
A Hybridized Approach for Prioritizing
Software Requirements Based on K-Means
and Evolutionary Algorithms

Philip Achimugu and Ali Selamat

Abstract One of the major challenges facing requirements prioritization techniques
is accuracy. The issue here is lack of robust algorithms capable of avoiding a mis-
match between ranked requirements and stakeholder’s linguistic ratings. This
problem has led many software developers in building systems that eventually fall
short of user’s requirements. In this chapter, we propose a new approach for prior-
itizing software requirements that reflect high correlations between the prioritized
requirements and stakeholders’ linguistic valuations. Specifically, we develop a
hybridized algorithm which uses preference weights of requirements obtained from
the stakeholder’s linguistic ratings. Our approach was validated with a dataset known
as RALIC which comprises of requirements with relative weights of stakeholders.

Keywords Software � Requirements � Prioritization � Stakeholders � RALIC

1 Introduction

Currently, most software development organizations are confronted with the
challenge of implementing ultra-large scale system especially in the advent of big
data. This has led to the specification of large number of software requirements
during the elicitation life cycle. These requirements contain useful information that
will satisfy the need of the users or project stakeholders. Unfortunately, due to some
crucial challenges involved in developing robust systems such as inadequate skilled
programmers, limited delivery time and budget among others; requirements

P. Achimugu � A. Selamat (&)
Department of Software Engineering, Faculty of Computing,
Universiti Teknologi Malaysia, Faculty of Computing,
Skudai 81310, Johor, Malaysia
e-mail: aselamat@utm.my

P. Achimugu
e-mail: check4philo@gmail.com

© Springer International Publishing Switzerland 2015
A.T. Azar and S. Vaidyanathan (eds.), Computational Intelligence Applications
in Modeling and Control, Studies in Computational Intelligence 575,
DOI 10.1007/978-3-319-11017-2_4

73

prioritization has become a viable technique for ranking requirements in order to
plan for software release phases. During prioritization, requirements are classified
according to their degrees of importance with the help of relative or preference
weights from project stakeholders.

Data mining is one of the most effective and powerful techniques that can be used
to classify information or data objects to enhance informed decision making. Clus-
tering is a major data mining task that has to do with the process of finding groups or
clusters or classes in a set of observations such that those belonging to the same group
are similar, while those belonging to different groups are distinct, according to some
criteria of distance or likeness. Cluster analysis is considered to be unsupervised
learning because it can find and recognise patterns and trends in a large amount of
data without any supervision or previously obtained information such as class labels.
There are many algorithms that have been proposed to perform clustering.

Generally, clustering algorithms can be classified under two major categories
[12]: hierarchical algorithms and partitional algorithms. Hierarchical clustering
algorithms have the capacity of recursively identifying clusters either in an
agglomerative (bottom-up) mode or in a divisive (top-down) mode. An agglom-
erative method is initiated with data objects in a separate cluster, which decisively
merge the most similar pairs until termination criteria are satisfied. Divisive
methods on the other hand deals with data objects in one cluster and iteratively
divide each cluster into smaller clusters, until termination criteria are met. However,
a partitional clustering algorithm concurrently identifies all the clusters without
forming a hierarchical structure. A well-known type of partitional clustering
algorithms is the centre-based clustering method, and the most popular and widely
used algorithm from this class of algorithms is known as K-means algorithm. K-
means is relatively easy to implement and effective most of the time [7, 13].
However, the performance of k-means depends on the initial state of centroids
which is likely to converge to the local optima rather than global optima. The k-
means algorithm tries to minimise the intra-cluster variance, but it does not ensure
that the result has a global minimum variance [14].

In recent years, many heuristic techniques have been proposed to overcome this
problem. Some of which include: a simulated annealing algorithm for the clustering
problem [28]; a tabu search based clustering algorithm [2, 29]; a genetic algorithm
based clustering approach [23]; a particle swarm optimization based clustering
technique [19] and a genetic k-means based clustering algorithm [21] among others.
A major reported limitation of K-means algorithm has to do with the fact that, the
number of clusters must be known prior to the utilization of the algorithm because it
is required as input before the algorithm can run. Nonetheless, this limitation has
been addressed by some couple of authors [3, 8, 9, 26].

In this research, we propose the application of a hybridized algorithm based on
evolutionary and k-means algorithms on cluster analysis during requirements pri-
oritization. The performance of the proposed approach has been tested on standard
and real datasets known as RALIC. The rest of the paper is organised as follows:
Sect. 2 provides a brief background on requirement prioritization. Section 3
describes k-means and evolutionary algorithms. In Sect. 4, we present our proposed

74 P. Achimugu and A. Selamat

algorithm for solving requirement prioritization problem using evolutionary algo-
rithm and k-means algorithm. Experimental results are discussed in Sect. 5. Finally,
Sect. 6 presents the conclusions of this research with ideas for future work.

2 Software Requirements Prioritization

During requirement elicitation, there are more prospective requirements specified
for implementation by relevant stakeholders with limited time and resources.
Therefore, a meticulously selected set of requirements must be considered for
implementation and planning for software releases with respect to available
resources. This process is referred to as requirements prioritization. It is considered
to be a complex multi-criteria decision making process [25].

There are so many advantages of prioritizing requirements before architecture
design or coding. Prioritization aids the implementation of a software system with
preferential requirements of stakeholders [1, 32]. Also, the challenges associated
with software development such as limited resources, inadequate budget, insuffi-
cient skilled programmers among others makes requirements prioritization really
important [15]. It can help in planning software releases since not all the elicited
requirements can be implemented in a single release due to some of these chal-
lenges [5, 16]. It also enhances budget control and scheduling. Therefore, deter-
mining which, among a pool of requirements to be implemented first and the order
of implementation is necessary to avoid breach of contract or agreement during
software development. Furthermore, software products that are developed based on
prioritized requirements can be expected to have a lower probability of being
rejected. To prioritize requirements, stakeholders will have to compare them in
order to determine their relative importance through a weight scale which is
eventually used to compute the ranks [20]. These comparisons become complex
with increase in the number of requirements [18].

