
Chapter 9
Intuitionistic Existential Instantiation
and Epsilon Symbol

Grigori Mints

Abstract A natural deduction system for intuitionistic predicate logic with existen-
tial instantiation rule presented here uses Hilbert’s ε-symbol. It is conservative over
intuitionistic predicate logic. We provide a completeness proof for a suitable Kripke
semantics, sketch an approach to a normalization proof, survey related work and
state some open problems. Our system extends intuitionistic systems with ε-symbol
due to Dragalin and Maehara.

Keywords Hilbert’s ε-symbol · Intuitionistic predicate logic · Existential instanti-
ation · Natural deduction · Sequent calculus

9.1 Introduction

In natural deduction formulations of classical and intuitionistic logic, the existence-
elimination rule is usually taken in the form

∃x A(x)

A(a)
...
C

C ∃−

where a is a fresh variable. Existential instantiation is the rule

∃x A(x)

A(a)
∃i
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where a is a fresh constant. It is sound and complete (with suitable restrictions) in
the role of existence-elimination rule in classical predicate logic but is not sound
intuitionistically, since it makes possible for example the following derivation:

C → ∃x A(x), C ⇒ ∃x A(x)

C → ∃x A(x), C ⇒ A(a)
∃i

C → ∃x A(x) ⇒ C → A(a)

C → ∃x A(x) ⇒ ∃x(C → A(x))

⇒ (C → ∃x A(x)) → ∃x(C → A(x))

There are several approaches in the literature to introduction of restrictions making
this rule conservative over intuitionistic predicate calculus.

We present an approach using intuitionistic version of Hilbert’s epsilon-symbol
and strengthening works by Dragalin Dragalin (1974) and Maehara (1970) where
ε-terms are treated as partially defined. Then a survey of extensions and related
approaches including the important paper by Shirai (1971) is given and some prob-
lems are stated. There is an obvious connection with the problem of Skolemization
of quantifiers. The role of existence conditions in that connection is prominent in the
work by Baaz and Iemhoff (2006).

We do not include equality since in this case adding of ε-symbol with natural
axioms is not conservative over intutionistic logic (Mints 1974; Osswald 1975). A
simple counterexample due (in other terms) to Smorynski (1977) is

∀x∃y P(x, y) → ∀xx ′∃yy′(Pxy&Px ′y′&(x = x ′ → y = y′))

In our natural deduction systemNJε axioms and propositional inference rules are the
sameas in ordinary intuitionistic natural deduction, the sameholds for∀-introduction.
The remaining rules are as follows:

� ⇒ ∃x F(x)

� ⇒ F(εx F(x))
∃i

(9.1)

existential instantiation,

� ⇒ t↓ � ⇒ ∀zF(z)
�,� ⇒ F(t)

� ⇒ t↓ � ⇒ F(t)
�,� ⇒ ∃zF(z) (9.2)

where

εx A(x) ↓:= ∃y(∃x A(x) → A(y)), (9.3)

and t↓ := � (the constant “true”) if t is a variable or constant.
Two semantics are given for NJε, or more precisely to an equivalent Gentzen-style

system IPCε (Sect. 9.2). The first semantics, which is incomplete but convenient for
a proof of conservative extension property over IPC is defined in Sect. 9.3.
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The second semantics with a completeness proof for IPCε is given in Sect. 9.4.
Section9.4.1 presents a sketch of a possible proof of a normal form theorem.

Section9.5 surveys some of the previous work and Sect. 9.6 outlines some open
problems.

9.2 Gentzen-Style System IPCε

Let us state our Gentzen-style rules for the intuitionistic predicate calculus IPCε

with ε-symbol. For simplicity we assume that the language does not have function
symbols except constants. Formulas and terms are defined by familiar inductive
definition plus one additional clause:

If A(x) is a formula then εx A(x) is a term.
Derivable objects of IPCε are sequents � ⇒ A where � is a finite set of formulas,

A is a formula. This means in particular that structural rules are implicitly included
below.

First, let’s list the rules of the intuitionistic predicate calculus IPC without ε-
symbol.

Axioms:

�, A ⇒ A, �,⊥ ⇒ A .

