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Abstract Electric load forecasting is a real-life problem in industry. Electricity
supplier’s use forecasting models to predict the load demand of their customers to
increase/decrease the power generated and to minimize the operating costs of
producing electricity. This paper presents the development and the implementation
of three new electricity demand-forecasting models using the adaptive neuro-fuzzy
inference system (ANFIS) approach in parallel load series. The input-output data
pairs used are the real-time quart-hourly metropolitan France electricity load
obtained from the RTE website and forecasts are done for lead-time of a 1 h ahead.
Results and forecasting performance obtained reveal the effectiveness of the third
proposed approach and shows that 56 % of the forecasted loads have an APE
(absolute percentage error) under 0.5, and an APE under one was achieved for
about 80 % of cases. Which mean that it is possible to build a high accuracy model
with less historical data using a combination of neural network and fuzzy logic.

1 Introduction

Forecasting electric load consumption is one of the most important areas in
electrical engineering, due to its main role for the effectiveness and economical
operation in power systems. It has become a major task for many researchers.
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The common approach is to analyse time series data of load consumption and
temperature to modelling and to explain the series [30]. The intuition underlying
time-series processes is that the future behavior of variables is related to its past
values, both actual and predicted, with some adaptation/adjustment built-into take
care of how past realizations deviated from those expected. The temporal fore-
casting can be broadly divided into 4 types:

• Very Short term (from few minutes to a 1 h).
• Short term (from 1 h to a week).
• Medium term (from a week to a year).
• Long term (from a year to several years).

Long term prediction is normally used for planning the growth of the generation
capacity. This long term forecasting is used to decide whether to build new lines
and sub-stations or to upgrade the existing systems. Medium-term load forecast is
used to meet the load requirements at the height of the winter or the summer season
and may require a load forecast to be made a few days to few weeks (or) few
months in advance.

In STLF, the forecast calculates the estimated load for each hour of the day, the
daily peak load and the daily/weekly energy generation. Many operations like real
time generation control, security analysis, spinning reserve allocation, energy
interchanges with other utilities, and energy transactions planning are done based
on STLF.

Economic and reliable operation of an electric utility depends to a significant
extent on the accuracy of the load forecast. The load dispatcher at main dispatch
center must anticipate the load pattern well in advance so as to have sufficient
generation to meet the customer requirements. Over estimation may cause the
startup of too many generating units and lead to an unnecessary increase in the
reserve and the operating costs. Underestimation of the load forecasts results in
failure to provide the required spinning and standby reserve and stability to the
system, which may lead into collapse of the power system network [1]. Load
forecast errors can yield suboptimal unit commitment decisions. Hence, correct
forecasting of the load is an essential element in power system.

In a deregulated, competitive power market, utilities tend to maintain their
generation reserve close to the minimum required by an independent system
operator. This creates a need for an accurate instantaneous-load forecast for the next
several minutes. Accurate forecasts, referred to as very short-term load forecasts
ease the problem of generation and load management to a great extent. These
forecasts, integrated with the information about scheduled wheeling transactions,
transmission availability, generation cost, spot market energy pricing, and spinning
reserve requirements imposed by an independent system operator, are used to
determine the best strategy for the utility resources. Very short-term load fore-
casting has become of much greater importance in today’s deregulated power
industry [5, 36].

A wide variety of techniques has been studied in the literature of short-term load
forecasting [20]. For example, time series analysis (ARMA, ARIMA,ARMAX…etc.)
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[4, 19], regression approach [34], exponential smoothing technique [44], artificial
neural networks methods [35], hybrid approaches based on evolutionary algorithms
[12] …etc.

The nature of electrical load forecasting problem is well suited to the technology
of artificial neural networks (ANN) as they can model the complex non-linear
relationships through a learning process involving historical data trends. Therefore,
several studies in recent years have examined the application of ANN for short-term
load forecasting [26].

