Chapter 4

Lyapunov Inequalities

You know that I write slowly. This is chiefly because I am never satisfied
until I have said as much as possible in a few words, and writing briefly takes
far more time than writing at length.

Gauss (1777-1855).

In 1906 Lyapunov [105] proved an inequality giving the distance between
two consecutive zeros of solutions of second order differential equations. It is
proved that, if the differential equation

y' () + p(t)y(t) =0, (4.0.1)

has a nontrivial solution y(¢) with y(a) = y(b) = 0 (a < b) and y(t) # 0 for
t € (a,b), then

’ 4
/a p(t)dt > — (4.0.2)
where p is a positive real valued function defined on [a,b]. If the difference
equation
A?y(n) +p(n)y(n +1) =0 (4.0.3)

)
has a nontrivial solution y(n) satisfying y(0) = y(N) = 0, where p(n) is a
positive sequence, then the Lyapunov inequality is given by

N-l N =25, if N=2m+2,
kg}p(")* 2mil o if N =2m 4 1,

The chapter is organized as follows. In Sect.4.1 we present some Lyapunov
type inequalities for second order linear dynamic equations and in Sect. 4.2
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we present results for half-linear dynamic equations. Section 4.3 considers
dynamic equations with damping terms and in Sect.4.4 we consider
Hamiltonian systems on time scales.

Throughout this chapter (usually without mentioning) the integrals in the
statements of the theorems are assumed to exist.

4.1 Second Order Linear Equations

In this section, we establish some Lyapunov type inequalities for Sturm-—
Liouville linear dynamic equations on time scales and then establish some
sufficient conditions for disconjugacy of solutions. The results in this section
are adapted from [48, 90, 123, 125, 128]. First, we consider the Sturm-—
Liouville dynamic equation

Y22 () +p()y° (t) =0, (4.1.1)

together with the quadratic functional

b
Fly) = / (20 - py?)2(0)} A,

where p(t) is a positive rd-continuous function defined on T.

By a solution of (4.1.1), we mean a continuous function y : [a, 02 (b)]r —
R, which is twice differentiable on [a, b]T with yAQ rd-continuous. It is known
that (4.1.1) admits a unique solution when y(a) and y* (a) are prescribed. We
say y has a generalized zero at some ¢ € [a, 0 (b)]r provided that y(c)y?(c) <0
holds, and (4.1.1) is called disconjugate on [a,b]r if there is no nontrivial
solution of (4.1.1) with at least two generalized zeros in [a, b]r. Finally, (4.1.1)
is said to be disfocal on [a,o?(b)]t provided there is no nontrivial solution y
of (4.1.1) with a generalized zero in [a, o?(b)]7 followed by a generalized zero
of y® in [a, o (b)]r.

Lemma 4.1.1 If © solves (4.1.1) and if F(y) is defined, then
Fly) = Flz) = Fly — 2) +2(y — 2)(0)z(b) — 2(y — 2)2*(a).
Proof. Under the above assumptions we find

Fly) - Fle) - Fly— )
b
- / (W) — p)? — ()4 p(a”)?

— (y® — 2% +p(y” —a%)} (H)At
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= /{yx aca:A} At —2/{ )mA}AAt
= 2(y(b) — 2(b)2>(b) — 2(y(a) — 2(a))z>(a),

where we have used the product rule.

Lemma 4.1.2 If F(y) is defined, then for anyr,s € T witha <r <s<b

Proof. Let

+
S—T sS—7T

sy V) =), | su(r) —ryls)

Then z solves the Sturm-Liouville equation (4.1.1) with p = 0 and therefore
we may apply Lemma 4.1.1 to Fy defined by

Folz) = / (2 (1),

T

to find

Foly) = Fola)+ Foly— )+ (y— z)(s)a>(s) — (y — z)(r)a>(r)
Fo(x) + Foly — =)

Fte) = [ {10 5y )0,

sS—Tr S—7T

v

T

and this completes the proof. m
The following lemma will be used later (see [51]).
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Lemma 4.1.3 Equation (4.1.1) is disconjugate on [a, by if and only if

b
Fly) = / {(™(1)> = p(y")2(t)} At >0,

for all nontrivial solutions y with y(a) = y(b) = 0.

The following theorem gives the Lyapunov type inequality for the second
order dynamic equation (4.1.1).

