areas such as: environmental
engineering, facial expression recognition, classification with parallelization al-
gorithms, control of autonomous unmanned aerial vehicles, intelligent transport,
flood forecasting, classification of medical images, renewable energy systems, in-
trusion detection, fault classification, and general engineering. All papers were
subject to a rigorous peer-review process by at least two independent academic
referees. EANN accepted approximately 50% of the submitted papers for full
length presentation at the conference. The best ten papers will be invited to
submit extended contributions for inclusion in a special issue of Neural Comput-
ing and Applications (Springer).

The following keynote speakers were invited and gave lectures on exciting
neural network application topics:

– Professor Nikola Kasabov, Director and Founder, Knowledge Engineering
and Discovery Research Institute (KEDRI), Chair of Knowledge Engineer-
ing, Auckland University of Technology New Zealand

– Professor Marley Vellasco, Head of the Electrical Engineering Department
and the Applied Computational Intelligence Laboratory (ICA) at PUC-Rio,
Brazil

– Professor John MacIntyre, Dean of the Faculty of Appliced Sciences, Pro
Vice Chancellor Director of Research, Innovation & Employer Engagement,
University of Sunderland, UK

– Professor Jun Wang, IEEE Fellow, Faculty of Engineering, The Chinese Uni-
versity of Hong Kong

– Professor Xin Yao, IEEE Fellow, School of Computer Science at the Uni-
versity of Birmingham Director of the Centre of Excellence for Research in
Computational Intelligence and Applications (CERCIA), UK

VI Preface

On behalf of the conference Organizing Committee, we would like to thank
all those who contributed to the organization of this year’s program, and in
particular the Program Committee members.

September 2014 Valeri Mladenov
Chrisina Jayne
Lazaros Iliadis

Organization

General Chairs

Valeri Mladenov Technical University Sofia, Bulgaria
Chrisina Jayne Coventry University, UK

Honorary Chair

Nikola Kasabov Auckland University of Technology,
New Zealand

Program Chairs

Valeri Mladenov Technical University Sofia, Bulgaria
Chrisina Jayne Coventry University, UK
Lazaros Iliadis Democritus University of Thrace, Greece

Local Organizing Committee

Georgi Tsenov Technical University Sofia, Bulgaria
Agata Manolova Technical University Sofia, Bulgaria
Yancho Todorov Technical University Sofia, Bulgaria
Stanislav Panev Technical University Sofia, Bulgaria

Program Committee

A. Gegov University of Portsmouth, UK
A. Andreou University of Cyprus, Cyprus
A. Adamopoulos Democritus University of Thrace, Greece
A. Tsitiridis University of Swansea, UK
A. Likas University of Ioannina, Greece
A. Tsadiras Aristotle University of Thessaloniki, Greece
A. Tefas Aristotle University of Thessaloniki, Greece
B. Reljin University of Belgrade, Serbia
C. Schizas University of Cyprus
C. Christodoulou University of Cyprus
C. Moschopoulos KU Leuven, Belgium
D. Nkantah Coventry University, UK

VIII Organization

D. Iakovidis Technological Educational Institute of Central
Greece

E. F. Georgopoulos Technological Educational Institute of
Kalamata, Greece

E. Kyriacou Frederick University, Cyprus
E. Pimenidis University of East London, UK
E. Papatheocharous University of Cyprus
F. Doctor Coventry University, UK
F. Carlo Morabito Università degli Studi Mediterranea di Reggio

Calabria, Italy
F. Marcelloni University of Pisa, Italy
G. Magoulas University of London, UK
G. Gnecco University of Genova, Italy
G. Sermpinis Glasgow University, UK
G. Beligiannis University of Patras, Greece
H. Papadopoulos Frederick University, Cyprus
H.-J. von Mettenheim University Hannover, Germany
H. Pérez-Sánchez University of Murcia, Spain
I. Maglogiannis University of Piraeus, Greece
I. Karydis Ionian University, Greece
I. Valavanis Technical University of Athens, Greece
I. Bukovsky Czech Technical University in Prague,

Czech Republic
J. F. De Canete Rodriguez University of Malaga, Spain
K. Karatzas Aristotle University of Thessaloniki, Greece
K. A. Theofilatos University of Patras, Greece
M. Sanguineti University of Genoa, Italy
M. Malcangi University of Milan, Italy
M. Elshaw Coventry University, UK
M. Fiasche Politecnico di Milano, Italy
M. Odetayo Coventry University, UK
N. Shah Coventry University, UK
N. Mitianoudis Democritus University of Thrace, Greece
P. Božek Slovak University of Technology,

Slovak Republic
P. Kumpulainen Tempere University of Technology, Finland
P. Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
P. Hajek University of Pardubice, Czech Republic
P. Angelov Lancaster University, UK
R. Iqbal Coventry University, UK
R. J. Naharro Universidad de Huelva, Spain

Organization IX

R. Kamimura Hiratsuka Kanagawa, Japan
R. Rosillo Rafael Rosillo, University of Oviedo, Spain
S. Yue University of Lincoln, UK
S. W. Lee University of East London, UK
S. Likothanasis University of Patras, Greece
V. Verykios University of Thessaly, Greece
V. Kurkova Czech Academy of Sciences
V. Zamudio-Rod́ıguez Spain

Sponsoring Organizations

Technical University, Sofia
International Neural Network Society (INNS)
John Atanasoff Union of Automation and Informatics

Table of Contents

Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a
Major Urban Area: The Case of Athens . 1

Ilias Bougoudis, Lazaros Iliadis, and Antonis Papaleonidas

Remarks on Computational Facial Expression Recognition from HOG
Features Using Quaternion Multi-layer Neural Network 15

Kazuhiko Takahashi, Sae Takahashi, Yunduan Cui, and
Masafumi Hashimoto

Classification of Database by Using Parallelization of Algorithms Third
Generation in a GPU . 25

Israel Tabarez Paz, Neil Hernández Gress, and
Miguel González Mendoza

An Iterative Feature Filter for Sensor Timeseries in Pervasive
Computing Applications . 39

Davide Bacciu

Exploiting Evolution on UAV Control Rules for Spraying Pesticides on
Crop Fields . 49

Bruno S. Faiçal, Gustavo Pessin, Geraldo P.R. Filho,
Gustavo Furquim, André C.P.L.F. de Carvalho, and Jó Ueyama

Fuzzy-Logic Decision Fusion for Nonintrusive Early Detection of Driver
Fatigue or Drowsiness . 59

Mario Malcangi

Neural Trade-Offs among Specialist and Generalist Neurons in Pattern
Recognition . 71

Aarón Montero, Ramón Huerta, and Francisco B. Rodŕıguez

Classification of Events in Switch Machines Using Bayes, Fuzzy Logic
System and Neural Network . 81

Eduardo Aguiar, Fernando Nogueira, Renan Amaral, Diego Fabri,
Sérgio Rossignoli, José Geraldo Ferreira, Marley Vellasco,
Ricardo Tanscheit, Moisés Ribeiro, and Pedro Vellasco

An Accurate Flood Forecasting Model Using Wireless Sensor Networks
and Chaos Theory: A Case Study with Real WSN Deployment
in Brazil . 92

Gustavo Furquim, Rodrigo Mello, Gustavo Pessin, Bruno S. Faiçal,
Eduardo M. Mendiondo, and Jó Ueyama

Regenerative Braking Control Strategy for Hybrid and Electric Vehicles
Using Artificial Neural Networks . 103

Sanketh S. Shetty and Orkun Karabasoglu

XII Table of Contents

Automatic Screening and Classification of Diabetic Retinopathy
Fundus Images . 113

Sarni Suhaila Rahim, Vasile Palade, James Shuttleworth, and
Chrisina Jayne

Brain Neural Data Analysis Using Machine Learning Feature Selection
and Classification Methods . 123

Lachezar Bozhkov, Petia Georgieva, and Roumen Trifonov

Application of Neural Networks Solar Radiation Prediction for Hybrid
Renewable Energy Systems . 133

P. Chatziagorakis, C. Elmasides, G.Ch. Sirakoulis, I. Karafyllidis,
I. Andreadis, N. Georgoulas, D. Giaouris, A.I. Papadopoulos,
C. Ziogou, D. Ipsakis, S. Papadopoulou, P. Seferlis,
F. Stergiopoulos, and S. Voutetakis

A New User Similarity Computation Method for Collaborative Filtering
Using Artificial Neural Network . 145

Noman Bin Mannan, Sheikh Muhammad Sarwar, and Najeeb Elahi

Probabilistic Models Based Intrusion Detection Using Sequence
Characteristics in Control System Communication 155

Takashi Onoda

Compressive ELM: Improved Models through Exploiting Time-
Accuracy Trade-Offs . 165

Mark van Heeswijk, Amaury Lendasse, and Yoan Miche

Detecting Port Scans against Mobile Devices with Neural Networks
and Decision Trees . 175

Christo Panchev, Petar Dobrev, and James Nicholson

Categorization and Construction of Rule Based Systems 183
Han Liu, Alexander Gegov, and Frederic Stahl

Tiling of Satellite Images to Capture an Island Object 195
Ahmet Sayar, Süleyman Eken, and Umit Mert

Learning User Models in Multi-criteria Recommender Systems 205
Marilena Agathokleous and Nicolas Tsapatsoulis

Fault Classification System for Computer Networks Using Fuzzy
Probabilistic Neural Network Classifier (FPNNC) . 217

Karwan Qader and Mo Adda

Estimation of the Electric Field across Medium Voltage Surge Arresters
Using Artificial Neural Networks . 227

Lambros Ekonomou, Christos A. Christodoulou, and Valeri Mladenov

Table of Contents XIII

Decoding Hand Trajectory from Primary Motor Cortex ECoG Using
Time Delay Neural Network . 237

Abdessalam Kifouche, Vincent Vigneron,
Mohammad B. Shamsollahi, and Abderrezak Guessoum

Author Index . 249

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 1–14, 2014.
© Springer International Publishing Switzerland 2014

Fuzzy Inference ANN Ensembles for Air Pollutants
Modeling in a Major Urban Area: The Case of Athens

Ilias Bougoudis, Lazaros Iliadis, and Antonis Papaleonidas

Democritus University of Thrace,
 Department of Forestry & Management of the Environment & Natural Resources,

193 Pandazidou st., 68200 N Orestiada, Greece
ibougoudis@yahoo.gr, liliadis@fmenr.duth.gr, papaleon@sch.gr

Abstract. All over the globe, major urban centers face a significant air
pollution problem, which is becoming worse every year. This research effort
aims to contribute towards real time monitoring of air quality, which is a target
of great importance for people’s health. However, a serious obstacle is the high
percentage of erroneous or missing data which is highly prolonged in many of
the cases. To overcome this problem and due to the individuality of each
residential area of Athens, separate local ANN had to be developed, capable of
performing reliable interpolation of missing data vectors on an hourly basis.
Also due to the need for hourly overall estimations of pollutants in the wider
area of a major city, ANN ensembles were additionally developed by
employing four existing methods and an innovative fuzzy inference approach.

Keywords: ANN ensembles, Fuzzy Inference System, Air Pollution.

1 Introduction

1.1 Aim of This Research

In modern cities, industrialization and increase in the number of vehicles, combined
with heating systems of residences have lead to serious problems related to air
quality. Increased concentrations in the levels of near surface ozone O3, CO, CO2,
NO, NO2, SO2 are currently matters of great concern. Particulate matters, also known
as particle pollution or PM, are complex mixtures of extremely small particles and
liquid droplets. They comprise of a number of components, including acids (such as
nitrates and sulfates), organic chemicals, metals, and soil or dust particles. The most
dangerous particles are the ones that have a diameter of 10 micrometers PM10 or
smaller, because they are inhaled, they pass through the throat and nose and enter the
lungs. They can cause serious health problems in a long term scale. There are also
particles with a diameter equal to 2.5 micrometers which are found in smoke or haze.
They are emitted from forest fires, fire places, or they can emerge from reactions of
gases coming directly from industries and automobiles [31].

This research effort is twofold. First, it describes the development of reliable local
ANN models, related to various measuring stations in Athens, capable of estimating
the concentrations of the following air pollutants: O3, CO, NO, NO2, SO2, PM10,
PM2.5. Second, it presents the implementation and application of ANN ensembles for

2 I. Bougoudis, L. Iliadis, and A. Papaleonidas

the estimation of the concentrations of the above air pollutants, in the wider area of
Athens. An ensemble consists of a set of individually trained networks, whose
predictions are combined when fed with novel instances. Previous research has shown
that an ensemble is often more accurate than any of the single local models [10]. This
is achieved by employing not only four existing ANN ensemble approaches but by
introducing an innovative Fuzzy Inference Ensemble (FIE) model. It is the first time
that FIE is used towards ensembles development. In this way a range of overall
pollution indices are established (each one for each pollutant) that correspond to the
greater area of a major urban center.

1.2 Literature Review

Several original research papers are published in the literature, dealing with Soft
Computing Techniques, applied for air pollutants’ estimation. The common disadvantage
of these approaches is the fact that they are developing overall neural network models
based mainly on data from the narrow city center, and they suppose that they can serve as
the optimal ones for wide range areas belonging to wide urban or semi-urban areas [22],
[23], [16], [3]. However, a more rational consideration would require the division of
these cities to smaller more homogenous frames. For example the “Athinas” measuring
station in Athens is located in the actual city center and it belongs to a very different area
from “Penteli”, in terms of vehicles’ traffic, topographic plus morphological details and
as far as the density of population is concerned. Thus, only local ANN models can serve
as reasonable estimators in different regions of major cities.

Another limitation of many existing approaches is the fact that they have a
seasonal nature by proposing models for specific times of the year (e.g. the summer
months) and not for continuous long periods of time [26], [21], [14], [15], [5], [17].

This paper discusses the results of the second phase of our research effort to model
air pollution in the greater area of Athens, by using Computational Intelligence [18],
[19], [20]. The first stage, which started two years ago resulted in the construction of
real time monitoring Multi Agent networks, plus short term ANN O3 predictors,
capable to provide 1-hour or 2-hours data when measuring stations malfunction. The
depended parameter was only O3 concentration.

In the research described here, 117 local ANN models (LANNMs) were developed
to model air pollutants, each one corresponding to a measuring station, whereas the
estimated pollutants were CO, NO, NO2, SO2, PM10, PM2.5. Moreover, ANN
ensembles comprising of the 117 LANNMs, were developed following four
established methods and a new FIS approach proposed here. The aim was to produce
an overall model for the whole city something that has never been done so far in
Greece. An ensemble with the same orientation has been developed in China [8].

2 Data and Area of Research

In particular, the data set collection of the current study was related to the wider area
of Athens, for a period of 13-years (2000-2012). It comprised of hourly values for the

concentration levels of CO, NO, NO2, SO2, PM10, PM2.5 (3m

gμ) as well as hourly data for

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 3

air temperature (Co), solar radiation (2−Wm), wind speed (
sec

m) and direction (rad),

pressure (mbar), Illumine and relative humidity. Data were obtained by the Greek
ministry of Environment [32]. Totally 1,017,733 data vectors without missing values
were available whereas an average as high as 18.82% of the data are missing with the
station of Piraeus having the worst percentage equal to 33.67%.

Table 1. Description of the stations employed for this research

ID Station’s
name

Code Missing
values

Correct
Data

Vectors
Station’s data

1
Ag.

Paraskevi
AGP 12.32% 99,936 Ο3, ΝΟ, ΝΟ2 , SΟ2

2 Amarusion MAR 21.58% 89,371 Ο3, ΝΟ, ΝΟ2, CO
3 Peristeri PER 33.61% 75,668 Ο3, ΝΟ, ΝΟ2, CO, SO2
4 Patision PAT 10.45% 102,068 Ο3, ΝΟ, ΝΟ2, CO, SO2
5 Aristotelous ARI 16.76% 94,873 ΝΟ, ΝΟ2
6 Geoponikis GEO 26.84% 83,381 O3, ΝΟ, ΝΟ2, CO, SO2
7 Piraeus PIR 33.67% 75,600 Ο3,ΝΟ, ΝΟ2, CO, SO2
8 N Smyrnh SMY 26.06% 84,272 Ο3, ΝΟ, ΝΟ2, CO, SO2
9 Penteli PEN 3.66% 109806 Meteorological

10 Thiseion THI 0.30% 113,632 Meteorological
11 Athinas ATH 21.86% 89,058 Ο3, ΝΟ, ΝΟ2, CO, SO2

The following image 1 clearly presents the exact positions of the eleven measuring

stations. They are distributed in a way to cover the city center, near the coast and
around the mountains of the Attica basin.

Image 1. Location of the eleven measurement stations in the wider area of Athens

4 I. Bougoudis, L. Iliadis, and A. Papaleonidas

3 Parameters’ Selection

The choice of the involved parameters for the estimation of air pollutants was based
on a combination of our own correlation analysis tests and related results obtained
from the literature. The following table 2 presents a sample of the absolute correlation
value of carbon monoxide and O3 concentration in the “Athinas” station for the period
2005 - 2008, with available independent features.

Table 2. Sample Correlation analysis for CO concentration

Code

Parameter
correlated

to CO

ABS
(R)

Code
Parameter
correlated

to O3

ABS
(R)

1 NO 0.86 8 CO 0.50

2 NO2 0.54 9 NO 0.49

3 O3 0.49 10 NO2 0.50

4 RH 0.24 11 RH 0.50

5 SR 0.05 12 SR 0.44

6 AIRTEMP 0.24 13 AIRTEMP 0.47

7 PR 0.33 14 WS 0.42

According to the table above, a high degree of correlation exists between carbon

monoxide concentration and nitrogen dioxide. Also, it is shown that there is a fair
correlation not only between O3 in “Athinas” station and meteorological features, but
also between O3 with primitive pollutants of other stations as well. The above and
other research efforts [21], indicate that the development of ANN for pollutants
estimation should consider both meteorological and other pollutants concentrations.
Similar results were obtained from the other stations. Regarding its seasonality it may
seem at first sight that the need for O3 risk monitoring and forecasting is more
important during the summer period that has favorable conditions for the development
of secondary pollutants. However it is self evident that this is like partially dealing
with the problem that still exists during the rest of the year, especially due to the very
high levels of O3 even in months like February or March [32].

Regarding the PM10 concentrations, based on [24], the PM10 exceedances in the
Athens area are related to spatial distribution characteristics and air pollution
contributors. Finally according to [2], PM2.5 and PM10 concentrations are highly
correlated with carbon monoxide, black carbon and nitrogen oxides and inversely
correlated with local wind speed.

4 Materials and Methods

4.1 Local Multilayer Feed Forward ANN

Totally 117 local ANN models using the learngdm learning function, the Tangent
Sigmoid (tansig) transfer function for the hidden layer and the purelin for the output

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 5

layer, were developed, each corresponding to one or more air pollutants’ estimation in
the measuring stations of Attica. The number of hidden neurons varied from 10 to 13.
The training function was either trainlm or trainbr. The following tables 3, 4, 5, 6, 7
describe the performance of all 197 developed Local ANN models.

Table 3. Description and evaluation of the Local ANN models for all pollutants

All ID R2 RMSE All ID R2 RMSE

1
trainlm

AGP
00-04

0.88 14.5
14

trainbr
SMY
00-04

0.63 25.0

2
trainlm

AGP
05-08

0.87 14.0
15

trainbr
SMY
05-08

0.66 23.4

3
trainlm

AGP
09-12

0.93 10.7
16

trainbr
SMY
09-12

0.76 17.8

4
trainlm

ATH
00-04

0.64 35.8
17

trainlm
PAT
00-04

0.74 35.8

5
trainlm

ATH
05-08

0.66 28.5
18

trainlm
PAT
05-08

0.74 36.1

6
trainlm

ATH
09-12

0.85 7.35
19

trainlm
PAT
09-12

0.76 28.4

7
trainlm

ARI
05-08

0.68 32.5
20

trainbr
PIR

00-04
0.64 25.7

8
trainbr

GEO
00-04

0.64 25.5
21

trainbr
PIR

05-08
0.64 21.6

9
trainbr

GEO
05-08

0.67 23.3
22

trainbr
PIR

09-12
0.76 17.8

10
trainbr

GEO
09-12

0.67 20.7
23

trainbr
PER
00-04

0.68 19.3

11
trainbr

MAR
00-04

0.63 24.4
24

trainbr
PER
05-08

0.68 18.6

12
trainbr

MAR
05-08

0.73 24.0
25

trainbr
PER
09-12

0.81 13.2

13
trainlm

MAR
09-12

0.72 19.5

Table 4. Description and evaluation of the Local ANN models SO2

SO2 ID R2 RMSE SO2 ID R2 RMSE

26
trainbr

ATH
00-04

0.64 7.03
37

trainbr
SMY
05-08 0.68 10.9

27
trainlm

ATH
05-08

0.70 4.96
38

trainbr
SMY
09-12 0.76 5.79

28
trainlm

ATH
09-12

0.75 2.79
39

trainbr
PAT
00-04 0.66 2.5

29
trainlm

ARI
00-04

0.67 9.40
40

trainlm
PAT
05-08 0.68 14.0

30
trainlm

ARI
05-08

0.74 11.1
41

trainlm
PAT
09-12 0.88 10.5

6 I. Bougoudis, L. Iliadis, and A. Papaleonidas

Table 4. (Continued.)

31
trainlm

ARI
09-12

0.68 32.5
42

trainbr
PIR

00-04 0.79 4.28

32
trainlm

GEO
00-04

0.65 7.49
43

trainbr
PIR

09-12 0.65 14.9

33
trainbr

GEO
05-08

0.64 5.01
44

trainbr
PER
00-04 0.66 2.5

34
trainbr

GEO
09-12

0.76 3.46
45

trainbr
PER
05-08 0.66 10.1

35
trainlm

MAR
05-08

0.79 11.6
46

trainbr
PER
09-12 0.73 6.84

36
trainlm

SMY
00-04

0.68 10.9

Table 5. Description and evaluation of the Local ANN models for PMX, NO and CO

PM10 ID R2 RMSE CO ID R2 RMSE

47
trainbr

AGP 0.65 13.20
59

trainbr
ATH
00-04

0.90 0.60

48
trainbr

ARI 0.65 13.90
60

trainlm
GEO
00-04

0.93 0.32

49
trainbr

ARI 2 0.74 11.20
61

trainlm
GEO
05-08

0.95 0.19

50
trainbr

MAR 0.90 9.430
62

trainlm
GEO
09-12

0.93 0.16

51
trainbr

PIR 0.74 10.90
63

trainlm
SMY
00-04

0.93 0.30

PMX ID R2 RMSE
64

trainlm
SMY
05-08

0.950 0.20

52
trainlm

AGP 0.82 4.47
65

trainlm
SMY
09-12

0.930 0.18

53
trainbr

PIR 0.80 6.50
66

trainlm
PAT
00-04

0.910 0.72

PM2.5 ID R2 RMSE
67

trainlm
PAT
09-12

0.920 0.28

54
trainbr

AGP 0.65 4.72
68

trainlm
PIR

00-04
0.870 0.43

55
trainbr

PIR 0.81 4.85
69

trainlm
PIR

09-12
0.930 0.18

NO ID R2 RMSE
70

trainlm
PER
00-04

0.920 0.22

56
trainlm

ARI
00-04

0.680 58.3

57
trainlm

ARI
09-12

0.760 4.75

58
trainlm

PER
09-12

0.880 7.10

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 7

Table 6. Description and evaluation of the Local ANN models for O3

O3 ID R2 RMSE O3 ID R2 RMSE

71
trainlm

AGP
00-04

0.81 16.70
82

trainlm
SMY
00-04

0.84 17.20

72
trainlm

AGP
05-08

0.85 12.60
83

trainlm
SMY
05-08

0.91 13.20

73
trainlm

AGP
05-08

0.86 13.50
84

trainlm
SMY
09-12

0.93 10.80

74
trainlm

ATH
00-04

0.82 13.70
85

trainlm
PAT
00-04

0.88 7.45

75
trainlm

ATH
05-08

0.91 7.95
86

trainlm
PAT
05-08

0.89 6.61

76
trainlm

GEO
00-04

0.87 12.4
87

trainlm
PAT
09-12

0.93 5.98

77
trainlm

GEO
05-08

0.91 10.8
88

trainlm
PIR

00-04
0.85 12.1

78
trainlm

GEO
09-12

0.93 9.26
89

trainlm
PIR

05-08
0.82 13.4

79
trainlm

GEO
09-12

0.93 9.43
90

trainlm
PER
00-04

0.85 15.4

80
trainlm

MAR
0004

0.83 14.7
91

trainlm
PER
05-08

0.91 11.3

81
trainlm

MAR
0508

0.88 13.5
92

trainlm
PER
09-12

0.91 10.8

Table 7. Description and evaluation of the Local ANN models for NO-NO2

NOX ID R2 RMSE NOX ID R2 RMSE

93
trainbr

AGP
00-04

0.76 7.73
106

trainbr
SMY
00-04

0.73 24.40

94
trainlm

AGP
09-12

0.76 4.75
107

trainlm
SMY
05-08

0.88 15.90

95
trainlm

ATH
00-04

0.90 23.50
108

trainlm
SMY
09-12

0.92 9.480

96
trainlm

ATH
05-08

0.92 18.20
109

trainlm
PAT
00-04

0.74 41.10

97
trainlm

ATH
09-12

0.88 18.60
110

trainlm
PAT
05-08

0.92 23.0

98
trainlm

ARI
00-04

0.71 39.50
111

trainlm
PAT
09-12

0.92 17.60

99
trainlm

ARI
09-12

0.93 10.70
112

trainlm
PIR

00-04
0.70 27.70

100
trainlm

GEO
00-04

0.72 30.30
113

trainlm
PIR

05-08
0.86 17.70

101
trainlm

GEO
05-08

0.92 14.40
114

trainlm
PIR

09-12
0.92 9.48

8 I. Bougoudis, L. Iliadis, and A. Papaleonidas

Table 7. (Continued.)

102
trainlm

GEO
09-12

0.77 21.50
115

trainlm
PER
00-04

0.76 17.50

103
trainbr

MAR
0004

0.91 14.40
116

trainlm
PER
05-08

0.90 11.20

104
trainlm

MAR
0508

0.92 10.70
117

trainlm
PER
09-12

0.85 8.540

105
trainlm

MAR
0912

0.93 7.01

4.2 Proposed ANN Ensemble Model and Existing Ones

A Neural Networks’ Ensemble (NNEN) comprises of a set of neural network
models that reach a decision by averaging the results of the individual models by
following specific algorithms. The core attribute of a NNEN is that it involves the
combination of a set of ANNs, each of which accomplishes the same task (which is
the case here). There is no point or advantage to combining a group of ANN that are
identical and generalize in the same way. They should vary in terms of architecture,
weights, convergence time, training functions and yet they should contribute to the
solution of the same problem, since they produced the same pattern of errors in the
testing phase [9].

A. Fuzzy Inference Ensemble Model (FIEM)
The innovation of this paper is enhanced by the employment of a flexible approach
based on fuzzy logic. For each pollutant, a Mamdani Fuzzy Inference System (FIS)
has been developed. The FIS considers the range from the two evaluation metrics
(correlation coefficient and mean square error). This consideration, leads to the
development of corresponding Mamdani Rule Sets. From the execution of the
System, two outputs are obtained, namely: fuzzy correlation coefficient and fuzzy
mean square error. The FIEM model takes under consideration the accuracy of each
network in a flexible manner. Moreover, the new values are produced through
machine learning, filtered by fuzzy logic. In this way, the outputs are unbiased.

As a result, this method offers a more objective approach. When the fuzzy outputs
are produced, they are averaged based on the rule set of the FIS. In most cases, the
fuzzy correlation coefficient is lower than the one produced by the Simple Classic
Average approach (see below), while the fuzzy mean square error is higher. A distinct
Fuzzy Inference System has been developed for every pollutant. Each FIS has an
Inference mechanism comprising of the following Heuristic Rule set. The
differentiation between the separate systems (corresponding to each pollutant) lies in
the determination of the fuzzy membership functions.

Rule set:
If (R2 is max) and (RMSE is min) Then (R2tot is max) AND (RMSEtot is min)
If (R2 is min) and (RMSE is max) Then (R2tot is min) AND (RMSEtot is max)
If (R2 is med) and (RMSE is med) Then (R2tot is med) AND (RMSEtot is med)
If (R2 is min) Then (R2tot is min)
If (R2 is max) Then (R2tot is max)

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 9

If (RMSE is min) Then (RMSEtot is min)
If (RMSE is max) Then (RMSEtot is max)

The first three rules were given a weight value of 0.5, whereas the last four a value
of 1. This was done because in many cases the overall performance of a network is
not defined by both the correlation coefficient and the root mean square error. For
example, there were networks where we had a high correlation coefficient value
(great for the overall performance), but also at the same time a high root mean square
error (inadequate for the overall performance). So we decided that the outputs of the
System should be influenced from each input separately (fuzzy correlation coefficient
and fuzzy mean square error), rather than from both at the same time.

For the Fuzzy Membership Functions (FMFs), the range of each input was the
range of the values for each pollutant. Finally, the FMFs used in the inputs were
Triangular (trimf for MATLAB) FMF for the minimum and maximum Linguistics
and Trapezoidal (trapmf in MATLAB) for the medium Linguistic whereas for the
output the FMFs employed were output functions were Triangular for the minimum
and maximum Linguistics and Gaussian (Gausmf in MATLAB) for the medium one.
The Trapezoidal, Triangular and Gaussian FMFs can be seen in the following
equations 1, 2, 3 respectively.














≥
∈
∈
∈
≤

=

b X if 0,

b)(n, X if n),-X)/(b-(b

n][m, X if 1,

m)(a, X if a),-a)/(m-(X

a X if 0,

(X)μ s (1)











>
∈
∈

<

=

b X if 0

b][c, X if c)-X)/(b-(b

c)[a, X if a)-a)/(c-(X

a X if 0

(Χ)μ s

(2)

() ()
2

2

2
,,

σ
σ cx

ecxf
−−= (3)

B. Simple Classic Average
A classical employed approach is the Simple and Classic Average (SCA) according to
which the values of every pollutant for each station are simply averaged according to

equation 4 [1].)......(
11

X 1
1

_

n

n

i
i XX

n
X

n
++== 

=

 (4) This approach is simple and easy

to apply. However, it is not the most rational, as it does not take under consideration
that some networks may be more accurate than others and thus they should be
rewarded. Due to its over simplification nature, this method was used as an early
approach in this research. After obtaining results from the other methods, we
compared them to the ones produced by SCA.

C. Weighted Average
The third traditional method used for each pollutant is weighted average (WA).
Through weights, the disadvantages of the first method are faced. All weights are

10 I. Bougoudis, L. Iliadis, and A. Papaleonidas

given real values between 0.50 and 1. The weights are calculated as below: the best
input (the maximum correlation coefficient and the minimum mean square error) is
given the value 1. The second best input is given the value 0.95 and so on (following
a step of 0.05). The disadvantage of this approach is that the weights are chosen
arbitrarily. The averaging formula is given by equation 5 [6], [1].




=

== n

i i

n

i ii

W

XW

n
1

1
_ 1
X (5)

D. Correlation Ensemble Method
The forth method uses values from the correlation matrix of each pollutant. We
created such matrices under the MATLAB platform. The averaging is given by the

following equations 6 and 7 [28]. Xa
n

i
iCEM 

=
=

1

_

X (6) where ia is estimated by the next

equation 7.





= =

−

=

−

=
n

k

n

j
kj

n

j
ij

i

C

C

a

1 1

1

1

1

(7) Cij is the correlation between i and j input. This method

minimizes the RMSE and has produced the lowest error from all the other methods
above in cases where we had the more samples. One disadvantage though, is that very
small correlation values increase the output of the method.

E. Certainty Ensemble Method
The fifth and last method uses the certainty of each network; we define certainty as
the probability that a network foresees the missing value correctly. Therefore, we
used the correlation coefficient of each network as its probability (equation 8).



 ≥

=
otherwise y,-1

0.5y if y
C(y) (8)

However, in our case, all the neural networks had probabilities greater than 0.63.
As a result, we used the first branch of the above formula only. The averaging
function and the weights’ values are given by equations 9 and 10 respectively.

()Xfwf i

n

i
iDAN 

=

=
1

 (9)



=

=
n

j
i

i
i

XfC

XfC
W

1

))((

))((
 (10)

The transfer functions selected for the layers were sigmoid (equation 11) for the
hidden layer and linear for the output layer [29]. The S-shaped logistic sigmoid
function is bounded between 0 and 1, therefore input and output data should be also
normalized in the same range by using equation 12.

Xe
Xf −+

=
1

1
)(

(11)

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 11

minmax

min
^

ZZ

ZZ
Z

−
−=

(12)

Data were normalized using eq. 11, where
^

Z is the normalised value and Zmin and
Zmax are the minimum and the maximum values of Z, respectively [25]. The metrics
used were R2 and RMSE (Root Mean Square Error) [4].

5 Assessment of the NNENs

The following tables 8 and 9 present the evaluation results of the developed ANN
ensembles by applying the innovative FIS model (proposed here) and the existing
approaches.

Table 8. Evaluation of the Ensemble ANN models for CO, NO, NO-NO2, SO2, O3 in testing

CO R2 RMSE NO R2 RMSE
SCA 0.922 0.315 SCA 0.773 23.383
FIS 0.940 0.354 FIS 0.774 25.437

Weighted Average 0.924 0.287 Weighted Average 0.785 16.787
Correlation Ensemble 0.925 0.243 Correlation Ensemble 0.773 24.900
Certainty Ensemble 0.922 0.312 Certainty Ensemble 0.782 21.337

NO – NO2 R2 RMSE SO2 R2 RMSE
SCA 0.845 17.756 SCA 0.706 8.620
FIS 0.829 17.562 FIS 0.695 8.385

Weighted Average 0.855 16.112 Weighted Average 0.712 7.789
Correlation Ensemble 0.821 12.924 Correlation Ensemble 0.709 9.383
Certainty Ensemble 0.853 17.278 Certainty Ensemble 0.711 8.589

O3 R2 RMSE O3 R2 RMSE
SCA 0.879 11.777 Weighted Average 0.881 11.456
FIS 0.861 11.569 Correlation Ensemble 0.909 10.832

 Certainty Ensemble 0.880 11.684

Table 9. Evaluation of the Ensemble ANN models for PM10, PM2.5, PMX and all pollutants in
testing

PM10 R2 RMSE PM2.5 R2 RMSE
SCA 0.736 11.726 SCA 0.730 4.785
FIS 0.769 11.814 FIS 0.725 4.800

Weighted Average 0.752 11.482 Weighted Average 0.738 4.783
Correlation Ensemble 0.723 12.010 Correlation Ensemble 0.700 4.761
Certainty Ensemble 0.747 11.536 Certainty Ensemble 0.738 4.792

All PM R2 RMSE All Pollutants R2 RMSE
SCA 0.810 5.485 SCA 0.722 22.538
FIS 0.800 5.675 FIS 0.710 22.867

Weighted Average 0.810 5.431 Weighted Average 0.733 21.610
Correlation Ensemble 0.812 5.229 Correlation Ensemble 0.677 22.948
Certainty Ensemble 0.810 5.472 Certainty Ensemble 0.732 21.996

12 I. Bougoudis, L. Iliadis, and A. Papaleonidas

From tables 8 and 9, it can be clearly seen that for CO and for PMX the FIS has the
best R2 but the worst RMSE. For NO-NO2 the FIS has the second best R2 but the
RMSE is only second worst, whereas for NO it has almost as high R2 value as the best
method (difference of the order of 10-3) but the worst RMSE. For PM10 the FIS has the
best R2 but the not the best RMSE. Generally speaking, the differences between the
five (5) used approaches for both metrics are so small that they can be considered as
having equivalent performance.

6 Conclusions and Future Work

A first innovation of this research effort is the fact that it proposes a successful new
FIS approach for ANN ensemble development. This approach has proven that it can
perform as efficiently as the other existing methods. The second achievement of this
research effort is the fact that it produces not only reliable local ANN models for
various urban and semi-urban areas of a major city (Athens), but it also produces
overall ANN ensembles for the same area, by employing five distinct approaches (one
new and four established ones).

It has been proven that the ANN ensembles that were developed and evaluated
with a huge pile of data vectors perform much better than the local ANN models in
most of the cases, in terms of R2. More specifically, in five (5) out of nine (9) cases
the ensembles are more reliable, in two (2) cases we have equal values of R2 whereas
only twice the Local ANN models perform better. The following table 10 offers a
strong support towards this argument.

Table 10. Comparison of Ensembles versus Local ANN in terms of R2

Percentage of
cases where
Local ANN

perform
better for CO

Percentage of
cases where
Local ANN

perform
better for NO

Percentage of
cases where
Local ANN

perform
better for
NO-NO2

Percentage of
cases where
Local ANN

perform
better for O3

Percentage of
cases where
Local ANN

perform
better for

SO2
16.6% 33.3% 64% 60% 42.85%

Percentage of
cases where
Local ANN

perform
better for All

Pollutants

Percentage of
cases where
Local ANN

perform
better for

PM10

Percentage of
cases where
Local ANN

perform
better for

PM2.5

Percentage of
cases where
Local ANN

perform
better for All

PM

48% 20% 50% 50%

Future work will involve the enhancement of the proposed FIS model to use more
fuzzy relations and more T-Norms and S-Norms. The aim is going to be the
improvement of the system’s rule set in terms of RMSE in order to overcome the
contradiction where R2 is the best achieved between all methods but RMSE remains
quite high.

 Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area 13

References

1. Baidyk, T., Kussul, E.: Ensemble Neural Networks. Optical Memory and Neural
Networks 18(4), 295–303 (2009)

2. Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., Koutrakis, P.:
Measurements of PM10 and PM2.5 particle concentrations in Athens. Greece Atmospheric
Environment 37(2003), 649–660 (2012)

3. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O.: A neural network
forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment
(January 2005)

4. Iliadis, L.: Intelligent Information Systems and Applications in Risk Estimation. Hrodotos
Publications (2007)

5. Inal, F.: Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in
Istanbul, Turkey. CLEAN – Soil, Air, Water 38(10), 897–908 (2010)

6. Jimenez, D.: Dynamically weighted ensemble neural networks for classification (1998)
7. The 1998 IEEE International Joint Conference (Volume: 1)
8. Kadri, C., Tian, F., Zhang, L., Dang, L., Li, G.: Neural Network Ensembles for Online Gas

Concentration Estimation Using an Electronic Nose. International Journal of Computer
Science Issues 10(2(1)) (March 2013)

9. Lopez, M., Melin, P., Castillo, O.: A method for creating Ensemble Neural Networks using
a Sampling Data Approach. In: Thero. Advances and Applications of Fuzzy Logic. ASC,
vol. 42, pp. 772–780. Springer (2007)

10. Maclin, R., Opitz, D.: Popular Ensemble Methods: An Empirical Study. Journal of
Artificial Intelligence Research 11, 169–198 (1999)

11. Mammone, R.J.: Artificial Neural Networks for Speech and Vision, pp. 126–142.
Chapman & Hall, London (1993)

12. Marougianni, G.: Forecasting tropospheric ozone levels from meteorological variables:
Athens urban area as a case study. Postgraduate thesis. AUTH, Greece (2010)

13. Ministry of Environment, Energy & Climate Change, Air Quality, Reports, Air Pollution
2009 Annual Report (2010)

14. Ozcan, H.K., Bilgili, E., Sahin, U., Bayat, C.: Modeling of trophospheric ozone
concentrations using genetically trained multi-level cellular neural networks. Advances in
Atmospheric Sciences 24(5), 907–914 (2007)

15. Ozdemir, H., Demir, G., Altay, G., Albayrak, S., Bayat, C.: Environmental Engineering
Science 25(9), 1249–1254 (2008)

16. Ordieres Meré, J.B., Vergara González, E.P., Capuz, R.S., Salaza, R.E.: Neural network
prediction model for fine particulate matter (PM). Environmental Modelling and
Software 20, 547–559 (2005)

17. Paoli, C.: A Neural Network model forecasting for prediction of hourly ozone
concentration in Corsica. In: Proceedings IEEE of the 10th International Conference on
Environment and Electrical Engineering, EEEIC (2011)

18. Papaleonidas, A., Iliadis, L.: Employing ANN That Estimate Ozone in a Short-Term Scale
When Monitoring Stations Malfunction. In: Jayne, C., Yue, S., Iliadis, L. (eds.) EANN
2012. CCIS, vol. 311, pp. 71–80. Springer, Heidelberg (2012a)

19. Papaleonidas, A., Iliadis, L.: Hybrid and Reinforcement Multi Agent Technology for real
time air pollution monitoring. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.)
Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 274–284.
Springer, Heidelberg (2012b)

14 I. Bougoudis, L. Iliadis, and A. Papaleonidas

20. Papaleonidas, A., Iliadis, L.: Neurocomputing techniques to dynamically forecast
spatiotemporal air pollution data. Evolving Systems 4, 221–233 (2013),
doi:10.1007/s12530-013-9078-5

21. Paschalidou, A., Iliadis, L., Kassomenos, P., Bezirtzoglou, C.: Neural Modeling of the
Tropospheric Ozone concentrations in an Urban Site. In: Proceedings of the 10th
International Conference Engineering Applications of Neural Networks, pp. 436–445
(2007)

22. Roy, S.: Prediction of Particulate Matter Concentrations Using Artificial Neural Network.
Resources and Environment 2(2), 30–36 (2012), doi:10.5923/j.re.20120202.05

23. Díaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-
Herrera, J.A.: A hybrid ARIMA and artificial neural networks model to forecast particulate
matter in urban areas: The case of Temuco, Chile 42(35), 8331–8340 (2008)

24. Sfetsos, A., Vlachogiannis, D.: A new approach to discovering the causal relationship
between meteorological patterns and PM10 exceedances. Atmospheric Research 98(2),
500–511 (2013)

25. Slini, T., Karatzas, K., Moussiopoulos, N.: Correlation of air Pollution and Meteorological
data Networks. In: 8th Int. Conf. on Harmonisation within Atmospheric Dispersion
Modelling for Regulatory Purposes (2002)

26. Wahab, A.-S.A., Al-Alawi, S.M.: Assessment and prediction of tropospheric ozone
concentration levels using artificial neural networks. Environmental Modeling &
Software 17, 219–228 (2002)

27. Wolpert, D.: Stacked Generalization. Neural Networks 5, 241–259 (1992)
28. Zhou, Z.H., Wu, J., Wei, T.: Corrigendum to “Ensembling neural networks: Many could

be better than all”. Artificial Intelligence 174(18), 15–70 (2010)
29. Gardner, M.W., Dorling, S.R.: Artificial Neural Networks (The Multilayer Perceptron) - a

Review of Applications in the Atmospheric Sciences. Atmospheric
Environment 32(14/15), 2627–2636 (1998)

30. Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic
components used in air quality forecasting. Atmospheric Environment 35(5), 815–825
(2001)

Web References

1. http://www.epa.gov/pm/
2. http://www.ypeka.gr/

Remarks on Computational Facial Expression

Recognition from HOG Features Using
Quaternion Multi-layer Neural Network

Kazuhiko Takahashi1, Sae Takahashi1, Yunduan Cui2,
and Masafumi Hashimoto3

1Information Systems Design, Doshisha University, Kyoto, Japan
{katakaha@mail,buj1078@mail4}.doshisha.ac.jp

2Graduate School of Doshisha University, Kyoto, Japan
dum3101@mail4.doshisha.ac.jp

3Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan
mhashimo@mail.doshisha.ac.jp

Abstract. Facial expression recognition is an important technology in
human-computer interaction. This study investigates a method for facial
expression recognition using quaternion neural networks. A multi-layer
quaternion neural network that conducts its learning using a quaternion
back-propagation algorithm is employed to design the facial expression
recognition system. The input feature vector of the recognition system is
composed of histograms of oriented gradients calculated from an input
facial expression image, and the output vector of the quaternion neural
network indicates the class of facial expressions such as happiness, anger,
sadness, fear, disgust, surprise and neutral. Computational experimental
results show the feasibility of the proposed method for recognising human
facial expressions.

Keywords: Quaternion neural network, Facial expression recognition,
Histograms of oriented gradients, Image processing.

1 Introduction

Facial expression recognition is an interesting but difficult task, as facial expres-
sions vary with age, race, gender, culture and so on. Because facial expression
recognition is an important technology in human-computer interaction involv-
ing many fields such as image processing, pattern recognition, physiology and
psychology, many studies have been conducted on this technology [1] [2] [3] [4].
One of the techniques employed for facial expression recognition involves the
use of artificial neural networks because of their attractive features such as par-
allel distributed processing, learning, fault tolerance and robustness. Although
conventional neural networks conduct signal processing involving real numbers,
hyper-complex-valued neural networks that are based on Clifford algebra [5]
(such as complex neural networks and quaternion neural networks) have been
proposed [6] [7] [8] to solve classically hard-to-treat intractable problems by using

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 15–24, 2014.
c© Springer International Publishing Switzerland 2014

{katakaha@mail, buj1078@mail4}.doshisha.ac.jp
dum3101@mail4.doshisha.ac.jp
mhashimo@mail.doshisha.ac.jp

16 K. Takahashi et al.

real-valued neural networks. There have been many successful examples involv-
ing the use of such neural networks in applications requiring multi-dimensional
signal processing, e.g. colour image processing [9], chaotic time-series prediction
[10], multi dimensional time-series signal processing [11], inverse problem [12]
and control of robot manipulator [13].

In this study, we investigate an approach to facial expression recognition using
quaternion neural networks. Quaternion neural networks have been demonstrated
better performances than real number neural networks because the quaternion
neural network is able to cope with multidimensional issues more efficiently by
employing quaternion directly. The histograms of oriented gradients (HOG) [14]
[15] of the facial expression images are calculated so as to consist of the input fea-
ture vector of the quaternion neural network. In computational experiments of
facial expression recognition, the quaternion neural network is trained and tested
using image datasets that contain seven facial expressions (happiness, anger, sad-
ness, fear, disgust, surprise and neutral). The feasibility of the quaternion neural
network for this task was indicated by experimental results.

2 Facial Expression Recognition System

Figure 1 illustrates the facial expression recognition system using the quaternion
neural network.

2.1 HOG Feature

HOG is a feature descriptor that describes local object appearance and shape
within an image using the distribution of intensity gradients or edge directions.
The procedure used to define the HOG feature is as follows: 1) calculating gra-
dient directions, 2) compiling a histogram of gradient directions for the pixels
within each cell, which divides the image into small connected regions and 3)
normalising all cells within each block, which is a larger region of the image.

1) Gradient Computation
The gradient magnitude ai,j and direction θi,j at the pixel position [i, i] in
the image can be obtained by the following:

ai,j =
√
(Ii+1,j − Ii−1,j)2 + (Ii,j+1 − Ii,j−1)2, (1)

θi,j = tan−1 Ii,j+1 − Ii,j−1

Ii+1,j − Ii−1,j
, (2)

where Ii,j is the intensity of the image at the pixel position [i, j]. To achieve
better invariance to small variations in the image, the direction is constrained
within the range [0, π] by adding π to θi,j when the direction is negative.

Remarks on Computational Facial Expression Recognition 17

2) Histogram Calculation
First, the image used to calculate the gradients is divided into small spatial
regions called cells, with size CW × CH . Then, a local one-dimensional his-
togram of gradient directions θi,j weighted by the gradient magnitude ai,j
over the pixels of the cells is counted in each cell.

3) Normalisation
By grouping the cells together into larger spatially connected regions called
blocks, with size BW × BH , the local histogram is normalised over all the
cells in the block as follows:

h̄ps,qs =
hps,qs√‖hs‖2 + e0

, (3)

where hps,qs is the local histogram at the cell position [ps, qs] in the s-th
block, the element of vector hs represents all local histograms over the cells
in the s-th block and e0 is an arbitrary small constant, which ensures that
the denominator is not zero.

Camera image

Face region extraction

Eye / mouth position detection

Normalization

Eye / mouth region extraction

HOG feature extraction

PCA

Feature vector

Quaternion NN

Recognized facial expression

Fig. 1. Processing flow of facial expression recognition system

18 K. Takahashi et al.

2.2 Feature Extraction from Face Image

Pretreatment of the input image using image processing is necessary before ex-
tracting the HOG features. First, the face region is found in the input image by a
pattern classification method that utilises Haar-like feature templates. Eye and
mouth positions are found using the same method, and their two-dimensional
coordinates in the image are calculated. Next, the image is rotated such that
both eye positions are on the horizon, and is scaled such that the distance be-
tween the eyes is a constant value De. In addition, the image is scaled to set
the distance between the eye position and mouth position to a constant value
Dm. Then, the face image with horizontal centre located between the eyes and
vertical centre located at the mid-point between the eye and mouth is extracted
from the input image with a size of αDe × βDm, where the coefficients α and
β are determined based on the human body size database [16]. Finally, the eye
region image with its centre located at the eye position is extracted from the
face image and has a size of We ×He. In the same manner, the mouth region
image with its centre is located at the mouth position is extracted from the face
image and has a size of Wm ×Hm. The HOG features are calculated for the eye
and mouth region images, respectively.

The HOG feature has a very high dimensional space. In order to compose
feature vectors that are used as input vectors of the quaternion neural network,
principal component analysis (PCA) is introduced to reduce the dimensions of
the HOG features. PCA is applied to all HOG features obtained from the k-th
image in each block, and r principal components are utilised to consist of the
feature vector vk:

vk =
[
1v1

2v1 · · · rv1 1v2
2v2 · · · rv2 · · · · · · 1vN 2vN · · · rvN

]T
, (4)

where ivj is the i-th principal component of the j-th block in the k-th image.

2.3 Quaternion Neural Network

The quaternion was invented by the Irish mathematician W. R. Hamilton in or-
der to generalize complex number properties to multi-dimensional space. Quater-
nion forms a class of hyper complex number that consists of a real number and
three imaginary numbers: i, j and k. A quaternion q is defined by:

q = q0 + q1i+ q2j+ q3k =
[
q0 q1 q2 q3

]T
, (5)

where qi (i = 0, 1, 2, 3) is the real number parameter. The real number unit is
1 and the three imaginary units are i, j and k. They are orthogonal spatial
vectors. The conjugate of a quaternion q∗ is defined by:

q∗ = q0 − q1i− q2j− q3k, (6)

and the multiplication between one quaternion and its conjugate as follows:

q ⊗ q = q20 + q21 + q22 + q23 . (7)

Remarks on Computational Facial Expression Recognition 19

Addiction and subtraction of two quaternions, q and r, are defined by:

q ± r =
[
q0 ± r0 q1 ± r1 q2 ± r2 q3 ± r3

]T
. (8)

Multiplication between a real number a and a quaternion q is given by:

aq = aq0 + aq1i+ aq2j + aq3k, (9)

while the multiplication between two quaternions q and r is given by:

q ⊗ r = q0r0 −−→q · −→r + r0−→q + q0−→r +−→q ×−→r (10)

where −→q =
[
q1 q2 q3

]T
, −→r =

[
r1 r2 r3

]T
, · and × represent scalar and vector

product respectively. The norm of quaternion is defined by:

|q| = √
q ⊗ q∗. (11)

To describe the input and output relationships of the multi-layer quaternion
neural network and the back-propagation algorithm, a three-layer quaternion
neural network was considered. In the input layer of the quaternion neural net-
work, the l-th neuron’ input xl is a quaternion:

xl = x0l + x1li+ x2lj+ x3lk, (12)

In the hidden layer, the output from the m-th neuron unit um is defined as
follows:

um = f(
∑
l

w1ml
⊗ xl + φ1m), (13)

where w1ml
is the weight between the l-th neuron of the input layer and the

m-th neuron of the hidden layer, φ1m is the threshold of the m-th neuron in the
hidden layer, f(·) is an activation function which is split as follows:

f(x) = f0(x0) + f1(x1)i+ f2(x2)j + f3(x3)k, (14)

In the output layer, the output from the n-th neuron unit yn is defined by

yn = f(
∑
m

w2nm ⊗ um + φ2n), (15)

where w2nm is the weight between the m-th neuron of the hidden layer and the
n-th neuron of the output layer, and φ2n is the threshold of the n-th neuron in
the output layer.

The training of the quaternion neural network was carried out using the back-
propagation algorithm to minimise the cost function J as follows:

w2nm(t+ 1) = w2nm(t) + ηδ2n(t)⊗ u∗
m, (16)

φ2n(t+ 1) = φ2n(t) + ηδ2n(t), (17)

20 K. Takahashi et al.

δ2n(t) = εn � f ′(
∑
m

w2nm(t)⊗ um + φ2n), (18)

w1ml
(t+ 1) = w1ml

(t) + ηδ1m(t)⊗ x∗
l , (19)

φ1m(t+ 1) = φ1m(t) + ηδ1m(t), (20)

δ1m(t) =

{∑
n

w2nm(t)⊗ δ2n(t)

}
� f ′(

∑
l

w1ml
⊗ xl + φ1m), (21)

J =
1

2

∑
n

εn ⊗ ε∗n, (22)

where η is the learning factor, εn is the output error defined by εn = dn − yn,
dn is the desired output of the n-th neuron in the output layer and � denotes
the component-by-component product.

3 Computational Experiment for Recognising Facial
Expression

In the experiment for the computational recognition of facial expression, six facial
expressions that have been proposed as basic facial expressions by P. Ekman,
together with one neutral facial expression were considered.

The quaternion neural network was trained and tested using facial expression
images recorded from one Japanese male. Each facial expression was consciously

Neutral Anger Disgust Fear

Happiness Sadness Surprise

Fig. 2. Examples of input image and HOG feature seen with the facial expressions
(top: input image, bottom: HOG feature, left: eye region, right: mouth region)

Remarks on Computational Facial Expression Recognition 21

Table 1. Confusion matrix of computational facial expression recognition using quater-
nion neural network of 9–2–2 network topology

neutral anger disgust fear happiness sadness surprise

neutral 0.330 0.025 0.065 0.225 0.035 0.195 0.125

anger 0.095 0.575 0.025 0.050 0.085 0.170 0.000

disgust 0.185 0.025 0.455 0.135 0.070 0.070 0.060

fear 0.450 0.015 0.080 0.365 0.015 0.075 0.000

happiness 0.005 0.070 0.060 0.025 0.695 0.110 0.035

sadness 0.165 0.165 0.095 0.085 0.080 0.380 0.030

surprise 0.200 0.000 0.015 0.125 0.005 0.025 0.630

Table 2. Confusion matrix of computational facial expression recognition using con-
ventional real-valued neural network of 34–7–7 network topology

neutral anger disgust fear happiness sadness surprise

neutral 0.165 0.005 0.035 0.145 0.075 0.265 0.310

anger 0.050 0.290 0.030 0.060 0.095 0.260 0.215

disgust 0.085 0.000 0.265 0.145 0.040 0.255 0.210

fear 0.165 0.005 0.030 0.235 0.050 0.270 0.245

happiness 0.045 0.010 0.010 0.060 0.350 0.250 0.275

sadness 0.130 0.000 0.025 0.125 0.070 0.480 0.170

surprise 0.115 0.000 0.025 0.095 0.025 0.040 0.700

expressed by the subject according to psychological knowledge [17], and 10 im-
ages were acquired for each facial expression. Thus, 70 image samples together
with the label of the facial expression were obtained. Figure 2 shows an example
of the input image and HOG feature, where the size of the eye and mouth regions
is 60[pixel] × 60[pixel] and 90[pixel] × 60[pixel], respectively. While calculating
the HOG feature, the cell size of the eye region was 12[pixel] × 12[pixel], that
of the mouth region was 12[pixel]× 12[pixel] and the block size for both regions
was 3×3. The feature vector v was composed with the first and second principal
components of the PCA results for all HOG features. As a result, the dimension
of the feature vector in the eye region is 18, and that in the mouth region is
16. The dimension of the input vector of the quaternion neural network was 34
because it consisted of the eye and mouth region feature vectors. The topology
of the quaternion neural network was a 9–2–2 network (104 parameters), and
a sigmoid function was used as the function fr(·) (r = 0, 1, 2, 3) in the hidden
and output layers. The output from the quaternion neural network represents
the likelihood that the input feature vector corresponds to the facial expressions.
The quaternion neural network’s output that gives the largest value is chosen,
and the corresponding class indicates the recognition result. Training and testing
of the quaternion neural network for facial expression recognition were conducted
by leave-one-out cross-validation with 20 different initial weight conditions. Ta-
ble 1 shows the results of the computational facial expression recognition, and

22 K. Takahashi et al.

Table 3. Confusion matrix of person-dependent computational facial expression recog-
nition using JAFFE datasets

neutral anger disgust fear happiness sadness surprise

neutral 0.586 0.138 0 0.034 0.103 0.034 0.103

anger 0.032 0.452 0.161 0.194 0.032 0.097 0.032

disgust 0.034 0.069 0.414 0.310 0.103 0.069 0

fear 0.186 0.094 0.156 0.375 0.094 0.031 0.063

happiness 0.129 0.129 0 0.065 0.484 0.032 0.161

sadness 0.167 0.133 0.067 0.167 0.033 0.430 0.033

surprise 0.033 0.100 0.033 0.100 0.033 0.033 0.677

Table 4. Confusion matrix of person-independent computational facial expression
recognition using JAFFE datasets

neurtal anger disgust fear happiness sadness surprise

neutral 0.183 0.137 0.237 0.147 0.1 0.077 0.090

anger 0.137 0.217 0.163 0.120 0.080 0.143 0.110

disgust 0.190 0.162 0.114 0.134 0.131 0.131 0.107

fear 0.144 0.138 0.184 0.206 0.069 0.125 0.094

happiness 0.158 0.126 0.100 0.110 0.216 0.119 0.148

sadness 0.100 0.155 0.152 0.171 0.110 0.135 0.132

surprise 0.137 0.220 0.120 0.130 0.117 0.130 0.133

the averaged recognition rate was 49%; however, there remains some difficulty
in recognising negative facial expressions such as sadness, fear and neutral. As a
reference for comparing the result of computational facial expression recognition,
conventional real-valued neural network was utilized for this task. The topology
of neural network was a 34 − M − 7 network in which the sigmoid function
was used in the hidden layer and the linear function was utilized in the input
and output layers. Training of the neural network was carried out by using the
back-propagation algorithm. The averaged recognition rates are 30% (M = 2, 91
parameters), 35% (M = 7, 301 parameters) and 34% (M = 10, 427 parameters)
and Table 2 shows the results of the computational facial expression recognition
using a 34–7–7 network topology. This result shows that the quaternion neu-
ral network can provide a better performance than the conventional real-valued
neural network with fewer number of parameters.

Next, the quaternion neural network was trained and tested using the Japanese
female facial expression datasets [18]. This database contains 213 images of seven
facial expressions shown by 10 Japanese females. The HOG feature was calcu-
lated with the cell size of 8[pixel]×8[pixel] in the eye region of 48[pixel]×48[pixel]
and that of 6[pixel] × 8[pixel] in the mouth region of 60[pixel] × 40[pixel]. The
block size for both regions was 3 × 3. Applying the PCA to each HOG feature,

Remarks on Computational Facial Expression Recognition 23

the dimension of the input vector of the quaternion neural network was 80. The
topology of the quaternion neural network was a 20–10–5–2network. Training and
testing of the quaternion neural network were conducted by leave-one-out cross-
validation with 10 different initial weight conditions. Tables 3 and 4 show the re-
sults of the computational facial expression recognition. Table 3 shows the average
of the person-dependent recognition result where the training and testing of the
quaternion neural network were conducted with the images of the target subject.
Table 4 shows the average of the person-independent recognition where the train-
ing of the quaternion neural network was conducted except for the images of the
target subject and then the testing of the quaternion neural network was carried
out by the images of the target subject. The averaged recognition rate of 50% was
achieved in person-dependent facial expression recognition, however, that of 17%
was attained in person independent facial expression recognition.

These experimental results show the potential of achieving computational
facial expression recognition by using the quaternion neural network with the
HOG feature, however the recognition rate using the quaternion neural network
is not sufficient. Extraction of possible features from facial images in addition to
the HOG feature should be investigated to improve the recognition ability.

4 Conclusions

This study investigated computational facial expression recognition using a multi-
layer quaternion neural network that conducted its learning using the quaternion
back-propagation algorithm. The proposed recognition process involved face im-
age pre-treatments using image processing, feature extraction from images us-
ing the HOG calculation, dimension reduction of the feature vector using PCA
and the evaluation of outputs from the quaternion neural network. Face image
datasets that contained seven facial expressions, namely happiness, anger, sad-
ness, fear, disgust, surprise and neutral, were used to evaluate the recognition
method. In computational experiments performed to recognise facial expressions,
the quaternion neural network attained an averaged recognition rate of around
50% for all seven facial expressions in person-dependent recognition experiments.
The results obtained in this study demonstrated that the quaternion neural net-
work is feasible for computational facial expression recognition.

Acknowledgements. We would especially like to thank Mr. Kohei Morii for
his help in this work.

References

1. Tolba, A.S., El-Baz, A.H., El-Harby, A.A.: Face Recognition: A Literature Review.
International Journal of Information and Communication Engineering 2, 88–103
(2006)

2. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A Survey of Affect Recogni-
tion Methods: Audio, Visual, and Spontaneous Expressions. IEEE Transactions on
Pattern Analysis and Machine Intelligence 31(1), 39–58 (2009)

24 K. Takahashi et al.

3. Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models,
Methods, and Their Applications. IEEE Transactions on Affective Computing 1(1),
18–37 (2010)

4. Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and Dynamic 3D Facial Ex-
pression Recognition: A Comprehensive Survey. Image and Vision Computing 30,
683–697 (2012)

5. Sommer, G. (ed.): Geometric Computing with Clifford Algebra. Springer (2001)
6. Buchholz, A., Sommer, G.: On Clifford Neurons and Clifford Multi-Layer Percep-

trons. Neural Networks 21, 925–935 (2008)
7. Nitta, T. (ed.): Complex-Valued Neural Networks: Utilizing High-Dimensional Pa-

rameters. Information Science Publishing (2009)
8. Kuroe, Y.: Models of Clifford Recurrent Neural Networks and Their Dynamics. In:

Proceedings of International Joint Conference on Neural Networks, pp. 1035–1041
(2011)

9. Kusamichi, H., Isokawa, T., Matsui, N., Ogawa, Y., Maeda, K.: A New Scheme
Color Night Vision by Quaternion Neural Network. In: Proceedings of the 2nd
International Conference on Autonomous Robots and Agents, pp. 101–106 (2004)

10. Arena, P., Caponetto, R., Fortuna, L., Muscato, G., Xibilia, M.G.: Quaternionic
Multilayer Perceptrons for Chaotic Time Series Prediction. IEICE Transactions on
Fundamentals E79-A(10), 1682–1688 (1996)

11. Ujang, B.C., Took, C.C., Mandic, D.P.: Quaternion-Valued Nonlinear Adaptive
Filtering. IEEE Transactions on Neural Networks 22(8), 1193–1206 (2011)

12. Iura, T., Ogawa, T.: Quaternion Neural Network Inversion for Solving Inverse
Problems. In: Proceedings of SICE Annual Conference 2012, pp. 1802–1805 (2012)

13. Cui, Y., Takahashi, K., Hashimoto, M.: Remarks on Quaternion Neural Networks
with Application to Robot Control. In: Proceedings of SICE 2013 International
Conference on Instrumentation, Control, Information Technology and System In-
tegration, pp. 1381–1386 (2013)

14. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In:
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 886–893 (2005)

15. Onishi, K., Takiguchi, T., Ariki, Y.: 3D Human Posture Estimation Using the HOG
Features from Monocular Image. In: Proceedings of 19th International Conference
on Pattern Recognition, pp. 1–4 (2008)

16. http://riodb.ibase.aist.go.jp/dhbodydb/index.php.ja

17. Ekman, P., Friesen, W.V.: Unmasking The Face. Prentice-Hall, Inc., Englewood
Cliffs (1975)

18. Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions
with Gabor Wavelets. In: Proceedings of 3rd IEEE International Conference on
Automatic Face and Gesture Recognition, pp. 200–205 (1998)

http://riodb.ibase.aist.go.jp/dhbodydb/index.php.ja

Classification of Database by Using

Parallelization of Algorithms Third Generation
in a GPU

Israel Tabarez Paz1, Neil Hernández Gress2, and Miguel González Mendoza2

1 Universidad Autónoma del Estado de México
Blvd. Universitario s/n, Predio San Javier, Atizapán de Zaragoza, México

itabarezp@uaemex.mx

http://www.uaem.mx/cuyuaps/vallemexico.html
2 Tecnológico de Monterrey, Campus Estado de México,

Carretera Lago de Guadalupe km 3.5, Col. Margarita Maza de Juarez,
Atizapán de Zaragora, México
{ngress,mgonza}@itesm.mx

http://www.itesm.edu

Abstract. This manuscript is focused on the efficiency analysis of Ar-
tificial Neural Networks (ANN) that belongs to the third generation,
which are Spiking Neural Networks (SNN) and Support Vector Machine
(SVM). The main issue of scientific community have been to improve the
efficiency of ANN. So, we applied architecture GPU (Graphical Process-
ing Unit) from NVIDIA model GeForce 9400M. On the other hand, the
results of QP method for SVM depends on computational complexity of
the algorithm, which is proportional to the volume and attributes of the
data. Moreover, SNN was selected because it is a method that has not
been explored fully. Despite the economic cost is very high in parallel
programming, this is compensated with the large number of real appli-
cations such as clustering and pattern recognition. In the state of the art,
nobody of authors has coded Quadratic Programming (QP) of SVM in a
GPU. In case of SNN, it has been developed by using a specific software
as MATLAB, FPGA or sequential circuits but it have never been coded
in a GPU. Finally, it is necessary to reduce the grade of parallelization
caused by limitations of hardware.

Keywords: GPU, CPU, Artificial Neural Networks, Spiking Neural
Networks, Support Vector Machine, Classification.

1 Introduction

In this paper presents the analysis and comparison of efficiency between method-
ologies Quadratic Programming (QP) of Support Vector Machine (SVM) and
Spikeprop of Spiking Neural Networks (SNN) by using parallel programming in
a GPU.

Many authors in the area of Artificial Neural Networks (ANN) are interested
on thee methodologies in order to improve the efficiency according to the right

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 25–38, 2014.
c© Springer International Publishing Switzerland 2014

http://www.uaem.mx/cuyuaps/vallemexico.html
http://www.itesm.edu

26 I.T. Paz, N.H. Gress, and M.G. Mendoza

algorithm for each application. In general, there are several methods, the most
used are decision trees, Bayesian networks, other neural networks, statistical
methods, genetic algorithms, fuzzy logic, Markov’s model, etcetera. Addition-
ally, there are others as Sequential Minimal Optimization (SMO) [23] used for
Support Vector Machine (SVM) [8]; and Izhikevich’s model [12] and Hodgkin-
Huxley’s model [11], for Spiking Neural Networks (SNN) they both. In this case,
our interest in because QP of SVM finds the Global Minimum Value, but its
computational complexity is very high. Also, we are interested on studying the
characteristics and behavior about learning time of SNN, that has capacity of
working at the same iteration with multiclass data. However, an important dis-
advantage is that SNN only finds the local minimum value.

On the other hand, we compared the efficiency between algorithms QP from
SVM and Spikeprop from SNN. The result allows us to select the right method-
ology for each application and to know the pending tasks. According to ap-
plication, SVM algorithm has been used for clustering, classification, pattern
recognition and regression. For example, Carpenter [6] use LIBSVM of MATLab
for classification and regression in order to compare results with a known soft-
ware called CUSVM [6], what is used for parallel programming, and applied a
version of Sequential Minimal Optimization (SMO). Also, Markos Papadoniko-
lakis [21] was focused on speeding up for classification by using a GPU and a
FPGA (Field Programmable Gate Array). Other author, Tsung-Kai Lin and
Shao-Yi Chien [16] continued with the works of Catanzaro [7] and Carpenter [6]
for speeding up the SVM algorithm. He applied an algorithm of Sparse Matrix
Multiplication in order to solve problems of classification.