Recently, hybrid neuro-fuzzy models have received a considerable attention
from researchers in the field of short-term load forecasting [29, 30, 33]. Further-
more, the neuro-fuzzy approach attempts to exploit the merits of both neural-
network and fuzzy-logic-based modeling techniques. For example, the fuzzy
models are based on fuzzy IF-THEN rules and are, to a certain degree, transparent
to interpretation and analysis, whereas the neural-networks based black-box model
has a unique learning ability [32]. While building a FIS, the fuzzy sets, fuzzy
operators, and the knowledge base are required to be specified. To implement an
ANN for a specific application the architecture and learning algorithm are required.
The drawbacks in these approaches appear complementary and consequently it is
natural to consider implementing an integrated system combining the neuro-fuzzy
concepts [41].

Nevertheless, very short-term load demand forecasting methods based on neuro-
fuzzy approach are not so numerous [9, 10]. Therefore, this lack has motivated us to
provide this paper to the development and the implementation of adaptive neuro-
fuzzy inference system models devoted to VSTLF.

The paper is organized as follows. Section 2 is proposed to summarize very
short-term load forecasting methods. Section 3 is devoted to the description of the
ANFIS architecture. Section 4 describes the proposed estimation methods. Sec-
tion 5 provides and explains forecasting results. Finally, Sect. 6 concludes the
paper.

2 Overview of Very Short Term Load Forecasting Methods

Very short-term load forecasting (VSTLF) predicts the loads in electric power
system 1 h into the future in steps of a few minutes in a moving window manner.
Depending on the electric utilities, used data in VSTLF could be of, minute-by-
minute basis [27, 43], 5-min intervals [11, 16, 17, 40], 15 min steps [6, 31], or a
half-hourly intervals [24, 25].

Methods for very short-term load forecasting are limited. Existing methods
include time series analysis, exponential smoothing, neural network (NN), fuzzy
logic, adaptive Neuro-Fuzzy inference system, Kalman filtering, and Support
Vector Regression. Usually, weather conditions in very short-term load forecasting
are ignored because of the large time constant of load as a function of weather. The
representative methods will be briefly reviewed in this Section.
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2.1 Time Series Models

Time series models are based on the assumption that the data have an internal
structure, such as autocorrelation, trend or seasonal variation. The forecasting
methods detect and explore such a structure. A time series model includes:

• Autoregressive Model (AR)
• Moving Average Model (MA)
• Autoregressive Moving Average Model (ARMA)
• Autoregressive Integrated Moving Average model (ARIMA)
• Autoregressive Moving Average Model with exogenous inputs model

(ARMAX)
• Autoregressive Integrated Moving Average with Explanatory Variable

ARIMAX)

However, the most popular Time series models used in VSTLF are the auto-
regressive model [27], and the Autoregressive integrated moving average model
[25].

2.2 Exponential Smoothing

The exponential smoothing approach is particularly convenient for short-time
forecasting. Although it also employs weighting factors for past values, the
weighting factors here decay exponentially with distance of the past values of
the time series from the present time. This enables a compact formulation of the
forecasting algorithm in which only a few most recent data are required and less
calculation are needed. Principally, there are three exponential smoothing tech-
niques, named simple, double and triple exponential smoothing technique. Simple
exponential smoothing method is applied to short-term forecasting for time series
without trend and seasonality. Double exponential smoothing is used in time series
that contains a trend. For seasonal time series, the third technique, which known as
Holt-winters method is useful because it can capture both trend and seasonality. For
VSTLF, Holt winters technique is the mostly used [25, 31, 37, 43].

2.3 Neural Network

Neural networks (NN) assume a functional relationship between load and affecting
factors, and estimate the functional coefficients by using historical data. There are
many types of neural networks including the multilayer perceptron network (MLP),
self-organizing network and Hopfield’s recurrent network [27]. Based on learning
strategies, neural network methods for load forecasting can be classified into two
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groups. The first one is a supervised neural network that adjusts its weights
according to the error between pre-tested and desired output. The second are
methods based on unsupervised learning algorithm. Generally, methods based on
supervised learning algorithm like a feed forward multilayer perceptron are used.

Although MLP is a classical model, it is still the most favorite ANN architecture
in forecasting applications. The structure of MLP consists of input layer, hidden
layer, and output nodes connected in a feed-forward fashion via multiplicative
weights. Inputs are multiplied by connection weights and passed on to the neurons
in hidden layer nodes. The neurons in hidden and output layer nodes have a transfer
function. The inputs to hidden layer are passed through a transfer function to
produce output. ANN would learn from experience and is trained with back-
propagation and supervised learning algorithm. The proper selection of training
data improves the efficiency of ANN [8].