Theorem 4.1.1 If y(t) is a nontrivial solution of (4.1.1) with y(a) = y
(b) =0 (a < b), then

b b—a
/ p(t)At > m, (4.1.2)

where f(d) = max{f(t) : t € [a,b]} and f(t) = (t —a) (b—1t).

Proof. From Lemma 4.1.1, since y is a nontrivial solution of (4.1.1) with
y(a) = y(b) = 0, we have that

b
Fu) = [ {00~ o770} At =0
0

Also, since y is nontrivial, we see that
M = max{y?(t) : t € [a,b] N T}, (4.1.3)
is defined and positive. Now let ¢ € [a,b] be such that y?(c) = M. Applying

the above and Lemma 4.1.2, twice (once with » = a and s = ¢ and a second
time with » = ¢ and s = b), we find

b b
M /p<t>At > / {p(y")2(t)} At
’ Ob b b
- / (4™ (1)*At = / (> (0)2At + / (43 (1)) At

1 1 b—a b—a
2 =M >M
y(c){c—a+b—c} fle) =7 f(d)’
where the last inequality holds since f(d) = max{f(t): ¢t € [a,b]NT}. Hence,
dividing by M > 0 yields the desired inequality. The proof is complete. m
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Example 4.1.1 We use the notation from the proof of Theorem 4.1.1.
(¢). If T=R, then

b b
min{ % —s‘ RS [a,b]} =0, and so that d= %.
Hence f(d) = ((b—a)?/4) and the Lyapunov inequality from Theorem 4.1.1
reads
/ 4
t)dt > .
/ pt)dt = —

0

(#i). If T =Z, then we consider two cases. First, if a + b is even, then

min{ ath —s|:s€ [a,b]ﬂZ} =0, and so that d = a—|—b.
Hence f(d) = ((b—a)?/4) and the Lyapunov inequality reads
b—1
4
>
> op(t) > .
t=a
If a4+ b is odd, then
min{‘a;b 5’ NS [a,b]ﬂZ} = %, and so that d = %H.

Then, we have f(d) = ((b— a)? — 1/4) and the Lyapunov inequality reads

b—1 4 1
> 00> A = -

t=a

As an application of Theorem 4.1.1, we now prove a sufficient condition
for the disconjugacy of (4.1.1).

Theorem 4.1.2 If p satisfies

b

/ P(HA(H) <

a

Ok (4.1.4)

then (4.1.1) is disconjugate on [a,b]r.

Proof. Suppose that (4.1.4) holds. For the sake of contradiction we
assume that (4.1.1) is not disconjugate. But then, by Lemma 4.1.3, there
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exists a nontrivial y with y(a) = y(b) = 0 such that F(y) < 0. Using this y,
we now define M by (4.1.3) and we find

b

b b
M / p(H)AE > / p(t)(” (1))*At > / (> ()20t >

a

M —a)
fady

where the last inequality follows as in the proof of Theorem 4.1.1. Hence,
after dividing by M > 0, we arrive at

which contradicts (4.1.4) and hence completes the proof. m

Remark 4.1.1 Note that in both condition (4.1.2) and (4.1.4) we could
replace (b—a)/f(d) by 4/(b—a), and Theorems 4.1.1 and 4.1.2 would remain
true. This is because for a < ¢ < b, we have

L1 akb-2 44
c—a b—c (b—a)(c—a)lb—c) b—a " b—a’

In the following, we apply Opial type inequalities on time scales to
prove some Lyapunov type inequalities for the second-order dynamic equation
(4.1.1).

Theorem 4.1.3 Assume that y is a nontrivial solution of the second-order
dynamic equation (4.1.1) with y(a) = y>°(b) = 0. Then, we have

() 1/2
Kp(o(b),a) = <2 / PO [0(t) — d] At) >, (4.1.5)
where
o(b)
P(t) :z/t p(s)As, for t¢€ [a,o(d)|r. (4.1.6)
Proof. Now

o (b) ,
/ v (0™ ()AL = 5 (D)5 () — y(a)y™ (a) - / VA ()]



4.1. SECOND ORDER LINEAR EQUATIONS 181

and using (4.1.6), we get that

o(b)
- / P()([y(t) +y7 ()]y> (1)) At

o(b)
< [ POl + v 0] @) A (4.18)

Multiplying (4.1.1) by y? and integrating from a to o(b) and using Theorem
3.1.7, (4.1.7) and (4.1.8), we get

o (b) 9 a(b)
/ (W2 (1) At < / 1P(0)] ([u(t) + 7 ()] 5™ (£)) At
o(b) 5

< Kp(o(b),a) / > (0] (4.1.9)

a

Clearly, (4.1.5) follows from (4.1.9) by dividing by

o(b) A 9
[ reras
on both sides. The proof is complete. m

Remark 4.1.2 The conclusion of Theorem 4.1.3 also holds for the second
order dynamic inequality

y& t) +pt)y°(t) >0, for t € [a,b]r, (4.1.10)
with y(a) = 0 and y(b)y>? (b) < 0.