Inference rules:

� ⇒ A � ⇒ B
� ⇒ A&B

⇒ &
A, B, � ⇒ �

A&B, � ⇒ �
& ⇒

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
∨ ⇒ � ⇒ A

� ⇒ A ∨ B
⇒ ∨ � ⇒ B

� ⇒ A ∨ B

� ⇒ A B, � ⇒ �

A → B, � ⇒ �
→⇒ A, � ⇒ B

� ⇒ A → B
⇒→

� ⇒ A(t)
� ⇒ ∃x A(x)

⇒ ∃ � ⇒ A(b)

� ⇒ ∀x A(x)
⇒ ∀

A(b), � ⇒ G
∃x A(x), � ⇒ G

∃ ⇒ A(t), � ⇒ G
∀x A(x), � ⇒ G

∀ ⇒

� ⇒ C C, � ⇒ G
� ⇒ G

Cut

For IPCε quantifier-inferences ⇒ ∃,∀ ⇒ are modified by requirement that the term
t substituted in the rule should be “defined” (cf. (9.3)).
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� ⇒ t↓ F(t),� ⇒ �

∀zF(z), �,� ⇒ �
∀ ⇒ � ⇒ �, t↓ � ⇒ �, F(t)

� ⇒ �, ∃zF(z)
⇒ ∃

(9.4)

∃ ⇒-rule is also changed for IPCε:

A(εx A(x))� ⇒ G
�, ∃x A(x) ⇒ G

∃ε ⇒
(9.5)

A routine proof shows that IPCε is equivalent to a Hilbert-style system obtained by
weakening familiar axioms for quantifiers to

(εQ1) t↓&∀x A(x) → A(t)

(εQ2) t↓&A(t) → ∃x A(x)

and adding the axiom

∃x A(x) → A(εx A(x))

9.2.1 Equivalence of IPCε and NJε

Let us recall that in natural deduction a sequent

A1, . . . , An ⇒ A

is used to indicate that A is deducible from assumptions A1, . . . , An .

Theorem 9.1 A sequent is provable in NJε iff it is provable in IPCε.

Proof The proof is routine: every rule of one of these systems is directly derivable
in the other system. Let’s show derivations of the rules ∃i and ∃ ⇒ from each other
using abbreviation e := εx F(x).

� ⇒ ∃x F(x)

F(e) ⇒ F(e)
∃x F(x) ⇒ F(e)

∃ ⇒
� ⇒ F(e)

∃x F(x) ⇒ ∃x F(x)

∃x F(x) ⇒ F(e)
∃i

F(e), � ⇒ G
� ⇒ F(e) → G

∃x F(x), � ⇒ G

9.3 A Kripke Semantics for Intuitionistic ε-symbol

Toprove that IPCε is conservative over IPCwepresent an incomplete semanticsmod-
ifying a semantics from Dragalin (1974). The main modification is in the definition
of t↓ and treatment of atomic formulas containing ε-terms εx A.
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Definition 9.1 Let w be a world in a Kripke model. Denote

εx A(x) ↓ w :≡ w |= εx A(x) ↓ .

We say that a term εx A is defined in w iff εx A(x) ↓ w.

The symbol ⊥ in the next definition indicates the condition (9.6) below.

Definition 9.2 An intuitionistic Kripke ε⊥-model (or simply model in this section)

M = (W,<, D, |=, V )

has to satisfy the following conditions:
(W,<) is a Kripke frame with a strict partial ordering <,
D is a domain function assigning to everyw ∈ W a non-empty set D(w)monotone

with respect to <,
w |= A is a relation betweenworldsw ∈ W and atomic formulas A with constants

from

D := ∪w∈W D(w)

monotonic with respect to ≤ and such that

w �|= A ifA contains at least one constant in D − D(w). (9.6)

V is a valuation function assigning a constant V (e, w) ∈ D to any ε-term e (possibly
containing constants from D) and w ∈ W .

The relation |= is extended to composite formulas in the familiar way. The com-
ponents of an ε-model have to satisfy the following conditions.

V (εx B(x, εyC), w) = V (εx B(x, V (εyC, w)),w), (9.7)

w |= A(εyC) ↔ w |= A(x, V (εyC)), (9.8)

where substitution of εyC is safe, that is no free variable of εyC becomes bound.
Also, if e ↓ w for a term e := εx A(x), then

V (e, w) ∈ D(w) and V (e, w′) = V (e, w) for every w′ ≥ w.