In the case of algorithm SNN, there are not many published applications, but
Thomas Nowotny [20] implemented a realistic morphology of SNN of smell of
insects. In case of Bhuiyan [2], he programmed the Izhikevich’s model [12] for
character recognition. Sander [4] did implement on a GPU the algorithm of SNN
but he only proposes an application of clustering. Also, OlafOlaf applied SNN for
voice recognition. However, we also suggest some applications about characters
recognition considering only the five vowels, but in this problem we can use more
letters and numbers. The result allows us to define some issues in the future. So,
we used a real database about patients in a hospital for classification according
to some proposed characteristics.

The parallel programming [19] consists on solving big problems by parts. How-
ever, there are three forms of parallel programming: bit level, instruction level,
and task parallelism. The selected architecture and applications are oriented to
instruction level by using a GPU. Problems of parallel programming are solved
in language C for CUDA.

This paper is distributed as follows: in section 2 related works are presented,
in section 3 the parallelization of the algorithm SNN is presented, in section 4
the parallelization of the algorithm SVM is presented, in section 5 correspond
to the experiments of SNN and SVM, in section 6 the experiments are analyzed
and presented, finally in section 7 we present the conclusion and future work.

Classification of Database by Using Parallelization of Algorithms 27

2 Related Works

In this section we present the works related about this topic. The figure 1 de-
scribes chronologically the evolution about state of the art of SNN. We only
show the main authors.

-Izhikevich (Two Differential

 Equations).

-Bohte(Spikeprop: Clustering)

-Hodking-Huxley (Four

 Differential Equations)

2003

2004

1952

2005

2009

2010
2011

-Olaf (Spikeprop:

 Speech Recognition)

-Schrauwen

 (Error in Spikeprop)

-Pavlidis(Evolutionary

 Algorithms).

-Nuno Maganda

 (Spikprop in FPGA).

-Nowotny(SNN in a GPU

 for odor of insects)

-Andreas (GPU, NeMO).

-Nageswaran(SNN in Large

 scale with a GPU).

-Bair(SNN and Parker

 sochacki method)

-Thomas(SNN in a FPGA)

-Bhuiyan(Characters

 Recognition)

-Fidjeland (Accelerated

 simulation of SNN)

-Izhikevich(Hybrid

 Model of SNN)

Fig. 1. State of the Art of SNN

In the last decade, evolution of the SNN model has been increased very fast
because some authors have focused on type of hardware for programming and its
applications.Firstly, Hodking-Huxley [11] sets the bases about how SNN oper-
ates in mammal brain. He proposes a mathematical model with four differential
equations. In middle of century XIX, Izhikevich [12] proposes a simpler model
that Hodking-Huxley, only with two differential equations. Also Bohte [3] mod-
eled the algorithm of SNN with version of the algorithm of Backpropagation [14]
for applications of clustering. A year later, Olaf [5] continues at the same line
of Bohte but he proposes an application of Speech Recognitions, which it was
restricted only for the numbers one and two. In this case, as future work, we
can extend the experiment to more numbers. Schrauwen [26] proposes a way
to improve the algorithm of Spikeprop of SNN. Pavlidis [22] implements SNN

28 I.T. Paz, N.H. Gress, and M.G. Mendoza

with evolutionary algorithms. Maganda [18] programmed the algorithm Spike-
prop from SNN in a FPGA. In contrast, Nowotny [20] programmed the algo-
rithm in a GPU. Also, he applies the SNN algorithm for simulating olfatory of
insects. Andreas [9] compares the execution of SNN of a GPU with a special
card called NeMO, however this card is not very commercial. Nageswaran [17]
presents a simulation of the Izhikevich’s model by using CUDA graphic proces-
sor. Stewart [27] develops SNN with the method of Parker Sochacki about the
numerical integration of differential equations applicable to many neuronal mod-
els, as result, they concluded that Hodgkin Huxley’s model is more efficient than
Izhikevich’s model. Thomas and Luk [28] propose a simulation in a FPGA. As
result, they got to simulate maximum 1024 neurons with the Izhikevich’s model.
Finally, Izhickevich [13] tries to implement a hybrid numerical method for simu-
lations of large-scale biological spiking networks in order to combine continuous
and discontinuous numeric methods.

However, there are others authors as Yudanov [29] who implements a method
with numeric integration of Parker Sochacki (PS) of adaptive order. Bhuiyan [2]
compares Izhikevich’s model and the Hodgkin Huxley’s model, which are applied
to character recognition. Scanzio [25] compares the speed of processing in CUDA
of algorithms feedforward and backpropagation. Prabhu [24] applies GPU for
pattern classification on images. Also, he focuses on the degree of parallelism of
problems. He uses 256 MB as the maximum size of images, by using 768 MB of
video memory in the GPU.

Chronologically, the figure 2 describes the evolution about state of the art of
SVMs where is shown the main authors.

-Platt(SMO).

-Vapnik

 (Support Vector

 Network).

1999

2008

1995

2009
2010

-Bryan Catanzaro

 (SMO: Granularity

 and memory in a

 GPU).

-Markos

 Papadonikolakis

 (Gilbert´s Algorithm

 in SVM).

-Austin Carpenter

 (Compares SVC

 with SVR in CUDA).

-Markos Papadonikolakis

 (SVM in a FPGA).

-Bauer (SVM pedestrian

 detection).

-Qi Li (Accelerating SVM

 in a GPU).

-Tsung- (Accelerating SVM

 with SVM multiclasses).

-Herrero (SMO in a GPU).

Fig. 2. State of the Art of SVM

Classification of Database by Using Parallelization of Algorithms 29

On the other side, Support Vector Machine were developed in 1995 by Vap-
nick [8], by using the method Quadratic Optimization (QP). In spite of SVM
finds the Global Minimum Value, they spends a lot of computational mem-
ory. However, in 1999 Platt [23] proposes the method Sequential Minimal Op-
timization (SMO) applieed to SVM, which divides all problem in subsets, but
it only finds the local minimum value. Also, Catanzaro [7] optimized SVM in
the method Sequential Minimal Optimization (SMO) by using a GPU. In this
case, the Learning Time and precision between the GPU and libraries about
SVM of MatLab are compared. Papadonikolakis [21] focused on SVM by using
the Gilbert’s algorithm on a FPGA in order to compare the speed of learn-
ing and efficiency. In the same researcher line Carpenter [6] applies cuSVM for
NVIDIA with a modified version of SMO in order to compare SVC with SVR.
After that, Bauer [1] applies GPU for detection of pedestrians. Qi Li [15] applies
SVM by using a GPU for classification problems. Also, Tsung [16] implements
the methodology SVM in a GPU. Finally, Herrero [10] made a classification of
database by using SVM in a GPU, he continues Catanzaro’s work.

In the next section we explain about parallelization of algorithms SNN and
SVM.

3 Parallelization of SNN

In this paper we propose an architecture of three layers i, j y k, because of limi-
tation computational resources, although it can be expanded for more layers and
neurons. So, it is necessary to expand the quantity of blocks in GPU for bigger
databases, what implies economical cost is higher. In the figure 3 is described
the architecture of Spiking Neural Networks for three layers with p neurons of
input, q neurons of the hidden layer and one neuron in the output layer.

The synaptic delays are defined as neural connections from one layer to an-
other. In the figure 4 the delays are described by the synaptic connections.
According to Olaf [5] the interval of delays depend on the input data and the
desired data. So, this author suggest calculating the smallest delays as the dif-
ference between the last spike from the input to the earliest spike in the output,
also the largest delay is the difference between the time from the earliest spike in
the input to the last spike in the output. Every spike in the input can be delayed
a degree, this can influence in the early and late desired spike in the output.

A neuron j, belongs to a set Γj (presynaptic neuron) [5]. The neuron is fired
when it receives a set of spikes encoded on the time ti, iεΓj whose sum reaches
the threshold θ. The variable xj(t) is given by the following equation (1) where
wij are the weights from the connection i to j:

xj(t) =
∑
iεΓj

wijε(t− ti) (1)

Also, ε(t) is the synaptic potential described in the equation (2)

ε(t) =
t

τ
e1−

t
τ (2)

30 I.T. Paz, N.H. Gress, and M.G. Mendoza

INPUT LAYER

 i

HIDDEN LAYER

 j

OUTPUT LAYER

 k

Presynaptic

Connection to

layer j

Presynaptic

Connection to

layer k

 i1

 i2

 ip

 j1

 jq

 k1

Fig. 3. Delays as Synaptic Connections

kj

t2

t2+d 1

t2+d 2

t2+d 3

t2+d 4

t2+d 5

t2+d 6

t2+d 7

t2+d 8

t2+d n

t2+d m

k

synaptic delays from neuron j to neuron k

jk

jk

jk

jk

jk

jk

jk

jk

jk

jk

i

t1

t1+d 1

t1+d 2

t1+d 3

t1+d 4

t1+d 5

t1+d 6

t1+d 7

t1+d 8

t1+d n

t1+d m

j

synaptic delays from neuron i to neuron j

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

Fig. 4. Delays as Synaptic Connections

Equation (3) describes the quantity of synaptic conexions of a neuron j where
τ is a constant that controls the width of the pulse.

Classification of Database by Using Parallelization of Algorithms 31

xj(t) =
∑
iεΓj

m∑
k=1

wk
ijy

k(t) (3)

The output of a neuron is described by 4:

ykj (t) = ε(t− ti − dk) (4)

Where dk is the delay time of a conection k fired of a presynaptic neuron.
Finally, equation 5 represents the output potential uj(t) for a j neuron:

uj(t) =
∑

t
(f)
j εFj

η(t− t
(f)
j) +

∑
iεΓj

∑
t
(g)
i

wijε(t− t
(g)
i − dij) (5)

Where,

Fj = {t(f); 1 ≤ f ≤ n} = {t|uj(t) = ϑ} (6)

The card for parallel programming has 255 threads per block, and 235 blocks,
so the total quantity of threads in the card is 60000, aproximately. The equa-
tion 7 describes how the threads per blocks were calculated. Where threadx is
the quantity of threads calculated what represents the time t as the figure 4;
SIZE is threads per block; NN [num−cap] is the number of neurons in the
layer; NN [num−cap+ 1] is the number of neurons in the next layer. Delays are
taken into account sequentially in the CPU (Central Processing Unit) because
of limitations of memory.

threadx =
SIZE

(NN [num−cap])(NN [num−cap+ 1])
(7)

Neurons are parallelized as it is shown in the figure 5 where we can see a
cubical matrix, which represents a block configured in three dimensions. The
main parameters configured in the block of the GPU are the number of neurons
in the current layer, the number of neurons in the next layer and the time.

4 Parallelization of SVM

According to optimization method applied for SMO, SVM light or QP, the paral-
lelization of SVM is applied on operations of matrices, in contrast with SNN, the
parallelization is focused on using of the architecture of the network and some
mathematical operations. However, the problem on memory limitations is that
our GPU can only store 256 data per block to be parallelized. So, this implies
that the maximum number of data in the input are 16. As a consequence, we
need to increse the quantity of blocks configured in the GPU to cover all ele-
ments of the database. However, when the amount of data invade more blocks,
so the operations between blocks should be programmed sequentially because of

32 I.T. Paz, N.H. Gress, and M.G. Mendoza

Time

t0

t1

t2

tf

tm

tn

Number

of Neurons

in the current

layer

Number

of Neurons

in the next

layer

Threads

w00 w01 w02 ... w0a

w11 w11 w12 w1a

wb1 wb2 wb3 wba

...

.

.

.

.

.

.

.

.

.

.

.

.

...
Discrete

Time

Fig. 5. Parallelization of SNN in one Block of the GPU configured in three dimensions

synchronization could be affected. If we work with the 60,000 threads availables
in the GPU, then the quantity of input datas are 244. That implies to reduce
the level of parallelization.

The mathematical model of QP from SVM is described as in equation 8:

Maxime α

q(α) = 0.5αTQα− 1Tα (8)

subject to
yTα = 0
0 ≤ α ≤ C

The matrix Q is composed by (Q)ij = yiyjk(xi, xj), where:
i, j = 1, 2, 3, ..., l, α = [a1...al]T

1 = [11...1l]T y = [y1...yl]T

C = [C1...Cl]T

The output is: y = sign(
∑N

i=1 yiαiK(x,xi)).
In this case, figure 6 presents the architecture of SVM.
For matrix multiplication for ((Q)ij = yiyjk(xi, xj)) the quantity of threads

was generalized in the equation 9 and 10 :

BlocksPerRow =
NUMBER OF DATAS

THREADS PER BLOCK
+ 1 (9)

ThreadPerRow =
NUMBER OF DATAS

BlocksPerRow
(10)

Classification of Database by Using Parallelization of Algorithms 33

 x0

 x1

 x2

x3

x4

xn

y0

y1

y2

y3

y4

 yk

yp

y5

z

INPUT NEURONS

OUTPUT NEURON

HIDDEN NEURONS

Fig. 6. Architecture of SVM

5 Experiments

5.1 Spiking Neural Network (SNN)

In this section the result obtained is shown of the parallelization of SNN. In the
Table 1 we can see Learning Time for several database.

One problem of SNN, is about encoding the input to spike train. SNN use a
sets of spikes as input and output. Analog values can be encoded sequentially
during a certain period of time. Another simple way to encode a stream of
analog values is by thresholding. Also, other way is fast Fourier transform used
to convert sound samples into different frequency-signals [5]. It is difficult to say
which method is good or not, but some seem more suited for certain applications
than others. In our case, we took into accounto a time window for the logic
output. In other words, if our desired output is 10ms, so our 1 logic is detected
if the obtained output is from 9 to 11. In contrast, our 0 logic is detected if the
obtained output is from 7 to 9.

5.2 Support Vector Machine (SVM)

As we have said, SVM are used for classification, regression, prediction and
densities of data, although in this case it was used for classification. In case of
SVM multiclass, we applied serial networks, it means that the output of the first
neural network is the input of the next neural network. Where the number of
serial networks is calculated as11:

(Number of serial networksl SVM) = (Classes)− 1 (11)

Respect to multiclass, is important to tell that the kernel of each class can
not be found because the hyperplane in each class has different dimension, for
example case of Database of Cars, each group was processed in different kernel:
Iris was calculated with polynomial grade 2; the class 1 of Cars with “erbf 3”,

34 I.T. Paz, N.H. Gress, and M.G. Mendoza

Table 1. Efficiency of SNN

Database Instances Attributes Classes Number of Succeses Learning
Iterations Time [ms]

Iris 150 4 3 12 149 52331.625

Cars 1729 6 4 12 1294 1319680.625

Breast
Cancer 699 9 2 19 673 253460.0937
Wisconsin

Adult 32561 14 2 30 29247 24 hrs aprox.

Heart
Disease 303 13 5 40 221 1069932.75
Cleveland
(HDC)

Table 2. Efficiency of SVM

Database Instances Attributes Classes Number of Succeses Learning
Iterations Time [ms]

Iris 150 4 3 2758 145 1521128.5

Cars 1728 6 4 ——– 1728 (Clase 1) 608927.125
(SVM light) 56 (Clase 2) 1478488.5

4 (Clase 3) 1090742.125
34 (Clase 4) 970055.375

Breast 641 (Clase 1) 163790.55625
Cancer 699 9 2 ——– 127 (Clase 2) 162216.453125
Wisconsin

Adult 32561 14 2 —— —— ——

Heart 147 (Clase 1) 56749.73046
Disease 3 (Clase 2) 21624.41406
Cleveland 303 13 5 —— 66 (Clase 3) 22715.71875
(HDC) 25 (Clase 4) 27424.23046

2 (Clase 5) 98908.94531

the class 2 with polynomial grade 3, the class 3 with polynomial grade 6 and the
class 4 with polynomial grade 8.

The results for QP – SVM are shown in the Table 2.

Classification of Database by Using Parallelization of Algorithms 35

6 Results

In this section results are compared between the two methodologies. The figure
7 shows the comparison of learning time and the figure 8 shows the comparison
about quantity of successes per methodology.

Fig. 7. Comparison of Learning Time between SNN and SVM

Fig. 8. Comparison of Successes between SNN and SVM

According to Table 2 we compare the rate of speed between SVM and SNN
what is shown in the figure 9, in case of database Iris, SVM was slower than
SNN, however for HDC SNN was 4.7 times slower than SVM with 80.198% of
successes for SVM and 92.94% of successes for SNN.

In the figure 10, the comparison of efficiency between two the methodologies
is shown. Efficiency was calculated by dividing the input data with output data.
In this figure, we see that SNN is more efficient than SVM for databases with
more of 150 instances.

36 I.T. Paz, N.H. Gress, and M.G. Mendoza

Fig. 9. Rate of speed between SVM and SNN

Fig. 10. Efficiency between SVM and SNN

7 Conclusion and Future Work

The viewed algorithms can be parallelized approximately 90% in order to in-
crease its efficiency, however the parallelization is limited to the architecture,
so in this case parallelization has to be sufficiently reduced. On the other side,
the best solution of SNN depends on data encoding and the right values of the
parameters of the neural network. Also, the speed depends on the hardware ar-
chitecture. However, in spite of the efficiency of SNN, we proved that SVM finds
the Global Minimum Value, in contrast SNN finds the Local Minimum Value.

In the future work is necessary to do the comparison by using a double pre-
cision hardware for getting more precision, so the efficiency will increase. Ad-
ditionally, is important to develop a methodology for calculating the optimal
values of the parameters of SNN in ordet to the solution quickly. Finally, as fu-
ture work we suggest for researching of encoding the input data of SNN because
speed depends on this.

Classification of Database by Using Parallelization of Algorithms 37

References

1. Bauer, S., Kohler, S., Doll, K., Brunsmann, U.: Fpga-gpu architecture for kernel
svm pedestrian detection. In: 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 61–68. IEEE
(2010)

2. Bhuiyan, M.A., Pallipuram, V.K., Smith, M.C.: Acceleration of spiking neural
networks in emerging multi-core and gpu architectures. In: 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, Workshops and Phd Fo-
rum (IPDPSW), pp. 1–8 (April 2010)

3. Bohte, S.M.: Spiking neural networks. Unpublished doctoral dissertation, Centre
for Mathematics and Computer Science, Amsterdam (2003)

4. Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in temporally en-
coded networks of spiking neurons. Neurocomputing 48(1), 17–37 (2002)

5. Booij, O.: Temporal pattern classification using spiking neural networks. Unpub-
lished master’s thesis, University of Amsterdam (August 2004)

6. Carpenter, A.: Cusvm: A cuda implementation of support vector classification and
regression (2009), patternsonscreen.net/cuSVMDesc.pdf

7. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training
and classification on graphics processors. In: Proceeedings of the 25th Intenational
Conference on Machine Learning, pp. 104–111 (2008)

8. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

9. Fidjeland, A.K., Roesch, E.B., Shanahan, M.P., Luk, W.: Nemo: A platform for
neural modelling of spiking neurons using gpus. In: 20th IEEE International Con-
ference on Application-specific Systems, Architectures and Processors, ASAP 2009,
pp. 137–144 (July 2009)

10. Herrero-Lopez, S., Williams, J.R., Sanchez, A.: Parallel multiclass classification
using svms on gpus. In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pp. 2–11. ACM (2010)

11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of physiol-
ogy 117(4), 500 (1952)

12. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural
Networks 14(6), 1569–1572 (2003)

13. Izhikevich, E.M.: Hybrid spiking models. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 368(1930), 5061–5070
(2010)

14. Laurene, F.: Fundamentals of Neural Networks, Architecture, Algorithms, and Ap-
plications. Prentice Halls (1994)

15. Li, Q., Salman, R., Kecman, V.: An intelligent system for accelerating parallel svm
classification problems on large datasets using gpu, pp. 1131–1135

16. Lin, T.-K., Chien, S.-Y.: Support vector machines on gpu with sparse matrix for-
mat. In: 2010 Ninth International Conference on Machine Learning and Applica-
tions (December 2010), pp. 313–318 (2010)

17. Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.V.: Effi-
cient simulation of large-scale spiking neural networks using cuda graphics proces-
sors. Neural Networks, 791–800 (June 2009)

patternsonscreen.net/cuSVMDesc.pdf

38 I.T. Paz, N.H. Gress, and M.G. Mendoza

18. Nuno-Maganda, M.A., Arias-Estrada, M.O.: Real-time fpga-based architecture for
bicubic interpolation: an application for digital image scaling. In: International
Conference on Reconfigurable Computing and FPGAs, ReConFig 2005, p. 8. IEEE
(2005)

19. NVIDIA. NVIDIA CUDA C BEST PRACTICES GUIDE DG –05603–001v5.0, dg
–05603–001v5.0 ed. (May 2012)

20. Nowotny, T., Huerta, R., Abarbanel, H.D., Rabinovich, M.I.: Self-organization in
the olfactory system: one shot odor recognition in insects. Biological Cybernet-
ics 93(6), 436–446 (2005)

21. Papadonikolakis, M., Bouganis, C.-S., Constantinides, G.: Performance compari-
son of gpu and fpga architectures for the svm training problem. In: International
Conference on Field Programmable Technology, FPT 2009, pp. 388–391. IEEE
(2009)

22. Pavlidis, N., Tasoulis, O., Plagianakos, V.P., Nikiforidis, G., Vrahatis, M.: Spiking
neural network training using evolutionary algorithms. In: 2005 IEEE International
Joint Conference on Neural Networks, IJCNN 2005, vol. 4, pp. 2190–2194. IEEE
(August 2005)

23. Platt, J.C.: Sequiential minimal optimization: A fast algorithm for tarining support
vector machines

24. Prabhu, R.D.: Somgpu: An unsupervised pattern classifier on graphical processing
unit. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World
Congress on Computational Intelligence), pp. 1011–1018, 1–6 (June 2008)

25. Scanzio, S., Cumani, S., Gemello, R., Mana, F., Laface, P.: Parallel implementation
of artificial neural network training. In: 2010 IEEE International Conference on
Acoustics Speech and Signal Processing (ICASSP), pp. 4902–4905 (March 2010)

26. Schrauwen, B., Van Campenhout, J.: Improving spikeprop: enhancements to an
error-backpropagation rule for spiking neural networks. In: Proceedings of the 15th
ProRISC Workshop, vol. 11 (2004)

27. Stewart, R.D., Bair, W.: Spiking neural network simulation: numerical integration
with the parker–sochacki method. Journal of Computational Neuroscience 27(1),
115–133 (2009)

28. Thomas, D.B., Luk, W.: Fpga accelerated simulation of biologically plausible spik-
ing neural networks. In: 17th IEEE Symposium on Field Programmable Custom
Computing Machines, FCCM 2009, pp. 45–52 (2009)

29. Yudanov, D., Shaaban, M., Melton, R., Reznik, L.: Gpu-based simulation of spik-
ing neural networks with real-time performance & high accuracy. In: The 2010
International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (February
2010)

An Iterative Feature Filter for Sensor Timeseries
in Pervasive Computing Applications

Davide Bacciu

Dipartimento di Informatica, Università di Pisa, Italy
bacciu@di.unipi.it

Abstract. The paper discusses an efficient feature selection approach
for multivariate timeseries of heterogeneous sensor data within a per-
vasive computing scenario. An iterative filtering procedure is devised
to reduce information redundancy measured in terms of timeseries cross-
correlation. The algorithm is capable of identifying non-redundant sensor
sources in an unsupervised fashion even in presence of a large proportion
of noisy features. A comparative experimental analysis on real-world data
from pervasive computing applications is provided, showing that the al-
gorithm addresses major limitations of unsupervised filters in literature
when dealing with sensor timeseries.

1 Introduction

Pervasive computing puts forward a vision of an environment enriched by a
distributed network of devices with heterogeneous sensing and computational
capabilities, that are used to realize customized services supporting everyday
activities. Pervasive computing systems deploy sensors that continuously collect
data concerning the user and/or the environmental status. This data comes un-
der the form of streams, i.e. timeseries, of sensor information with a considerably
heterogeneous nature (e.g. temperature, presence, motion, etc.). This results in
consistent amounts of information that need to be transferred and processed, typ-
ically in real time, to implement the system services, that are often realized by
computational learning models (e.g. for predicting user activities based on sensed
data) [1]. In this context, feature selection techniques for multivariate timeseries
are fundamental, on one hand, to reduce the computational and communication
overhead of transferring and processing such large amounts of sensor informa-
tion. On the other hand, they serve to suppress redundant/irrelevant information
which might negatively affect the predictive performance of the learning model.

We consider a pervasive learning system realized as part of the RUBICON
project [2], that consists of a network of learning modules distributed on sen-
sor motes characterized by limited computational and communication capabil-
ities. Each of such device hosts a learning component implementing an Echo
State Network (ESN) [3] model which is trained to perform real-time predictive
tasks based on the data gathered by the sensors onboard the mote or received
from another node through its radio interface. The optimization of the num-
ber of sensor streams feeding the learning modules is a key issue in such a re-
source constrained environment, requiring effective feature selection techniques

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 39–48, 2014.
c© Springer International Publishing Switzerland 2014

40 D. Bacciu

for multivariate timeseries. Further, the RUBICON learning system allows to
incrementally deploy new predictive tasks during system’s operation, posing ad-
ditional requirements on the feature selection model. The first is computational
efficiency, as the selection process has to be performed in during system opera-
tion whenever a request for a new predictive task is posted. The second is the
automatization of the feature selection process, as this has to be performed auto-
matically by the learning system without any form of human/expert intervention
(e.g to determine the number of selected features from a ranking).

Feature selection entails the identification of a subset of the original input se-
quences from a given dataset targeted at removing irrelevant and/or redundant
information sources. In literature, the majority of the feature selection algo-
rithms for multivariate timeseries take a wrapper approach, where the feature
subset is selected to optimize the predictive and generalization abilities of a spe-
cific computational learning model [4]. Wrapper approaches are characterized
by considerable computational requirements due to the burden of the multiple
retraining of the underlying learning model and their results cannot be gener-
alized to a different learning model. Corona (Correlation as Features) [5], for
instance, is a wrapper method that transforms each multivariate timeseries into
the corresponding correlation matrix, whose coefficients are fed to a support
vector machine that is then used to apply the Recursive Feature Elimination
method by [4]. Filter approaches, instead, use an external optimization criterion
with respect to the learning model that will be using the selected data. Most of
the filter techniques for timeseries data are tailored to classification tasks [6], as
they select the streams that best separate multivariate samples from different
classes. The Relief method, originally proposed for vectorial data, uses entropy
as a measure of the ability of a feature to discriminate classes and has been
extended to timeseries data [7]. The CleVer method [8] is one of the few unsu-
pervised filter approaches for multivariate timeseries: it exploits the properties
of the principal components common to all the timeseries to provide a ranking
of the more informative features. Based on the assumption that there exists a
common subspace across all multivariate data items, it first performs PCA on
each univariate timeseries and then obtains the common principal components
by bisecting the angles between their principal components. The CleVer method
has found wide application, mainly due to its low computational requirements.
However the number of selected features is not determined by the algorithm,
rather it is selected by the user (as in k-means).

Previous works have noted how such sophisticated state-of-the-art feature se-
lection techniques, which show excellent performances on multivariate timeseries
benchmarks, do not provide significant results in context of open-ended discov-
ery in real-world scenarios comprising a sensor-rich environment [9]. Motivated
by this, we propose a simple, yet effective, feature selection technique based on
a cross-correlation analysis of multivariate sensor timeseries, that is specifically
tailored to the identification and removal of redundant sensor streams in an au-
tonomous fashion. The proposed approach is based on an iterative filter heuristics
that incrementally removes/selects timeseries based on redundancy information.

An Iterative Feature Filter for Sensor Timeseries 41

The algorithm is characterized by reduced computational requirements and by
the ability to cope with the heterogeneous information sources that characterize
a pervasive sensor system. Further, the feature selection process does not require
expert intervention to determine the number of selected features and can there-
fore be fully automatized in the distributed learning system. The performance
of the proposed feature selection approach is assessed on real-world data from
indoor pervasive computing scenarios.

2 Iterative Sensor Timeseries Selection

We introduce the Incremental Cross-correlation Filter (ICF) algorithm for fea-
ture subset selection on multivariate timeseries (MTS) of sensor data. The ICF
algorithm targets the reduction of the feature redundancy measured in terms of
their pairwise cross-correlation. Let us define an univariate timeseries xn as a
the sequence of observations

xn(1), . . . , xn(t), . . . , xn(T n),

where xn(t) is the observation at time t of the n-th sample timeseries, and T n

is the sequence length. A D-dimensional MTS xn is a collection of D univariate
timeseries xn

i (1), . . . , x
n
i (T

n) (i = 1, . . . , D), such that xn
i (t) is the observation

at time t of the i-th component of the n-th sample MTS. In the following, we
use the terms feature and variable to refer to a component of the MTS: each
feature i is then associated to a set of univariate timeseries, one for each sample
n.

The cross-correlation of two discrete timeseries x1 and x2 is a measure of their
similarity as a function of a time lag (offset) τ , calculated through the sliding
dot product

φx1x2(τ) =

min{(T 1−1+τ),(T 2−1)}∑
t=max{0,τ}

x1(t− τ) · x2(t), (1)

where τ ∈ [−(T 1− 1), . . . , 0, . . . , (T 2− 1)] and T 1, T 2 are the timeseries lengths.
Intuitively, the lag where the maximum of the cross-correlation is computed
provides information about the displacement between the first timeseries and
the second.

The cross-correlation in (1) tends to return large numbers for signals whose
amplitude is larger: this would prevent from comparing timeseries from different
sensor modalities due to the considerably different scales of the sensor readings.
To this end, we introduce the normalized cross-correlation

φx1x2(τ) =
φx1x2(τ)

φx1x1(0) · φx2x2(0)
, (2)

where φxx(0) denotes the zero-lag autocorrelation, i.e. the correlation of a time-
series x with itself. The normalized function φx1x2(τ) takes values in [−1,+1],

42 D. Bacciu

where a value of φx1x2(τ) = 1 denotes that the two timeseries have the exact
same shape if aligned at time τ . Similarly, a value of φx1x2(τ) = −1 indicates
that the timeseries have the same shape but opposite signs, while φx1x2(τ) = 0
denotes complete signal uncorrelation. From our point of view, both negative
and positive extremes denote a certain redundancy in the information captured
by the two timeseries. Therefore, the correlation value at the point in time where
the signals of the two timeseries are best aligned is

φ
∗
x1x2 = max

τ
|φx1x2(τ)|. (3)

The ICF algorithm implements a forward selection-elimination procedure that
filters out redundant features, where redundancy is measured by the normalized
cross-correlation in (2). ICF is based on the iterative application of a set of four
selection/elimination rules, backed-up by the following intuitions

– A variable that is not correlated with any of the other features, should be
selected.

– A variable that is correlated with all the variables that have already been
selected is a good candidate for elimination.

– If the selection/elimination rules result in a working set of mutually corre-
lated variables, act conservatively and maintain all those features that are
less correlated with the selected ones.

The ICF algorithm is articulated in two phases: the former measures feature re-
dundancy, while the latter iteratively applies the selection rules until all features
are assigned to either the selected or the deleted status.

The first ICF phase builds a matrix of feature redundancy R ∈ {0, 1}D×D,
such that Rij = 1 if features i and j are pairwise redundant and Rij = 0
otherwise. Given a MTS dataset, the redundancy matrix is computed as follows

1. For each sample xn, use (3) to compute the maximum cross-correlation be-
tween all univariate sequences xn

i , xn
j in xn. If φ

∗
xn
i x

n
j
≈ 1 for the pair i, j,

assume the features i and j are correlated on the n-th sample.
2. Compute the percentage of samples in which each pair i, j is correlated.
3. Set Rij = 1, if the corresponding feature pair i, j, with i
= j, is correlated

on more than θP% samples.
4. Set the diagonal of R to zero, i.e. Rii = 0 for all features i, to discount trivial

correlations.

The redundancy matrix provides a unified picture of which variables are mu-
tually correlated on a sufficiently large share of input samples. Experimentally,
we have determined that a value of θP% = 20% is already sufficient to detect
redundancies in a variety of experimental scenarios (nevertheless the value can
also be determined on a per-task basis though cross-validation). Note that nu-
merical issues discourage from using the exact φ

∗
xn
i x

n
j
= 1 match in item 2 above:

here, we suggest to consider a pair i, j to be correlated if φ
∗
xn
i x

n
j
> 0.99.

An Iterative Feature Filter for Sensor Timeseries 43

The second phase applies the feature selection/elimination rules exploiting the
information in the redundancy matrix R. It defines a set of unassigned features
F , that initially contains all the variables. The rules are applied iteratively to
F following a priority order, until all features are assigned to either the set of
selected variables SF or to the set of the deleted ones DF . The details of the
ICF rules and their priority pattern are described by the following procedure

1. RULE 0 - If a row Ri· is completely uncorrelated with the others in R (i.e.
Ri· contains only zeros)
(a) Add i to the selected subset: SF = SF ∪ {i};
(b) Remove i from F and remove the corresponding entries in R;
(c) If an uncorrelated feature j is generated as result of the previous step,

move j from F to DF and remove the corresponding entries in R.
2. RULE 1 - If a row Ri· is correlated with all the others and R is not a matrix

of all ones:
(a) Add i to the deleted subset: DF = DF ∪ {i};
(b) Remove i from F and remove the corresponding entries in R.

3. RULE 2 - If all features in F are mutually correlated with each other, i.e. R
contains only ones,
(a) Select the feature i that is less correlated with those currently in SF ;
(b) Add i to the selected subset: SF = SF ∪ {i};
(c) Remove i from F ;
(d) Move the remaining features F to the deleted subset (DF = DF ∪ F)

and terminate.
4. RULE 3 - If neither RULE 1 nor RULE 2 apply,

(a) Extract i that is correlated with the minimum number of features in F ;
(b) Define S(i) ⊂ F as the subset of features correlated with i and select

j ∈ S(i) as the maximally correlated feature with those currently in SF ;
(c) Add i to SF and j to DF ;
(d) Remove i, j from F and remove the corresponding entries in R.

The rationale of step 1(c) is that a feature j encoding the same information of
already selected variables has to be deleted to avoid to be selected by future
steps (otherwise RULE 0 is likely to be applied to j at the following iteration).
Note that, in step 3(a), we determine the feature i that is minimally correlated
with those in SF by measuring the pairwise cross-correlation between i and all
j ∈ SF , averaged across all samples, i.e.

N∑
n=1

φ
∗
xn
i x

n
j

N
,

where N is the number of multivariate timeseries in the dataset. A similar ap-
proach is applied to steps 4(a) and 4(b).

The computational complexity of the ICF algorithm is, in general, dominated
by the computation of the redundancy matrix in the first phase which strongly

44 D. Bacciu

depends on the cost of computing the pairwise cross-correlation on the sample
MTS. The asymptotic complexity of redundancy matrix computation is

O(N · (D2 · Tmax)),

where N is the dataset length and the second term results from the computation
of pairwise cross-correlations between D univariate timeseries with a maximum
length Tmax. The second phase of the algorithm is very efficient, i.e. linear in the
number of features D, as the forward selection scheme processes each variable,
at most, once with constant time operations. Therefore, the final complexity of
the ICF algorithm is O(N · (D2 · Tmax) +D).

3 Experimental Evaluation

The experimental evaluation is intended to assess the capability of the ICF algo-
rithm in detecting and removing redundant MTS features in an indoor pervasive
computing scenario. In particular, we compare the performance of ICF with re-
spect to the CleVer method, a state of the art unsupervised feature filter for time-
series, as a function of the number of irrelevant features in the original MTS1.
To this end, we have employed real-world data collected in two tasks involving
the prediction of robot navigation preferences in a sensorized home-environment.
The idea underlying these tasks is to learn to predict which navigation system
is best to use to perform a certain trajectory based on environment character-
istics and on user preferences. The preference weight to be learned is a value in
[0, 1], where 1 is interpreted as maximum confidence on the navigation system
and 0 denotes the lowest preference (i.e. the navigation system should not be
used). The resulting computational learning task is, basically, a regression prob-
lem between the multivariate input timeseries and the corresponding univariate
sequence of preference weights. For the purpose of feature selection evaluation,
we only consider the input information (i.e. the sensor readings and trajectory
information) but we discard the target data (i.e. the preference weight) as we
are interested in assessing unsupervised selection methods.

The experimental scenario has been designed and put into operation in the
Ängen senior residence facilities in Örebro Universitet. The scenario, depicted in
Fig. 1, comprises a real-world flat sensorized by an RFID floor, a mobile robot
with range-finder localization and a Wireless Sensor Network (WSN) with six
mote-class devices, where the term Mi is used to denote the i-th mote. Each
device is equipped with light (L), temperature (T), humidity (H) and passive
infrared (P) presence sensors. The input information sources include all sensors
from the six motes, plus robot trajectory information under the form of its (x, y)
position and orientation θ, for a total of 24 features.

As shown in Fig. 1, the experimental assessment involves two tasks. The
Entrance task is intended to predict a weight evaluating the performance of the
localization system on two different trajectory types, represented as dashed and
1 Matlab code for ICF and CleVer available at www.di.unipi.it/~bacciu/icf

www.di.unipi.it/~bacciu/icf

An Iterative Feature Filter for Sensor Timeseries 45

Fig. 1. Experimental scenario for the Entrance and Kitchen tasks in the Ängen facili-
ties: Mi denotes the i-th WSN mote (Telosb platform running TinyOS)

continuous lines in Fig. 1. Performance on the dashed trajectory is expected to
be low due to the effect of mirror disturbances which, conversely, should not
affect trajectories on the continuous line. For the purpose of feature selection,
the only relevant information is robot position and orientation (x, y and θ) as
well as the P sensors onboard motes M3 and M6 (referred to as P3 and P6,
respectively), that are the only presence sensors triggered by robot motion. The
remainder of the sensors collect data that is poorly informative as it does not
undergo significant changes across the timespan of data collection. The Kitchen
task concerns a single trajectory type (dash-dotted arrows in Fig. 1) heading to
the kitchen, where a user might be present or not. Since the robot range-finder
localization is based on camera, the user is willing to switch it off every time
he/she is in the room with the robot (the corresponding example trajectories
are then marked with minimal preference, i.e. 0). The target of this task is to
learn this user preference based on robot trajectory information and on the user
presence pattern captured by the P sensors. The relevant information for this
task is robot x-position (orientation and y coordinates do not change for this
trajectory type) as well as the P sensors onboard motes M1 to M5 (i.e. P1 to
P5), that are the only presence sensors that are triggered by robot or human
motion. A total of 87 and 104 sequences have been collected for the two tasks
sampling at 2Hz with an average length of 127 and 197 elements.

Table 1 shows the information sources selected by the CleVer and ICF algo-
rithms for varying input configurations comprising different number of features:
the selected relevant features are highlighted in bold. Since the CleVer algorithm
requires the user to determine the number of selected features, we provide two
set of results: one (CleVer-OPT) using the (known) optimal number of relevant
features; the second (CleVer-ID) using the number of features found by ICF on
the same configuration. Figure 2(a) provides a quantitative evaluation of the
performance on the two tasks in terms of precision and recall of the selected

46 D. Bacciu

Table 1. Feature selection result for varying input configurations: Mi denotes all the
transducers in the i-th mote while x, y and θ are the robot position and orientation.
The relevant features (based on expert knowledge) are in bold.

Entrance Task
Configuration CleVer-OPT CleVer-IT ICF
(M3,x,y,θ) L3,P3,T3,y L3,P3,y P3,x,y
(M3,M6,x,y,θ) L3,P3,P6,T6,θ L3,P6,x,θ P6,P3,x,y
(M4-M6,x,y,θ) P4,L6,T6,θ P4,L6,T6,θ L4,P4,P6,y
(M3-M6,x,y,θ) L3,T3,P4,P6,θ L3,P3,T5,θ P3,P6,x,y
(M1-M6,x,y,θ) P2,L3,P4,L5,θ L1,P2,T2,L3,L6,θ P1,P2,P3,P6,x,y

Kitchen Task
Configuration CleVer-OPT CleVer-IT ICF
(M3,x,y,θ) x,y L3,x,y L3,P3,x
(M1,M3,x,y,θ) L3,x,y L3,T3,y L1,P3,x
(M1-M3,x,y,θ) L1,L2,H2,x L1,L2,H2,x P1,P2,P3,x
(M1-M5,x,y,θ) L1,P2,L3,T3,L4,H5 L1,L2,H2,L3,T3,L4 P1,P2,P3,P4,P5,x
(M1-M6,x,y,θ) T1,L2,H2,L3,P4,P6 T1,L2,P2,H2,L3,P4 P1,P2,P3,P4,P5,x

features: e.g. precision is the proportion of correctly selected features (true pos-
itives) with respect to the total number of selected features (true and false pos-
itives); similarly for recall. The results show that ICF is capable of consistently
reducing the number of input features by maintaining the majority (if not all)
of the relevant features even when a large number of uninformative features is
included. Conversely the performance of both the CleVer methods deteriorates
consistently as the proportion of redundant features increases. This behavior is
clear in the precision-recall curves in Fig.2(a): for ICF, the proportion of false
positives (FP) and negatives (FN) does not grow with the size of the search space
(and the number of potentially irrelevant features); whereas, both Clever meth-
ods experience a marked performance deterioration due to an increase in both
the FP, inducing a reduction in the precision values, as well as in the FN, which
lowers the methods recall. Additionally, the results on last four configurations of
the Entrance task in Table 1 show that the CleVer algorithm yields to different
features subsets for different repetitions (note that the number of selected fea-
tures in CleVer-OPT and CleVer-ID is the same for these configurations). This is
the result of the well-known sensitivity to initialization of the k-means algorithm
used by CleVer. ICF, on the other hand, has a stable behavior yielding to the
selection of the same feature subset for multiple algorithm repetitions.

Representation entropy provides a means for evaluating the effectiveness of
algorithms in terms of amount of redundancy present in the selected feature
subsets. Let X be the K ×K covariance matrix of the K selected features and
λi the eigenvalue associated to the i-th feature, define λi = λi/

∑K
j=1 λj . Then,

the representation entropy is ER = −∑K
i=1 λi logλi, such that ER attains its

minimum when all the information is concentrated along a single feature, making
the rest redundant. Figure 2(b) shows the ER value on the Kitchen task as a
function of the input configuration: ICF confirms its ability to identify and filter-
out redundant information yielding to the best performance when the proportion

An Iterative Feature Filter for Sensor Timeseries 47

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original features

pr
ec

is
io

n

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original features

re
ca

ll

C−OPT−E
C−IT−E
ICF−E
C−OPT−K
C−IT−K
ICF−K

(a)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

original features

re
pr

es
en

ta
tio

n
en

tr
op

y

C−OPT
C−IT
ICF

(b)

Fig. 2. Quantitative feature selection performance: 2(a) show the precision and recall
of the selected features as a function of the original input space size for the Entrance
(square placeholders) and Kitchen (diamond markers) tasks. Clever algorithms are
identified as C-OPT and C-IT: note that the C-OPT-E recall curve is completely
overlapping with that by C-ID-E. Fig. 2(b) shows the representation entropy of the
three methods on the Kitchen task.

of noisy features is high. To understand the impact of noisy and redundant
features on the final learning task, consider that an ESN with 500 reservoir
neurons trained (i.e. resulting from model selection on a validation set) on the
Kitchen task using all the WSN inputs (i.e. without feature filtering) achieves a
Mean Absolute Error (MAE) on the test set that is ≈ 0.5. The corresponding
ESN using only the ICF filtered inputs reported in the last row of Table 1
achieves a test MAE of ≈ 0.015, reducing the original unfiltered error by 97%.

ICF effectiveness is not obtained at the cost of its computationally efficiency:
e.g. the average time required to complete feature selection is 2153msec for the
fifth configuration of the Entrance task (Java code running in an Eclipse box on
an Intel I5 Quad-core at 2.7 GHz CPU equipped with 4GBytes of RAM). The
majority of the running time is spent on redundancy mask computation, while
feature filtering effort is negligible, i.e. 1msec.

48 D. Bacciu

4 Conclusion

Multivariate sensor timeseries comprise large shares of noisy, highly redundant
information which can hamper the deployment of effective predictive models in
pervasive computing applications. As noted in [9] and experimentally confirmed
in this paper, state-of-the-art feature filtering algorithms with competitive per-
formances on MTS benchmarks are poorly suited to deal with the characteristics
of such noisy, slowly changing, yet heterogeneous in nature, sensor streams. To
address this fundamental limitation, we have introduced an efficient feature fil-
ter algorithm tailored to real-time pervasive computing applications. The ICF
algorithm has been shown to be capable of identifying non-redundant sensor
information in a completely unsupervised fashion and to outperform the state-
of-the-art CleVer filter method on pervasive computing tasks. Differently from
CleVer, ICF does not require expert intervention to determine the number of
selected features and provides stable feature subsets that do not change with
algorithm initialization. These properties make ICF an excellent candidate to
implement an automatized feature selection mechanism within an autonomous
learning system, such as that developed as part of the RUBICON project [2].
As such, ICF will be exploited as a preliminary filtering step to reduce the
complexity of a relevance-guided supervised wrapper optimizing the predictive
performance of the ESNs implementing the distributed learning system.

Acknowledgements. This work is supported by the FP7 RUBICON project
(contract n. 269914).

References

1. Ye, J., Dobson, S., McKeever, S.: Review: Situation identification techniques in
pervasive computing: A review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

2. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimen-
tal characterization of reservoir computing in ambient assisted living applications.
Neural Computing and Applications, 1–14 (2013)

3. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science 304(5667), 78–80 (2004)

4. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifica-
tion using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)

5. Yang, K., Yoon, H., Shahabi, C.: A supervised feature subset selection technique for
multivariate time series. In: Proc. of FSDM 2005, pp. 92–101 (2005)

6. Han, M., Liu, X.: Feature selection techniques with class separability for multivariate
time series. Neurocomput. 110, 29–34 (2013)

7. García-Pajares, R., Benítez, J.M., Sainz-Palmero, G.: Frasel: a consensus of feature
ranking methods for time series modelling. Soft Computing 17(8), 1489–1510 (2013)

8. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for
multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

9. Cheema, S., Henne, T., Koeckemann, U., Prassler, E.: Applicability of feature se-
lection on multivariate time series data for robotic discovery. In: Proc. of ICACTE
2010., vol. 2, pp. 592–597 (2010)

Exploiting Evolution on UAV Control Rules
for Spraying Pesticides on Crop Fields

Bruno S. Faiçal1, Gustavo Pessin2, Geraldo P.R. Filho1, Gustavo Furquim1,
André C.P.L.F. de Carvalho1, and Jó Ueyama1

1 Institute of Mathematics and Computer Science (ICMC)
University of São Paulo (USP) - São Carlos, SP, Brazil

{bsfaical,geralop,furquim,andre,joueyama}@icmc.usp.br
2 Vale Institute of Technology

Belém, PA, Brazil
gustavo.pessin@itv.org

Abstract. The application of chemicals in agricultural areas is of cru-
cial importance for crop production. The use of aircrafts is becoming
increasingly common in carrying out this task mainly because of their
speed and effectiveness. Nonetheless, some factors may reduce the yield,
or even cause damage, like areas not covered in the spraying process or
overlapped spraying areas. Weather conditions add further complexity to
the problem. Sets of control rules, to be employed in an autonomous Un-
manned Aerial Vehicles (UAV), are very hard to develop and harder to
fine-tune to each environment characteristics. Hence, a fine-tuning phase
must involves the parameters of the algorithm, due to the mechanical
characteristics of each UAV and also must take into account the type of
crop being handled and the type of pesticide to be used. In this paper
we present an evolutionary algorithm to fine-tune sets of control rules, to
be employed in a simulated autonomous UAV. We describe the proposed
architecture and investigations about changing in the evolutionary pa-
rameters. The results show that the proposed evolutionary method can
fine-tune the parameters of the UAV control rules to support environ-
ment and weather changes in the simulated environment, encouraging
the deployment of the system with real hardware.

1 Introduction

Chemical defensives, also known as pesticides, are commonly applied in agricul-
tural areas to increase productivity. However, these products can cause serious
health problems for workers who have direct or indirect contact with them. There
are various diseases that can result from the interaction with these chemicals, like
cancers, complications in the respiratory system and neurological diseases [15].
It is estimated that about 2.5 million tons of pesticides are applied worldwide
each year and that this amount has been growing [12]. Much of the pesticide is
lost during the spraying process due to the type of technology employed. Nev-
ertheless, only a small part of the pesticide reaches the target crop field while
the rest of it drifts away [10]. Evidences of pesticide drifts are commonly found

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 49–58, 2014.
c© Springer International Publishing Switzerland 2014

50 B.S. Faiçal et al.

between 48 m and 800 m from the target crop field. Other problems are crop
areas not covered in the spraying process and overlapped spraying areas.

The use of UAVs to carry out the task of spraying pesticides can be beneficial
to many reasons, including (i) to reduce human contact with the chemicals, which
helps to preserve humanhealth; and (ii) to improve the performance of the spraying
operation, avoiding the presence of chemicals outside designed areas, which helps
to preserve neighborhood fields, that can be other crops, preserved nature areas or
water sources. Sets of control rules, to be employed in an autonomous UAV, are
very hard to develop and harder to fine-tune to each environment characteristics.
Thus, a fine-tuning phase must involves the parameters of the algorithm, due to the
mechanical characteristics of each UAV and also must take into account the type of
crop being handled and the type of pesticide to be used. In this paper we present a
evolutionaryalgorithm to fine-tune sets of control rules, to be employed in an simu-
lated autonomous UAV. We describe the proposed architecture and investigations
about changing in the evolutionary parameters.

The proposed architecture employs an UAV, which has a system of coupled
spray, and it is able to communicate with the Wireless Sensor Network (WSN),
which is organized in a matrix-like disposition on the crop field. This WSN aims
to send feedback on the weather conditions and how spraying actually are falling
in the target crop field. Based on the information received, the UAV appropri-
ately applies a policy to correct its route. Hence, the main contributions of this
research are as follows: (i) investigate an evolutionary methodology capable of
minimize human contact with pesticides, (ii) evaluate an evolutionary approach
able to minimize the error in spraying pesticides in areas of growing vegetables
and fruits, (iii) investigate techniques able to maximize quality in agricultural
production, and (iv) contribute to increase the autonomy of the architecture
proposed by [5], in which the policy parameters were set empirically and applied
independent of weather conditions.

This paper is organized in 5 sections. Section 2 presents other studies related
to this paper. The proposed methodology is described in Section 3. Results from
investigations are presented in Section 4. In Section 5 we present a discussion
upon the results; this section also presents the conclusions and describes some
future work.

2 Related Work

There are several works that employs UAVs as agents in agriculture and WSN as
monitors of the environment, occasionally integrating both [2,7,16]. For example,
Huang and collaborators [6] propose a system for spraying pesticide coupled to
an UAV capable of carrying as much as 22.7 kg. The UAV model used was
a SR200 manufactured by Rotomotion company. The spray system consists of
four major components: (i) a metal tube with nozzles, (ii) a tank to store the
pesticide, (iii) a pump to move the liquid and (iv) a mechanism for controlling
the activation of spray. The spraying system can carry up to 5 kg of pesticide,
which was needed to spray 0.14 km2; and it provides a flight time of around 90

Exploiting Evolution on UAV Control Rules 51

minutes. The main objective of that work was to validate the proposed system
and evaluate different spray nozzles. However, the weather conditions were not
taken into account. Additionally, a discussion of the evolutionary methodology
able to optimize control of this activity is not presented.

Valente and collaborators [13] show a system based on WSNs and UAVs to
monitor crop fields of vines. The WSN collects information from soil, climate
and the condition of vines and presents this data to the farmer. However, the
vine crop groups may be hundreds of meters distant from each other. Because
of barriers (eg. rivers and roads) that may occur between crop fields, the usage
of cables to connect networks implies in a prohibitive cost. Although the use of
more powerful radios in sensor nodes enables communication between WSN, this
will result in higher energy consumption implying in the reduction of battery
lifetime. Thus, the solution used to overcome such limitations was employ a
UAV able to fly over crop fields and collecting the information from each WSN,
bringing data back to a processing center.

Faiçal and collaborators [5] proposed and evaluated an architecture formed by
UAV and WSN to spray pesticides in crop fields. It is known that the weather
conditions in the area of cultivation, such as wind speed and direction, can cause
error in the spraying process. The study showed that the proposed architecture
allows to minimize error and increase control of this activity. However, the work
used a simplistic approach to correct the route of the UAV. The parameters
set for the correction of the route are similarly applied in different weather
conditions, which can harm the performance of this architecture. As previously
mentioned, the objective of this paper is to evaluate and propose an evolutionary
methodology to optimize and define the best weather parameter that influences
the intensity correction of the UAV route.

3 Methodology

Fig. 1 synthesizes the context of this work. It can be seen that the spraying
is carried out using UAVs, which have equipment for pesticide spraying, and a
WSN distributed in matrix disposition in the crop field. The WSN is represented
only in a target crop field delimited with two dashed lines (from the upper left
to the lower right corner) to simplify the visualization. The two arrows indicate
the direction of the wind at a specific location. The UAV maintains communi-
cation with WSN about the weather conditions (wind speed and direction) in
its current position and also about the concentration of the pesticides identified
by surrounding sensors. When an imbalance in the pesticide concentration is
detected (e.g. the sensor on the left side identified a higher concentration than
the one positioned on the right side), possibly caused by winds, the UAV uses its
policy to change the position so that the pesticide is applied at a concentration
balanced across the width of the target crop field. In addition, constraints pre-
vent the pesticide to be sprayed out of the bounds of the target crop field, which
may cause an overlap of the area that was subjected to the defensive chemicals.
The adjustment of the route is represented by small arrows between the images

52 B.S. Faiçal et al.

Fig. 1. Spraying using the architecture proposed by [5]. This architecture is formed by
a UAV (spray) and WSN (sensing and feedback). If spraying is unbalanced between
the sensors (distributed in matrix form on crop field), the UAV can correct your route
using a policy with parameter settings defined before starting the activity.

of the UAV in Fig. 1. To adjust the route, the policy has the routeChangingFac-
tor parameter, which operates pondering the intensity of alteration (sudden or
soft). This parameter is set empirically before the activity and will be constant
for all weather conditions.

In this work we extend the architecture proposed by [5], adding an evolution-
ary module able to optimize the parameter routeChangingFactor. Furthermore,
the UAV will query the WSN about weather conditions of a target crop field.
With this information, the UAV simulates computationally the result of spray-
ing using different possible configurations. These simulations take into account
the weather conditions informed by WSN and settings of UAV. The source code
contains all instructions necessary to simulate the behavior and communication
between the UAV and WSN. It also contains a dispersion model to represent
the movement of sprayed particles along the crop field. These simulations use
a Genetic Algorithm (GA) which evaluates the results and evolves to find a
near-optimal routeChangingFactor to be used. This optimization is carried out
for each target crop field until the whole desired area is sprayed. It is worth
mentioning that the optimization is carried out in parallel to the spraying of
pesticides and the routeChangingFactor is changed only when the GA finalize
and the UAV enters the analyzed crop field.

To investigate the evolution in control we considered a rectangular field 1100 m
long and 150 m wide. Moreover, a target crop field was considered to cover a rect-
angle measuring 1000 m by 50 m. The WSN consists of 20 sensor nodes arranged
in matrix form throughout the target crop field. The UAV flies 20 feet high at a
constant speed of 15 m/s, communicating with the WSN every 10 seconds.

The fitness function is the sum of pesticide gathered by the WSN outside
the boundaries, greater the number means that greater amount of pesticide was
placed outside the boundaries; hence, this fitness should be minimized. Current
genome has a single real value that represent the routeChangingFactor ; it is
detailed in the next section. We treated the genome as a real value because it
could be directed applied to the simulated UAV as an value to the rotors.

Exploiting Evolution on UAV Control Rules 53

3.1 Deployment of the Evolutionary Module

Projects on WSN and UAVs are commonly validated in two ways: (i) testbeds
and/or (ii) simulation. The testbed is a smaller version of the project built to
conduct experiments. On the other hand, simulation is the act of using com-
puters in formalization, as mathematical expressions or specifications, to mimic
a real-world process. The scientific community has used the simulation method
to validate WSN environments before real deployment [3,9]. Results from sim-
ulation are considered satisfactory in comparison to the results obtained from
testbeds [1,8]. Thus, simulation results may be used to justify changes in order
to minimize the negative impact in a real environment.

The same platform from [5] was employed to run the simulations. The OM-
NeT++1 is a discrete event simulator based on C++ to model communication
networks, multiprocessors and other parallel and distributed systems [14]. The
OMNeT++ has a wide scope so it can be used to simulate various types of net-
works. The GA is configured to use a crossing value of 90% in the population
and apply a mutation of 10%, besides employing the technique of elitism (where
the best individual is kept for the next generation). Table 1 exemplifies the pop-
ulation used by the genetic algorithm, in which each individual is composed of a
positive real value for the routeChangingFactor and its respective fitness which
is calculated by adding all the particles of pesticide that are applied outside the
target crop field. Therefore, a lower value of fitness indicates a better individual.

Table 1. Representation of the population used by the Genetic Algorithm

Individual routeChangeFactor Fitness

1st 2.136 12,032
2nd 2.532 12,169
3rd 1.465 20,032
4th 4.752 24,878
5th 3.846 22,987

In the experiments five population sizes and three maximum values of gener-
ations are evaluated. Each setting of experiments is represented by IndMGerN.
Thus, M is the number of individuals of the population and N the value maxi-
mum of generations. As a stopping condition, we define the maximum amount of
generations for each experiment, so after running all the pre-defined generations
the GA is finished and the best individual of this generation is considered the
routeChangingFactor more suitable for the weather conditions monitored by the
WSN. Each configuration of the experiments were replicated 30 times in order
to obtain a sample with high reliability to analyze its results.

The GA evolves the population according to their characteristics already de-
scribed, and changes the configuration to be evaluated through the assignment

1 OMNeT++ Network Simulation Framework, http://www.omnetpp.org

http://www.omnetpp.org

54 B.S. Faiçal et al.

Fig. 2. Interaction between Genetic Algorithm and the simulator OMNeT++

of a new value to the routeChangingFactor variable (considering the individual
to be tested) in the source code inside the simulator. Fig. 2 shows the interaction
between the GA and the simulator. Initially, the GA alters the configuration file
of module Simulates Spraying with the value of routeChangingFactor of individ-
ual to be evaluated (step 1). Subsequently, the GA run the module Simulates
Spraying in OMNeT++ (step 2) and finally analyzes the file log of the executed
plan (step 3). This file stores the result of spraying all over the field (1500 m x
150 m) and the amount of pesticide sprayed wrongly (outside the target crop
field 1000 m by 50 m) is considered as fitness of the individual. When the GA
has tested all individuals of a generation, it will produce a new generation of
individuals until the maximum generation is reached. During this study, we tried
to keep the GA simple and fast; this is important because all analysis need to
be carried in short time, once the spray occurs at runtime.

4 Results

We employed the Genetic Algorithm as an evolutionary method to find the best
routeChangingFactor to be used at a target crop field, considering the weather
conditions identified by the WSN2. Fig. 3 shows three heat maps of sprays in the
crop field. It can be observed that the target crop field is shown in this image,
thus it is possible to identify where the pesticide was actually applied in or out
of target field. The values 6.000 and 4.000 were defined empirically, whereas the
value 2.140 was obtained by the proposed evolution module. Also is possible
observe that the map of the spraying performed using the Evolution Module
portrays a most appropriate correction of route considering weather conditions
identified by WSN. This optimization provides a spray with lower error rate than
the others (see Fig. 3), and provide a setting at runtime this parameter.

To evaluate the results, we performed a series of statistical analyzes. We
started using the Shapiro Wilk method to verify the adequacy of normality and
consequently to direct it to use parametric or non-parametric methods according
to the results. We could observe that all values are less than 0.05, hence, all sets
have the hypothesis of normality rejected considering a confidence level of 95%.
Thus, we use non-parametric tests in the subsequent analyzes.

2 Source code available in http://goo.gl/9S14T0

http://goo.gl/9S14T0

Exploiting Evolution on UAV Control Rules 55

(a) routeChangingFactor = 6.000

(b) routeChangingFactor = 4.000

(c) routeChangingFactor = 2.140

Fig. 3. A heat map to represent the chemicals sprayed on the crop at the end of the
simulation. The green colour represents no pesticide and red represents the most con-
centrated places. The thin black lines show the crop field that needs to have chemicals
sprayed. (a) and (b) Evaluations with empirical values. (c) Evaluation with routeChang-
ingFactor obtained by the genetic algorithm. We can see that when employing the
routeChangingFactor obtained by the genetic algorithm we have the best adjusts in
the UAV track, attempting to keep the chemicals within the boundary lane. It is worth
to highlight that, as the simulation starts with wind, the UAV always starts the dis-
persion of the chemicals outside the boundary.

As implied in Fig 4(a), there appears to be an improvement in the obtained
results (lower error) with the increase of individuals. The pairwise comparisons
using Wilcoxon rank sum test shows that there is a significant difference in
populations formed by 3, 5 and 10 Individuals but not for populations with 10,
15 and 20 Individuals. This may imply that there is need to further increase the
number of generations. Figures 5(a) and 6(a) shows the results with 50 and 100
generations.

The pairwise comparisons using Wilcoxon rank sum test shows that for ex-
periments using populations with 5, 10, 15 and 20 Individuals for 50 generations
there is no significant difference. However, using populations with 5 and 10 in-
dividuals have lower accuracy populations when compared with the results of
the populations with 15 and 20 Individuals. To the experiments with 5, 10, 15
and 20 Individuals and 100 generations no significant difference and their ac-
curacies are similar. It should be noted that the settings used in the Genetic
Algorithm provide results with high accuracies. Therefore, the settings that re-
sulted in the best results are the populations formed with 15 and 20 Individuals
to 50 Generations and 5, 10, 15 and 20 Individuals to 100 Generations.

From Fig. 4(b), 5(b) and 6(b), we can see that the average runtime time grows
as the population and the amount of generations increase. Considering the set-
tings that correspond to the best results (Ind15Ger50, Ind20Ger50, Ind5Ger100,
Ind10Ger100, Ind15Ger100, Ind20Ger100), it is possible to note that the set-
ting Ind5Ger100 has the lowest average runtime of 44.12 seconds. As described

56 B.S. Faiçal et al.

(a) (b)

Fig. 4. Results of the GA employing 20 generations. (a) Fitness. (b) Time (in seconds).

(a) (b)

Fig. 5. Results of the GA employing 50 generations. (a) Fitness. (b) Time (in seconds).

above, the UAV flies at a speed of 15m/s in these experiments. Therefore, using
the setting Ind5Ger100 to analyze the target crop field the UAV would fly over
661.907 meters. Thus, we can conclude that due to the length of target crop
field measuring 1000 meters, this setting allows the later target crop field to be
analyzed while the current target crop field is sprayed.

5 Discussion

We have described a methodology to evolve the parameter routeChangingFactor,
which aims to adjust the UAV route and improve the spraying of pesticides on
crop fields. The spraying operation is conducted employing an architecture based
on a UAV and WSN. The UAV is the agent which spray the pesticide and the
WSN is responsible for the monitoring of (i) weather conditions, (ii) points where
the pesticide reached the crop field and (iii) feedback to the UAV. The initial
methodology, although functional, have showed some limitations in correcting
the route, since this parameter was defined empirically and remained the same
for all activity. This limitations is corrected with the proposal described in this
work.

Due to the fact that the adjustment of the route is performed using the
routeChangingFactor parameter. It may be noted that in the experiments that

Exploiting Evolution on UAV Control Rules 57

(a) (b)

Fig. 6. Results of the GA employing 100 generations. (a) Fitness. (b) Time (in seconds).

we use 20 generations to find the best parameter, settings involving populations
with 10, 15 and 20 individuals are not significantly different. However, only 50%
of the results achieved is the best possible value. The same happens with the
results obtained in experiments using populations with 5 and 10 individuals
when evolved by 50 generations. Moreover, the results obtained using 15 and
20 individuals by 50 generations and also 5, 10, 15 and 20 individuals by 100
generations achieved the best possible value and showed greater stability in its
results. Considering these results, the configuration Ind5Ger100, corresponding
to a population of 5 individuals with 100 generations, has satisfactory behavior
for the purpose this study. This configuration is able to achieve good results with
high accuracy at relatively low average runtime. Other settings of the experi-
ments not cited in this section are considered unsuitable for solving this problem
because of its low accuracy.

It is worth mentioning that the error in no case is less than 20% because the
methodology considers that the UAV starts spraying at a fixed point and the
route adjustment occurs after some predefined time. Thus, this error occurs at
the beginning of the crop field where spraying has the influence of the weather
conditions. Therefore, a better understanding of the results is made from the
following reading: starting spraying in position X, the best routeChangingFactor
has value Y, which will result in an error of Z% in weather conditions informed
by the WSN.

Lastly, it is important to remember that the developed methodology, which
evolve the routeChangingFactor, had as main motivation the possibility of pro-
viding to UAV with a intelligent behavior, adjusting its route considering weather
conditions. Thus, this becomes a dynamic policy for a naturally dynamic environ-
ment. The next stages of this project will be as follows: (i) developing the system
using real hardware, addressing the reality gap in communications between the
UAV and the WSN, the behaviour of the UAV and the sensor capabilities and
(ii) investigating the use of other evolutionary techniques, like NSGA-II [4] and
Differential Evolution [11]. As a final observation, since it is necessary to improve
the simulation environment (which allows quicker and safer evaluations) other
future work should seek to improve the current chemical dispersion module and
the physical behaviour of the UAV.

58 B.S. Faiçal et al.

References

1. Bergamini, L., Crociani, C.: Vitaletti: Simulation vs real testbeds: a validation of
wsn simulators. Technical report n. 3, Sapienza Universita di Roma (2009)

2. Branco, K.R., Pelizzoni, J.M., Neris, L.O., Junior, O.T., Osorio, F.S., Wolf, D.F.:
Tiriba - a new approach of uav based on model driven development and multipro-
cessors (2011)

3. Chen, H., Chang, K., Agate, C.S.: A dynamic path planning algorithm for uav
tracking. In: SPIE Defense, Security, and Sensing (2009)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

5. Faical, B.S., Costa, F.G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Fini,
P.H., Villas, L., Osorio, F.S., Vargas, P.A., Braun, T.: The use of unmanned aerial
vehicles and wireless sensor networks for spraying pesticides. Journal of Systems
Architecture 60(4), 393–404 (2014)

6. Huang, Y., Hoffmann, W.C., Lan, Y., Wu, W., Fritz, B.K.: Development of a
spray system for an unmanned aerial vehicle platform. Applied Engineering in
Agriculture 25(6), 803–809 (2009)

7. Li, B., Liu, R., Liu, S., Liu, Q., Liu, F., Zhou, G.: Monitoring vegetation coverage
variation of winter wheat by low-altitude uav remote sensing system. Trans. of the
Chinese Society of Agricultural Engineering 28(13), 160–165 (2012)

8. Malekzadeh, M., Ghani, A.A.A., Subramaniam, S., Desa, J.: Validating reliability
of omnet++ in wireless networks dos attacks: Simulation vs. testbed. International
Journal of Network Security 12(3), 193–201 (2011)

9. Ouyang, J., Zhuang, Y., Xue, Y., Wang, Z.: Uav relay transmission scheme and
its performance analysis over asymmetric fading channels. Hangkong Xuebao/Acta
Aeronautica et Astronautica Sinica 34(1), 130–140 (2013)

10. Pimentel, D.: Amounts of pesticides reaching target pests: environmental impacts
and ethics. Journal of Agricultural and Environmental Ethics 8(1), 17–29 (1995)

11. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution a practical ap-
proach to global optimization (2005)

12. Tariq, M.I., Afzal, S., Hussain, I., Sultana, N.: Pesticides exposure in pakistan: A
review. Environment International 33(8), 1107–1122 (2007)

13. Valente, J., Sanz, D., Barrientos, A., Cerro, J., Ribeiro, A., Rossi, C.: An air-ground
wireless sensor network for crop monitoring. Sensors 11(6), 6088–6108 (2011)

14. Varga, A.: Omnet++. In: Wehrle, K., Günes, M., Gross, J. (eds.) Modeling and
Tools for Network Simulation, pp. 35–59. Springer, Heidelberg (2010)

15. Weisenburger, D.D.: Human health effects of agrichemical use. Human Pathol-
ogy 24(6), 571–576 (1993)

16. Xiang, H., Tian, L.: Development of a low-cost agricultural remote sensing system
based on an autonomous unmanned aerial vehicle (uav). Biosystems Engineer-
ing 108(2), 174–190 (2011)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 59–70, 2014.
© Springer International Publishing Switzerland 2014

Fuzzy-Logic Decision Fusion for Nonintrusive Early
Detection of Driver Fatigue or Drowsiness

Mario Malcangi

Department of Computer Science, Università degli Studi di Milano,
Via Comelico 39, 20135 Milano, Italy

malcangi@di.unimi.it

Abstract. Traffic accidents due to falling asleep at the wheel are a longstanding
problem in many countries. This paper presents a novel solution based on
fuzzy-logic decision fusion that prevents accidents by detecting driver fatigue
or drowsiness early. The proposed method is based on analyzing and inferring
about certain biological and behavioral measurements that enable detection of
reduced alertness preceding driver-sleep onset. Because wakeful or sleep
activity is reflected in several physiological conditions in human beings, such as
cardiac, breathing, movement, and skin galvanic conductance, captured
bioelectric signal features were extracted and fuzzy decision-fusion logic was
tuned to make inferences about oncoming driver fatigue or drowsiness. The
proposed method improves the performance by applying the fuzzy logic
inference to fuse decisions from independent modules that infer about features
measured on the sensed physiologic and/or behavioral information. The method
reduces the complexity of the signal processing and of the pattern matching
model. Tests have been executed on clinical and in field physiologic and
behavioral data. A prototype based on a 32 bit microcontroller and a highly
integrated analog front-end has been developed to support the in field tests.