Software system’s acceptability level is mostly determined by how well the
developed system has met or satisfied the specified requirements. Hence, eliciting
and prioritizing the appropriate requirements and scheduling right releases with the
correct functionalities are critical success factors for building formidable software
systems. In other words, when vague or imprecise requirements are implemented,
the resulting system will fall short of user’s or stakeholder’s expectations. Many
software development projects have enormous prospective requirements that may
be practically impossible to deliver within the expected time frame and budget [31].
It therefore becomes highly necessary to source for appropriate measures for
planning and rating requirements in an efficient way.

Many requirements prioritization techniques exist in the literature. All of these
techniques utilize a ranking process to prioritize candidate requirements. The
ranking process is usually executed by assigning weights across requirement based
on pre-defined criteria, such as value of the requirement perceived by relevant
stakeholders or the cost of implementing each requirement. From the literature;

A Hybridized Approach for Prioritizing Software Requirements … 75

analytic hierarchy process (AHP) is the most prominently used technique. How-
ever, this technique suffers bad scalability. This is due to the fact that, AHP exe-
cutes ranking by considering the criteria that are defined through an assessment of
the relative priorities between pairs of requirements. This becomes impracticable as
the number of requirements increases. It also does not support requirements evo-
lution or rank reversals but provide efficient or reliable results [4, 17]. Also, most
techniques suffer from rank reversals. This term refers to the inability of a technique
to update rank status of ordered requirements whenever a requirement is added or
deleted from the list. Prominent techniques that suffer from this limitation are case
base ranking [25]; interactive genetic algorithm prioritization technique [31];
Binary search tree [17]; cost value approach [17] and EVOLVE [11]. Furthermore,
existing techniques are prone to computational errors [27] probably due to lack of
robust algorithms. [17] conducted some researches where certain prioritization
techniques were empirically evaluated. From their research, they reported that, most
of the prioritization techniques apart from AHP and bubble sorts produce unreliable
or misleading results while AHP and bubble sorts were also time consuming. The
authors submitted that; techniques like hierarchy AHP, spanning tree, binary search
tree, priority groups produce unreliable results and are difficult to implement. [4]
were also of the opinion that, techniques like requirement triage, value intelligent
prioritization and fuzzy logic based techniques are also error prone due to their
reliance on experts and are time consuming too. Planning game has a better vari-
ance of numerical computation but suffer from rank reversals problem. Wieger’s
method and requirement triage are relatively acceptable and adoptable by practi-
tioners but these techniques do not support rank updates in the event of require-
ments evolution as well. The value of a requirement is expressed as its relative
importance with respect to the other requirements in the set.

In summary, the limitations of existing prioritization techniques can be described
as follows:

2:1:1 Scalability: Techniques like AHP, pairwise comparisons and bubblesort
suffer from scalability problems because, requirements are compared based
on possible pairs causing n (n−1)/2 comparisons [17]. For example, when
the number of requirements is doubled in a list, other techniques will only
require double the effort or time for prioritization while AHP, pairwise
comparisons and bubblesort techniques will require four times the effort or
time. This is bad scalability.

2:1:2 Computational complexity: Most of the existing prioritization techniques
are actually time consuming in the real world [4, 17]. Furthermore, [1]
executed a comprehensive experimental evaluation of five different priori-
tization techniques namely; AHP, binary search tree, planning game, $100
(cumulative voting) and a new method which combines planning game and
AHP (PgcAHP), to determine their ease of use, accuracy and scalability.
The author went as far as determining the average time taken to prioritize 13
requirements across 14 stakeholders with these techniques. At the end of the
experiment; it was observed that, planning game was the fastest while AHP

76 P. Achimugu and A. Selamat

was the slowest. Planning game prioritized 13 requirements in about
2.5 min while AHP prioritized the same number of requirements in about
10.5 min. In other words, planning game technique took only 11.5 s to
compute the priority scores of one requirement across 14 stakeholders while
AHP consumed 48.5 s to accomplish the same task due to pair comparisons.

2:1:3 Rank updates: This is defined as ‘anytime’ prioritization [25]. It has to do
with the ability of a technique to automatically update ranks anytime a
requirement is included or excluded from the list. This situation has to do
with requirements evolution. Therefore, existing prioritization techniques
are incapable of updating or reflecting rank status whenever a requirement is
introduced or deleted from the rank list. Therefore, it does not support
iterative updates. This is very critical because, decision making and selec-
tion processes cannot survive without iterations. Therefore, a good and
reliable prioritization technique will be one that supports rank updates. This
limitation seems to cut across most existing techniques.

2:1:4 Communication among stakeholders: Most prioritization techniques do not
support communication among stakeholders. One of the most recent works
in requirement prioritization research reported communication among
stakeholders as part of the limitations of their technique [25]. This can lead
to the generation of vague results. Communication has to do with the ability
of all relevant stakeholders to fully understand the meaning and essence of
each requirement before prioritization commences.

2:1:5 Requirements dependencies: This is a crucial attribute that determines the
reliability of prioritized requirements. These are requirements that depend
on another to function. Requirements that are mutually dependent can
eventually be merged as one; since without one, the other cannot be
implemented. Prioritizing such requirements may lead to erroneous or
redundant results. This attribute is rarely discussed among prioritization
research authors. However, dependencies can be detected by mapping the
pre and post conditions from the whole set of requirements, based on the
contents of each requirement [24]. Therefore, a good prioritization tech-
nique should cater or take requirements dependences into cognizance before
initiating the process.

2:1:6 Error proneness: Existing prioritization techniques are also prone to errors
[27]. This could be due to the fact that, the rules governing the requirements
prioritization processes in the existing techniques are not robust enough.
This has also led to the generation of unreliable prioritization results
because; such results do not reflect the true ranking of requirements from
stakeholder’s point of view or assessment after the ranking process.
Therefore robust algorithms are required to generate reliable prioritization
results.

