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Abstract. This paper presents a numerical model based on Discrete Element 
Method (DEM) used to reproduce a series of tests of dry granular flow. The 
flow was composed of poly-dispersed coarse-grained angular particles flowing 
in an inclined flume and interacting with a divided rigid wall. The normal im-
pact force against the wall has been studied in details considering the force on 
each part of the wall. The model has been calibrated based on the flow thick-
ness measurements. By quantitative comparison with experimental data, the 
model showed good agreement in terms of peak force on each part of the wall, 
the time of the peak and also the residual force values at the end of the tests. 
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1 Introduction 

The urbanization of the mountainous areas raised the importance of mitigating the 
threats to people and infrastructures linked to natural hazards such as rockfalls and 
granular flows. Several catastrophic granular flow events (Fig. 1) happened in the past 
resulting in major catastrophes and large loss of lives. 

Granular flows has been classified as one of the most hazardous landslides due to 
its high flow velocity and impact forces, long runout distance and poor temporal  
predictability [1]. More specifically, dry granular flows produced by shallow slope 
failures were found to travel long distances destroying infrastructures and blocking 
vital roads. In terms of formation, they contain large blocks of gravel and rock  
fragments. 

Granular flows hazard can be limited using retention systems similar in principle to 
rockfall barriers [3]. Different protection structures have been proposed in the litera-
ture for the mitigation of natural hazards; they are mainly retaining walls or flexible 
structures. Retaining walls have been widely used in China and also in Japan [4] for 
the prevention of rockfalls and granular flows. For the same reason, different types of 
flexible structures using anti-submarine nets have been developed over the last  
decades [5,6]. 
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2 Numerical Modeling 

The numerical simulation of the dry granular flow was carried out using Discrete 
Element Method. Nowadays DEM is widely used for modeling granular media. It is 
particularly efficient for static and dynamic simulation of granular assemblies where 
medium can be described at a microscopic scale. The method is based on the molecu-
lar dynamics approach proposed by Cundall and Strack [17]. 

In comparison with Finite Element Method (FEM), DEM makes large displace-
ments between elements easy to simulate. In addition, DEM surpasses FEM when 
dealing with discontinuous problems where FEM becomes computationally demand-
ing [18]. 

YADE software has been used as a modeling tool which is an extensible open-
source framework for discrete numerical models, focused on Discrete Element Meth-
od [19]. 

2.1 Contact Law 

A visco-elastic contact law with Mohr-coulomb failure criterion (Fig. 2) has been 
adopted where normal and tangential contact forces Fn, Ft between particles were 
calculated as follows: 

௡ሬሬሬԦܨ  = (݇௡ ݑ௡ − ௡ሶݑ ߛ  ) ሬ݊Ԧ (1) 

௧ሬሬሬԦܨ  = ൝ ௞೟ ௨೟ሬሬሬሬԦ|௞೟ ௨೟ሬሬሬሬԦ| หܨ௡ሬሬሬԦห ݊ܽݐ ߮      ݂݅ |݇௧ ݑ௧ሬሬሬԦ| >  หܨ௡ሬሬሬԦห ݊ܽݐ ߮,݇௧ ݑ௧ሬሬሬԦ                                                   ݐ݋ℎ݁(2)  ݁ݏ݅ݓݎ 

Where kn and kt are the normal and tangential stiffness parameters, un and ut are the 
normal and shear displacements, tan ߮ is the friction coefficient and γ is the viscous 
damping coefficient. kt was taken as (2/7)kn according to what was previously sug-
gested by [10]. 

Based on Schwager and Pöschel [20], with the restitution coefficient (ε) being the 
ratio between velocities after and before the impact, It can be calculated as follows:  

 ߱଴ଶ = ଶ௞௠೐೑೑  (3) 

ߚ  = ఊ௠  (4) 

 ߱ = ඥ߱଴ଶ −  ଶ  (5)ߚ

ߝ  = ௨ሶ (௧೎బ)௨ሶ (଴) =  ݁ିఉ గ/ఠ  (6) 

Where meff = (1/m1 + 1/m2) and ݑሶ ሶݑ ,(௖଴ݐ) (0) are velocities after (at the end of the 
contact) and before the collision respectively. 
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Fig. 2. Normal and tangential interaction forces of the contact [21] 

It is worth noting that, in the current study, the tangential viscous damping coeffi-
cient has been set to zero (using εt = 1.0). This is due to the absence of lubricated 
contact (as we are dealing with a dry flow), which is usually the proposed physical 
explanation for accounting for tangential viscous damping coefficient [22]. Particle 
stiffness kpar = E D/2 where E is the Young’s modulus (taken as 108 Pa) and D is the 
particle diameter. In order to ensure rigidity, the wall stiffness was taken ten times  
the stiffness of D50 particle. The value of ߝ was calibrated in Section 3 considering 
the flow thickness measurements. 