Keywords: fuzzy logic, decision fusion, sleep onset, heart-rate variability,
breathing rate, power-spectrum density, ANS.

1 Introduction

Driver fatigue or drowsiness is a cause of serious traffic accidents, so several methods
have been investigated to find a practical solutions for early sleep-onset detection with
the aim of achieving a higher level of safety in private and public transportation.
According to some traffic authorities, crashes caused by drowsy drivers are extremely
frequent, e.g. about 40,000 per year in the United States alone, [1] but such statistics
underestimate the number because they do not include most crashes due to fatigue or
where drowsiness was not evident, so this kind of risk really involves millions of drivers.
If fatigue and drowsiness are detected early, accidents can be prevented by implementing
countermeasures based on onboard safety devices, such as automatic cruise control, or
simply on acoustic alarms if the system is not integrated into the onboard cruise
electronics. To detect sleep onset early, the driver’s state needs to be continuously
monitored. Several investigations were carried out, following two main approaches, one
based on monitoring driver behavior and the other on measuring driver physiology.

60 M. Malcangi

1.1 Literature Review

Drowsiness is the first stage of non-rapid-eye-movement (NREM), so an approach to
early sleep detection was based on image-processing techniques. Images of the driver’s
face are captured by a digital camera and processed to match behavior features such as
eyelid movements, yawning, eye gaze, and head nodding [2]. Most studies related to
behavior observation are based on image recognition that focuses on a small area of the
face, especially the eyes, to measure blink rate. Degree of eyelid opening is considered a
valid indicator of the tiredness level that leads toward the critical threshold of fatigue and
drowsiness. Eyelid movements in normal conditions are large, quick, and constant, but,
when fatigue or drowsiness is oncoming, such movements tends to become shorter,
slower, and irregular. More information can be extracted from facial expression, when it
changes during passage from alert status to drowsiness. Such an approach is noninvasive,
and industrial implementations exist. However, it somewhat not reliable, due to the
background noise, the driver movements, and the difficulty of focusing automatically on
a limited part of the driver’s face (near the eyes).

Drowsiness is controlled by the autonomous nervous system (ANS) acting on
cardiac rhythm, breathing, and galvanic skin response, so an alternative approach to
early detection of falling asleep was based on bioelectric signal processing. This
approach is very effective, because it does not require that the driver be collaborative
[3, 4, 5]. It needs to capture bioelectric signals from the heart, skin, and pulmonary
apparatus by using a set of electrodes applied to the driver’s body. Therefore, this
approach is initially invasive, but this limitation can be overcome because cardiac
rhythm and skin conductivity can be measured at the hands. A set of contact
electrodes can be applied to the steering wheel, where the driver puts his hands.
Breathing rate can be measured noninvasively if an appropriate sensor is built into the
safety belt or the back of the driver’s seat. Some behavior information, such as arm
and steering wheel movements, can also be measured at the steering wheel.

Physiological and behavior measurements captured in the field without driver
cooperation are extremely fuzzy. A smart system is needed to make inferences about
sleep onset using physiology and behavior features extracted from signals captured by
one or more hand-contact electrodes and some sensors, and then to fuse the data.
A fuzzy-logic-based inference system can be very effective, if several physiological
and behavioral features concur in the decision.

1.2 Novelty and Advantages of the Proposed Method

A practical system for detecting sleep onset early can be based on ECG measurements
alone, because there is enough information in the ECG signal directly related to sleep-
wake control [6]. Nevertheless, a multimodal approach would improve early
drowsiness detection and might also enable evaluation of fatigue level rising toward a
critical threshold.

Sleep is a physiological state characterized by variation in ANS activity, which is
reflected in heart-rate variability (HRV). The power spectral density (PSD) of heart rate
varies with the change from wakefulness to sleep [7,8]. The low-to-high frequency ratio
is a valid indicator of such change, because it reflects the balancing action of the ANS’s
sympathetic and parasympathetic nervous-system branches. When sympathetic nervous-
system activity increases, parasympathetic nervous-system activity diminishes, thus
causing cardiac rhythm to accelerate (shorter beat intervals). Cardiac-rhythm deceleration

 Nonintrusive Early Detection of Driver Fatigue or Drowsiness 61

is caused by low sympathetic nervous-system activity and increased parasympathetic
nervous-system activity, producing heart-rhythm deceleration (longer beat intervals).

PSD analysis of beat-to-beat HRV (Fig. 1) is useful to understand when sleep is
setting in. Sleep and wakefulness are directly related to the ANS [9]. If we consider
low-frequency versus high-frequency balance in a person’s PSD, it is possible to
predict the onset of sleep.

Fig. 1. PSD analysis of HRV is useful to understand when sleep is setting in

The HRV-based approach to the early detection of driver's fatigue and drowsiness
is an effective alternative to the available implementations because it is fully
noninvasive. The acquisition of the ECG signal from the hands works well both in
collaborative and not collaborative automotive applications. The HRV signal is very
rich of information concerning physiological, behavioral, and psychological state of
the car driver, so it may not require additional information to infer about it. Anyway
an extension of the HRV-based approach, holding its noninvasive peculiarity, is the
integration of the breathing rate and of its dynamics with the purpose to strength the
robustness of the inferring process. The breathing signal can be captured from
seatbelt, featured, and fused with the HRV data. The breathing signal can be derived
also from the ECG [10]. Felblinger [11] demonstrated that the envelope of the R
peaks corresponds to the breathing signal, so our HRV-based approach in detecting
drowsiness and fatigue is effective. Breathing and HRV are two independent features
of the ECG because the first is its amplitude modulation of the ECG and the second is
its frequency modulation, so they need to be fused at decision level.

Making inferences about physiological status from the HRV signal is very difficult,
because of the high degree of variability and the presence of artifacts. Soft-computing
methods and decision fusion can be very effective at making inferences in such a context
[12]. There are several methods [13, 14, 15] for performing predictions with neural
networks. Mager [15] uses Kohonen’s self-organizing map (SOM) to provide a method
of clustering subjects with similar features. This method, applied to detecting sleep onset

62 M. Malcangi

early, allows artifacts to be filtered and the variability component of noise to be
combined with the primary HRV signal ready for smoothing. An alternative approach
uses fuzzy decision logic [16] to model sleep onset. Such an approach is effective,
because it enables us to use membership functions to model data features.

Some research works [17, 18] demonstrate that fuzzy logic methods can be very
effective if tailored on the specific nature of drowsiness detection and if ad hoc
methods for fuzzification and setting the rules are implemented. The proposed method
improves the performance by applying the fuzzy logic inference to fuse decisions
from a multimodal layer where independent modules infer about features measured
from sensed physiological and/or behavioral information. We focused mainly on
decision level rather than on features level because the non-collaborative nature of the
process. Therefore, the proposed method does not need of a complex signal
processing and pattern matching model of the bioelectric and behavioral information
as in most of the reported research works. In a comparative study of the methods for
detecting falling asleep at the wheel [19] it was demonstrated that drowsiness
detection system that combines non-intrusive physiological measures with other
measures would accurately determine the drowsiness level of a driver. Methods
investigated for driver fatigue detection [20, 21] mainly focused on measures of the
driver’s state and/or performance based on PERCLOS (Percent Eyes Closure), mouth
shape and head position. Such measurements are simple to be executed but they are
highly subjective and behavioral-dependent. The proposed method, based on
bioelectrical signals processing, pattern matching, and fuzzy logic-based decision
fusion, is mostly objective and physiological-dependent.

Physiological information is more reliable than behavioral, mainly in not collaborative
application, but it can be unavailable for several reasons (e.g. the hands are not touching
the steering wheel at the same time). Behavioral information is always available, but it
depends on the car driver collaboration (e.g. avoiding using reflective sun glasses in slow
eyes closure rate measurement). Calibration in visual methods is subject-dependent [22]
and it needs to be executed prior to eye-state monitoring.

Relying on only one predictor of driver drowsiness makes the system susceptible
of data unavailability due to failure of the single sensor or driver’s individual
differences [23]. Multi-measure approach enables data fusion methods to be applied
so that more robust measures can be executed in field application. The cost of this
approach is the increase of the complexity of the system and of the data fusion engine.
To keep complexity low and boost the performance of the whole system, data fusion
can be applied to decision level rather than feature level. The generalization capability
of our system stays in its strategy based on fuzzy fusion at decision layer (upper)
rather than at feature layer (lower). This enables the modules of the feature layer to
work independently of each other on physiological and/or behavioral information and
to be considered at decision layer only if they are meaningful.

2 System Framework

The system consists of two layers (Fig. 2). The lower layer has subsystems for
capturing, detecting, and deciding locally, each operating on a single physiology or
behavior signal. Each subsystem captures, conditions, preprocesses, extracts features,
and makes a fuzzy logic-based decision. The upper layer fuses the fuzzy decisions
delivered by each of the subsystems active at the lower layer.

 Nonintrusive Early Detection of Driver Fatigue or Drowsiness 63

Fig. 2. The system consists of two layers: the lower layer has subsystems for capturing,
detecting, and deciding locally; the upper layer fuses the fuzzy decisions delivered by each of
the subsystems active at the lower layer

The fuzzy logic engine is a Mamdani fuzzy inference system using min and max
for T-norm and T-conorm, and triangular, trapezoidal, and singletone membership
functions. Five linguistics have been applied for inputs and three for outputs. Manual
tuning of the rule set has been applied to solve the combinatorial explosion problem.

Natural extraction of membership functions strategy has been applied using an
expert in the field of application to draw the membership curve according to the
requirements. Using a graphical user interface (GUI) the expert chose among a
restricted set of membership functions. The same strategy has been applied to compile
the rules, using a predefined rule format.

A simulator has been used to hand tune the rules moving graphically the crisp
inputs. All the rules have been evaluated and the fuzzy output inferred. The expert
tunes the memberships and the rules looking to the input and output data.

2.1 ECG Subsystem

The ECG captured signal has been sampled and preprocessed to remove baseline
fluctuations, muscle noise, and artifacts. Baseline oscillations are removed using a
zero-phase, fourth-order, high-pass filter (1-Hz cutoff frequency).

To compute the R-R tacogram, the QRS complex of the ECG cycle a threshold has
been applied. This was done by squaring the sample values and passing them through
a moving average filter:


−

=

−=
1

0

)(
1

)(
N

i

inx
N

ny (1)

64 M. Malcangi

The HRV is then computed from the time series R-R intervals (R-peak to R-peak)
converted into a uniformly sampled time-spaced sequence. PSD of HRV is then
computed and the following three frequency bands have been carried out:

• very low frequencies (0-0.04 Hz)
• low frequencies (0.04-0.15 Hz)
• high frequencies (0.15-0.5 Hz)

The features have been extracted from HRV and PSD used to to feed the fuzzy logic
engine that makes epoch-by-epoch (20 or 60 seconds per epoch) inferences [24]. A
set of 23 meaningful rules has been hand tuned. The following are the strongest:

if HRV(n) is Low and
 LF(n) is Medium Low and
 HF(n) is Medium High and
 LF/HF is Medium
 then the epoch is ONSET_SLEEP
…
if HRV(n) is High and
 LF(n) is High and
 HF(n) is Low and
 LF/HF is High
 then the epoch is WAKE
…
if HRV(n) is Low and
 LF(n) is Low and
 HF(n) is High and
 LF/HF is Low
 then the epoch is SLEEP

2.2 Breathing Subsystem

The breathing subsystem measures the breathing signal captured using a MEMS
(Micro Electro-Mechanical System) accelerometer in noninvasive contact with the
driver’s body (thorax). The breathing signal is low-pass filtered to remove high-
frequency noise with the following algorithm:

y(n) = ax(n) + by(n-1)
a = 1-exp(-2πfc/fs)
b =1-a (2)
fc: 1.0 Hz // filter cutoff frequency
fs: 50 Hz // sampling rate frequency

Then, a high-pass filter is applied to remove very low frequencies and the baseline that
conditions the captured breathing signal:

 y(n) = x(n) – R
 R = ax(n) + bR (3)
 fc: 0.1 Hz // filter cutoff frequency
 fs: 50 Hz // sampling rate frequency

 Nonintrusive Early Detection of Driver Fatigue or Drowsiness 65

Breathing rate and amplitude are then measured and fuzzy-processed by a Mamdani-type
fuzzy logic engine that, epoch by epoch, obtain inferences about the oncoming drowsiness
or fatigue. A set of 19 rules has been hand tuned. The following are the strongest rules:

…
if BreathingRate(n) is Medium and
 BreathingAmplitude(n) is Medium
 then the epoch is NORMAL
… (4)
if BreathingRate(n) is Low and
 BreathingAmplitude(n) is High
 then the epoch is TIRED
…

The center-of-gravity method (5) and the singleton membership function are then
applied to defuzzify the decision locally:



=
ut fuzzy_outp

)position singleton_()ut fuzzy_outp(
ut crisp_outp (5)

2.3 Decision-Fusion Subsystem

Combining classifiers to make a decision demonstrates to be more efficient than
compound classification [25]. Decision-fusion methods implement the decision level
by integrating decisions from the ECG and the breathing subsystems. To improve
identification of fatigue or drowsiness, a soft decision method was applied, because it
proved superior to hard decision methods. The soft decision method consists of a set
of 15 hand tuned fuzzy rules. The following are the strongest:

…
if ECG(n) is Ongoing_Sleep and
 Breathing(n) is Tired and
 Hand_Movements(n) is Low
 then the epoch is DROSINESS
… (6)
if ECG(n) is Ongoing_Sleep and
 Breathing(n)_is Normal and
 Hand_Movements(n) is Medium
 then the epoch is FATIGUE

An additional input (Hand_Movements) has been considered at fusion level to
demonstrate the generalization capability of the system. The additional input is the score
from a lower module (not in the basic framework) that evaluates the movements of the
hands by an accelerometer sensor. This module is considered as an example of add-on
that can improve the whole system and/or replace a faulty or unavailable module.

The center-of-gravity method (5) and the singleton membership function are then
applied to defuzzify the decision locally.

66 M. Malcangi

To overcome the limitation of the crisp output, a degree of sleepiness has been
applied as consequent in the rules. This solution keeps low the complexity of the
defuzzification stage and enables to decide about the degree of alarm to be activated.

3 Experimental Results

Three levels of tests were conducted, one on clinical captured signals (invasive) and two
in a simulated driving environment. The first of the latter two tests was partially invasive
and visible, because it used standard electrodes to capture the ECG and a laboratory
biomedical instrument to collect and process data. The second of the latter two tests was
fully noninvasive, because the entire system was integrated into an embedded device.

3.1 Embedded Prototype

The embedded prototype (Fig. 3) is based on a digital subsystem, a microcontroller unit
(MCU), and an analog subsystem, an analog front-end (AFE). The MCU is the STM32
from STMicroelectronics, a 32 bit ARM M3-based computing architecture, integrated in
the palm top computer Primer 2 from Raisonance that includes the analog and the digital
interface, the accelerometer, the mass memory storage, and the human-machine interface
(HMI) . The AFE is the AD8232 from Analog Devices, a single chip device that
integrates all the analog resources requested to interface end-to-end the human body to
the MCU for ECG signal acquisition. All the application has been ANSI-C encoded and
flashed on the non-volatile memory of the MCU. A couple of stain steel electrodes has
been directly connected the differential analog input of the AFE, considering the Right
Leg (RL) electrode input common to one of the two analog differential inputs.

Fig. 3. Protosystem with a microcontroller from STMicroelectronics (STM32 ARM M3) and
the analog front-end (AFE) from Analog Devices (AD8232)

 Nonintrusive Early Detection of Driver Fatigue or Drowsiness 67

3.2 Performance Evaluation

The results of both experiments confirmed our hypothesis that sleep onset can be
predicted by using only features extracted from the HRV and that breathing
information can improve the sleep-onset. Detection may be successfully based on
ECG signal captured from the driver’s hands and on breathing signal.

The results of the experiments (Table 1) mean that the decision fusion layer
performs always better than the feature fusion layer. When the sensed signal is
captured in an uncontrolled environment (embedded) and with not invasive methods,
the decision fusion layer performs at least like the best subsystem of the feature fusion
layer. Measurement accuracy is lower than the clinical context, above all for ECG
module, but decision fusion layer confirms to be robust enough to perform not under
85% successful early detections.

Table 1. Matrix of confusion (a) and precision (b) for the three levels of tests conducted, one
on clinical captured signals (invasive) and two (noninvasive) in a simulated driving
environment

(a)

 | Decision fusion | ECG features fusion | Breathing features fusion

 PREDICTED

 Drosiness Normal Drosiness Normal Drosiness Normal

 ACTUAL

Clinical
Drosiness 19 1 19 1 18 2
Normal 1 19 3 17 2 18

In the field (nonembedded)
Drosiness 18 2 18 2 17 3
Normal 2 18 4 16 1 19

In the field (embedded)
Drosiness 17 3 17 3 16 4
Normal 3 17 5 15 2 18

(b)

Test type | Decision fusion | ECG features fusion | Breathing features fusion

Clinical 95% 90% 90%
In the field (nonembedded) 90% 85% 90%
In the field (embedded) 85% 80% 85%

The performance of each system has been validated by a human (expert). For

clinical tests, a physician reads the bioelectric data and evaluates, for each module, if
the identified transition from awake to asleep is acceptable or not. For in the fied tests

68 M. Malcangi

this was done by visual observation of the awake/asleep status of the subject and the
consequent qualification of the detection done by each system of the transition
awake/asleep. Timing of the early detection capability of each system was also
evaluated during the tests.

4 Conclusions and Future Work

The proposed system for early detection of driver fatigue and drowsiness is not
directly comparable to the systems currently implemented or under investigation, due
to its different system architecture and methodology. Most of the systems are based
on a single methodology and are mainly behavioral [19].

Tests of behavioral-based systems (mainly visual) performed from 85% to 100%
successful detection [19]. Most of these are experiments conducted in simulated
environment. These success rates decreased significantly when the tests were carried
out in the field. It is also important to consider that visual-based systems need of the
driver’s collaboration (e.g. is requested that the subjects don’t wear glasses). An
important consideration is also that successful detections in behavioral-based systems
can be effective only after the driver starts to sleep, too late to prevent the crash.

Systems based on the measurement of the physiologic features is performing well
like the behavioral in classification accuracy (typically 90%) and do not require the
subject collaboration, but it can be very sensitive to artifacts [27].

Improvements can be gained with more effective methods for feature extraction.
The cardiac vagal index (CVI) and the cardiac sympathetic index (CSI) have been
found to be more reliable than those obtained by the other methods [28].

4.1 Adaptive Fuzzy Featuring

The HRV and the breathing fuzzy featuring layers are both modeled using the crisp
data at design time. This is useful to setup the fuzzy inferential engine to fulfill the
inference target, but it is also useful to build up an incremental learning capability that
enables an embedded evolving ability for the whole system.

Adaptation is a strong requirement because the application is unattended and the in
the field operability of the crisp features modeled at design time can change, so the
membership functions and the rules need to be tuned. If some crisp measurements
vary significantly, then a new tuning action needs to starts on the membership
functions and the rule set.

To implement the adaptation capability, manually tuning of the fuzzy engine is not
a practical solution. Next step in the development of the fuzzy engine of this system
will apply the EFuNNs (Evolving Fuzzy Neural Networks), according to the ECOS
framework (Evolving COnnectionist Systems) [26]. This algorithm treats each
evolving layer neuron as a fuzzy rule, and finds the connections with the largest
weights. The connection weights in EFuNN represent also the fuzzified input and
output vectors, so selecting the winning weights, the algorithm is finding the MFs that
best fit.

 Nonintrusive Early Detection of Driver Fatigue or Drowsiness 69

References

1. NHTSA: Drowsy driving. Published by NHTSA’s national center for statistics and
analysis 1200 New Jersey Avenue SE., Washington, DC 20590 (2011)

2. Eriksson, M., Papanikolopoulos, N.P.: Eye-tracking for Detection of Driver Fatigue. In:
IEEE Proceendings of Intelligent Transport System, Boston, MA, pp. 314–319 (1997)

3. Malcangi, M., Smirne, S.: Fuzzy-logic inference for early detection of sleep onset in car
driver. In: Jayne, C., Yue, S., Iliadis, L. (eds.) EANN 2012. CCIS, vol. 311, pp. 41–50.
Springer, Heidelberg (2012)

4. Dorfman, G.F., Baharav, A., Cahan, C., Akselrod, S.: Early Detection of Falling Asleep at
the Wheel: a Heart Rate Variability Approach. Computers in Cardiology 35, 1109–1112
(2008)

5. Zocchi, C., Giusti, A., Adami, A., Scaramellini, F., Rovetta, A.: Biorobotic system for
increasing automotive safety. In: 12th IFToMM World Congress, Besançon, France (2007)

6. Estrada, E., Nazeran, H.: EEG and HRV Signal Features for Automatic Sleep Staging and
Apnea Detection. In: 20th International Conference on Electronics, Communications and
Computer (CONIELECOMP), February 22-24, pp. 142–147 (2010)

7. Manis, G., Nikolopoulos, S., Alexandridi, A.: Prediction techniques and HRV analysis. In:
MEDICON 2004, Naples, Italy, July 31-August 5 (2004)

8. Rajendra, A.U., Paul, J.K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a
review. Med. Bio. Eng. Comput. 44, 1031–1051 (2006)

9. Tohara, T., Katayama, M., Takajyo, A., Inoue, K., Shirakawa, S., Kitado, M., Takahashi,
T., Nishimur, Y.: Time frequency analysis of biological signal during sleep. In: SICE
Annual Conference, September 17-20, pp. 1925–1929. Kagawa University, Japan (2007)

10. Travaglini, A., Lamberti, C., DeBie, J., Ferri, M.: Respiratory signal derived from eight-
lead ECG. Computer in Cardiology 25, 65–68 (1998)

11. Felblinger, J., Boesch, C.: Amplitude demodulation of the electrocardiogram signal (ECG)
for respiration monitoring and compensation during MR examinations. Magn-Reson-
Med. 38(1), 129–136 (1997)

12. Patel, M., Lal, S.K.L., Kavanagh, D., Rossiter, P.: Applying neural networks analysis on
heart rate variability data to asses driver fatigue. Expert systems with Applications (2011)

13. Ranganathan, G., Rangarajan, R., Bindhu, V.: Signal processing of heart rate variability
using wavelet transform for mental stress measurement. Journal of Theoretical and
Applied Information Technology 11(2), 124–129 (2010)

14. Ranganathan, G., Rangarajan, R., Bindhu, V.: Evaluation of ECG signal for mental stress
assessment using fuzzy technique. International Journal of Soft Computing and
Engineering (IJSCE) 1(4), 195–201 (2011)

15. Mager, D.E., Merritt, M.M., Kasturi, J., Witkin, L.R., Urdiqui-Macdonald, M., Sollers, J.I.,
Evans, M.K., Zonderman, A.B., Abernethy, D.R., Thayer, J.F.: Kullback–Leibler
Clustering of Continuous Wavelet Transform Measures of Heart Rate Variability. Biomed.
Sci. Instrum. 40, 337–342 (2004)

16. Dzitac, S., Popper, L., Secui, C.D., Vesselenyi, T., Moga, I.: Fuzzy Algorithm for Human
Drowsiness Detection Devices. SIC 19(4), 419–426 (2010)

17. Sharma, N., Banga, V.K.: Development of a drowsiness warning system based on the
fuzzy logic. International Journal of Computer Applications (0975-8887) 8(9) (2010)

18. Picot, A., Charboinner, S., Caplier, A.: Drowsiness detection based on visual signs:
blinking analysis based on high frame rate video. In: 2010 IEEE International
Instrumentation and Measurement Technology Conference, 2MTC 2010 (2010)

70 M. Malcangi

19. Sahayadhas, A., Sundaraj, K., Murugappan, M.: Detecting driver drowsiness based on
sensors: A review. Sensors 2012 12, 16937–16953 (2012)

20. Wang, Q., Yang, J., Ren, M., Zheng, Y.: Driver fatigue detection: a survey.
In: Proceedings of the 6th World Congress of Intelligent Control and Automation,
pp. 8587–8591. IEEE (2006)

21. Bajaj, P., Narole, N., Devi, M.S.: Research on Driver’s Fatigue Detection. eNewsletter
System, Man and Cybernetics Society (31) (June 2010)

22. Albu, A.B., Widsten, B., Wang, T., Lan, J., Mah, J.: A Computer Vision-based System for
Real-time Detection of Sleep Onset in Fatigued Drivers. In: Proceedings of 2008 IEEE
Intelligent Vehicles Symposium, Eindhoven University of Technology Eindhoven, The
Netherlands, June 4-6, pp. 25–30 (2008)

23. Bowman, D.S., Schaudt, W.A., Hanowski, R.J.: Advances in Drowsy Driver Assistance
Systems through Data Fusion. In: Handbook of Intelligent Vehicles, pp. 895–912. Springer
(2012)

24. Malcangi, M., Smirne, S.: Heart Rate Variability Analysis for Prediction of Sleep Onset in
Car Drivers. Journal of Sleep Research 21(Suppl. 1), 307–308 (2012)

25. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On cobining classifier. IEEE Transactions
on Pattern Analysis and Mahine Intelligence 20(3), 226–239 (1998)

26. Kasabov, N.: Evolving fuzzy neural networks – algorithms, applications and biological
motivation. In: Yamakawa, Matsumoto (eds.) Methodologies for the conception, design
and application of the soft computing, World Computing, pp. 271–274 (1998)

27. Sandberg, D., Anund, A., Fors, C., Kecklund, G., Karlsson, J.G., Wahde, M., Åkerstedt,
T.: The characteristics of sleepiness during real driving at night—A study of driving
performance, physiology and subjective experience. Sleep 34(10), 1317–1325 (2011)

28. Lin, C.W., Wang, J.S., Chung, P.C.: Mining Physiological Conditions from Heart Rate
Variability Analysis. IEEE Computational Intelligence Magazine, 50–58 (2010)

Neural Trade-Offs among Specialist
and Generalist Neurons in Pattern Recognition

Aarón Montero1, Ramón Huerta1,2, and Francisco B. Rodríguez1

1 Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática. Escuela
Politécnica Superior. Universidad Autónoma de Madrid, 28049 Madrid, Spain

2 BioCircuits Institute, University of California, San Diego,
La Jolla, CA 92093-0402, USA

aaron.montero@uam.es

Abstract. The olfactory system of insects has two types of neurons
based on the conditional response to odorants. Neurons that respond to
a few odor classes are called specialists, while generalist neurons code for
a wide range of input classes. The function of these neurons is intriguing.
Specialist neurons are perhaps essential for odor discrimination, while
generalist neurons may extract general properties of the odor space to
be able to generalize to new odor spaces. Our goal is to shed light on this
issue by analyzing the relevance of these neurons for pattern recognition
purposes. The computational model is based on the olfactory system of
insects. The model contains an approximation to the antennal lobe (AL)
and mushroom body (MB) using a single-hidden-layer neural network.
To determine the optimal balance between specialists and generalists
we measure the classification error of the pattern recognition task. The
mechanism to achieve the optimal balance is synaptic pruning to select
the optimal synaptic configuration. The results show that specialists play
an important role in odor classification, which is not observed for gen-
eralists. Furthermore, proper classification requires low neural activity
in Kenyon cells, KC, which is consistent with the sparseness condition
observed in MB neurons. Moreover, we also observe that the model is
robust against noise to input patterns showing better resilience for low
connection probabilities between AL and MB.

Keywords: Pattern recognition, generalist neuron, specialist neuron,
olfactory system, neural variability, synaptic pruning, supervised learn-
ing, heterogeneous threshold.

1 Introduction

Specialist neurons are selective responding to stimuli, while generalists code for
multiple stimuli. The role of both classes of neurons in the olfactory system is
still under debate [14,4]. However, it is suggested that specialist neurons are
crucial for discrimination, while generalist neurons play a key role in extracting
and discovering common features [27]. In order to assess the role of specialist and
generalist neurons in pattern recognition performance, we use neural sensitivity.

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 71–80, 2014.
c© Springer International Publishing Switzerland 2014

72 A. Montero, R. Huerta, and F.B. Rodríguez

It can be estimated from the distribution of neurons that respond to n out of
N stimuli [20,21]. This allows to define neurons as specialists or generalists.
However, because the boundary between specialists is arbitrary in a continuous
distribution of sensitivity a systematic analysis is required on this distribution.
The question we want to answer is the ratio of neural types that lead to best
pattern recognition in test sets.

To answer this question, we chose the olfactory system of insects because of
the presence of specialist and generalist neurons [18,4,20,28,21]. The insect model
also has a well-defined structural organization [7,13] that allows quick and stable
odorant discrimination [10] and there is extensive literature on the dynamics of
learning during discrimination tasks [3,24].

In insects, an odor is intercepted by the antenna, where a massive number of
receptors encode its stimulus in a high-dimensional space. This information is
received by the antennal lobe, AL. The AL output is received by a wide number
of Kennyon cells, KCs, of the mushroom body using a fan-out connectivity that
increases the separability between different odor encodings. This fan-out phase
combined with the sparse firing for these KCs [18,8] facilitates the odorant dis-
crimination process realized in following fan-in phase by output neurons, which
are involved in memory formation and storage.

We used a computational model focused on the AL and MB, using a single-
hidden-layer neural network. The input of these neural network is the AL activ-
ity, that is connected to MB through a non-specific connectivity matrix [8,15].
The other layers, hidden and output, are made of KCs and output neurons re-
spectively. These neurons are connected by a connectivity matrix subjected to
learning that is modulated by Hebbian learning [2]. Moreover, neuronal thresh-
olds used are heterogeneous, since it was observed that there is threshold vari-
ability in neuronal populations of the olfactory system [18,11] and these achieve
a classification enhancement in the artificial noses [5] and computer models [16].
These thresholds also allow a greater variability in neuronal sensitivity and there-
fore a better differentiation between responses of neurons (specialists and gen-
eralists).

Our focus is on studying the importance of specialist and generalist neurons
for pattern recognition performance. For this purpose, we use three different
strategies of synaptic pruning based on sensitivity properties of neurons. The
synaptic pruning is a neurological regulatory process, which allows to selectively
remove exuberant neuronal branches and connections in the immature nervous
system to ensure the proper formation of functional circuitry [6,19]. Furthermore,
we use different degrees of overlapping patterns to study their effects over odor
classification and neural balance.

We will show in results that when only the most specialist KCs are able to
fire and transmit their information, the classification error improves. This im-
plies that the generalist neurons do not influence over odor classification process
and only the most specialists are really relevant for this purpose. Furthermore,
classification errors are lower when the connection probability between AL and
MB is low as well.

Neural Trade-Offs among Specialist and Generalist Neurons 73

2 Methods

In this section, we provide the structure of the computational model of the olfac-
tory system as well as the pattern learning associated with it. We also describe
the patterns introduced in the model and methods for investigating the rele-
vance of specialist and generalist neurons. These methods comprise threshold
selection and synaptic pruning. The first method employs heterogeneous thresh-
olds to facilitate differentiation of neurons by neural sensitivity. The second one
selects neurons with different sensitivity degrees (specialists and generalists) and
analyze its performance for the pattern recognition.

2.1 Model

The model focuses on the AL and MB, dividing the MB into KCs and output
neurons. Therefore, the network model is a single-hidden-layer neural network
with an input layer of 50 neurons, a hidden layer with 2, 500 neurons (locust
has a ratio of 1:50 between neurons of the AL, input layer, and KCs, hidden
layer) and an output layer with 5 neurons [12]. These dimensions were chosen
because they ensure a high probability of classification for the input used [11]
for a relatively low computational cost.

The KC neurons of the MB display very low activity [18]. These neurons are
inactive most of the time, with a mean firing frequency lower than 1 Hz. But when
they are activated, their neuronal response is produced by the coincidence of
concurrent spikes followed by a reset. Bearing in mind this behavior, we chose the
McCulloch-Pitts model in all neurons of the hidden and output layers. Therefore,
we have the following:

yj = ϕ(

NAL∑
i=1

cjixi − θj), j = 1, . . . , NKC ,

zl = ϕ(

NKC∑
j=1

wljyj − εl), l = 1, . . . , NOutN ,

where xi, yj and zl are activation states for a input, hidden and output neuron
respectively. The weights cji and wlj link two neurons, for input and hidden
layer in case of matrix C, for hidden and output layer in case of matrix W .
The thresholds for the hidden and output layer are θj and εl respectively. The
Heaviside activation function ϕ is 0 when its argument is negative or 0 and 1
otherwise.

The connectivity matrices, C and W , are initialized at the beginning of each
learning process. These connectivities are created by using the connection prob-
abilities, pc and pw, as a threshold on matrices with random values uniformly
distributed. The connectivity matrix W is updated using Hebbian learning, while
matrix C remains fixed.

The synaptic model is binary except for the input neurons, that are real
numbers (see subsection: Patterns). Therefore, activation states for a MB neuron
and weights can only take values 0 or 1.

74 A. Montero, R. Huerta, and F.B. Rodríguez

2.2 Hebbian Learning

The connectivity matrix W connects the KCs and output neurons. Their con-
nections have an associative learning, that can be simulated by using Hebbian
learning [2]. This learning is subjected to a target t of the output layer (super-
vised learning) and certain thresholds, whose selection will be detailed later (see
subsection: Threshold selection). Hebbian learning allows the strengthening or
weakening the connections of a connectivity matrix, as follows [11,12]:

wlj(n+ 1) = H(tl, yj, wlj(n)),

H(1, 1, wlj(n)) =

{
1 with probability p+,

wlj(n) with probability 1− p+,

H(1, 0, wlj(n)) =

{
0 with probability p−,

wlj(n) with probability 1− p−,

H(0, 1, wlj(n)) = wlj(n), H(0, 0, wlj(n)) = wlj(n),

where the future connection state wlj(n + 1) is determined by a function H .
This function H(tl, yj, wlj(n)) depends on the target for the output layer neuron
tl, the hidden layer neuron yj and the current connection state wlj(n). If the
target for the output layer neuron does not fire, the connection state is not
changed. However, if the target neuron fires, the connection state depends on
the hidden layer in the following ways: i.If the hidden layer neuron has fired, then
the connection between these neurons is created with a probability p+. ii.If the
hidden layer neuron has not fired, then the connection between these neurons is
destroyed with a probability p−.

2.3 Patterns

The AL forms a code of an odor space [22]. Different levels of odor concentration
can expand the number of neurons that are activated for a certain odorant. This
can increase the overlapping with the regions used by other odorants [22]. Also,
recordings from the AL in the locust indicate that its activity remains nearly
constant despite large variations of the odor concentration [25]. Therefore, a gain
control mechanism [23] controlling neuronal activity in the AL is likely to exist.

Considering this, we used Gaussian patterns centered at different input neu-
rons depending on the class to which they belong (Fig. 1, where we can see a
pattern example for each of their classes and configurations) . These patterns
represent the spikes probabilities in AL neurons, that can involve a variable num-
ber of neurons. Number of neurons that we controlled by standard deviation and
implies different overlapping degrees. The standard deviations, overlapping de-
grees, used in our experiments are: 1, 2.5, 5, 10, 25. Furthermore, we also added
noise to the patterns, so that we can observe the robustness of the model and

Neural Trade-Offs among Specialist and Generalist Neurons 75

0 10 20 30 40 50
0

0.5

1

Lo
w

 N
oi

se

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons

std=1

0 10 20 30 40 50
0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons

Degree of overlapping patterns

std=5

0 10 20 30 40 50
0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons

std=25

0 10 20 30 40 50
0

0.5

1

In
te

rm
ed

ia
te

 N
oi

se

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons
0 10 20 30 40 50

0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons
0 10 20 30 40 50

0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons

0 10 20 30 40 50
0

0.5

1

H
ig

h
N

oi
se

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons
0 10 20 30 40 50

0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons
0 10 20 30 40 50

0

0.5

1

S
pi

ke
 p

ro
ba

bi
lit

y

AL neurons

Fig. 1. Examples of patterns to classify. Each panel shows an input example for
each of the 5 classes. The patterns vary depending on noise (rows) and overlapping
degrees (columns). Although for the study we used five standard deviations for the
overlapping degrees, in this figure we only show three of them: 1, 5, 25. The X axis
represents the 50 neurons of the AL, while the Y axis represents their spike probability.

its impact on odor classification. We have three different noise degrees: low, in-
termediate and high. Therefore, we have 15 pattern configurations (overlapping
and noise degrees) and 5 classes of them. We used 100 patterns for each pattern
configuration, 20 patterns for each class. In the learning process these patterns
are divided into 5 parts, taking one as test set an the other four as training set.
This process is repeated 5 times, in order to each part can be used as test set.
Thus, the training data set has 80 patterns and test set has 20 patterns.

2.4 Synaptic Pruning Strategies

To analyze the relevance of specialist and generalist neurons for odor classifica-
tion, we have designed different synaptic pruning strategies. Synaptic pruning
refers to the process that eliminates excessive or inappropriate synapses to form
proper synaptic connections during development of neurons [6,19]. We use differ-
ent values of neural sensitivity to determine the relevance of hidden neurons [1,9]
and therefore the neurons that have to be pruned. These pruning allow us to
observe that odor classification is obtained when only neurons with a certain
odor sensitivity are able to transmit information to the output layer.

The strategies that we have designed for this study are:

– G → S: In this modality, we perform pruning by neural sensitivity, starting
with the most generalist neurons and ending with the most specialist ones.

76 A. Montero, R. Huerta, and F.B. Rodríguez

– S → G: This strategy follows the same procedure detailed above, but in
reverse.

– Random: In this case, the neurons for pruning are chosen randomly. The
pruning order, specialists or generalists, does not matter.

2.5 Threshold Selection

Heterogeneous thresholds can improve odor classification for artificial noses [5]
olfactory system models [16]. Moreover, these thresholds allow a greater vari-
ability in neuronal sensitivity and therefore a better differentiation between re-
sponses of neurons. This ensures a proper synaptic pruning, since we also used
two kind of heterogeneous thresholds: one that allows firing neurons sometimes
and another that prevents them from firing (synaptic pruning).

To select the value of these thresholds, we use the concept of limit threshold. A
limit threshold is the number of stimuli received in a neuron for a given odorant.
This represents the minimum threshold when the neuron is not activated by the
odorant. Thus, the limit threshold expression for a KC neuron j and an odorant
O is as follows:

θOj =

NAL∑
i=1

cjix
O
i ,

where neuron j spikes ∀θj , 0 ≤ θj < θOj .
For synaptic pruning, we take the maximum limit threshold for each neuron.

These thresholds prevent neural spikes, at least for the training patterns. For the
remaining thresholds, we choose the limit threshold, for each neuron, in order to
make the neuron as specialist as possible. This is because many neurons exhibit
a bimodal distribution and therefore a predilection for certain odorants.

We calculate the limit threshold matrix for the hidden layer and the neural
sensitivity for their selected thresholds before Hebbian learning is applied.

3 Results

The following averaged results for the test set were obtained by supervised learn-
ing. This process begins with the division of the patterns as explained in Pat-
terns subsection. Then, we selected the thresholds that make specialist neurons
for the training set. The sensitivity of neurons is obtained for these thresholds
and is used to sort the neurons. To determine the relevance of specialists and
generalists neurons in the framework of odor classification, we used three synap-
tic pruning strategies by using this sensitivity order (see subsection: Synaptic
pruning strategies).

We used 45 system configurations, one for each combination of the parameters
of the study: connection probability (3), overlapping (5) and noise (3); and we
ran 10 simulations for each of them. We have used pc connection probabilities
with values from 0.1 to 0.5 based on previous studies [8]. The pw value is 0.5

Neural Trade-Offs among Specialist and Generalist Neurons 77

because of its matrix is subjected to Hebbian learning [12]. The combination
of values for Hebbian probabilities that optimize the result are p+ = 0.2 and
p− = 0.1, from a wide range of analyzed combination, [0, 1] ∈ N [16,17].

3.1 Relevant Role of Specialists Neurons for Odor Classification

These results (Fig. 2) show that the best synaptic pruning starts with the most
generalist neurons to end with the most specialist ones, G → S. This is the
unique pruning strategy that minimizes the classification error. This implies
that to achieve minimum classification error the specialists are only required.

The firing rates (%) for KC neurons, observed for those points where the
error is minimized, indicate that minimum error is found for a sparse activity.
These results are consistent with the sparseness condition observed in these MB
neurons. Also, we see that the model is more robust to noise for low connectivity
probabilities, pc = 0.1, consistent with other research [8,16,17].

1 2.5 5 10 25
0

50

100
Low Noise

p c=
0.

1

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100
Intermediate Noise

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100
High Noise

%
 E

rr
or

Overlapping (std)

G−>S
S−>G
Random

1 2.5 5 10 25
0

50

100

p c=
0.

3

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100

%
 E

rr
or

Overlapping (std)

G−>S
S−>G
Random

1 2.5 5 10 25
0

50

100

p c=
0.

5

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100

%
 E

rr
or

Overlapping (std)

1 2.5 5 10 25
0

50

100

%
 E

rr
or

Overlapping (std)

G−>S
S−>G
Random

11.37 4.15 3.58 6.95

5.88 3.44 3.29
3.68

5.81 3.46 3.39
17.55

3.93

6.17
4.03

4.28

4.47 3.45

3.23

3.84 4.66

Fig. 2. Classification error for different synaptic pruning and connection
probabilities. Comparison between different synaptic pruning strategies for test sets
of odorants (5 classes), for different degrees of overlapping patterns and connection
probabilities. The values shown in some points of the error values, represent the firing
rates (%) for KC neurons where the error is minimized. For example, for low noise,
connection probability pc = 0.5 and overlapping degree std = 5, the firing rate is 3.39%.
The G → S pruning achieve the best classification error in all cases. These results show
that the model is more robust to noise for low connectivity probabilities.

78 A. Montero, R. Huerta, and F.B. Rodríguez

3.2 From an Initial Generalist Sensitivity to a Specialist Sensitivity

Once known odor classification for different synaptic pruning strategies, we won-
der whether neural sensitivity and percentage of active neurons are related to
minimum classification error.

0 1 2 3 4 5
0

50

100
std=1

Sensitivity

p c=
0.

1

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100

Degree of overlapping patterns

std=2.5

Sensitivity

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100
std=10

Sensitivity

%
 N

eu
ro

ns

Initial sensitivity
Optimal sensitivity

0 1 2 3 4 5
0

50

100

Sensitivity

p c=
0.

3

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100

Sensitivity

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100

Sensitivity
%

 N
eu

ro
ns

Initial sensitivity
Optimal sensitivity

0 1 2 3 4 5
0

50

100

Sensitivity

p c=
0.

5

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100

Sensitivity

%
 N

eu
ro

ns

0 1 2 3 4 5
0

50

100

Sensitivity

%
 N

eu
ro

ns

Initial sensitivity
Optimal sensitivity

Fig. 3. Sensitivity evolution for different configurations of G → S pruning.
Relationship between initial and optimal sensitivity for G → S pruning, low noise and
differents conditions of connection probabilities and overlapping degrees (std). These
sensitivity curves correspond to some values of the first column in Fig. 2. When the
overlapping degree and the connection probability increase, neurons become generalists.
However, in all cases, the pruning process selects specialist neurons.

In Fig. 3, we can see the sensitivity degree of neurons that achieve the mini-
mum classification error, for the G → S pruning method and low noise. These
sensitivity curves correspond to some values of the first column in Fig. 2. We
observe that when overlapping degree and connection probability increase, neu-
rons become generalists. However, in all cases, the pruning process leaves just
the specialist neurons and greatly reduces the percentage of active neurons (sen-
sitivity 0), which minimize the classification error.

4 Conclusions

The objective of this work is to investigate what is the role of specialist and
generalist neurons in the framework of odorant classification. We conclude that
the specialists neurons are critical for classification performance and that gen-
eralist neurons need to be pruned or, at least, controlled. To investigate the

Neural Trade-Offs among Specialist and Generalist Neurons 79

classification performance we used a simple model that retains the most relevant
structural properties of the olfactory system. This model focuses on the AL and
MB, where the input to single-hidden-layer neural network is the AL activity.
The other layers, hidden and output that represent the MB, are composed by
KCs and output neurons respectively. These latter layers are connected by a
connectivity matrix that implements a supervised Hebbian learning. Using pat-
terns with different overlapping degrees, we compared neuron populations with
different neural sensitivity through different synaptic pruning strategies. This
process shows how important the specialists neurons are.

We show that to achieve minimum error classification only the specialist neu-
rons are required. In this network configuration, the percentages of active neu-
rons are remarkably low which is consistent with the sparseness condition in
KCs [18,26]. Moreover, high noise conditions and connection probabilities, leads
to a lack of appropriate neurons that minimize classification error. Furthermore,
classification errors are lower when the connection probability between AL and
MB, pc is low as well, which is consistent with information maximization criteria
provided in [8].

Acknowledgments. This work was supported by the Spanish Government
project TIN2010-19607 and predoctoral research grant BES-2011-049274. R.H.
acknowledges partial support by NIDCD-R01DC011422-01.

References

1. Augasta, M.G., Kathirvalavakumar, T.: A novel pruning algorithm for optimizing
feedforward neural network of classification problems. Neural Process Lett. 34,
241–258 (2011)

2. Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for under-
standing decision making through integration of basic learning rules. The Journal
of Neuroscience 33(13), 5686–5697 (2013)

3. Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S.: Classical conditioning of pro-
boscis extension in honeybees (apis mellifera). J. Comp. Psychol. 97(2), 107–119
(1983)

4. Christensen, T.A.: Making scents out of spatial and temporal codes in specialist
and generalist olfactory networks. Chem. Senses 30, 283–284 (2005)

5. Doleman, B.J., Lewis, N.S.: Comparison of odour detection thresholds and odour
discriminablities of a conducting polymer composite electronic nose versus mam-
malian olfaction. Sensors and Actuators B 72, 41–50 (2001)

6. Meilijson, I., Chechick, G., Ruppin, E.: Neuronal regulation: A mechanism for
synaptic pruning during brain maturation. Neural Comput. 11(8), 2061–2080
(1999)

7. Galizia, C.G., McIlwrath, S.L., Menzel, R.: A digital 3D atlas of the honeybee
antennal lobe based on optical sections acquired using confocal micoscropy. Cell
Tissue Res. 295, 383–394 (1999)

8. Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory
systems. J. Comput. Neurosci. 15, 5–17 (2003)

80 A. Montero, R. Huerta, and F.B. Rodríguez

9. Tan, A., Zhu, Z., Rong, H., Ong, Y.: A fast pruned-extreme learning machine for
classification problem. Neurocomputing 72, 359–366 (2008)

10. Huerta, R.: Learning pattern recognition and decision making in the insect brain.
AIP Conference Proceedings 1510, 101 (2013)

11. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.:
Learning classification in the olfactory system of insects. Neural Comput. 16,
1601–1640 (2004)

12. Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: Ex-
plorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)

13. Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., Strausfeld, N.J.: The
organization of extrinsic neurons and their implications in the functional roles of the
mushroom bodies in Drosophila melanogaster Meigen. Drosophila Melanogaster
Meigen 5, 52–77 (1998)

14. Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and com-
monalities. Nature Reviews Neuroscience 11, 188–200 (2010)

15. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the
glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

16. Montero, A., Huerta, R., Rodríguez, F.B.: Neuron threshold variability in an olfac-
tory model improves odorant discrimination. In: Ferrández Vicente, J.M., Álvarez
Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part
I. LNCS, vol. 7930, pp. 16–25. Springer, Heidelberg (2013)

17. Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists
by neural variability improves pattern recognition performance. In: Neurocomput-
ing (submitted 2014)

18. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent,
G.: Oscillations and sparsening of odor representations in the mushroom body.
Science 297(5580), 359–365 (2002)

19. Reed, R.: Pruning algorithms - a survey. IEEE Transactions on Neural Net-
works 4(5), 740–747 (1993)

20. Rodríguez, F.B., Huerta, R.: Techniques for temporal detection of neural sensitivity
to external stimulation. Biol. Cybern. 100(4), 289–297 (2009)

21. Rodríguez, F.B., Huerta, R., Aylwin, M.: Neural sensitivity to odorants in deprived
and normal olfactory bulbs. PLoS ONE 8(4) (2013)

22. Rubin, J.E., Katz, L.C.: Optical imaging of odorant representations in the mam-
malian olfactory bulb. J. Neurophysiol. 23, 449–511 (1999)

23. Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network
conditions in early sensory coding. PLoS Computational Biology 9(7) (2013)

24. Smith, B.H., Wright, G.A., Daly, K.C.: Learning-based recognition and discrimina-
tion of floral odors. In: Dudareva, N., Pichersky, E. (eds.) Biology of Floral Scent,
ch. 12, pp. 263–295. CRC Press (2005)

25. Stopfer, M., Jayaraman, V., Laurent, G.: Intensity versus identity coding in an
olfactory system. Neuron 39, 991–1004 (2003)

26. Strube-Bloss, M.F., Nawrot, M.P., Menzel, R.: Mushroom body output neurons
encode odor-reward associations. J. Neurosci. 31(8), 3129–3140 (2011)

27. Wilson, R.I., Turner, G.C., Laurent, G.: Transformation of olfactory representa-
tions in the drosophila antennal lobe. Science 303(5656), 366–370 (2004)

28. Zavada, A., Buckley, C.L., Martinez, D., Rospars, J.-P., Nowotny, T.: Competition-
based model of pheromone component ratio detection in the moth. PLoS One 6(2),
e16308 (2011)

Classification of Events in Switch Machines

Using Bayes, Fuzzy Logic System and Neural
Network

Eduardo Aguiar1, Fernando Nogueira1, Renan Amaral1, Diego Fabri2,
Sérgio Rossignoli2, José Geraldo Ferreira2, Marley Vellasco3,
Ricardo Tanscheit3, Moisés Ribeiro1, and Pedro Vellasco4

1 Federal University of Juiz de Fora
Industrial and Mechanical Engineering Department and Electrical Engineering

Post-Graduation Program, Juiz de Fora/MG, Brazil
2 MRS Loǵıstica S.A.

Juiz de Fora/MG, Brazil
3 Pontifical Catholic University of Rio de Janeiro

Electrical Engineering Department, Rio de Janeiro/RJ, Brazil
4 State University of Rio de Janeiro

Civil Engineering Department, Rio de Janeiro/RJ, Brazil

Abstract. The Railroad Switch denotes a set of parts in concordance
with two lines in order to allow the passage of railway vehicles from
one line to another. The Switch Machines are equipments used for han-
dling Railroad Switches. Among all possible defects that can occur in a
electromechanical Switch Machine, this work emphasizes the three main
ones: the defect related to lack of lubrication, the defect related to lack of
adjustment and the defect related to some component of Switch Machine.
In addition, this work includes the normal operation of these equipments.
The proposal in question makes use of real data provided by a company
of the railway sector. Observing these four events, it is proposed the use
of Signal Processing and Computational Intelligence techniques to clas-
sify the mentioned events, generating benefits that will be discussed and
thus providing solutions for the company to reach the top of operational
excellence.

Keywords: Classification, Switch Machine, Bayes, Fuzzy Logic System,
Neural Networks.

1 Introduction

This work proposes the development of a methodology based on Signal Process-
ing and Computational Intelligence (CI) techniques for monitoring Switch Ma-
chine (SM), where the database is real and provided by the MRS Loǵıstica S.A.
(https://www.mrs.com.br/). Currently there is a multi-year project that aims
to increase the number of sensorized SMs in the field and attempts to cover 100
% of SMs from the company (currently there are 624 units). With the increase

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 81–91, 2014.
c© Springer International Publishing Switzerland 2014

https://www.mrs.com.br/

82 E. Aguiar et al.

in the number of sensorized units, it becomes vitally important the improvement
of fault detection systems, mostly with the focus on predictive maintenance.

Thus, this paper aims to compare the performance of three classifiers based
on Bayes, Fuzzy Logic System and Neural Networks which will be the basis of a
monitoring system based on CI, which, through the existing knowledge base in
MRS Loǵıstica SA, will be able to classify failures through remote monitoring of
the current from the motor of the SM present in the field. Therefore, this would
make it possible to reduce the impact on the operation of trains and in the
number of cyclical preventive maintenance, give the fact that interventions shall
be carried out only when deviations are observed in the equipment, identifying
potential points of failure and also indicate what type of failure occurred in the
asset. The problem of classification be widely discussed in the literature, such
as [1,2]. Furthermore, classification techniques has been applied on railway area
in works like [3,4]. It is important to emphasize the absence of applications that
aims to classify events in Switch Machines.

In this work it will be assessed the performance of three classifiers: Bayes
Classifier [2], based on Maximum Likelihood (ML) criterion, other based on
type-1 and singleton Fuzzy Logic System (FLS) [5] and finally one based on a
Multilayer Perceptron (MLP) Neural Netork [6].

2 Problem Formulation

Let x a vector of sample signal with N elements. Figure 1 shows the paradigm
used for the classification of events. The block “Feature Extraction” is responsi-
ble for extracting features (parameters), so that later there may be a selection of
features. Note that pl, pa, pc and pn refer respectively to the vector of features
extracted events called lubrication, adjustment, component and normal opera-
tion. Finally, after obtaining the feature vector, the block“Classification”applies
one of the classification techniques to be presented to obtain the output vector
s, thereby deciding the type of present event in the input vector x.

Each block and their characteristics will be presented in following sections.
As a result, the classification of events in the component x can be formulated
as a simple decision between hypotheses related to the occurrence of the events
covered in this work, as shown below:

Hx,0 : x = xlub,

Hx,1 : x = xadj ,

Hx,2 : x = xcomp,

Hx,3 : x = xnorm.

(1)

The vectors xlub, xadj , xcomp and xnorm denotes the lubrication, adjustment,
component and normal operation, respectively. It is possible to occur each of the
four events mentioned, through isolated form. The approach consists in designing
a classifier for each event.

Classification of Events in Switch Machines 83

Feature

Extraction

Classification

Classification

Classification

Classification

x

pl

pa

pc

pn

s

Fig. 1. Block diagram of the scheme for classification of events

2.1 Feature Extraction Based on Higher-Order Statistics (HOS)

Some contributions as [7], related to problems of detection, classification and
identification of disturbances in electrical systems, showed significant results ob-
tained through the use HOS. This is because HOS based techniques are better
suited to non-Gaussian processes and nonlinear systems, when compared to using
second-order statistics.

Considering a sequence {z[n]}, such that E {z[n]} = 0. According to [8], the
cumulants of the second, third and fourth order can be calculated, respectively,
from the following equations (2), (3) and (4).

c2,z[i] = E {z[n]z[n+ i]} , (2)

c3,z[i] = E
{
z[n]z2[n+ i]

}
, (3)

and

c4,z[i] = E
{
z[n]z3[n+ i]

}− 3c2,z[i]c2,z[0], (4)

where E{·} denotes the expected value operator and i is the ith lag.
Assuming that {z[n]} is an L-length sequence. Thus, the equations (2) - (4)

can be stochastically approximated, respectively, by the following equations (5),
(6) and (7).

ĉ2,z[i] ∼= 2

L

L/2−1∑
n=0

z[n]z[n+ i], (5)

84 E. Aguiar et al.

ĉ3,z[i] ∼= 2

L

L/2−1∑
n=0

z[n]z2[n+ i], (6)

and

ĉ4,z[i] ∼= 2

L

L/2−1∑
n=0

z[n]z3[n+ i]−

− 12

L2

L/2−1∑
n=0

z[n]z[n+ i]

L/2−1∑
n=0

z2[n], (7)

where i = 0, 1, ..., L/2− 1.
An alternative way to calculate the cumulants can be expressed by [9]

c̃2,z[i] ∼= 1

L

L−1∑
n=0

z[n]z [mod(n+ i, L)] (8)

c̃3,z[i] ∼= 1

L

L−1∑
n=0

z[n]z2 [mod(n+ i, L)] (9)

and

c̃4,z[i] ∼= 1

L

L−1∑
n=0

z[n]z3 [mod(n+ i, L)]

− 3

L2

L−1∑
n=0

z[n]z [mod(n+ i, L)]
L−1∑
n=0

z2[n], (10)

where i = 0, 1, ..., L− 1 and mod(·) is the modulus operator.
Thus, for each s is obtained a feature vector given by

pH = [ĉ T
2,z c̃ T

2,z ĉ T
3,z c̃ T

3,z ĉ T
4,z c̃ T

4,z]
T , H = 0, 1, (11)

where H = 0 is the class without disturbance, while H = 1 is a class with
disturbance, ĉ2,z = [ĉ2,z(0), · · · , ĉ2,z(L/2−1)]T , c̃2,z = [c̃2,z(0), · · · , c̃2,z(L−1)]T ,
ĉ3,z = [ĉ3,z(0), · · · , ĉ3,z(L/2 − 1)]T , c̃3,z = [c̃3,z(0), · · · , c̃3,z(L − 1)]T , ĉ4,z =
[ĉ4,z(0), · · · , ĉ4,z(L/2− 1)]T and c̃4,z = [c̃4,z(0), · · · , c̃4,z(L − 1)]T .

2.2 Feature Selection Technique Based on Fisher’s Discriminant
Ratio (FDR)

The feature selection aims to indicate the Kp in order to form the vector pH,
with 9L

2 length. This makes the complexity of the classifier is quite low. This step
is performed only during the design process of classifiers. Recent works, such as
[7], have used the Fisher’s discriminant ratio (FDR) for feature selection.

Classification of Events in Switch Machines 85

In this work we have used the FDR because it is simple and also provides
satisfactory results. Its calculation, for a problem involving only two distinct
classes is defined in [2] by

FFDR = Λμ0,μ1Λ
−1
σ , (12)

where Λσ = diag{σ2
0,0 + σ2

1,0, σ
2
0,1 + σ2

1,1, . . . , σ
2
0, 9L2 −1

+ σ2
1, 9L2 −1

} is a diago-

nal matrix composed by the vector covariance associated with each class and
Λμ0,μ1 = diag{(μ0,0 − μ1,0)

2, (μ0,1 − μ1,1)
2, . . . , (μ0, 9L2 −1 − μ1, 9L2 −1)

2} is the di-

agonal matrix composed by their average vectors.
vFDR ∈ R

9L
2 ×1 is a vector composed by elements from the main diagonal

from FFDR, such that vFDR(0) ≥ vFDR(1) ≥ . . . ≥ vFDR(
9L
2 − 1), then Kp

selected features correspond to Kp first elements of the vector vFDR are selected
as features to constitute the vectors pl, pa, pc or pn.

2.3 Classifiers

A simplified description of the used classifiers are presented below.

Bayes Classifier. Consider a vector xp ∈ R
Kp×1 to be classified among two

hypotheses or classes H0 e H1, formed by Kp parameters pH, selected from
Equation (12). This vector x has probability a priori, to be classified into one
of two classes, given by P (H0) and P (H1). The conditional probability density
function is denoted by p (x|H0) and p (x|H1). Then, according to [2], Bayes rule
provides

P (H0|x) = p(x|H0)P (H0)

p(x)
(13)

and

P (H1|x) = p(x|H1)P (H1)

p(x)
, (14)

Assume now that the probability a priori of occurs both classes are equal,
ie, P (H0) = P (H1) = 1/2 and, the probability density function has a Gaussian
distribution. So, one has that:

∣∣∑
0

∣∣ 12 e− 1
2 (x−µ1)

TΣ−1
1 (x−µ1)∣∣∑

1

∣∣ 12 e− 1
2 (x−µ0)

TΣ−1
0 (x−µ0)

� 1 (15)

It is observed in (15), that the proposed classifier is based on the ML criterion
and, given a vector x, the determination of which class it corresponds depends
on the result of this inequality.

86 E. Aguiar et al.

Type-1 and Singleton Fuzzy Logic System. Assuming the choice for sin-
gleton fuzzification, max-product composition, product implication and height
defuzzifier and leaving open the choice of membership function, is simple to show
that the output of the type-1 and singleton Fuzzy Logic System [5] is defined by
equation (16)

y(x) = fs(x)

=

∑M
l=1 θl

∏Kp
k=1 μ

Fl
k
(xk)

∑
M
l=1

∏Kp
k=1 μ

Fl
k
(xk)

,
(16)

where x ∈ R is the vector constituted by the features extracted from the vector
x and θl is the weight associated with l-th rule, l = 1, . . . ,M . Note that the
use of subscript “s” on fs(x) remits that this is a type-1 and singleton FLS.
Knowing that t-norms is a product operator and each μF l

k
(xk) can be assumed

as a Gaussian membership function, then

μF l
k
(xk) = exp

⎧⎨⎩−1

2

(
xk −mF l

k

σF l
k

)2
⎫⎬⎭ , (17)

where mF l
k
and σ2

F l
k

denotes the mean and variance, respectively.

For designed FLS, it was decided to make use of the training algorithm called
Backpropagation. Given a set of input-output pairs (x(q) : y(q)), it is aimed
to establish a solution that leads to an optimal setting for such sets, with the
backing of the cost function, which is expressed by [5]

J(w(q)) =
1

2

[
fs(x

(q))− y(q)
]2

, (18)

is minimized. The minimization of the cost function results in

mF l
k
(q + 1) = mF l

k
(q)− αm

[
fs(x

(q))− y(q)
]×[

θl (q)− fs(x
(q))
] [

x
(q)
k −m

Fl
k
(q)

]

σ2

Fl
k

(q)
φl(x

(q)),
(19)

θl(q + 1) = θl(q)− αθl(q)

[
fs(x

(q))− y(q)
]
φl(x

(q)), (20)

and
σF l

k
(q + 1) = σF l

k
(q)− ασ

[
fs(x

(q))− y(q)
]×

[
θl (q)− fs(x

(q))
] [

x
(q)
k −m

Fl
k
(q)

]2

σ3

Fl
k

(q)
φl(x

(q)).
(21)

MLP Neural Network Classifier. Given the vectors xp,i, with i = 1, 2, ..., Nx

samples, constituted by Kp extracted features from vectors px,i, then the

Classification of Events in Switch Machines 87

equations of a MLP neural network withKp inputs, one hidden layer and one
output layer, are the following:

si = AT

[
xp,i

1

]
(22)

qi = ϕ(si), (23)

and

yrn,i = BT

[
qi

1

]
, (24)

where A ∈ R
(Kp+1)×Nq and B ∈ R

(Kp+1)×1 are the weights matrix between
the input and hidden/ intermediate layers and between the hidden/intermediate
and output layers, respectively; yrn,i is the output of the MLP neural network
associated to the vector xp,i.

In turn, ϕ(·) is a monotonically increasing transfer function and that this work
will be taken as the hyperbolic tangent. Thus, Equation (23) can be rewritten
as follows:

qi = tanh(si). (25)

Concatenating the column vectors of the matrices A and B is obtained the
weight vector given by

w = [aT bT]T , (26)

where aT and bT is the concatenation of column vectors of the matrices A and
B, respectivally. The optimal vector w, given by (wo), can be obtained by

wo = min
w

J(w), (27)

where

J(w) =
1

2Nx

Nx∑
i=1

(yrn(i)− yd(i))
2

(28)

is the cost function to be minimized and yd(i) is the ith desired output
of the MLP neural network. Note that yd(i) = 1 means that the parameter
vector xp,i is associated with the occurrence of the event. On the other hand,
yd(i) = −1 states that the parameter vector xp,i is associated with the absence
of event.

Among several training methods available in the literature for obtaining
wo, in this work we opted for Levenberg-Marquardt (LM) [10]. A detailed de-
scription of the LM algortith for training the MLP Neural Network is presented
in [11].

88 E. Aguiar et al.

3 Experimental Results

The data provided by MRS Loǵıstica S.A. are coming from the signature of SM.
The current [A] of Switch Machine was acquired through industrial data col-

lector, with sampling rate of 100 Hz for a period of 2 seconds, totaling 200
samples. This time is sufficient for the equipment perform their duties. Figure 2
exemplifies samples acquired from the signal. Despite this list of combinations of
events not be complete, note that it is representative to illustrate the complexity
of the problem of classification of events and provide an excellent interpretation
of the trouble by the maintenance team.

The acquired signals refer to the following types of classes: Defect due to lack
of lubrication, lack of adjustment, defect in some mechanical component and
normal operation of the SM. Originally, the database containing the signals to
be classified were unbalanced. This occurrence is due to the greater incidence
of normal operation, since the SM is in a satisfactory state of operation. The
original data from lubrication, adjustment and component were balanced aimed
at numerical equality with the database constituted by signals of normal op-
eration. Additionally, were removed outliers from incorrect analysis (erroneous
values) taken by specialist of MRS Loǵıstica S.A., when the database was gener-
ated. Upon completion, thus, is available 1376 signals for each of the four classes
proposed. Such signals can be viewed in Figure 2.

0 100 200
0

5

10

15

20

25
Lubrication

C
ur

re
nt

 [A
]

Samples
0 100 200

0

5

10

15

20
Adjustment

C
ur

re
nt

 [A
]

Samples

0 100 200
0

5

10

15

20

25
Component

C
ur

re
nt

 [A
]

Samples
0 100 200

0

5

10

15

20
Normal Operation

C
ur

re
nt

 [A
]

Samples

Fig. 2. Signals referring to used classes

The parameters of the type-1 and singleton FLS are as follows: M = 4 (two
rules for class that has the presence of the event and two rules for the class that
does not have the presence of the event); Kp = 3, since the FDR was used to
select the feature vector of lower dimensionality possible for the classification

Classification of Events in Switch Machines 89

problem. The initialization of the parameters from membership functions was
previously defined heuristically from the calculation of means and variances of
the coefficients of feature vectors.

The MLP Neural Network has Kp = 3 inputs, Nq = 1 hidden layer with two
processors and 1 output layer with one processor.