Similar reasoning by considering Theorem 3.1.8 instead of Theorem 3.1.7
yields the following result.

Theorem 4.1.4 Assume that x is a nontrivial solution of (4.1.1) with
22(a) = 27 (b) = 0. Then, we have

-2 (5) ) 1/2
Lp(02(b), a) = (2 / (P(1))? [0(b) — 1] At) >,
where

P(¥) ::/ p(s)As, for t € [a,o(b)]r.
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Remark 4.1.3 The conclusion of Theorem 4.1.4 also holds for (4.1.10) with
z(a)r?(a) > 0 and o (b)=0.

In the following, we establish a disconjugacy result for solutions of (4.1.1).

Theorem 4.1.5 Assume that y is a nontrivial solution of (4.1.1) with y(a) =
yo (b) = 0, and let P € CL ([a,b]T,R) be a function satisfying PX = p on
[a,b]T. Then, we have

{ max {Kp(c?(b),c), Lp(c,a)}} > 1. (4.1.11)

c€la, 02(b

Proof. Similar reasoning as in the proof of Theorem 4.1.3 yields the
desired inequality (4.1.11) by applying Corollary 3.1.2 instead of Theorem
3.1.7. m

Corollary 4.1.1 Assume that y is a nontrivial solution of (4.1.1) with
y(a) =0, and let P € CLy([a,b]r,R) be a function as in Theorem 4.1.5. If

e 02(b)]T{max{Kp b),c),Lp(c,a)}} <1,

then y°” (b) # 0.

Next we consider the second order dynamic equation on [a, b]

[rty )] +at)y () =0,  teab], (4.1.12)

on an arbitrary time scale T, where r is a positive rd-continuous function
and ¢ is rd-continuous function and

B B
/ 1/r(t)At < oo, and / lg(t)| At < 0. (4.1.13)

We obtain lower bounds for the spacing 8 — « where y is a solution of (4.1.12)
satisfying some conditions at o and .

By a solution of (4.1.12) on an interval T, we mean a nontrivial real-valued
function y € C,q(T), which has the property that r(t)y®(t) € C},(T) and
satisfies Eq. (4.1.12) on T. We say that (4.1.12) is right disfocal (left disfocal)
on [a, B]r if the solutions of (4.1.12) such that y*(a) = 0 (y*(8) = 0) have
no generalized zeros in [, S]r.

Theorem 4.1.6 Suppose y is a nontrivial solution of (4.1.12). If y(a) =
y2(B) =0, then

1

( o | <u>>“>2+a2§25
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where ) ft s)ds. If instead y (a) y(B) = 0, then
B8 Q2(t) ﬂﬂ 3 " Q(t)
{\/5 ( o 7(t) </t r(“)> At) * aftgﬁ Ht) r(t) ‘] > 1, (41.15)

where Q(t) f q(s

Proof. We prove (4.1.14). Multiplying (4.1.12) by y° and integrating by
parts, we have

A

8 5 [P
/y”(t) (rOy=(1)~ At = y(t)r(t)yA(t)|a—/ r(t)(y>(1)*At

Using the assumptions that y(a) = y®(8) = 0 and Q(t) j; $)As, we get
that

B B B
/ r() (¥ () At = / a(t) (4 (£))? At = — / QA (1) (47 (1)) At.

Integrating by parts the right-hand side and using the fact that y(a) =
0= Q(p), we see that

8 ) 8
/ rt) (P (10) At = / Q) (1) + 7 (1) 4> (DAL

IN

B
| 1wl + 0] A )] A

Applying the inequality (3.1.23) with s = @, we have

/j r(t) (Z/A(t))2 { (/ Q' (/ u)) At)é + s
></a ‘y ’2At.