Most neural network methods for VSTLF use inputs e.g., time index, load of
previous hour, load of the yesterday and previous week with same hour and
weekday index to the target hour [5, 15, 39]. Chen and York [7] have presented a
neural network based very short-term load prediction. Results indicated that under
normal situations, forecasted minutely load values by NN-based VSTLP for the
future 15 min are provided with good accuracy on the whole as well as for the worst
cases.

2.4 Fuzzy Logic

Fuzzy logic is a generalization of Boolean logic; it can identify and approximate
any unknown nonlinear dynamic systems on the compact set to arbitrary accuracy.
However, model based on fuzzy logic are robust in forecasting because there are no
need to mathematical formulation between system inputs and outputs. A defuzzifi-
cation process is used to produce the desired output after processing logic inputs.
A fuzzy logic system was implemented in the paper of Liu et al. [27] by drawing
similarities in load trend (e.g., between weekdays and weekdays) from a huge of
data. A pattern database generated via effective training was then used to predict the
load change. The preliminary study shows that it is feasible to design a simple,
satisfactory dynamic forecaster to predict the very short-term load trends on-line
using fuzzy logic. The performances of FL-based forecaster are much superior to
the one of AR-based forecaster.

2.5 Adaptive Neuro-fuzzy Inference System (ANFIS)

An adaptive Neuro-Fuzzy inference system is a combination of an artificial neural
network and a fuzzy inference system. It is a fuzzy Takagi-Sugeno model put in the
framework of adaptive systems to facilitate learning and adaptation [21].
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An artificial neural network is designed to mimic the characteristics of the human
brain and consists of a collection of artificial neurons. An adaptive network is a
multi-layer feed-forward network in which each node (neuron) performs a particular
function on incoming signals. The form of the node functions may vary from node
to node. In an adaptive network, there are two types of nodes: adaptive and fixed.
The function and the grouping of the neurons are dependent on the overall function
of the network. However, the ANFIS network is composed of five layers. Each
layer contains some nodes described by the node function. A few layers have the
same number of nodes, and nodes in the same layer have similar functions.

de Andrade and da Silva [10] have presented the use of ANFIS for very short-
term load demand forecasting, with the aim to regulate the demand and supply of
electrical energy in order to minimize the fluctuations and to avoid undesirable
disturbances in power systems operations. Used time series measured, in 5 min
intervals, were collected from substations located in Cordeirópolis and Ubatuba,
cities located in the countryside and seaside of São Paulo state, respectively.
Authors denoted that a higher number of epochs didn’t present better performance
of ANFIS. The experimental results demonstrate that ANFIS is a good tool for
forecasting one-step forward for very short-term load demand.

2.6 Kalman Filtering

The Kalman filtering (KF) algorithm is a robust tracking algorithm that has long
been applied to many engineering fields such as radar tracking. In load forecasting,
it is introduced to estimate the optimal load forecast parameters and overcome the
unknown disturbance in the linear part of the systems during load prediction [48].

Very short-term load prediction in [45] was done using slow and fast Kalman
estimators and an hourly forecaster. The Kalman model parameters are determined
by matching the frequency response of the estimator to the load residuals. The
methodology was applied to load data taken from the portion of the western North
American power system operated by the BPA.

Guan et al. [18] have presented a method of wavelet neural networks trained by
hybrid Kalman filters to produce very short-term forecasting with prediction
interval estimates online. Testing results demonstrate the effectiveness of hybrid
Kalman filters for capturing different features of load components, and the accuracy
of the overall variance estimate derived based on a data set from ISO New England.

2.7 Support Vector Regression

Support vector machines (SVM) method, which was proposed by Vapnik [46], is
used to solve the pattern recognition problems by determining a hyperplane that
separates positive and negative examples, by optimization of the separation margin
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between them [32]. Later Vapnik promotes the SVM method to deal with the
function fitting problems in 1998, which forms the support vector regression (SVR)
method [47]. SVR produces a decision boundary that can be expressed in terms of a
few support vectors and can be used with kernel functions to create complex
nonlinear decision boundaries. Similarly to linear regression, SVR tries to find a
function that best fits the training data.