Additionally, for the simulations of the type-1 and singleton FLS and MLP
Neural Network, it was considered 100 epochs for training algorithm and applied
cross-validation. For type-1 and singleton FLS, in order to obtain the results to be
presented, it was decided to divide the data equally for obtaining the training and
test sets. Since we have 400 samples for each of the three parameters extracted,
is obtained therefrom 200 samples for the training set and 200 samples for the
test set. For the MLP Neural Network, it was opted for the use of a validation set
and the division of the data was taken as follows: from a total of 400 samples,
note that 200 samples were used for training, 100 for validation and 100 for
testing. Also, it was opted for check the error for 6 epochs of training, in order
to implement early stopping if the error increase. It is important to worth that
other simulations were performed in order to ensure that the results obtained
can be reached again.

3.1 Analysis of Performance and Convergence

The results obtained for the classifiers based on type-1 and singleton FLS and
MLP Neural Network are shown in Tables 1 and 2, respectively. The final results
from comparison between the techniques are shown in Table 3, which is portrayed
the performance during the test of the proposed techniques. The efficiency ρ of
each classifier is the product of the performances obtained for all events.

Table 1. Performance in (%) of the classifier based on the type-1 and singleton FLS

Fuzzy

Events Training Test

Lubrication 100,0 100,0
Adjustment 97,5 97,5
Component 98,5 98,5

Normal Operation 99,5 99,5

Table 2. Performance in (%) of the classifier based on MLP Neural Network

MLP Neural Network

Events Training Validation Test

Lubrication 99,6 100,0 100,0
Adjustment 100,0 100,0 100,0
Component 99,6 98,3 98,3

Normal Operation 100,0 100,0 100,0

90 E. Aguiar et al.

Table 3. Comparative performance in (%) of the classifiers adopted during the test
phase

Comparison Between Proposed Methods

Events Bayes Fuzzy MLP

Lubrication 94,5 100,0 100,0
Adjustment 98,0 97,5 100,0
Component 99,0 98,5 98,3

Normal Operation 98,5 99,5 100,0

Efficiency (ρ) 97,5 98,9 99,6

4 Conclusions

This paper discussed the use of Pattern Recognition and Computational Intelli-
gence (CI) techniques to classify defects in SM. The extracted features by EOS
and selected features by FDR are relevant and have contributed to a reduction
of dimensionality of the data to be presented for the proposed classifiers.

The computational results obtained from real data show that the MLP Neu-
ral Network has better convergence and performance compared to the Bayes
classifier and type-1 and singleton FLS. It is noteworthy that the performance
of Bayes classifier is slightly inferior to the other classifiers. However, the said
classifier proves to be an attractive option due to the mathematical simplicity,
even having the lowest efficiency among the presented proposals.

The next activities are aimed at creating and implementing a real-time appli-
cation, to be integrated into the existing SM supervision system in the company
MRS Loǵıstica S.A..

Acknowledgments. The authors would like to thank MRS Loǵıstica S.A. for
providing financial support.

References

1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons,
New York (2001)

2. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San
Diego (1999)

3. Shao, W., Bouzerdoum, A., Phung, S.L., Su, L., Indraratna, B., Rujikiatkamjorn,
C.: Automatic Classification of Ground-Penetrating-Radar Signals for Railway-
Ballast Assessment. IEEE Trans. on Geoscience and Remote Sensing 49(10), 3961–
3972 (2011)

4. Feng, H., Jiang, Z., Xie, F., Yang, P., Shi, J., Chen, L.: Automatic Fastener Classi-
fication and Defect Detection in Vision-Based Railway Inspection Systems. IEEE
Trans. on Instrumentation and Measurement 63(4), 877–888 (2014)

5. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Prentice Hall PTR (2001)

Classification of Events in Switch Machines 91

6. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall (1999)
7. de Aguiar, E.P., Marques, C.A.G., Duque, C.A., Ribeiro, M.V.: Signal decomposi-

tion with reduced complexity for classification of isolated and multiple disturbances
in electric signals. IEEE Trans. on Power Delivery 24(4), 2459–2460 (2009)

8. Mendel, J.M.: Tutorial on higher-order statistics (spectra) in signal processing
and system theory: theoretical results and some applications. Proceedings of the
IEEE 79(3), 278–305 (1991)

9. Ribeiro, M.V., Marques, C.G., Cerqueira, A.S., Duque, C.A., Pereira, J.L.R.: De-
tection of Disturbances in Voltage Signals for Power Quality Analysis Using HOS.
EURASIP Journal on Advances in Signal Processing, 13–15 (2007)

10. Hagan, M.T., Menhaj, M.-B.: Training feedforward networks with the Marquardt
algorithm. IEEE Trans. on Neural Networks. 5(6), 989–993 (1994)

11. Finschi, L.: An Implementation of the Levenberg-Marquardt Algorithm. ETH
Zurich - Institute for Operations Research (1994)

An Accurate Flood Forecasting Model Using

Wireless Sensor Networks and Chaos Theory:
A Case Study with Real WSN Deployment

in Brazil

Gustavo Furquim1, Rodrigo Mello1, Gustavo Pessin2, Bruno S. Faiçal1,
Eduardo M. Mendiondo3, and Jó Ueyama1

1 Institute of Mathematics and Computer Science (ICMC)
University of São Paulo (USP) - São Carlos, SP, Brazil
{gafurquim,mello,bsfaical,joueyama}@icmc.usp.br

2 Vale Institute of Technology
Belém, PA, Brazil

gustavo.pessin@itv.org
3 Sao Carlos School of Engineering (EESC)

University of Sao Paulo (USP).
University of São Paulo (USP) - São Carlos, SP, Brazil

emm@sc.usp.br

Abstract. Monitoring natural environments is a challenging task on
account of their hostile features. The use of wireless sensor networks
(WSN) for data collection is a viable method since these domains lack any
infrastructure. Further studies are required to handle the data collected
to provide a better modeling of behavior and make it possible to forecast
impending disasters. These factors have led to this paper which conducts
an analysis of the use of data gathered from urban rivers to forecast
future flooding with a view to reducing the damage they cause. The data
were collected by means of a WSN in São Carlos, São Paulo State, Brazil
and were handled by employing the Immersion Theorem. The WSN were
deployed by our group in the city of São Carlos due to numerous problems
with floods. After discovering the data interdependence, artificial neural
networks were employed to establish more accurate forecasting models.

Keywords: Wireless Sensor Network, Machine Learning, Time series
Analysis, Chaos Theory, Modeling, Prediction.

1 Introduction

Natural disasters, such as landslides, serious floods, fires, volcanic eruptions and
the damage they cause, are global problems, which incur a heavy cost in terms
of human lives and financial losses. Every year about 102 million people around
the world are affected by the problem of flooding and it is expected that this
number will increase in the years ahead. The regions that suffer most from floods,
are developing countries and urban areas [1]. These are the characteristics of

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 92–102, 2014.
c© Springer International Publishing Switzerland 2014

An Accurate Flood Forecasting Model Using WSN and Chaos Theory 93

São Carlos in Brazil where the local climate has been altered by pollution, which
has destroyed the eco-system.

Wireless sensor networks are a beneficial means of carrying out the monitor-
ing of urban rivers and other natural environments since they have a number of
attractive features: low cost, particularly with regard to infrastructure, low en-
ergy consumption, the provision of access to inhospitable surroundings, the fact
that they are simple to install and high-precision sensors are employed which
are adaptable to environmental change [2], [3]. A WSN called REDE has been
constructed and deployed by our group in the town of São Carlos. This was de-
veloped by the Institute of Mathematical Sciences and Computing, University of
Sao Paulo (USP) and integrates the e-NOE project (WSN for monitoring urban
rivers) which aims to carry out the monitoring of urban rivers [3], [4]. To date,
our WSN system is only capable of detecting floods when it has already taken
place. Hence, we are now keen to enable it to predict floods before it has taken
place, which is one of the aims of this paper. By doing so, we can ensure that
the population at risk are evacuated before the floods. This measure can help us
to reduce the problems arising from floods.

The nodes of the REDE system provide measurements of the water pressure
at the bottom of the river by converting this value into centimeters to describe
height. These values are collected at regular time intervals and can thus describe
the height of the river over a period of time. This analysis of a temporal series
makes it possible to study, model and predict systems with these features. On
the basis of this analysis, the time series can be defined as data that is collated in
terms of observable variables over a period of time [5], [6] or in other words, the
time series is an orderly sequence of observations collected at regular intervals.
Thus the data collected by the REDE system constitutes a time series which,
therefore, can be studied in the light of the concepts from Time Series Analysis.
This paper is based on the assumption that there is a temporal relationship
among the observations of the level of the river. This means that the value of
an observation at a current instant, depends to some extent on past values.
This paper seeks to determine how to find out this temporal relationship, as
well as to model and forecast the level of the rivers. In achieving this end, it
employs tools that originate from the Time Series Analysis or more precisely,
the sub-area of Chaos Theory. In this research, we employed Chaos Theory to
help in the unfolding of the time series. The unfolding techniques are employed
to find different behavior which can not be observed while viewing it in fewer
dimensions. In this sense, the problem of flooding might not be chaotic itself
although the chaos theory helps in the understanding of the time series behavior.

One of the main results from this sub-area is the Immersion Theorem put
forward by Takens [7] which allows the temporal series to be reconstructed in
vectors with m values (m is the designated embedded dimension). Each of these
values corresponds to an observation spaced out in intervals in accordance with
a time delay or separation dimension called τ . As several studies have shown,
these vectors represent the interdependent relations among observations that in-
crease the accuracy of the modeling and hence the prediction of the time series.

94 G. Furquim et al.

For example, when considering a time series X = (x−β, ..., x−1, x0) observed
in the period of time [-β, 0], where -β < 0, each vector that is reconstructed
by the Immersion Theorem corresponds to I = (x−τ×(m−1), ..., x2×τ , x0). Af-
ter obtaining those vectors, modeling techniques can be employed that allow
the observations to be related over a period of time and thus forecasting to be
carried out. Hence, before obtaining these vectors, it is necessary to estimate
values for the embedded dimension (m) and for separation dimension (τ). Fur-
ther details are given in Section 3. After the reconstruction of the time series has
been undertaken by means of Takens’ Immersion Theorem [7], machine learning
techniques such as Artificial Neural Networks (ANN), Support Vector Machines
(SVM), or even a combination of several techniques can be used to model the
data and thus lead to forecasting at a higher degree of accuracy. The Multilayer
Perceptron (MLP) [8] technique from the artificial neural network was employed
in this paper to carry out the forecasting, owing to the good results obtained
in the predictions when this was used together with the data gathered by the
WSNs in the urban rivers [9].

The remainder of this paper is divided as follows: Section 2 examines some
related studies that employ the Chaos Theory, WSNs or include flood forecast-
ing. In Section 3, the tools of the Chaos Theory and the Immersion Theorem
are explained in greater detail. Section 4 outlines the proposed method and de-
scribes the WSN that is used, the handling of the data and the artificial neural
network used in this study. This work ends with an analysis of the results ob-
tained (Section 5) followed by the conclusion and considerations on future work
(Section 6).

2 Related Works

Seal [2] presents a flood forecast scheme using a hybrid approach (centralized and
distributed) for WSNs to rivers. The WSN architecture consists of several sensors
collecting data combined with processor nodes, where the forecast algorithm is
implemented, and centers of manually operated monitoring, which implement the
redundancy by comparing the real situation and the forecast and initiates the
evacuation procedures. The data flow is, basically: data collection, calculation
of the coefficient for regression, coefficient update for regression, sending the
results and then informing community. The forecast model uses robust linear
regression, being independent of the number of parameters. Besides the results,
Seal [2] shows other related studies, making clear the applicability of WSNs to
collect data for flood forecasting.

In [10] an architeture to monitor and predict slope disaster is proposed. This
architeture is based on WSNs and mobile communication to transmit warnings,
indicating areas with the possibility of disasters. The main elements of the ar-
chiteture are: (i) Mobile user site, implementing the user interface, (2) Hillslopes
monitoring sensor site, the WSN physical implementation, (3) Integrated service
server, providing services like network integration and (4) Intelligent hillslopes
decision system, which predict the hillslopes degree of hazard. The model user

An Accurate Flood Forecasting Model Using WSN and Chaos Theory 95

Analytic Network Process (ANP) to predict the danger degree and has an accu-
racy of 88,33%.

Ishii [5] proposes an online prediction approach to support data access opti-
mization on distributed systems. The data acquisition about processes was built
using the Unix DLSym library and transformed into multidimensional time se-
ries. Time series were then analyzed to evaluate the best model to make predic-
tions. As result, Chaos Theory tools were used to unfold data and the Radial
Basis Function (RBF) neural network was used to model time series.

3 Chaos Theory Concepts

Takens [7] observed that a time series x0, x1, ..., xn−1 can be reconstructed in a
multidimensional space xn(m, τ) = (xn, xn+τ , ..., xn+(m−1)τ), also called time-
delay coordinate space, wherem is the embedded dimension and τ represents the
time delay (or separation dimension). This mapping or reconstruction technique
allows to transform dynamical system observations (or rule outputs) in a set of
points in an m-dimensional Euclidean space. This reconstruction supports the
obtainment of dynamical systems rules, consequently simplifying the study of
behaviors and their usage under different circumstances, such as the study of
orbits, tendencies and prediction [11].

To better understand the embedded (number of dimensions) and separa-
tion (time delay) dimensions, consider the Logistic map outputs, previously ap-
proached, reconstructed in a multidimensional space where m = 2 and τ = 1,
which results in pairs of points (xt, xt+1) (Figure 1 (b)). After the reconstruc-
tion, the Logistic map behavior, which behaved as random walk (Figure 1 (a)),
can be studied, understood and modeled in a simpler way. After making a data
regression, we can obtain the dynamic system rule and, therefore, we are able
to understand transitions, estimate and predict observations. Having such rule
and an initial xt, we can, for example, define the next series observation, xt+1,
which feeds the approach back and generates xt+2, and, thus, consecutively.

(a) (b)

Fig. 1. (a) Logistic map outputs – First 100 observations and (b) observations of the
reconstructed Logistic map (embedded dimension 2 and separation 1)

96 G. Furquim et al.

The embedded dimension basically defines the number of axis for the time-
delay coordinate space. This determines the number of dimensions necessary to
unfold the reconstructed series. In this case, the series required two dimensions,
others may need more. This behavior is, for example, observed in the Lorenz at-
tractor which requires three dimensions [12]. Besides the embedded dimension,
there is still the separation one, which supports the extraction of the periodicity
of series behavior. This dimension informs the time delay of historical observa-
tions to be modeled and analyzed in order to predict future events (it basically
allows to points out how far we should go to obtain cause-consequence relation-
ships in the series). The embedded and separation dimensions support the study
of series, however, we need to find those dimensions for any series, including
the ones generated by experimental data. According to Fraser and Swinney [13],
the Auto-Mutual Information technique (AMI) presents better results when es-
timating the separation dimension. To obtain the series separation, one employs
AMI under different time delays. Afterwards, one plots a curve in function of
time delays (starting at 1 and incrementing) and considers the first minimum
as main candidate for the separation dimension [14]. Besides that is a good can-
didate, one should also consider other separation dimension values and observe
the characteristics of the time-delay coordinate space obtained.

After defining the separation dimension, we must find the the embedded one.
Kennel [15] proposed the False Nearest Neighbors method (FNN) to estimate
the embedded dimension. This method computes the closest neighbors for every
data point in the time-delay coordinate space, starting with embedded dimension
equals to 1. Afterwards, a new dimension is added and the distance among the
closest neighbors is again calculated. When this distance increases, data points
are considered False Nearest Neighbors, what makes evident the need of more
dimensions to unfold the series behavior [14]. After defining both dimensions, we
employ the Immersion Theorem by Takens [7], as previously presented, where the
time series x0, x1, ..., xn−1 is reconstructed in a multidimensional space, or time-
delay coordinate space, xn(m, τ) = (xn, xn+τ , ..., xn+(m−1)τ) (the component m
represents the embedded dimension, this is, the number of dimensions to unfold
the series, and τ is the separation, this is, the time delay to consider historical
observations). The reconstruction unfolds the dynamical system, what allows to
obtain the rule. After this unfolding, one can model the system using different
approaches, ranging from artificial neural networks to numeric methods.

4 Methods of Flood Forecasting

As stated in the previous sections, our main concern is to conduct an investiga-
tion into the use of Chaos Theory tools, with regard to data gathered from rivers
by means of WSNs. In this way, this work attempts to improve the accuracy of
forecasting through the use of machine learning techniques, more precisely by
artificial neural networks. The WSN installed in the town of São Carlos, Brazil
comprises: (i) sensors 1, 2 and 3 which provide measurements of the pressure at
the bottom of the river and converts this value into the height as centimeters

An Accurate Flood Forecasting Model Using WSN and Chaos Theory 97

(ii) a router capable of increasing the communication distance and allowing the
sensors to be positioned in a wider area and (iii) a base station that picks up
the information from several sensors and allows a better analysis of the data to
be conducted. As well as measuring the height of the river level, the sensor 3 is
equipped with a photographic camera which makes visual information available
about the river conditions. In this paper, data was collected by Sensor 1 dur-
ing a period of one month (from 10/01/2013 to 10/31/2013), at intervals of 5
minutes between the measurements. The behavior of the river level is illustrated
in Figure 2, where time is described in a day:hour:minute format. The required
outcome (following the data handling, and modeling of the system through the
Multilayer Perceptron artificial neural network) is the level of the river in the
next instants.

Fig. 2. Level of the river during March 2013

Adopting this approach, the first stage is to calculate the Auto-Mutual In-
formation technique (AMI) to determine the value of the separation dimension
(time delay τ). As proposed in [16], one should select the first minimum of this
graph from left to right as the separation dimension, which is τ = 21. How-
ever, as observed in other studies [15], [14], when AMI slightly reduces as the
separation dimension increases, a good attempt for the separation dimension
would be τ = 1. In this work, we consider both values for τ in order to pro-
vide different immersions and verify the best. After computing the separation
dimension, the next stage is to estimate the embedded dimension (m) through
the False Nearest Neighbors (FNN) method [15]. According to this method, the
embedded dimension is selected when fraction of false neighbors is equal to zero,
however this is very hard to obtain for real-world data, as it may contain noise.
In noisy scenarios, we can select the number of dimensions in which the fraction
of false neighbors becomes less than 30% as presented in [17]. Figure 3 shows
the results of FNN when considering τ = 1 (a) and τ = 21 (b), in which the
x-axis corresponds to embedded dimensions and the y-axis is related to the frac-
tion of false neighbors. Thus, we selected m=4 when τ = 1 and m=11 when τ
= 21. Greater values can be considered for the embedded dimension, however,

98 G. Furquim et al.

according to Kennel [15], this will not have much influence because once the
behavior of the time series has unfolded, it can be understood and studied. Af-
ter the reconstruction of the series, the Multilayer Perceptron implemented in
WEKA [18] was employed to model it. We set parameters as learning rate =
0.3, 2 hidden layers with 3 neurons each when m=4 and τ = 1 and 5 hidden
layers with 10 neurons each when m=11 when τ = 21 and performed tests using
cross-validation. Parameters employed to build the ANN were the default values
obtained from WEKA. Section 5 presents the experimental results.

(a) (b)

Fig. 3. Percentage of false neighbors for the river level, considering (a) τ = 1 and (b)
τ = 21

5 Results and Discussion

Table 1 shows the mean squared error and the coefficient of determination (R2)
obtained when τ = 1 with m = 4 and τ = 21 with m = 11. The mean squared
error and the coefficient of determination were used because they help to de-
termine the model quality. It can be confirmed that the mean squared error
obtained by means of τ = 21 and m = 11 is more than 6 times greater than the
mean squared error with τ = 1 and m = 4 as parameters for the unfolding. The
coefficient of determination also confirms the better results for τ = 1 and m =
4. Through these experiments, it can be observed that, since the datasets have
been obtained from a real environment that is subject to noise, the Auto-Mutual
Information only estimates what are good values for the separation dimension.
However, other minimum points and the value of τ = 1 must be regarded as
options.

Figures 4 and 5 show the behavioral pattern of the river during the month of
March (red line) and the values predicted by MLP when trained with the data
(green line). It can be seen that in Figure 4 where the values for τ = 1 and
m = 4 are shown, for the most part, the lines are overlapping, which suggest
that the predicted values are closer than expected. In Figure 5, in which τ = 11
with m = 21 are employed, the lines end up being divergent, particularly at the
peaks which are important regions because they show instants where there is a
possibility of flooding.

An Accurate Flood Forecasting Model Using WSN and Chaos Theory 99

Table 1. Multilayer Perceptron: mean squared error

MLP mean squared error (cm2) Coefficient of determination

m = 1 and τ = 4 1.5732 0.9618

m = 11 and τ = 21 9.4761 0.1687

Fig. 4. Expected river level and predicted river level for τ = 1 and m = 4

Fig. 5. Expected river level and predicted river level for τ = 11 and m = 21

Considering the best results achieved with τ = 1 and m = 4, we applied a
recursive prediction using this parametrization. These experiments used values
previously predicted to feed the model and estimate the next six time instants,
i.e., river levels. For example, considering x0, x1 and x2 the measured river levels
at the instants t0, t1 and t2, where t0 < t1 < t2, and p3 the value predicted by
the MLP for the next instant t3. We used x1, x2 and p3 to predict the value of
the river level at the instant t4, in other words, p4. Then, x2, p3 and p4 were used
in the next prediction and so on. Table 2 shows the mean squared error and the
coefficient of determination (R2) obtained for each step of recursive prediction.

100 G. Furquim et al.

Table 2. Recursive Prediction using Multilayer Perceptron: mean squared error

Prediction Second Third Fourth Fifth Sixth

MLP mean squared error (cm2) 24.6471 28.326 29.669 29.4479 32.1645

Coefficient of determination 0.3174 0.2198 0.1633 0.137 0.0995

6 Conclusion and Future Works

In this paper, a study has been carried out on the use of Takens’ Immersion
Theorem [7] in the preprocessing of collected data from urban rivers by means
of WSNs and subsequently, the handling of these data for flood prediction by
using artificial neural networks. The data collected were analyzed as a time
series and the preprocessing was carried out with the aim of determining the
interdependence of the data in the series. This procedure enabled a simpler
model to be devised which had greater accuracy in forecasting.

Two values for the separation dimension (τ = 1 and τ = 21) were evaluated
and on the basis of this, the values for the embedded dimension were calculated
as follows: m = 4 (for τ = 1) and m = 11 (for τ = 21). The mean squared
error value was used as a criterion for models evaluation. The use of values from
the separation dimension as being 1 and the embedded dimension as being 4,
obtained better results particularly in the peak regions where there is a greater
risk of floods. This fact can be explained by the noise that is found in the data
gathered from real-world. Other minimum points found by the Auto-Mutual
Information should be taken into account in future studies, as well as techniques
that are able to reduce the noise that is encountered in this kind of time series.
As expected, despite the increased mean squared error in recursive prediction,
we can consider that 32.1645 cm2 (or 5.6714 cm) error in the sixth prediction
(approximately 30 minutes after the last reading) indicates that good results can
be achieved using the model created in a recursively manner.

In future work we intend to broaden our examination of the machine learning
techniques that can be used on the preprocessed data to model the system. In
addition, readings from other sensors in the REDE system (Sensor 2 and 3) were
not used and might contain information that could improve the accuracy of the
forecasting. Moreover, a rain gauge has been incorporated in the REDE system
and is currently undergoing tests which will allow it to collect data about the
rainfall in the region. A study that applies the Immersion Theorem for a set
of data formed of both the readings of the sensors and the readings of the rain
gauge would be of great interest and could lead to more precise models being
devised. In future, we also seek to embed this prediction model in the sensors
and thus make it possible to take action in a more independent way in extreme
situations, such as a breakdown in communication or the destruction of nodes.
In making this integration, the low consumption of energy of each node should
be taken into account and is a factor requiring further study.

An Accurate Flood Forecasting Model Using WSN and Chaos Theory 101

Acknowledgments. The authors would like to acknowledge the financial sup-
port granted by FAPESP, process ID 2012/22550-0 and RNP (National Research
Network) - CIA2-RIO.

References

1. de Freitas, C.M., Ximenes, E.F.: Floods and public health – a review of the recent
scientific literature on the causes, consequences and responses to prevention and
mitigation. Ciência e Saúde Coletiva 17, 1601–1616 (2012)

2. Seal, V., Raha, A., Maity, S., Mitra, S.K., Mukherjee, A., Naskar, M.K.: A sim-
ple flood forecasting scheme using wireless sensor networks. CoRR abs/1203.2511
(2012)

3. Ueyama, J., Hughes, D., Man, K.L., Guan, S., Matthys, N., Horre, W., Michiels,
S., Huygens, C., Joosen, W.: Applying a multi-paradigm approach to implementing
wireless sensor network based river monitoring. In: 2010 First ACIS International
Symposium on Cryptography and Network Security, Data Mining and Knowledge
Discovery, E-Commerce & Its Applications and Embedded Systems (CDEE),
pp. 187–191 (October 2010)

4. Hughes, D., Ueyama, J., Mendiondo, E., Matthys, N., Horré, W., Michiels, S.,
Huygens, C., Joosen, W., Man, K., Guan, S.-U.: A middleware platform to support
river monitoring using wireless sensor networks. Journal of the Brazilian Computer
Society 17(2), 85–102 (2011)

5. Ishii, R.P., de Mello, R.F.: An online data access prediction and optimization ap-
proach for distributed systems. IEEE Transactions on Parallel and Distributed
Systems 23(6), 1017–1029 (2012)

6. Mello, R.: Improving the performance and accuracy of time series modeling based
on autonomic computing systems. Journal of Ambient Intelligence and Humanized
Computing 2(1), 11–33 (2011)

7. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-
S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in
Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981)

8. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall
PTR, Upper Saddle River (1998)

9. Furquim, G., Neto, F., Pessin, G., Ueyama, J., Clara, M., Mendiondo, E.M., Souza,
P., Dimitrova, D., Braun, T.: Combining wireless sensor networks and machine
learning for flash flood nowcasting. Int. Workshop on Bio and Intelligent Comput-
ing (2014)

10. C.-I. Wu, H.-Y. Kung, C.-H. Chen, and L.-C. Kuo, “An intelligent slope disaster
prediction and monitoring system based on wsn and anp,” Expert Systems with
Applications, 2014.

11. Alligood, K., Sauer, T., Yorke, J.: Chaos: An Introduction to Dynamical Systems.
New York, NY (1997)

12. Lorenz, E.N.: Deterministic Nonperiodic Flow.. Journal of Atmospheric Sci-
ences 20, 130–148 (1963)

13. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from
mutual information. Physical Review A 33, 1134–1140 (1986)

14. Mello, R., Yang, L.: Prediction of dynamical, nonlinear, and unstable process be-
havior. The Journal of Supercomputing 49(1), 22–41 (2009)

102 G. Furquim et al.

15. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension
for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45,
3403–3411 (1992)

16. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of
observed chaotic data in physical systems. Rev. Mod. Phys. 65 (1993)

17. Liebert, W., Pawelzik, K., Schuster, H.G.: Optimal embeddings of chaotic attrac-
tors from topological considerations. Europhysics Letters 14 (1991)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. (2009)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 103–112, 2014.
© Springer International Publishing Switzerland 2014

Regenerative Braking Control Strategy for Hybrid
and Electric Vehicles Using Artificial Neural Networks

Sanketh S. Shetty1 and Orkun Karabasoglu2,3,*

1 Department of Electrical Engineering, IIT Roorkee, Roorkee,
247 667 Uttarakhand, India

2 Department of Electrical and Computer Engineering
Sun Yat-Sen University - Carnegie Mellon University

(SYSU-CMU) Joint Institute of Engineering, Pittsburgh, PA, USA
3 SYSU-CMU Shunde International Joint Research Institute, Guangdong, China

sankyuee@iitr.ernet.in, karabasoglu@cmu.edu

Abstract. One of the fundamental advantages of hybrid and electric vehicles
compared to conventional vehicles is the regenerative braking mechanism.
Some portion of the kinetic energy of the vehicle can be recovered during
regenerative braking by using the electric drive system as a generator with the
appropriate control strategy. The control requires distribution of the brake
forces between front and rear axles of the vehicle and also between regenerative
braking and frictional braking. In this paper, we propose solving the optimal
brake force distribution problem using an Artificial Neural Network based
methodology in order to maximize the available energy for recovery while
following the rules for stability. Using the proposed approach, we find that for
urban driving pattern, UDDS, up to 37 % of the total energy demand can be
recovered. Then we compare the amount of recovered energy for different
driving cycles and show that aggressive driving reduces recoverable energy up
to 7%. An increase in the energy recovery rate directly translates into
improvements in fuel economy and reductions in emissions.

Keywords: Regenerative braking, artificial neural networks, brake force
distribution, electric vehicle.

1 Introduction

In a conventional, internal combustion (IC) engine powered vehicle, the power flow
occurs from the IC engine towards the wheels via a transmission system. The
mechanical energy that is produced is used up to overcome aerodynamic drag, rolling
resistance, frictional forces and to accelerate the vehicle [1]. These are all unavoidable
components of energy expenditure. In the case of braking or deceleration of the
vehicle, the kinetic energy of the vehicle that was built up during acceleration phase
has to be reduced in order to reduce the speed of the vehicle. However since there is
no mechanism in place to convert this kinetic energy into some other form to store
away, all of the energy gets dissipated in the form of heat via the friction brakes. This

* Corresponding author.

104 S.S. Shetty and O. Karabasoglu

energy is lost and additional fuel needs to be burnt when the vehicle needs to
accelerate again. In urban environments, where vehicles are subjected to intermittent
start-stop motion, this effect is even worse due to the higher frequency of application
of brakes [2]. The problem is the inability of the conventional vehicle to recover
energy while braking. This ultimately leads to low fuel economy and has negative
economic implications especially given the size of transportation sector.

Electrified vehicles on the other hand, including hybrid, plug-in hybrid and battery
electric vehicles, offer one fundamental advantage in this front. Through appropriate
control strategy, the electric motor that drives the wheels can be used as a generator
[3] that provides braking torque when the brakes are applied and also regenerates
energy by converting the kinetic energy of the vehicle back into electrical energy
which is then stored in the batteries. This technique can save considerable amount of
energy increasing the fuel economy by reducing energy consumption and helps
reduce emission of greenhouse gases [4].

Therefore to satisfy the features of regenerative braking as well as safety
requirements, the brake system must provide a braking force that is a controllable
combination of motor torque as well as mechanical frictional force. There are many
architectures for achieving this [5], while the simplest one being parallel hybrid
braking architecture [6].

Braking control strategy has two parts to it: (1) distribution of brake force between
electric motor torque and mechanical friction forces, (2) distribution of forces to the
front wheels and to the rear wheels (Section 2.1). In existing literature, this problem
has been approached by using fuzzy logic in [7], [8] and [9] or designing specific
solutions for a particular drive cycle like in [6]. Compared to the simple ANN model
proposed in this paper that can solve the aforementioned problem, fuzzy logic is much
more dependent on the membership functions one chooses to model. Designing
specific solutions is not effective due to the variations in driving patterns. In this
paper, we propose solving this distribution problem using an artificial neural network
model in order to maximize the available energy for recovery while following the
rules for stability. The ANN model is used on standard drive cycles [12] to get a
quantitative estimate of available energy for recovery and comparison is provided. In
the next section, we introduce the proposed methodology and then follow with the
results and finally discuss conclusions.

2 Methodology

2.1 Problem Definition

Braking theory and design principle of conventional vehicle using frictional
mechanism have been well established [6], which emphasizes distribution of total
braking force on the front and rear wheels in order to obtain short braking distance
and prevent the rear wheel being locked earlier than the front wheel locked in order to
maintain the vehicle directional stability. Further, in an electric powertrain, we not
only have to distribute brake forces between the front and rear axles but also between
mechanical friction braking and electrical regenerative braking.

In this paper, we consider a hypothetical vehicle powertrain with the following
parameters [6] in order make quantitative estimates about braking power. There are
many architectures for the braking system [5]. In this paper we employ a parallel

 Regenerative Braking Control Strategy for Hybrid and Electric Vehicles 105

hybrid braking system because it has a simple structure and control. It retains the
mechanical brake and adds electric regenerative brake on the front wheels. The
electric motor that drives the front wheels, also applies brake torque directly through
the front axle. Mechanical brake system consists of brake pedal and friction brakes
and it requires a decoupling of the mechanical hydraulic connection between the
brake pedal and the friction brake so that both the mechanical and the electrical
brakes can be parallely applied [10].

Table 1. Vehicle parameters used in this paper [6]

Parameters Symbol Unit Value

Vehicle mass M Kg 1500
Rolling resistance coefficient Fr 0.01
Aerodynamic drag coefficient Cd 0.3
Front area A m2 2.2
Wheel base L m 2.7
Gravity center height hg m 0.6
Distance of gravity center to rear wheel center Lb m 1.89
Distance of gravity center to front wheel center La m 0.81

This way, the total braking force on the front wheels are just an addition of the

individual braking forces. ܨ ௕௙ ൌ ܨ ௙௠௘௖௛ ൅ ௥௘௚௘௡ (1)ܨ

where ܨ ௕௙ is the total braking force on front wheels, ܨ ௙௠௘௖௛ is the friction braking force on front wheels, and ܨ௥௘௚௘௡ is the regenerative electrical braking force on the front wheels.

Also, from the vehicle dynamics we have a few results: ܨ ௧௢௧௔௟ ൌ ௕௙ܨ ൅ ௕௥ (2)ܨ

where ܨ ௧௢௧௔௟ is the total braking force acting on the vehicle, ܨ௕௙ is the total braking force on the front wheels and ܨ௕௥ is the total braking force on the rear wheels.
Also, for stability we have the below ratio [6], ܨ௕௙ܨ௕௥ ൌ ௕ܮ ൅ ݆݃ כ ݄௚ܮ௔ െ ݆݃ כ ݄௚ (3)

where ݆ is the deceleration value,
 ݃ is the acceleration due to gravity.

From these conditions, we have an ideal distribution of braking force between the
front and rear axle so that both the axles lock simultaneously is plotted by varying the
deceleration parameter from 0 to 1.2 ݃.

106 S.S. Shetty and O. Karabasoglu

Fig. 1. Ideal brake distribution curve obtained from Eq (3)

Regenerative braking force ܨ௥௘௚௘௡ can be given as follows: ܨ௥௘௚௘௡ ൌ ܭ כ ௕௙ (4)ܨ

where ܭ is defined as the portion of the front wheel braking force that is regenerative
braking. Here, we consider ܭ to be a function of deceleration ݆ and velocity of the
vehicle. And ܭ can take the value between 0 and 1.

Further, ܨ௕௙ is a portion of ܨ ௧௢௧௔௟ and this portion is a function of deceleration
(define it as ߔ) ܨ௕௙ ൌ ߔ כ ܨ ௧௢௧௔௟ (5)

Where (From (2) and (3)), ߔ ൌ ଵଵାಽ್శ ೕ೒כ೓೒ಽೌషೕ೒כ೓೒

Therefore we have, ܨ௥௘௚௘௡ ൌ ܭ כ ߔ כ ܨ ௧௢௧௔௟ (6)

Multiplying equation (6) both sides by velocity v, we get,

௥ܲ௘௚௘௡ ൌ ܭ כ ߔ כ ܯ כ ݆ כ (7) ݒ

௥ܲ௘௚௘௡ ൌ ܭ כ ܯ כ ݆ כ ݒ
1 ൅ ௕ܮ ൅ ݆݃ כ ݄௚ܮ௔ െ ݆݃ כ ݄௚

(8)

0 5000 10000 15000
0

500

1000

1500

2000

2500

3000

front braking force (N)

re
ar

 b
ra

ki
ng

 f
or

ce
 (

N
)

 Regenerative Braking Control Strategy for Hybrid and Electric Vehicles 107

2.2 Applying Artificial Neural Networks

Artificial neural networks can be used to model non-linear equations successfully
[11]. As it can be seen from Eq. (8), the brake force distribution is a non-linear
function dependent on many parameters such as deceleration, velocity, and K
function. We have considered modeling the K function using a neural network. In
this paper we have used the MATLAB neural network toolbox for this purpose using
deceleration and velocity as input parameters and the value of K as the output.
Constraints are applied on maximum ௥ܲ௘௚௘௡to generate training data for the neural
network as described in section 2.3. Table 2 describes the architecture of the ANN
model and the properties of the algorithm used.

Fig. 2. The neural network model used in MATLAB

Fig. 2 shows the pictorial representation of the neural network architecture. W
stands for weights vector and b stands for bias of the neuron. It has a 2x1 input vector
with one neuron in the hidden layer with the sigmoid activation function and one in
the output layer with a linear activation function. It gives the K function value as the
only output. Single hidden neuron is found to be enough to represent the complexity
of the system after some trial and error.

Table 2. Parameters for neural network model

Parameter Value

Hidden Layer Size 1
Input Layer Size 2
Output Layer Size 1
Division of Data for Training 70/100
Division of Data for Validation 15/100
Division of Data for Testing 15/100
Training algorithm Levenberg-Marquardt
Minimum Gradient 1.00e-05

2.3 Generating Training Data

From the Eq. (7), we have a definition for the K function. In order to train the neural
network with input-output data, we use the following rules to generate data which
maximizes the energy available for recovery. Here let us assume that the

108 S.S. Shetty and O. Karabasoglu

generator/motor is rated at 10 kW and has a maximum torque capability to support
maximum deceleration, therefore the rules will be as follows:

1. Calculate ܭ, for different data points (i.e, deceleration , velocity data pairs) ܭ ൌ 10000/ሺܯ כ ݆ כ ݒ כ ሻߔ
2. If value of ܭ is beyond the limit (i.e, 1 < ܭ), then it should be reset to 1, this

means that we are including all available power below 10 kW
3. If value of ܭ turns out to be less than 1, then ܭ is set to that value for that

data pair.
4. From this we get a K function that can be constructed using a neural network

model with inputs as deceleration and velocity.

Next, the data generated is used to train the artificial neural network in section 2.4

2.4 Training and Application

We used the MATLAB neural network toolbox[13] to train the artificial neural
network Table 3 shows the training results for various drive cycles.

Table 3. Results of training for different drive cycles

Drive cycles Epoch (iterations) Gradient Performance
(Mean square error)

Best validation
performance

US_06 7 6.70e-06 0.00884 0.006652
US_06_HWY 7 3.12e-06 0.00410 0.002383
UDDS 9 5.87e-06 0.00064 0.001096

It can be seen that even a simple neural network model with a single neuron in the

hidden layer can give us remarkable results in terms of final gradient after training. A
gradient close to zero implies that the fitting error is very close to the minimum possible.

3 Results and Discussion

3.1 K Function Generation

Using neural network approach, a K function is generated and plotted using the
deceleration and velocity data points from multiple drive cycle data such as UDDS,
HWFET and US06. In the Figures 3, 4 and 5 we have velocity (in ms-1) on the X axis,
deceleration (in ms-2) on the Y axis and the K function on the Z axis.

Fig 3 shows the K function map for the US06 drive cycle. It can be seen that the value
of K function is 1 when the acceleration and velocity are closer to 0. This means that the
entire braking torque on the front wheel is primarily regenerative braking torque. As we
move to regions of higher velocity and deceleration, the value of K decreases in a
hyperbolic fashion, this shows that the ratio of regenerative braking torque to the entire
torque being applied to the front wheels has decreased and a considerable portion is
friction torque. This shows that the motor is operating as a generator at its rated power
and excess power is dissipated as heat. Similarly, Fig. 4 shows the K function map for the
UDDS drive cycle and Fig. 5 shows the K function map for the US06HWY drive cycle.

 Regenerative Br

Fig. 3. K

Fig. 4

raking Control Strategy for Hybrid and Electric Vehicles

K function for drive cycle CYC_US06 [12]

4. K function for drive cycle CYC_UDDC

109

110 S.S. Shetty and O. Ka

These K function maps
distribution has potential to
in real world application, w
rules in Section 2.3 and
distribution. Since the err
examples (gradient close to
brake force distribution.

Fig. 5. K

3.2 Result of Calculatin

Recoverable energy is cal
respective K function map
Table 4, there is a lot of
Another point to notice is
very much on how the veh
force distribution.

Ta

Drive cycle data used Total
per dr

CYC_US06 8.117
CYC_US06_HWY 5.358
CYC_ UDDS 5.129

arabasoglu

when used with respective drive cycles for brake fo
o recover a lot of energy as shown in section 3.2. Therefo
whatever the drive cycle is, data can be generated using

K function map can be generated for the brake fo
or in the ANN algorithm is very small in each of
o 0), the K function is very reliable to be applied for

K function for drive cycle CYC_US06 HWY

ng Recoverable Energy

lculated for each of the different drive cycle data w
s. Table 4 shows the results. As it can be seen from
energy (around 30 %) that can be potentially recover
that the amount of energy that can be recovered depe

hicle is driven although the same logic is applied for br

able 4. Results for various drive cycles

Energy spent
rive cycle [kJ]

Recoverable Energy with
regenerative braking
 (using ANN) [kJ]

Recoverable ener
percentage of tota
energy spent [%]

7 2.378 29.3
8 1.817 33.9
9 1.882 36.7

orce
fore,

the
orce

the
the

with
the

red.
ends
rake

rgy
al

 Regenerative Braking Control Strategy for Hybrid and Electric Vehicles 111

This gives us more confidence that when the brake force distribution is applied to
vehicles driven in urban areas with intermittent start-stop motion, for example the
UDDS cycle, the percentage of energy recovery is considerably high. So any similar
urban drive cycles will give us similar results with recoverable energy in the order of
35 % which is a huge saving in energy. This would result in lesser energy needed for
commutation and decrease the size of battery required as expected.

4 Conclusions and Future Work

In this paper, a neural network based approach is introduced to determine the optimal
brake force distribution between friction-regenerative and rear-front axle of an
electrified vehicle powertrain. The percentage of energy recoverable varies for
different drive cycles. For urban drive cycle such as UDDS, it was found that with the
proposed approach around 37 % of the energy could be recovered per cycle while for
an aggressive driving cycle such as US-06 the rate remains at 29%. An effective
control system to recover energy will help improve fuel economy, reduce emissions
and increase extended range for electric vehicles.

Though in this paper we have considered the parameters of deceleration and
velocity to construct a K function model, there are many additional parameters to
consider in practical applications such as the temperature of motor and state of
charge for the battery system. Using a similar approach that is proposed in this paper,
a more complex neural network model including these input parameters has the
potential to perform well for the aforementioned objectives as well as safety of
vehicle operation.

References

1. Shakouri, P., Ordys, A., Askari, M., Laila, D.S.: Longitudinal vehicle dynamics using
Simulink/Matlab. In: UKACC International Conference on Control 2010, September 7-10,
pp. 1–6 (2010), doi:10.1049/ic.2010.0410

2. Lintern, M.A., Chen, R., Carroll, S., Walsh, C.: Simulation study on the measured
difference in fuel consumption between real-world driving and ECE-15 of a hybrid electric
vehicle. In: Hybrid and Electric Vehicles Conference 2013 (HEVC 2013), November 6-7,
pp. 1–6. IET (2013)

3. Cao, B., Bai, Z., Zhang, W.: Research on control for regenerative braking of electric
vehicle. In: IEEE International Conference on Vehicular Electronics and Safety, October
14-16, pp. 92–97 (2005), doi:10.1109/ICVES.2005.1563620

4. Ortmeyer, T.H., Pillay, P.: Transportation sector technology energy use and GHG
emissions. In: 2002 IEEE Power Engineering Society Summer Meeting, July 25-25, vol. 1,
pp. 34–35 (2002), doi:10.1109/PESS.2002.1043173

5. Mutoh, N., Hayano, Y., Yahagi, H., Takita, K.: Electric Braking Control Methods for
Electric Vehicles With Independently Driven Front and Rear Wheels. IEEE Transactions
on Industrial Electronics 54(2), 1168–1176 (2007), doi:10.1109/TIE.2007.892731

6. Gao, Y., Chu, L., Ehsani, M.: Design and Control Principles of Hybrid Braking System for
EV, HEV and FCV. In: IEEE Vehicle Power and Propulsion Conference, VPPC 2007,
September 9-12, pp. 384–391 (2007)

112 S.S. Shetty and O. Karabasoglu

7. Xu, G., Li, W., Xu, K., Song, Z.: An Intelligent Regenerative Braking Strategy for Electric
Vehicles. . Energies 2011 4, 1461–1477 (2011)

8. Jing-Ming, Z., Bao-Yu, S., Shu-Mei, C., Dian-Bo, R.: Fuzzy Logic Approach to
Regenerative Braking System. In: International Conference on Intelligent Human-Machine
Systems and Cybernetics, IHMSC 2009, August 26-27, vol. 1, pp. 451–454 (2009)

9. Bathaee, S.M.T., Gastaj, A.H., Emami, S.R., Mohammadian, M.: A fuzzy-based
supervisory robust control for parallel hybrid electric vehicles. In: 2005 IEEE Conference
on Vehicle Power and Propulsion, September 7-9, p. 7 (2005)

10. Zeng, X., Ba, T., Wang, Q., Qu, X., Song, D.: A kind of accurately Optimized braking
energy distribution strategy applied to switched Series-parallel Hybrid Electric Bus. In:
2011 2nd International Conference on Artificial Intelligence, Management Science and
Electronic Commerce (AIMSEC), August 8-10, pp. 3634–3637 (2011)

11. Li, G., Zeng, Z.: A Neural-Network Algorithm for Solving Nonlinear Equation Systems.
In: International Conference on Computational Intelligence and Security, CIS 2008,
December 13-17, vol. 1, pp. 20–23 (2008), doi:10.1109/CIS.2008.65

12. National Renewable Energy Laboratory. ADVISOR Documentation, [EB/OL] (2001-01-
19) [2005-04-15], http://www.ctts.nrel.gov/analysis/

13. Neural Network Toolbox [MathWorks MATLAB],
http://www.mathworks.com/products/neural-network/

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 113–122, 2014.
© Springer International Publishing Switzerland 2014

Automatic Screening and Classification of Diabetic
Retinopathy Fundus Images

Sarni Suhaila Rahim, Vasile Palade, James Shuttleworth, and Chrisina Jayne

Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry,
CV1 5FB United Kingdom

rahims3@uni.coventry.ac.uk
{vasile.palade,csx239,ab1527}@coventry.ac.uk

Abstract. Eye screening is essential for the early detection and treatment of the
diabetic retinopathy. This paper presents an automatic screening system for
diabetic retinopathy to be used in the field of retinal ophthalmology. The paper
first explores the existing systems and applications related to diabetic
retinopathy screening and detection methods that have been previously reported
in the literature. The proposed ophthalmic decision support system consists of
an automatic acquisition, screening and classification of diabetic retinopathy
fundus images, which will assist in the detection and management of the
diabetic retinopathy. The developed system contains four main parts, namely
the image acquisition, the image preprocessing, the feature extraction, and the
classification by using several machine learning techniques.

Keywords: Diabetic Retinopathy, Eye Screening, Eye Fundus Images, Image
Processing, Classifiers.

1 Introduction

Screening is defined as testing on a population in order to identify individuals
exhibiting attributes that could be early symptoms or indicators of predisposition
associated with a particular condition. Screening is used to maximise the chances of
any individual overcoming the threat or danger indicated by such attributes (Taylor
and Batey, 2012).

The main purpose of diabetic retinopathy screening is to detect whether the
individuals require follow up or referral for further treatment to prevent blindness
(Taylor and Batey, 2012). Besides this main purpose, there are other purposes for
diabetic retinopathy screening, which include: identifying the disease at an early
stage; possibly detecting a requirement for blood pressure and blood sugar treatment;
to educate the population on the diabetic retinopathy causes and on the ways to reduce
the retinopathy risk; and, additionally, to potentially identify non-diabetic conditions
through the screening process.

Diabetes Mellitus (DM) is a major public health concern, as it leads to an
increasing number of acute and chronic complications, including sight-threatening
conditions. Diabetic Retinopathy (DR) is one of the chronic complications of

114 S.S. Rahim et al.

diabetes, and it is a microvascular complication of both insulin dependent (type 1) and
non-insulin dependent (type 2) diabetes. DR is a complication of DM that damages
blood vessels inside the retina at the back of the eye. Wild and co-workers (2004)
revealed that the global prevalence of diabetes mellitus in 2000 was approximately
2.8% (171 million diabetics) and projected this to rise to 4.4% (366 million diabetics)
in 2030. According to Taylor and Batey (2012), one major problem is that the diabetic
eye disease does not interfere with sight until it reaches an advanced stage. Laser
treatment can save sight, but only if it is used at an early stage and, hence, regular
screening is essential. This shows the importance of regular screening, which can help
detect the diabetic patients at an early stage of DR. Furthermore, earlier identification
of any retinopathy can allow change in blood pressure or blood glucose management
to slow the rate of the disease progression.

2 Existing Systems

There currently are several developed systems to detect and diagnose diabetic
retinopathy (DR), and most of these existing systems are somewhat related to the
proposed system and can be used as a benchmark. Diabetic retinopathy screening is
a popular research area and a lot of researchers focus on and contribute towards the
advancement of study in this area.

Some of them focused on finding and proposing an accurate technique or method
for detecting certain features of DR fundus images, such as microaneurysms,
hemorrhages and neovascularisation. An automated grading system with image
processing methods that detect two DR features, which are the dot hemorrhages and
microaneurysms, was developed by Larsen and colleagues (2002). Jelinek and others
(2006) developed an effective tool for detecting microaneurysms, in order to identify
the DR presence in rural optometric practices. A comparison of the automated system
used with optometric and ophthalmologic assessment was performed by calculating
the sensitivity and specificity of both methods.

Nonetheless, there are some researches that report the development of automated
systems for detecting DR by classifying DR into general detection categories, such as
normal (no apparent retinopathy) or abnormal (retinopathy presence). Also, there are
other classification systems that provide more details about the retinopathy stages,
which include normal, non-proliferative diabetic retinopathy (NPDR) and
proliferative diabetic retinopathy (PDR). Priya and Aruna (2011) investigated and
proposed a computer-based system for identifying normal, NPDR and PDR classes.
The proposed system uses colour fundus images, where the features are extracted
from the raw image with image processing techniques and fed to a Support Vector
Machine (SVM) for classification. The system has been later enhanced by using two
types of classifiers, a Probabilistic Neural Network (PNN) and a Support Vector
Machine (Priya and Aruna, 2012). The classifiers are described in detail and their
performances are compared. As a conclusion, it is shown that, from the results
obtained, the SVM model is more effective compared to the PNN. Priya and Aruna
(2013) proposed and compared three models, i.e., a Bayesian classifier while

 Automatic Screening and Classification of Diabetic Retinopathy Fundus Images 115

maintaining the PNN and the SVM in the developed system. Experimental results
show that the SVM outperforms all other models and this proves, once again, that the
SVM is a great choice to use in detecting and classifying DR categories. The
detection of the DR disease and the classification with the help of Radial Basis
Function Neural Network (RBFNN) method has been proposed in (Priya et al, 2013).
However, the experimental results show that the accuracy of the proposed system is
relatively low, (76.25%), and it is recommended that this method could be improved
by finding more relevant features and by combining with other classification methods,
in order to improve the accuracy rate. The Aravind Diabetic Retinopathy Screening
(ADRES) 3.0, developed and presented by Permalsamy and colleagues (2007), is a
software for reading and grading the DR. This simple tool is used to assist in the
detection of the DR and it is offered as a supplementary checking method to an usual
clinical examination by an ophthalmologist. Philip et al. (2007) presented a study on
the efficiency of the manual versus automated “disease” or “no disease” grading
systems against the reference standard.

3 Proposed System

In this paper, an automatic classification and screening of diabetic retinopathy (DR)
using fundus images is presented. A combination of normal and DR affected fundus
images from a public database, i.e., the Standard Diabetic Retinopathy Database
Calibration Level 0 (DIARETDB0), have been used for the evaluation of the
proposed system. The database consists of 130 colour fundus images, of which 20 are
normal and 110 contain signs of diabetic retinopathy (hard exudates, soft exudates,
microaneurysms, hemorrhages and neovascularisation). The original images, which
are of size 1500 x 1152 in PNG format, were captured with a 50 degree field-of-view
digital fundus cameras with unknown camera settings (Kauppi et al, 2006). The
proposed screening system has been developed using open source software, OpenCV
(Open Source Computer Vision) and Microsoft Visual C++ 2010. The OpenCV
environment, developed by Willow Garage, is a programming library offered for real
time computer vision (Itseez, 2014). OpenCV includes a collection of standardised
image analysis and machine vision algorithms for use by developers. Most work in
the area has used tools such as Matlab and SPSS for feature extraction and analysis,
but by using OpenCV it is possible to build more efficient systems, with processing
times suitable for use in real situations. Using OpenCV also simplifies the distribution
of software due to permissive licensing, and it lowers the cost of development, use
and maintenance because there are no purchase or licensing fees. Finally, OpenCV is
portable, meaning that any machine that can run C can, most likely, also run OpenCV.
OpenCV has been used on Windows, Linux, MacOS and Android, for example.

The proposed system starts with the image acquisition process, where the system
will select images for further processing. The selected images will undergo
preprocessing in order to improve the image contrast as well as perform other
enhancements. After that, the preprocessed images will be used to extract a number
of features, such as the area, the mean and the standard deviation of on pixels.

116 S.S. Rahim et al.

Four nonlinear classifiers,
classifier, and two suppo
polynomial function kernel
an optimal way to classif
prediction phase, where the
images are classified into tw

The remainder of this pa
preprocessing stage followe
Section 6 describes the non
the system and, finally, Se
plan.

Figure 1 presents the bl
screening and classificatio
discussed in more detail in t

Fig. 1. Block diagram of th
retinopathy

4 Image Preproce

Preprocessing is the proce
image characteristics/featur
preprocessing techniques in
Adaptive Histogram Equ
Morphological Operations.

, namely a binary decision tree, a k-nearest neighb
ort vector machines, using radial basis function
s, respectively, are then trained on the training data to f
fy images into their respective classes. Finally, in
e system might ultimately be used to help the clinician,
wo main groups: normal or DR.
aper is organised as follows. Section 4 describes the im
ed by Section 5, which explains the feature extraction p

nlinear classification, while Section 7 presents the result
ection 8 details the conclusions of the work and a fut

lock diagram of the proposed system for automating
on of the diabetic retinopathy. Individual stages will
the following sections.

he proposed automatic screening and classification of diab

essing

ess of image data improvement, where enhancing so
res for the next processing part takes place. The im
nvolved in the present work include Greyscale Conversi
ualisation, Discrete Wavelet Transform, Filtering

bour
and
find
the
the

mage
part.
s of
ture

the
l be

betic

ome
mage

ion,
and

 Automatic Screening and Classification of Diabetic Retinopathy Fundus Images 117

4.1 Greyscale Conversion

The first preprocessing technique used is converting the colour fundus image into a
greyscale image, as greyscale is usually the ideal format for image processing. A
greyscale image is an image where each pixel holds a single value, only the pixel
intensity information. It is also known as “black and white” image. The intensity is
calculated by using a common formula combination of 30% of red, 59% of green and
11% of blue.

4.2 Adaptive Histogram Equalisation

Adaptive Histogram Equalisation (AHE) is a computer image processing technique
for improving the image’s contrast. The difference between the adaptive histogram
equalisation and the ordinary histogram equalisation is that the adaptive histogram
equalisation computes several histograms, for different sections of the image, and
subsequently distributes the lightness values. This technique is used to improve the
local contrast and bringing out more details of the image. However, the adaptive
histogram equalisation has limitations, as it produces over-amplification of noise in
the homogeneous regions of an image. Therefore, the Contrast Limited Adaptive
Histogram Equalisation (CLAHE) is used in the proposed system in order to prevent
the overamplification of noise. CLAHE functions by clipping the histogram at the
predefined value before computing the cumulative distribution function.

4.3 Discrete Wavelet Transform

Discrete wavelet transform is the discrete variant of the wavelet transform. The
discrete wavelet transform is an O(N) algorithm and it is also often referred to as the
fast wavelet transform. The Haar wavelet is implemented in the proposed system
development as it is a simple wavelet transform and it is being used in many methods
of discrete image transforms and processing. Discrete wavelet transforms can be used
to reduce the image size without losing much of the resolution. Since the fundus
images are of high resolution and of quite large size, the Haar wavelet is
recommended to be used.

4.4 Filtering

Image filtering is used to improve the image quality or restore the digital image which
has been corrupted by some noise. A comparison of the performance between three
different edge operators, i.e., Sobel, Prewitt and Kirsch has been proposed for the
detection and segmentation of blood vessels in the colour retinal images (Karasulu,
2012). The experimental results show that the edge-based segmentation using Kirsch
compass templates is superior by far to other methods. Based on this result, the Kirsch
operator has been chosen for filtering in the proposed system development. The
Kirsch edge detection uses eight filters, which means eight masks for the related eight

118 S.S. Rahim et al.

main directions are applied
rotation of a basic 3x3 com
wavelet transform image to

4.5 Morphological Ope

Morphological operations
preprocessing, enhancing o
and also for quantitative de
system development, mor
implemented to extract the
followed by erosion opera
operation for retinal blood
element for morphologica
images to enlarge brighter
erosion operator shrinks th
result, the vessels being th
closed by the closing oper
preprocessing operations on

(a) Original image

(d) Discrete Wavelet
Transform

Fi

d to a given image to detect edges. These eight filters ar
mpass convolution filter. The Kirsch filter is applied on

 create the eight filtered output image.

erations

are used for certain purposes including the im
object structure, segmenting objects from the backgrou
escription of objects (Sonka et al, 2008). In the propo
rphology operators involving dilation and erosion
e blood vessels. A closing operation is defined as dilat
ator. Joshi and Karule (2012) implemented the clos

d vessel segmentation, where the disk shaped structur
al operation is used. The dilation operates in greysc
r regions and it closes the small dark regions, while
e dilated objects back to the original size and shape. A
hin dark segments laid out on a brighter background
ration. Figure 2 (a)-(f) shows the output after each of
n an image selected, as explained previously.

(b) Greyscale Conversion
(c) Adaptive Histogram

Equalisation

(e) Kirsch Filtering (f) Morphological Operat

ig. 2. Preprocessing the output image

re a
the

mage
und

osed
are

tion
sing
ring
cale
the

As a
are
the

m

tors

 Automatic Screening and Classification of Diabetic Retinopathy Fundus Images 119

5 Feature Extraction

After performing the preprocessing techniques, feature extraction takes place in order to
obtain the features from the given images. Features such as the area of on pixels, mean
and standard deviation are extracted for diabetic retinopathy (DR) detection purposes.
These values for both normal and DR images are used to create a model for training.
Table 1 presents the details of the feature extracted including the generated code.

Table 1. Feature extraction in the proposed system

Feature Description Snippet Code
Area of on
pixels

Number of white
pixels on the black
and white image,
where white pixels on
are all pixels above a
threshold of 100.

maxS = cvGet2D(gray, y, x);

 val = maxS.val[0];

 if(val > 100) {
 count++;

 sum += val; }

Mean Mean value of on

pixels
mean = sum / count;

Standard
deviation

Standard deviation of
on pixels

maxS = cvGet2D(gray, y, x);

 val = maxS.val[0];

if(val > 100) {

 count++;

 val = (mean-val);

 sum += val*val; }

sdv = sqrt(sum) / count;

6 Classification

The feature extracted values from the developed system have been passed to Matlab
for the classification stage in order to benefit from various classifiers available in
Matlab. The PRTools, a Matlab toolbox for pattern recognition has been downloaded
and used in Matlab (Duin et al, 2007). Nonlinear classifiers can provide better
classification results compared to linear classifiers. Therefore, four nonlinear
classifiers, namely the binary decision tree classifier, the k-nearest neighbour
classifier, the RBF kernel based support vector classifier and the polynomial kernel
based support vector classifier have been selected to train and classify images into
two classes, i.e., normal and diabetic retinopathy, respectively, based on the three
extracted features as explained previously in Section 5. Decision tree is a classifier in
the form of a tree structure and classifies instances or examples by starting at the root
of the tree and moving through it until a leaf node is reached. In the k-nearest
neighbour classifier, the object is classified by a majority vote of its neighbours, with
the object being assigned to the most common class among its k nearest neighbours.
The 1-nearest neighbour rule (1-NN) is used in the particular implementation of the
system presented in the paper. A support vector machine (SVM) performs the
classification by constructing an N-dimensional hyperplane that optimally separates

120 S.S. Rahim et al.

the data into two categories. The support vector machine classifier can use various
kernel functions, such as linear, polynomial or radial basis function (RBF). The kernel
function transforms the data into a higher dimensional space in order to be able to
perform the separation in the nonlinear region. Two different types of kernel functions
provided in Matlab for SVM classification were used, i.e., the second order
polynomial kernel SVM, svc (ATrain, ‘p’, 2), and the radial basis function kernel
SVM, rbsvc (ATrain). The results show that RBF kernel outperformed the results
obtained with the second order polynomial kernel.

7 Results and Discussion

Figure 3 shows the user interface snapshot of the proposed developed system. The
performance (misclassification error) of the four classifiers is presented in Table 2.
Since the dataset is hugely unbalanced, the minority class was oversampled by
duplication in order to balance the dataset. The DIARETDB0 data is split randomly
into 90% for training and the remaining 10% for testing. The process is repeated ten
times in a cross-validation procedure in order to generate unbiased results. The
average results on the ten runs for each of the four classifiers are reported. For more
clarity, in Table 2, we also presented the confusion matrix for the first out of the ten
experiments, in order to show the relative performance of the four classifiers. The
classification performance of the diagnosis system is assessed using the accuracy of
the individual classifiers and also the specificity and sensitivity. The experimental
results show that the four classifiers, and especially the k- nearest neighbor, are able
to identify well both classes, i.e., the normal and the diabetic retinopathy cases. All
the four classifiers identified much better the diabetic retinopathy cases, as there were
more examples of such images in the database.

Fig. 3. Snapshot of the proposed system user interface

 Automatic Screening and Classification of Diabetic Retinopathy Fundus Images 121

Table 2. Average results when using the four classifiers

8 Conclusions and Future Work

An automatic system for screening and classification of the diabetic retinopathy (DR)
using fundus images has been developed. The system will be enhanced on the
classification part by building an ensemble of classifiers. Unbalanced learning
techniques will also be considered to be used for training the individual classifiers in
the ensemble. In addition, more sophisticated features will be used in our future work
to properly discriminate the various diabetic retinopathy signs (i.e., different features
extraction for microaneurysms, hemorrhages, exudates, etc.). The system will also be
extended to get more details on the DR classification, namely to classify into no
apparent retinopathy, mild non-proliferative, moderate non-proliferative, severe non-
proliferative and proliferative DR cases. In addition to the classification diagnosis, the
system will provide the recommended follow-up schedule for each stage, as
underlined by the American Academy of Ophthalmology and, hence, this will become
a complete system to be used in a diabetic retinopathy screening practice.

Acknowledgement. This project is a part of PhD research currently being carried out
at the Faculty of Engineering and Computing, Coventry University, United Kingdom.
The deepest gratitude and thanks go to the Universiti Teknikal Malaysia Melaka
(UTeM) and Ministry of Education Malaysia for sponsoring this PhD research.

References

1. Duin, R.P.W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.M.J., Verzakov,
S.: PRTools4.1, A Matlab Toolbox for Pattern Recognition, Delft University of
Technology (2007)

2. Itseez, http://opencv.org
3. Jelinek, H.J., Cree, M.J., Worsley, D., Luckie, A., Nixon, P.: An automated

microaneursym detector as a tool for identification of diabetic retinopathy in rural
optometric practice. Clinical and Experimental Optometry 89(5), 299–305 (2006)

4. Joshi, S., Karule, P.T.: Retinal blood vessel segmentation. International Journal of
Engineering and Innovative Technology 1(3), 175–178 (2012)

 Binary

decision tree
k-nearest
neighbour

RBF kernel
SVM

Polynomial kernel
SVM

Misclassification error 0.2091 0.01364 0.0909 0.3182
Accuracy 0.7909 0.9864 0.9091 0.6818
Specificity 1 1 1 0.5545
Sensitivity 0.5818 0.9727 0.8182 0.8091
Confusion matrix for
the first experiment
Labels
(1 : Normal, 2: DR)

 r True | Estimated Labels
Labels | 1 2 | Totals

-------|----------|---------
 1 | 11 0 | 11
 2 | 5 6 | 11

-------|----------|---------
Totals | 16 6 | 22

ls True | Estimated Labels
Labels | 1 2 | Totals

-------|----------|---------
 1 | 11 0 | 11
 2 | 0 11 | 11

-------|----------|---------
Totals | 11 11 | 22

ls True | Estimated Labels
Labels | 1 2 | Totals

-------|----------|---------
 1 | 11 0 | 11
 2 | 2 9 | 11

-------|---------|---------
Totals | 13 9 | 22

ls True | Estimated Labels
Labels | 1 2 | Totals

-------|----------|---------
 1 | 6 5 | 11
 2 | 2 9 | 11

-------|---------|---------
Totals | 8 14 | 22

122 S.S. Rahim et al.

5. Karasulu, B.: Automated extraction of retinal blood vessels: a software implementation.
European Scientific Journal 8(30), 47–57 (2012)

6. Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H.,
Kalviainen, H., Pietila, J.: DIARETDB0: Evaluation Database and Methodology for
Diabetic Retinopathy Algorithms, Technical report (2006)

7. Larsen, N., Godt, J., Grunkin, M., Lund-Andersen, H., Larsen, M.: Automated detection of
diabetic retinopathy in a fundus photographic screening population. Investigative
Ophthalmology and Visual Science 44(2), 767–771 (2003)

8. Perumalsamy, N., Sathya, S., Prasad, N.M., Ramasamy, K.: Software for reading and
grading diabetic retinopathy. Aravind Diabetic Retinopathy Screening 3.0 Diabetes Care
30(9), 2302–2306 (2007)

9. Philip, S., Fleming, A.D., Goatman, K.A., Fonseca, S., Mcnamee, P., Scotland, G.S.,
Sharp, P.F., Olson, J.A.: The efficacy of automated “disease/no disease” grading for
diabetic retinopathy in a systematic screening programme. British Journal Ophthalmol. 91,
1512–1517 (2007)

10. Priya, R., Aruna, P.: Review of automated diagnosis of diabetic retinopathy using
the support vector machine. International Journal of Applied Engineering Research 1(4),
844–863 (2011)

11. Priya, R., Aruna, P.: SVM and neural network based diagnosis of diabetic retinopathy.
International Journal of Computer Applications 41(1), 6–12 (2012)

12. Priya, R., Aruna, P.: Diagnosis of diabetic retinopathy using machine learning techniques.
Journal on Soft Computing 3(4), 563–575 (2013)

13. Priya, R., Aruna, P., Suriya, R.: Image analysis technique for detecting diabetic
retinopathy. International Journal of Computer Applications 1, 34–38 (2013)

14. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
Cengage Learning. United States of America (2008)

15. Taylor, R., Batey, D.: Handbook of retinal screening in diabetes: diagnosis and
management. John Wiley & Sons, Ltd., England (2012)

16. Wild, S., Roglic, G., Green, A., Sicree, R., King, H.: Global prevalence of diabetes
estimates: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5),
1047–1053 (2004)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 123–132, 2014.
© Springer International Publishing Switzerland 2014

Brain Neural Data Analysis Using Machine Learning
Feature Selection and Classification Methods

Lachezar Bozhkov1, Petia Georgieva2, and Roumen Trifonov1,

1 Computer Systems Department, Technical University of Sofia, 8 St.Kliment Ohridski
Boulevard,Sofia 1756, Bulgaria

2 DETI/IEETA, University of Aveiro, 3810-193 Aveiro, Portugal
lachezar.bozhkov@gmail.com, petia@ua.pt, r_trifonov@tu-sofia.bg

Abstract. The Electroencephalogram (EEG) is a powerful instrument to collect
vast quantities of data about human brain activity. A typical EEG experiment
can produce a two-dimensional data matrix related to the human neuronal
activity every millisecond, projected on the head surface at a spatial resolution
of a few centimeters. As in other modern empirical sciences, the EEG
instrumentation has led to a flood of data and a corresponding need for new
data analysis methods. This paper summarizes the results of applying
supervised machine learning (ML) methods to the problem of classifying
emotional states of human subjects based on EEG. In particular, we compare
six ML algorithms to distinguish event-related potentials, associated with the
processing of different emotional valences, collected while subjects were
viewing high arousal images with positive or negative emotional content. 98%
inter-subject classification accuracy based on the majority of votes between all
classifiers is the main achievement of this paper, which outperforms previous
published results.