Note. The requirement (9.6) is sound as we prove at the rest of this section, but it
leads to incompleteness. For example the formula

P(εx P(x)) → ∃x P(x)

is valid: if εx P(x) is undefined in a worldw then the premise is false inw, otherwise
the conclusion is true. However this formula is not derivable, since its instance
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(C → P(e)) → ∃x(C → P(x)) (9.9)

where C is a propositional variable and e = εx(C → P(x)), implies

(C → ∃x P(x)) → ∃x(C → P(x)). (9.10)

Indeed, the following figure (where e0 = εx P(x)) is a derivation, and one application
of (9.9) yields (9.10).

C ⇒ C

∃x P(x) ⇒ e0 ↓
P(e0) ⇒ C → P(e0)

∃x P(x) ⇒ C → P(e0)
∃x P(x) ⇒ ∃x(C → P(x))

C, C → P(e) ⇒ P(e)
C, ∃x(C → P(x)) ⇒ P(e)

C, ∃x P(x) ⇒ P(e)
C → ∃x P(x), C ⇒ P(e)

C → ∃x P(x) ⇒ C → P(e)
(9.11)

We continue the proof of soundness. The proofs of the next lemmata are routine.

Lemma 9.1 Let t be a closed term, A a closed formula with constants from D. Then

w ≤ w′ → (t↓w → t↓w′& (w |= A → w′ |= A))

Proof Simultaneous induction on t, A.

Lemma 9.2 If � is a set of formulas, G a formula then � � G in IPCε implies
� |= G.

Proof Induction on derivations. Checking the rule ∃ ⇒ uses the fact that ∃x A(x)

implies εx A(x) ↓. It may be interesting to check whether any other properties of the
formula t↓ are used. �

Theorem 9.2 If A, B are formulas without ε-symbol then A � B in IPCε implies
A � B in intuitionistic predicate logic IPC.

Proof We need to prove that for every Kripke model

M0 = (W,<, D, |=0)

for intutionistic predicate logic refuting A → B there is an IPCε-model refuting
A → B. Before applying the construction from Dragalin (1974), let us recall a
refinement of a completeness theorem for intuitionistic predicate logic IPC.

Lemma 9.3 The following additional requirements to the definition of a Kripke
frame (W,<, D) for IPC are still complete:

1. W is a countable tree with a root 0 such that each w ∈ W except 0 has unique
immediate <-predecessor and the number of predecessors of w is finite.
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2. domains D(w) are strictly increasing: if w < w′ then D(w) is a proper subset of
D(w′).

Proof The requirement 1 is satisfied by the canonical proof search tree for a given
sequent, see for example Mints (2000). To satisfy the second requirement, note that
an infinite branch of the canonical proof search tree does not have “leaf worlds”:
for every w ∈ W there exists a w′ > w. Now take a fixed element e ∈ D(w0) and
duplicate it by a fresh element, say ew in every world w. More precisely for the new
domain function D′ define

ew ∈ D′(w) − D′(w−),

wherew− is the immediate predecessor ofw. Let’s extend the relation |= by identify-
ing ew and e, more precisely define for atomic formulas P(c1, . . . , cn)with constants
ci ∈ D′(w)

w |= P(c1, . . . , cn) := w |= P(c−
1 , . . . , c−

n )

where c−
i = e, if ci = ew and c−

i = ci otherwise. It is easily proved by induction on
formulas that this property extends to all formulas:

w |= A(c1, . . . , cn) implies w |= A(c−
1 , . . . , c−

n )

so that the new model verifies (and refutes) the same formulas. �
Proof of the Theorem 9.2. We extend the model for IPC satisfying the previous

Lemma by the definition of values for ε-terms without changing domains D(w),
which is done by induction on construction of the term. Assume that the elements of
D are well-ordered by a relation ≺ in some arbitrary way. In view of the condition
(9.7) it enough to define V (εx A, w) when εx A does not have proper non-closed
ε-subterms. In that case,

if εx A(x) ↓ w, take the <-minimal element v ≤ w such that εx A ↓ v, then
define

V (εx A(x), w) := the ≺ −first d ∈ D(v)(v |= (∃x A(x) → A(d)))

If not εx A(x) ↓ w, define V (εx A(x), w) as the ≺-first d ∈ D − D(w). �

9.4 Completeness Proof for IPCε

Weprove that removing condition (9.6) but preserving familiarmonotonicity require-
ment

w ≤ w′ → (w |= A → w′ |= A) (9.12)

leads to a complete semantics for IPCε.
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For simplicity consider term models where individual domain D(w) for every
world w consists of terms, and the evaluation function for terms is identity: value of
a term t is t . In particular the value of εx A is εx A.