This implies that
t
n() & >]] >,

{ ( o (u))“>2+ai‘125 0

which is the desired inequality (4.1.14). The proof of (4.1.15) is similar to the
proof of (4.1.14) by using integration by parts and Theorem 3.1.12 instead
of Theorem 3.1.11. The proof is complete. m

As a special case of Theorem 4.1.6, when r(¢) = 1, we have the following
results for Eq. (4.1.1).
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Corollary 4.1.2 Suppose y is a nontrivial solution of (4.1.1). If y(a) =
yA(8) = 0, then

5 3
{ﬁ </ Q*(t) (t —a) At) s (u(t)lQ(t)l)] >1

where Q(t) ft s)ds. If instead y>(a) = y(B) = 0, then

[ (/ Q*(t) (B—1) At) + Sg;gﬁ(ﬂ(ﬂl@(t)l)] >1

where Q(t) f q(s

Remark 4.1.4 Note that if T = R then p(t) = 0 and Eq. (4.1.12) (when
r(t) = 1) becomes

y' () +q(t)y(t) = 0. (4.1.16)

In this case the result in Corollary 4.1.2 reduces to a result obtained by Brown
and Hinton [57].

Corollary 4.1.3 ([57]). Suppose y is a solution of Eq. (4.1.16). If y («a) =
y (B) =0, then

2//3 Q*(s)(s — a)ds > 1, (4.1.17)

where Q(t) ft s)ds. If instead y () =y (B) =0, then

/ Q*(s)(B — s)ds > 1, (4.1.18)

where Q(t) f q(s

Remark 4.1.5 Note that if T = N, then u(t) = 1 and Eq. (4.1.12) (when
r(t) =1) becomes

A?y(n) + q(n)y(n +1) =0, (4.1.19)

and the result in Corollary 4.1.2 reduces to the following result.

Corollary 4.1.4 Suppose y is a solution of Eq. (4.1.19). If y(a) = Ay
(8) =0, then
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where Q(n) = Ef:_i q(s). If instead Ay (o)) =y (8) =0, then

g1 3
ﬁ(Z(Q(n))Q(ﬁ—n)> + sup |Q(n)| > 1,

st a<n<p

where Q(n) = Z:;; q(s).

Theorem 4.1.7 Suppose that y is a nontrivial solution of (4.1.12). If
y(a) = y2(B) =0, then

(Lo, S [ ([ B ar) e |2

where Q(t) = ff q(s)ds. If instead y* (o) = y(B) = 0, then

w F 1 (7 au) ) Q)
(e G0 ([ R o)

r(t)

where Q(t) = f; q(s)ds.

Proof. We prove (4.1.20). Multiplying (4.1.12) by y° and integrating by
parts and following the proof of Theorem 4.1.6, we have

B B B
/ r(t) (¥ () At = / a(t) (47 (£))? At = — / QA (1) (47 (1)) At.

e

Integrating by parts the right-hand side and using the fact that y(a) =
0= Q(B), we see that

8 ) 8
/T(t)(yA(t)) At < /IQ(t)IIy(tHy”(t)l|yA(t)|At

Q(t)
r(t)

IN

sup
a<t<p

B
|l + v ol 0] a

Applying the inequality (3.1.37) with (3.1.38) and cancelling the term ff r(t)
(yA(t))2 At, we get the desired inequality (4.1.20). The proof of (4.1.21) is
similar to the proof of (4.1.20) by using integration by parts and Corollary
3.1.4 instead of Corollary 3.1.3. The proof is complete. m

As a special case of Theorem 4.1.7, when r(t) = 1, we have the following
result.
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Corollary 4.1.5 Suppose thaty is a nontrivial solution of (4.1.1). Ify(a) =
yA(8) = 0, then

sup [Q()[ (B — )+ sup [Q(t)|p(t) > 1,
a<t<p a<lt<p

where Q(t) = ff q(s)ds. If instead y*(a) = y(B) = 0, then

sup |Q(1)| (B —a)+ sup Q)| u(t) =1,

a<t<p a<t<p

where Q(t) = f; q(s)ds.

As special case of Corollary 4.1.5, when T = R, (note that in this case
u(t) = 0), we have the following result due to Harris and Kong [73] for the
second order differential equation (4.1.16).