Keywords: emotion valence recognition, feature selection, Event Related
Potentials (ERPs).

1 Introduction

The quantification and automatic detection of human emotions is the focus of the
interdisciplinary research field of Affective Computing (AC). In [1] a broad overview
of the current AC systems is provided. Major modalities for affect detection are facial
expressions, voice, text, body language and posture. Affective neuroscience is a new
modality that attempt to find the neural correlates of emotional processes [2].
Literature on learning to decode human emotions from Event Related Potentials
(ERPs) was reviewed by [3], building automatic recognition systems from EEG was
proposed by [4] and [5]. Despite the first promising results of the affective
neuroscience modality to decode basic human emotional states, a confident neural
model of emotions is still not defined. The recent overview of EEG-based emotion
recognition studies, provided in [6], show that the recognition rate ranges between 65-
90 %. Therefore, the primary motivation of the present paper is to determine a

124 L. Bozhkov et al.

framework to improve the recognition of human affective states based on brain data
and more particularly on ERPs. ERPs are transient components in the EEG generated
in response to a stimulus (a visual or auditory stimulus, for example). We studied six
supervised machine learning (ML) algorithms, namely Artificial Neural Networks
(ANN), Logistic Regression (LogReg), Linear Discriminant Analysis (LDA), k-
Nearest Neighbors (kNN), Naïve Bayes (NB), Support Vector Machines (SVM),
Decision Trees (DT) and Decision Tree Bootstrap Aggregation (Tbagger) to
distinguish affective valences encoded into the ERPs collected while subjects were
viewing high arousal images with positive or negative emotional content. Our work is
also inspired by advances in experimental psychology [7], [8] that show a clear
relation between ERPs and visual stimuli with underlined negative content (images
with fearful and disgusted faces). A crucial step preceding the classification process is
to discover which spatial-temporal patterns (features) in the ERPs indicate that a
subject is exposed to stimuli that induce emotions. We applied successfully the
Sequential Feature Selection (SFS) technique to minimize significantly the number of
the relevant spatial temporal patterns.

The paper is organized as follows. In section 2 we briefly describe the data set. The
ML feature selection and classification methods used in this study are summarized in
section 3. The results of learning to discriminate emotional states with positive or
negative valences across multiple subjects (inter-subject setting) are presented in
section 4. Finally, in section 5 our conclusions are drawn.

2 Data Set

A total of 26 female volunteers participated in the study, 21 channels of EEG,
positioned according to the 10-20 system and 2 EOG channels (vertical and
horizontal) were sampled at 1000Hz and stored. The signals were recorded while the
volunteers were viewing pictures selected from the International Affective Picture
System. A total of 24 of high arousal (> 6) images with positive valence (7.29 +/-
0.65) and negative valence (1.47 +/- 0.24) were selected. Each image was presented 3
times in a pseudo-random order and each trial lasted 3500ms: during the first 750ms,
a fixation cross was presented, then one of the images during 500ms and at last a
black screen during the 2250ms.

The signals were pre-processed (filtered, eye-movement corrected, baseline
compensation and epoched using NeuroScan. The single-trial signal length is 950ms
with 150ms before the stimulus onset. The ensemble average for each condition was
also computed and filtered using a zero-phase filtering scheme. The maximum and
minimum values of the ensemble average signals were detected. Then starting by the
localization of the first minimum the features are defined as the latency and amplitude
of the consecutive minimums and the consecutive maximums: minimums (Amin1,
Amin2, Amin3), the first three maximums (Amax1, Amax2, Amax3), and their
associated latencies (Lmin1, Lmin2, Lmin3, Lmax1, Lmax2, Lmax3). The ensemble
average for each condition (positive/negative valence) was also computed and filtered
using a Butterworth filter of 4th order with passband [0.5 - 15]Hz. The number of

 Brain Neural Data Analysis Using Machine Learning Feature Selection 125

features stored per channel is 12 corresponding to the latency (time of occurrence)
and amplitude of either n = 3 maximums and minimums, the features correspond to
the time and amplitude characteristics of the first three minimums occurring after T =
0s and the corresponding maximums in between. The total number of features per
trail is 252. The data is saved in file with the following structure: 252 columns: 12
features for 21 channels, 52 lines: 26 people x 2 classes – 0 (negative) and 1
(positive).

3 Classification Methodology

Predictor data is normalized to maximally ease the learning algorithms.. In order to
maximize the training examples, leave-one-out cross-validation technique is used.
The following supervised machine learning models are studied: Artificial Neural
Networks (ANN), Logistic Regression (LogReg), Linear Discriminant Analysis
(LDA), k-Nearest Neighbors (kNN), Naïve Bayes (NB), Support Vector Machines
(SVM), Decision Trees (DT) and Decision Tree Bootstrap Aggregation (Tbagger).

3.1 Features Normalization

Many of the models require normalized version of the data. The rest of the models
can highly benefit from it. Therefore this is often a good preprocessing practice.

Feature normalization is a standard preprocessing step, that may improve the
classification, particularly when the range of the features is dispersed. There are a
number of normalization techniques, in this work we use the following expression:

Xnorm = (X - Xmean) / std(X) , (1)

The normalized data (Xnorm) is obtained by subtracting the mean value of each feature
from the original data set X and divided by the standard deviation std(X). Hence, the
normalized data has zero mean and standard deviation equal to 1.

3.2 Leave-One-Out Cross-Validation (LOOCV)

Leave-one-out is the degenerate case of K-Fold Cross Validation, where K is chosen
as the total number of examples. For a dataset with N examples, perform N
experiments. For each experiment use N-1 examples for training and the remaining 1
example for testing [9]. In our case N = 26 (pairs of classes per person). We will train
the models with 25 people x 2 classes (50 examples) and test on the left-out 2 classes.
We are more interested in the total prediction accuracy for each model, therefore the
predictions are accumulated in confusion matrices for each model from each training
experiment in the LOOCV.

126 L. Bozhkov et al.

3.3 Artificial Neural Network (ANN)

The ANNs origin from algorithms that try to mimic the brain neuronal structure.
ANNs are widely used ML technique as classifiers and repressors in countless
applications. In the present work, prediction is performed by a feedforward neural
network (FFNN) with 1 hidden layer with 12 neurons with sigmoid activation
function and training is performed by backpropagation algorithm to compute the
gradient [10].

3.4 Logistic Regression (LogReg)

In statistics, LogReg is a type of probabilistic statistical classification model [11]. It is
also used to predict a binary response from a binary predictor, used for predicting the
outcome of a categorical dependent variable (i.e., a class label) based on one or more
predictor variables (features).

3.5 Linear Discriminant Analysis (LDA)

Discriminant analysis is a classification method. It assumes that different classes
generate data based on different Gaussian distributions. To train (create) a classifier,
the fitting function estimates the parameters of a Gaussian distribution for each class.
To predict the classes of new data, the trained classifier finds the class with the
smallest misclassification cost. LDA is also known as the Fisher discriminant, named
for its inventor, Sir R. A. Fisher [12].

3.6 k-nearest Neighbor (kNN)

Given a set X of n points and a distance function, kNN searches for the k closest
points in X to a query point or set of points Y [13]. The kNN search technique and
kNN-based algorithms are widely used as benchmark learning rules. The relative
simplicity of the kNN search technique makes it easy to compare the results from
other classification techniques to kNN results. The distance measure is Euclidean.

3.7 Naive Bayes (NB)

The NB classifier is designed for use when features are independent of one another
within each class, but it appears to work well in practice even when that independence
assumption is not valid. It classifies data in two steps:

Training step: Using the training samples, the method estimates the parameters of a
probability distribution, assuming features are conditionally independent given the
class.

Prediction step: For any unseen test sample, the method computes the posterior
probability of that sample belonging to each class. The method then classifies the test
sample according the largest posterior probability.

 Brain Neural Data Analysis Using Machine Learning Feature Selection 127

The class-conditional independence assumption greatly simplifies the training step
since you can estimate the one-dimensional class-conditional density for each feature
individually. While the class-conditional independence between features is not true in
general, research shows that this optimistic assumption works well in practice. This
assumption of class independence allows the NB classifier to better estimate the
parameters required for accurate classification while using less training data than
many other classifiers. This makes it particularly effective for datasets containing
many predictors or features [13].

3.8 Support Vector Machines (SVM)

An SVM classifies data by finding the best hyperplane that separates all data points of
one class from those of the other class. The best hyperplane for an SVM means the
one with the largest margin between the two classes. Margin means the maximal
width of the slab parallel to the hyperplane that has no interior data points. We use
radial basis function for kernel function [13].

3.9 Decision Tree (DT)

Classification trees and regression trees are the two main DT techniques to predict
responses to data. To predict a response, follow the decisions in the tree from the root
(beginning) node down to a leaf node. The leaf node contains the response.
Classification trees give responses that are nominal, such as 'true' or 'false' [13].

3.10 Decision Tree Bootstrap Aggregation (Tbagger)

Bagging, which stands for "bootstrap aggregation," is a type of ensemble learning. To
bag a weak learner such as a decision tree on a dataset, generate many bootstrap
replicas of this dataset and grow decision trees on these replicas. Obtain each
bootstrap replica by randomly selecting N observations out of N with replacement,
where N is the dataset size. To find the predicted response of a trained ensemble, take
an average over predictions from individual trees [13].

4 Features Selection

The feature space consists of 252 features (21 channels x12 features) and the trial
examples are 52 (2 classes x 26 people), therefore feature reduction techniques are
required. First classification tests are made on all predictor data features (252 features)
and the accuracy results from ML methods are set as base line to improve and
compare. Next we try feature reduction using Principal Component Analysis (PCA)
[14] and dimensions reduction with 99%, 95%, 75% and 50% data variation retained.
After that we implement exhaustive feature selection and compare the results. Finally
we construct voting ensemble bucket of models to take the prediction among all the
models which resulted in very promising final data discrimination (98%).

128 L. Bozhkov et al.

4.1 Principal Component Analysis (SFS)

Principal component analysis is a quantitatively rigorous method for achieving this
simplification. The method generates a new set of variables, called principal
components. Each principal component is a linear combination of the original
variables. All the principal components are orthogonal to each other, so there is no
redundant information. The principal components as a whole form an orthogonal
basis for the space of the data [13].

4.2 Sequential Feature Selection (SFS)

Sequential feature selection selects a subset of features from the data matrix X that
best predict the data in y by sequentially selecting features until there is no
improvement in prediction. Starting from an empty feature set, SFS creates candidate
feature subsets by sequentially adding each of the features not yet selected. For each
candidate feature subset, SFS performs leave-one-out cross-validation by repeatedly
calling fun with different training subsets XTRAIN and ytrain, and test subsets XTEST and
ytest. Each time it is called, fun must return a scalar value criterion. After computing
the mean criterion values for each candidate feature subset, SFS chooses the candidate
feature subset that minimizes the mean criterion value. This process continues until
adding more features does not decrease the criterion or to predefined number of
selected feature. In our case the criterion function is based on the accuracy of the
model: criterion = 1 – Accuracy. Accuracy can be either 1 if it accurately predict the
one left training example or 0 if doesn’t. Therefore the minimization cost function
will have 1/52 = 0.0192 step. Because SFS is computationally heavy operation, not all
models are suitable for this technique, especially TBagger and ANN.

4.3 Voting from Ensemble Bucket of Models

After selecting suitable features for each model, we ensemble a model consisting of
the five models. When we predict we would train all 5 models with the training data
and predict with all of them using the test data. We get the consensus from at least 3
of the models to select the result.

5 Results for Inter-Subject Classification

5.1 Classification Using All Features

In Table 1 are given the prediction accuracy results using all features for test and train
data. Comparison of the prediction accuracy using all features and the selected
features is shown on Fig. 2.

 Brain Neural Data Analysis Using Machine Learning Feature Selection 129

Table 1. Prediction accuracy results from classification models using all features

Model ANN LogReg LDA kNN NB SVM DT Tbagger

Accuracy XTEST 71,2 67,31 71,2 59,6 69,2 50 69,2 75

Accuracy XTRAIN 75,6 100 100 100 93 100 96,2 100

5.2 PCA Feature Reduction and Classification

After calculating eigenvectors we estimate the numbers of vectors used to project the
data with 99%, 95%, 75% and 50% data variance retained corresponding number of
features is 43, 34, 16, and 7. Results from the prediction accuracies can be seen in
Table 2. It is seen that we cannot improve significantly prediction accuracy using
PCA and data projection in lower dimensionality.

Table 2. Results from models using reduced (projected) by PCA features set

Model ANN LogReg LDA kNN NB SVM DT Tbagger

43 Features (99%) 53,9 67,31 65,4 59,6 61,5 57,7 48,1 57,69

34 Features (95%) 61,5 69,23 65,4 57,7 67,3 57,7 53,9 63,46

16 Features (75%) 57,7 71,15 67,3 55,8 65,4 63,5 63,5 69,23

 7 Features (50%) 55,8 59,62 61,5 69,2 65,4 71,2 63,5 61,54

5.3 Exhaustive Sequential Feature Selection (SFS) and Classification

Exhaustive SFS is computationally very intensive operation, therefore the SFS was
performed on a smaller set of ML models. The resulting cost function (1-accuracy) based
on the number of selected features is depicted on Fig. 1. Note that the number of features
that minimizes the cost function is different for each model, typically between 5 and 10.

Fig. 1. Features selection: Cost function on numbers of features selected

130 L. Bozhkov et al.

Table 3. Features selected by SFS for each model

Features LDA kNN NB SVM DT

Number Ch. Feature Ch. Feature Ch. Feature Ch. Feature Ch. Feature

1 1 amp5 4 amp1 1 amp4 1 amp6 1 amp4

2 3 amp1 5 amp1 2 latency4 3 latency1 12 amp3

3 5 latency2 8 latency3 3 amp1 5 latency4 14 amp2

4 6 latency3 10 amp1 4 amp6 5 latency5 20 latency4

5 6 latency4 10 amp6 9 amp2 11 latency6

6 11 amp3 13 amp3 20 latency4 13 amp2

7 13 amp1 14 latency4

8 13 amp6 20 amp2

9 17 latency6

10 20 latency4

Table 4. Prediction accuracy on test and train data for models trained using the selected
features from Table 2

Model LDA kNN NB SVM DT

Accuracy XTEST 92,3 90,38 86,5 88,5 88,5

Accuracy XTRAIN 94,2 100 91,2 100 97,4

5.4 Voting from Ensemble Bucket of Models

The combination of SFS and the five ML classifiers in the previous section brought
already results very close or even slightly better than the best classification rates
published in previous related researches. However, we made an intuitive step ahead to
build an ensemble classifier based on the majority vote among the five trained
models. Thus, the prediction rates achieved by the individual classifiers in the range
of [87 – 92] %. were significantly improved and achieved 98%, see Table 4.

4). Finally we can observe and compare the prediction accuracy on all features and
selected features and ensemble bucket models vote in fig. 2.

Table 5. Accuracy and confusion matrix on test data using voting from models trained using
the selected features from Table 2

Accuracy XTEST True 1 False 1 False 0 True 0

98,08 26 0 1 25

Discussion of the Results
We used supervised ML methods to predict two human emotions based on 252
features collected from 21 channels EEG. The achieved prediction accuracy based on

 Brain Neural Data Analysis Using Machine Learning Feature Selection 131

all features is in the range of 60-75% (see Table 1). These results are similar to other
related studies, [6] and they can be explained by the limited examples in the data set
(2 examples per subject, 26 subjects, that corresponds to 52 examples in total) and the
very high dimensional feature space (252). It was expected that predictions based on
reduced number of features will perform better. While the PCA feature reduction did
not bring any improvement (see Table 2), the Sequential Feature Selection (SFS)
reduced the feature set to 4-10 features (see Fig. 1 and Table 2) and significantly
improve the prediction accuracy of all studied ML models in the range of 88-92 %
(Table 3). Finally, our empirical approach of combining the five previous classifiers
in an ensemble bucket of models and use the majority vote as the final attributed class
further improve substantially the prediction accuracy to 98% (Table 4). This is the
main contribution of this paper, because such inter-subject classification accuracy was
never before reported. The influence of the SFS is visualized on Fig. 2. We may also
argue that our models can be used in real time, because after finding off-line the right
features and training, the feature generation from monitored EEG signals is less than
1000ms and prediction is instantaneous.

Fig. 2. Classification accuracy on test data. 5 classifiers (LDA, kNN, NB, SVM, DT) and their
majority vote combination (VOTE).

6 Conclusion

In this paper, we have presented results demonstrating the feasibility of ML classification
techniques to distinguish the processing of stimuli with positive and negative emotion
valence based on ERPs observations. This problem is interesting both because of its
relevance to studying human emotions, and as a case study of supervised machine
learning (ML) in high dimensional data settings. The focus of our work was to explore

132 L. Bozhkov et al.

the feasibility of training cross-subject classifiers to make predictions across multiple
human subjects. Feature selection is an important aspect in the design of the recognition
systems, particularly in the inter-subject framework. The combination of adequate
features and channel selection has the potential to reduce the inter-subject variability and
improve the learning of representative models valid across multiple subjects.

It can be concluded that ML is a powerful technique to reveal the brain activity and
to interpret human emotions. There are many additional opportunities for ML
research in the context of affective neuroscience, such as discrimination of more than
two emotional states related not only with the emotional valence but also with the
emotional arousal. Discrimination of high versus low neurotic type of personality is
also a challenging problem that ML can deal.

Acknowledgements. We would like to express thanks to the PsyLab from
Departamento de Educação da UA, and particularly to Dr. Isabel Santos, for
providing the data sets.

References

1. Calvo, R.A., D’Mello, S.K.: Affect Detection: An Interdisciplinary Review of Models,
Methods, and their Applications. IEEE Transactions on Affective Computing 1(1), 18–37
(2010)

2. Dalgleish, T., Dunn, B., Mobbs, D.: Affective Neuroscience: Past, Present, and Future.
Emotion Rev. 1, 355–368 (2009)

3. Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J.: Affective Picture Processing: An
Integrative Review of ERP Findings. Biological Psychology 77, 247–265 (2008)

4. AlZoubi, O., Calvo, R.A., Stevens, R.H.: Classification of EEG for Emotion Recognition:
An Adaptive Approach. In: Proc. 22nd Australasian Joint Conf. Artificial Intelligence, pp.
52–61 (2009)

5. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion Recognition from EEC Using Higher Order
Crossings. IEEE Trans. Information Technology in Biomedicine 14(2), 186–194 (2010)

6. Jatupaiboon, N., Panngum, S., Israsena, P.: Real-Time EEG-Based Happiness Detection
System. The ScientificWorld Journal, Article ID 618649, 12 pages (2013)

7. Santos, I.M., Iglesias, J., Olivares, E.I., Young, A.W.: Differential effects of object-based
attention on evoked potentials to fearful and disgusted faces. Neuropsychologia 46, 1468–1479
(2008)

8. Pourtois, G., Grandjean, D., Sander, D., Vuilleumier, P.: Electrophysiological correlates of
rapid spatial orienting towards fearful faces. Cerebral Cortex 14(6), 619–633 (2004)

9. Lecture 13: Validation,
http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf

10. CS229 Machine Learning, Andrew Ng, http://cs229.stanford.edu/
11. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
12. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of

Eugenics 7, 179–188 (1936)
13. Matlab documentation, http://www.mathworks.com/help/matlab/
14. Palaniappana, R., Ravi, K.V.R.: Improving visual evoked potential feature classification

for person recognition using PCA and normalization (2005)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 133–144, 2014.
© Springer International Publishing Switzerland 2014

Application of Neural Networks Solar Radiation
Prediction for Hybrid Renewable Energy Systems

P. Chatziagorakis1, C. Elmasides2, G.Ch. Sirakoulis1,*, I. Karafyllidis1, I. Andreadis1,
N. Georgoulas1, D. Giaouris3, A. I. Papadopoulos3, C. Ziogou3, D. Ipsakis3,

S. Papadopoulou3, P. Seferlis3, F. Stergiopoulos3, and S. Voutetakis3

1 Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

2 Systems Sunlight S.A., Xanthi, Greece
3 Chemical Process Engineering Research Institute,

Centre for Research and Technology Hellas, Thermi-Thessaloniki, Greece
gsirak@ee.duth.gr

Abstract. In this paper a Recurrent Neural Network (RNN) for solar radiation
prediction is proposed for the enhancement of the Power Management
Strategies (PMSs) of Hybrid Renewable Energy Systems (HYRES). The
presented RNN can offer both daily and hourly prediction concerning solar
irradiation forecasting. As a result, the proposed model can be used to predict
the Photovoltaic Systems output of the HYRES and provide valuable feedback
for PMSs of the understudy autonomous system. To do so a flexible network
based design of the HYRES is used and, moreover, applied to a specific system
located on Olvio, near Xanthi, Greece, as part of SYSTEMS SUNLIGHT S.A.
facilities. As a result, the RNN after training with meteorological data of the
aforementioned area is applied to the specific HYRES and successfully
manages to enhance and optimize its PMS based on the provided solar radiation
prediction.

Keywords: Recurrent Neural Network, Solar Radiation, Power Management
Strategy, Hybrid Renewable Energy System.

1 Introduction

In recent years, as a response to the continuously growing need for green energy, a
new type of Renewable Energy Systems (RES) is becoming all the more popular [1].
That is the Hybrid Renewable Energy Systems (HYRES). These systems often
combine a variety of different renewable technologies with some energy storing units
in a single generating plant facility. This combination offers the advantage of
exploiting different types of green energy without completely depending on the
availability of a single one. Therefore, hybrid systems present a better balance in
energy production than the conventional systems, which make use of a single

* Corresponding author.

134 P. Chatziagorakis et al.

technology and tend to be more inconsistent. The utilization of multiple green energy
sources provides to these systems increased efficiency, as well as balance in energy
supply due to the fact that each energy source acts as supplement to the others. This is
the reason why HYRES are considered as a reliable solution for remote area power
generation applications.

However, despite the advantages that the adoption of HYRES may have, there are
still some weak spots. Despite the fact that these systems rely on multiple renewable
sources, they are still dependent on conventional fuels as long as the green energy is
not always available. In addition, another characteristic that needs further
improvement is their efficiency. Although they present a much higher efficiency than
the single-technology RES, there is still space for further improvement and
optimization [1]. The cooperation between the different discrete systems does not
often occur in the most efficient way. For example, storage of the excess energy
supply does not always occur in the most effective way and thus the system usually
depends on conventional fuels.

The great dependency that HYRES efficiency has on both the availability and the
values of the critical meteorological variables necessitates their a priori knowledge.
Meteorological variables such as solar radiation, air temperature, wind speed and
humidity can affect at a maximum degree the functionality and the efficiency of the
corresponding RES. Having this kind of information someone can provide some
satisfactory estimation of the total amount of the future renewable energy production.
In this way, a better management of the HYRES subsystems can be achieved, as well
as a much more optimized energy storage and utilization, thus diminishing the need
for conventional generators. The optimized management of the various subsystems is
the key point towards achieving the best possible green energy utilization and system
efficiency.

The goal of the specific study is the design of an autonomous intelligent
forecasting model based on Neural Networks (NNs) that will enable the future values
estimation for the critical meteorological parameters, such as solar radiation, that
greatly affect the efficiency and the overall functionality of the corresponding
HYRES. During the previous years, NNs have been proposed as a powerful approach
to estimate and predict the solar radiation in different areas all over the world [2-9].
Taking into account that the solar radiation time series as a dynamical system presents
nonlinear characteristics due to its dependency on meteorological parameters, like
temperature, water vapor, cloud and water air condition, etc. [10], we propose a
Recurrent Neural Network (RNN) with Nonlinear Autoregressive architecture (NAR)
as an enhanced forecasting model for solar radiation time series. The here proposed
model will have the ability of assimilating the past meteorological datasets and thus
learning the local behavior of the target parameters. For this reason, it will incorporate
the feature of receiving the current meteorological data from locally installed sensing
devices. Next, it will provide the corresponding future estimations through the
combination of the past knowledge and current feedback.

Additionally, the presented model will also be applicable to an autonomous
HYRES, where its estimations can be used by a central control unit in order to create
in real time the proper Power Management Strategies (PMSs) for the efficient

 Application of Neural Networks Solar Radiation Prediction 135

subsystems utilization that can lead to the overall optimization. For doing so, a
generic network model is also described for the representation of the hybrid power
generation systems taking into consideration in this work. Subsequently, the RNN
when combined with the presented network model of HYRES serves as a novel
framework for a generic approach aiming to facilitate the derivation of various PMSs
in a simple and flexible way. As a result, the proposed framework will make the
specific HYRES suitable for use as a standalone remote energy plant. As a proof of
concept the results of the proposed NN model for solar radiation forecasting when
applied to an available HYRES system are also presented. It is clear that the proposed
RNN after training with meteorological data of the under study area, in our case Olvio
of Xanthi in Greece and applied to the proposed HYRES of Systems Sunlight SA
finally manages to enhance and optimize its PMS based on the provided solar
radiation prediction.

2 The Proposed Recurrent Neural Network

Having in mind that the estimation of the future weather conditions constitutes a
particularly complex problem due to the non-linear dynamics of the weather behavior,
the computational paradigm of Neural Networks (NNs) was adopted for the design of
the forecasting model. In specific, due to the nature of the problem that involves the
estimation of the future values of certain meteorological variables, the adopted type
was the Recurrent Neural Network (RNN) [11-14]. They constitute some NN type
where the unit connections form some directed cycle. This inherent characteristic
creates some internal network state that greatly favors the exhibition of some dynamic
temporal behavior. Unlike conventional Feed-Forward Neural Networks (FF-NN),
RNNs can use their internal memory to process arbitrary sequences of inputs.

As already mentioned, the RNN architecture differs from the FF-NN one to the
point that except for the network inputs it also takes into consideration its internal
state. This internal state can be considered as a trace of the previously presented
network inputs that have already been processed. This feature provides to RNNs the
ability of learning the temporal-sequential dependencies that may occur among the
data of a time series. However, it is quite easy to understand the functionality of
RNNs through a direct comparison with a simple FF-NN.

It is quite convenient to consider a simple layered architecture that consists of one
input, one hidden and one output layer. Following, eq. (1) describes the mathematic
relations that occur between the data of subsequent levels.

() ()() () (),
n

j j j i ji j
i

y t f net t net t x t v θ= = + (1)

where y is the layer output, j is the layer number, t is time, netj describes the layer
state and f is a differentiable output function. The variable n describes the total
number of the network inputs xi, whereas vij represent the connection weights and θj is
a bias value. In case of a FF-NN the input array x is propagated through the weights V

136 P. Chatziagorakis et al.

that characterize the connection between the input and the hidden layer. Similarly, the
propagation of the input array in a simple RNN is equally affected by the weights of
the established connections between the nodes of the two neighboring layers.
However, another factor that affects the propagation is an additional recurrent level
that sends the previous network state through its own activation function and the
corresponding connection weights U as presented by Fig. 1 and described by:

() ()() () () (), 1
n m

j j j i ji h jh j
i h

y t f net t net t x t v y t u θ= = + − +  (2)

where m expresses the total aggregate of the state nodes. The network output is
defined in both cases by its own state and the weights W as follows:

() ()() () (),
m

k k k j kj j
j

y t f net t net t x t v θ= = + (3)

where g is the activation function of the output layer.

() ()()k ky t g net t=

() ()
m

k j kj k
j

net t y t w θ= +

() ()()j jy t f net t=

() () ()
n m

j i ji h jh j
i h

1net t x t v y t u θ= + − + 

Fig. 1. Simplified Recurrent Artificial Neural Network (RANN) structure diagram

The selected architecture of RNN for the current study was the Nonlinear
Autoregressive Neural Network (NAR). This NN has been extensively used for
statistical forecasting modeling of time series [15-18]. The specific model constitutes
dynamic RNN that includes feedback connections between layers. NAR is based on

 Application of Neural Networks Solar Radiation Prediction 137

the Linear Autoregressive Model (AR), which is known for its effectiveness in
modeling time series [18]. The equation that defines NAR functionality is:

() () () () ()()1 , 2 , 3 ,...,y t f y t y t y t y t k= − − − −
 (4)

where y(t) is the model output that depends on the k temporally previous values of the
output signal. This is also represented in Fig. 2, which shows the block diagram of a
two-layer AR model with feed-forward architecture. The purpose of the specific
model is the estimation of function f. The input of the model can be a
multidimensional array, while each layer has an additional bias input b1 and b2 for
quicker convergence of the NN. Furthermore, the connection between two layers is
characterized by the corresponding layer weight LWi,j, where i refers to current layer
and j refers to previous layer. Finally, the Time Delayed Line (TDL) expresses the
time delay that is inflicted upon the output feedback data that are sent back to the
input through the feedback loop. This feature enables the estimation of the temporal
dependencies that may occur between the input and the output. This property is very
helpful when trying to model systems that are described by time series.

()ŷ t

()y t

Fig. 2. Autoregressive Model (AR) architecture

In general, there are two different architecture options for NAR. Both these
architectures include a time delay line that was described above. However, the first
one includes a feedback loop that sends the data from the output directly back to the
input (so named parallel) and the serial NAR architecture which lacks any feedback
property. The main difference between these two options relates to the training
procedure. The accuracy of the training is higher in the second case, because through
the serial feed-forward architecture the network is fed only with real data. On the
contrary, the parallel NAR combines both feedback and real data. This often has a
negative effect at the network training accuracy as long as the output data are already
processed. Another advantage of the serial model over the parallel one is its
simplicity. The serial architecture produces more responsive models that are easier to
implement and train faster. This is considered as a very significant feature when the
NAR model is meant to be used in real time applications.

For the needs of the current study, the proposed NAR model was initially trained
through the adoption of the serial architecture. The basic structure of the model has
three distinct layers; the input, the hidden layer and the output. The utilization of a

138 P. Chatziagorakis et al.

single hidden layer was decided upon the fact that in literature there are a lot of NN
examples where such architecture provides enough computational power for
confronting problems of similar complexity [2]-[8]. Moreover, in order to decide
which NAR architecture and network size is the most suitable, a series of different
tests were realized that confirm the suitability of the aforementioned structure and
resulted to network efficiency. Making use of a small but representative dataset, a
variety of networks was tested including NARs with multiple hidden layers and
variable neurons numbers per layer.

The proposed NAR model was designed and simulated through the use of the
Neural Time Series Tool that constitutes part of the Neural Network Toolbox library of
Matlab software. The design of the NAR model has been done in accordance with the
network architecture of Fig. 2. As mentioned before, a single hidden layer was used, as
it is considered to deliver some adequate computational power and network efficiency
in combination with some good performance [5], [7]. The NAR model as designed
with Neural Time Series Tool is presented in Fig. 3. The specific architecture does not
include any output feedback property so as to deliver the best possible training results.
This open loop network was used for training purposes, as long as its output is not sent
back to the input. In this way, every presented training pattern belongs to the training
dataset and the NAR model assimilates only the real training data. As presented in Fig.
3, both input and output have one neuron, whereas the hidden layer consists of 10
artificial neurons that are fully interconnected. The proposed here model with 10
hidden neurons have been proved after testing the optimal one. Moreover, a time delay
element is added to the hidden layer in order to create the necessary temporal
difference between the input and the output data. The exact magnitude of this applied
delay is also depicted in Fig. 3 and is equal to 72 samples.

Fig. 3. Schematics of the open loop Nonlinear Autoregressive Network (NAR) designed with
Neural Time Series Tool

Following the network design, the available real meteorological data were used for
its training. In accordance to the experimental setup that will be introduced in Section
3, the training time series were collected from the location of Olvio with coordinates
41.0249 Ν and 24.7885 Ε near the city of Xanthi in Greece. These datasets include
solar radiation measurements for the time period of the last two years, having a time
resolution of 5 minutes. Some representative examples of solar radiation datasets are
demonstrated in Fig. 4(a) – 4(b), in specific, for the months October and June in
respect. It can be easily noticed that every month has its own characteristics, present

 Application of Neural Networks Solar Radiation Prediction 139

some nonlinear behavior and can potentially present great differences from one day to
the other. The differences between months are considered normal due to the different
season conditions. Furthermore, some intense fluctuations that take place during the
same month often are caused by the occurrence of some extreme weather phenomena.
The time resolution of the measurements is equal to 1 sample per 5 minutes. This
means that 288 samples are available per day. However, for the needs of the specific
study three additional datasets with lower resolution were created and tested; with 96,
24 and 4 samples/day. Through the realization of different training scenarios for the
four datasets, it was proved that 24 samples/day provided the best results in terms of
accuracy and computational speed, without lacking any significant information
comparing to the initial dataset. By adopting the 24 samples/day dataset with an input
delay line of 72 samples, the proposed NAR model receives the measurements of the
three last days as an input to estimate the future value.

Additionally, before feeding the designed model with the training dataset, two
techniques were used in order to improve the learning efficiency. Namely with the
help of Matlab, solar radiation during nighttime which was always equals to zero, thus
disrupting the consistency of the training patterns, has been deleted and the variation
of solar radiation during the sunlight hours is only considered. Moreover,
normalization of synaptic weights updating process takes place so as prevent
uncommonly high training values from affecting the overall NAR training accuracy.
Afterwards, the learning dataset was divided into the necessary subsets; training,
validation and testing. The adopted ratios were equal to 75%, 15% and 10% for the
training, validation and testing subsets in respect after several tests.

Next, the Levenberg - Marquardt back-propagation algorithm was adopted for
the training of the proposed NAR model. The specific technique is widely used for the
NN training as it is considered as one of the most efficient solutions. During the
learning procedure it implements the error back-propagation method, whereas it
updates the synaptic weights and bias values according to Levenberg-Marquardt
optimization [19]. There is a great variety of different approaches, such as Bayesian
Regulation Back-propagation, Gradient Descent Back-propagation and BFGS Quasi-
Newton Back-propagation [20]. Bearing that in mind, all the above learning
algorithms were tested in training the proposed model. However, deliver the best
training results in combination with the quickest convergence were achieved throught
Levenberg-Marquardt algorithm.

The success of the network training does not only depend on the available dataset
and the learning algorithm. Defining the basic training parameters and the ending
conditions of the learning procedure is also a significant task. At first, the Mean Squared
Normalized Error (MSE) performance function was adopted [21]. It measures the
network performance according to the mean of squared errors, i.e. it calculates the
produced error that is the distance between the NAR actual outputs and the desired
target values. Next, the maximum duration of the NAR training was specified equal to
103, whereas the maximum time period was defined to be 60 minutes. Moreover, the
minimum gradient limit was defined as equal to 10-5 and the maximum number of
validation fails was equal to 6. The occurrence of successive validation fails often
means that the designed model has reached the maximum possible assimilation level for
the given training dataset and network architecture. Finally, the training results were
quite satisfactory bearing in mind the complexity of the target system. In specific, the

140 P. Chatziagorakis et al.

final MSE was equal to 70 W/m2 that is considered quite decent regarding the actual
solar radiation datasets values that may vary up to 1300 W/m2.

Following, the trained NAR model was tested on real solar radiation data for the
creation of next day estimations. The input datasets are real random data that were
acquired from the same location as the training set, but were completely excluded
from the network training procedure. The corresponding testing results can be found
in Fig. 4(c)-4(d). The actual solar radiation values are represented by the blue line,
whereas the predicted values by the red line. Samples 1-72 constitute the model input
and samples 73-96 are the produced future estimations. For this reason, the most
significant part of the diagram is the comparison between the two representations
regarding during these last 24 samples. However, for demonstrative reasons the rest
of the samples were included.

(a) (b)

(c) (d)

Fig. 4. Real solar radiation measurement samples from the location Olvio (41.0249 Ν, 24.7885
Ε), Xanthi, Greece for the months: (a) October and (b) June and (c), (d) comparison between
the produced forecasting results of the proposed NAR model (red line) and corresponding real
solar radiation measurements on the horizontal level (blue line) for two different time periods.

3 Efficient Representation of Energy Management Strategies

In this section we will review the representation of PMSs as described in [22]
where the microgrid was seen as a graph and the flow of power and hydrogen within

 Application of Neural Networks Solar Radiation Prediction 141

was described through flowsheets. The basic devices are the Photovoltaic Panels
(PV), the Wind Generators (WGs), the Battery (BAT), the Fuel Cell (FC) and
an Electrolyser (EL). In [22] each device in the microgrid is seen as a node of a
graph and its connection as an edge. In our system the flows between the nodes
can be in various states like electrical energy (POW) or hydrogen in high
pressure (H2P) and hence the input to each node for each state j is given by

() () () (),,

1

N
Out jIn j j

n n l n l n
l

F t SF t t F tε → →
=

= +

where (),In j
nF t is the input to node n at

the instant t, ()j
nSF t are external inputs, ,Out j

l nF →
are the outputs of the other nodes,

()l n tε → are binary variables that determine the connection of a specific edge and N

is the number of nodes in the graph.
The binary variables that determine the connection can be defined as:

() () () ()(), ,ReqAvl Gen
l n l n l n l nt L t t tε ε ε ε→ → → →= (5)

where L is a logical operator (like AND, OR, …) and () () (), ,ReqAvl Gen
l n l n l nt t tε ε ε→ → →

are binary variables that determine the availability, the requirement and other general
conditions necessary to activate the connection l to n. In general the activation of a
connection depends on logical propositions that can be described by binary variables
ρi. Using this approach it is possible to systematically represent any PMS for a
microgrid. For example another PMS can be one where the operation of the devices
depend on the time of the year, i.e. during the summer the FC is not activated even if

the SOC drops below
BATSOAcc

FC BATstr → , similarly for the EL during the winter months.

Thus ()FC BAT tε → is written as:

() []0 2881, 5832Gen
FC BAT t tε → = ∈ (6)

4 Combination of the Flexible PMS Representation and Solar
Radiation Forecast

In order to test the efficiency of the proposed model an already implemented system
HYRES was taken under consideration. As a result, the meteorological measurements
used in this study are real data collected from the location of Olvio near the city of
Xanthi in Greece, where the main compound of SYSTEMS SUNLIGHT S.A. is
located. In Fig. 5 there is a block diagram describing the general architecture and
components of the available HYRES system. In the following we use the solar radiation
prediction RNN presented in Section 2 and we combine it with the PMS representation
of Section 3. As it has been said, when the 2nd PMS is utilised, the FC is not allowed to
operate during the summer months even in the case where the SOC is low and there is
available hydrogen. The main argument for that is that there will be intense solar
irradiation after a few hours and hence energy will be produced that not only will charge

142 P. Chatziagorakis et al.

the battery. While in most cases this approach will reduce the usage of the FC without
over depleting the battery in some cases it is possible to cause many problems. This is
happening if during the next 24h there is a rather low solar irradiation and hence the
DSL is forced to be activated. This issue gets more serious if there are multiple
successive days with low solar irradiation. This problem can be overcome if using the
weather forecast method explained before we detect the days with low solar irradiation
and for these days we allow the usage of the FC (i.e. operate under the first PMS). As a
case study in Figure 6(a) we see the power produced by the PVs in the system for 4 days
during August. We see that on the 3rd of August the maximum power is above 12kW
while in the 5th less than 8kW. More specifically the total energy produced during these
4 days is approximately 92kWh, 41kWh, 48kWh and 67kWh respectively. In this case
study the load was fixed at 3kW and hence each day there is a requirement of 72kWh.
The FC was operated at 2kW and the DSL at 3kW (in order to protect the battery).

Fig. 5. Schematic of the available Hybrid Renewable Energy Systems (HYRES) of the Sunlight
Systems S.A. that is installed in the location of Olvio, Xanthi, Greece and is used for the needs
of the current research

In Fig. 6(b) we see the state of charge of the battery when the two PMS were used.
In the first case (solid trace) the PMS did not allow the activation of the FC and while
this did not cause any problems during day 1 (3rd of August) at the end of the second
day the SOC dropped below 0.2 and the DSL was activated. On the other hand when

 Application of Neural Networks Solar Radiation Prediction 143

based on the weather prediction, it was seen by the system that on the 4th and 5th of
August the solar irradiation may not be high enough, the PMS was changed and the
FC was activated which stopped the SOC dropping below 0.26.

03/08 04/08 05/08 06/08
0

2000

4000

6000

8000

10000

12000

Days

P
ow

er
,

W

03/08 04/08 05/08 06/08

0.2

0.3

0.4

0.5

0.6

0.7

Days

S
O

C

Fig. 6. (a) Power produced by the PVs. (b) SOC response under the 2 PMSs

5 Conclusions

In this paper a RNN for solar radiation prediction is proposed for the enhancement of
the PMSs of HYRES. The presented RNN with NAR architecture can offer both daily
and hourly prediction concerning solar irradiation forecasting. As a result, the
proposed model can be used to predict the Photovoltaic Systems output of the
HYRES and provide valuable feedback for PMSs of the understudy autonomous
system. To do so a flexible network based design of the HYRES is used and,
moreover, applied to a specific system located on Olvio, near Xanthi, Greece part of
SYSTEMS SUNLIGHT facilities. As a result, the proposed RNN was trained with
meteorological data of the aforementioned area and then applied to the proposed
HYRES managing to enhance and optimize its PMS based on the provided solar
radiation prediction. Furthermore, as a future work we will apply the presented RNN
to estimate wind speed aiming at the optimal utilization of both solar and wind energy
through a combination of autonomous hybrid systems that gather multiple renewable
sources as already proposed.

Acknowledgements. This work is co-financed by National Strategic Reference
Framework (NSRF) 2007-2013 of Greece and the European Union, research program
“SYNERGASIA” (SUPERMICRO – 09ΣYN-32-594).

References

1. Deshmukha, M.K., Deshmukh, S.S.: Modeling of hybrid renewable energy systems.
Renewable and Sustainable Energy Reviews 12(1), 235–249 (2008)

2. Alam, S., Kaushik, S.C., Garg, S.N.: Computation of beam solar radiation at normal
incidence using artificial neural network. Renewable Energy 31(10), 1483–1491 (2006)

3. Mubiru, J., Banda, E.J.K.B.: Estimation of monthly average daily global solar irradiation
using artificial neural networks. Solar Energy 82(2), 181–187 (2008)

144 P. Chatziagorakis et al.

4. Rehman, S., Mohandes, M.: Artificial neural network estimation of global solar radiation
using air temperature and relative humidity. Energy Policy 36(2), 571–576 (2008)

5. Ghanbarzadeh, A., Noghrehabadi, R., Assareh, E., Behrang, M.A.: Solar radiation
forecasting using meteorological data. In: 7th IEEE International Conference on Industrial
Informatics (INDIN 2009), UK, (2009)

6. Benghanem, M., Mellit, A.: Radial Basis Function Network – based prediction of global
solar radiation data: Application for sizing of a stand – alone photovoltaic system at Al –
Madinah, Saudi Arabia. Energy 35, 3751–3762 (2010)

7. Paoli, C., Voyant, C., Muselli, M., Nivet, M.L.: Forecasting of preprocessed daily solar
radiation time series using neural networks. Solar Energy 84(12), 2146–2160 (2010)

8. AbdulAzeez, M.A.: Artificial Neural Network Estimation of Global Solar Radiation Using
Meteorological Parameters in Gusau, Nigeria. Archives of Applied Science Research 3(2),
586–595 (2011)

9. Mellit, A., Kalogirou, S.A., Hontoria, L., Shaari, S.: Artificial intelligence techniques for
sizing photovoltaic systems: a review. Renewable & Sustainable Energy Reviews 13(2),
406–419 (2009)

10. Zeng, Z., Yang, H., Zhao, R., Meng, J.: Nonlinear characteristics of observed solar
radiation data. Solar Energy 87, 204–218 (2013)

11. Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures.
Neural Networks 1, 17–61 (1988)

12. Anderson, J.A.: Introduction to Neural Networks. MIT Press, Cambridge (1995)
13. Elman, J.: Finding structure in time. Cognitive Sci. 14, 179–211 (1990)
14. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: a survey.

IEEE Transactions on Neural Networks 6(5), 1212–1228 (1995)
15. Hwang, S.Y., Basawa, I.V.: Large sample inference based on multiple observations from

nonlinear autoregressive processes. Stochastic Processes and their Applications 49(1),
127–140 (1994)

16. Kapetanios, G.: Nonlinear autoregressive models and long memory. Economics
Letters 91(3), 360–368 (2006)

17. Taskaya-Temizel, T., Casey, M.: A comparative study of autoregressive neural network
hybrids. Neural Networks 18(5-6), 781–789 (2005)

18. Guo, W.W., Xue, H.: Crop Yield Forecasting Using Artificial Neural Networks: A
Comparison between Spatial and Temporal Models. Mathematical Problems in
Engineering 857865, 7 (2014)

19. Kohonen, T.: Self – Organization and Associative Memory. Springer (1989)
20. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998)
21. Anderson, J.A., Rosenfield, E.: Neurocomputing: Foundations of Research. MIT Press

(1989)
22. Giaouris, D., Papadopoulos, A.I., Ziogou, C., Ipsakis, D., Voutetakis, S., Papadopoulou,

S., Seferlis, P., Stergiopoulos, F., Elmasides, C.: Performance investigation of a hybrid
renewable power generation and storage system using systemic power management
models. Energy 61, 621–635 (2013)

A New User Similarity Computation Method

for Collaborative Filtering Using Artificial
Neural Network

Noman Bin Mannan1, Sheikh Muhammad Sarwar1, and Najeeb Elahi2

1 Institute of Information Technology, University of Dhaka,
Dhaka, Bangladesh

nomanbinmannan@gmail.com, smsarwar@du.ac.bd
2 UiT The Arctic University of Norway

najeeb.elahi@uit.no

Abstract. A User-User Collaborative Filtering (CF) algorithm predicts
the rating of a particular item for a given user based on the judgment
of other users, who are similar to the given user. Hence, measuring sim-
ilarity between two users turns out to be a crucial and challenging task
as the similarity function is the core component of the item rating pre-
diction function for a particular user. In this paper, we investigate the
effectiveness of a multilayer feed-forward artificial neural network as a
similarity measurement function. We model similarity between two users
as a function that consists of a set of adaptive weights and attempt to
train a neural network to optimize the weights. Specifically, our contri-
bution lies in designing an error function for the neural network, which
optimizes the network and sets weights in such a way that enables the
neural network to produce a reasonable similarity value between two
users as its output. Through experimentation on Movielens dataset, we
conclude that neural network, as a similarity function, gains more ac-
curacy and coverage compared to the Genetic Algorithm (GA) based
similarity architecture proposed by Bobadilla et al.

Keywords: Collaborative filtering, Recommender System, Similarity
measures, Artificial Neural Network.

1 Introduction

Recommender system (RS) makes custom-made recommendations to its users
for products, services or information by applying various knowledge discovery
techniques. The general objective of a RS is to predict rating of items of which
the user has no knowledge. Different filtering algorithms are used in RS and a
filtering algorithm is the core component of a recommender system. Most com-
mon filtering algorithms are demographic filtering [1] and content based filtering
[2]. Demographic filtering is established using an intuition that users with com-
mon personal attributes like sex, age, region etc. will also have common personal
preferences. Content based filtering recommends items to the user according to

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 145–154, 2014.
c© Springer International Publishing Switzerland 2014

146 N.B. Mannan, S.M. Sarwar, and N. Elahi

the content of the previously preferred items. This algorithm analyzes user’s past
behavior and recommends items according to user’s preference history.

In recent years, collaborative filtering (CF) has been the mostly used filtering
algorithm [8] [9] in RS. This filtering algorithm is based on the assumption that
rating prediction for an unknown item for a given user should be influenced by
a neighborhood of users with which the given user is similar. The neighborhood
of similar users usually rate an important number of items in a similar way as
the given user. For example ”A Beautiful Mind” movie could be highly rated for
an individual based on the positive ratings of a group of similar people about
this movie who also rated this movie very highly. This recommendation will
often provide the user of the service with inspiring positive information from the
collective knowledge of all other users of the service.

The importance of recommender systems is increasing day by day. In recent
years, RS have played an important role in reducing the unnecessary informa-
tion overload on those websites, where users have the option of voting for their
preferences on a series of products or services. Most well-known example of RS
will be movie recommendation websites (i.e. IMDb) not only in aspect to users
but also for researchers [3]. There are also many other application fields of RS
such as e-commerce [4], e-learning [5], digital libraries [6] and so on. RS have
great rule in future and it’s importance is increasing day by day.

Artificial neural network (ANN) is a machine learning tool, which can be used
for generating a series of nonlinear result values for real-valued and vector-valued
functions over continuous and discrete-valued attributes. ANNs are also strong
to noise in the training data [7]. The contribution of this paper is the introduction
and applicability of ANN as a new similarity function for collaborative filtering.
We train the neural network to enable it to produce a similarity value between
two users. Through experimentation we show that ANN performs well than
Genetic Algorithm [13] in terms of Mean Absolute Error (MAE) and Coverage.

2 Background and Related Work

Similarity computation between users is the main task in collaborative filtering
algorithms. For a User-User CF algorithm, similarity, simx,y, between the users
x and y who have both rated the same items is calculated first. To calculate this
similarity different metrics [10] [11] [12] are used.

Generally, for computing correlation-based similarity, similarity simx,y

between two users x and y is calculated using Pearson correlation or other
correlation-based similarities. Other correlation-based similarities are con-
strained Pearson correlation, Spearman rank correlation and Kendalls τ correla-
tion. In constrained Pearson correlation, mid point is used in place of mean rate
which is the main difference with Pearson correlation. Spearman rank correla-
tion is similar to Pearson correlation, except that the ratings are ranks. Kendalls
τ correlation is similar to the Spearman rank correlation, but instead of using
ranks themselves, only the relative ranks are used to calculate the correlation
[17] [18]. Vector-cosine based similarity metric use user as a vector of ratings and

A New User Similarity Computation Method 147

measure the rating vectors cosign angle [15]. There exists other useful similarity
measures based on conditional probability [19] [20]. The goal of all the simi-
larity measures is to produce appropriate similarity values between two users
depending on their item rating vector.

2.1 Predicted Rating Computation and Mean Absolute Error
(MAE)

To calculate the predicted rating pix for user x of an item i, the following Devi-
ation From Mean (DFM) as aggregation approach is used:

pix = r̄x +

∑
nεkx

[simw(x, n)× (rin − r̄n)]∑
nεkx

simw(x, n)
(1)

Where r̄x is the average of ratings made by the given user x and r̄n, r
i
n is the

average of ratings and rating of the neighbor for that item respectively made
by the neighbor n . After calculating every possible prediction according to the
similarity function simw, the mean absolute error (MAE) of the RS is measured
as following:

MAE =
1

U

∑
uεU

∑
iεIu

∣∣piu − riu
∣∣

lu
(2)

When running the similarity function, U and Iu represent respectively the
number of training users and the number of training items rated by the user u.

2.2 Similarity Method Using Genetic Algorithm(GA Method)

The main goal of a CF based RS is to obtain better rating prediction for an
unknown item by applying a similarity function that improves the accuracy [8]
[11] of prediction of CF based RS. For this purpose, Bobadilla et al. proposed a
genetic algorithm based similarity method.

First they generate some vector values of a user subject to another user for
obtaining similarity between each pair of users. Then vector values are passed
to a similarity function which is associated with some weight vectors. Weight
vectors for optimal similarity function are obtained by genetic algorithm.

Genetic algorithm (GA) based similarity metric [13] is described below:

Vector Values. The pre-processing stage of the GA based method involves the
computation of a vector between two users. Later, the vector is used to asses the
similarity between the users. In order to understand the vector computation let
us consider a RS with a set of U users, (1, ..., U), and a set of I items (1, ..., I).
Users rate those items with a discrete range of possible values (m, ...,M), where
value m represents a scenario where the user is completely unsatisfied and value
M indicates a situation where the user is completely satisfied.

148 N.B. Mannan, S.M. Sarwar, and N. Elahi

The ratings made by a particular user x can be represented by a list, rx =

r
(1)
x , r

(2)
x , ..., r

(l)
x , where I is the number of items in the RS and rix represents the

rating that the user x has made over the item i. If an item is not rated by the
user, mark • is used and therefore the expression rix = • states that the user x
has not rated the item i yet.

To compare both user x and y, their rating lists, rx, ry are compiled to another
vector:

vx,y = (v(0)x,y, ..., v
(M−m)
x,y) (3)

whose dimension is the number of the possible ratings that a user can make

over an item. Each component v
(i)
x,y of the vector vx,y, represents the ratio of

items, j, rated by both users (that is to say, r
(j)
x
= • and r

(j)
y
= •) and over

which the absolute difference between the ratings of both users is i(|rix−riy| = i),

to the number of items rated by both users. That is to say, v
(i)
x,y = a/b where b is

the number of items rated by both users, and a is the number of items rated by
both users over which the absolute difference in the ratings of both users is i.

In such a way the vector vx,y is produced from the rating lists of user x and
user y.

Similarity Function for GA Based Architecture. The resultant vector
produced from two users is used to compute similarity between two users. For
similarity calculation between two users using the vector, GA method considers
the following equation:

simw(x, y) =
1

M −m+ 1

M−m∑
i=0

w(i)v(i)x,y (4)

Here, GA method introduces a weight vector w = w(0), ..., w(M−m), whose
components lie in the range [−1, 1] (that is to say, w(i) ∈ [−1, 1]). The rationale
for assigning different weights to different components is to indicate relative
importance of different components. As the first scalar component of the vector
denotes the number of movies on which two users completely agree with each
other, it would possibly have higher value that other scalar components.

Genetic Algorithm (GA) Method. In order to find an optimal similarity
function, simw, genetic algorithm has been used to search for an optimal weight
vector w, which is associated with the optimal similarity function simw (Eq.
4). In this context, genetic algorithm performs a supervised learning task [14],
whose fitness function or evaluation function is the Mean Absolute Error (MAE)
of the RS. The population of the genetic algorithm is the set of different vectors
of weights, w. This method stops to generate population when the output of the
population evaluation function (MAE) of the RS is lower then a threshold value,
γ.

A New User Similarity Computation Method 149

3 New Similarity Computation Method Using ANN

In this section we present our rationale for using ANN as a similarity function.
Moreover, we show that how we have modeled the similarity function using an
ANN. Specifically, we design the objective function or cost function in such a
way that the ANN being trained with substantial amount of instances produce
satisfactory similarity values.

3.1 Rationale Behind Choosing Neural Network

In [13], genetic algorithm has been used to find optimal weight vector for the
equation in 4. Genetic algorithms perform well with chromosomes represented
as binary string, and even though there are methods in existing literature to
represent chromosome as a floating point vector, genetic algorithms sometimes
perform poorly when used for floating point weight adjustment. Moreover, per-
formance of a genetic algorithm is mostly dependent on the set of initial pop-
ulation, which if not carefully chosen according to a good heuristic can lead to
non-optimal solutions. In this specific problem, a five-length floating point weight
vector is found with genetic algorithm, which produces minimum MAE. A short
note on MAE is given in section 2.1. We argue that we can have a large set of
weight vectors to train if we use neural network, and we can make the weight
vector as large as we can by increasing number of hidden layers and nodes in
each hidden layer. Furthermore, ANN is naturally designed to handled floating
point values and hence is perfectly suitable for finding acceptable similarity value
between two users, if provided with vector values 2.2 between two users.

3.2 Modeling Similarity Function as ANN

As a similarity function, we have used a multilayer feed forward neural network
with one input layer, one hidden layer and one output layer. The neural network
is depicted in section 3.3 (Fig. 1). Vector value between two users is calculated
using equation 3, and the resulting vector is modeled as the input of the network.
In order to model similarity using ANN, we have used five input nodes in input
layer and three hidden nodes in hidden layer. We obtain the expected similarity
(Eq.7) from the output node and execute error back propagation algorithm until
the expected similarity (minimum error function is set) is obtained from the
output node. After training all users for all training item we expect to find
an optimal neural network which, if give vector values between two users can
produce satisfactory similarity value.

3.3 Neural Network Cost Function

The design of our cost function emerges from equation 1, which is used for
predicting rating for an item in collaborative filtering for a given user based his
similarity with other users. If we consider that rating for a given user (ux) is

150 N.B. Mannan, S.M. Sarwar, and N. Elahi

Fig. 1. Design of the similarity function as a multilayer feed-froward neural network

predicted using his similarity with another single user (un), the equation takes
the following form:

pix = r̄x + simw(x, n)× (rin − r̄n) (5)

In the above equation, r̄x is the average rating of ux and r̄n is the average
rating of un. p

i
x is the predicted rating for ux for item i, while rin is the original

rating of un for item i. Now, if we know the original rating rix for ux, we can
write the above equation as below by slightly modifying it:

rix = r̄x + simw(x, n) × (rin − r̄n) (6)

From the above equation we can find the similarity as below:

simw(x, n) =
rix − r̄x
rin − r̄n

(7)

So, if rating vectors of rx and rn are available we can always asses the similarity
for each rating pair (rix, r

i
n). The similarity simw(x, n) would lie in the range of

[-1, 1].
For example, let us consider a rating database shown in table 1 for set of 6

users 1,2,.,6 and 6 items 1,2,.,6. Items are represented in the columns and users
are shown in the rows. From the table we can obtain the rating vector for each
of the users. Now, if we want to asses the similarity between the first user (u1)
and the third user (u3) for movie 6, then the result will be as following:

simw(1, 3) =
4− 3

3− 2.33
= 1.49 ∼= 1 (8)

A New User Similarity Computation Method 151

Table 1. Rating Table

1 2 3 4 5 6 Avg. Rating
1 4 5 0 3 2 4 3
2 1 0 4 0 5 2 2
3 2 0 5 0 4 3 2.33
4 4 1 1 3 4 5 3
5 2 0 3 5 0 0 1.67
6 5 1 0 4 2 0 2

According to our design, we model ground truth similarity for neural network
between two users for each item. By careful examination, it can be seen that the
ground truth similarity between two users will change for each item. So, for each
item if they have similar preference the neural network will have to go through
less correction. So if, we have the rating vector for two users we can compute
the vector values as shown in section 2.2, use them as input values for neural
network and train the network to produce correct similarity value for each of
the commonly rated items in the rating vector.

4 Experimental Results

4.1 Procedure

Data. We have run experiments with data from the MovieLens database devel-
oped by GroupLens and Internet Movie Database (IMDb). This database contain
rating values for a set of movies by a set of users. We selected the first 1000 users
as collaborative users that had rated more than 40 movies. The target users were
selected from the users who’s id was over 1000 (so that the collaborative group
and the test group of users are disjoint) and had also rated approximately 30
movies.

Table 2. Descriptive information of the database used in the experiments

Dataset Movielens

Users 6040

Movies 3952

Ratings 1000209

Min and Max Rating 1-5

Parameter Settings for Traning and Testing. For the training we have
used 3952 collaborative users from the Movielens database. We train all users
(3952) for a set of movies. After that we ran several experiments working with
different parameters to find the best combination. After a set of experiments
we obtained better result for a neural network with three hidden layers. The
maximum number of epochs to train the network was five hundred and cross
validation was used to test the neural networks performance.

152 N.B. Mannan, S.M. Sarwar, and N. Elahi

Prediction and Recommendation Result. In this section, we show the re-
sults obtained using the dataset specified in Table. 2. The results of our proposed
ANN method are compared with the ones obtained using GA method and tra-
ditional metrics on RS collaborative filtering: Pearson correlation, Cosine and
Mean Squared Differences. The comparative results are shown in Fig. 2, in terms
of Mean Absolute Error (MAE) and in terms of coverage they are shown in Fig. 3.

Fig. 2. Comparative resutls for GA, traditional metrics and proposed ANNs similarity
method on Movielens dataset in terms of Mean Absolute Error

Fig 2 informs about the MAE obtained for Movielens when applying Pearson
correlation (COR), cosine (COS), Mean Squared Differences (MSD), GA-method
and the proposed ANNs method. The ANNs leads to fewer errors, particularly
in the most used values of K. The black dashed and continuous lines represent
respectively the best GA method and ANNs result.

Fig 3 informs about the coverage obtained. As may be seen, ANN method
can improve the coverage for any value of K (the number of neighbors for each
user) in relation to GA method and other traditional metric used.

The constant K is related to the number of neighbors for each given user and
it varies between 50 and 800. These values enable us to view the trends of the
graphics obtained from our ANN method compared to GA method and other
traditional metric.

Graphic 2 shows that the best results in MAE with the ANN method are
obtained when using a medium value in K, Graphic 3 shows that the best results
with the ANN method are obtained in coverage using medium values inK. In this
way, we should use intermediate values in K (K ∈ {300, ..., 400}) for obtaining
the most satisfactory results both in MAE and in coverage. As our method
provides high values in the quality measures applied on the MovieLens (mostly
used database in RS) database, we can conclude that the proposed metric will
work on a variety of Recommender Systems.

A New User Similarity Computation Method 153

Fig. 3. Comparative resutls for GA, traditional metrics and proposed ANNs similarity
method on Movielens dataset in terms of Coverage

5 Conclusion

The main contribution of this paper is the creation of a new similarity compu-
tation method using artificial neural network. When compared to GA method
and other architectures, our similarity method architecture was able to reduce
mean absolute error (MAE) convincingly. To be able to further evaluate our
work it would be interesting to use singular value decomposition over our data.
This would greatly reduce the amount of missing values in our dataset and most
likely further increase the accuracy and coverage of our results. The MovieLens
database have been extensively used in recommender systems research. Never-
theless, it would be useful to test the ANN based architecture with other datasets
like eachmovie, film affinity, netflix and also other domains. Finally, even though
applying neural network would slow down the process of recommendation gener-
ation by a few milliseconds if compared with the genetic algorithm (which gives
results using a linear combination of weights), the MAE would be much less than
the genetic algorithm based approach. Our experimental result clearly depicts
this fact.

References

1. Krulwich, B.: Lifestyle finder: Intelligent user profiling using large-scale demo-
graphic data. AI Magazine 18(2), 37 (1997)

2. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth
International Conference on Machine Learning, Citeseer (1995)

3. Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender
system. ACM Transactions on Information Systems (TOIS) 22(3), 437–476 (2004)

154 N.B. Mannan, S.M. Sarwar, and N. Elahi

4. Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In:
2007 International Conference on Service Systems and Service Management, pp.
1–5. IEEE (2007)

5. Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to rec-
ommender systems of e-learning. Knowledge-Based Systems 22(4), 261–265 (2009)

6. Porcel, C., Herrera-Viedma, E.: Dealing with incomplete information in a fuzzy
linguistic recommender system to disseminate information in university digital li-
braries. Knowledge-Based Systems 23(1), 32–39 (2010)

7. Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr Ridge (1997)
8. Herlocker, J.L., Konstan, J.A., Riedl, J.T., Terveen, L.G.: Evaluating collabora-

tive filtering recommender systems. ACM Transactions on Information Systems
(TOIS) 22(1), 5–53 (2004)

9. Manolopoulus, Y., Nanopoulus, A., Papadopoulus, A.N., Symeonidis, P.: Collab-
orative recommender systems: combining effectiveness and efficiency. Exp. Syst.
Appl. 34(4), 2995–3013 (2008)

10. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

11. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that
improves the behavior of recommender systems. Knowl. Based Syst. 23(6), 520–528
(2010)

12. Ingoo, H., Kyong, J.O., Tae, H.R.: The collaborative filtering recommendation
based on SOM cluster-indexing CBR. Exp. Syst. Appl. 25, 413–423 (2003)

13. Bobadilla, J., Ortega, F., Hernando, A., Alcalá, J.: Improving collaborative filtering
recommender system results and performance using genetic algorithms. Knowl.
Based Syst. 24(8), 1310–1316 (2011)

14. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning
(1989) ISBN: 0-201-15767-5

15. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill, New York (1983)

16. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the ACM
Conference on Computer Supported Cooperative Work, New York, NY, USA, pp.
175–186 (1994)

17. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time
collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

18. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems 22(1),
5–53 (2004)

19. Karypis, G.: Evaluation of item-based top-N recommendation algorithms. In: Pro-
ceedings of the International Conference on Information and Knowledge Manage-
ment (CIKM 2001), Atlanta, Ga, USA, pp. 247–254 (November 2001)

20. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM
Transactions on Information Systems 22(1), 143–177 (2004)

Probabilistic Models Based Intrusion Detection Using
Sequence Characteristics in Control System

Communication

Takashi Onoda

System Engineering System Laboratory,
Central Research Institute of Electric Power Industry,

2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 Japan
onoda@criepi.denken.or.jp

http://www.criepi.denken.or.jp/en/index.html

Abstract. The importance of cyber security has increased with the networked
and highly complex structure of computer systems, and the increased value of
information. In this paper, we compare Conditional Random Field based intrusion
detection with the other probabilistic models based intrusion detection. Theses
methods uses the sequence characteristics of network traffic in the control system
communication. The learning only utilizes normal data, assuming that there is
no prior knowledge on attacks in the system. We applied these two probabilistic
models to intrusion detection in DARPA data and an experimental control system
network, and compared the differences in the performance.

Keywords: CRF, HMM, Control System Communication, Intrusion Detection,
Sequence.

1 Introduction

The importance of cyber security has increased with the networked and highly complex
structure of computer systems, and the increased value of information. Securing the
network perimeter of a system is no longer considered sufficient to secure the system,
and many layers of security, or defense in depth[1] is necessary.

Intrusion detection is one layer of security for a system, and is defined as ”the act of
detecting actions that attempt to compromise the confidentiality, integrity or availability
of a resource”[2]. A basic intrusion detection in general checks IP (Internet Protocol)
addresses, communication ports, and protocols at the TCP/UDP (Transmission Control
Protocol/ User Datagram Protocol) level for non-legitimate connections. Constructing
intrusion detection rules to match attacks does not necessarily require knowledge of the
protocol details of the applications being used. Such rules are necessary to detect many
attacks, and are proved to be highly effective [3,4].

We believe that it is effective to consider the sequence characteristics of the net-
work traffic in control system communications. Previously, we investigated the use of
intrusion detection systems in control systems that considered the application level be-
havior of the system[5,6]. We manually constructed intrusion detection rules checking

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 155–164, 2014.
c© Springer International Publishing Switzerland 2014

http://www.criepi.denken.or.jp/en/index.html

156 T. Onoda

the sequence characteristics of the network traffic caused by the control system protocol
used by the control system application. The intrusion detection rules checked the traffic
for sequence patterns that should not be possible during normal operation through the
interface of that application.

Manually creating all the intrusion detection rules becomes impractical in a large
system, and there has been work using machine learning for the creation of detection
rules[7]. If there have been almost no observed cyber attacks, and very little attack
data is available, it is difficult to construct a binary class classification problem for ma-
chine learning, which uses both the legitimate communication data and the attack data.
In such cases, anomaly detection for intrusion detection would be a good choice[8].
There are many algorithms that can reflect sequence characteristics. The sequence data
of the network traffic caused by the control system are probabilistic. In such a case, a
Hidden Markov Model(HMM) and a Conditional Random Field(CRF) can reflect se-
quence characteristics. In this paper, we compare these two probabilistic models that
reflect the sequence characteristics of network traffic into the intrusion detection sys-
tem. The learning only utilizes normal data, assuming that there is no prior knowledge
on attacks in the system. We show the results of the experiments.

2 Intrusion Detection Considering Sequences

Intrusion detection systems used in general computer systems widely use signature
based systems, which build a model based on available knowledge of attacks. This
has proved to be effective in a general computer system environment. But for new and
unknown cyber attacks, there is no data that can be used to build a model for those
attacks. It is relatively easy to collect a large amount of normal communication data;
therefore, anomaly detection using only the available normal data becomes effective.
However, signature based systems are superior when detecting known attacks, so either
both types of intrusion detection would be applied, or we assume that the basic attacks
would be prevented with the other security measures.