A Hybridized Approach for Prioritizing Software Requirements … 77

3 K-Means and Evolutionary Algorithms

K-Means algorithm is one of the most popular types of unsupervised clustering
algorithm [6, 10] which is usually used in data mining, pattern recognition and
other related researches. It is aimed at minimizing cluster performance indexes,
square-error and error criteria. The concept of this algorithm borders on the iden-
tification of K clusters that satisfies certain criteria. Usually, to demonstrate the
applicability of K-means algorithm, some data objects are chosen to represent the
initial cluster focal points and secondly, the rest of the data objects are assembled to
their focal points based on the criteria of minimum distance which will eventually
lead to the computation of the initial clusters. However, if these clusters are
unreasonable, it is easily modified by re-computing each cluster’s focal point. This
process is repeatedly iterated until reasonable clusters are obtained. In the context of
requirement prioritization, the numbers of clusters are likened to the number of
requirements while the data objects are likened to the attributes describing the
expected functionalities of a particular requirement. Therefore, K-Means algorithm
is initiated with some random or heuristic-based centroids for the desired clusters
and then assigns every data object to the closest centroid. After that, the k-means
algorithm iteratively refines the current centroids to reach the (near) optimal ones by
calculating the mean value of data objects within their respective clusters. The
algorithm will terminate when any one of the specified termination criteria is met
(i.e., a predetermined maximum number of iterations is reached, a (near) optimal
solution is found or the maximum search time is reached).

Inversely, the evolutionary algorithm (EA) is best illustrated with principles of
differential evolution algorithms, by considering requirements as individuals. After
generating the initial solution, its requirements are stored into a pool, which forms
the initial population in the tournament. Thereafter, the requirements are catego-
rized into various classes containing its respective attributes. The weights of attri-
butes between two requirements are randomly selected for computation until the
entire weights are exhausted. Meaning, weights of attributes from each requirement
are mated for crossover. For instance, assuming we have two requirements X and
Y with respective attributes as x1; . . .; xnh i and y1; . . .; ynh i. These two attributes are
considered as prospective couple or parent. So, for each couple, we randomly
extract crossover point, for instance 2 for the first and 5 for the second. The final
step is to apply random mutation. These processes are performed from the first to
the last requirement. Once a pair (combination) of requirement is selected, one out
of the four local search operators is applied randomly based on stakeholder’s
weights. Finally, offspring (requirements) generated by these crossover operators
are mutated according to the stakeholder’s weights. Mutation is specifically
achieved by selecting randomly one out of two operators according to the weights
distribution. Selecting each possible pair of requirement is based on a random order.
Mating and mutation operators are repeatedly applied for a certain number of
generations, and finally a feasible solution is constructed using the requirements in
the pool. To guarantee a feasible solution, recombination and mutation operators of

78 P. Achimugu and A. Selamat

EA are not allowed to lose any customer i.e. the offspring must contain the same
number of customers as the parent, otherwise parent are stored into the requirement
pool instead of offspring.

4 Proposed Approach

Our approach is based on the relative weights provided by project stakeholders of a
software development project. The evolutionary algorithm works as a hyper-heu-
ristics which assigns different coefficient values to the relative scores obtained from
the pool of functions included in the system. At the beginning of the process, all
functions (or metrics) evenly contribute to the calculation of the relative cumulative
values of a specific requirement. The system evolves so that the requirements which
provide the most valued weights across the relevant stakeholders have the highest
coefficients. The differential evolution (DE) algorithm [30] was chosen among other
candidates because, after a preliminary study, we conclude that DE obtained very
competitive results for the problem under consideration. The reason lies in how the
algorithm makes the solutions evolve. Our system can be considered as a hyper-
heuristics which uses differential evolution to assign each requirement with a
specific coefficient. These values show the relative importance of each requirement.
Differential evolution performs the search of local optima by making small addi-
tions and subtractions between the members of its population. This feature is
capable of solving rank reversals problem during requirement prioritization since
the algorithm works with the weights provided by the stakeholders. In fact, the
stakeholder is defined as an array of floating point values, s, where s(fx) is the
coefficient which modifies the result provided by the learning function fx. We
consider a finite set of collection of requirements X = {R11, R12…R1k} that has to be
ranked against Y = {R21, R22…R2k}. Our approach consist of set of input R11, R12,
…, R1k, associated with their respective weights w1, w2, …, wk that represents
stakeholders’ preferences and a fitness value function required to calculate the
similarity weights across requirements. The requirement (R11…, R21…,…, Rnk)
represent input data that are ranked using the fitness function on similarity scores
and stored in the database. In this approach, we assume that, the stakeholder’s
preferences are expressed as weights, which are values between 5 and 1. These
weights are provided by the stakeholders. In this research, one of our objectives is
to automatically rank stakeholder’s preferences using EA based learning. The
designed algorithm will compute the ranks of requirements based on a training data
set. To rank the preferential weights of requirements across relevant stakeholders,
there is need to identify the following: a ranking technique for the best output and a
measure of quality that aids the evaluation of the proposed algorithm.

In practical application of the learning process, X ¼ ðr1; r2; . . .; rnÞ; Y ¼
ðr01; r02; . . .; r0nÞ probably represents two requirements with their respective attributes
that are to be ranked. For each requirement, attributes are not necessarily mutually

A Hybridized Approach for Prioritizing Software Requirements … 79

independent. In order to drive the synthetic utility values, we first exploited the
factor analysis technique to extract the attributes that possess common function-
alities. This caters for requirement dependencies challenges during the prioritization
process. The attributes with the same functionalities are considered to be mutually
dependent. Therefore, before relative weights are assigned to the requirements by
relevant stakeholders, attention should be paid to requirement dependencies issues
in order to avoid redundant results. However, when requirements evolve, it
becomes necessary to add or delete from a set. The algorithm should also be able to
detect this situation and update rank status of ordered requirements instantly. This is
known as rank reversals. It is formally expressed as: (1) failure of the type 1→ 5 or
5 → 1; (2) failuresz of the type 1 → ϕ or 5 → ϕ (where ϕ = the null string) (called
deletions); and (3) failures of the type ϕ→ 1 or ϕ→ 5 (called insertions). A weight
metric w, on two requirement (X, Y) is defined as the smallest number of edit
operations (deletions, insertions and updates) to enhance the prioritization process.
Three types of rank updates operations on X→ Y are defined as: a change operation
(X ≠ ϕ and Y ≠ ϕ), a delete operation (Y = ϕ) and an insert operation (X = ϕ). The
weights of all the requirements can be computed by a weight function w. An
arbitrary weight function w is obtained by computing all the assigned non-negative
real number w (X, Y) on each requirement. On the other hand, there is mutual
independence between attributes, and the measurement is an additive case, so we
can utilize the additive aggregate method to conduct the synthetic utility values for
all the attributes in the entire requirements. As we can see in Algorithm 1, differ-
ential evolution starts with the generation of random population (line 1) through the
assignment of a random coefficient to each attribute of the individual (requirement).
The population consists of a certain number of solutions (this is, a parameter to be
configured). Each individual (requirement) is represented by a vector of weighting
factors provided by the stakeholders. After the generation of the population, the
fitness of each individual is assigned to each solution using the Pearson correlation.
This correlation, corr(X, Y), is calculated with the scores provided by stakeholders
for every pair of requirement of the RALIC dataset [22].