Setiawan et al. [38] have presented a new approach for the very short-term
electricity load demand forecasting using SVR. Support vector regression was
applied to predict the load demand every 5 min based on historical data from the
Australian electricity operator NEMMCO for 2006–2008. The results showed that
SVR is a very promising prediction model, outperforming the back propagation
neural networks (BPNN) prediction algorithms, which is widely used by both
industry forecasters and researchers.

3 Adaptive Neuro-fuzzy Inference System

The hybrid neuro-fuzzy approach is a way to create a fuzzy model from data by
some kind of learning method that is motivated by learning algorithms used in
neural networks. This considerably reduces development time and cost while
improving the accuracy of the resulting fuzzy model. Thus, neuro-fuzzy systems are
basically adaptive fuzzy systems developed by exploiting the similarities between
fuzzy systems and certain forms of neural networks, which fall in the class of
generalized local methods. Therefore, the performance of a neuro-fuzzy system can
also be represented by a set of humanly understandable rules or by a combination of
localized basis functions associated with local models, making them an ideal
framework to perform nonlinear predictive modeling. However, there are some
ways to mix neural networks and fuzzy logic. Consequently, three main categories
characterize these technologies: fuzzy neural networks, neural fuzzy systems and
fuzzy-neural hybrid systems [2, 3]. In the last approach, both neural networks and
fuzzy logic are used independently, becoming, in this sense, a hybrid system.

An adaptive Neuro-Fuzzy inference system is a cross between an artificial neural
network and a fuzzy inference system. An artificial neural network is designed to
mimic the characteristics of the human brain and consists of a collection of artificial
neurons. Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the most
successful schemes which combine the benefits of these two powerful paradigms
into a single capsule [21]. An ANFIS works by applying neural learning rules to
identify and tune the parameters and structure of a Fuzzy Inference System (FIS).
There are several features of the ANFIS which enable it to achieve great success in
a wide range of scientific applications. The attractive features of an ANFIS include:
easy to implement, fast and accurate learning, strong generalization abilities,
excellent explanation facilities through fuzzy rules, and easy to incorporate both
linguistic and numeric knowledge for problem solving [22]. According to the
neuro-fuzzy approach, a neural network is proposed to implement the fuzzy system,
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so that structure and parameter identification of the fuzzy rule base are accom-
plished by defining, adapting and optimizing the topology and the parameters of the
corresponding neuro-fuzzy network, based only on the available data. The network
can be regarded both as an adaptive fuzzy inference system with the capability of
learning fuzzy rules from data, and as a connectionist architecture provided with
linguistic meaning [2, 3].

3.1 Architecture of ANFIS

An adaptive Neuro-Fuzzy inference system implements a Takagi–Sugeno FIS, and
uses a multilayer network that consists of five layers in which each node (neuron)
performs a particular function on incoming signals. The form of the node functions
may vary from node to node. In an adaptive network, there are two types of nodes:
adaptive and fixed. The function and the grouping of the neurons are dependent on
the overall function of the network.

A hybrid-learning algorithm proposed by Jang trains generally the ANFIS
system [21]. This algorithm uses back-propagation learning to determine the
parameters related to membership functions and least mean square estimation to
determine the consequent parameters [41]. The role of training algorithm is tuning
all the modifiable parameters to make the ANFIS output match the training data
[30]. For representation, Fig. 1 shows an ANFIS with two inputs x1 and x2 and one
output y, each variable has two fuzzy sets A1;A2;B1 and B2, circle indicates a fixed
node, whereas a square indicates an adaptive node. Then a first order Takagi-
Sugeno-type fuzzy if-then rule (Fig. 2) could be set up as