Corollary 4.1.6 Suppose that y is a nontrivial solution of (4.1.16). If
yla) =y (B) =0, then

B
(B—a) Jnax, (/t q(s)ds) > 1. (4.1.22)
If instead y' (o) =y(B) =0, then
t
(8 —a) Jnax, /a q(s)ds| > 1. (4.1.23)

As a special case of Corollary 4.1.5, when T = N (note that in this case
u(t) = 1), we have the following result for the second order difference equation
(4.1.19).

Corollary 4.1.7 Suppose y is a solution of Eq. (4.1.19). If Ay(a) =y
(B8) =0, then

sup [Q(n)[(B+1—a)>1,

a<n<p

where Q(n) = Y"1 4(s). If instead y (o) = Ay (8) = 0, then

sS=n

sup [Qn)|(B+1—a)>1>1,
a<n<p

where Q(n) = E::_; q(s).

Remark 4.1.6 The above results yield sufficient conditions for the disfocal-
ity of (4.1.12), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(a) = y>(B8) = 0 or y®(a) = y(B) = 0.
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Now, we assume that there exists a unique h € [, 8]t such that

hAt BAt
/a @:/h = (4.1.24)

Note that when r(t) = 1, we see that (h — a) = (8 — h), so that the unique
solution of (4.1.24) is given by h = (a + §)/2.

Theorem 4.1.8 Assume that (4.1.24) holds and Q®(t) = q(t). Suppose
that y is a nontrivial solution of (4.1.12). If y(a) = y(B) = 0, then
Q)

Q) [ M Au '
ﬁ</ R0 </ r<u>>“> R Py

Proof. As in the proof of Theorem 4.1.6 by multiplying (4.1.12) by
y? (1), integrating by parts and using y(a) = y(8) = 0, we have that

‘ >1.  (4.1.25)

5 ) 5
/ r(t) [y ()] dt < / Q)| |y(t) + v ()] [y> ()] dt. (4.1.26)
Then
B 2 B 2
/ r(#) [y () dt < K(a, 8) / r() [y ) dt,

where K (o, 3) is defined as in (4.2.10). From the last inequality, after can-
celling the term ff r(t) |yA(t)|2 At, we get the desired inequality (4.1.25).
This completes the proof. m

When r(t) = 1, (note that in this case h = (a + 8)/2)), we have the
following result for Eq. (4.1.1).

Theorem 4.1.9 Assume that Q2 (t) = q(t). Suppose that y is a nontrivial
solution of (4.1.1). If y(a) = y(B) = 0, then

=

[e%

Remark 4.1.7 The results in Theorems 4.1.8 and 4.1.9 yield sufficient con-
ditions for the disconjugacy of (4.3.1), i.e., sufficient conditions so that there
does not ezist a nontrivial solution y satisfying y(a) = y(8) = 0.

As a special case of Theorem 4.1.9, when T =R and T = N, we have the
following results for the second order differential equation (4.1.16) and the
second order difference equation (4.1.19).

Corollary 4.1.8 Assume that Q' (t) = q(t). Suppose that y is a nontrivial
solution of (4.1.16). If y(a) = y(B) =0, then
2

/j (/:q(“)d“> dt 2 3 —. (4.127)
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Corollary 4.1.9. Assume that AQ(n) = q(n). Suppose that y is a nontrivial
solution of (4.1.19). If y(a)) = y(8) = 0, then

a<n<p

VB-a (icﬂn)) + sup Q)| > L.

4.2 Second Order Half-Linear Equation

In this section, we consider some second order half-linear dynamic equations
on time scales and establish Lyapunov inequalities. First we consider the
second-order half-linear dynamic equation of the form

A
(rt)e(a®))” + p(t)p(a” (1)) =0, (4.2.1)
on an arbitrary time scale T, where o(u) = |u|" " u, v > 0 is a positive
constant, r and p are real rd-continuous positive functions defined on T with

r(t) # 0. The results for (4.2.1) are adapted from [130].

Theorem 4.2.1 Let z(t) be a positive solution of (4.2.1) on T satisfying
z(a) = x(b) =0, z(t) # 0 fort € (a,b) and x(t) has a mazimum at a point

c € (a,b). Then
b T
(/ r#(t)m> /p(t)mzwl. (4.2.2)

/cb 2 (1) At .

Proof. Let

(4.2.3)

From (4.2.3), we observe that

b
oM = / 2 (t) At

g/C’zA(t)|At+/b|xA(t)|At.