The closer the value of correlation is to any of the extreme values, the stronger is
the correlation between the requirements and the higher is the accuracy of the
prioritized results. On the contrary, if the result tends toward 0, it means that the
requirements are somewhat uncorrelated which gives an impression of poor quality
prioritized solution.

Algorithm 1: Pseudo-code for the DE/K-means algorithm

1. generateRandom centroids from K clusters (population)
2. assign weights of each attribute to the cluster with the closest centroid
3. update the centroids by calculating the mean values of objects within clusters:

Fitness (population)
4. while (stop condition not reached) do
5. for (each individual of the population)
6. selectIndividuals (xTarget, xBest, xInd1, xInd2)
7. xMut diffMutation (xBest, F, xInd1, xInd2)

80 P. Achimugu and A. Selamat

8. xTrial binCrossOver (xTarget, xMut, CrossProb)
9. calculateFitness (xTrial)

10. updateIndividual (xTarget, xTrial)
11. endfor
12. endwhile
13. return bestIndividual (population)

From Algorithm 1, the main loop begins after evaluating the whole population
(line 2). It is important to note that differential evolution and k-means algorithms are
iterative in nature. This becomes very necessary when uninterrupted generations
attempt to obtain an optimal solution and terminates when the maximum number of
generations is reached (line 4). We initiated the process by selecting four parameters
(line 6). xTarget and xBest are the parameters being processed. The former stands
for the weights provided by project stakeholders and the latter stands for the pri-
oritized weights for two randomly chosen requirements denoted as xInd1 and xInd2
respectively. Next, mutation is performed (line 7) according to the expression:
xMut xBest + F (xInd1 _ xInd2) in order to determine sum of the cumulative
relative weights of requirements across the total number of stakeholders involved in
the software development project. This task execute in twofold: (diffMutation 1 and
2). The first phase has to do with the calculation of xDiff across project stakeholders
with the help of expression: xDiff F (xInd1 _ xInd2). xDiff represents the mutation
to be applied to compute the relative weights of requirements in order to calculate
the best solution. Subsequently, the modification of each attribute of xBest in line
with the mutation indicated in xDiff give rise to xMut. At the end of the mutation
process, xTarget and xMut individuals are intersected (line 8) using binary cross-
over with the concept of crossover probability, crossProb. Then, the obtained
individual, xTrial, is evaluated to determine its accuracy (line 8) which is compared
against xTarget. The evaluation procedures of the prioritization process encompass
the establishment of fitness function, disclosure of agreement and disagreement
indexes, confirmation of credibility degree, and the ranking of attributes/require-
ments. These data are represented by weights reflecting the subjective judgment of
stakeholders. The best individual is saved in the xTarget position (line 10). This
process is iterated for each individual in the population (line 5) especially when the
stoppage criteria are not met (line 4). However, in the context of this research, the
stoppage criteria are certain number of generations which is also set during the
configuration of the parameters. At the end of the process, the best individuals
(most valued requirements) are returned as the final results of the proposed system
(line 13). It is important to note here that results have been obtained after a complete
experimental process using RALIC dataset.

Based on the above description, the proposed algorithm is built on three main
steps. In the first step, EA-KM applies k-means algorithm on the selected dataset
and tries to produce near optimal centroids for desired clusters. In the second step,
the proposed approach produces an initial population of solutions, which will be
applied by the EA algorithm in the third step. The generation of an initial popu-
lation is carried out in several different ways. These could be through candidate

A Hybridized Approach for Prioritizing Software Requirements … 81

solutions generated by the output of the k-means algorithm or randomly generated.
The process generates a high-quality initial population, which will be used in the
next step by the EA algorithm. Finally, in the third step, EA will be employed for
determining an optimal solution for the clustering-based prioritization problem. To
represent candidate solutions in the proposed algorithm, we used one-dimensional
array to encode the centroids of the desired clusters. The length of the arrays is
equal to d * k, where d is the dimensionality of the dataset under consideration or
the number of features that each data object has and k is the number of clusters.

The optimal value of the fitness function Jðw; x; cÞ is determined by the fol-
lowing prioritization equations:

xðwÞ ¼ f ðw; x; cÞ; xð0Þ ¼ x0ðcð0ÞÞ ð1Þ

And the set of constraints

giðx; cÞ ¼ 0 for j ¼ 1; . . .;E
gjðx; cÞ� 0 for j ¼ E þ 1; . . .; S

�
ð2Þ

where, x 2 Rm is the requirement set described by the function f 2 Rm; c 2 Rn is the
criteria used to determine the relative weights of requirements. The optimal value of
Jðw; x; cÞ is achieved by varying the criteria ciðwÞ; i ¼ 1; n within the boundaries
specified by (1) and (2). All functions here are to be regarded as discrete, obtained
through the relative weights w1;w2; . . .;wn provided by the stakeholders. During
prioritization, the state of the requirement at weight w is conventionally described
by the number of stakeholders NðsÞ. Therefore, the prioritization process in this
case is one-dimensional ðm ¼ 1Þ, and the Eq (2) becomes:

DNðsÞ
Dw

¼ f ðNÞ � jðcÞcðwÞN; Nð0Þ ¼ N0 ð3Þ

Where f ðNÞ is a real-valued function which models the increase in the number of
requirements; cðwÞ is the weight of requirements based on pre-defined criteria; jðcÞ
is a quality representing the efficacy of the ranked weights. The rank criteria cðwÞ in
(3), is the only variable directly controllable by the stakeholders. Therefore, the
problem of requirements prioritization can be regarded as the problem of planning
for software releases based on the relative weights of requirements. The optimal
weights of requirements are in the form of a discrete ordered program with
N requirements given at weights w1;w2; . . .;wn. Each requirement is assessed by
s stakeholders characterized by their defined criteria Cij; i ¼ 1; n; j ¼ 1; d in the set.
These criteria can be varied within the boundaries specified by the constraints in
Eq. (3). The conflicting nature of these constraints and the intention to develop a
model-independent approach for prioritizing requirements makes the utilization of
computational optimization techniques very viable.