Rule 1 : if x1 is A1 and x2 and B1; Then f1 ¼ f1ðx1; x2Þ ¼ a1x1 þ b1x2 þ c1 ð1Þ

Fig. 1 ANFIS architecture
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Rule 2 : if x1 is A2 and x2 is B2; Then f2 ¼ f2ðx1; x2Þ ¼ a2x1 þ b2x2 þ c2 ð2Þ

fi are the outputs within the fuzzy region specified by the Fuzzy rule, ai; bi; cif g are
the design parameters that are determined during the training process. Some layers
of ANFIS have the same number of nodes, and nodes in the same layer have similar
functions: Layer 1: Every node i in this layer is an adaptive node. The outputs of
layer 1 are the fuzzy membership grade of the inputs, which are given by:

O1
i;1 ¼ lAi

x1ð Þ; i ¼ 1; 2 ð3Þ

O1
i;2 ¼ lBi

x2ð Þ; i ¼ 1; 2 ð4Þ

It other words, O1
i;1 is the membership function of Ai, and it specifies the degree to

which the given input satisfies the quantifier Ai. lAi
x1ð Þ and lBi

x2ð Þ can adopt any
fuzzy membership function. However, the most commonly used are Bell shaped
and Gaussian membership functions. For example, if the bell shaped membership
function is employed, lAi

x1ð Þ is given by:

lAi
x1ð Þ ¼ 1

1þ x1�ci
ai

� �2
� �bi

ð5Þ

Where ai; bi and ci are the parameters of the membership function, governing the
bell shaped functions accordingly. Layer 2: Every node in this layer is a circle node
labeled Π, which multiplies the incoming signals and sends the product out. The
Fuzzy operators are applied in this layer to compute the rule antecedent part [30].
The output of nodes in this layer can be presented as:

wi ¼ lAi
x1ð Þ � lBi

x2ð Þ i ¼ 1; 2 ð6Þ

Fig. 2 A two input first order Sugeno fuzzy model with two rules
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Layer 3: The fuzzy rule base is normalized in the third hidden layer. Every node in
this layer is a circle node labeled N. The ith node calculates the ratio of the ith rule’s
firing strength to the sum of all rules’ firing strengths:

vi ¼ wi

w1 þ w2
; i ¼ 1; 2 ð7Þ

Layer 4: Every node i in this layer is a square node with a node function:

O4
i ¼ vi � fi ¼ vi aix1 þ bix2 þ cið Þ i ¼ 1; 2 ð8Þ

Layer 5: Finally, layer five, consisting of circle node labeled with ∑ is the sum-
mation of all incoming signals. Hence, the overall output of the model is given by:

O5
i ¼

X2
i¼1

vi � fi ¼
P2

i¼1 wi � fiP2
i¼1 wi

ð9Þ

3.2 Learning Algorithm of ANFIS

The hybrid-learning algorithm of ANFIS proposed by Jang et al. [23] is a com-
bination of Steepest Descent and Least Squares Estimate Learning algorithm. Let
the total set of parameters be S and let S1 denote the premise parameters and S2
denote the consequent parameters. The premise parameters are known as nonlinear
parameters and the consequent parameters are known as linear parameters. The
ANFIS uses a two pass learning algorithm: forward pass and backward pass. In
forward pass the premise parameters are not modified and the consequent param-
eters are computed using the Least Squares Estimate Learning algorithm [28].

In backward pass, the consequent parameters are not modified and the premise
parameters are computed using the gradient descent algorithm. Based on these two
learning algorithms, ANFIS adapts the parameters in the adaptive network. The task
of training algorithm for this architecture is tuning all the modifiable parameters to
make the ANFIS output match the training data. Note here that ai, bi and ci describe
the sigma, slope and the center of the bell MF’s, respectively. If these parameters
are fixed, the output of the network becomes:

f ¼ w1

w1 þ w2
f1 þ w2

w1 þ w2
f2 ð10Þ

Substituting Eq. (7) into Eq. (10) yields:
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f ¼ v1 � f1 þ v2 � f2 ð11Þ

Substituting the fuzzy if-then rules into Eq. (11), it becomes:

f ¼ v1 a1x1 þ b1x2 þ c1ð Þ þ v2 a2x1 þ b2x2 þ c2ð Þ ð12Þ

After rearrangement, the output can be expressed as:

f ¼ v1x1ð Þ � a1 þ v1x2ð Þ � b1 þ v1ð Þ � c1 þ v2x1ð Þ � a2 þ v2x2ð Þ � b2 þ v2ð Þ � c2 ð13Þ