Another feature characteristic to control systems is the control system sequence in
the network traffic. In a typical control system, many of the control system devices
would be controlled in a certain order. For example, a certain valve would have to be
closed before another valve can be opened. This is in order to prevent any physical
damage to the control system. Generally, a violation of such a sequence would be pre-
vented at the operator console, for example by not allowing the execution at the user
interface, thus preventing any mistakes by the operator. There are usually also physical
locks in the control system to prevent damage to the devices. However, if an attacker
does not use the legitimate user interface and also eludes or disables the physical locks,
there is a possibility that the attacker could cause damage to the control system. This
would clearly violate the control system sequence, which should be visible in the net-
work traffic, so if the violation could be detected by the intrusion detection system, it
would help prevent damage to the system. Also, if the attacker does not have enough
prior knowledge of the control system, the attacker may unknowingly violate the con-
trol system sequence. If the intrusion detection system is checking the sequences, such
an attack would easily be detected.

Probabilistic Models Based Intrusion Detection Using Sequence Characteristics 157

With the features mentioned above, each sequence in the network traffic data is
counted. Note that for the training, only the legitimate network traffic data of the system
is used, making it adequate for control systems. After the training data is processed, the
test data is processed with the same method, and if the data falls within a certain per-
centage of the minority data, the intrusion detection system alerts the data as an attack.

3 Hidden Markov Model and Conditional Random Field

In this section, we briefly introduce the two probabilistic models we used for intrusion
detection; HMM and CRF.

3.1 HMM

The formal definition of a HMM is as follows:

λ = (A,B, π) (1)

S = (s1, s2, · · · , sN) is our state set, and Y = (y1, y2, · · · , yN) is the observation
set.

We define Q = q1, q2, · · · , qT , O = o1, o2, · · · , oT to be a fixed state sequence of
length T , and corresponding observations O.

A = [aij] , aij = P (qt = sj |qt−1 = si) is a transition array, storing the probability
of state j following state i. Note the state transition probabilities are independent of
time.

B = [bi(k)] , bi(k) = P (ot = vk|qt = si) is the observation array, storing the
probability of observation k being produced from the state j, independent of t.

π = [πi] , π = P (q1 = si) is the initial probability array.
Two assumptions are made by the model. The first, called the Markov assumption,

states that the current state is dependent only on the previous state, this represents the
memory of the model:

P (qt|qt−1
1) = P (qt|qt−1) (2)

The independent assumption states that the output observation at time t is dependent
only on the current state, it is independent of previous observations and states:

P (ot|ot−1
1 , qt1) = P (ot|qt) (3)

The problem of HMMs is to determine a method to adjust the model parameters
(A,B, π) to maximize the probability of the observation sequence given the model.
There is no known way to analytically solve for the model which maximize the proba-
bility of the observation sequence. In fact, given finite observation sequence as training
data, there is no optimal way of estimating the model parameters[9]. We can, however,
choose λ = (A,B, π) such as P (O|λ) is locally maximized using an iterative procedure
such as Baum-Welch method(or equivalently the EM method) [10], or using gradient
techniques.

158 T. Onoda

・・・

Fig. 1. Graphical structure of a chain-structured CRFs for sequences. The variables corresponding
to unshaded nodes are not generated by the model.

3.2 CRF

A CRF may be viewed as an undirected graphical model, or Markov random field,
globally conditioned on X, the random variable representing observation sequences.
Formally, we define G = (V,E) to be an undirected graph such that there is a node
v ∈ V corresponding to each of the random variables representing an element YvofY .
If each random variable Yv obeys the Markov property with respect to G, then (Y,X)
is a conditional random field. In theory the structure of graph G may be arbitrary, pro-
vided it represents the conditional independence in the label sequences being modeled.
However, when modeling sequences, the simplest and most common graph structure
encountered is that in which the nodes corresponding to elements of Y form a simple
first-order chain, as illustrated in Figure 1.

CRF is a probabilistic model which has a graphical structure. The input data is x and
the estimated output data is y. The general graphical models estimate a joint probabilis-
tic distribution P (x,y). The general graphical models need to estimate a probabilistic
distribution P (x) to estimate the joint probabilistic distribution P (x,y). If the relation
between input data is complicated, it is sometimes hard to estimate the joint probabilis-
tic distribution. CRF estimates a conditional distribution P (y|x) directly.

CRF is computed by the following. The input data sequence set is X and the output
label sequence set is Y . The input data sequence x = {x1, · · · , xK} ∈ X and and the
output label sequence y = {y1, · · · , yK} ∈ Y consists of K elements. The conditional
probabilistic distribution P (y|x) is defined by the next equation.

P (y|x) = 1

Z(x)
exp

{
K∑

k=1

λkfk(xt,yt)

}
(4)

where Λ = {λk, k = 1, · · · ,K} is a set of parameters. fk(xt,yt) denotes a character-
istic function and is represented by the next equation.

If yt = yk, fk(xt,yt) = xk and if yt
= yk, fk(xt,yt) = 0 (5)

Z(x) is a partition function and represented by the following equation.

Z(x) =
∑
y

exp

{
K∑

k=1

λkfk(x,y)

}
(6)

Probabilistic Models Based Intrusion Detection Using Sequence Characteristics 159

where x(i) = {x(i)
1 , · · · , x(i)

T }, i = 1, · · · , N is a sequence of the input data and to

y(i) = {y(i)1 , · · · , y(i)T }, i = 1, · · · , N and N is the number of data to generate a
probabilistic model. Finally, the parameter λ is estimated by the maximum likelihood
estimation based on the following likelihood function[12].

l(λi) =

N∑
i=1

logP (y(i)|x(i)) (7)

where y(i),x(i) are a set of training data D = (x(i),y(i))Ni=1 to generate probabilistic
models[11].

4 Experiments

4.1 Experimental Setup

Our experiments used two kinds of communication data. One is benchmark data which
are supplied by DARPA[13,14]. Another one is communication data of a model control
system. The data are generated by our model system. Now, this paper introduces these
two kinds of communication data.

Benchmark Data. In order to evaluate intrusion detection methods for an informa-
tion system, our experiments adopted bench DARPA benchmark data[13,14]. From
DARPA benchmark data, we randomly pick out 10, 000 packets of normal communi-
cation data for training probabilistic models of normal communication sequences. And
from DARPA benchmark data, we randomly pick out 10, 000 packets of communica-
tion data, which include abnormal communication data, for evaluating the performance
of some intrusion detection methods. Our experiments generated ten training datasets
and ten test datasets. The features used as input data are shown in the table 1.

Control System Communication Data. The model control system communication
network used in the experiment is shown in Fig. 2 and was developed in our labo-
ratory. Japanese electric power companies have two communication networks, which
are the control system network and business network, which is defined as a type of
business social network whose reason for existing is business networking activity. And
these communication networks are disconnected physically. Therefore, it is assumed
here that no connections exist between our control system network and the corporate
business network. All the equipment, applications and security measures in the figure
belong solely to the control system network, and the placement and settings mentioned
are irrelevant to the corporate business network. The control system master server lo-
cated in the control center is the direct control and data acquisition interface to the
control system equipment, or field devices. To control the field devices located in the
substation, the master server communicates with the server in the substation, which in
turn sends the actual control signals to the field device. In this model system, the con-
trol system field devices are emulated in the same terminal as the substation server. The

160 T. Onoda

Table 1. Features of Input Data for DARPA data

Features
-Source IP address (IP address, MAC address)
-Destination IP address (IP address, MAC address)
-Source port number
-Destination port number
-Protocol
-Data length
-Sequence number
-Identification number of field device
-Type of control command or state information
-Interval between packets
-Interval between use of field device
-Interval between control command or state information retrieval
-Frequency of use of field device

Control Center Controlled station

control commands

Slave
server

Control system
master server

state informationFirewall

Operator console

EncryptionIntrusion
Detection

System

Encryption

Field devices

Fig. 2. An Overview of the Model System used for the experiment
Encryption is the process of encoding messages or information

state information of the field devices and any responses to the control commands are
sent through the substation server to the control system master server, and then sent to
any communicating operator consoles, which in this case are located within the control
center.

Using the model control system, we collected 10, 000 packets of normal communi-
cation data for training two probabilistic models. The features used from the data are
shown in Table 2. The data was calibrated based on prior knowledge of the control
system, to have values closer to 0 for less probable data.

Using the model control system, we collected 500 packets of unauthorized commu-
nication data for evaluating probabilistic models as intrusion detection systems. The
unauthorized communication data are generated independently of the normal commu-
nication data by simulated cyber attacks, because we do not have any real cyber attacks
for control systems. The model control system generated three types of the virtual cyber
attacks. The three types of the virtual cyber attacks are the following.

Probabilistic Models Based Intrusion Detection Using Sequence Characteristics 161

Table 2. Data used for Training

Data Description
-Source IP address(IP address, MAC address) -Addresses belonging to devices in the system: 1
-Destination IP address(IP address, MAC address) -Addresses belonging to the same network as the system: 0.5

-Addresses belonging to different network: 0
-Source port number -Port numbers used in the system: 1
-Destination port number -Port numbers reserved for use in the system: 0.5

-Port numbers not expected to be used in the system: 0
-Protocol -Content specified to be used in the system: 1
-Identification number of field device -Content not clearly specified to be used in the system: 0.5
-Type of control command or state information -Content clearly specified not to be used in the system: 0
-Data length -Length within the range used in the system: 1

-Length out of the range used in the system: 0.5
-Interval between packets -Time elapsed after previous packet
-Interval between use of field device -Time elapsed after use of a certain field device
-Interval between control command or state -Time elapsed after use of the same control command or
information retrieval state information retrieval

-Frequency of use of field device -Frequency of usage of a certain field device
within the training dataset

Type 1: Operational Commands for Nonexistent Controlled Equipments. This vir-
tual cyber attack uses a controlled equipment ID which does not exit in the con-
trol system. In this case, an attacker does not have enough knowledge of the control
system.

Type 2: Iterative Selection of Different Controlled Equipments to Virtually Operate.
Inthisvirtualcyberattack,acontrolledequipmentIDisaregularizedID.Butthevirtual
cyberattackselectsdifferentcontrolledequipmentsiteratively.Inthiscase,anattacker
does not have enough knowledge of the control system and explore the control system
architecture.

Type 3: Iterative Operational Commands for a Controlled Equipment. In this vir-
tual cyber attack, operational commands are regularized commands. But this cyber
attack sends regularized operational commands to a controlled equipment itera-
tively. In this case, the attacker wants to give a damage to controlled equipments.

4.2 Evaluation Criteria

In our experiments, we use the precision and the recall to evaluate the performance of
the intrusion detection. The precision is represented by the next equation.

Precision =
True Positive

(True Positive) + (False Positive)
(8)

The recall is represented by the next equation.

Recall =
True Positive

(True Positive) + (False Negative)
(9)

And we also use the F-measure to evaluate the performance and the F-measure is
represented by the next equation.

F-measure =
(1 + β2)× (Precision)× (Recall)

β2 × (Precision + Recall)
(10)

where, β denotes a relative importance between the precision and the recall and is usu-
ally set up 1[15]. Therefore, we also set β up 1 in our experiments.

162 T. Onoda

Table 3. Precision, Recall and F-measure for different methods for DARPA data: Length of se-
quence denotes CRF probabilistic model. And 2, 3 and 4 denotes the length of the considered
sequence.

Method Precision Recall F-measure
Without sequences 0.8820 0.9465 0.9131
Rule based sequences 0.9034 0.8887 0.8960
HMM 0.8902 0.9180 0.9039
Length of sequence: 2 0.9021 0.9142 0.9207
Length of sequence: 3 0.9195 0.9219 0.9216
Length of sequence: 4 0.9189 0.9178 0.9183

4.3 Experimental Results

This section presents two kinds of experimental results. One experimental results are
based on DARPA benchmark data. Another experimental results are based on control
system communication data.

Benchmark Data(DARPA Data). In our experiments, we apply training data, which
are pick out 10, 000 packets of normal communication data from DARPA data, and test
data, which are pick out 10, 000 packets of communication data, which include unau-
thorized communication data from DARPA data, and two probabilistic models such as
HMM and CRF. The table 3 shows the precision, recall and F-measure of HMM and
CRF and CRF without sequences information, and an empirical expertise of control
systems(Rule based sequences)[16].

The intrusion detection method without sequences shows that the performance of
recall is high but the performance of precision is not high. The CRF based intrusion
detection method shows the best performance of precision, recall and F-measure when
the number of input sequences is four. The performance of the CRF based intrusion
detection method is as same as the other methods for DARPA data.

Control System Communication Data. In our experiments, we apply training data,
which are collected 10, 000 packets of normal communication data from the model
control system, and test data, which are collected 500 packets of unauthorized commu-
nication data from the model control system, two probabilistic models such as HMM
and CRF. The table 4 shows the precision, recall and F-measure of HMM and CRF. and
CRF without sequences information, and an empirical expertise of control systems(Rule
based sequences) [16].

From the table 4, CRF without sequences could not detect typical intrusion of control
systems. The methods based the control sequences showed the higher performance than
the CRF without sequences. The two probabilistic modes achieved the higher perfor-
mance than the empirical expertise. In our experiments, CRF showed the higher perfor-
mance than the other methods. Especially, when the length of the considered sequence
is 3, CRF achieved the highest performance.

The proposed intrusion detection method based on CRF could detect most of in-
trusions in the model control system. But our proposed method could not detect few

Probabilistic Models Based Intrusion Detection Using Sequence Characteristics 163

Table 4. Precision, Recall and F-measure for different methods for control system communication
data: Length of sequence denotes CRF probabilistic model. And 2, 3 and 4 denotes the length of
the considered sequence.

Method Precision Recall F-measure
Without sequences 0.9016 0.8869 0.8942
Rule based sequences 0.9451 0.8931 0.9184
HMM 0.9523 0.9089 0.9301
Length of sequence: 2 0.9713 0.9198 0.9448
Length of sequence: 3 0.9839 0.9266 0.9544
Length of sequence: 4 0.9727 0.9279 0.9498

intrusions. In these few intrusions, an attacker included into the control system and
made regular controls. It is impossible to detect intrusions by monitoring only control
communication sequences when the attacker makes regular controls.

In our experiments, the performance of intrusion detection depends on the length of
sequences. The network intrusion detection system has high frequent control sequences,
which are generated by the monitored control system. So, the performance of intrusion
detection depends on the length of sequences.

5 Conclusion

In this paper, we compared algorithms that reflect the sequence characteristics of net-
work traffic into the intrusion detection system. The learning only utilizes normal data,
assuming that there is no prior knowledge on attacks in the system. The results show
that the approach successfully identifies the sequences inherent in the system for the
intrusion detection. With this method, it is possible for the intrusion detection system
to detect attacks that deviate from the typical system actions. In addition, this method
does not need prior knowledge of attacks, which is the case for new, unknown cyber
attacks.

Especially, the CRF based method could achieved better performance than any other
methods in our experiments. But the method could not detect few intrusions. In these
few intrusions, an attacker included into the control system and made regular controls. It
is impossible to detect intrusions by monitoring only control communication sequences
when the attacker makes regular controls. We need to use another additional information
to detect these intrusion.

Finally, the paper showed two important things.

1. The experimental results of our proposed methods show that sequence information
in control systems is very important for detecting some intrusion attacks.

2. We can expect that an intrusion detection method based on sequence information
in control systems will become a real world application in the near future.

This method may have difficulties in computation size with a large system, as it
becomes necessary to retain a large number of features, resulting in large memory re-
quirements. Future work includes the consideration of reducing computation by ma-
chine learning techniques.

164 T. Onoda

References

1. National Security Agency: Defense in Depth: A practical strategy for achieving Information
Assurance in today’s highly networked environments,
http://www.nsa.gov/ia/-files/support/defenseindepth.pdf

2. SANS Institute: Intrusion Detection FAQ,
http://www.sans.org/resources/idfaq

3. Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using Model-
based Intrusion Detection for SCADA Networks. In: Proc. of the SCADA Security Scientific
Symposium (January 2007)

4. Moran, B., Belisle, R.: Modeling Flow Information and Other Control System Behavior to
Detect Anomalies. In: Proc. of the SCADA Security Scientific Symposium (January 2008)

5. Kiuchi, M., Serizawa, Y.: Security Technologies, Usage and Guidelines in SCADA System
Networks. In: ICCAS-SICE (2009)

6. Onoda, T., Kiuchi, M.: Analysis of Intrusion Detection in Control System Communication
Based on Outlier Detection with One-Class Classifiers. In: Huang, T., Zeng, Z., Li, C., Leung,
C.S. (eds.) ICONIP 2012, Part V. LNCS, vol. 7667, pp. 275–282. Springer, Heidelberg (2012)

7. Osareh, A., Shadgar, B.: Intrusion Detection in Computer Networks based on Machine
Learning Algorithms. International Journal of Computer Science and Network Security 8(11)
(November 2008)

8. Chandola, V., Banerjee, A., Kumar, V.: Outlier Detection: A Survey, University of Minnesota
Technical Report TR 07-017

9. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–285 (1989)

10. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical
Statistics 41(1), 164–171 (1970)

11. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: International Conference on Machine Learning
(2001)

12. CRF++: Yet Another CRF toolkit, http://crfpp.sourceforge.net/
13. Lippmann, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA off-line

intrusion detection evaluation. Computer Networks 34, 579–595 (2000)
14. DARPA: Intrusion Detection evaluation data-set, http://www.ll.mit.edu/

mission/communications/ist/CST/index.html
15. Zhang, D., Leckie, C.: An Evaluation Technique for Network Intrusion Detection Systems.

In: Proc. of the 1st International Conference on Scalable Information Systems, InfoScale
2006 (2006)

16. Kiuchi, M., Ohba, E., Serizawa, Y.: Customizing Control System Intrusion Detection at the
Application Layer. In: Proc. of the SCADA Security Scientific Symposium 2009, Digital
Bond Press (January 2009)

http://www.nsa.gov/ia/-files/support/defenseindepth.pdf
http://www.sans.org/resources/idfaq
http://crfpp.sourceforge.net/
http://www.ll.mit.edu/mission/communications/ist/CST/index.html
http://www.ll.mit.edu/mission/communications/ist/CST/index.html

Compressive ELM: Improved Models through

Exploiting Time-Accuracy Trade-Offs

Mark van Heeswijk1, Amaury Lendasse1,2,3, and Yoan Miche1

1 Aalto University School of Science,
Department of Information and Computer Science,

P.O. Box 15400, FI-00076 Aalto, Finland
2 Arcada University of Applied Sciences, Helsinki, Finland

3 Department of Mechanical and Industrial Engineering, The University of Iowa,
Iowa City, IA 52242-1527, USA

Abstract. In the training of neural networks, there often exists a trade-
off between the time spent optimizing the model under investigation, and
its final performance. Ideally, an optimization algorithm finds the model
that has best test accuracy from the hypothesis space as fast as possible,
and this model is efficient to evaluate at test time as well. However,
in practice, there exists a trade-off between training time, testing time
and testing accuracy, and the optimal trade-off depends on the user’s
requirements. This paper proposes the Compressive Extreme Learning
Machine, which allows for a time-accuracy trade-off by training the model
in a reduced space. Experiments indicate that this trade-off is efficient
in the sense that on average more time can be saved than accuracy lost.
Therefore, it provides a mechanism that can yield better models in less
time.

Keywords: Extreme Learning Machine, ELM, random projection,
compressive sensing, Johnson-Lindenstrauss, approximate matrix
decompositions.

1 Introduction

When choosing a model for solving a machine learning problem, which model is
most suitable depends a lot on the context and the requirements of the applica-
tion. For example, it might be the case that the model is trained on a continuous
stream of data, and therefore has some restrictions on the training time. On the
other hand, computational time in the testing phase might be restricted, like in
a setting where the model is used as the controller for an aircraft or a similar
setting that requires fast predictions. Alternatively, the context in which the
model is applied might not have any strong constraints on the computational
time, and above all, accuracy or interpretability is considered most important
regardless of the computational time.

This paper focuses on time-accuracy trade-offs in a neural network architec-
ture known as Extreme Learning Machine [1], and on trade-offs between training
time and accuracy in particular. This trade-off can be affected in two ways:

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 165–174, 2014.
c© Springer International Publishing Switzerland 2014

166 M. van Heeswijk, A. Lendasse, and Y. Miche

– by improving the accuracy through spending more time optimizing the model,
– or vice-versa, by reducing the computational time of the model, without

sacrificing accuracy too much.

Each type of model has its own ways of balancing computational time and accu-
racy, and has an associated curve (or set of points) on a “training time”-accuracy
plot that expresses the efficiency of the model in achieving a certain accuracy
(the closer the curve is to the bottom left, the better). Thus, given a collection
of models, the question becomes: which model produces the best accuracy the
fastest?

The remainder of this paper is organized as follows. Section 2 discusses the
preliminaries and methods relevant for this paper and gives an example of the
time-accuracy trade-offs that exist within several ELM variants. This illustrates
the notion of ’efficiency’ of a model, and motivates the choice of model that is
studied in the rest of the paper. Section 3 proposes the Compressive ELM, a new
model which allows trading off computational time and accuracy by performing
the training in a reduced problem space rather than the original space. Finally,
Section 4 contains the experiments and analysis which form the validation for
the proposed approach.

2 Background

Regression / Classification. In this paper, the focus is on the problem of
regression, which is about establishing a relationship between a set of output
variables (continuous) yi ∈ R, 1 ≤ i ≤ M (single-output here) and another set
of input variables xi = (x1

i , . . . , x
d
i) ∈ R

d. Note that although in this paper the
focus is on regression, the proposed approach can just as well be used when
applying the ELM in a classification context.

Extreme Learning Machine (ELM). The ELM algorithm is proposed by
Huang et al. in [1] and uses Single-Layer Feedforward Neural Networks (SLFN).
The key idea of ELM is that the hidden layer weights and hidden layer biases of
the SLFN can be generated randomly, and do not need to be trained.

Consider a set of N distinct samples (xi, yi) with xi ∈ R
d and yi ∈ R. Then,

an SLFN with M hidden neurons can be written as

M∑
i=1

βif(wi · xj + bi), j ∈ [1, N], (1)

with f being the transfer function, wi the input weights to the ith neuron in the
hidden layer, bi the hidden layer biases and βi the output weights.

Gathering the outputs of the transfer functions in an N ×M matrix H and
the targets in Y, in case the network would perfectly approximate the targets
this can be written compactly as

Hβ = Y, (2)

Compressive Extreme Learning Machine 167

where H is the hidden layer output matrix defined as

H =

⎛⎜⎝ f(w1 · x1 + b1) · · · f(wM · x1 + bM)
...

. . .
...

f(w1 · xN + b1) · · · f(wM · xN + bM)

⎞⎟⎠ (3)

and β = (β1 . . . βM)T and Y = (y1 . . . yN)T . Under the condition that the input
weights and biases are randomly initialized, and the transfer function f is a
bounded non-constant piecewise continuous activation function, [2] proves that
the ELM is a universal approximator. Therefore, given enough neurons, the
ELM can approximate a function or set of target values as good as desired. The
optimal least-squares solution to the equation Hβ = Y in the ELM algorithm is
β = H†Y, where H† is the pseudo-inverse of H. In summary then, the standard
ELM algorithm can be described in Algorithm 1. Theoretical proofs and a more
thorough presentation of the ELM algorithm can be found in [1].

Algorithm 1. Standard ELM

Given a training set (xi, yi),xi ∈ R
d, yi ∈ R, an activation function f : R �→ R and M

hidden nodes:

1: - Randomly assign input weights wi and biases bi, i ∈ [1,M];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = (HTH)−1HY = H†Y.

Efficient Optimization of Regularization Parameter with SVD. Trained
on a limited number of samples, the standard ELM is prone to overfitting the
training data. One way of preventing overfitting is by applying Tikhonov Regu-
larization, in which case pseudo-inverse used in the ELM becomes

H†=(HTH+λI)−1HT

for some regularization parameter λ [3]. Each value of λ results in a different
pseudo-inverse H†, and it would be computationally expensive to recompute the
pseudo-inverse for every λ. However, by incorporating the regularization in the
singular value decomposition (SVD) approach to compute the pseudo-inverse, it
becomes possible to obtain the various H†’s with minimal re-computation [4].
This scheme is first described in the context of ELM in [5], and is summarized
next (with some minor optimizations). Suppose

Ŷ = Hβ

= H(HTH+ λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT ·Y

168 M. van Heeswijk, A. Lendasse, and Y. Miche

where D(D2+λI)−1D is a diagonal matrix with
d2
ii

d2
ii+λ

as the ith diagonal entry.

From the above equations it can now be seen that given U:

MSETR-PRESS =
1

N

N∑
i=1

(
yi − ŷi
1− hatii

)2

=
1

N

N∑
i=1

(
yi − ŷi

1− hi·(HTH+ λI)−1hT
i·

)2

=
1

N

N∑
i=1

⎛⎝ yi − ŷi

1− ui·
(

d2
ii

d2
ii+λ

)
uT
i·

⎞⎠2

where hi· and ui· are the ith row vectors of H and U, respectively. The optimal
Tikhonov-regularized PRESS and corresponding λ can be determined efficiently
using Algorithm 2. Due to the convex nature of criterion MSETR-PRESS with
respect to regularization parameter λ, the Nelder-Mead procedure used for op-
timizing λ converges quickly in practice [6,7].

Algorithm 2. Tikhonov-regularized PRESS. In practice, the while part of this
algorithm (convergence for λ) is solved using by a Nelder-Mead approach [6],
a.k.a. downhill simplex.

1: Decompose H by SVD: H = UDVT

2: Precompute B = UTy
3: while no convergence on λ achieved do

4: - Precompute C = U · diag
(

d211
d211+λ

, . . . ,
d2nn

d2nn+λ

)

5: - Compute ŷ = CB, the vector containing all ŷi
6: - Compute d = diag

(
CUT

)
, the diagonal of the HAT matrix, by taking the

row-wise dot-product of C and U
7: - Compute ε = y−ŷ

1−d
, the leave-one-out errors

8: - Compute MSETR-PRESS = 1
N

∑N
i=1 ε

2
i

9: end while
10: Keep the best MSETR-PRESS and the associated λ value

Example: Time-Accuracy Trade-offs for Several ELM Variants. In or-
der to illustrate what time-accuracy trade-offs exist within ELM, and to moti-
vate the choice of model studied later in this paper, this section presents time-
accuracy trade-offs of several models:

– ELM: the basic ELM [1].
– Optimally Pruned ELM (OP-ELM): ELM trained by generating a set

of neurons, ranking them by relevance, and then determining the optimal
prefix of that sorted list of neurons in terms of leave-one-out error [8]

– TROP-ELM:OP-ELM with efficient optimization of the Tikhonov regular-
ization integrated, using the SVD approach to computing H† [5]

Compressive Extreme Learning Machine 169

– TR-ELM: Tikhonov-regularized ELM [3], with efficient optimization of reg-
ularization parameter λ, using the SVD approach. [9]

– BIP(0.2), BIP(rand), BIP(CV): ELMs pretrained using Batch Intrinsic
Plasticity mechanism [10], aimed at adapting the hidden layer weights and
biases, such that they retain as much information from the input as possible.
The variants included here have the BIP parameter μexp fixed to a 0.2,
randomized, or cross-validated over 20 possible values.

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

4

5

6

7

8

#hidden neurons

tr
ai
n
in
g
ti
m
e

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 100 200 300 400 500 600 700 800 900 1,000
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

#hidden neurons

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 1 2 3 4 5 6 7
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

training time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
·10−2

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

testing time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

Fig. 1. Results for various ELM variants on Abalone UCI data set

All these models are trained and tested on the Abalone data set from the UCI
repository [11] (see Section 4 for details), use ternary weights (see [9]), and have
an initial number of hidden neurons varying between 2 and 1000. Each method
trains and optimizes the ELM in its own way, with results as summarized in
Figure 1. Depending on the users criteria, these results suggest:

– if training time most important, then BIP(rand)-TR-3-ELM is the obvious
choice from all candidates as it provides almost optimal performance, while
keeping training time low.

– if test error is most important, then BIP(CV)-TR-3-ELM is the best choice.
However, since it cross-validates over 20 possible parameter values, the train-
ing time is 20 times as high, while only giving slightly better accuracy.

170 M. van Heeswijk, A. Lendasse, and Y. Miche

– if testing time is most important, then surprisingly TR-3-ELM is also the
most attractive model. Even though OP-ELM and TROP-ELM tend to be
faster in test, they suffer from slight overfitting as the number of initial
hidden neurons increases. Therefore, the TR-3-ELM is the best choice, since
it generally results in models with the best accuracy and lowest testing time.

Since TR-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper. Furthermore, since due to the
proper regularization the TR-ELM does not seem to overfit even for large num-
ber of neurons: more neurons generally means better accuracy. Naturally, this
comes at an increase in training time, which is something that will be addressed
in the next section, where the Compressive ELM is presented.

3 Compressive Extreme Learning Machine

Considering training time-accuracy trade-offs like in Figure 1, two possible
strategies present itself to obtain models that are preferable over other mod-
els:

– reducing test error, using some efficient algorithm (“in terms of training
time-accuracy plot: “pushing the curve down”)

– reducing computational time, while retaining as much accuracy as possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

The latter is the strategy that is taken in Compressive ELM: instead of per-
forming the training in the original problem space, it performs the training in a
reduced space, and then project the solution back to the original space.

Johnson-Lindenstrauss and Approximate Matrix Decompositions.
Given anm×nmatrix, an approximate matrix decomposition can be achieved by
first embedding the rows of the matrix into a lower-dimensional space (through
one of many available low-distortion Johnson-Lindenstrauss-like embeddings),
solving the decomposition, and then projecting back to the full space. If such
an embedding (or sketch) is accurate, then this allows for solving the problem
with high accuracy in reduced time. The algorithm for Approximate SVD is
summarized in Algorithm 3, and more background can be found in [12].

Algorithm 3. Approximate SVD [12]

Given an m× n matrix A, compute k-term approximate SVD A ≈ UDV T as follows:

1: - Form the n×(k+p) random matrix Ω. (where p is small over sampling parameter)

2: - Form the m ×(k + p) sampling matrix Y = AΩ. (”sketch” it by applying Ω)
3: - Form the m ×(k + p) orthonormal matrix Q, such that range(Q) = range(Y).
4: - Compute B = Q∗A.
5: - Form the SVD of B so that B = ÛDV T

6: - Compute the matrix U = QÛ

Compressive Extreme Learning Machine 171

Faster Sketching. Typically, the bottleneck in Algorithm 3 is the time it takes
to sketch the matrix. Rather than using a class of random matrices of Gaussian
variables for sketching A, one can also use random matrices that are sparse
or structured in some way [13,14], for which the matrix-vector product can be
computed more efficiently. Furthermore, Ailon and Chazelle [15] introduced the
Fast Johnson-Lindenstrauss Transform (FJLT), which uses a class of random
matrices that allow application of an n × n matrix to a vector in O(n log(n)),
rather than the usual O(n2). Besides this obvious speedup, this class of matrices
is also more successful in creating a low-distortion embedding when applied to
a sparse matrix. These transforms consist of the application of three easy-to-
compute matrices (

P
)
k×n

(
H
)
n×n

(
D
)
n×n

whereP ,H , andD vary depending on the exact scheme. Generally,D is a diagonal
matrix with random Rademacher variables (−1,+1) on the diagonal,H is encod-
ing either the discrete Hadamard or discrete Fourier transform, and P is a sparse
random matrix or a matrix sampling random columns fromH. TheD matrix can
be applied to a vector x inO(n), TheH matrix can be applied inO(n log(n)), and
the P matrix adds a factor nnz(P) or k, depending on the type.

4 Experiments

This section describes the experiments that investigate the trade-off between
computational time (both training and test), and the accuracy of the Compres-
sive ELM in relation to, the dimensionality of the space into which the problem is
reduced, using the sketch. For sketching, TR-3-ELMs with the following sketch-
ing schemes are considered, and compared with the standard TR-3-ELM:

– Gaussian: sketching is performed using a k × n matrix of random Gaussian
variables

– FJLT: the transform introduced in [15], for which P is a sparse matrix of
random Gaussian variables, and H encodes the Discrete Hadamard Trans-
form

– SRHT: a variant of the FJLT, for which P is a matrix selecting k random
columns from H , and H encodes the Discrete Hadamard Transform

The number of hidden neurons in each model is varied between 2 and 1000, and
parameter k is chosen from [50, 100, 200, 400, 600]. Experiments are repeated
with 200 random realizations of the training and test set, and average results
over those 200 runs are reported.

Data and Preprocessing. As data sets, different regression tasks from the
UCI machine learning repository [11] are tested. Due to space restrictions only
the results for CaliforniaHousing and FJLT sketching are presented here, but
similar results hold for the other data sets and sketching methods. In each run,
the data is divided randomly into 8000 random samples for training and and
the remaining 12640 samples for testing. The data is preprocessed in such a way
that each input and output variable is zero mean and unit variance.

172 M. van Heeswijk, A. Lendasse, and Y. Miche

Results. The results of the experiment are summarized in Figure 2. There, it
can be seen that

– setting k lower than the number of neurons results in faster training times
(which makes sense since the problem solved is smaller).

– as long as parameter k is chosen large enough, the method is not losing
efficiency (i.e. there is no model that achieves better error in the same com-
putational time), and it is potentially gaining efficiency (as shown by the
bottom-left plot of Figure 2.

Finally, the experiments showed that sketches with Gaussian matrices are gen-
erally the fastest. Furthermore, for the tested problem sizes, the SRHT (which
allows an efficient matrix multiplication) is generally faster than the FJLT (which
uses sparse matrices). Although for this problem size the SRHT and FJLT are
slower, they might still be needed in case the matrix to sketch is sparse [15].

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

#hidden neurons

tr
ai
n
in
g
ti
m
e

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

#hidden neurons

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

training time

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

testing time

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

Fig. 2. Results for Compressive ELMs using FJLT sketching with varying k on Cali-
forniaHousing UCI data set

Compressive Extreme Learning Machine 173

5 Conclusion

In this paper, the trade-off between computational time and test error has been
investigated, in particular the trade-off between training time and test error.
Having information about this trade-off for different models is useful information
in selecting the most suitable model for a particular task.

The Compressive ELM proposed in this paper investigates a way to reduce
training time by doing the optimization in a reduced space of k dimensions,
and is shown to be efficient in the sense that (given k large enough), among
the tested models the Compressive ELM achieves the best test error for each
computational time (i.e. there are no models that achieve better test error and
can be trained in the same or less time). A promising candidate for setting
k such that it optimally reduces computational time (yet retains accuracy),
would be to let k be informed by the theoretical bounds currently known for
the sketching schemes. These theoretical bounds give lower bounds on k for
which a low-distortion embedding of the given n points can be achieved with
high probability. Although these bounds are typically not sharp (and therefore
not optimal), in case the minimal k for successful embedding is lower than the
number of neurons in the ELM, it can be exploited to reduce the training time.

Finally, developing low-distortion embeddings and sharpening their associated
bounds is currently a hot topic of research, and any new developments in this
area can easily be integrated to improve the performance of Compressive ELM.

References

1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and
applications. Neurocomputing 70(1-3), 489–501 (2006)

2. Huang, G.-B., Chen, L., Siew, C.-K.: Universal Approximation Using Incremental
Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transac-
tions on Neural Networks 17(4), 879–892 (2006)

3. Deng, W.-Y., Zheng, Q.-H., Chen, L.: Regularized extreme learning machine. In:
IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2009,
pp. 389–395 (2009)

4. van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: GPU-accelerated and paral-
lelized ELM ensembles for large-scale regression. Neurocomputing 74(16), 2430–
2437 (2011)

5. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: A
double-regularized ELM using LARS and Tikhonov regularization. Neurocomput-
ing 74(16), 2413–2421 (2011)

6. Nelder, J., Mead, R.: A simplex method for function minimization. The Computer
Journal 7(4), 308–313 (1965)

7. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties
of the Nelder–Mead Simplex Method in Low Dimensions. SIAM Journal on Opti-
mization 9, 112–147 (1998)

8. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM:
optimally pruned extreme learning machine. IEEE Transactions on Neural Net-
works 21(1), 158–162 (2010)

174 M. van Heeswijk, A. Lendasse, and Y. Miche

9. van Heeswijk, M., Miche, Y.: Binary/Ternary Extreme Learning Machines. Neu-
rocomputing (to appear)

10. Neumann, K., Steil, J.J.: Batch intrinsic plasticity for extreme learning machines.
In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 339–346. Springer,
Heidelberg (2011)

11. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
12. Halko, N., Martinsson, P.-G., Tropp, J.: Finding structure with randomness: Proba-

bilistic algorithms for constructing approximate matrix decompositions (September
2011) arXiv:0909.4061

13. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)

14. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struc-
tures & Algorithms, 142–156 (2008)

15. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC 2006, pp. 557–563. ACM Press, New York
(2006)

Detecting Port Scans against Mobile Devices

with Neural Networks and Decision Trees

Christo Panchev, Petar Dobrev, and James Nicholson

Department of Computing, Engineering and Technology,
University of Sunderland,

Sunderland SR6 0RD, United Kingdom
christo.panchev@sunderland.ac.uk

Abstract. Recently, mobile devices such as smartphones and tablets
have emerged as one of the most popular forms of communication. This
trend raises the question about the security of the private data and com-
munication of the people using those devices. With increased computa-
tional resources and versatility the number of security threats on such
devices is growing rapidly. Therefore, it is vital for security specialists to
find adequate anti-measures against the threats. Machine Learning ap-
proaches with their ability to learn from and adapt to their environments
provide a promising approach to modelling and protecting against secu-
rity threats on mobile devices. This paper presents a comparative study
and implementation of Decision Trees and Neural Network models for
the detection of port scanning showing the differences between the re-
sponses on a desktop platform and a mobile device and the ability of
the Neural Network model to adapt to the different environment and
computational resource available on a mobile platform.

Keywords: Intrusion Detection, Port Scanning, Cascade Correlation
Neural Networks, Decision Trees, Android, Mobile devices.

1 Introduction

Recent studies have shown that the number of security threats is growing rapidly
[1] - with many of the network enabled vulnerability exploitation attacked previ-
ously reserved for mainframe and desktop computers now being directed toward
mobile devices. Often users tend to connect to different public networks in order
to use their applications and their devices are exposed to the threat of port scan-
ning. The intention behind this form of attack is to find ports which are open
from an application running on the machine, identify and to exploit its vulnera-
bilities. This type of attack is well known by security specialists, and is usually
captured by Intrusion Detection/Prevention System (IDS/IPS). Such systems
use different types of techniques in order to be able to detect the attack and
to alert about its existence. While existing IDS are relatively successful in de-
tecting potential attacks against desktop and server environments, they are not
directly portable onto mobile platforms. The main reason draws from the fact

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 175–182, 2014.
c© Springer International Publishing Switzerland 2014

176 C. Panchev, P. Dobrev, and J. Nicholson

that different mobile platforms differ in the available computational resource,
means and speed of connectivity.

Many types of Intrusion Detection Systems exist these days for servers and
personal computers [2], however literature provides very few examples of such
systems for mobile devices [3, 4] , therefore the aim of this project is to produce
a prototype of an Intrusion Detection System, which will be able to capture and
alert about port scans performed against mobile devices.

Intrusion Detection System is a system which gathers and analyses infor-
mation from computer system or a network in order to find incidents such as
security policies violations and attack attempts [3]. Different IDS employ dif-
ferent technologies or techniques in the process of gathering and analysing the
information depending on specific factors, such as type and capabilities of the
protected device.

IDS are broadly divided into two types - Network Based Intrusion Detection
System (NIDS) and Host Based Intrusion Detection System (HIDS). In general
NIDS is a system which listens to the traffic and analyses the packets which
are crossing a computer network, while HIDS gathers information about inter-
nal processes in the system such as processor utilisation, memory utilization,
system files integrity, etc. Therefore, the part of HIDS which gathers the data
will be checking information from system calls or system log files [6]. The study
presented here focuses on analysis the network traffic of a single host and does
not make use of the host-available resource utilisation data, hence it can be
categorised as a single host NIDS.

Further, IDS detection algorithms can be categorised into Anomaly Detection,
Misuse Detection and Hybrid [7, 8]. Following the first IDS model by Dorothy
Denning and Peter Neumann in 1987 [9], Anomaly Detection based IDS have
been based on the assumption that any form of system abuse, should generate
anomalies, therefore is detectable. Anomaly Detection algorithms operate into
two phases: the first one involves the profiling of or training the normal behaviour
by observation of the standard non-malicious traffic, the second one deals with
the detection of the anomalies by comparing the profile created in the first phase
to the arriving network traffic. In this approach any subsequent behaviour which
does not match the learned ’normal’ one is flagged as potential intrusion attempt.

The Misuse Detection category of IDS are based on existent library (or trained
model) of attack signatures. All current activities are then matched against that
knowledge base in order to identify any malicious behaviour. Most commonly
these are rule-based models [10, 11] which often also employ a pattern-matching
algorithm such as Boyer-Moore [12, 13].

Both misuse and anomaly detection have their positive and negative aspects.
On the one hand, anomaly detection can be considered as flexible because it can
detect new threats, requiring the creation or learning of a standard behaviour
profile only. However, minimising the false-positives is still a significant challenge
for this approach. Alternatively misuse detection, which can be considered as
non-flexible because it requires pre-definition of known signatures or scenarios
of attacks, but is often considered more reliable. An added advantage of misuse

Neural Networks Port Scan Detection 177

detection is that it also allows the classification of the intrusion attempt into
different types and categories. Increasingly its main issue however is that it
requires a manually encoded rule set in advance.

Port scanning is usually one of the initial step in any intrusion attempt. A va-
riety of port-scanning detection approaches have been proposed in the literature,
including probabilistic model, fuzzy logic, rule-based, with the most popular be-
ing a simple threshold-based - it is implemented in Snort [14, 15].

2 Model and Experimental Setup

The experiments were conducted using a rooted Android Nexus 7 tablet con-
nected to the network via WiFi. The model was designed partially following
the Common Intrusion Detection Framework (C.I.F.D) [4]: Event Generator
(Data Gathering Module), Event Analyzer (Pre-processing, Pattern matching
and Post-processing Modules), Response Unit (Alert Module) (figure 1).

Fig. 1. Overall design of the model

Data Gathering Module is using TcpDump-arm to capture all network packets
received to or transmitted from the device. The model presented here is not using
the content of the packets but only the TCP and IP headers. The Pre-processing
module extracts from the TcpDump output only the information required:

RT flag identifying received (IN) or transmitted (OUT) packet
SIP source address from IP packet header
DIP destination address from IP packet header
SP source port from TCP packet header
DP destination port from TCP packet header
FLG TCP header flags set
TST timestamp of the packet

178 C. Panchev, P. Dobrev, and J. Nicholson

Based on these features the following data is accumulated and sent to the Pat-
tern Matching module:

RT flag identifying IN/OUT packet
IPT frequency of IN ports (ports-per-second for remote IP)
IPK frequency of IN packets (packets-per-second for remote IP)
OPT frequency of OUT ports (ports-per-second for remote IP)
OPK frequency of OUT packets (packets-per-second for remote IP)
FLG TCP header flags set for Decision tree model,

or is flag set valid indicator for the Neural Network model

In the separate experiments, the Pattern Matching module was designed us-
ing a Decision Tree and a Cascade Correlation Neural Network [5]. Finally, the
output of the Pattern matching module was passed to the Decision module which
depending on whether a potential intrusion was identified could rise he Alert or
continue normal processing.

3 Experimental Results

A total of approximately 10665 packets were collected for the development of the
Desktop Decision tree, of which about 3112 were from port scans and the rest
were normal traffic. About 49683 packets were collected for the development of
the Android Decision tree and Neural Network models, of which approximately
21744 were port scans and the rest were normal traffic. The data from the mobile
device was collected from four different network environments: a tethered wired
connection, a WiFi connection and tethered 3G and 4G connections.

3.1 Decision Tree IDS

The data collected from the Desktop traffic was preprocessed and used to built a
Decision tree model (figure 2). The data traffic from the Android device for the
connection to the WiFi network only was also used to built a Decision tree model
(figure 3). As can be seen from the initial root node of the trees and the further
decision nodes, the frequency within which packets are received on the mobile
platform is noticeably lower for the mobile device. If the Desktop Decision tree
were to be transferred directly onto the mobile device it would be producing a
considerable number of false positives in the rules defines in the the right branch
(i.e. missing potential attacks).

The Decision tree of the mobile device was further tested on different speeds
and types of scan. Table 1 shows the results of the port scan detection with
the different scan timing options of Nmap. The Decision tree model was capable
of detecting the normal and fast speed port scans but was struggling with the
slower ones.

In a further experiment the Decision tree was manually extended to incorpo-
rate the flag sets from the TCP header in order to identify the type of scan it
has detected. Table 2 shows the results in which all basic types of scans were

Neural Networks Port Scan Detection 179

Fig. 2. Decision tree built for the desktop IDS

Fig. 3. Decision tree built for the mobile device IDS

correctly identified, however, the model was not able to cope with the more
complex ones.

3.2 Android Neural Network IDS

Neural Networks provide a number of advantage in the development of IDS:
in general Neural networks are relative easy to train and retrain compared to
some statistical models and require fewer assumptions to be made in advance.
Furthermore, once built a Neural network has relatively low running cost in live
environment. Different models have been proposed for port scanning detection
and intrusion detection in general, including Self-Organising Maps, Radial Basis
Function, Random Neural Networks, Multi-layer Perceptron [16–21].

Cascade Correlation Neural Networks (CCNN) [5] allow the training of the
network to new data without the requirement to retrain the whole network with
the original data as well. When new events are detected, new hidden nodes are
added to the network and only those are trained with the newly collected data
- allowing for a run time adaptive and scalable system.

Initially the Neural network was trained only with the data from the mobile
device connected to the tethered LAN and the WiFi connection. For all exper-
iments the available data was split into 60% training, 20% validation and 20%

180 C. Panchev, P. Dobrev, and J. Nicholson

Table 1. Decision tree test results with different scan timings

Nmap timing option Detectable

-T0 (Paranoid) No

-T1 (Sneaky) No

-T2 (Polite) Yes

-T3 (Normal) Yes

-T4 (Aggressive) Yes

-T5 (Insane) Yes

Table 2. Decision tree test results with different scan types

Nmap scan type Detectable Scan type recognised

TCP Yes Yes

SYN Yes Yes

FIN Yes Yes

ACK Yes Yes

XMAS Yes Yes

NULL Yes No

Version Yes No

Window Yes No

test data sets and trained with Levenberg-Marquardt Error Backpropagation.
The trained network had 14 hidden neurones and the test result matched those
of the Decision tree (table 3). At the next stage, the Neural network was trained
on the data collected from the 3G connection and then on the data collected
from the 4G connection. Those training sessions added another 7 and 4 hidden
neurones to the network respectively. As can be seen from the result in table 3,
the model is now capable of detecting all port scans on the various Nmap timing
options, including the very slow ones.

Table 3. Neural Network test results with different scan timings

Nmap Detectable after Detectable after
timing option LAN and WiFi training further 3G and 4G training

-T0 (Paranoid) No Yes

-T1 (Sneaky) No Yes

-T2 (Polite) Yes Yes

-T3 (Normal) Yes Yes

-T4 (Aggressive) Yes Yes

-T5 (Insane) Yes Yes

Neural Networks Port Scan Detection 181

4 Conclusions

The modelling and experimental results presented here show that a Neural net-
work model can be trained on the task of detecting active port scans on mobile
devices with performance matching that of the more traditional rule-based sys-
tems. However, the Neural network based approach provides a more scalable
and adaptive solution which is capable of learning in new environments while
being computation cost effective - as the devices move into new networks and
environments, new data can be collected and the network can be trained on that
data simply by adding and training the new nodes. The model presented here is
the first application of a Cascade Correlation Neural Network to the detection
of port scans on mobile devices. The neural network model was coded and in-
stalled on a Nexus 7 tablet. The mobile device was then taken to a few public
ares with available WiFi connections and on two occasions an actual port scan
was detected. Network traffic on mobile devices can be a source of significant
amounts of data, making it possible to extend the work by implementing Deep
Learning models - this is a direction of future work we are currently exploring.

References

1. Khan, S., Nauman, M., Othman, A.T., Musa, S.: How secure is your smartphone:
An analysis of smartphone security mechanisms. In: Proceedings of the 2012 In-
ternational Conference on Cyber Security, Cyber Warfare and Digital Forensic
(CyberSec), June 26-28, pp. 76–81 (2012)

2. Zaman, S., Karray, F.: TCP/IP Model and Intrusion Detection Systems. In: Pro-
ceedings of the International Conference on Advanced Information Networking and
Applications Workshops, Bradford, United Kingdom, May 26-29, pp. 90–96 (2009)

3. Kou, X., Wen, Q.: Intrusion detection model based on Android. In: Proceedings
of the 4th IEEE International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), pp. 624–628 (2011)

4. Ghorbanian, M., Shanmugam, B., Narayanasamy, G., Idrids, N.: Signature-Based
Hybrid Intrusion detection system (HIDS) for Android devices Business Engineer-
ing and Industrial Applications Colloquium (BEIAC), April 7-9, pp. 827–831. IEEE
(2013)

5. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, pp.
524–532. Morgan Kaufmann Publishers Inc., San Francisco (1990)

6. Govindarajan, M., Chandrasekaran, R.M.: Intrusion detection using k-Nearest
Neighbor. In: Proceedings of the First International Conference on Advanced Com-
puting ICAC, December 13-15, pp. 13–20 (2009)

7. Jie, Y., Chen, X., Xiang, X., Wan, W.: HIDS-DT: An Effective Hybrid Intrusion
Detection System Based on Decision Tree International Conference on Communi-
cations and Mobile Computing, April 12-14, pp. 70–75 (2010)

8. Gates, C., Taylor, C.: Challenging the anomaly detection paradigm: a provocative
discussion. In: Proceedings of the Workshop on New Security Paradigms (NSPW
2006), New York, USA, pp. 21–29 (2006)

9. Denning, D.E.: An Intrusion-Detection Model. In: Proceedings of the IEEE Sym-
posium on Security and Privacy, pp. 118–133 (1986)

182 C. Panchev, P. Dobrev, and J. Nicholson

10. Mitchell, R., Chen, I.-R.: “Behavior-Rule Based Intrusion Detection Systems for
Safety Critical Smart Grid Applications. IEEE Transactions on Smart Grid 4(3),
1254 (2013)

11. Yang, Y., McLaughlin, K., Littler, T., Sezer, S., Wang, H.F.: Rule-based intrusion
detection system for SCADA networks. In: 2nd IET Renewable Power Generation
Conference (RPG 2013), September 9-11, pp. 1–4 (2013)

12. Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Comm. ACM 20(10),
762–772 (1977)

13. Antonatos, S., Polychronakis, M., Akritidis, P., Anagnostakis, K.G., Markatos,
Y.E.P.: Fast and Memory-Efficient Pattern Matching for Intrusion Detection. In:
Proceedings 20th IFIP International Information Security Conference SEC (2005)

14. Bhuyan, M., Bhattacharyya, D.K., Kalita, J.K.: Surveying Port Scans and Their
Detection Methodologies. Computer Journal ACM 54, 1565–1581 (2011)

15. Dabbagh, M., Ghandour, A.J., Fawaz, K., Hajj, W.E., Hajj, H.: Slow port scan-
ning detection. In: Proceedings of the 7th International Conference on Information
Assurance and Security (IAS), December 5-8, pp. 228–233 (2011)

16. Wang, G., Hao, J., Ma, J., Huang, L.: A new approach to intrusion detection using
Artificial Neural Networks and fuzzy clustering. Expert Systems with Applica-
tions 37(9), 6225–6232 (2010)

17. Nazir, A.: A comparative study of Cascaded Forward Back Propagation and Hybrid
SOFM-CFBP Neural Networks based Intrusion Detection Systems. International
Journal of Scientific and Engineering Research 4(6) (2013)

18. Basu, R., Cunningham, R.K., Webster, S.E., Lippmann, R.P.: Detecting low-profile
probes and novel denial-of-service attacks. In: Proceedings of IWIAS 2001, West
Point, New York, USA, pp. 5–10. IEEE Computer Society (June 2001)

19. Oke, G., Loukas, G., Gelenbe, E.: Detecting denial of service attacks with bayesian
classifiers and the random neural network. In: Proceedings of FUZZ- IEEE 2007,
pp. 1964–1969. IEEE, USA (2007)

20. Fisch, D., Hofmann, A., Sick, B.: On the versatility of radial basis function neu-
ral networks: A case study in the field of intrusion detection. Information Sci-
ences 180(12), 2421–2439 (2010)

21. Kalpana, Y., Purushothaman, S., Rajeswari, R.: Implementation of Echo State
Neural Network and Radial Basis Function Network for Intrusion Detection. Data
Mining and Knowledge Engineering 5(9), 366–373 (2013)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 183–194, 2014.
© Springer International Publishing Switzerland 2014

Categorization and Construction of Rule Based Systems

Han Liu1, Alexander Gegov1, and Frederic Stahl2

1 School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace,
PO1 3HE, Portsmouth, United Kingdom

{Han.Liu,Alexander.Gegov}@port.ac.uk
2 School of Systems Engineering, University of Reading, P.O. Box 225 Whiteknights, Reading,

RG6 6AY, United Kingdom
F.T.Stahl@reading.ac.uk

Abstract. Expert systems have been increasingly popular for commercial
importance. A rule based system is a special type of an expert system, which
consists of a set of ‘if-then’ rules and can be applied as a decision support
system in many areas such as healthcare, transportation and security. Rule
based systems can be constructed based on both expert knowledge and data.
This paper aims to introduce the theory of rule based systems especially on
categorization and construction of such systems from a conceptual point of
view. This paper also introduces rule based systems for classification tasks in
detail.

Keywords: Data Mining, Machine Learning, Rule Based Systems, Rule Based
Classification, if-then Rules.

1 Introduction

The development of rule based systems began in the 1960’s but became popular in the
1970’s and 1980’s [1]. A rule based system typically consists of a set of if-then rules,
which can serve many purposes such as decision support or predictive decision
making in real applications. One of the main concerns in this area is the construction
of such systems which could be based on both expert knowledge and data. Thus the
construction techniques can be divided into two categories: knowledge based
construction and data based construction. This paper introduces the theoretical aspects
of categorization and construction of rule based systems as well as the use for
classification tasks. The purpose is to explore the research direction in context as well
as combine the authors’ previous work together to make an evolution from
specialization to generalization for the theoretical concepts.

The rest of this paper is organized as follows: Section 2 introduces the
categorization of rule based systems according to some special characteristics;
Section 3 introduces two main categories of construction of rule based systems:
knowledge based construction and data based construction. A special type of rule
based systems used for classification tasks is introduced in detail in Section 4. The
potential of this approach is also specified in a healthcare case study in Section 5 to

184 H. Liu, A. Gegov, and F. Stahl

demonstrate the value and impact of the approach. The summary of completed work
and further directions of research in this area are highlighted further in Section 6.

2 Categorization of Rule Based Systems

Rule based systems can be categorized in the following aspects: number of inputs and
outputs, type of input and output values, type of structure, type of logic, type of rule
bases, number of machine learners and type of computing environment.

For rule based systems, both inputs and outputs could be single or multiple. From
this point of view, rule based systems can be divided into four types [2] with respect
to number of inputs and outputs: single-input-single-output, multiple-input-single-
output, single-input-multiple-output, and multiple-input-multiple-output. All the four
types above can fit the characteristics of association rules. This is because association
rules reflect the relationship between attributes. An association rule may have a single
or multiple rule terms in both antecedent (left hand side) and consequent (right hand
side) of the rule. Thus the categorization based on number of inputs and outputs is
very relevant to fulfill the distinction of association rules.

However, association rules include two special types: classification rules and
regression rules, depending on type of output values. Both classification rules and
regression rules may have a single or multiple rule terms in antecedent but can only
have a single term in the consequent. The difference between classification rules and
regression rules is that the output values of classification rules must be discrete while
those of regression rules must be continuous. Thus both classification rules and
regression rules fit the characteristics of ‘single-input-single-output’ or ‘multiple-
input-single-output’ and are seen as special type of association rules. As the basis of
above description, rule based systems can also be categorized into three types with
respects to both number of inputs and outputs and type of input and output values:
rule based classification systems, rule based regression systems and rule based
association systems.

In machine learning, classification rules can be generated in two approaches:
divide and conquer [3] and separate and conquer [4]. The former method is generating
rules directly in the form of a decision tree, whereas the latter method produces a list
of ‘if-then’ rules. An alternative structure called Rule Based Networks represents
rules in the form of networks. With respect to structure, rule based systems can thus
be divided into three types: treed rule based systems, listed rule based systems and
networked rule based systems.

Construction of rule based systems is based on special type of logic such as
Boolean logic, fuzzy logic and probabilistic logic. From this point of view, rule based
systems can also be divided into the following types: deterministic rule based
systems, probabilistic rule based systems and fuzzy rule based systems.

As rule based systems can also be in the context of rule bases including single rule
bases, chained rule bases and modular rule bases. From this point of view, rule based
systems can also be divided into the three types: standard rule based systems,
hierarchical rule based systems and networked rule based systems.

 Categorization and Construction of Rule Based Systems 185

In machine learning context, a single algorithm could be applied to a single data set
for training a single learner. It can also be applied to multiple samples of a data set by
ensemble learning techniques for construction of an ensemble learner which consists
of a group of single learners. In addition, there could also be a combination of
multiple algorithms involved in machine learning tasks. From this point of view, rule
based systems can be divided into two types according to the number of machine
learners constructed: single rule based systems and ensemble rule based systems.

In practice, an ensemble learning task could be done in parallel, distributed way or
a mobile device according to the specific computing environments. Therefore, rule
based systems can also be divided into the following three types: parallel rule based
systems, distributed rule based systems and mobile rule based systems.

3 Construction of Rule Based Systems

As mentioned in Section 1, the construction of rule based systems can be based on
both expert knowledge and data. This section introduces and discusses two special
types of construction: knowledge based construction and data based construction.

3.1 Knowledge Based Approach

Knowledge based construction follows a traditional engineering approach, which is in
general domain dependent. It is necessary to have knowledge or requirements
acquired from experts at first and then to identify the relationships between attributes
(features). Modelling, which is the most important step, is further to be executed in
order to build a set of rules. Once the modelling is complete, then simulation is started
to check the model towards fulfillment of systematic complexity such as model
accuracy and efficiency. Finally, statistical analysis is undertaken in order to validate
whether the model is reliable and efficient in application.

3.2 Data Based Approach

Data based construction follows a machine learning approach, which is in general
domain independent. Machine learning techniques can be subdivided into two types:
supervised learning and unsupervised learning. Supervised learning means learning
with a teacher. This is because all instances from a data set are labelled. The aim of
this type of learning is to predict attribute values for unknown instances by using the
known data instances [5]. The predicted value of an attribute may be either discrete or
continuous. Therefore, supervised learning could be involved in both classification
and regression tasks for categorical prediction and numerical prediction respectively.
On the other hand, unsupervised learning means learning without a teacher. This is
because all instances from a data set are unlabeled. The aim of this type of learning is
to find previously unknown patterns from data sets. It includes association, which
aims to find relationships among attributes with regards to their values [5], and
clustering, which aims to find a group of objects that are similar from data sets [5].

186 H. Liu, A. Gegov, and F. Stahl

As mentioned in Section 1, rule based systems can be used for construction of
classification, regression and association systems. In general, all the three types of
rule based systems can be constructed with the following steps: Data collection->Data
pre-processing->Learning from data->Testing. However, there are different
requirements in different learning tasks. In other words, in order to build a high
quality model by using machine learning techniques, it is important to find algorithms
which are suitable to the chosen data sets with respects to the characteristics of data.
From this point of view, data preprocessing may be not necessary if the chosen
algorithms are good fits. In addition, different type of dimensionality reduction
techniques (such as feature selection), a type of data preprocessing, may be required
for different tasks. If it is a classification or regression task, supervised feature
selection techniques may be required in general. Otherwise unsupervised feature
selection techniques may be suitable. The step for learning from data mentioned
above may also need to be broken down in some special cases. For example, it may
be required to simplify rules in classification tasks or to reduce the number of rules in
association tasks. A specific construction for rule based classification systems is
further introduced in more detail in Section 4.

3.3 Discussion

In this paper, the authors aim to motivate the use of data based approach instead of
knowledge based approach for construction of complex rule based systems. The main
reason is that expert knowledge may be incomplete or inaccurate; some of experts’
points of view may be biased; engineers may misunderstand requirements or have
technical designs with defects. In other words, with regards to solving problems with
high complexity, both domain experts and engineers are difficult to have all possible
cases considered or to have perfect technical designs. Once a failure arises with such a
system, experts or engineers may have to find the problem and fix it by reanalyzing or
redesigning. However, the real world has been filled with Big Data. Some previously
unknown information or knowledge may be discovered from data. Data may
potentially be used as supporting evidence to reflect some useful and important
pattern by using modeling techniques. More importantly, the model could be revised
automatically as the update of database in real time if data based modeling technique
is used. Therefore, data based approach may be more suitable than knowledge based
approach for construction of complex systems. The rest of the paper will focus on
discussion in the machine learning context.

4 Rule Based Classification Systems

In general, a unified framework for the construction of predictive rule based systems,
comprises three basic procedures, the generation of rules, the simplification of rules
and the rule representation.This section describes the essence of the three operations
and introduces some methods and techniques which are involved in the operations.
The methods and techniques are also discussed comparatively in order to highlight

 Categorization and Construction of Rule Based Systems 187

some important aspects in choosing methods or techniques for the fulfillment of each
of the three operations.

4.1 Rule Generation

As mentioned in Section 2, the methods for generation of classification rules can be
categorized into the ‘divide and conquer’ and the ‘separate and conquer’ approaches.
Examples for ‘divide and conquer’ comprise ID3 [3], C4.5 and C5.0. Examples for
‘separate and conquer’ comprise Prism [7] and PrismTCS [8].

Divide and conquer is a recursive approach as the generation of rules is to select an
attribute to split on and then to recursively repeat the process for each branch
covering a subset of the training set as illustrated in Fig.1. However, this approach has
a principal drawback, the replicated sub-tree problem pointed out in [7] and illustrated
in Fig.2. It can be seen from Fig.2 that the four sub-trees which all have node C as
root are identical. This is an unnecessary redundancy in the decision tree as illustrated
in Fig.2.

IF all cases in the training set belong to the same class
THEN return the value of the class
ELSE

(a) Select the attribute A to split on*
(b) Sort the instances in the training set into non-empty subsets, one for each

value of attribute A
(c) Return a tree with one branch for each subset, each branch having a

descendant sub-tree or a class value produced by applying the algorithm
recursively for each subset in turn.

*When selecting attributes at step (a) the same attribute must not be selected more

than once in any branch.

Fig. 1. TDIDT Tree Generation algorithm [5]

As the problem arises with the rule generation approach, the separate and conquer
approach is motivated to generate if-then rules directly and iteratively from training
instances. Prism is a method that follows the ‘separate and conquer’ approach and is
illustrated in its original form in Fig.3. Bramer developed a modified version of Prism
called PrismTCS. The motivation is to increase computational efficiency because
original Prism is computationally expensive. The expensive computation is resulted
from frequent deletion of instances during rule generation and restoring the training
data to its initial size for rule generation for next class [12]. PrismTCS always chooses
the minority class as target class. Thus PrismTCS induces rules in the order of their
importance without the restoring the data to its original size (in between the induction
of different rules) [8, 9, 10]. PrismTCS has shown to produce classification rules
much faster, but also of a similar level of predictive accuracy compared with original
Prism [8, 9, 13]. However, the authors have recently pointed out some limitations of
Prism algorithm in [6, 14] regarding Prism’s way of dealing with clashes, underfitting
of the concept in the training data and its computational efficiency.

188 H. Liu, A. Gegov, and F. Stahl

With respects to clashes, it indicates that Prism may generate a number of rules,
each of which covers a clash set. A clash set contains instances that belong to
different classifications but cannot be separated further. According to Bramer’s
Inducer software implementation for clash handling, Prism prefers to discard a rule
instead of assigning it to the majority class. It may result in underfitting of the training
set if a large number of rules get discarded. For original Prism, this case may result in
a large number of instances remaining unclassified as there is no default rule available
and the rules that cover the instances get discarded. For PrismTCS, this case may
make a default rule give wrong classifications to the instances covered by discarded
rules. This is because the default rule is supposed to cover only the instances that
belong to the majority class, but unfortunately some rules that cover the other
instances got discarded.

Fig. 2. Cendrowska’s replicated subtree example [6, 20]

With respects to computational efficiency, as mentioned above, Prism prefers to
discard a rule if a clash occurs. That indicates that the algorithm takes time to
generate a rule which is eventually discarded in some cases. It is equivalent to doing
nothing and results in unnecessary computational costs.

Execute the following steps for each classification (class= i) in turn and on the original training data
S:
1. S’=S.
2. Remove all instances from S’ that are covered from the rules induced so far. If S’ is empty then
stop inducing further rules
3. Calculate the conditional probability from S’ for class=i for each attribute-value pair.
4. Select the attribute-value pair that covers class= i with the highest probability and remove all
instances from S’ that comprise the selected attribute-value pair
5. Repeat 3 and 4 until a subset is reached that only covers instances of class= i in S’. The induced
rule is then the conjunction of all the attribute-value pairs selected.
Repeat 1-5 until all instances of class i have been removed

*For each rule, no one attribute can be selected twice during rule generation

Fig. 3. Basic Prism algorithm [5]

The authors have recently developed another rule generation method called
“Information Entropy Based Rule Generation” (IEBRG) which also follows separate
and conquer approach and is illustrated in Fig.4. However, it uses “from cause to

 Categorization and Construction of Rule Based Systems 189

effect” approach whereas Prism uses “from effect to cause” approach. The main focus
of IEBRG is on minimizing the uncertainty that exists in the subset no matter what the
target class is. A popular measure of uncertainty is information entropy introduced by
Shannon in [15]. One of the advantages of IEBRG compared with Prism can be seen
from an example with reference to the lens 24 dataset reconstructed by Bramer in [5].
The dataset indicates that p (class=3|tears=1) =1. The first rule generated could be
“if tears=1 then class=3”.This implies that “tears=1” is only relevant for predicting
class 3. IEBRG can capture this information by the conditional entropy E (tears=1)
=0. However, this is actually unknown prior to the rule induction by Prism algorithm.
The PrismTCS would assign class 1 as target class to the first rule being generated (as
class 1 is the minority class). Original Prism may also select class 1 as the index of
the class is smaller. However, according to [8] the first rule generated by original
Prism is “if astig=2 and tears=2 and age=1 then class=1”. It indicates that the
computational cost is slightly higher than expected and so the rule has a higher
complexity. In some cases, the Prism algorithm may be even generating incomplete
rules, covering a clash set, especially if the target class is not a good fit to the
attribute-value pairs in the training data. The rule may be discarded resulting in
underfitting and unnecessary computational cost.

1. Calculate the conditional entropy of each attribute-value pair in the current subset
2. Select the attribute-value pair with the smallest entropy to be spilt on, i.e. remove all other

instances that do not comprise the attribute-value pair.
3. Repeat step 1 and 2 until the current subset contains only instances of one class (the entropy

of the resulting subset is zero).
4. Remove all instances covered by this rule.

Repeat 1-4 until there are no instances remaining in the training set.

* For each rule, no one attribute can be selected more than once during generation.