All the experiments were executed under the same environment: an Intel Pen-
tium 2.10 GHz processor and 500 GB RAM. Since we are dealing with a stochastic

82 P. Achimugu and A. Selamat

algorithm, we have carried out 50 independent runs for each experiment. Results
provided in the following subsections are average results of these 50 executions.
Arithmetic mean and standard deviation were used to statistically measure the
performance of the proposed system.

5 Experimental Results and Discussion

The experiments described in this research considered the likelihood of calculating
preference weights of requirements provided by stakeholders so as to compute their
ranks. The RALIC dataset was used for validating the proposed approach. The
PointP and RateP portions of the dataset were used, which consist of about 262
weighted attributes spread across 10 requirement sets from 76 stakeholders. RALIC
stands for replacement access, library and ID card. It was a large-scale software
project initiated to replace the existing access control system at University College
London [22].

The dataset is available at: http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html.
Attributes were ranked based on 5-point scale; ranging from 5 (highest) to 1
(lowest). As a way of pre-processing the dataset, attributes with missing weights
were given a rating of zero.

For the experiment, a Gaussian Generator was developed, which computes the
mean and standard deviation of given requirement sets. It uses the Box-Muller
transform to generate relative values of each cluster based on the inputted stake-
holder’s weights. The experiment was initiated by specifying a minimum and
maximum number of clusters, and a minimum and maximum size for attributes. It
then generates a random number of attributes with random mean and variance
between the inputted parameters. Finally, it combines all the attributes into one and
computes the overall score of attributes across the number of clusters k. The
algorithm defined earlier attempts to use these combined weights of attributes in
each cluster to rank each requirement. For the k-means algorithm to run, we filled in
the variables/observations table which has to do with the two aspect of RALIC
dataset that was utilized (PointP and RateP), followed by the specification of
clustering criterion (Determinant W) as well as the number of classes. The initial
partition was randomly executed and ran 50 times. The iteration completed 500
cycles and the convergence rate was at 0.00001. As an initialization step, the DE
algorithm generated a random set of solutions to the problem (a population of
genomes). Then it enters a cycle where fitness values for all solutions in a current
population are calculated, individuals for mating pool are selected (using the
operator of reproduction), and after performing crossover and mutation on genomes
in the mating pool, offspring are inserted into a population. In this research, elitism
was performed to save the chromosomes of the old solution so that crossover and
mutation can re-occur for new solutions. Thus a new generation is obtained and the
process begins again. The process stops after the stopping criteria are met, i.e. the
“perfect” solution is recognized, or the number of generations has reached its

A Hybridized Approach for Prioritizing Software Requirements … 83

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html

maximum value. From each generation of individuals, one or few of them, that has
the highest fitness values are picked out, and inserted into the result set.

The weights of requirements are computed based on their frequencies and a
mean score is obtained to determine the final rank. Figure 1 depicts the fitness
function for the mean weights of the dataset across 76 stakeholders. This is
achieved by counting the numbers of requirements, where the DE simply add their
sums and apportion precise values across requirements to determine their relative
importance.

The results displayed in Table 1 shows the summary statistics of 50 experimental
runs. For 10 requirements, the total number of attributes was 262 and the size of
each cluster varied from 1 to 50 while, the mean and standard deviation of each
cluster spanned from 1–30 and 15–30, respectively.

Also, Table 2 shows the results provided by each cluster that represents the 10
requirements during the course of running the algorithm on the data set. It displays
the sum of weights, within-class variances, minimum distance to the centroid,
average distance to the centroid and maximum distance to the centroids. Table 3
shows the distances between the class centroids for the 10 requirements across the
total number of attributes while, Table 4 depict the analysis of each iteration.
Analysis of multiple runs of this experiment showed exciting results as well. Using
500 trials, it was discovered that, the algorithm classified requirements correctly,

Table 1 Summary statistics

Variables Obs. Obs. with
missing
data

Obs. without
missing data

Min Max Mean Std.
deviation

Point P 262 0 262 2.083 262 28.793 24.676

Rate P 262 0 262 0.000 262 5.123 15.864

Obs. = Objects

Fig. 1 Fitness function for
mean weights

84 P. Achimugu and A. Selamat

where the determinants (W) for each variable were computed based on the stake-
holder’s weights. The sum of weights and variance for each requirement set was
also calculated.

The learning process consists of finding the weight vector that allows the choice
of requirements. The fitness value of each requirement can be measured on the basis
of the weights vectors based on pre-defined criteria used to calculate the actual
ranking. The disagreements between ranked requirements must be minimized as
much as possible. We can also consider the disagreements on a larger number of top
vectors, and the obtained similarity measure which can be used to enhance the
agreement index. The fitness value will then be a weighted sum of these two
similarity measures.

Definition 5.1 Let X be a measurable requirement that is endowed with attributes
of σ-functionalities, where N is all subsets of X. A learning process g defined on the
measurable space ðX;NÞ is a set function g : N ! ½0; 1� which satisfies the fol-
lowing properties:

gð/Þ ¼ 0; gðXÞ ¼ 1 ð4Þ

But for requirements X, Y; the learning process equation will be:

X;N � Y 2 N ! ½0; 1� ð5Þ

From the above definition, X, Y, N, g are said to be the parameters used to
measure or determine the relative weights of requirement. This process is mono-
tonic. Consequently, the monotonicity condition is obtained as:

gðX [YÞ�maxfgðXÞ; gðYÞg and gðX \ YÞ�minfgðXÞ; gðYÞg ð6Þ

Table 2 Results by class

Class 1 2 3 4 5 6 7 8 9 10

Sum
of weights

53 61 31 14 27 29 12 30 8 1

Within-class
variance

7.302 8.283 37.897 172.896 2.393 12.699 3.607 1.992 1.190 0.000

Min. distance
to centroid

0.532 0.365 0.352 3.769 0.695 0.232 0.663 0.253 0.412 0.000

Ave. distance
to centroid

2.518 2.673 5.166 11.814 1.233 2.863 1.491 1.149 0.925 0.000

Max. distance
to centroid

5.174 5.646 13.838 15.693 4.412 6.395 4.618 3.175 1.604 0.000

Min. = Minimum, Ave = Average, Max. = Maximum

A Hybridized Approach for Prioritizing Software Requirements … 85

T
ab

le
3

D
is
ta
nc
es

be
tw
ee
n
cl
as
s
ce
nt
ro
id
s

C
la
ss

1
2

3
4

5
6

7
8

9
10

1
0

9.
70

2
35

.4
86

68
.2
98

7.
05

3
22

.5
02

3.
92

9
12

.8
49

10
.2
92

44
1.
14

3

2
9.
70

2
0

45
.1
80

77
.9
89

16
.7
45

32
.1
93

12
.1
48

22
.5
36

19
.9
85

44
6.
80

8

3
35

.4
86

45
.1
80

0
32

.8
12

28
.4
36

12
.9
87

33
.5
29

22
.6
44

25
.1
96

42
2.
66

4

4
68

.2
98

77
.9
89

32
.8
12

0
61

.2
47

45
.7
97

66
.2
49

55
.4
53

58
.0
08

40
7.
82

0

5
7.
05

3
16

.7
45

28
.4
36

61
.2
47

0
15

.4
50

5.
84

7
5.
79

6
3.
24

1
43

7.
35

6

6
22

.5
02

32
.1
93

12
.9
87

45
.7
97

15
.4
50

0
20

.6
14

9.
65

7
12

.2
12

42
9.
31

8

7
3.
92

9
12

.1
48

33
.5
29

66
.2
49

5.
84

7
20

.6
14

0
11

.1
35

8.
78

0
44

1.
93

5

8
12

.8
49

22
.5
36

22
.6
44

55
.4
53

5.
79

6
9.
65

7
11

.1
35

0
2.
56

8
43

4.
39

7

9
10

.2
92

19
.9
85

25
.1
96

58
.0
08

3.
24

1
12

.2
12

8.
78

0
2.
56

8
0

43
5.
53

9

10
44

1.
14

3
44

6.
80

8
42

2.
66

4
40

7.
82

0
43

7.
35

6
42

9.
31

8
44

1.
93

5
43

4.
39

7
43

5.
53

9
0

86 P. Achimugu and A. Selamat

In the case where gðX [YÞ�maxfgðXÞ; gðYÞg, the learning function g attempts
to determine the total number of requirements being prioritized and
ifgðX \ YÞ�minfgðXÞ; gðYÞg, the learning function attempts to compute the rel-
ative weights of requirements provided by the relevant stakeholders.

Definition 5.2 Let h ¼ Pn
i¼1

Xi:1Xi be a simple function, where 1Xi is the attribute

function of the requirements Xi 2 N; i ¼ 1; . . .; n; Xi are pairwise disjoints, but if
MðXiÞ is the measure of the weights between all the attributes contained in Xi, then
the integral of h is given as:

Z
h:dM ¼

Xn
i¼1

MðXiÞ:Xi ð7Þ

Definition 5.3 Let X, Y, N, g be the measure of weights between two requirements,
the integral of weights measure g : N ! ½0; 1� with respect to a simple function h is
defined by:

Z
hðrÞgðrÞ ¼ _ðhðriÞ ^ gðXiÞÞ ¼ max minfr0i; gðYiÞg ð8Þ

Where hðriÞ is a linear combination of an attribute function 1ri such that X1 �
Y1 � . . . � Xn � Yn and Xn ¼ frjhðrÞ� Yng.
Definition 5.4 Let X, N, g be a measure space. The integral of a measure of weights
by the learning process g : N ! ½0; 1�with respect to a simple function h is defined by

Z
hðrÞ:dg ffi

X
½hðriÞ � hðri�1Þ�:gðXiÞ ð9Þ

Similarly, if Y, N, g is a measure space; the integral of the measure of the weights
with respect to a simple function h will be:

Z
hðr0Þ:dg ffi

X
½hðr0iÞ � hðr0i�1Þ�:gðYiÞ ð10Þ

Table 4 Statistics for each iteration

Iteration Within-class variance Trace (W) Determinant (W) Wilks’Lambda

0 1,128.978 289,018.282 3.00114E + 12 0.899

1 74.074 18,962.929 106503842.6 0.000

2 29.394 7,524.991 33285074.33 0.000

3 20.151 5,158.594 22195537.74 0.000

A Hybridized Approach for Prioritizing Software Requirements … 87

However, if g measures the relative weights of requirements, defined on a power
set P(x) and satisfies the definition 5.1 as above; the following attribute is evident:

8X;Y 2 PðxÞ;X \ Y ¼ /) g2ðX [YÞ ¼ g2ðXÞ þ g2ðYÞ þ kg2ðXÞg2ðYÞ ð11Þ

For 0� k�1
In practical application of the learning process, the number of cluster which

represents the number of requirements must be determined first. The attributes that
describes each requirement are known as the data elements that are to be ranked.
Therefore, before relative weights are assigned to requirements by stakeholders,
attention should be paid to requirement dependencies issues in order to avoid
redundant results. Prioritizing software requirements is actually determined by
relative perceptions which will inform the relative scores provided by the stake-
holders to initiate the ranking process.

Prioritizing requirements is an important activity in software development [31,
32]. When customer expectations are high, delivery time is short and resources are
limited, the proposed software must be able to provide the desired functionality as
early as possible. Many projects are challenged with the fact that, not all the
requirements can be implemented because of limited time and resource constraints.
This means that, it has to be decided which of the requirements can be removed for
the next release. Information about priorities is needed, not just to ignore the least
important requirements but also to help the project manager resolve conflicts, plan
for staged deliveries, and make the necessary trade-offs. Software system’s
acceptability level is frequently determined by how well the developed system has
met or satisfied the specified user’s or stakeholder’s requirements. Hence, eliciting
and prioritizing the appropriate requirements and scheduling right releases with the
correct functionalities are essential ingredients for developing good quality software
systems. The matlab function used for k-means clustering which is idx = k means
(data, k), that partitions the points in the n-by-p data matrix data into k clusters was
employed. This iterative partitioning minimizes the sum, over all clusters, of the
within-cluster sums of point-to-cluster-centroid distances. Rows of data corre-
sponds to attributes while columns corresponds to requirements. K-means returns
an n-by-1vector idx containing the cluster indices of each attribute which is utilized
in calculating the fitness function to determine the ranks.