2.2 Flowing Particles, Clumping and Shape Effects 

Particles in use were of a poly-dispersed mixture with  with D50 of the model being 
15 mm and ranging from 10 mm to 20 mm in diameter with an average friction angle 
of 53˚ (similar to the one used in [2]). With the aim of simulating angular gravels, a 
two-spheres clump particle was used which has great advantageous in: controlling 
rotational velocity, adding interlocking effect between particles and improving shape 
representation of the angular gravel (section 3.1). Furthermore, the simulation is kept 
rather inexpensive (with the use of only two particles for forming the clump). The 
clump consists of two identical spheres (with a radius R) overlapping over a distance 

R thus having an aspect ratio of 
ଷଶ R. 

2.3 Sample Preparation 

The samples were prepared in a box with varying lengths (from 14 cm to 44 cm with 
a 5 cm step) and heights (from 5 cm to 20 cm with a 5 cm step) but with a 30 cm 
fixed width. The samples were released in a dam-break manner in which the gate was 
pulled up rapidly and instantaneously. With the total weight of the sample being equal 
to the weight of a single D50-sphere multiplied by the number of particles, the number 
of generated particles (num) was calculated as follows: 

݉ݑ݊  =  (௏೟ ఊ೟௏ೞ ఊೞ)  (7) 

where Vt is the total volume of the sample, γt is the specific weight of the sample 
(13.5 kN/m3), Vs is the volume of a single D50-sphere and γs is the specific weight of 
gravel particles (taken as 26.5 kN/m3 for the limestone gravel considered). After-
wards, each spherical particle was replaced with a clump consisting of two equal 
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spheres. Radii of clumped-spheres were calculated so that the mass and volume of the 
clump is equal to that of the particle which it replaces. 

2.4 Modeling of the Experimental Set Up 

The flume dimensions were based on the experimental flume used by [2]. The flume 
was rectangular in cross section with 219 cm length, 30 cm width and 35 cm height. 
Different inclination angles α were tested ranging from 35˚ to 45˚. The friction angle 
specified to the flume base, flume sides and the rigid wall were 25˚, 15˚ and 21˚ re-
spectively. A frictionless triggering gate was used to initiate the flow. At the end of 
the flume, a perpendicular rigid wall divided into six horizontal segments (marked 
from 1 to 6 starting from the bottom) was used. Interaction forces were recorded with 
each 5-cm height segment of the wall. No overflowing (topping) of the wall took 
place in all tests. 

3 Model Calibration 

With our aim being modeling granular flow of angular particles, experimental data [2] 
has been selected for our model calibration. Three different tests have been carried 
out: Test L34-H15-α45°, Test L44-H15-α40° and Test L44-H20-α40°. For instance, 
Test L44-H15-α40° represents a sample having 44 cm in length, 15 cm in height and 
40˚ inclinational angle. 

3.1 Clumps vs. Spherical Particles 

A comparative study is presented showing the effect of using the clumps on capturing 
the shape effect of the angular particles. Two samples were tested the first having 
spherical particles and the second having clumped ones. The chosen clump has a low-
er rotational energy in comparison with the spherical particle (Fig. 3a) resulting in a 
denser flow. Furthermore, the final shape of the deposit is closer to reality with the 
clumped particle case in comparison with the spherical one. Consequently, compared 
with the spherical particles, peak and residual values (Fig. 3b) on the sixth segment of 
the wall for clumped particles are closer to the experimental (experimental values: 
Fpeak ≈ 14 N/m, Fres ≈ 10 N/m). This might be due to the rolling resistance provided by 
the clump shape which prevents the particles from rolling over the dead zone deposit 
and accumulate behind part 6 of the wall. 

3.2 Flow Thickness and Velocity 

The measurements of flow thickness and velocity were considered at the time where 
the total force on the wall reaches its maximum value in order to be comparative with 
the experimental data (as done in the experiment). The targeted part of the flow for 
calculating velocity and thickness were particles within a distance ranging from 40 to 
50 cm away from the wall. However, since the flow has two regimes along the flow 
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thickness-collisional and frictional- cumulative frequency were drawn in which thick-
ness and velocity values were taken at 90% of total frequency. A value of D50/2 was 
added to 90% cumulative frequency of the flow thickness to account for the free sur-
face of the flow. 