Fig. 4. IEBRG algorithm

In comparison with the Prism algorithm family, IEBRG may need significantly less
computational effort. In contrast to Prism, the IEBRG algorithm deals with clashes by
assigning a majority class to the rule. This may potentially reduce the underfitting of
the rule set and thus reduce the number of unclassified instances. However, there is
potential that the number of misclassified instances increases. Yet, IEBRG is
potentially better in avoiding clashes compared with Prism.

4.2 Rule Simplification

Rule simplification is necessary in some cases. The reason is the principal problem of
rule based classifiers to overfit on the training data [17]. When a large data set is used
for training, this may lead to the induction of a very large number of complex rules.
This will lower both the predictive accuracy and the computational efficiency. This
has motivated the development of pruning methods for rule simplification with
respect to the reduction of overfitting. Pruning methods can be subdivided into two
categories- pre-pruning [5] and post-pruning [5]. The former prunes rules during rule
generation and the latter generates a whole rule set and then discards a number of

190 H. Liu, A. Gegov, and F. Stahl

rules and rule terms, by means of using statistical (or other) tests [17]. There is a
family of pruning algorithms for Prism algorithms based on the J-measure [18], an
information theoretic means to compute the theoretical information content of a rule.
This is based on the hypothesis [19] that, if a rule has high information content (value
of J-measure, or also called J-value), it is also prone to have a high classification
accuracy. Two existing J-measure based pruning algorithms are J-pruning [17] and
Jmax-pruning [9, 10]. They have been successfully applied on different versions of
Prism algorithms for reducing overfitting. When a rule is being generated, the J-value
may go up or go down after specialising the rule by appending an additional term.
Both pruning algorithms expect to find the global maximum of J-value for the rule.
Each rule is assigned a complexity degree which is the number of terms. The increase
of complexity degree may make the J-value of this rule go up or down. The pruning
algorithms are aimed at finding the complexity degree corresponding to the global
maximum of J-value as illustrated in Fig. 5 using a fictitious example. Both pruning
methods above employ different strategies to search for the global maximum of the J-
value. J-pruning monitors the change of the J-value when appending rule terms and
stops once the J-value goes down. In contrast, Jmax-pruning induces the rule fully
until complexity degree X3 (regarding Fig.4), but monitors and records the so far
highest J-value when appending rule terms. In the example in Fig.5, J-pruning would
stop inducing rule terms when reaching complexity degree X1 but Jmax-pruning
would stop when reaching complexity degree X3 and then reduce the complexity
degree to X2 by removing rule terms between X3 and X2.

Fig. 5. Relationship between complexity degree and J-value

The authors have recently developed an alternative J-measure based pruning
algorithm called Jmid-pruning [20] in order to overcome the limitations mentioned
above. This algorithm not only monitors and records the highest J-value observed but
also measures the Jmax value that may be achieved by adding further rule terms.

In comparison with Jmax-pruning, Jmid-pruning also always finds the global
maximum but it is in theory computationally more efficient in some cases. An
example [11] is considered that a rule could be generated using the lense24 dataset:

If tears=2 and astig=1 and age=3 and specRx =1 then class= 3;

J-value

Complexity degree X1 X2 X3

 Categorization and Construction of Rule Based Systems 191

As the rule is being specialized by appending the four terms subsequently, the
corresponding values of J and Jmax change in the pattern as follows:

If tears=2 then class=3; (J=0.210, Jmax=0.531)

If tears=2 and astig=1 then class=3; (J=0.161, Jmax=0.295)

If tears=2 and astig=1 and age=3 then class=3; (J=0.004, Jmax=0.059)

If tears=2 and astig=1 and age=3 and specRx =1 then class= 3; (J=0.028, Jmax=0.028)
In the example above all three pruning algorithms would generate the same rule: if
tears=2 then class=3. The reason is that the highest J-value is computed right after
the first rule term was added (tears=2). However, with regard to computational
efficiency, J-pruning is the fastest and stops right after the second term (astig=1) is
generated. Jmid-pruning is faster than Jmax-pruning. This is because Jmax-pruning
stops when the rule is complete and cuts it back to ‘if tears=2 then class=3’ but Jmid-
pruning stops the generation after the third term is generated as the Jmax-value is
below the so far highest J-value.

4.3 Rule Representation

Rule representation aims to represent a rule set in a suitable structure to achieve more
efficient prediction. As mentioned in Section 2, the existing rule representations
include decision tree and linear list. The former is a representation that automatically
represents classification rules induced using the ‘divide and conquer’ method. The
latter automatically represents rules generated by the ‘separate and conquer’ method.
However, the decision tree representation has been criticised by Cendrowska and
identified as a major reason for overfitting [7]. It is also pointed out in [16] that in the
worst case it needs to go through the entire tree for extracting a classification. It
undoubtedly increases the computational costs and thus is a major drawback, hence
the motivation for using ‘if-then’ that can be represented in a linear list structure.
However, prediction on test instances by the list representation is done in linear time
while the number of rule terms in the rule set is the input size n. It indicates it may
have to go through the whole rule set in the worst case in order to find the first rule
firing. This may result in huge computational costs in prediction stage when a rule set
is very complex. Therefore, the authors have recently developed a new representation
called Rule Based Classification Networks [6] which performs logarithmic time.

Fig. 6. Rule Based Classification Networks [6]

192 H. Liu, A. Gegov, and F. Stahl

The networked representation is illustrated in Fig.6 to represent a rule set based on
Boolean logic. The rule set has two input attributes (x1 and x2) and the class value is
1 if and only if both variables get input value of 1. In this representation, the terms:
x1=1 and x2=1, are the two inputs for testing. Thus, in both ‘x1’ and ‘x2’ layers,
node labeled 1 becomes black and node labeled 0 becomes white. This is because
each node in layer x1 represents a value of attribute x1 and equivalent in layer x2. The
two digits with which the connections between layer x1 and x2 are labeled represent
the index of the rule and rule term respectively, i.e. the two digits ‘11’ state that this is
the first term of the first rule. It can also be easily seen that this particular term is
‘x1=0’. However, as the value of x1 is 1, the connection is not satisfied and thus
becomes dot. The connections ‘31’ and ‘41’ are both solid because condition ‘x1=1’
is met. The same principle applies to the connections between layers ‘x2’ and ‘Rule
Index’. The connections ‘31’, ‘41’ and ‘42’ become solid as the inputs are x1=1 and
x2=1; and this thus results in that node 3 becomes black in the ‘Rule Index’ layer and
the output is 1 in the layer ‘Class’.

5 Applications in Healthcare

As mentioned in Section 3, rule based classification systems constructed by machine
learning approach are domain independent and thus can be applied in many areas. For
example, as mentioned in [21], Inductive learning algorithms are domain independent
and can be involved in any classification or pattern recognition tasks. Some successful
applications listed in [21] include lymphography, prognosis of breast cancer
recurrence, location of primary tumour and thyroid problem diagnosis in medicine
[22, 23, 24].

The authors have recently developed a healthcare process modeling approach
which could be implemented in the following procedures using classification rules:

• diagnosis of illness
• patient classification
• treatment recommendation

It detail, patients need to have diagnosis with regards to the illness. This could be
achieved by using classification rules to identify the possible illness of a patient. Once
the diagnosis is complete, the patient will be categorized into a special group for this
illness based on the risk level by using classification rules checking patient’s features
such as blood pressure and heart rate. Finally, a list of treatments can be
recommended by using classification rules checking patient’s features and finding all
fired rules.

6 Conclusion

This paper introduces the categorization of rule based systems for both academic and
commercial purpose. This brings new insights to researchers and practitioners and
positions a new type of rule based systems for applications. It also motivates the use

 Categorization and Construction of Rule Based Systems 193

of data based approach in the context of machine learning for construction of complex
systems instead of knowledge based approach. The importance of the data based
approach is also highlighted. A special type of rule based system used for
classification tasks is introduced in detail explaining the construction framework and
reflecting some important aspects of choosing methods or techniques for rule
generation, simplification and representation operations. This is in order to explore
the significance of data based approach in depth. In addition, a healthcare case study
is also specified to demonstrate the value and impact of the approach. The
construction framework could be extended to include multiple rule based
classification systems as a whole by means of a system of systems by adopting an
ensemble learning approach. Such an extended framework for constructing ensemble
rule based systems will be validated. The studies will also be extended towards
fulfilment for construction of rule based systems for regression and association tasks.

References

1. Partridge, D., Hussain, K.M.: Knowledge Based Information Systems. Mc-Graw Hill
(1994)

2. Gegov, A.: Fuzzy Networks for Complex Systems: A Modular Rule Base Approach.
Springer, Berlin (2010)

3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman (1993)
4. Michalski, R.S.: On the Quasi-Minimal solution of the general covering problem. In:

Proceedings of the Fifth International Symposium on Information Processing, Bled,
Yugoslavia, pp. 125–128 (1969)

5. Bramer, M.A.: Principles of Data Mining. Springer, London (2007)
6. Liu, H., Gegov, A., Stahl, F.: Unified Framework for Construction of Rule Based

Classification Systems. In: Pedrycz, W., Chen, S.M. (eds.) Springer, Berlin (in press)
7. Cendrowska, J.: PRISM: An Algorithm for Inducing Modular Rules. International Journal

of Man-Machine Studies 27, 349–370 (1987)
8. Bramer, M.A.: Automatic Induction of Classification Rules from Examples using N-Prism.

Research and Development in Intelligent Systems, vol. XVI, pp. 99–121. Springer,
Cambridge (2000)

9. Stahl, F., Bramer, M.A.: Jmax-pruning: A Facility for the Information Theoretic Pruning
of Modular Classification Rules. Knowledge-Based Systems 29, 12–19 (2012)

10. Stahl, F., Bramer, M.A.: Induction of Modular Classification Rules: using Jmax-pruning.
In: Thirtieth SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence, pp. 14–16. Springer, Heidelberg (2011)

11. Bramer, M.A.: Inducer: a Public Domain Workbench for Data Mining. International
Journal of Systems Science 36(14), 909–919 (2005)

12. Stahl, F., Bramer, M.A.: Computationally Efficient Induction of Classification Rules with
the PMCRI and J-PMCRI Frameworks. Knowledge-Based Systems 35, 49–63 (2012)

13. Bramer, M.A.: An Information-theoretic Approach to the Pre-pruning of Classification
Rules. In: Musen, B.N., Studer, R. (eds.) Intelligent Information Processing, pp. 201–212.
Kluwer (2002)

14. Liu, H., Gegov, A.: Induction of Modular Classification Rules by Information Entropy
Based Rule Generation. In: Sgurev, V., Yager, R., Kacprzyk, J. (eds.) Innovative Issues in
Intelligent Systems. Springer (in press)

194 H. Liu, A. Gegov, and F. Stahl

15. Shannon, C.: A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), 379–423 (1948)

16. Deng, X.: A Covering-based Algorithm for Classification: PRISM. CS831: Knowledge
Discover in Databases (2012)

17. Bramer, M.A.: Using J-Pruning to Reduce Overfitting of Classification Rules in Noisy
Domains. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS,
vol. 2453, p. 433. Springer, Heidelberg (2002)

18. Smyth, P., Goodman, R.M.: Rule Induction Using Information Theory. In: Piatetsky-
Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. AAAI
Press (1991)

19. Bramer, M.A.: Using J-Pruning to Reduce Overfitting in Classification Trees. In: Research
and Development in Intelligent Systems XVIII, pp. 25–38. Springer (2002)

20. Liu, H., Gegov, A., Stahl, F.: J-measure Based Hybrid Pruning for Complexity Reduction
in Classification Rules. WSEAS Transaction on Systems 12(9), 433–446 (2013)

21. Aksoy, M.S.: A Review of Rules Families of Algorithms. Mathematical and
Computational Applications 13(1), 51–60 (2008)

22. Quinlan, J.R.: Induction, Knowledge and Expert Systems. In: Gero, J.S., Stanton, R. (eds.)
Artificial Intelligence Developments and Applications, Amsterdam, North Holland, pp.
253–271 (1988)

23. Michalski, R.S., et al.: The Multi-purpose Incremental Learning System AQ15 and Its
Testing Application to Three Medical Domains. In: Proc. National Conf. on AI,
Philadelphia, PA, pp. 1041–1044 (August 1996)

24. Quinlan, J.R.: Inductive Knowledge Acquisition: a Case Study. In: Quinlan, J.R. (ed.)
Applications of Expert Systems, Quinlan, J, pp. 157–173. Turing Institute Press (1987)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 195–204, 2014.
© Springer International Publishing Switzerland 2014

Tiling of Satellite Images to Capture an Island Object

Ahmet Sayar1, Süleyman Eken1, and Umit Mert2

1 Computer Engineering Department, Kocaeli University,
41380 Izmit, Turkey

{ahmet.sayar,suleyman.eken}@kocaeli.edu.tr
2 Information Technologies Institute,

The Scientific and Technological Research Council of Turkey, Gebze, Kocaeli, Turkey
umit.mert@tubitak.gov.tr

Abstract. This study proposes a novel tiling approach to capture an image of an
entire object. Multi-spectral and multi-temporal satellite images are obtained a
priori, and these individual image pieces can then be joined together at a later
date to form an image of the entire object. The effectiveness of the proposed
technique has been studied by tiling partially overlapping satellite mosaic im-
ages of the Island of Cyprus. The images were captured by the recently-
launched LandSat-8 satellite.

Keywords: Satellite image tiling, image mosaicking, LandSat-8, lighten
method.

1 Introduction

Processing satellite images is harder than processing any other images. It is even
harder when it comes to image stitching or registration. There are a number of reasons
for this. (1) Bad weather and atmospheric conditions such as clouds, fog and smoke
affect the sensors and prevent them from acquiring measurements accurately. This
also affects information extraction: It is hard to define objects with their precise bor-
ders and edges. (2) Satellite images are naturally poor in color variations. In low-
resolution images, the colors are mostly greenish and brownish. This is related to the
previous poor-definition group. (3) Satellite images from different sensors usually
have different spatial resolution. (4) They are called multi-spectral images; images
have different spectral characteristics, so that contrast information is different for the
same imaged object. (5) They are mostly captured by the sensors at different time
intervals. This is called spatiotemporal differences; and it affects the success of
matching process in image stitching and registration. Issues 1 and 2 are general prob-
lems in satellite image processing. However, issues 3, 4 and 5 are especially related to
the challenges faced when performing image stitching and registration.

In the image registration process, there are two major and important issues that
need to be solved together. One is accuracy and another is efficiency. When you want
to make the process more accurate, then you pay for the efficiency, and vice versa.
Given the remotely captured large size images, the important thing is to reduce the

196 A. Sayar, S. Eken, and U. Mert

computational time which is required to execute each of these steps while keeping
precise alignment. It is therefore crucial that the registration process produces an
image that is visually and numerically accurate.

In this paper, we are trying to find a way to get over aforementioned problems in
image registrations in remote sensing domain by considering domain specific natures
and characteristics of satellites and satellite images. We are proposing very fast and
efficient registration method. But, in this approach there might be some faults in terms
of numerical accuracy. The proposed framework and technique can be used efficient-
ly in applications in which the performance and visually correctness has the highest
precedence than the numerically correctness. Numerical correctness is called as
exact pixel to (lat, long) address matching. In some real-time and internet based dis-
tributed applications accuracy can be tolerable to some extent for the sake of high
performance.

After presenting the registration algorithm we increase the quality of the outcome
image with a smoothing technique. In the mosaic result, the overlapping region shows
the important brightness difference with the residual of the mosaic. We will apply a
‘blending technique’ to rarefy this effect. These methods are used to flat the overlap-
ping area.

The study presented in this paper is based on mosaicking of the images obtained
from an UAV (Unmanned Aerial Vehicle). UAV is referred to as a remotely piloted
aircraft, when it flies in the sky to capture images remotely, and these are serially shot
by digital camera installed on UAV. There are two methods used for image matching
i.e. Rough Matching and Fine Matching. In the rough matching technique, firstly it
determines the overlapping areas approximately and applies stitching.. This approxi-
mation is based on the mathematical calculations in which speed of UAV and some
other parameters related to camera installed at UAV. In fine matching techniques,
pixel based high cost feature detection algorithms are used. Techniques are mostly
based on feature extraction and feature matching. To achieve a successful result, ob-
jects in the images need to be clearly determined. These approaches are affected by
the problems presented in the beginning of this chapter.

The proposed tiling architecture is a kind of rough matching but also utilizes fine
matching approaches to some extent. When coordinate values and all other required
metadata about the satellite images are known and fed into the system, we can achieve
much more efficient and successful results. In the proposed architecture, we handle
the image stitching problems stemming from the spatiotemporal differences of satel-
lite images. The architecture is also based on geometrical and coordinate based stitch-
ing by utilizing coordinate reference systems on which the satellite images are
created.

The remainder of this paper is organized as follows. Section 2 gives relevant works
about image stitching. Section 3 explains the proposed technique for registering the
remote sensing satellite images. Section 4 presents the results of the experiment ob-
tained by applying the technique on the Island of Cyprus mosaic image tiles. Section
5 concludes the paper.

 Tiling of Satellite Images to Capture an Island Object 197

2 Related Works

The methods used for image registration can be grouped according to the different
perspectives and information used for registration. Mostly, they are grouped into two
categories: feature-based and area-based methods [1]. In area-based methods, promi-
nent features in images are not necessarily detected. Area-based methods are affected
by the intensity distributions of the images. In intensity-based methods different elec-
tromagnetic reflectance is present, that’s why these methods are not good for multi
spectral satellite image registration [2]. On the other hand, the featured-based methods
do not depend on the distribution of image intensity values. As an alternative, they
use salient features which are extracted from two images, in this scenario it works
more suitable where intensity changes and geometrical deformation are encountered.
These feature based techniques have been widely used in remote sensing image regis-
tration.

In the literature, a number of registration techniques have been proposed, especial-
ly for use on satellite images. Yi et al. [2] proposed a SIFT [3] based multi-spectral
remote image registration technique which is actually similar to the SURF technique
[4]. Song and Zhang [5] presented a method to optimize SURF by defining a similari-
ty measure function based on trajectories generated from Lissajous-figures. They
aimed at increasing the feature matching rate. Lee [6] proposed a technique for regis-
tering remote sensing images which involved carrying out Haar Wavelet Transform
(HWT) before applying the SURF algorithm to the images. Wahed et al. [7] proposed
a technique in which median filtering is applied to remote sensing images before
performing the SIFT algorithm to register the images. El-Rube et al. [8] presented a
technique combining SIFT and multi-scale wavelet transform to register satellite
imageries. The control points (or interest points) are selected using three levels of
wavelet transform. Manera et al. [9] used the SURF technique to register digital im-
ages acquired from digital cameras attached to an unmanned aircraft.

In our previous work [10], a technique to register LandSat-8 satellite images using
a combination of well-known image processing algorithms was proposed. In the fea-
ture extraction phase, interest (key) points are obtained by means of SIFT and SURF
technique. For feature matching, RANSAC algorithm [11] is used. After the applica-
tion of linear gradient alpha blending method, final image is created. This preciously
proposed technique cannot overcome registering more than two mosaic (tile) image
because of memory capacity. So, we suggest new methodology to solve this problem
in this paper.

Nowadays the procedure based on soft computing techniques such as artificial
neural network (ANN), genetic algorithm and fuzzy logic etc. are used for image
stitching. Generally Network Architectures are classified into two main classes: First
approach is feed-forward networks in which links have no loops (e.g., multilayer
perceptron (MLP) and radial basis function neural networks (RBF) .Second approach
base on recurrent networks in which loops occur (e.g., self-organizing maps (SOM)
and Hopfield networks).Similarly there are different computational techniques used
for image stitching for example Radial basis functions [12, 13], self-organizing
maps [14], Hopfield networks [15].Correspondingly other proposed technique in this

198 A. Sayar, S. Eken, and U. Mert

scenario [16] based on a three-layer neural network to determine the registration ma-
trix for 3D surface image stitching. Li and et al. [17] described the use of image re-
gions which lie on an application of pulse-coupled neural network to multi-sensor
image fusion problem. Shang and et al. [18] used principal component analysis (PCA)
neural network for CT-MR and MR-MR registration. Zhang and et al. [19] illustrate a
3D surface-based rigid registration system for image-guided surgery on bone struc-
tures. Sharma and et al. [20] proposed an algorithm that finds the major overlapping
area in the images to be mosaicked using neural network (Kohonen’s self-organizing
Map (KSOFM)). These approaches are mainly applied on medical images rather than
satellite images.

3 Architecture

Image registration is the process of aligning two images of a particular area. They
correspond to each other on an exact pixel-by-pixel basis [21]. Type of image is an
important feature in image registration. Method of image registration varies according
to the type of image. This study contains remote sensed images. These types of im-
ages usually contain two types of distortion which are radiometric distortion and
geometric distortion. In this section, we explain the way of correcting geometric
distortion.

In this paper, registration of high-resolution satellite images consists of seven
steps. These steps can be listed as; (1) reading image with geographic corner coordi-
nate as latitude, longitude, (2) the calculation of pixel values corresponding to latitude
longitude, (3) selection of the most precise value to be calculated in previous step, (4)
calculation of width and height of the image to be registered, (5) corner coordinate as
(x,y) of each tile image, (6) according to coordinate to be calculated in previous step
blending of each tile image to final image using lighten method and finally (7) saving
image as jpeg format. This architecture can be seen in Fig. 1 schematically. We will
explain these steps in detail later on.

In the first step, high-resolution images to be registered and their geographic corner
coordinates as NW, NE, SW and SE are read. These images are obtained from
LANDSAT-8 satellite launched by NASA more recently. Each corner coordinate
consists of latitude and longitude. For those images, memory is allocated. The more it
has been registered number of satellite image, the more it has been allocated amount
of memory. More specifically, we can say that if the number of pixel of the satellite
image increases, it is necessary to have more memory space. The memory should be
used effectively while reading image. To calculate memory space of any image, its
dimension and every pixel size are taken into consideration. For example memory
space of Fig. 3 is 446 MB (7641 x 7651 x 8 = 467690328 byte). If the size of one
image to be registered is about 446 MB, four images are the size of 4x446 = 1784 MB
(about 2 GB). Therefore, 2 GB of memory space should be free. Nowadays, it is too
hard for a computer to allocate 2 GB memory size for only one application. Unused
objects in memory should be de-allocated for optimal usage. This process runs
automatically in Java by garbage collector. Although it is not highly recommended,
application developers can call the garbage collector. To work actively this process,
references of objects to be de-allocated must be removed from memory. If memory

 Tiling of Satellite Images to Capture an Island Object 199

has that object reference, the object will continue to occupy memory space. Therefore,
firstly the object reference should be removed then garbage collector is called to de-
allocate memory space.

In the second step, equivalent of each pixel is calculated as latitude and longitude
by using Equation (1) and (2). To register satellite images correctly, their resolutions
should be same. In the third step, pixel values belonging to each satellite image are
compared with each other and the most precise pixel value is selected to reduce the
error rate.

X = image_width / (NE_latitute - SW_latitute) (1)

Y = image_height / (NW_longitute - SE_longitute) (2)

Fig. 1. Workflow of the processes in the architecture

200 A. Sayar, S. Eken, and U. Mert

In the fourth step, width and height of registered image are calculated. To calculate
image width, it is necessary to determine the most left and the most right longitude.
Similarly, to calculate image height, it is necessary to determine the most bottom and
the most top latitude. In fifth step, top left point (SW_latitute, NW_longitute) of each
satellite tile image is converted into x and y coordinates to find starting point of each
tile image on registered entire image. In the sixth step, each satellite tile image is
drowned to the registered image by starting from those points. If these tile images are
registered directly, a part of black background overlaps with other one part of image
which will not be a successful registration. To overcome this problem, color of over-
lapped part should be set correctly. While blending overlapped parts of image, max
(RGB) function is used as shown (3). This method is called “lighten”.

R = Resulting pixel value,

S = Pixel value of first image’s overlapped part,

D = Pixel rgb value of second image’s overlapped part,

R = max (S,D) = [max(Sr,Dr), max(Sg ,Dg), max(Sb,Db)] (3)

After processing these steps, registered image is obtained finally.

4 Experimental Results

The proposed technique was tested on LandSat-8 satellite images. LandSat-8 OLI has
8 multispectral bands (440-2200nm), spatial resolution of 30m, and a swath of
185km. LandSat-8 was launched in February 2013. The satellite images obtained can
be searched interactively and downloaded free for use in academic studies from the
United States Geological Survey (USGS) website (http://glovis.usgs.gov/). In order to
register this type of high resolution images, some requirements must be accomplished.
This application runs on java platform built on JVM (Java Virtual Machine). Also,
JVM parameters must be set to–Xmx2g –Xms2g to allocate 2 GB memory space for
JVM. We realized experimental tests on a JAVA virtual machine installed on a ma-
chine with a 2.3 GHz Intel i7 2820QM 8MB Cache, 6GB Memory, and Windows
Home Premium 64 bit operating system.

The satellite tile images of Island of Cyprus with its dimensions are shown in
Fig. 2 to Fig. 5. Also, the geographic coordinates of these satellite images are listed
in Table 1.

While registering tile images above; if lighten composition method -replacing tar-
get image pixels with lighter pixels from the foreground image for overlapped parts-
is not used, the registered image is shown in Fig 6. However, if lighten method is
used, the registered image is presented in Fig 7.

 Tiling of Satellite Images to Capture an Island Object 201

Fig. 2. Tile-1, North-West (7641x7651)

Fig. 3. Tile-2, North-East (7651x7801)

Fig. 4. Tile-3, South-West (7641x7791)

Fig. 5. Tile-4, South-East (7631x7431)

Table 1. The geographic coordinates of part satellite images of Island of Cyprus

Images North West North East
 Latitude Longitude Latitude Longitude

Fig. 2 37.0960 32.72594 36.7015 34.80635
Fig. 3 37.0960 34.27671 36.7015 36.35717
Fig. 4 35.6625 32.32869 35.2720 34.37137
Fig. 5 35.6625 33.86668 35.2720 35.90891
 South East South West
 Latitude Longitude Latitude Longitude
Fig. 2 34.9760 34.28345 35.3695 32.2481
Fig. 3 34.9760 35.8343 35.3695 33.79888
Fig. 4 33.5447 33.86304 33.9347 31.86247
Fig. 5 33.5448 35.40051 33.9348 33.40038

202 A. Sayar, S. Eken, and U. Mert

Fig. 6. High-resolution satellite image (13465x13181) before performing Lighten method

Fig. 7. High-resolution satellite image (13465x13181) obtained after performing Lighten
method

5 Conclusion

Image registration provided an important element in data processing for remote sens-
ing in the midst of many applications by means of wide range of solutions. Regardless
of substantial exploration, the field has not yet settled on a definitive solution. In
many applications the numbers of questions still need explanation for appropriative

 Tiling of Satellite Images to Capture an Island Object 203

and efficient results. Satellite image mosaicking, a process of stitching or aligning
several satellite images to produce a single large scale and high resolution image, is
thus an important scheme to extend the usability of satellite imagery in practical
applications. However, speediness for image matching, at the same time, assuring the
accuracy, i.e. precision, is a key question in the technology of image matching.

This paper proposed an architecture utilizing domain-specific knowledge of geo-
metric transformations and image content. We have used the coordinates of the refer-
ence systems, their conversion to screen pixel addresses, etc. Thus, we have increased
the performance significantly.

In the future, we will enhance the scalability of the overall system by using physi-
cal storages as caches. Thus, a set of high resolution satellite images summing up to
terabyte will be able to handle efficiently. We will also consider ANN with proposed
technique to obtain more accurate results.

Acknowledgments. This work has been supported by Kocaeli University Scientific
Research and Development Support Program (BAP) in Turkey. The project number is
2013/012.

References

1. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys
(CSUR) 24, 325–376 (1992)

2. Yi, Z., Zhiguo, C., Yang, X.: Multi-spectral remote image registration based on SIFT.
Electronics Letters 44, 107–108 (2008)

3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60, 91–110 (2004)

4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis,
A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417.
Springer, Heidelberg (2006)

5. Song, Z.L., Zhang, J.: Remote sensing image registration based on retrofitted SURF algo-
rithm and trajectories generated from Lissajous figures. IEEE Geoscience and Remote
Sensing Letters 7, 491–495 (2010)

6. Lee, S.R.: A coarse-to-fine approach for remote-sensing image registration based on a lo-
cal method. International Journal on Smart Sensing and Intelligent Systems 3, 690–702
(2010)

7. Wahed, M., El-tawel, G.S., El-karim, A.G.: Automatic Image Registration Technique of
Remote Sensing Images. International Journal of Advanced Computer Science and Appli-
cations 4, 177–187 (2013)

8. El-Rube, I., Sharkas, M., Salman, A., Salem, A.: Automatic Selection of Control Points for
Remote Sensing Image Registration Based on Multi-Scale SIFT. In: International Confe-
rence on Signal, Image Processing and Applications (SIA), vol. 21, pp. 46–50. IACSIT
Press, Chennai (2011)

9. Manera, J.F., Rodrigez, L., Delrieux, C., Coppo, R.: Aerial image acquisition and
processing for remote sensing. Journal of Computer Science & Technology 10, 97–103
(2010)

204 A. Sayar, S. Eken, and U. Mert

10. Sayar, A., Eken, S., Mert, U.: Registering landsat-8 mosaic images: A case study on the
Marmara Sea. In: Processing of 10th International Conference on Electronics, Computer
and Computation (ICECCO), Ankara, Turkey, pp. 375–377 (2013)

11. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Graphics and Image
Processing 24, 381–395 (1981)

12. Davis, M.H., Khotanzad, A., Flaming, D.P.: 3D image matching using radial basis func-
tion neural network. In: Processing of WCNN 1996: World Congress on Neural Networks,
pp. 1174–1179 (1996)

13. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elas-
tic registration of medical images. Image and Vision Computing 19, 87–96 (2001)

14. Sabisch, T., Ferguson, A., Bolouri, H.: Automatic registration of complex images using
a self organizing neural system. In: Proc. of 1998 Int. Joint Conf. on Neural Networks,
pp. 165–170 (1998)

15. Banerjee, S., Majumdar, D.D.: Shape matching in multimodal medical images using point
landmarks with Hopfield net. Neurocomputing 30, 103–106 (2000)

16. Liua, H., Yan, J., Zhang, D.: Three-dimensional surface registration: A neural network
strategy. Neurocomputing 70, 597–602 (2006)

17. Li, M., Cai, W., Tan, Z.: A region-based multi-sensor image fusion scheme using pulse-
coupled neural network. Pattern Recognition Letters 27(16), 1948–1956 (2006)

18. Shang, L., Cheng Lv, J., Yi, Z.: Rigid medical image registration using PCA neural
network. Neurocomputing 69, 1717–1722 (2006)

19. Zhang, J., Ge, Y., Ong, S.H., Chui, C.K., Teoh, S.H., Yan, C.H.: Rapid surface registration
of 3D volumes using a neural network approach. Image and Vision Computing 26,
201–210 (2007)

20. Sharma, S., Tuli, H., Nagar, S., Dhir, T., Tayal, S.: Using Self-Organizing Neural Network
for Image Mosaicing. Advanced Applications of Electrical Engineering, pp. 76–80 (2009)

21. Zagorchev, L., Goshtasby, A.: A Comparative Study of Transformation Functions for Non-
rigid Image Registration. IEEE Trans. Image Processing 15(3), 529–538 (2006)

Learning User Models in Multi-criteria

Recommender Systems

Marilena Agathokleous and Nicolas Tsapatsoulis

30, Arch. Kyprianos str., CY-3036, Limassol, Cyprus
mi.agathokleous@edu.cut.ac.cy, nicolas.tsapatsoulis@cut.ac.cy

Abstract. Whenever people have to choose seeing or buying an item
among many others, they are based on their own ways of evaluating
its characteristics (criteria) to understand better which one of the items
meets their needs. Based on this argument, in this paper we develop
personalized models for each user, according to their ratings on specific
criteria, and we use them in multi-criteria recommender systems. We as-
sume the overall ranking, which indicates users’ final decision, is closely
related to their given value in each criterion separately. We compare
user models created using neural networks and linear regression and we
show, as expected from the implicit nonlinear combination of criteria,
that neural networks based models achieve better performance. In con-
tinue we investigate several different approaches of collaborative filtering
and matrix factorization to make recommendations. For this purpose
we estimate users’ similarity by comparing their models. Experimental
justification is obtained using the Yahoo! Movie dataset.

Keywords: User modeling, Multi-criteria recommender systems, Col-
laborative filtering, MCDA, Matrix factorization.

1 Introduction

In order to know if a consumer is going to buy or see a product, it is important
to understand first the decision making process, which he/she follows. Decision
making can be considered as the cognitive process, which leads to the selection of
a course of action between several alternative scenarios. The output of this pro-
cess includes a final decision, which can be an action or an opinion of choice [11].
Decision making depends on several factors including past experience [9], cog-
nitive biases based on observations [16] as well as age and other demographic
differences [4]. Influenced by these factors, each person decodes differently the
received stimuli and evaluates situations, objects and interprets services with
a unique way, depending on how they perceive their various characteristics. By
characteristics, here, we consider individual criteria, which a person usually takes
into account in order to conclude in his/her final decision. In item purchasing
the most common criteria are price and (measures of) quality. A product is diffi-
cult to have the lowest price and the highest measure of quality simultaneously;
therefore these criteria are usually in conflict. Furthermore, people realize things

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 205–216, 2014.
c© Springer International Publishing Switzerland 2014

206 M. Agathokleous and N. Tsapatsoulis

by their own perspective. Thus, the way they measure high quality and low price
is highly subjective. For example, a rich and a poor person perceive the bench-
mark of price differently; thus, a value considered as low by the rich might be
perceived as high by the poor.

Knowing a person’s decision making process, gives us the opportunity to un-
derstand how they think and evaluate multiple criteria to make the final decision
of what item they would like to see or buy. Modeling the evaluation process of
each user individually, makes a system able to know better what items fit his/her
preferences and allows it to carry out recommendations for products or services
that are likely to be absorbed by him/her. A recommendation algorithm that
makes use of accurate user models potentially increases its effectiveness since it
exploits the knowledge about the basic attributes that attract users to choose
an item and recognizes users’ taste ensuring a more personalized understanding
of them.

In this paper we investigate: (a) whether a neural network based user model
can be used to accurate predict the overall evaluation score of an item given
the (individual) criteria ratings, (b) to which extent the multivariable function
of the overall evaluation score can be linearly approximated using regression
models, (c) the effectiveness of matrix factorization techniques on multi-criteria
recommender systems that utilize learned user models, (d) whether user model
comparison sufficiently captures user preference similarities, (e) to which ex-
tent user clustering based on the learned user models improves recommendation
accuracy.

For our experiments we used the well-known Yahoo! Movies dataset to al-
low comparisons with other similar approaches. Both matrix factorization and
collaborative filtering methods were examined while the utility matrix used for
recommendations was composed either from the original overall item ratings of
the actual users or by the predicted by user model ratings.

2 Background and Problem Formulation

The web is deluged with countless information; making navigation very difficult
and confused for the most users [13]. That renders Recommender Systems (RSs)
very important and necessary. RSs are software tools and techniques, which
help users to identify what they really need from a sheer volume of products or
services, by providing them personal recommendations. The recommendations
concern items or services that could be exploited by a user.

The recommendation problem can be formulated as follows: Let C be the set
of users and let S be the set of all possible items that the users can recommend,
such as books, movies, restaurants, etc. Let also u be a utility function that
measures the usefulness (as may expressed by user ratings) of item s to user c,
i.e., u : C × S → �. The usefulness of all items to all users can be expressed
as a matrix U with rows corresponding to users and columns corresponding to
items. An entry u(c, s) of this matrix may have either positive value indicating
the usefulness (rating) of item s to user c or a zero value indicating that the

Learning User Models in Multi-criteria RS 207

usefulness u(c, s) has not been evaluated. Although there are several cases where
the rating scale is different than the one mentioned above and includes negative
values (and as a result the non-evaluated items cannot be represented by the zero
value) it is always possible to transform the rating scale in an interval [lv hv]
where both lv and hv are greater than zero. The recommendation problem can
be seen as the estimation of zero values of matrix U from the non-zero ones.
Under this perspective, matrix factorization techniques gained much attention
and proved to be highly effective in real-world recommended systems [17,12].
The result of matrix factorization of utility matrix U is, therefore, a matrix Û
whose elements û(c, s) ∈ [lv hv]:

Û = mf(U) (1)

where mf denotes a matrix factorization technique.
The main problems in matrix factorization methods are the high dimension-

ality and sparsity of utility matrix U . The former affects heavily the efficiency
of recommendation process (time required to provide a meaningful recommen-
dation) while the latter prevents the use of popular matrix factorization tech-
niques such as Singular Value Decomposition (SVD) which are not effective in
sparse matrices [3]. Thus, usage of alternative iterative factorization techniques
including Alternative Least Squares (ALS) [12] and Stochastic Gradient Descent
(SGD) [17] were proposed. In any case the high dimensionality of utility matrix
U and the difficulty of making matrix factorization techniques adaptive (i.e.,
making a new estimation of utility matrix using the previous one along with the
new ratings entering the system) kept classic recommendation techniques alive.

According to Jannach [8] RSs are broadly divided into six main categories :
(a) Content-based, (b) Collaborative Filtering, (c) Knowledge based, (d) Com-
munity based, (e) Demographic and (f) Hybrid. The most common type is Col-
laborative Filtering (CF) [10]. CF considers that if two users evaluate the same
items in a similar way they are likely to have the same ‘taste’ and, therefore,
RSs can make recommendations between them. The CF approach requires some
similarity sim(c, c′) between users c and c′ to be computed based on the items
that both of them evaluated with respect to their usefulness [15]. The most
popular approaches for user similarity computation are Pearson correlation and
Cosine-based metrics. Both of these methods produce values sim(c, c′) ∈ [−1 1].
By computing the similarity of all users in pairs we create the similarity ma-
trix M ∈ �NCxNC (NC is the number of users). Zero values of matrix M may
correspond to either zero similarity, or, to users with no commonly evaluated
items. The influence of a user can be calculated by taking the sum across the
corresponding row or column of matrix M . The higher this sum is the more
influential the user is.

Traditional RSs based their recommendations on a single criterion. When
they examine an item for its utility to a specific user, they consider as the only
criterion item’s overall utility score. This score is estimated by the methods
mentioned above. In several cases, however, additional information is available.
This information can be either of contextual type [2] or of the form of individual

208 M. Agathokleous and N. Tsapatsoulis

ratings of item’s characteristics [1]. In both cases additional knowledge about
users is gained allowing more personalized recommendations. For instance a
travel RS could recommend a holiday package in winter very different from a
package in summer, when it is taking into account the temporal context. Also,
a holiday package offered to a couple can vary greatly from another, which is
addressed to a family. In addition the holiday packages for couples may differ
from one couple to the other. Thus, Context-Aware RSs (CARS) try to estimate
the utility function u : C × S × Cxt → �, where Cxt is the set of contexts.

On the other hand, a recommendation problem can be treated as multi-criteria
decision making problem, by exploiting the individual ratings of items’ charac-
teristics. MCDA is a well-established field of Decision Science that might be
structured to support the decision makers in the decision making process, by
analysing their options and modeling their value system [5]. Multi-Criteria RSs
can use both the ratings of the criteria and the overall utility score to proceed
in recommendations. Multi-criteria approaches are well established in market-
ing research emphasizing on analysis of individual customers’ decision making
process. According to Hair et al. [6]: “Conjoint analysis is a multivariate tech-
nique developed specifically to understand how respondents develop preferences
for any type of object (products, services, or ideas). It is based on the simple
premise that consumers evaluate the value of an object (real or hypothetical)
by combining the separate amounts of value provided by each attribute. More-
over, consumers can best provide their estimates of preference by judging objects
formed by combinations of attributes.”

In multi-criteria recommender systems the recommendation process is modi-
fied to make use of the availability of individual ratings on items’ characteristics.
In order to formally describe the challenges faced by multi-criteria RSs let us
denote with rc,si , i = 1...k the individual ratings given by user c to item s to eval-
uate its k distinct characteristics. The user c also evaluates the overall utility
value of item s through the value u(c, s). Obviously individual ratings rc,si and
overall utility score u(c, s) are strongly related. Thus we can write:

u(c, s) = f(rc,s1 , ..., rc,sk) (2)

Since this relation is user dependent we can modify eq. 2 as follows:

u(c, s) = fc(r
s
1, ..., r

s
k) (3)

where rsi , i = 1...k are the individual ratings of item s and fc is a multivariable
function indicating the personal way user c combines individual ratings of an
item into item’s overall utility score.

Accurate personalized recommendation benefits from learning function fc for
every user c. This is the basic aim of the current work which suggests a non-
linear approximation of functions fc using Neural Networks. So far functions fc
were approximated via linear regression models, i.e., fc is assumed to have the
following form:

u(c, s) =

k∑
i=1

wc
i · rsi + wc

0 (4)

Learning User Models in Multi-criteria RS 209

where wc
i , i = 0...k are the learned coefficients. Thus, in vector space model

representation user c is modeled by the following vector:

wc = [wc
0 wc

1 ... wc
k]

T (5)

In the collaborative filtering approach of multiciteria recommender systems
the similarity between users c and c′ can be either computed through the tradi-
tional way (based on the items that both of them evaluated with respect to their

overall usefulness) or by comparing their models, i.e., computing sim(wc,wc′
).

In the more general case where the users are modeled in a non-linear fashion,
as we do in this paper, we suggest computing the similarity of users c and c′ by
comparing the corresponding user functions, i.e., by calculating sim(fc, fc′).

In matrix factorization approaches it is not clear which is the best way to get
advantage of the availability of individual ratings of item characteristics. One
way is to extend utility matrix to a 3D tensor T with items t(c, s, i) indicating
the evaluation of the i-th characteristic of item s by user c. The problem in
this case is that the overall utility evaluation u(c, s) is totally ignored. Further-
more, factorization of sparse tensors is even more complex and computationally
intensive than matrix factorization.

In this paper we investigate the application of matrix factorization on Ũ . Ũ
is computed by replacing the non-zero values of the actual utility matrix U with
the ones estimated by the learned user models:

[Ũ |ũ(c, s) = fc(r
s
1, r

s
2, , ..., r

s
k), u(c, s)
= 0] (6)

Thus, instead of using eq. 1 for solving the recommendation problem we use
Û = mf(Ũ).

3 Research Questions and Methodology

In this study we try to advance the research in multiciteria recommender systems
by investigating the following research questions: (1) Is non-linear modeling of
user functions fc more effective that linear models wc? (2) In non-linear model-
ing using Neural Networks how the number of hidden neurons HN affects user
modeling? (3) Can we estimate user similarity by comparing user functions fc
(instead of the traditional approach which involves similarity computation based
on commonly evaluated items)? (4) In matrix factorization can we factorize the
estimated through the learned models utility matrix Ũ instead of the original
utility matrix U?

In the first research question we assume that the overall utility score, which a
user gives to an item, is closely related to his/her given value in each individual
criterion separately. While for some users the criteria may contribute equally to
the overall score, in the majority of cases users give different significance to each
individual criterion and combine the criteria in, an unclear even to them, way
to produce the final utility score. The question is whether the introduction of
non-linearity, in individual criteria combination, leads to better user modeling.

210 M. Agathokleous and N. Tsapatsoulis

A similar study was made by Jannach et al. [7], who used a tourism platform
that provides the ratings of multiple criteria about the accommodation. Regres-
sion models that constitute specific aggregation functions for each user and each
item were compared. They concluded that regression models learned with a clas-
sifier using a support vector machine, outperform linear least squares regression
models.

Fig. 1. The model of user function fc

In the second research question we try to estimate the degree of non-linearity
of user function fc. We expect that fc is approximately linear, thus, a small
numbers of hidden neurons suffice for its modelling. In this perspective fc is
given by (see also Figure 1):

fc(r
s
1, r

s
2, , ..., r

s
k) =

HN∑
j=1

⎧⎪⎨⎪⎩wj · g

⎛⎜⎝ k∑
i=1

wijr
s
i + vj

⎞⎟⎠
⎫⎪⎬⎪⎭+ z (7)

where g(·) is a nonlinear function (usually sigmoid) and wij , vj , wj , z, the
modeling parameters learned through the Neural Network andHN is the number
of hidden neurons. Since the number of modelling parameters Np is heavily
dependent on the number of hidden neurons (Np = (k + 2)HN + 1) it is highly
desirable to minimize it.

Traditionally, in collaborative filtering approaches of RSs similarity between
users (in order to identify users with similar preferences) is computed by compar-
ing their evaluations on commonly assessed items [10]. Extending this approach
to multi-criteria RSs is not straightforward. Again, one should either ignore the
overall rating and compare the individual ratings of the commonly evaluated
items which results in comparing matrices with dimensions NS x k (NS is the
number of items in the RS and k is the number of item characteristics), or ig-
nore the ratings on the individual characteristics and only use the overall rating.

Learning User Models in Multi-criteria RS 211

This is the main reason researchers working with multi-criteria RS end up com-
paring user models in order to estimate similarity of user preferences. In our
third research question we investigate whether we can use sim(fc, fc′) for this
purpose. We consider that the nonlinear function fc can be represented through
its learned parameters:

(8)f c = [w11 w21 ... wk1 v1 w12 w22 ... wk2 v2 ... w1HN w2HN ... wkHN vHN

w1 w2 ... wHN z]T

sim(fc, fc′) is computed, then, through the following equation:

sim(fc, fc′) = 1− ||fc − fc′ ||
||fc||+||fc′ || (9)

where ||fc|| denotes the norm of vector fc.
Finally, in the fourth research question we investigate whether we can use

factorization of utility matrix Ũ (estimated through the learned models) instead
of the original utility matrix U and whether this can improve the performance
of matrix factorization approaches.

In this work we use feed-forward neural networks, since they are good at
fitting functions to the available data. They composed of a set of inputs r =
[r1, r2, ..., rk], a hidden layer h, consisting of HN hidden neurons and one output
ro, where ro is the total rating of each user and the inputs are the values of the k
criteria. Each input ri is weighted by a weight wij , directed to the j− th hidden
neuron and summed (along with a shifting bias vj) producing a quality, say, yj .
Then a sigmoid function g(yj) is activated mapping from yj to hj , which is the
output of hidden neuron j. The outputs of all hidden neurons are weighted by
the parameters wj and summed (along with a shifting bias z) to produce the
final output ro. Training refers to the estimation of weights and biases [14] for
every particular user based on his/her individual and overall ratings on already
evaluated items.

For comparison we also built linear user models through linear regression as
indicated in eq. 10. That is, for a user c the total rating ro of a movie can be
calculated by the given value to each criterion separately as follows:

rco =

k∑
i=1

wc
i ri + ε (10)

where wc
i is the weight of the criterion value ri for user c, k is the number of

the criteria and ε is the intercept of the linear predictor.

4 Experimental Results and Discussion

4.1 Dataset

In this work we used the Yahoo!Movies data (movies.yahoo.com) for experi-
mental investigation of the various research questions mentioned in the previous

212 M. Agathokleous and N. Tsapatsoulis

section. In this dataset users provide preference information on movies based on
four different criteria: acting, story, direction and visuals. They also apply a to-
tal rating, which summarizes their total evaluation of movie. All criteria ratings
were measured in a 13-fold qualitative scale, with A+ referring to the highest
grade and F representing the worst evaluation grade. For processing purposes,
the letters of evaluation were replaced with numbers, so as 1 corresponded to
the worst value F and 13 to the best value, A+. To be sure that the information
for each user is enough, to train a neural network, we took into account only the
users who graded more than thirty movies. The resulting experimental dataset
includes 239 different users and 976 movies. Even so, the sparsity of data is huge
(94.3%), since there are 976 different movies, which are not all rated by all users.
The main characteristics of this dataset are summarized in Table 1.

Table 1. Dataset Characteristics of Yahoo!Movies data

#users #movies #ratings #ratings per movie sparsity
(average)

239 976 13286 14 0.9430

4.2 Non-linear Modeling of User Function fc and the Number of
Hidden Neurons

In this experiment we investigated whether a neural network based user model
could predict the total rating of a movie, given the criteria ratings. We trained
neural networks by randomly dividing the dataset to training set (50% of the
movies each user evaluated), validation set (20% of movies each user evaluated)
and testing set (30% of movies each user evaluated). As inputs we consider the
values of the k criteria of each movie, which rated by each user and as output
the total rating given by that user. We started by using one hidden neuron and
gradually increased to four hidden neurons (equal to the number of criteria).
We compared user modeling via neural networks with the corresponding (to
the same user) least squares regression model. For the latter we used the same
training and testing sets we used in neural networks. Neural network models
were retrained ten times for each user and we kept the average performance of
each of them.

Table 2 shows the results of user modelling through Neural Networks and
Linear Regression. By winning model we mean the model which better fits a
particular user, i.e., estimates better the overall rating based on the individual
ones. For instance when we used four hidden neurons in 51,74% of the users
Neural Network models predicted better the overall rating while in the remaining
48,26% Linear Regression models performed better.

With respect to the number of winning models it appears that the advan-
tage of using neural networks (non-linear modelling) instead of simple linear
regression models is not high. This indicates that the majority of users combine

Learning User Models in Multi-criteria RS 213

Table 2. The results of modeling users w.r.t winning models as a function of the
number of hidden neurons (HN). The number of hidden neurons refers only to the
neural network.

Hidden Neurons
Modeling Method 1 2 3 4

Neural Network 0.5071 0.5155 0.5159 0.5174
Linear Regression 0.4929 0.4835 0.4841 0.4826

the individual ratings through a simple linear weighting scheme to conclude to
the overall rating. In an effort to investigate this further we compared neural
network and linear regression models in terms of recommendation effectiveness.
Table 3 shows this comparison in terms of Mean Absolute Error (MAE). In our
experiments a variation of MAE [10,13] is computed with the aid of Frobenius
norm as indicated in eq. 11.

MAE =
1

Nc

Nc∑
i=1

|U − Û | (11)

where Û is the estimation of utility matrix U while Nc is the total number of
users. Keep in mind that U includes only the overall ratings and not the ratings
of the individual criteria.

Table 3. Evaluation of user modeling process in terms of MAE as a function of the
number of hidden neurons (HN). The number of hidden neurons refers only to the
neural network, thus, the performance of linear regression independent of this number.

Hidden Neurons
Modeling Method 1 2 3 4

Neural Network 0.6511 0.6470 0.6449 0.6400
Linear Regression 0.6639

We observe, again, that the difference in recommendation effectiveness, in
terms of MAE, between the two modeling approaches is too small. Thus, we
confirm that user functions fc can effectively approximated via linear models
and the gain when using non-linear approximation is low.

Concerning the hidden neurons (note that the number of hidden neurons
refers only to the neural network and does not affect the performance of linear
regression) we observe, in both Tables 2 and 3, that by increasing their number
the performance of neural network based modelling improves slightly. This is in
accordance with our previous conclusion that user function fc is approximately
linear.

214 M. Agathokleous and N. Tsapatsoulis

4.3 Collaborative Filtering and Matrix Factorization Using the
User Function fc

In the next two experiments we used the non-linear modeling of user function fc
in the recommendation process. We examined several different techniques falling
under two main categories: collaborative filtering (see [15] for more details) and
matrix factorization (see also [3]). The aforementioned methods were applied on
two utility matrices. The first one contains the predicted total ratings of all users
(found with the aid of user models fc), while the second contains the original
total ratings that users gave. We show below that the performance is almost the
same despite the utility matrix used. This indicates, again, that user modelling
is effectively tackled through the functions fc and the predicted overall ratings
are only slightly different from the original values.

In order to measure the overall recommendation effectiveness we use the fol-
lowing accuracy metric:

A =
||U − Û ||
||U ||+||Û || (12)

where ||U || denotes the Frobenius norm of matrix U .
Tables 4 and 5 show the performance, in terms of the accuracy metric defined

above, for various Collaborative Filtering (CF) and Matrix Factorization (MF)
methods respectively. While our dataset is too sparse and matrix factorization
techniques perform better in such datasets, the clustering based methods (k-
Means, k-NN, Fixed Distance) show better performance than ALS and SVD.
This observation indicates that comparing user functions fc to assess the sim-
ilarity between users is quite effective since clustering of users was based on
this similarity. However, the overall best score is achieved by SGD showing that
matrix factorization properly adapted to very spare matrices outperforms CF
methods. One the other hand traditional MF methods, like SVD, are not effec-
tive in sparse data.

Table 4. Comparison of various CF techniques when the similarity between users is
estimated using the traditional approach (sim(c, c′)) and by comparing learned models
(sim(fc, fc′)). Shown values refer to accuracy A as indicated in eq. 12.

Method
Nearest Neighbor k-Means K-NN Fixed Distance

sim(c, c′) 0.8921 0.1606 0.1792 0.1864
sim(fc, fc′) 0.8930 0.1610 0.1796 0.1860

5 Conclusion

In this article we dealt with the problem of recommendation in multi-criteria
recommender systems (MC-RS), trying to investigate parameters which would
increase their effectiveness. We proposed modeling the way users combine indi-
vidual criteria to arrive to an overall rating, for an item, through neural networks

Learning User Models in Multi-criteria RS 215

Table 5. Comparison of various matrix factorization techniques applied on the original
utility matrix U and on the estimated through learned models utility matrix Ũ . Shown
values refer to accuracy A as indicated in eq. 12.

Method
SGD ALS SVD

Factorization of U 0.1244 0.6019 0.6035

Factorization of Ũ 0.1236 0.6015 0.6034

assuming that this decision making process is more complex than it appears to
be in the corresponding literature. We then investigated, experimentally, four
research questions related with this modeling.

In the first research question we assumed that users’ decision making pro-
cess is nonlinear, thus, neural network models would perform better than linear
regression. Experimental results showed that the difference in performance be-
tween the two methods is negligible, thus, linear modeling, which is less complex,
is sufficient for user modeling in MC-RS. In the second experiment we examined
whether the number of hidden neurons affects user modeling and recommen-
dation effectiveness. In accordance to the previous conclusion it appears that
user models are not so complex to require more than a single hidden neuron.
In the last two research questions we investigated (i) whether user similarity
can be estimated by comparing user models (instead of the traditional approach
which estimates user similarity based on the commonly evaluated items), and
(ii) whether in matrix factorization techniques the predicted utility matrix can
be used instead of the original one. Experimentation showed that in both cases
the answer is positive, showing that user modeling (despite the method adopted)
is a valuable tool for increasing the effectiveness in MC-RSs.

We also tested several recommendation techniques to assess their performance
in MC-RSs. We found that the Stochastic Gradient Descent (SGD) method out-
performs every other technique remaining insensitive to the sparseness of the
dataset. On the other hand, the clustering based methods proved to be surpris-
ingly robust and in most cases outperform their matrix factorization counter-
parts.

In the near future we plan to test the proposed method in more datasets
especially to ones having more criteria to confirm that the conclusions drawn
here are still valid. In addition, we will test the effectiveness of user modeling in
non-sparse datasets, such as in vote recommendation (see [3]).

References

1. Adomavicius, G., Kwon, Y.: New Recommendation Techniques for Multicriteria
Rating Systems. IEEE Intelligent Systems, 48–55 (2007)

2. Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: Ricci,
F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook,
pp. 217–250. Springer US (2011)

216 M. Agathokleous and N. Tsapatsoulis

3. Agathokleous, M., Tsapatsoulis, N.: Voting Advice Applications: Missing Value Es-
timation Using Matrix Factorization and Collaborative Filtering. In: Papadopou-
los, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) AIAI 2013. IFIP AICT,
vol. 412, pp. 20–29. Springer, Heidelberg (2013)

4. Bruine de Bruin, W., Parker, A., Fischhoff, B.: Individual Differences in Adult
Decision-Making Competence (A-DMC). Journal of Personality and Social Psy-
chology 92, 938–956 (2007)

5. Dodgson, J.S., Spackman, M., Pearman, A., Phillips, L.D.: Multi-criteria analysis:
a manual. Department for Communities and Local Government: London (2009)
ISBN 9781409810230

6. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis,
7th edn. Prentice Hall (2010)

7. Jannach, D., Gedikli, F., Karakaya, Z., Juwig, O.: Recommending hotels based on
multi-dimensional customer ratings. In: International Conference on Information
and Communication Technologies in Tourism, pp. 320–331. Springer (2012)

8. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An
Introduction. Cambridge University Press (2010)

9. Jullisson, E.A., Karlsson, N., Garling, T.: Weighing the past and the future in
decision making. European Journal of Cognitive Psychology 17(4), 561–575 (2005),
doi:10.1080/09541440440000159.

10. Herlocker, J.L., Konstan, J.A., Riedl, J.T.: An empirical Analysis of Design
Choices in Neighborhood-Based Collaborative Filtering Algorithms. Information
Retrieval 5(4), 287–310 (2002)

11. Reason, J.: Human error. Cambridge University Press, New York (1990)
12. Salakhutdinov, R., Mnih, A.: Probabilistic Matrix Factorization. In: Advances in

Neural Information Processing Systems (NIPS 2007), pp. 1257–1264. ACM Press
(2008)

13. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating
Word of mouth. In: ACM CHI 1995 Conference on Human Factors in Computing
Systems, pp. 210–217. ACM Press (1995)

14. Taner, M.T.: Neural networks and computation of neural network weights and
biases by the generalized delta rule and back-propagation of errors (1995)

15. Tsapatsoulis, N., Georgiou, O.: Investigating the Scalability of Algorithms, the
Role of Similarity Metric and the List of Suggested Items Construction Scheme in
Recommender Systems. International Journal on Artificial Intelligence Tools 21(4),
19–26 (2012)

16. West, R.F., Meserve, R.J., Stanovich, K.E.: Cognitive Sophistication Does Not At-
tenuate the Bias Blind Spot. Journal of Personality and Social Psychology (2012),
doi:10.1037/a0028857 (Advance online publication)

17. Zhou, T., Shan, H., Banerjee, A., Sapiro, G.: Kernelized Probabilistic Matrix Fac-
torization: Exploiting Graphs and Side Information. In: SIAM International Con-
ference on Data Mining, pp. 403–414. SIAM / Omnipress (2012)

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 217–226, 2014.
© Springer International Publishing Switzerland 2014

Fault Classification System for Computer Networks
Using Fuzzy Probabilistic Neural Network Classifier

(FPNNC)

Karwan Qader and Mo Adda

University of Portsmouth, School of Computing,
Buckingham Building, Lion Terrace, PO1 3HE Portsmouth, Great Britain

{karwan.qader,mo.adda}@port.ac.uk

Abstract. Over the last decade, the world has witnessed the rapid development
of networking applications of different kinds, and network domains have
become more and more advanced regarding with their level of heterogeneity,
complexity and the size. Some obstacles such as availability, flexibility and
insufficient scalability have affected the existing centralized network
management systems, as networks become more distributed. In this work a
Fuzzy Probabilistic Neural Network Classifier (FPNNC) is proposed,
comprising a hybrid fault classification algorithm based on Fuzzy Cluster Mean
(FCM) with Probabilistic Neural Network (PNN) to classify the detected fault
datasets. These results will assist network administrators with a highly effective
tool to classify faults that occur in computer network systems, enabling them to
take well-informed decisions pertaining to security, faults and performance.

Keywords: Clustering, classification, network faults, fault diagnosis, FCM,
PNN, FPNNC.

1 Introduction

With the rapid development of computer network technology, the scale and function
of networks is constantly increasing. The increasing importance and complexity of
networks led to the development of network fault management as a distinct field,
providing support for network administrators with quality services and ensuring that
networks work appropriately. Fault diagnosis is a central aspect of network fault
management. Since faults are unavoidable in communication systems, their quick
detection and isolation is essential for the robustness, reliability and accessibility of
the system. In large and complex communication networks, automating fault
diagnosis is critical. Because of many factors, including the volume of network
information, it is hard to solve network fault problems with traditional tools,
rendering intelligent diagnosis a critical method in the process of network fault
diagnosis [1].

In the process of network fault diagnosis, both cluster and classifier techniques
play a significant role by identifying types and locations of the faults. The use of

218 K. Qader and M. Adda

clustering in grouping objects is one of the most commonly used data mining
techniques. The resultant groups of objects can help a network administrator to take
accurate decisions to protect data communications over a network. The method based
on back propagation (BP) technique is most extensively used in intelligent diagnosis
method of artificial neural network [2]. Statistics show that 80% of neural network
models have adopted BP network or its variants. However, the neuron numbers of the
BPs imply layer are attained by experience, not from precise computing of theory, and
the BP neural network has several shortcomings, such as falling into local least point
easily and needing a long time for training [3].

Network PNN is an extensively used artificial neural network. Its structure is
simple and its training succinct. The advantage of PNN lies in finishing the work with
the linear study algorithm, which was previously, achieved using nonlinear study
algorithm.

This article is organized as follows. The following section reviews related studies,
followed by explanation of the proposed algorithm Fuzzy Probabilistic Neural
Network Classification (FPNNC), with discussion of the network characteristic
parameters and patterns. Section 4 describes the case studies and the source of the
datasets. The results are presented and discussed in section 5. Finally, the conclusion
of the paper is presented in section 6.

2 Related Work

In recent years, much research has been undertaken to explore network faults,
particularly fault diagnosis and management. However, a recent review study has
shown that although the trends of fault management and diagnosis have been
increasingly explored in recent research papers, most of them do not include
contributions about the fault diagnosis in computer network system. This paper
addresses this gap by extending prior work focused on faults classification to practical
application for computer network system.

A number of studies have been carried out and methods have been proposed in the
field of fault detection and classification for semiconductor manufacturing equipment
[4]. One such method put forward by [5], detects faulty processes of the
semiconductor manufacturing equipment using its data, recognizes anomalies and
classifies the root cause of the faults by reading the production equipment data, which
consists of all such information; albeit this can be quite useful, it is challenging to
study due to the complexity and volume of data [6]. Hence, this paper explores
Modular Neural Network modelling, whereby data from production equipment is
aggregated into associated subsystems, enabling Fault Detection and
Classification(FDC) using Dempster-Shafer (DS) method to consider the ambiguities
in fault detection. The method employs Radio Frequency (RF) power source module
probing, which is advantageous for detecting the chamber leak simulation and helps
in classifying the faults by evaluating the RF probe voltage signals. This paper was
successful in justifying the use of D-S theory by successful fault detection at
subsystem level, with no missed alarms [7] [8].

 Fault Classification System for Computer Networks Using FPNNC 219

Fault detection is one of the most important network management tasks, as
analysed by [9], to propose a statistical method based on Wiener filter to capture the
abnormal changes in the behaviour of the MIB variables. The algorithm of the study
took data from two different scenarios and four different case studies. Such an
analysis provided the manager node of the network high level of information instead
of huge data volume [9]. The study in [10] of Sensor Fusion and Sensor Fault
Detection with Fuzzy Clustering presented an effective approach for multi-sensor
fusion and fault diagnosis, which makes use of FCM algorithms for separating the
signals. The fusion engine in turn generates a fused signal based on the concept of
centre of gravity (COG) de-fuzzification method. In this approach, the sensor fault
detector is designed from the total fused signal residual and the output of the sensors.
The results of the simulation showed a clear improvement in the fault detection
accuracy [10]. A two-phase approach for measuring the performance of the cluster
based internet services was presented by [11]. The first phase of the methodology
employs the fault-injection approach for measuring the impacts of faults on the
network performance while the second phase makes use of analytical models to assess
the network performance by combining the measurements of first phase and the fault
loads [12]. Such a two-phased approach lets the evaluator study how the servers
respond to various design-related decisions, rate of faults and other factors. Four
versions of PRESS web servers were tested against five fault classes to measure the
performance of the servers in different scenarios [11] [13].

The area of smart networks has been the subject of good amount of research and
review recently because of the concept of computational intelligence, which is
incorporated into smart networks [14]. Because of computational intelligence, smart
networks are capable of detecting their faults and classifying them [15]. Keeping in
view this capability of smart networks, [16] presented two techniques for fault
detection and classification in power transmission lines in smart networks. The
techniques proposed are based on Quarter Sphere Support Vector Machine (QSSVM).
The first approach makes use of Temporal Attribute QSSVM, utilizing the temporal,
and attributes correlations of the measurements of the transmission lines for detection
of faults during the stage of transient. The second approach makes use of Attribute
QSSVM (A-QSSVM) and takes into account attribute correlations for the automatic
fault detections and classifications [17], the results of these two approaches displayed
accuracy in fault detection and classification (as high as 99%), which amounted to a
significant reduction in terms of computational complexity compared to traditional
techniques making use of multi class SVM for fault detection and classification [18].
Additionally, as compared to the traditional methods, these techniques are still quite
unsupervised and can be available for implementation on the existing fault-
monitoring infrastructure for limited online supervision in power systems of smart
networks [16].

An ensemble Fault Diagnosis Based on Fuzzy C-means Algorithm of the Optimal
Number of Clusters and Probabilistic Neural Network (FCM-ONC-PNN) represented
by [19] portrayed the significance of fault diagnosis as a process being followed for
maintaining quality of the products in industrial systems and ensuring various aspects

220 K. Qader and M. Adda

like reliability, safety and efficiency from the point of view of operations in many
plants.

Finally Fuzzy C-Means Clustering and Feed Forward Neural Network was used by
[20] to find the fault-proneness of a software module, focusing on the benefits of the
early detection of fault prone software components and how hybrid approach based
on fuzzy C-means clustering based approach and feed-forward neural network based
approach can be used to find faults. The proposed method of the current study rely on
FCM and PNN. The main reasons behind selecting these two techniques refers to
their robust factors. Fuzzy Cluster Means (FCM) is the most suitable algorithm
among clustering techniques due to its robust characteristics to deal with network
fault diagnosis problems, such as handling unclear boundaries of clusters, overcoming
high dimensionality problems and its flexibility, especially for traffic analysis, which
is an iterative optimal algorithm [21][22]. Likewise, PNN maintains excellent
characteristics such as high precision of the non-linear algorithm. The corresponding
weights values of PNN are the distribution of the model sample, and also the network
does not need training, therefore it can meet the requirements of real-time processing
[2]. Moreover, its robust characteristic to sample noises, fast speed of its training data
and the accuracy rate of the classification, enhance achieved results to have a higher
quality [23].

3 Proposed Network Faults Classification Algorithm (FPNNC)

The Fuzzy Neural Probabilistic Neural Network Classification (FPNNC) is proposed
to classify the faults that occur in the computer network system. The developed
algorithm comprises the combination of two techniques, Fuzzy Clustering Means
(FCM) as unsupervised learning technique and Probabilistic Neural Network (PNN),
as shown in fig. 1.

Fig. 1. Schematic overview of the proposed approach (FPNNC)

 Fault Classification System for Computer Networks Using FPNNC 221

FCM consists mainly of four phases used to generate clustered feature vectors from
the data points of each specific fault; the featured vectors are then forwarded to PNN
in order to classify the fault types.

3.1 FCM

Fuzzy C-means (FCM) is one of the most common unsupervised clustering methods
that was originally proposed by Bezdek in 1981. As with other clustering techniques,
FCM primarily relies on measuring the distance between data points and it uses
Euclidean distance to measure similarity between objects. The distance measure helps
the algorithm to make decisions to create groups for each data point depending on the
similarity and dissimilarity between points. Similar data points are kept in a group
known as a cluster. Similarity is assayed with values between 0.0 and 1.0; the value
0.0 indicates highly dissimilar, while 1.0 indicates the highest similarity between
objects. As illustrated in figure 1, the system takes the data points as input then
generate the clusters based on four main phases.

The Euclidean Distance Function, which is known as objective function J_m is
used in FCM to get fuzzy C partition ܣ ൌ ൛ܣଵ, ,ଷܣ,ଶܣ … , ܺ ௡ൟ for given datasetܣ ൌ ሼ ଵܺ, ܺଶ, ܺଷ, … ܺ௡ሽ and number of clusters denoted by “c”. The main objective in
FCM is to minimize J_m depicted in the following equation in order to get the
optimal clusters. As it is an iterative method, it has to achieve better minimization in
each iteration.