Further analysis was performed using a two-way analysis of variance (ANOVA).
On the overall dataset, we found significant correlations between the ranked
requirements. The results of ANOVA produced significant effect on the Rate P and
Rank P with minimized disagreement rates (p-value = 0.088 and 0.083
respectively).

The requirements are randomly generated as population, while the fitness value
is calculated which gave rise to the best and mean fitnesses of the requirement
generations that were subjected to a stoappge criteria during the iteration processes.
The best fitness stopping criteria option was chosen during the simulation process.

88 P. Achimugu and A. Selamat

The requirements generations significantly increased while the mean and best
values were obtained for all the requirements which will aid the computation of
final ranks for all the requirements. Also, the best, worst and mean scores of
requirements were computed. In the context of requirement prioritization, the best
scores can stand for the most valued requirements while the worst scores can stand
for the requirements that were less ranked by the stakeholders. The mean scores are
the scores used to determine the relative importance of requirements across all the
stakeholders for the software development project. Therefore, mutation should be
performed with respect to the weights of attributes describing each requirement set.

50 independent runs were conducted for each experiment. The intra cluster
distances obtained by clustering algorithms on test dataset have been summarized in
Table 5. The results contains the sum of weights and within-class variance of the
requirements. The sum of weights are considered as the prioritized results. The
iterations depcited in Table 6 represents the number of times that the clustering
algorithm has calculated the fitness function to reach the (near) optimal solution.
The fitness is the average correlation for all the lists of attribute weights. It is
dependent on the number of iterations to reach the optimal solution. As seen from
Table 6, the proposed algorithm has produced the highest quality solutions in terms
of the determinant as well as the initial and final within class variances. Moreover,
the standard deviation of solutions found by the proposed algorithm is small, which
means that the proposed algorithm could find a near optimal solution in most of the
runs. In other words, the results confirm that the proposed algorithm is viable and
robust. In terms of the number of function evaluations, the k-means algorithm needs
the least number of evaluations compared to other algorithms.

Table 5 Prioritized results
Class Point P Rate P

1 17.347 4.604

2 7.652 4.230

3 52.831 4.258

4 85.639 3.714

5 24.396 4.370

6 39.844 4.172

7 19.435 1.276

8 30.188 4.167

9 27.635 4.410

10 26.000 2.620

A Hybridized Approach for Prioritizing Software Requirements … 89

Table 6 Optimization summary

Repetition Iteration Initial Within-class
variance

Final Within-class
variance

Determinant (W)

1 6 1,106.869 23.889 26,745,715.142

2 6 1,136.975 16.750 23,724,606.023

3 6 1,121.779 16.807 23,820,814.376

4 4 1,117.525 24.996 27,447,123.233

5 4 1,125.507 17.803 25,404,643.926

6 4 1,125.913 19.185 27,601,524.028

7 4 1,128.978 18.691 21,068,536.793

8 4 1,117.436 18.454 25,247,590.810

9 3 1,108.735 521.172 195,940,759,324.757

10 3 1,118.845 20.662 26,631342.963

11 3 1,094.139 464.243 176,968,571,045.744

12 3 1,132.570 21.818 28,704,234.905

13 3 1,126.964 524.758 231,605,057,844.517

14 3 1,122.652 21.945 31,405,941.682

15 3 1,123.154 23.738 35,101,366.712

16 3 1,119.050 24.730 36,708,579.807

17 3 1,102.570 361.772 163,961,516,715.797

18 3 1,110.858 526.407 261,348,714,992.157

19 3 1,113.150 463.952 201,111,726,242.012

20 3 1,112.708 21.817 29,895,099.111

21 3 1,115.139 23.943 35,497,900.830

22 3 1,124.640 21.747 27,948,507.938

23 3 1,126.804 25.552 29,231,104.006

24 3 1,133.939 22.136 29,327,321.253

25 3 1,088.150 29.300 40,797,707.187

26 3 1,126.818 518.924 210,390,947,859.052

27 3 1,134.805 25.031 36,453,233.568

28 3 1,126.092 22.147 28,437,781.242

29 3 1,105.032 24.348 35,559,759.396

30 3 1,115.281 466.852 188,849,288,951.012

31 3 1,072.613 36.720 52,595,047.023

32 3 1,117.914 521.401 173,748,277,159.091

33 3 1,113.605 19.234 27,416,942.756

34 3 1,116.027 19.304 25,746,288.325

35 3 1,122.918 20.620 26,253,031.369

36 3 1,118.186 26.385 34,310,522.697

37 3 1,136.200 22.156 29,263,683.373

38 3 1,120.218 25.017 33,223,123.872

39 3 1,124.442 520.499 211,383,774,209.661
(continued)

90 P. Achimugu and A. Selamat

6 Conclusion

The requirements prioritization process can be considered as a multi-criteria deci-
sion making process. It is the act of pair-wisely selecting or ranking requirements
based on pre-defined criteria. The aim of this research was to develop an improved
prioritization technique based on the limitations of existing ones. The proposed
algorithm resolved the issues of scalability, rank reversals and computational
complexities. The method utilized in this research consisted of clustering/evolu-
tionary based algorithms. The validation of the proposed approach was executed
with relevant dataset while the performance was evaluated using statistical means.
The results showed high correlation between the mean weights which finally
yielded the prioritized results. The approach described in this research can help
software engineers prioritize requirements capable of forecasting the expected
behaviour of software under development. The results of the proposed system
demonstrate two important properties of requirements prioritization problem; (i)
Ability to cater for big data and (ii) ability to effectively update ranks and minimize
disagreements between prioritized requirements. The proposed technique was also
able to classify ranked requirements by computing the maximum, minimum and
mean scores. This will help software engineers determined the most valued and
least valued requirements which will aid in the planning for software releases in
order to avoid breach of contracts, trusts or agreements. Based on the presented
results, it will be appropriate to consider this research as an improvement in the field
of computational intelligence. In summary, a hybrid method based on differential
evolution and k-means algorithm was used in clustering requirements in order to
determine their relative importance. It attempts to exploit the merits of two algo-
rithms simultaneously, where the k-means was used in generating the initial solu-
tion and the differential evolution was utilized as an improvement algorithm.