Definition 9.3 An intuitionistic Kripke (term) ε-model (or simply ε-model)

M = (W,<, D, |=, V )

has to satisfy the following conditions.
(W,<) is a Kripke frame with a strict partial ordering <,
D is a domain function assigning to every w ∈ W a non-empty set D(w) (of

terms) monotone with respect to <,
w |= A is a relation between worlds w and atomic formulas A with constants

from

D := ∪w∈W D(w)

monotonic with respect to ≤ .
V is a valuation function assigning a constant V (e, w) ∈ D to any ε-term e

(possibly containing constants from D) and w ∈ W . (In a term model V (e, w) = e.)
The relation |= is extended to composite formulas in the familiar way. The com-

ponents of an ε-model have to satisfy the following conditions.

V (εx B(x, εyC), w) = V (εx B(x, V (εyC, w)),w) (9.13)

w |= A(εyC) ↔ w |= A(x, V (εyC)) (9.14)

where substitution of εyC is safe, that is no free variable of εyC becomes bound.
Also if e ↓ w for a term e := εx A(x), then

V (e, w) ∈ D(w) and V (e, w′) = V (e, w) for every w′ ≥ w.

Let’s present a completeness proof along familiar lines.

Definition 9.4 An infinite sequent is a pair of sets �,� of formulas such that there
is an infinite number of variables not in � ∪ �. An infinite sequent w is written as
� ⇒ � and notation

wa := �, ws := �

is used for its antecedent and succedent.
Lw denotes the set of all terms and formulas with free variables and constants

occurring in formulas of w.
D(w) is the set of all terms t ∈ Lw such that (t↓) ∈ wa . In other worlds D(w)

consists of all free variables and constants in w plus all ε-terms εx A(x) such that
∃y(∃x A(x) → A(y)) ∈ wa .



9 Intuitionistic Existential Instantiation and Epsilon Symbol 233

An infinite sequent w is consistent, if it is underivable, that is if no finite sequent
� ⇒ � with � ⊂ wa, � ⊂ ws is derivable in IPCε.

A consistent infinite sequent w is maximal consistent if wa ∪ ws is the whole set
of formulas in Lw.

Lemma 9.4 Every consistent infinite sequent w0 can be extended to a maximal
consistent sequent.

Proof Enumerate all formulas containing only free variables and constants in Lw0 ,
then add them one by one to wa or ws preserving consistency. At the n-th stage
of this process a sequent wn , an extension of w0 by a finite number of formulas is
generated.

It cannot happen that at some stage n of this process a formula A fits none of
wn

a , wn
s , i.e., both of

wn
a ⇒ wn

s , An An, wn
a ⇒ wn

s

are inconsistent, since in that case wn
a ⇒ wn

s is inconsistent by a cut rule. �

Important example. If w is ∀x P(x) ⇒ P(εx Q(x)) with P �= Q, and the first
“undecided” formula is ∃y(∃x Q(x) → Q(y)) then this formula is added to the
succedent, since adding it to the antecedent results in an inconsistent sequent.

Lemma 9.5 Every maximal consistent infinite sequent w is closed under invertible
rules of multiple-succedent version of IPCε, that is under all rules except ⇒ ∀,⇒→.
More precisely

(A&B) ∈ wa implies A ∈ wa and B ∈ wa,

(A → B) ∈ wa implies A ∈ ws or B ∈ wa,

(A ∨ B) ∈ wa implies A ∈ wa or B ∈ wa,

(∀x A(x)) ∈ wa implies (∀t ∈ D(w))(A(t) ∈ wa)

(∃x A(x)) ∈ wa implies A(εx A(x)) ∈ wa

(A ∨ B) ∈ ws implies A ∈ wa and B ∈ wa,

(A&B) ∈ ws implies A ∈ wa or B ∈ wa,

(∃x A(x)) ∈ ws implies (∀t ∈ D(w))(A(t) ∈ ws)

Proof Suppose (A&B) ∈ wa . If A �∈ wa then by maximality A ∈ ws . Therefore w

is inconsistent.
Suppose ∀x A ∈ wa . If A(t) �∈ wa for some t ∈ D(w) then by maximality

A(t) ∈ ws . Therefore ∀x A ⇒ A(t) is derived by one application of the ∀ ⇒-rule,
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and hence w is inconsistent. Note that additional premise t↓ of this rule is available
by t ∈ D(w).