This is a linear combination of the modifiable parameters. For this observation,
we can divide the parameter set S into two sets:

S = S1 ⊕ S2
S = set of total parameters,
S1 = set of premise (nonlinear) parameters,
S2 = set of consequent (linear) parameters
⊕: Direct sum
For the forward path (see Fig. 2), we can apply least square method to identify

the consequent parameters. Now for a given set of values of S1, we can plug
training data and obtain a matrix equation:

AH ¼ y ð14Þ

where H contains the unknown parameters in S2. This is a linear square problem,
and the solution for Θ, which is minimizes AH ¼ yk k, is the least square estimator:

H� ¼ ATA
� ��1

ATy ð15Þ

we can use also recursive least square estimator in case of on-line training. For the
backward path (see Fig. 2), the error signals propagate backward. The premise
parameters are updated by descent method, through minimising the overall qua-
dratic cost function:

J Hð Þ ¼ 1
2

XN
N¼1

yðkÞ � y_ðk;HÞ
h i2

ð16Þ

In a recursive manner with respect Θ(S2). The update of the parameters in the ith

node in layer Lth layer can be written as:
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ĤiðkÞ ¼ Ĥ
L
i ðk � 1Þ þ g

oþEðkÞ
oĤ

L
i ðkÞ

ð17Þ

where η is the learning rate and the gradient vector.

oþE

oĤ
L
i

¼ eL;i
o ẑL;i

oĤ
L
i

ð18Þ

o ẑL;i being the node’s output and eL;i is the backpropagated error signal.
Figure 3 presents the ANFIS activities in each pass. As discussed earlier, the

consequent parameters thus identified are optimal under the condition that the
premise parameters are fixed.

The flow chart of training methodology of ANFIS system is shown in Fig. 4.
Usually, the modeling process starts by obtaining a data set (input-output data pairs)
and dividing it into training and checking data sets. Training data constitutes a pairs
of input and output vectors. In order to make data suitable for the training stage, this
data are normalized and used as the input and the outputs to train the ANFIS. Once
both training and checking data were presented to ANFIS, the FIS was selected to
have parameters associated with the minimum checking data model error. The
stopping criterion of ANFIS is the testing error when it became less than the
tolerance limit defining at the beginning of the training stage or by putting con-
straint on the number of learning iterations.

Fig. 3 ANFIS training
algorithm for adjusting
production rules parameters
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Fig. 4 Flow chart of training methodology of ANFIS system [2, 3]
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4 Proposed Methods

4.1 Load Data Treatment

Variations in electrical load are, among other things, time of the day dependent,
introducing a dilemma for the forecaster: whether to partition the data and use a
separate model for each specified time of the day (the parallel approach), or use a
single model (the sequential approach) [14].

In this work, the electrical load time series are separated in autonomous points.
A set of independent points means that the load at each quarter-hour of the day is
independent from the load at any other quarter-hour. These are called parallel series.
We propose three suggestions. The first is to split the French quart-hourly load data
into 96 parallel series, each series is composed by loads consumed at a specified
time of a distinctive day (Saturday, Sunday …, etc.). In the second, the parallel
series contain loads from all previous days consumed at a specified quarter-hour. In
the third, parallel load series are classified in three categories: Saturdays, Sundays,
workdays.

Data classification need some knowledge such as the identification of the first
day in the historical load data (Saturday, Sunday,…), the number of days in each
month, the number of days available in the historical load data. By effecting simple
If-Then statements, the parallel load series for each class can be extracted.

4.2 ANFIS Architecture

The proposed ANFIS model can be represented by seven steps:

Step 1: We select the day and the hour in which we would like to predict the load.
Hence, the four series of this hour, noted y(i), y(i + 1), y(i + 2) and y(i + 3),
represents the output of the ANFIS.

Step 2: As inputs, we creates seven parallel load series noted y(i − 1), y(i − 2), y
(i − 3), y(i − 4), y(i − 5), y(i − 6) and y(i − 7), and an input index x(i).
Hence, the inputs load series records loads consumed at previous nearest
quarter-hours.