 

 

Fig. 3. (a) Ratio of rotational energy to total kinetic energy for clumps and spheres, (b) Normal 
force on part 6 of the wall 

Different values of restitution coefficient were tested and flow thickness values 
were observed for each corresponding restitution coefficient. It was found that ε = 0.3 
is suitable for our flow based on flow thickness measurements resulting in a model 
value of 3.9 cm which well-correspond to the experimental value of 3.9 cm (Fig. 4a).  
 

 

Fig. 4. (a) Cumulative frequency of gravity center of particles height, (b) Variation of particles 
velocity with heights 

However, velocity measurements of test L44-H15-α40° in the model (Fig. 4b) tak-
en at the considered flow thickness (at 90% for cumulative frequency) was found to 
be lower than experimental value (4.13 m/s) which still needs improvement. Above 
all, features of granular flow have been observed by the model showing a dilute front 
followed by a denser part (Fig. 5). 

(a) (b) 

(a) (b) 
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Fig. 6. Time history of normal force variation: experiment (left) [2] and model (right) 

4.2 Test L44-H15-α40˚ 

For this test, the model recorded peak impact force values of 341 and 232 N/m for F1 
and F2 respectively (Fig. 6b). Compared to the experiment, similar values were ob-
served but with a reversed order (F2 > F1). According to [2], this might be due to an 
arching effect forming an arch-like protective layer on part 1 of the wall resulting in a 
non-linear distribution of force with depth. Such a layer is also thought to affect the 
residual force values of F1 and F2. Concerning the rest parts of the wall, the model 
managed to capture the peak forces of F3, F4, F5 and F6 (with a small exception for F3) 
with values of 154, 120, 66 and 15 N/m respectively along with peak times 3619, 

(a) test L34-H15-α45° 

(b) test L44-H15-α40°  
 

(c) test L44-H20-α40°  
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3808, 3733 and 3761 ms respectively. Residual forces on these parts were found to be 
112, 82, 40 and 12 N/m respectively which are close to the experimental observations. 
In terms of total normal force (Fig. 7), the model fairly agrees with the experiment in 
terms of the peak force (735 N/m), peak time (3733 ms) and residual total force  
(576 N/m). 

4.3 Test L44-H20-α40˚ 

With the use of higher volume of the sample, the trend of the impact force curves was 
better captured with the model along with the time lag between each force curve. For 
instance, F1 peaks at 2523 ms with a value of 387 N/m (450 N/m in the experiment) 
which is followed by another flow surge leading F2 to peak with 288 N/m (340 N/m 
in the experiment) at 2737 ms. Residual forces of F1 and F2 were found to be similar 
to the experiment with values of 227 and 226 N/m respectively. Very good agreement 
has also been observed for F3, F4, F5 and F6 in terms of peak forces (172, 172, 108 and 
51 N/m) the time of the peak (2864, 3070, 2912 and 3043 ms) and residual force val-
ues (116, 134, 65 and 43 N/m). Above all, to some extent, arching was managed to be 
captured in this test, especially for residual forces of F1-F2 and F3-F4. This might be 
due to the higher volume of the sample used in this test in comparison with previous 
tests which permitted better representation of the experiment as larger number of 
particles is used. 

 

Fig. 7. Time history of total normal force variation, test L44-H15-α40°: experiment (left) [2] 
and model (right) 

5 Conclusions 

In this paper, we have numerically studied the impact of granular flow against a rigid 
wall considering clumped particles. The proposed model has shown capabilities of 
capturing the main features of normal impact force against a rigid wall. Good agree-
ment has been observed in terms of the peak force on each part of the wall, the time of 
the peak and the residual force at the end of the test. Moreover, to some extent, the 
model was able to account for the arching that was observed in the experiment.  

Furthermore, the model shows collisional regime in the shallow layer and frictional 
regime in the deeper ones. The use of clumps was found to be beneficial for account-
ing for the shape effects caused by sharp angles of coarse-grained particles. It was 
shown that the use of clumped particles is preferred over the spherical particles in 
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controlling rotational velocity where it was reduced by 70 % with the use of clumps. 
Indeed, the shape of the deposition behind the wall was improved by the clumped 
particles leading to a force distribution which is closer to the experimental values. 
After being validated against rigid walls, the wall in the model will be replaced  
by flexible structure (net elements) in which the impact behavior will be studied in 
details.  
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