Table 6 (continued)

Repetition Iteration Initial Within-class
variance

Final Within-class
variance

Determinant (W)

40 3 1,120.536 26.388 35,745,608.991

41 3 1,131.305 26.587 37,270,986.568

42 3 1,125.849 579.831 128,941,063,793.784

43 3 1,100.849 522.269 176,077,098,304.402

44 3 1,121.924 25.182 36,102,923.262

45 3 1,116.445 25.120 36,854,622.383

46 3 1,116.223 522.626 228,664,613,438.719

47 3 1,116.968 36.729 55,171,737.251

48 3 1,127.872 20.857 29,381,923.033

49 3 1,130.837 20.633 27,643,374.936

50 3 1,104.055 587.943 187,806,412,544.351

A Hybridized Approach for Prioritizing Software Requirements … 91

Acknowledgment The authors appreciate the efforts of the Ministry of Science, Technology and
Innovation Malaysia (MOSTI) under Vot 4S062 and Universiti Teknologi Malaysia (UTM) for
supporting this research.

References

1. Ahl, V.: An experimental comparison of five prioritization methods-investigating ease of use,
accuracy and scalability. Master’s thesis, School of Engineering, Blekinge Institute of
Technology, Sweden (2005)

2. Al-Sultan, K.S.: A Tabu search approach to the clustering problem. Pattern Recogn. 28(9),
1443–1451 (1995)

3. Aritra, C., Bose, S., Das, S.: Automatic Clustering Based on Invasive Weed Optimization
Algorithm: Swarm, Evolutionary, and Memetic Computing, pp. 105–112. Springer, Berlin
(2011)

4. Babar, M., Ramzan, M., and Ghayyur, S.: Challenges and future trends in software
requirements prioritization. In: Computer Networks and Information Technology (ICCNIT),
pp. 319–324, IEEE (2011)

5. Berander, P., Svahnberg, M.: Evaluating two ways of calculating priorities in requirements
hierarchies—An experiment on hierarchical cumulative voting. J. Syst. Softw. 82(5), 836–850
(2009)

6. Chang, D., Xian, D., Chang, W.: A genetic algorithm with gene rearrangement for K-means
clustering. Pattern Recogn. 42, 1210–1222 (2009)

7. Ching-Yi, C., and Fun, Y.: Particle swarm optimization algorithm and its application to
clustering analysis. In IEEE International Conference on Networking, Sensing and Control
(2004)

8. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential
evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(1), 218–237 (2008)

9. Das, S., Abraham, A., and Konar, A.: Automatic hard clustering using improved differential
evolution algorithm. In: Studies in Computational Intelligence, pp. 137–174 (2009)

10. Demsar, J.: Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7,
1–30 (2006)

11. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf.
Softw. Technol. 46(4), 243–253 (2004)

12. Hatamlou, A., Abdullah, S., and Hatamlou, M.: Data clustering using big bang-big crunch
algorithm. In: Communications in Computer and Information Science, pp. 383–388 (2011)

13. Jain, A.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666
(2010)

14. Kao, Y., Zahara, E., Kao, I.: A hybridized approach to data clustering. Expert Syst. Appl. 34
(3), 1754–1762 (2008)

15. Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohlin, C.: Pair-wise comparisons versus
planning game partitioning-experiments on requirements prioritization techniques. Empirical
Softw. Eng. 12(1), 3–33 (2006)

16. Karlsson, J., Olsson, S., Ryan, K.: Improved practical support for large scale requirements
prioritizing. J. Requirements Eng. 2, 51–67 (1997)

17. Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. Inf. Softw. Technol. 39(14), 939–947 (1998)

18. Kassel, N.W., Malloy, B.A.: An approach to automate requirements elicitation and
specification. In: Proceeding of the 7th IASTED International Conference on Software
Engineering and Applications. Marina Del Rey, CA, USA (2003)

19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks (1995)

92 P. Achimugu and A. Selamat

20. Kobayashi, M., Maekawa, M.: Need-based requirements change management. In: Proceeding
of Eighth Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, pp. 171–178 (2001)

21. Krishna, K., Narasimha, M.: Genetic K-means algorithm. IEEE Trans. Syst. Man Cyber. Part
B (Cyber.) 29(3), 433–439 (1999)

22. Lim, S.L., Finkelstein, A.: takeRare: using social networks and collaborative filtering for
large-scale requirements elicitation. Softw. Eng. IEEE Trans. 38(3), 707–735 (2012)

23. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern
Recogn. 33(9), 1455–1465 (2000)

24. Moisiadis, F.: The fundamentals of prioritizing requirements. In: Proceedings of Systems
Engineering Test and Evaluation Conference (SETE 2002) (2002)

25. Perini, A., Susi, A., Avesani, P.: A Machine Learning Approach to Software Requirements
Prioritization. IEEE Trans. Software Eng. 39(4), 445–460 (2013)

26. Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis.
In: Proceedings-International Conference on Pattern Recognition (2004)

27. Ramzan, M., Jaffar, A., Shahid, A.: Value based intelligent requirement prioritization (VIRP):
expert driven fuzzy logic based prioritization technique. Int. J. Innovative Comput. 7(3),
1017–1038 (2011)

28. Selim, S., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern
Recogn. 24(10), 1003–1008 (1991)

29. Sung, C.S., Jin, H.W.: A tabu-search-based heuristic for clustering. Pattern Recogn. 33(5),
849–858 (2000)

30. Storn, R., Price, K.: Differential Evolution—A Simple and Efficient Adaptive Scheme for
Global Optimization over Continuous Spaces, TR-95-012. Int. Comput. Sci. Inst., Berkeley
(1995)

31. Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a genetic
algorithm. Inf. Softw. Technol. 55(2013), 173–187 (2012)

32. Thakurta, R.: A framework for prioritization of quality requirements for inclusion in a software
project. Softw. Qual. J. 21, 573–597 (2012)

A Hybridized Approach for Prioritizing Software Requirements … 93

	4 A Hybridized Approach for Prioritizing Software Requirements Based on K-Means and Evolutionary Algorithms
	Abstract
	1 Introduction
	2 Software Requirements Prioritization
	3 K-Means and Evolutionary Algorithms
	4 Proposed Approach
	5 Experimental Results and Discussion
	6 Conclusion
	Acknowledgment
	References