Step 3: Then, we remove the last load value from inputs and outputs series, where
the last value of y(i), y(i + 1), y(i + 2) and y(i + 3) represents the load to be
forecasted. These new series are noted y(i)’, y(i + 1)’, y(i + 2)’, y(i + 3)’, y
(i − 1)’, y(i − 2)’, y(i − 3)’, y(i − 4)’, y(i − 5)’, y(i − 6)’, y(i − 7)’ and x(i)’.

Step 4: We performs now an exhaustive search within the available inputs to select
only one input vector that most influence in y(i)’. The exhaustive search
builds an ANFIS model, trains it for twenty epochs, and reports the per-
formance achieved. Selected model should provide the minimum RMSE in
the outputs predicting.

108 A. Laouafi et al.



Step 5: Selected input from the previous step is used then to generate and trains a
Sugeno FIS of two fuzzy rules, two sigmoid membership and twenty
epochs.

Step 6: At last, original input related to the selected input is used to predict the
load in y(i).

Step 7: We repeat then the two last previous steps in order to predict the desired
load in y(i + 1), y(i + 2) and y(i + 3).

However, we propose in the paper, three ANFIS models:

• Method 1: the electrical loads series in this method are obtained by imple-
menting the first classification.

• Method 2: the electrical loads series in this method are obtained by imple-
menting the second classification.

• Method 3: the electrical loads series in this method are obtained by imple-
menting the third classification.

5 Results and Discussion

All three methods are applied in the French real time load data. These data consists
of quart-hourly recording ranging from Sunday 07 April 2013 until Friday 28
February 2014, where the last month is used in a one-hour ahead forecasting. Used
data are represented by Fig. 5.

The graphical user interface developed for all three methods is represented by
Fig. 6. The essential function of this tool is to ensure, at any quarter-hour selected

Fig. 5 Quart-hourly French electric load time series from Sunday 07 April 2013 to 28 February
2014
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from the user, a 1-h ahead demand prediction. In addition, when actual values of the
load are available, the performance of forecasted loads could be verified using
different error measurement criteria. Moreover, the tool has the advantage, by
division the original data into 96 separated load series, to reduce the number of data
should be taken into consideration before predicting the load at the specified hour
and, and by the way reducing computational time.

To evaluate and compare the performance of the new proposed methods, fore-
casts are done along the month of February 2014. For each day in the selected
Month, first steps in the 1-h ahead prediction are 00:15, 01:15, 02:15… until 23:15.
Forecasts by Method 3 in the field “11:15 p.m. to 00:00” are based on the first
classification.

Results of three methods are represented in Figs. 7, 8 and 9. As shown in these
figures, the proposed ANFIS models have successfully predict the load over the
month of February 2014, and there is almost no different between predicted and real
load.

To evaluate the performance of developed models, we have used APE (Absolute
Percentage error), MAPE (Mean absolute percentage error) and RMSE (Root mean
square error) criteria. Evaluation results are summarized in Table 1.

APE ¼ ŷt � ytj j
yt

� 100 ð19Þ

Fig. 6 Developed forecasting tool for a 1-h ahead electric load forecasting using ANFIS
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Fig. 7 One-hour ahead forecasted load versus real load for method 1

Fig. 8 One-hour ahead forecasted load versus real load for method 2

Fig. 9 One-hour ahead forecasted load versus real load for method 3
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MAPE ¼ 1
n

Xn
m¼1

ŷt � ytj j
yt

� 100 ð20Þ

RMSE ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
m¼1

ðŷt � ytÞ2
s

ð21Þ

As shown in Table 1, all three methods achieve a high accuracy in the 1-h ahead
load forecasting. We can perceive that’s the accuracy of the second method
decrease in free days compared to in working days, this can be justified by the fact
that this model use loads from a specific quarter-hour in all previous days in the
historical load data. Here, we should note that the load in Saturday and Sunday is
very low compared to in working days. For example, if we would like to predict the
load at a specified quarter-hour in a Saturday using the second method, than latest
values of the parallel load series contains loads from previous nearest Monday until
the previous day (a Friday). These values effects the prediction because they are
height compared to the desired load in Saturday. This can be clearly observed in the
first method, which is based on intraday classification and the parallel series con-
tains load consumed at a specified quarter-hour in a typical day (Monday, Tuesday
…), where the accuracy of prediction in Saturdays and Sundays is not different
compared to in others days.