Other cases are similar. �

Definition 9.5 For infinite sequents w,w′ define

w < w′ iff wa ⊆ w′
a and D(w) ⊆ D(w′)

Lemma 9.6 The set of maximal consistent sequents is closed under non-invertible
rules ⇒→,⇒ ∀. More precisely,

For every maximal consistent sequent w, if (A → B) ∈ ws then there exists a
maximal consistent sequent w′ > w with A ∈ w′

a, B ∈ w′
s .

For every maximal consistent sequent w, if ∀x A(x) ∈ ws then there exists a
maximal consistent sequent w′ > w with A(a) ∈ w′

s for some variable a, a ∈ D(w′).

Proof If (A → B) ∈ ws then the sequent A, wa ⇒ B is consistent, since otherwise
one application of the rule⇒→ leads to inconsistency ofw. Now extend A, wa ⇒ B
to a complete consistent sequent.

If ∀x A(x) ∈ ws then the sequent wa ⇒ A(a) for a fresh variable a is consistent,
since otherwise one application of the rule ⇒ ∀ leads to inconsistency of w. Now
extend A, wa ⇒ B to a complete consistent sequent. �

Definition 9.6 (Canonical model) Consider the following model

M = (W,<, V, |=).

W is the set of all maximal complete sequents, <, V are as above,
w |= A iff A ∈ wa for atomic formulas A.

This definition implies that w �|= A for atomic A ∈ ws , since otherwise w is incon-
sistent.

Lemma 9.7 The relation |= for atomic formulas and the function D is monotonic.

Proof Consider only D(w). Let w < w′. All variables and constants in D(w) are
in D(w′) by the definition of <. Assume εx A(x) ∈ D(w), that is εx A(x) ↓ ∈ wa .
Then εx A(x) ↓∈ w′

a by w < w′, and hence εx A(x) ∈ D(w′). �

Lemma 9.8 For every formula A ∈ Lw

1. A ∈ wa implies w |= A,
2. A ∈ ws implies w �|= A,

Proof Induction on formulas using Lemmata 9.5 and 9.6. For example, if A&B ∈ wa

then A, B ∈ wa , therefore w |= A, w |= B by induction hypothesis, and hence
w |= A&B.

If ∀x A ∈ ws then there exists w′ > w such that A(a) ∈ w′
s for some variable

a ∈ D(w′). Therefore w′ �|= A(a) and hence w �|= ∀x A(x). �
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Theorem 9.3 The system IPCε is sound and complete.

Proof Soundness is checked as before. For completeness take an arbitrary underiv-
able formula A, then extend sequent ⇒ A to a maximal consistent set w. By the
previous Lemma w �|= A. �

9.4.1 About a Cut-Free Formulation

It is plausible that the completeness proof for the rules with cut given above can
be modified to provide completeness of a cut-free formulation. As our example
(9.11) shows, complete cut-elimination is impossible. One may need to admit cuts
for formulas of the form εx A(x) ↓ where εx A(x) occurs in the conclusion, and
subformulas of such formulas. The following proof where e := εx P(x) is another
example.

∃x P(x) ⇒ e ↓ ¬P(e), P(e), ∃x P(x) ⇒ P(0)
∀x¬P(x), P(e), ∃x P(x) ⇒ P(0)

∀x¬P(x), P(e) ⇒ ∃x P(x) → P(0)
∀x¬P(x), P(e) ⇒ ∃y(∃x P(x) → P(y))

e ↓⇒ e ↓ ¬P(e), P(e) ⇒
e ↓,∀x¬P(x), P(e) ⇒

∀x¬P(x), P(e) ⇒

9.5 Comparison with Previous Work

9.5.1 System I PC�ε

Let ∃εx A(x) := ∃x A(x).
A. Dragalin’s system I PC�ε from Dragalin (1974) for a given language �ε is

obtained by weakening familiar axioms for quantifiers

(εQ1) ∃t&∀x A(x) → A(t)

(εQ2) ∃t&A(t) → ∃x A(x)

and adding the axiom

∃x A(x) → A(εx A(x))

A. Dragalin (Dragalin 1974) tried to avoid as much as possible dealing with a value
of an ε-term in a world w where the term is not defined. Values (in a given world w)
are assigned only to ε-terms defined in w, and many intermediate results are proved
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only for the case when all relevant ε-terms are defined. Nevertheless soundness is
established for all formulas, without any restrictions. As pointed out earlier, this
system is not complete.