/ac xA(t)At' +

This implies that

1

b b
2M§/ ]:cA(t)]At:/ AL (8) (r7 (2) |22 ()]) At (4.2.4)

From this we get

b I
(M) < ( / ml(t)(mlﬂ(t)}xA(t)])At> - (425
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Applying the Holder inequality with f(t) = rw%rll(t), g(t) = rai(t) |z2 (1),
p=v+1landgqg= 'YTH, we obtain

(/abr{fl )7 (1) |xA(t)|)At>v+l < (/abr%l(t)At)W (/abr(t)(|a:A(t)|)7+1At> .

(4.2.6)

Substituting (4.2.6) in (4.2.5), we have
(M)t < (/abml(t)m>7 (/zbr(t)(|xA(t)|)V+1At> : (4.2.7)
Using integration by parts we see that (note z(a) = z(b) = 0)
/ab'r(t)(|xA(t)})7+1At = /ab (1) (rt)(|z2 @)]) 22 (2)) At
_ _/ab [r(1)(J2(0)]) 122 (1) 27 ()AL (4.2.8)
Now (4.2.1) implies that

b b
/ T(t)(|xA(t)|)’Y+1At:/ p(t) (ma(t))'y+1 AL

a

This and (4.2.7) imply that

b v b
(2M)" ! < (/ rwl(t)At> (/ p(t) (27 ()" At)
< M (/bﬁ(tmt> (/bp(t)At> :
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Now, dividing by M+, we have

</abr_wl(t)At> (/abp(t)At> > 27+

which is the desired inequality (4.2.2). The proof is complete. m

Y

Remark 4.2.1 Note the inequality with v = 1 and r(t) = 1, reduces to the
inequality

/bp(t)At > bfa. (4.2.9)

Now, we consider the half-linear delay dynamic equation

(r(®) (@ ()2 + pt) (p(a(r(t)) =0, (4.2.10)

on an arbitrary time scale T, where v > 0 is a positive constant, r and p are
real rd-continuous positive functions defined on T with r(t) #0, 7: T — T,
T(t) <tforallt € T, lim;_,o 7(t) = 00, and

[ () e aam

Note that when the condition (4.2.11) holds, then the positive solution ()
of (4.2.10) satisfies 22 (¢) > 0. Under this condition, we see, since 7(t) < t,
that z(7(t))/2°(t) < 1. Using this claim we have the following result
for (4.2.10).

Corollary 4.2.1 Assume that (4.2.11) holds and let x(t) be a positive sol-
ution of (4.2.10) on T satisfying x(a) = x(b) = 0, 2(t) # 0 for t € (a,b) and
z(t) has a mazimum at a point ¢ € (a,b). Then

(/abr?l(t)m)

Proof. We proceed as in the proof of Theorem 4.2.1, to get

(2M)" ! < (/Zﬁ(t)At) (/br(t)(]xA(t)DV“At) .

Using integration by parts we see that (note z(a) = z(b) = 0)

Y

b
/ p(t)At > 27+,

b b
[ rogarolriac=- [ oo o

a a
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Now (4.2.10) implies that

[t whrae= oo () ey an

7 (t)

Using the above claim, since x(7(¢))/z7(t) < 1, we have

b b
/T(t)(‘xA(t)‘)’H-lAtg/ p(t) (xa(t))vﬂ AL

The remainder of the proof is similar to the proof in Theorem 4.2.1 and hence
is omitted. m

In the following, we establish some sufficient conditions for the disconju-
gacy of (4.2.1).

Theorem 4.2.2 Let r and p satisfy
b r i (a) (b—¢) + (c—a)
r(b)  (c—a)i(b—c)
[ roae<d B0 @ oy
m(a) (c—a)i(b—c) ’

if r(t) is increasing,

if r(t) is decreasing.
(4.2.12)
Then (4.2.1) is disconjugate in T.