However, what is impressive; is that the number of data that should be taken into
account in the second method is seven times higher than the used in the first
method, while the obtained results clearly show that the first method is more
accurate than the second method. This demonstrates that, in addition to the selection
of an appropriate forecasting technique, classifying the historical data to extract
useful knowledge and patterns from large database also, affect on the forecasting
accuracy. Moreover, by classifying the data in the third method into three clusters:
Saturdays, Sundays and working days, the accuracy is increased, and it is superior
to that in the first and the second method.

Figure 10 represents the distribution of the maximum percentage error for three
methods. We can perceive that the proposed ANFIS methods have failed to predict
peaks consummation around 19:00 with a high accuracy, which make a real need in
this field, to propose a separate model for predicting the peak consumption, or to
train the ANFIS with more than one input. However, as shown if Fig. 11, for the
third proposed method, 56 % of the forecasted loads have an APE under 0.5 and an
APE under one was achieved for about 80 % of cases. Likewise, as demonstrate
Figs. 12 and 13, the first and the second method provide also a good accuracy in
most of time.

In addition to a robust model that assures a very high accuracy, time required in
the forecasting procedure take an important role in real time electric load forecasting.
Tables 2 show in detail, for all three methods, prediction results for four different
hours. Results are obtained using Windows 7 64 bit and MATLAB R2013a in a
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laptop of 4 GB of RAM, Intel i3 380 M processor and 5,400-rpm hard drive. Results
confirm the superior accuracy of the third proposed method. In addition, needed time
in the forecasting procedure is less than two second. This time includes the
exhaustive search affected to select the more appropriate input for training the
ANFIS, and four ANFIS corresponding to each quarter-hour load series.

Fig. 10 Maximum APE distribution for all three methods

Fig. 11 Repartition of the
APE throughout the month of
February 2014 for the third
method
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Moreover, the accuracy decreases when the proposed methods are used to
forecast the peak consummation at 19:00. For example, the MAPE pass from
0.23 % at the beginning hour of 1 February 2014 to 1.38 % at the field 18:15–19:00
of the last day of February 2014. These is more clearly perceived from Figs. 8, 9,
10 and 12 where maximums APE (between 3 and 8 % in first and third method, and
between 3 and 10 % in the second method) are done around 18:15–19:00. This
decrease can be justified by the non-consideration of weather condition in the
proposed methods. As we know, changing weather conditions represent the major
source of variation in peak load forecasting and the inclusion of temperature has a
significant effect due to the fact that in winter heating systems are used specially in
the evening around 19:00, whilst in summer air conditioning appliances are used
particularly around 13:00. Other weather factors include relative humidity, wind
speed and nebulosity. Therefore, numerous papers are devoted to electricity peak
demand forecasting [13, 42]. However, since weather variables tend to change in a
smooth fashion, Weather conditions are ignored in very short term load forecasting

Fig. 12 Repartition of the
APE throughout the month of
February 2014 for the first
Method

Fig. 13 Repartition of the
APE throughout the month of
February 2014 for the second
method
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and they could be captured in the demand series itself. By the way, it would be
more appropriate for us to propose a separate model for predicting the peak
consumption.

6 Conclusion

In this paper, three new models based on the use of adaptive neuro-fuzzy inference
system technique in parallel data were developed to forecast the French real time
quart-hourly load, in a 1-h ahead basis. The best ANFIS technique found was the
third, which classify the parallel load series in three categories. We have perceive
that the proposed ANFIS methods have some failed to predict peaks consummation
around 19:00; which make a real need in this field, to propose a separate model for
predicting the peak consumption, or to train the ANFIS with more than one input.
However, for the third method, 56 % of the forecasted loads have an APE under
0.5, and an APE under one was achieved for about 80 % of cases. Therefore, at
exception for peak consummation, the third proposed method can be successfully
applied to build a 1-h ahead electric load prediction in real time.
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