2

1 1

||||)():,(ij

c

i

n

j

m
ijm VXXVJ −=

= =
μμ (1)

Where ijμ represents the membership function of data point jX in the ith cluster.

m is the fuzzifier which acts as the fuzziness controller value; generally m is any real

number that is greater 1. iV is the centre of ith cluster, whereas ||.|| denotes the

Euclidean distance.
The equation (1) is used to compute the value of ܬ௠ (U, V) and determine the

criterion function based on a threshold. Firstly, the membership function and cluster
centroids are randomly initialised with some constraints consideration:

1
1

=
=

c

i
ijμ (2)

In order to optimise the results in each iteration through an iterative process, the
fuzzy membership and fuzzy cluster centroids are updated using the equations shown
below:

m
ijj

n

j

m
i XijV)/())((

1

μμ
=

= (3)

1)1/(122

1

])||||/||(||[−−

=
−−=  m

kji

c

k
jij VXVXμ (4)

222 K. Qader and M. Adda

3.2 PNN

Probabilistic Neural Network (PNN), which was introduced by D.F. Specht in the
early 1990s, is one of the common feed-forward neural networks used in classification
problems [24]. The general architecture of PNN is organized based on multi-layered
feed-forward network into four different layers (input layer, hidden layer, pattern
layer or summation layer and output layer), as shown in fig. 2.

Fig. 2. Diagram of PNN [25]

The hidden and summation layers, known as the radial basis layer, refers to all
equations applied to the input neurons, which calculate the distance from input
vectors to training input vectors. Competitive (summation) layer is considered to be
another main layer that compares the weighted vectors and select the maximum one to
predict the target category. The number of neurons in summation layer is equal to the
number of train set neuron.

The Euclidean Distance function used to calculate the distance and to indicate how
close the input is to a training sets in the pattern layer as shown below: ܦ ௝ ൌ ቚห ௜ܹ௝ െ ܺหቚ . ܾ (5)

Where b represent to Radial Basis Function (RBF), which can be used to adjust the
susceptibility of the radial basis neurons by having different values and set to: ܾ ൌ ሾെ logሺ0.5ሻሿଵ ଶൗܵ݀ܽ݁ݎ݌ (6)

Spread is the extended coefficient of RBF. Moreover, the Radial Basis Function
(RBF) as shown in equation (7), is applied to calculate the probability of each
inputted neuron (X) by comparing the input vectors with weight neuron vectors ௜ܹ௝ .

௝ܴ ൌ ݏܾܽ݀ܽݎ ൫ܦ௝൯ (7)

Out of several candidate functions of RBF, a Gaussian function has been selected
for the proposed work.

 Fault Classification System for Computer Networks Using FPNNC 223

௝ܴ ൌ ݁ି஽ೕమ (8)

Thus, the output relies on the distance between ௜ܹ௝ and X; it inverts with the
distance, thus when the distance decreases it increases to reach its maximum while ௜ܹ௝ ൌ ܺ.
4 The Characteristic of Network Faults

SNMP protocols use Management Information Base (MIB) to obtain knowledge
about the status information of computers or devices in network in order to manage
objects in the right manner. MIB includes any statistical and status information about
each node in the system. It has information about counters at each node interface and
uses them to indicate the number of packets or octets that have been sent, dropped,
received and delivered. Each device has one or more interface.

The total functions of SNMP rely on MIB, which follows the ISO standards and is
defined by RFC 1155, which locates the network devices. In 10 groups of MIB, 10
variables out of 178 MIB variables were selected from interface and IP groups. The
variables in these two groups are more likely to have more sensitivity with traffic.
Table 1 shows all selected parameters in IF and IP group that enable the system to
diagnose faults easily.

Table 1. Characteristic Parameters of Network

No. Network Parameter
P1 ifInNUcastPkts22
P2 ifInOctets22
P3 ifInUcastPkts22
P4 ifOutNUcastPkts22
P5 ifOutOctets22
P6 ifOutUcastPkts22
P7 ipForwDatagrams22
P8 ipInDeliver22
P9 ipInReceive22

P10 ipOutRequests22

5 Case Study and Results Discussion

The proposed work complements and extends past research work detecting,
classifying and collecting network faults. The datasets were captured in two different
(heavy and light) scenarios using MIB variables from IP and IF groups for four
different types of traffic. The main aims to collect data in two different scenarios is to
check the capability of the system in terms of whether it can detect the traffic faults in
different environment or not. The two scenarios were created by changing the size of
packets and bandwidth. ifInUcastPkts, ifInNUcastPkts, ifOutUcastPkts and

224 K. Qader and M. Adda

ifOutNUcastPkts are more affected by traffics than the other selected variables. In
addition, the experiment tested the router as the first gate to attack the server as the
main target. The router differs from the server in that its variables are limited to
network layer group (IP group). In contrast, in the case of a server, one can read most
of the MIB variables, starting from a low-level group such as the interface group, to
an application layer group.

The current model is applied on four different types of network traffic, which
includes server crash or server link failure, broadcast storm, babbling node, and
normal traffic. Matlab was used to give different outputs and results based on
FCM and PNN for the available datasets. After all data points were inputted to the
system, FCM generated clusters of featured vectors for each dataset. The empirical
results show all available clusters when there is a failure in the link to server or server
crash.

Consequently, PNN creates a model to classify these vectors properly, which they
attain by FCM. First, all target classes' indices are converted to vectors, in order to
compare them with the input vectors. After consecutive mathematical calculations,
the system starts testing the network on the design input vectors. This make the
network simulation and converts its vector outputs to indices.

The proposed system was tested and applied on another three different types of
network traffic datasets. The results obtained from the preliminary simulation of the
proposed work shows different output patterns for each specific faults.

Overall, these results indicate that the proposed algorithm FPNNC is able to
classify all inputted fault datasets properly and provide distinct output patterns for
each specific fault traffic. Consequently, it gives a clear vision to network
administrator to realize about the location and the type of faults.

6 Conclusion

The key aspect of network fault management is the process of a fault classification, by
which it concludes the details of a failure from a set of tested failure indications. This
paper has given an account of and the reasons for the widespread use of FCM and
PNN in classification problems. The main purpose of the current study was to use
new proposed technique (FPNNC) to classify the faults properly in a computer
network system. The experiment results show that FPNNC is able to classify the
faults in the real-time system and categorize them into different patterns outputs based
on the types of fault that occur. Consequently, these results provide a level of security
and performance for the network system, helping network administrators to have a
clear vision for the problems based on visualization of classified faults and to take
decisions faster related to security, performance and faults.

References

1. Fenton, W.G., McGinnity, T.M., Maguire, L.P.: Fault diagnosis of electronic systems
using intelligent techniques: a review. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 31(3), 269–281 (2001)

 Fault Classification System for Computer Networks Using FPNNC 225

2. Gao, Y., Zhou, X.: The design of network fault diagnosis system based on PNN. Paper
Presented in 2nd International Conference at the Future Computer and Communication
(ICFCC) (2010)

3. Zheng, Q., Qian, Y., Yao, M.: A network event correlation algorithm based on fault
filtration. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 864–
869. Springer, Heidelberg (2006)

4. Barakat, M., Druaux, F., Lefebvre, D., Khalil, M., Mustapha, O.: Self-adaptive growing
neural network classifier for faults detection and diagnosis. Neurocomputing 74(18),
3865–3876 (2011)

5. Hong, S.J., Lim, W.Y., Cheong, T., May, G.S.: Fault Detection and Classification in
Plasma Etch Equipment for Semiconductor Manufacturing-Diagnostics. IEEE
Transactions on Semiconductor Manufacturing 25(1), 83–93 (2012)

6. Rengaswamy, R., Venkatasubramanian, V.: A fast training neural network and its updation
for incipient fault detection and diagnosis. Computers & Chemical Engineering 24(2),
431–437 (2000)

7. Chao, C.S., Liu, A.C.: An alarm management framework for automated network fault
identification. Computer Communications 27(13), 1341–1353 (2004)

8. Hong, S.J., Lim, W.Y., Cheong, T., May, G.S.: Fault Detection and Classification in
Plasma Etch Equipment for Semiconductor Manufacturing-Diagnostics. IEEE
Transactions on Semiconductor Manufacturing 25(1), 83–93 (2012)

9. Al-Kasassbeh, M., Adda, M.: Network fault detection with Wiener filter-based agent.
Journal of Network and Computer Applications 32(4), 824–833 (2009)

10. ElMadbouly, E., Abdalla, A., ElBanby, G.M.: Sensor fusion and sensor fault detection
with fuzzy clustering. In: International Conference Presented at the Computer Engineering
and Systems (ICCES) (2010)

11. Nagaraja, K., Li, X., Bianchini, R., Martin, R.P., Nguyen, T.D.: Using Fault Injection and
Modeling to Evaluate the Performability of Cluster-Based Services. Paper presented at the
USENIX Symposium on Internet Technologies and Systems (2003)

12. Song, Y.-H., Johns, A., Xuan, Q., Liu, J.: Genetic algorithm based neural networks applied
to fault classification for EHV transmission lines with a UPFC, pp. 278–281 (1997)

13. Zhang, B., He, Z., Qian, Q.: Application of wavelet entropy and adaptive nerve-fuzzy
inference to fault classification. In: International Conference of Power System Technology,
PowerCon, pp. 1–6. IEEE (2006)

14. Youssef, O.A.: An optimised fault classification technique based on Support-Vector-
Machines. Paper presented at the Power Systems Conference and Exposition, PSCE 2009.
IEEE/PES (2009)

15. Bouloutas, A.T., Calo, S., Finkel, A.: Alarm correlation and fault identification in
communication networks. IEEE Transactions on Communications 42(234), 523–533
(1994)

16. Shahid, N., Aleem, S., Naqvi, I.H., Zaffar, N.: Support Vector Machine based fault
detection & classification in smart grids. Paper presented at the Globecom Workshops (GC
Wkshps). IEEE (2012)

17. Mahamedi, B.: A novel setting-free method for fault classification and faulty phase
selection by using a pilot scheme. In: 2nd International Conference of the Electric Power
and Energy Conversion Systems (EPECS) (2011)

18. Chutani, S., Decotignie, J.D.: A perspective on fault diagnosis of industrial communication
networks. In: Proceedings of the IEEE International Workshop of the Factory
Communication Systems, WFCS 1995 (1995)

226 K. Qader and M. Adda

19. Yang, Q., Guo, J., Zhang, D., Liu, C.: Fault Diagnosis Based on Fuzzy C-means Algorithm
of the Optimal Number of Clusters and Probabilistic Neural Network. International Journal
of Intelligent Engineering & Systems 4(2), 51–59 (2011)

20. Dashora, K., Kriti, P., Dalal, P., Panwar, D.A.: Software Fault Prediction Using Fuzzy C-
Means Clustering and Feed Forward Neural Network. International Journal of Digital
Application & Contemporary Research 2(1) (2013)

21. Elbanby, G., El Madbouly, E., Abdalla, A.: Fuzzy principal component analysis for sensor
fusion. In: 11th IEEE International Conference in Information Science, Signal Processing
and their Applications (ISSPA), pp. 442–447. IEEE (2012)

22. Qader, K., Adda, M.: Network Faults Classification Using FCM. Paper Presented at the
17th International Conference on “Distributed Computer and Communication Networks
(DCCN-2013):” Control, Computation, Communication, Moscow (2013)

23. Wu, D., Yang, Q., Tian, F., Zhang, D.X.: Fault Diagnosis Based on K-Means and PNN. In:
3rd International Conference on Intelligent Networks and Intelligent Systems (ICINIS), pp.
173–176. IEEE (2010)

24. Specht, D.F.: Probabilistic neural networks. Neural Networks 3(1), 109–118 (1990)
25. Shahsavarani, S.: Probabilistic Neural Network (2012),

http://cse-wiki.unl.edu/wiki/index.php/
Probabilistic_Neural_Network#Architecture

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 227–236, 2014.
© Springer International Publishing Switzerland 2014

Estimation of the Electric Field across Medium Voltage
Surge Arresters Using Artificial Neural Networks

Lambros Ekonomou1, Christos A. Christodoulou2, and Valeri Mladenov3

1 City University London, School of Engineering and Mathematical Sciences,
Department of Electrical and Electronic Engineering, London EC1V 0HB, United Kingdom
2 National Technical University of Athens, School of Electrical and Computer Engineering,

High Voltage Laboratory, 9 Iroon Politechniou St., Zografou Campus, 157 80 Athens, Greece
3 Department of Theoretical Electrical Engineering,

Technical University of Sofia, Sofia 1000, “Kliment Ohridski” blvd. 8, Bulgaria
lambros.ekonomou.1@city.ac.uk, christ_fth@yahoo.gr,

valerim@tu-sofia.bg

Abstract. Artificial neural networks (ANNs) are addressed in order to estimate
the electric field across medium voltage surge arresters, information which is
very useful for diagnostic tests and design procedures. Actual input and output
data collected from hundreds of measurements carried out in the High Voltage
Laboratory of the National Technical University of Athens (NTUA) are used in
the training, validation and testing process. The developed ANN method can be
used by laboratories and manufacturing/retail companies dealing with medium
voltage surge arresters which either face a lack of suitable measuring equipment
or want to compare/verify their own measurements.

Keywords: Artificial neural networks, electric field, measurements, surge
arresters.

1 Introduction

Nowadays artificial neural networks (ANNs) are being applied to an increasing
number of real-world problems of considerable complexity due to their computational
speed, their ability to handle complex non-linear functions, robustness and great
efficiency, even in cases where full information for the studied problem is absent.
Many interesting ANN applications have been reported also in power system areas
[1], where they are widely used in short term load forecasting, in fault classification
and fault location in transmission lines [2-5], in voltage stability analysis [6], in power
system economic dispatch solution problems and in power system stabilizer design
[1]. Furthermore the ANNs present to have applications in the solution of the power
flow problem [7], to the effective distance protection of the transmission lines [8, 9],
to the prediction of high voltage insulators’ flashover [10] and to the calculation of
insulators’ surface contamination under various meteorological conditions [11].
Finally studies, which are using ANNs, have been presented for predicting the
magnetic performance of strip-wound magnetic cores [12], for the evaluation of

228 L. Ekonomou, C.A. Christodoulou, and V. Mladenov

lightning overvoltages in distributions lines [13] and for the lightning protection of
high voltage transmission lines [14].

In this paper artificial neural networks (ANNs) are addressed in order to estimate
the electric field across medium voltage surge arresters, information which is very
useful for diagnostic tests and design procedures. Actual electric field measurements
carried out in the High Voltage Laboratory of the National Technical University of
Athens (NTUA) on a medium voltage metal oxide gapless polymeric (silicon rubber)
housing surge arrester, are used in order to train, validate and test the proposed ANNs.
Several structures, learning algorithms and transfer functions for an ANN multi-layer
perceptron network are tested in order to produce the ANN models with the best
generalising ability. The developed ANN method can be used by laboratories, which
are facing either a lack of suitable measuring equipment or want to compare the
results with their own measurements.

2 Surge Arresters

Surge arresters are semiconductor devices, which are used in electrical power systems
in order to protect them against lightning and switching overvoltages. Arresters are
installed between phase and earth and act as bypath for the overvoltage impulse, since
they are designed to be insulators for nominal operating voltage, conducting at most
few milliamperes of current and good conductors, when the voltage of the line
exceeds design specifications to pass the energy of the overvoltage wave to the
ground. Even though a great number of arresters, which are gapped arresters with
resistors, made of SiC are still in use, the arresters installed today are almost all metal
oxide arresters without gaps, which means arresters with resistors made of metal
oxide [15]. The distinctive feature of a metal oxide arrester is its extremely nonlinear
V–I characteristic, rendering unnecessary the disconnection of the resistors from the
line through serial spark gaps, as it is found in the arresters with SiC resistors.
Additionally, metal oxide arresters are inherently faster-acting than the gapped type,
since there is no time delay due to series air gaps extinguishing the current [16].

The basic parts of a metal oxide surge arresters are the cylindrical metal-oxide
resistor blocks, the insulating housing and the electrodes (Fig.1). Between the varistor
column and the polymeric housing there is a glassfibre structure, that the electric field
around a surge arrester is influenced by the geometry of the arrester and the electrical
characteristics of the participating materials [17]. Electric field modelling helps the
designers to know and consider the important factors affecting the maximum field
intensity in the arrester, avoiding too high potential gradients inside and outside the
arrester, especially during the transient conditions, a phenomenon which can cause
damages to the arrester insulating system that brings it to a premature failure [18].
Hence, the study and the knowledge of the electric field around an arrester can be
useful for diagnostic tests [19] and design procedures. Many researches have
computed the electric field around a metal oxide arrester using appropriate simulation
toolboxes (PC Opera, Cosmol, etc.), examining different cases, such as surface
pollution, broken sheds, etc. [17, 18, 20-22].

 Estimation of the Electric Field across Medium Voltage Surge Arresters Using ANN 229

1

1

2
3

4

Fig. 1. MO surge arresters cut. (1. Electrodes, 2. Fiberglass, 3. Nonlinear resistor, 4. External
insulator).

3 Measurement System

The test arrangement for the measurement of the electric field is shown in Fig. 2.
Through a 230V/0…230V variac, a 220V/100kV transformer was fed. The voltage
was measured in the primary of the transformer using a digital voltmeter and the
applying on the arrester voltages were: 12kV (nominal value), 13.2kV (MCOV) and
16.5kV (rated voltage), which correspond to typical values of the Hellenic distribution
network.

In order to measure the electric field around the surge arrester two appropriate
calibrated field meters Narda and PMM/8053 were used. The sensors for each
instrument, EFA 300 and EHP-50C correspondingly, were placed on an appropriate
tripod and were connected via a fiber optic (Fig. 2). Sensors were moved in different
directions on the horizontal plane, in various distances along five different axes
(Fig. 3) and in various heights. The user of the field meter was at least 10m away
from the sensor, in order to avoid interferences to the electric field.

V

220V /100kV

23
0

V
50

H
z

Autotransformer Transformer

U1 U2

sensor

Fiber optic Field meter

Surge arrester

Fig. 2. Experimental set-up used for the measurement of the electric field distribution

230 L. Ekonomou, C.A. Christodoulou, and V. Mladenov

45o

h

d

axis 1

axis 2

axis 3

axis 4

axis 5

d

d

d

d

surge
arrester

Fig. 3. Experimental set-up used for the measurement of the electric field distribution

4 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) also known as neurocomputers, parallel distributed
processors or connectionist models are devices that process information. The main
purpose of ANNs is to improve the capability of computers to make decisions in a
way similar to the human brain and in which standard computers are unsuitable [23].
ANNs typically consist of a large number of processing elements called neurons or
nodes bonded with weighted connections. A single neuron by itself usually cannot
predict functions or manage to process different types of information. This is because
an ANN gains its power from its massively parallel structure and interconnected
weights. There are plenty of ANN architectures that have been proposed, but the most
popular and effective is the architecture called feedforward multilayer network.
Feedforward is called because all the connections either go from the input layer to the
output layer, from the input layer to the hidden layer, or from the hidden layer to the
output layer [24]. An example of a feedforward multilayer network is shown in Fig. 4
and consists of three main layers. The output layer corresponds to the final output of
the neural network. The external inputs are presented to the network through the input
neurons. Finally there are the hidden layers, where the outputs of a hidden layer are
the inputs to the following layer.

 Estimation of the Electric Field across Medium Voltage Surge Arresters Using ANN 231

 Σ

Σ

f

Σ

f

f

Σ

Σ

f

Σ

f

f

Σ

Σ

f

Σ

f

f

Input neurons
of source nodes

First hidden
layer

Second hidden
layer

Layer of
output

neurons
Fig. 4. An example of a feedforward multilayer network

ANNs have the ability of learning by adaptively adjusting their weights using a

training algorithm. Ideally, the learning process will adjust the weights of the ANN
such that when a given input is presented to the network, the desired output is
produced. The learning process starts by presenting the inputs to the network. The set
of all the training data is called the training set. The weights are adjusted and the
network is expected to produce a particular output for each input. The sum of all
weighted inputs represents the neuron transfer function. The set of the desired outputs
is called the target set. Each presentation of the training set to the network is called an
iteration or epoch.

One of the most popular and powerful learning algorithms used to train
feedforward multilayer networks is the backpropagation [25]. The algorithm has two
phases, the forward phase and the backward phase. In the forward phase, the input
data are presented to the network and the outputs of the hidden layer are given as
inputs to the proceeding layer. This process is continued until the final output is
computed. In the backward phase, the error signal is calculated and propagated
backwards to adjust the weights such that the sum of the squared error is minimized.
The mathematical complexity and the time requirements of the algorithm increase by
increasing the number of neurons in the hidden layers. Thus, each ANN is determined
according to its architecture, the transfer function and the learning algorithm [26].

5 Design, Training, Validation and Testing of the Proposed
ANN

The goal of this work is to develop an ANN capable to accurately estimate the electric
field across medium voltage surge arresters. A feedforward multilayer network and
the backpropagation learning algorithm have been selected for this purpose. Five
parameters that play an important role in the estimation of the electric field across
medium voltage surge arresters are considered as the inputs to the neural network,
while as output the value of the electric field is considered. These data, which are

232 L. Ekonomou, C.A. Christodoulou, and V. Mladenov

presented in Table 1, constitute actual data recorded during measurements carried out
in the High Voltage Laboratory of the National Technical University of Athens, using
the measurement system presented in Section 3.

Table 1. Artificial neural network architectures

Input Variables Output Variables

- type of insulation (T) - peak value of the electric field (E)

- applied voltage (U)

- axes (A)

- distance from surge arrester (D)

- height of sensor (H)

More specifically several hundreds of measurements have been performed using
the two different field meters. This extensive number of measurements is due to the
many parameters. The input parameters were the: three different types of arresters’
insulation (T) (polymeric, porcelain, silicon), three different applying voltages (U)
(nominal, MCOV and rated), five different axes (A), six distances (D) from the surge
arrester (0.5m, 0.8m, 1.1m, 1.4m, 1.7m, 2m) and three different heights of sensors (H)
(13cm, 21cm, 29cm). The output parameter of the ANN was the peak value of the
electric field (E).

The structure of the developed network, i.e., the number of hidden layers and the
number of nodes in each hidden layer, was decided by trying several varied
combinations in order to select the structure with the best generalizing ability amongst
the all tried combinations, considering that one hidden layer is adequate to distinguish
input data that are linearly separable, whereas extra layers can accomplish nonlinear
separations [27, 28]. This approach was followed in this work, since the selection of
an optimal number of hidden layers and nodes for a feedforward network is still an
open issue, although several papers have been published in these areas.

As it is mentioned earlier each ANN is also determined according to the transfer
function and the learning algorithm that it uses. In this work three different transfer
functions (the hyperbolic tangent sigmoid, the logarithmic sigmoid and the hard limit)
and three different training functions of the backpropagation learning algorithm (the
Gradient Descent, the Gradient Descent Momentum with an Adaptive Learning Rate
and the Levenberg-Marquardt), were examined in order to be selected this one, that
contributes to the best ANN’s generalizing ability.

The proposed ANN was trained using the MATLAB Neural Network Toolbox [29].
1620 of each input and output data, were used to train and validate the artificial neural
network. These data refer to measurements conducted with both field meters, in every
possible combination of: a) applying voltage (3 different voltages), b) axis (5 different
axes), c) distance from the surge arrester (6 different distances) and d) height of the
sensor (3 different heights). In each training iteration, 20% of random data (324 data
sets) were removed from the training set and a validation error was calculated for these
data. The training process was repeated until a root mean square error between the
actual output (value of electric field) and the desired output reach the goal of 0.5% or a

 Estimation of the Electric Field across Medium Voltage Surge Arresters Using ANN 233

maximum number of epochs (it was set to 10,000), is accomplished. Finally, the
estimated values of the electric field were checked with the values obtained from
situations encountered in the training, i.e., the 1620 values, and others which have not
been encountered (additional sets of input and output data, except the 1620, were used).

In order to be found the best architecture for the network, a feedforward multilayer
network has been used, each one of the three different training functions and transfer
functions were tried and sets of scenarios were taken with inner change of hidden
layers (1, 2 or 3) and number of neurons in each hidden layer (2 to 30).

After extensive simulations with all possible combinations of the 3 training
functions, the 3 transfer functions, the 1 to 3 hidden layers and the 2 to 30 neurons in
each hidden layer it was found that the ANN with 2 hidden layers, with 16 and 18
neurons in each one of them, with the Levenberg-Marquardt training function and the
logarithmic sigmoid transfer function has presented the best generalizing ability, had
a compact structure, a fast training process and consumed lower memory than all the
other tried combinations. The mean square error was minimized to the final value of
0.005 within 9,249.

6 Results

The trained ANN for the estimation of the electric field across medium voltage surge
arresters has been applied to ten different case studies (different insulation type,
applying voltage, axes, distances from the surge arrester and heights of sensors),
which were not part in the training, validation and testing processes and are shown in
Table 2. The produced ANN results, which are presented in Table 2, have been
compared to actual values of electric field (which are also presented in Table 2),
measured during experiments performed in the NTUA’s High Voltage Laboratory for
exactly the same parameters.

Table 2. Measured electric field versus artificial neural network’s results

No.
Varying parameters

E
(V/m)

T
U

(kV)
A

D
(m)

H
(cm)

Measured ANN

1 polym 12 1 0.8 21 1671.7 1736.8

2 polym 13.2 2 1.4 29 528.1 514.5

3 polym 16.5 3 2 29 225.6 277.1

4 porcel 12 2 1.1 13 907.5 927.3

5 porcel 12 3 1.7 21 327.1 298.1

6 porcel 13.2 4 0.5 29 4250.3 4499.4

7 porcel 16.5 5 2 21 218.8 198.3

8 silicon 12 1 1.7 21 335.0 304.8

9 silicon 13.2 3 0.8 13 1675.3 1602.7

10 silicon 16.5 5 1.4 13 543.2 524.6

234 L. Ekonomou, C.A. Christodoulou, and V. Mladenov

The results obtained using the proposed ANN are very close to the actual measured
ones, something which clearly implies that the proposed ANN method is well
working and has an acceptable accuracy, since the measured maximum electric and
magnetic field strengths are close enough to these calculated by the designed ANN
model. Fig. 5 presents the percentage error between actual measured and ANN’s
results.

Fig. 5. Relative error for the E between measured and estimated, using the ANN, values

7 Conclusions

The paper describes in detail an artificial neural network for the estimation of the
electric field across medium voltage surge arresters. A feed-forward artificial neural
network was used and several different learning algorithms, transfer functions and
structures were considered in an effort to be selected the ANN model which presented
the best generalizing ability, had a compact structure, a fast training process,
consumed lower memory and represented the problem accurately among the all tried
combinations. The results of the developed ANN model proved its accuracy, since
they are very close to the actual measured ones, something which clearly implies that
the proposed ANN method is well working. The proposed ANN method, can be used
by laboratories and manufacturing/retail companies dealing with medium voltage
surge arresters which either face a lack of suitable measuring equipment or want to
compare/verify their own measurements.

 Estimation of the Electric Field across Medium Voltage Surge Arresters Using ANN 235

References

1. Aggarwal, R., Song, Y.: Artificial neural networks in power systems. III Examples of
applications in power systems. Power Engin. Journal 12(6), 279–287 (1998)

2. Mahanty, R.N., Gupta, P.B.D.: Application of RBF neural network to fault classification
and location in transmission lines. IEE Proc-Gen Tran. Distr. 151(2), 201–212 (2004)

3. Mazon, A.J., Zamora, I., Gracia, J., Sagastabeutia, K.J., Saenz, J.R.: Selecting ANN
structures to find transmission faults. IEEE Computer Appl. in Power 14(3), 44–48 (2001)

4. Vasilic, S., Kezunovic, M.: An improved neural network algorithm for classifying the
transmission line faults. Power Engin. Society Winter Meeting 2, 918–923 (2001)

5. Gardoso, G., Rolim, J.G., Zurn, H.H.: Application of neural-network modules to electric
power system fault section estimation. IEEE Trans. on PWRD 19(3), 1034–1041 (2004)

6. Schmidt, H.P.: Application of artificial neural networks to the dynamic analysis of the
voltage stability problem. IEE Proc-Gen Tran. Distr. 144(6), 371–376 (1997)

7. Paucar, V.L., Rider, M.J.: Artificial neural networks for solving the power flow problem in
electric power systems. Electric Power Systems Research 62, 139–144 (2002)

8. Dash, P.K., Pradhan, A.K., Panda, G.: Application of minimal radial basis function neural
network to distance protection. IEEE Trans. on PWRD. 16(1), 68–74 (2001)

9. Coury, D.V., Jorge, D.C.: Artificial neural network approach to distance protection of
transmission lines. IEEE Trans. on PWRD 13(1), 102–108 (1998)

10. Cline, P., Lannes, W., Richards, G.: Use of pollution monitors with a neural network to
predict insulator flashover. Electric Power Systems Research 42, 27–33 (1997)

11. Ahmad, A.S., Ghosh, P.S., Aljunid, S.A.K., Said, H.A.I., Hussain, H.: Artificial neural
network for contamination severity assessment of high voltage insulators under various
meteorological conditions. In: AUPEC, Perth (2001)

12. Miti, G.K., Moses, A.J.: Neural network-based software tool for predicting magnetic
performance of strip-wound magnetic cores at medium to high frequency. IEE Proc-Sci.
Meas. Technol. 151(3), 181–187 (2004)

13. Martinez, J.A., Gonzalez-Molina, F.: Statistical evaluation of lightning overvoltages on
overhead distribution lines using neural networks. Power Engin. Society Winter Meeting 3,
1133–1138 (2001)

14. Sidhu, T.S., Singh, H., Sachdev, M.S.: Design, implementation and testing of an artificial
neural network based fault direction discrimination for protecting transmission lines. IEEE
Trans. on PWRD 10(2), 697–706 (1995)

15. Hinrichsen, V.: Metal-oxide surge arresters, 1st edn. Siemens (2001)
16. James, R.E., Su, Q.: Condition assessment of high voltage insulation in power system

equipment, 1st edn. IET Power and Energy Series, p. 53 (2008)
17. Vahidi, B., Nasab, R.S., Moghani, J., Sh., K.S.A., Hosseinian, S.H.: Three dimensional

analyses of electric field and voltage distribution on ZnO surge arrester with broken sheds.
In: 2005 IEEE/PES Trans. and Distrib. Conf. & Exhib.: Asia and Pacific, Dalian, China
(2005)

18. Meshkatoddini, M.R.: Study of the electric field intensity in bushing integrated ZnO surge
arresters by means of finite element analysis. In: COSMOL Users Conf., Boston (2006)

19. Lundquist, J., Stenstrom, L., Schei, A., Hansen, B.: New method of the resistive leakage
currents of metal-oxide surge arresters in service. IEEE Trans. on PWRD 5(4), 1811–1822
(1990)

20. Vahidi, B., Nasab, R.S., Moghani, J.S.: Analysis of electric field and voltage distributions
on ZnO surge arrester for polluted condition. In: XIV Int. Symp. on High Voltage Engin.,
Tsinghua University, Beijing, China (2005)

236 L. Ekonomou, C.A. Christodoulou, and V. Mladenov

21. Karthik, R.: A novel analysis of voltage distribution in zinc oxide arrester using finite
element method. Int. J. of Recent Trends in Engineering 1(4), 1–3 (2009)

22. Han, S.J., Zou, J., Gu, S.Q., He, J.L., Yuan, J.S.: Calculation of the potential distribution of
high voltage metal oxide arrester by using an improved semi-analytic finite element
method. IEEE Trans. on Magnetics 41(5), 1392–1395 (2005)

23. Abe, S.: Neural networks and fuzzy systems. Kluwer Academic Publishers, Boston (1997)
24. Haykin, S.: Neural Networks: a comprehensive foundation. MacMillan College Publishing

Company, New York (1994)
25. Maghami, P.G., Sparks, D.W.: Design of neural networks for fast convergence and

accuracy: dynamics and control. IEEE Trans. on Neural Networks 11(1), 113–123 (2000)
26. Nolles, O.: Nonlinear system identification: from classical approaches to neural networks

and fuzzy models. Springer, Berlin (2001)
27. Lippmann, R.: An introduction to computing with neural nets. IEEE ASSP Magazine 4(2),

4–22 (1987)
28. Tamura, S.I., Tateishi, M.: Capabilities of a four-layered feedforward neural network: four

layers versus three. IEEE Trans. on Neural Nets 8(2), 251–255 (1997)
29. Demuth, H., Beale, M.: Neural network toolbox user’s guide for use with MATLAB

(2002)
30. Hagan, M.T., Demuth, H.P., Beale, M.: Neural network design. PWS Publishing, Boston

(1996)

Decoding Hand Trajectory from Primary Motor
Cortex ECoG Using Time Delay Neural Network�

Abdessalam Kifouche1,2,3,��, Vincent Vigneron2,��,
Mohammad B. Shamsollahi4, and Abderrezak Guessoum1

1 LATSI, University of Blida, Algeria
2 IBISC, University of Evry, France
3 University of Ghardaia, Algeria

4 BiSIPL, Sharif University of Technology, Tehran, Iran
abdessalam_kifouche@yahoo.fr, vvigne@iup.univ-evry.fr,

abderguessoum@yahoo.com

Abstract. Brain-machines - also termed neural prostheses, could poten-
tially increase substantially the quality of life for people suffering from
motor disorders or even brain palsy. In this paper we investigate the
non-stationary continuous decoding problem associated to the rat’s hand
position. To this aim, intracortical data (also named ECoG for electro-
corticogram) are processed in successive stages: spike detection, spike
sorting, and intention extraction from the firing rate signal.

The two important questions to answer in our experiment are (i) is
it realistic to link time events from the primary motor cortex with some
time-delay mapping tool and are some inputs more suitable for this map-
ping (ii) shall we consider separated channels or a special representation
based on multidimensional statistics. We propose our own answers to
these questions and demonstrate that a nonlinear representation might
be appropriate in a number of situations.

Keywords: BMI, Time Delay Neural Network, nonlinear regression,
spikes.

1 Introduction

Neural prostheses offer the possibility to translate electrical neural activity from
the brain into control signals for guiding paralyzed upper limbs, prosthetic arms,
or computer cursors. Several research groups have already demonstrated that
monkeys as well as human are capable to learn how to drive a robot arm, or more
generally communicate with the outside world, simply by activating neurons
ensemble that participate in natural arm movements.
� This project was supported in part by funding from the Hubert Curien program of

the Foreign French Minister and from the Taiwan NSC. The neural activity record-
ings were kindly provided by the Neuroengineering lab. of the National Chiao-Tung
University.

�� Corresponding authors.

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 237–247, 2014.
c© Springer International Publishing Switzerland 2014

238 A. Kifouche et al.

Multiple electrode arrays allow neurophysiologists to record the spiking activ-
ities of an increasing number of neurons. For instance, they have made feasible
the recording of a large number of hippocampal cells along with the rat’s posi-
tion in its environment and hence the quantitative analysis of how rat’s brain
encode spatial information in short term memory and use it for voluntary or
non-voluntary action. Investigating these questions requires a collection of sta-
tistical tools to analyze how the animal’s position is represented in term of firing
patterns of place cells. This is the decoding problem.

We process spike trains in order to extract a ’firing rate’; the emphasis is on
getting things to work robustly, with minimal efforts and with minimal delays,
since the decoding must be real time. Estimation algorithms can be designed to
decode the desired trajectory from the neural activity patterns. A control system
could then generate appropriate signals for continuously guiding a paralyzed or
prosthetic arm through space. Such control is indeed a daunting ultimate goal,
but would provide a presumably natural control suitable for clinically viable
systems.

The core part is the spike train generated from various neurons. Sorting cor-
rectly the spikes with respect to their source improve significantly the decoding
performance. Hence, before dealing with decoding problem, the spikes should be
sorted and the firing rate of each neuron extracted.

In literature, various methods have been introduced to decode brain activities,
see e.g. [2,13]. This can be formulated systematically in a state space framework:
Wu et al. in [12] modeled the hand representation (position on the two axes,
velocity and acceleration) and the probabilistic relationship between this motion
and the firing rates with a Kalman filter (KF). State space methods provide a
coherent framework for modeling stochastic dynamical systems. Gage et al. in
[3] implemented a co-adaptive KF to train a rat for cortical control tasks. This
method is able to estimate hidden states despite the lack of an accurate model
of the system. Recently Brockwell [1] used particle filters to estimate the hidden
states from a sequence of measurements using Monte Carlo algorithm, without
any assumption on the distribution of the observations.

We have investigated motor cortex responses recorded during movement in
freely moving rats to provide evidence for the relationship between these patterns
and special behavioral task, as illustrated Fig. 1(a). The experiment set up at
the National Tsin Hua University (NTHU) in Taiwan. With respect to previous
works, we focus this time on hand trajectory prediction with a Time Delay
Neural Network (TDNN) [4,9].

2 Experimentation and Data Representation

2.1 Animal Training and Behavioral Tasks

The study, approved by the Institutional Animal Care and Use Committee at
the National Chiao Tung University, was conducted according to the standards
established in the Guide for the Care and Use of Laboratory Animals. Four
male Wistar rats weighing 250-300 g (BioLASCO Taiwan Corp., Ltd.) were

Decoding Hand Trajectory from Primary Motor Cortex 239

individually housed on a 12 h light/dark cycle, with access to food and water ad
libitum.

Dataset was collected from the motor cortex of awake animal performing a
simple reward task. In this task, male rats (BioLACO Taiwan Co.,Ltd) were
trained to press a lever to initiate a trial in return for a water reward. The
animals were water restricted 8-hours/day during training and recording session
but food were always provided to the animal ad lib every day.

2.2 Chronic Animal Preparation and Neural Ensemble Recording

The animals were anesthetized with pentobarbital (50 mg/kg i.p.) and placed
on a standard stereotaxic apparatus (Model 9000, David Kopf, USA). The dura
was retracted carefully before the electrode array was implanted. The pairs of
8 microwire electrode arrays (no.15140/13848, 50m in diameter; California Fine
Wire Co., USA) are implanted into the layer V of the primary motor cortex (M1).
The area related to forelimb movement is located anterior 2-4 mm and lateral
2-4 mm to Bregma. After implantation, the exposed brain should be sealed with
dental acrylic and a recovery time of a week is needed.

During the recording sessions, the animal was free to move within the behavior
task box (30 cm×30 cm× 60 cm), where rats only pressed the lever via the
right forelimb for receiving 1-ml water reward as shown in Fig. 1(a). A Multi-
Channel Acquisition Processor (MAP, Plexon Inc., USA) was used to record
neural signals. The recorded neural signals were transmitted from the headstage
to an amplifier, through a band-pass filter (spike preamp filter: 450-5 kHz; gain:
15,000-20,000), and sampled at 40 kHz per channel as depicted in Fig. 1(b).
Simultaneously, the animal’s behavior was recorded by the video tracking system
(CinePlex, Plexon Inc., USA) and examined to ensure that it was consistent for
all trials included in a given analysis [8]. The obtained data were composed of
48 channels (number of neurons) containing succession of ’1’ separated by long
silence of ’0’. Another representation is used based on the rate of spike smoothed
with a Gaussian window.

3 Temporal Pattern Recognition

3.1 Data Reduction Techniques

Because the rat live in an ever-changing environment, an intelligent system must
encode patterns over time, recognizing and generating temporal patterns. A
question perhaps as old as modeling is “which variables are important ?”. Be-
cause the need to select a model applies to more than just variable selection
in regression models, there is a rich variety of answers. In the field of brain-
machines the selection of relevant features is considered absolutely necessary for
the ECoG dataset, since the neural correlates are not known in detail. The time
delay between the hand position (output the vector Yt+k to predict) and the in-
tracortical activity (the input vector Xt) is a key point in this work, but cannot
be determined exactly or is a shifting value with time.

240 A. Kifouche et al.

(a) Protocole of ECoG collection and
recording by invasives microelectrodes

(b) Spikes sorting and representation

Fig. 1. Experimental setup for neural activities recording and the video captures re-
lated animal behavioral task simultaneously

Assume that the training data is given by a set of observations {x(t),y(t)}Nt=1,
with x(t) = [x1(t), . . . , xq(t)]

T ∈ R
q and y ∈ R

2. At time instant t, u(t) =
[x1(t), x1(t −Δ), . . . , x1(t − (n1 − 1)Δ), . . . , xq(t), . . . , xq(t − (nq − 1)Δ)] is de-
fined as the input set with all variables with all possible time-lags. The goal of
the variable and delay selection procedure is to select a subset S ∈ X of the
most significant variables for the prediction setting. Reducing dimension may
also improve the accuracy of an inferred predictive model. Moreover, reducing
the number of features may give insights into the working of the system itself.
Inference and/or prediction may be computationally costly in high dimensions.

3.2 How Time is Embodied in Temporal Patterns?

By two ways: (i) the temporal order which refer to the ordering among the
components of a sequence (ii) the time duration. How to choose the lag-order
for each of the q variables ? Temporal processing is a challenge because the
information is embedded in time, not simultaneously available.

Cross-Covariance and Cross-Correlation. The correlation represents how
strongly one variable implies the other, based on the available data. Suppose
we make N observations on two variables at unit time intervals over the same
period and denote a series of observations by (x1, y1), . . . , (xn, yn), that may be
regarded as a finite realization of a discrete-time bivariate stochastic process

Decoding Hand Trajectory from Primary Motor Cortex 241

(Xt, Yt) observed sequentially through time. We use the following notations: the
means are resp. E(Xt) = μX and E(Yt) = μY , and the covariances are resp.
cov(Xt, Xt+k) = γX(k) and cov(Yt, Yt+k) = γY (k). Then the cross-covariance
function is defined by cov(Xt, Yt+y) = E[(Xt − μX)(Yt − μY)] = γXY (k) and is
a function of the lag only, because the processes are assumed to be stationary.
The cross-correlation function, ρXY (k), which is defined by

ρXY (k) = γXY (k)/
√
γX(0)γY (0) = γXY (k)/σXσY , (1)

where σX =
√
γX(0) denotes the standard deviation of the X-process, and simi-

larly for σY . This function measures the Bravais-Pearson correlation between Xt

and Yt+k. If the cross-correlation ρXY is 0, then there is no correlation between
X and Y meaning that they are independent. For multivariate time series, each
variable is regarded as a feature.

A cross-correlation coefficient matrix M(k) is a symmetric matrix, where the
(i, j)th entry in the matrix represents the correlation between the ith and jth
variables.

Spearsmans Correlation Method. In eq. (1), ρXY captures only the linear
relationship between X and Y . The Spearmans rank correlation coefficient is a
nonlinear measure of statistical dependence between 2 variables, and is computed
as the Pearson correlation coefficient between the ranked variables. Let iX and
iY denote the value rank for X and Y resp.1. The Spearmans rank correlation
coefficient is

ρS = 1− 6

N(N2 − 1)

N∑
i=1

(iX − iY)
2. (2)

Entropy Feature-Based Selection Algorithm. As explained before, there
are many channels of real recordings available. In prac- tice, it happens that
some of the electrodes are detached from the cortex, making there corresponding
channel totally noisy. These electrodes should be eliminated before the main
processing. The electrode selection strategy originally suggested in [10,11], uses
a unique reference signal for the rejection of the channels which contain the most
mutual information. The proposed algorithm is based on the mutual information
(I) between two signals. The mutual information is defined as the Kullback-
Leibler divergence [7] between the joint pdf and the product of the marginal pdf
(probability density function):

I(X,Y) =

∫
X,Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (3)

Three major properties of I are: i) it is non-negative, ii) I(X,Y) = 0 if and
only if X and Y are independent, and iii)I(X,Y) is maximum for X = Y .

1 The largest value of X has rank 1, the second largest value rank 2, etc.

242 A. Kifouche et al.

The aim of the selection algorithm is to select n signals (U1, . . . , Un) among a set
of n signals (X1, . . . , Xn). The first signal U1 must be chosen by another method
(e.g. randomly). At each step of the algorithm, we choose the signals which are
as independent as possible from the already selected signals Uj, j̇ = 1, . . . , z− 1,
i.e. which minimizes the sum of the mutual informations with the Uj ’s; in other
words, Xk is the zth selected signals (Uz = Xk) if the following cost function
fz(i) is minimized for i = k:

fs(i) =

z−1∑
j=1

I(Xi, Uj). (4)

After the selection of Xk, it is removed from the initial set to avoid an eventual
second selection. The selected subset will contain signals which are mutually
“quite different”, because of the minimisation of the mutual information. From
another point of view, selecting signals which minimize the mutual information
between them is a good preprocessing, because they have a low dependence level!
We stop the algorithm when n′ signals are selected (z = n′).

To select the best set of features, we have to meet the following constraints:
(i) a selected feature is irrelevant if it is uncorrelated with the response (ii) a
selected feature is redundant if it is highly correlated with other features.

3.3 Time-Delay Neural Network

Multilayer perceptrons (MLP) offer a popular approach to temporal pattern
learning. MLPs have been demonstrated to be effective for static pattern recog-
nition. It is natural to combine MLP with short term memory model to do tem-
poral pattern recognition. Waibel reported an architecture called Time Delay
Neural Networks (TDNN) for spoken phoneme recognition.

Fig. 2. A time-delay neural network. Only one input x(t) is shown. The delayed inputs
xi(t−Δ), . . . , xi(t− niΔ), i = 1, . . . , q are fully connected to a hidden layer.

Besides the input layer, TDNN uses two hidden layers and an output layer
where each unit encodes one phoneme. The feed-forward connections converge
from the input layer to each successive layer so that each unit in a specific layer
receives inputs within a limited time window from the previous layer.

Decoding Hand Trajectory from Primary Motor Cortex 243

Given the raw signal x(t) the usual delay line technique would be to use
x(t),x(t−Δ), . . . ,x(t− (n−1)Δ) for the network inputs at time t as sketched in
Fig. 2. TDNN will replace the linear model used by Wu et al. [12]. The TDNN
architecture consists of the delayed versions of the firing counts, which effectively
implements a short-term memory mechanism.

However, additional delays in the already high dimensional neuronal input
(40 neurons) bring in a huge number of free parameters and training of such
large TDNN by simple back-propagation algorithm is inappropriate since the
parameter convergence need long iterations and a learning rate to adjust. Hence
we propose to use the conjugate gradient algorithm (CGA) to accelerate the
weight update.

Algorithm 1. Standard CG algorithm

Require: initialize w(0) (can be 0);
Ensure: r(0) = p0 ← −∇C(w(0));
1: k ← 0
2: repeat
3: α(k) ← r(k)T r(k)

p(k)TAp(k)

4: w(k+1) ← w(k) + α(k)p(k)

5: r(k+1) ← r(k) − α(k)Ap(k)

6: β(k) ← r(k+1)T r(k+1)

r(k)T r(k)

7: p(k+1) ← r(k+1) + β(k)p(k)

8: k ← k + 1
9: until r(k+1) is sufficiently small.

10: return w(k+1)

Algorithm 2. Preconditioned CG

Require: initialize w(0) (can be 0);
Ensure: r(0) ← −∇C(w(0));
Ensure: z0 ← M−1r0; p0 ← z0;
1: k ← 0
2: repeat
3: α(k) ← z(k)T r(k)

p(k)TAp(k)

4: w(k+1) ← w(k) + α(k)p(k)

5: r(k+1) ← r(k) − α(k)Ap(k)

6: z(k+1) ← M−1r(k+1)

7: β(k) ← z(k+1)T r(k+1)

z(k)T r(k)

8: p(k+1) ← z(k+1) + β(k)p(k)

9: k ← k + 1
10: until r(k+1) is sufficiently small.
11: return w(k+1)

4 Learning Algorithm

An error back-propagation learning rule coupled with preconditioned conjugate
gradient is used to trained the TDNN weights and minimize the Mean Square
Error (MSE) criterion:

C(w) = E[e2(t)], (5)

where e(t) is the difference between the expected signal y∗(t) and model output
y(t) = f(w,x(t)) at time t. The weight vector update is given by

w(k+1) = w(k) − η(k)∇C(w(k)), (6)

where −∇C(w(k)) is the gradient vector and η(k) is the learning rate that should
be chosen carefully to make the algorithm stable and converge. But since the gra-
dient algorithm is very sensitive to η, a conjugate gradient algorithm is generally
a better choice and results in a faster convergence to reach the minimum of the

244 A. Kifouche et al.

cost function (5). CG algorithm [5] choose the search direction from the second
order approximation C(w+h) ≈ C(w)+∇C(w)Th+ 1

2h
TC(w)h, where h is the

line search direction. The CG algorithm updates the weights along the conjugate
gradient direction. From the current search direction, the next search direction
is determined so that it is conjugate to previous search directions. When the CG
methods are applied to non quadratic functions, the formula given below, called
the Hestenes-Stiefel formula, is considered superior for β(k).

In most cases, preconditioning is necessary to ensure fast convergence of the
conjugate gradient method that takes the following form in Algo. 2. The precon-
ditioner matrix M has to be symmetric positive-definite and fixed.

5 Methods

5.1 Experiment and Performance Assessment

After the spike sorting stage, we obtained a 48 channels of ECoG represented
as a long suit of pulses ’1’ separated by a long silence ’0’. Many techniques of
data representation were proposed to carry out the hidden information situated
in the inter-spike distances. Most of these techniques are summarized in [6].

In our work we used a moving window of 100 ms time width to compute
the spike rate and also of the used camera frequency to follow the lever and
get simultaneously position with neural activity rate. Correlation coefficients
are calculated and used to select which channels can be used as feature of the
machine learning and to eliminate the redundant channels and non correlated
channels to the output. Maximal cross-correlation values indicate give the delay
of the explanatory variables that will be used as network inputs.

The TDNN model is shown in Fig. 2. The input layer includes in this exper-
iment 10 delayed cortical signals from the 3 most prominent neurons (among
46 neurons having been recorded), between 2-7 hidden neurons with hyperbolic
tangent ceil function.

We trained the TDNN by the 2 algorithms as described in section 4. The 2
output values (the 2 dimensional hand position) are centered and reduced to fol-
low a Gaussian law N (0, 1). The layer’s weights are initialized randomly between
[−1,+1]. In both algorithms, we set the learning rate is fixed to η = 0.05. The
training was terminated when the cross validation error continuously increased
for more than 10 steps. The network specifications are listed in Tab. 1. While
the choice for the right architecture is mainly intuitive and implies arbitrary
decisions, an attempt to apply ANN directly fails due to the dimensionality of
the inputs. Therefore the dimension of the inputs has been reduced drastically
by feature selection.

Tab. 1 illustrates the effects of variation of the number of units in the TDNN
on decoding performance quantified for each model by the mean AIC across the
50 data sets for the two decoding algorithms.. Only 10% of the data (7 peaks)

Decoding Hand Trajectory from Primary Motor Cortex 245

Table 1. Average AIC

Architecture # param. CGA preconditioned CGA
x y x y

27-2-2 62 3.691 4.723 2.700 3.720
27-3-2 92 3.394 0.426 1.406 3.435
27-4-2 122 2.732 2.822 2.762 2.799
27-5-2 152 5.066 5.148 3.089 5.132
27-6-2 182 5.105 6.162 8.117 6.133
27-7-2 212 6.531 9.570 11.541 9.550

are shown here for clarity. The model output (denoted by red lines) can track
the x and y coordinate of hand position trajectory most of the time and in
particular can catch the peaks well (in blue) if the complex is sufficiently complex.
Figures 3.b-g zoom onto the fit in the seven peak region.

The measure of performance is the Akaike information criterion (AIC). As
such, AIC provides a means for model selection. The AIC value is AIC =
2p − 2 ln(L), where p is the number of parameters in the model, and L is the
maximized value of the likelihood function for the model. AIC deals with the
trade-off between the goodness of fit of the model and the complexity of the
model. The preferred model is the one with the minimum AIC value.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. Hand position tracking with TDNN. Model output (in red) and desired output
(in blue).

246 A. Kifouche et al.

The number of units required for successful decoding has an important impact
on the overall structure of the BMI since it determines the number of electrodes,
and channels of the signal conditioning circuitry.

The preconditioned CGA was superior to the classical CGA when reasonable
numbers of units (i.e., more than 3 units) were used for the decoding. Here in
Fig. 3, the result obtained from the MLP 27-5-2 is shown, i.e., we used the trial-
and-error method for the training of the MLP. The performance of the MLP
27-5-2 was much worse than that of the CGA. The performance differences
between the CGA andpreconditioned CGA were larger above 5 units.

6 Conclusion and Future Works

A TDNN architecture was proposed for fast hand trajectory decoding from pri-
mary motor cortex ECoG. Since the application of TDNN in BMIs yields too
many free parameters, the approach performs faster with the conjugate agradi-
ent algorithm. However, a TDNN with 20 hidden neurons and 10 time delays of
46 channels of neuronal signal produces more than 1,160 free parameters and we
only have 10,000 samples for training and cross-validation. Another issue is the
possibility to use a Kalman filter for detecting pulses and grouping them, hence
simplifying the activation measurement.

References

1. Brockwell, E., Rojas, L., Kass, R.E.: Recursive bayesian decoding of motor cortical
signals by particle filtering. Journal of Neurophysiology 91(4), 1899–1907 (2004)

2. Brown, E.N., et al.: A statistical paradigm for neural spike train decoding applied
to position prediction from ensemble firing patterns of rat hippocampal place cells.
Journal of Neuroscience 18(18), 7411–7425 (1998)

3. Gage, G.J.: Co-adaptive kalman filtering in a naïve rat cortical control task. In:
IEEE Conference on Engineering in Medicine and Biology Conference, vol. 6, pp.
4367–4370 (2004)

4. Ghanbari, A., et al.: Neural spike sorting with a self-training semi-supervised sup-
port vector machine. In: Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Osaka, Japan, pp. 6007–6010 (2013)

5. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. Journal of Research of the National Bureau of Standard 49(6) (1952)

6. Dayen, P., Abbott, L.F.: Theoretical Neuroscience. Computational and Mathemat-
ical Modeling of Neural Systems. MIT Press (2001)

7. Sameni, R., Vrins, F., Parmentier, F., Herail, F., Vigneron, V., Verleysen, M.,
Jutten, C., Shamsollahi, M.B.: Electrode selection for noninvasive fetal electrocar-
diogram extraction using mutual information criteria. In: MaxEnt2006 Proceed-
ings - 26th International Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering, vol. 872, pp. 97–104 (July 2006)

8. Van Staveren, G.W., et al.: Wave shape classification of spontaneaous neural ac-
tivity in cortical cultures on micro-electrode arrays. In: Proceedings 24th Annual
Conference of the EMBS/BMES Society, TX, USA, October 23-26, vol. 3, pp.
2010–2011 (2002)

Decoding Hand Trajectory from Primary Motor Cortex 247

9. Vigneron, V., Chen, H., Chen, Y.-T., Lai, H.-Y., Chen, Y.-Y.: Decomposition of
EEG signals for multichannel neural activity analysis in animal experiments. In:
Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA
2010. LNCS, vol. 6365, pp. 474–481. Springer, Heidelberg (2010)

10. Vrins, F., Lee, J.A., Verleysen, M., Vigneron, V., Jutten, C.: Improving indepen-
dent component analysis performances by variable selection. In: NNSP 2003 pro-
ceedings - Neural Networks for Signal Processing, Toulouse, France, pp. 359–368
(September 2003)

11. Vrins, F., Vigneron, V., Jutten, C., Verleysen, M.: Abdominal electrodes analysis
by statistical processing for fetal electrocardiogram extraction. In: Proceedings
of the 2nd International Conference Biomedical Engineering, Innsbruc, Austria,
pp. 244–250 (2004)

12. Wu, W.: Inferring hand motion from multi-cell recordings in motor cortex using
a kalman filter. In: Workshop on Motor Control in Humans and Robots: On the
Interplay of Real Brains and Artifical Devices, pp. 1–8 (2002)

13. Wu, W., et al.: Closed-loop neural control of cursor motion using a kalman filter.
In: 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, vol. 6, pp. 4126–4129 (2004)

Author Index

Adda, Mo 217
Agathokleous, Marilena 205
Aguiar, Eduardo 81
Amaral, Renan 81
Andreadis, I. 133

Bacciu, Davide 39
Bougoudis, Ilias 1
Bozhkov, Lachezar 123

Chatziagorakis, P. 133
Christodoulou, Christos A. 227
Cui, Yunduan 15

de Carvalho, André C.P.L.F. 49
Dobrev, Petar 175

Eken, Süleyman 195
Ekonomou, Lambros 227
Elahi, Najeeb 145
Elmasides, C. 133

Fabri, Diego 81
Faiçal, Bruno S. 49, 92
Ferreira, José Geraldo 81
Filho, Geraldo P.R. 49
Furquim, Gustavo 49, 92

Gegov, Alexander 183
Georgieva, Petia 123
Georgoulas, N. 133
Giaouris, D. 133
Gress, Neil Hernández 25
Guessoum, Abderrezak 237

Hashimoto, Masafumi 15
Huerta, Ramón 71

Iliadis, Lazaros 1
Ipsakis, D. 133

Jayne, Chrisina 113

Karabasoglu, Orkun 103
Karafyllidis, I. 133
Kifouche, Abdessalam 237

Lendasse, Amaury 165
Liu, Han 183

Malcangi, Mario 59
Mannan, Noman Bin 145
Mello, Rodrigo 92
Mendiondo, Eduardo M. 92
Mendoza, Miguel González 25
Mert, Umit 195
Miche, Yoan 165
Mladenov, Valeri 227
Montero, Aarón 71

Nicholson, James 175
Nogueira, Fernando 81

Onoda, Takashi 155

Palade, Vasile 113
Panchev, Christo 175
Papadopoulos, A.I. 133
Papadopoulou, S. 133
Papaleonidas, Antonis 1
Paz, Israel Tabarez 25
Pessin, Gustavo 49, 92

Qader, Karwan 217

Rahim, Sarni Suhaila 113
Ribeiro, Moisés 81
Rodŕıguez, Francisco B. 71
Rossignoli, Sérgio 81

Sarwar, Sheikh Muhammad 145
Sayar, Ahmet 195
Seferlis, P. 133
Shamsollahi, Mohammad B. 237
Shetty, Sanketh S. 103
Shuttleworth, James 113
Sirakoulis, G.Ch. 133
Stahl, Frederic 183
Stergiopoulos, F. 133

Takahashi, Kazuhiko 15
Takahashi, Sae 15
Tanscheit, Ricardo 81

250 Author Index

Trifonov, Roumen 123
Tsapatsoulis, Nicolas 205

Ueyama, Jó 49, 92

van Heeswijk, Mark 165
Vellasco, Marley 81

Vellasco, Pedro 81

Vigneron, Vincent 237

Voutetakis, S. 133

Ziogou, C. 133

	Preface
	Organization
	Table of Contents
	Fuzzy Inference ANN Ensembles for Air Pollutants
Modeling in a Major Urban Area: The Case of Athens
	1 Introduction
	1.1 Aim of This Research
	1.2 Literature Review

	2 Data and Area of Research
	3 Parameters’ Selection
	4 Materials and Methods
	4.1 Local Multilayer Feed Forward ANN
	4.2 Proposed ANN Ensemble Model and Existing Ones

	5 Assessment of the NNENs
	6 Conclusions and Future Work
	References

	Remarks on Computational Facial Expression
Recognition from HOG Features Using Quaternion Multi-layer Neural Network
	1 Introduction
	2 Facial Expression Recognition System
	2.1 HOG Feature
	2.2 Feature Extraction from Face Image
	2.3 Quaternion Neural Network

	3
Computational Experiment for Recognising FacialExpression
	4 Conclusions
	References

	Classification of Database by Using
Parallelization of Algorithms Third Generation in a GPU
	1 Introduction
	2 Related Works
	3 Parallelization of SNN
	4 Parallelization of SVM
	5 Experiments
	5.1 Spiking Neural Network (SNN)
	5.2 Support Vector Machine (SVM)

	6 Results
	7 Conclusion and Future Work
	References

	An Iterative Feature Filter for Sensor Timeseries
in Pervasive Computing Applications
	1 Introduction
	2 Iterative Sensor Timeseries Selection
	3 Experimental Evaluation
	4 Conclusion
	References

	Exploiting Evolution on UAV Control Rules
for Spraying Pesticides on Crop Fields
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deployment of the Evolutionary Module

	4 Results
	5 Discussion
	References

	Fuzzy-Logic Decision Fusion for Nonintrusive Early Detection of Driver Fatigue or Drowsiness
	1 Introduction
	1.1 Literature Review
	1.2 Novelty and Advantages of the Proposed Method

	2 System Framework
	2.1 ECG Subsystem
	2.2 Breathing Subsystem
	2.3 Decision-Fusion Subsystem

	3 Experimental Results
	3.1 Embedded Prototype
	3.2 Performance Evaluation

	4 Conclusions and Future Work
	4.1 Adaptive Fuzzy Featuring

	References

	Neural Trade-Offs among Specialist and Generalist Neurons in Pattern Recognition
	1 Introduction
	2 Methods
	2.1 Model
	2.2 Hebbian Learning
	2.3 Patterns
	2.4 Synaptic Pruning Strategies
	2.5 Threshold Selection

	3 Results
	3.1 Relevant Role of Specialists Neurons for Odor Classification
	3.2 From an Initial Generalist Sensitivity to a Specialist Sensitivity

	4 Conclusions
	References

	Classification of Events in Switch Machines
Using Bayes, Fuzzy Logic System and Neural Network
	1 Introduction
	2 Problem Formulation
	2.1 Feature Extraction Based on Higher-Order Statistics (HOS)
	2.2 Feature Selection Technique Based on Fisher’s Discriminant
Ratio (FDR)
	2.3 Classifiers

	3 Experimental Results
	3.1 Analysis of Performance and Convergence

	4 Conclusions
	References

	An Accurate Flood Forecasting Model Using
Wireless Sensor Networks and Chaos Theory: A Case Study with Real WSN Deployment in Brazil
	1 Introduction
	2 Related Works
	3 Chaos Theory Concepts
	4 Methods of Flood Forecasting
	5 Results and Discussion
	6 Conclusion and Future Works
	References

	Regenerative Braking Control Strategy for Hybrid
and Electric Vehicles Using Artificial Neural Networks
	1 Introduction
	2 Methodology
	2.1 Problem Definition
	2.2 Applying Artificial Neural Networks
	2.3 Generating Training Data
	2.4 Training and Application

	3 Results and Discussion
	3.1 K Function Generation
	3.2 Result of Calculating Recoverable Energy

	4 Conclusions and Future Work
	References

	Automatic Screening and Classification of Diabetic
Retinopathy Fundus Images
	1 Introduction
	2 Existing Systems
	3 Proposed System
	4 Image Preprocessing

	4.1 Greyscale Conversion
	4.2 Adaptive Histogram Equalisation
	4.3 Discrete Wavelet Transform
	4.4 Filtering
	4.5 Morphological Operations

	5 Feature Extraction
	6 Classification
	7 Results and Discussion
	8 Conclusions and Future Work
	References

	Brain Neural Data Analysis Using Machine Learning
Feature Selection and Classification Methods
	1 Introduction
	2 Data Set
	3 Classification Methodology
	3.1 Features Normalization
	3.2 Leave-One-Out Cross-Validation (LOOCV)
	3.3 Artificial Neural Network (ANN)
	3.4 Logistic Regression (LogReg)
	3.5 Linear Discriminant Analysis (LDA)
	3.6 k-nearest Neighbor (kNN)
	3.7 Naive Bayes (NB)
	3.8 Support Vector Machines (SVM)
	3.9 Decision Tree (DT)
	3.10 Decision Tree Bootstrap Aggregation (Tbagger)

	4 Features Selection
	4.1 Principal Component Analysis (SFS)
	4.2 Sequential Feature Selection (SFS)
	4.3 Voting from Ensemble Bucket of Models

	5 Results for Inter-Subject Classification
	5.1 Classification Using All Features
	5.2 PCA Feature Reduction and Classification
	5.3 Exhaustive Sequential Feature Selection (SFS) and Classification
	5.4 Voting from Ensemble Bucket of Models

	6 Conclusion
	References

	Application of Neural Networks Solar RadiationPrediction for Hybrid Renewable Energy Systems
	1 Introduction
	2
The Proposed Recurrent Neural Network
	3 Efficient Representation of Energy Management Strategies
	4 Combination of the Flexible PMS Representation and Solar
Radiation Forecast
	5 Conclusions
	References

	A New User Similarity Computation Method
for Collaborative Filtering Using Artificial Neural Network
	1 Introduction
	2 Background and Related Work
	2.1 Predicted Rating Computation and Mean Absolute Error
(MAE)
	2.2 Similarity Method Using Genetic Algorithm(GA Method)

	3 New Similarity Computation Method Using ANN
	3.1 Rationale Behind Choosing Neural Network
	3.2 Modeling Similarity Function as ANN
	3.3 Neural Network Cost Function

	4 Experimental Results
	4.1 Procedure

	5 Conclusion
	References

	Probabilistic Models Based Intrusion Detection Using
Sequence Characteristics in Control System Communication
	1 Introduction
	2 Intrusion Detection Considering Sequences
	3 Hidden Markov Model and Conditional Random Field
	3.1 HMM
	3.2 CRF

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation Criteria
	4.3 Experimental Results

	5 Conclusion
	References

	Compressive ELM: Improved Models through
Exploiting Time-Accuracy Trade-Offs
	1 Introduction
	2 Background

	3 Compressive Extreme Learning Machine
	4 Experiments
	5 Conclusion
	References

	Detecting Port Scans against Mobile Devices
with Neural Networks and Decision Trees
	1 Introduction
	2 Model and Experimental Setup
	3 Experimental Results
	3.1 Decision Tree IDS
	3.2 Android Neural Network IDS

	4 Conclusions
	References

	Categorization and Construction of Rule Based Systems
	1 Introduction
	2 Categorization of Rule Based Systems
	3 Construction of Rule Based Systems
	3.1 Knowledge Based Approach
	3.2 Data Based Approach
	3.3 Discussion

	4 Rule Based Classification Systems
	4.1 Rule Generation
	4.2 Rule Simplification
	4.3 Rule Representation

	5 Applications in Healthcare
	6 Conclusion
	References

	Tiling of Satellite Images to Capture an Island Object
	1 Introduction
	2 Related Works
	3 Architecture
	4 Experimental Results
	5 Conclusion
	References

	Learning User Models in Multi-criteria
Recommender Systems
	1 Introduction
	2 Background and Problem Formulation
	3 Research Questions and Methodology
	4 Experimental Results and Discussion
	4.1 Dataset
	4.2 Non-linear Modeling of User Function fc and the Number of
Hidden Neurons
	4.3 Collaborative Filtering and Matrix Factorization Using the
User Function fc

	5 Conclusion
	References

	Fault Classification System for Computer Networks
Using Fuzzy Probabilistic Neural Network Classifier(FPNNC)
	1 Introduction
	2 Related Work
	3 Proposed Network Faults Classification Algorithm (FPNNC)
	3.1 FCM
	3.2 PNN

	4 The Characteristic of Network Faults
	5 Case Study and Results Discussion
	6 Conclusion
	References

	Estimation of the Electric Field across Medium VoltageSurge Arresters Using Artificial Neural Networks
	1 Introduction
	2 Surge Arresters
	3 Measurement System
	4 Artificial Neural Networks (ANN)
	5 Design, Training, Validation and Testing of the Proposed
ANN
	6 Results
	7 Conclusions
	References

	Decoding Hand Trajectory from Primary Motor
Cortex ECoG Using Time Delay Neural Network
	1 Introduction
	2 Experimentation and Data Representation
	2.1 Animal Training and Behavioral Tasks
	2.2 Chronic Animal Preparation and Neural Ensemble Recording

	3 Temporal Pattern Recognition
	3.1 Data Reduction Techniques
	3.2 How Time is Embodied in Temporal Patterns?
	3.3 Time-Delay Neural Network

	4 Learning Algorithm
	5 Methods
	5.1 Experiment and Performance Assessment

	6 Conclusion and Future Works
	References

	Author Index