Proof. Suppose that (4.2.12) holds and assume for the sake of contradic-
tion that (4.2.1) is not disconjugate. Then there exists a nontrivial solution
x with z(a) = z(b) = 0. Using this z, and integrate by parts to see that
(note z(a) = z(b) = 0)

[ o ahai= [0 Gol o)t o) a
__ / " (2 0125 0] a(e) A
Now (4.2.1) implies that
/abr(t)(|$A(t)\)7+1At = /abp(t) (x(t)"*" At
Then, we have

M / ()AL > / ") [0 At > / 0 e O A

:/Cr(t)|xA(t)}”“At+/br(t)|xﬁ(t)|”“ At, (4.2.13)
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where M is defined as in Theorem 4.2.1. Now, since
/ r(t) |28 (1) At = / v (1) (v (1) o2 (0)]) A,

we have after applying the Holder inequality with f(¢) = rﬁ(t)7 g(t) =
rﬁ(t) |e2(t)], p=~+1and ¢ = 'YTH, that

/:mll(t) (rﬁ(t ]xA(t)D At

This implies that

c 41 (S r(t) [22(1)] ar) ™
(/a r(t) |2 ()| At) > (a0 . (4.2.14)

Also we see that

(/br(t) EROlas At) > (fcbr(t) =2 At)w. (4.2.15)
c N ( % r(t)At)7

Substituting (4.2.14) and (4.2.15) into (4.2.13), we have

b
Mt / p(t)At

(v 220 ™ (L@ 22 ) At)”“
> ] B :
([Tr(t)At) (fcbr(t)AO
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(’"(a) Ja =2 ® At)wl N <T W) J; IA(t)’At)Hl if 7(¢) is increasi
(facr(t)At)’Y (beT(t)At)w ) g,
> el A y+1 bl A y+1
(o) i l2wla) T (o prwag T
< 7 + , if r(t) is decreasing,
TRES) (1)
T’Hl(a)erl r'ﬁl(a)M’Hl if r(¢) is increasin
) Fwe—ap T Eme—gr e 0 .
B Tﬁ_l(b)Mﬁ_l Tw_l(b)Mw_l if r(t) is decreasin
F@)c—ay " (@)l &

Dividing by M7, we have
b r i (a) (b —¢) + (c—a)
b) (c—ay(b—cp
G A e
m(a) (c—a)i(b—c)7 ’

which is a contradiction with (4.2.12) and hence completes the proof. m
As a consequence from Theorem 4.2.2, by using the fact that

1
YN Y
T + x5\ 2z
! Z > 12,f0rx1:c—aandm2:b—c,
2 1‘1+I2

if r(¢) is increasing,

if (t) is decreasing,

we have the following result.

Theorem 4.2.3 . If r and p satisfy

i a) 27+

b , if r(t) is increasing,
Y(b b—a)
[ pwar<d 0 (1.2.16)

WW’ if r(t) is decreasing.
Then (4.2.1) is disconjugate in T.

We end this section by applying Opial type inequalities to establish some
Lyapunov type inequalities for the second order half-linear dynamic equation

rO@AE)M2 +q() ()7 (1) =0, on [a, b, (4.2.17)

where T is an arbitrary time scale. The results are adapted from [133]. For
Eq. (4.2.17), we assume that 0 < v < 1 is a quotient of odd positive integers,
r and ¢ are real rd-continuous functions defined on T with r(t) > 0. We
obtain lower bounds for the spacing S — a where y is a solution of (4.2.17)
satisfying some conditions at o and .
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To simplify the presentation of the results, we define

: = sup u” Q)] where = ’ s)As
M(E) = swp (0 G where Q) = [ a(s)as
M(a) zaséttlgﬁuv(t)@((tty, where Q(t)z/aq(s)As.

Note that when T =R, we have M(a) = 0 = M(8), and when T = Z, we
have

2 a(s)| Sk als)|
M(B) = sup , and M(a) = sup

= 1 = (4218
a<t<p  r(t) a<t<g  T(t) ( )

Theorem 4.2.4 Suppose that y is a nontrivial solution of (4.2.17) and y*
does not change sign in (o, B)r. If y(a) = y>(B) = 0, then

2 5|@<x>|”~“< © At >7A>’“+21_M
- -1 -1 x v 6)217
T </ (@) / 2 (8) (
(4.2.19)

where Q(t) ft s)As. If y»(a) = y(B8) =0, then

~

2 Q) ( At >7A >7+1 F 2l
- ¥ 1 1 z ! (Oé) Z 1’
(v +1)71 (/a r7 () /r 7 (t)

(4.2.20)

where Q(t) f q(s

Proof. We prove (4.2.19). Without loss of generality we may assume
that y(t) > 0 in [«, B]y. Multiplying (4.2.17) by y° and integrating by parts,
we have