In Sect. 9.3 we changed the definition of a model from Dragalin (1974) to a more
uniform version: ε-term e which is not defined at the world w is assigned a value
at w, but this value does not belong to the individual domain D(w). To make this
possible, the Kripke frame underlying the model and the domain function should
satisfy additional conditions that still guarantee completeness.

Let us consider other systems in the literature.

9.5.2 Systems with ∃ y(∃x A(x) → A( y)) as Existence Condition

In systems due to Maehara (1970) and Shirai (1971), instead of using ∃x A(x) as a
discriminating criterion, a weaker formula ∃y(∃x A(x) → A(y)) is employed. This
still allows to anticipate a correct future value of the term εx A(x) in a world w even
if ∃x A(x) fails in w.

Sh. Maehara treats a weaker language than ours: εx A(x) is a syntactically correct
term only if it is closed. He proves (using partial cut-elimination and other syntactic
transformations) conservativity over IPC of the rules

�, ∃x A(x) A(εx A(x)),� ⇒ G
�,� ⇒ G

∃ε

� ⇒ t↓ F(t),� ⇒ G
∀zF(z), �,� ⇒ G

� ⇒ t↓ � → F(t)
�,� ⇒ ∃zF(z) (9.15)

where

εx A(x) ↓:= ∃y(∃x A(x) → A(y)); a ↓:= � (9.16)

Here � is the constant true, a is an arbitrary variable.
Note that the first of these rules contains a hidden cut. This conservativity result

is used to establish a kind of completeness theorem for IPC over a modification of
Kripke semantics, although this modification is not stated explicitly. More precisely,
Sh.Maehara proves Kripke-style soundness and completeness results for the relation
A ∈ α between formulas A and complete consistent (in his sense) subsets α of the
set of formulas. Only his condition for ∀ is not standard:

∀x A(x) ∈ α ↔ (∃B)(B ∈ α&∀β∀t[B ∈ β → (t ∈ Dβ → A(t) ∈ β)])
To establish this condition he uses admissibility of the following rule in his system:

∃y(∃x¬A(x) → ¬A(y)) → A(x
¯
¬A(x))

∀x A(x)
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This rules approximates equivalence

∀x A(x) ↔ A(εx¬A(x))

which is valid only classically.
Shirai (1971) removes the restriction to closed ε-terms. He considers a language

with the existence predicate denote by D. Instead of the rules used by Maehara he
considers the following axioms:

D(t), ∃y(∃x A(x, t) → A(y, t) ⇒ D(εx A(x)) (9.17)

D(t), ∃x A(x, t) ⇒ A(εx A(x, t), t)

plus standard modifications of quantifier rules for the system with existence predi-
cate D.

He proves conservativity of his system over IPC by a combination of a partial
cut-elimination and Maehara’s argument.

Leivant (1973) and Smirnov (1979) define logical systems with ε-symbol conser-
vative over IPC by requiring that assumptions discharged in natural deduction rules
contain no ε-symbol. These systems are probably much weaker than IPCε. The sys-
tem introduced by the author (Mints 1974) is certainly weaker than IPCε: a sequent
containing subterm εx A(x, y) with a bound variable y is syntactically correct only
provided ∀y∃x A(x, y) is a member of the antecedent.

9.6 Further Work

Complete the proof of cut-elimination for IPCε and of the normal form theorem for
NJε.

Give a syntactic proof of cut-elimination for IPCε and of normalization for NJε.
Provide a semantics for the systems by Maehara (1970) and Shirai (1971) and

find out whether these systems admit cut-elimination. It seems that the system by
Shirai provides the most general formulation of the idea that ε-terms are partially
defined in some arbitrary way. The restriction D(t) allowing to quantify over value
of t can be an arbitrary predicate with the only condition (9.17).
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