Using the assumptions that y(a) = y>(8) = 0 and Q(t) j; s)As, we
have

’ A7 g y+1 g A y+1
[ o ero) st [ eyt ar=— [ QA0 ) an

« «
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Integrating by parts the right-hand side we see that

B
/ r(t) (v (1) At = 6+ / Q) (1) At.
Again using the facts that y(«a) = 0 = Q(8), we obtain
B
/ r(t) (y2 ()" dt = / Q) (1)) dt. (4.2.22)

Applying the chain rule formula and the inequality (3.3.2), we see that

1

< (r+1) / Il (£) + (1= RYy(0)[" dh |y (1)

0

(@)

’

IN

(v+ 1) [y2 @) / |hy (£)|” dh

v+ 1) |2 )] / (1= hyy(®)]" dh
0
2Ol O + [y 0] )"
211 7 (1) + y(0)" [y (1) (4.2.23)

IN

This and (4.2.22) imply that
? Ay |7+ 1—ny ? oY |, A
r(t) [y2 (@) At <2 Q)| |y(t) +y7 ()] [y=(#)] At.
Applying the inequality (3.3.22) with s(¢) = |Q(t)|, p = 7 and ¢ = 1, we have

B B
[ oo a2 K80 [ o0 A @220

where

Ki(a,,7,1) = M(B)+2 <1>“

(/ Q@) r ()(/: J()At)”my“_

Then, we have from (4.2.24) after cancelling the term ff r(t) |yA(t)}7+1 At,
that

. 2 6|@<m>w~“( > At ) )
2TM(B) + ——— . . Ax >1,
) (7+1)+X</a v (2) /(mm

-Q\H
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which is the desired inequality (4.2.19). The proof of (4.2.20) is similar
to (4.2.19) by using integration by parts and (3.3.29) of Theorem 3.3.5 and
(3.3.30) instead of (3.3.23). The proof is complete. m

As a special case of Theorem 4.2.4, when r(t) = 1, we have the following
result.

Corollary 4.2.2 Suppose that y is a nontrivial solution of

A 7\ A o v
(W*®)) +a0 @) =0, tela bl (4:2.25)

and y® does not change sign in (o, B)r. If y(a) = y>(B) = 0, then

(y+ 17T U QT (- Ar| 2 s Q) 21
(,y_|_1 "r+1 a<t<p

(4.2.26)
where Q(t) ft s)As. If y»(a) = y(B) = 0, then

2 p 14y s

P [/ QI (B-8)7At|  +2'77 sup (W(H)]QH)]) =1
(y+ 1) e a<t<p

(4.2.27)

where Q(t) f q(s

Corollary 4.2.3 Suppose that y is a nontrivial solution of (4.2.25) and y*
does not change sign in (a, B)r, and v < 1 is a quotient of odd positive

integers. If y(a) = y>(B) = 0, then
B
/ q(s)As ) >1,
t
(4.2.

/tﬁ q(s)As
) =1

whereas if y> (o) = y(B) = 0, then
(4.2.29)

2(8 — )Y
(Y+1) asiep

+ 27 sup (,u'y(t)
a<t<p

28)

28-a)7

(y+1) a<t<p

[ aas [ aoas

As a special when T =R, we have M (a) = M(8) = 0 and we consider
the second order half-linear differential equation

L2177 sup (wt)
a<lt<p

/

(W'®)) +a®@®) =0, a<t<p, (4.2:30)

where v < 1 is a quotient of odd positive integers.
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Corollary 4.2.4 Assume that v < 1 is a quotient of odd positive integers.
Suppose that y is a nontrivial solution of (4.2.30) and y does not change

sign in (a, B). If y (o) = y (B) =0, then

2 5 7 ’ ds| > 1 4.2.31
e TR A ACCE EL
If instead y/ (a) =y (B) =0, then
) t
Grn B sup /a q(s)ds| > 1. (4.2.32)

As a special when T =Z, we see that M(«) and M(3) are defined as
in (4.2.18) and we consider the second order half-linear difference equation

A((Ay(n)") +q(n)(y(n+1))" =0, a <n < B, (4.2.33)
where v < 1 is a quotient of odd positive integers.

Corollary 4.2.5 Suppose that y is a nontrivial solution of (4.3.17) and
Ay(n) does not change sign in (o, B)t, and v < 1 is a quotient of odd positive
integers. If y(a) = Ay(8) =0, then

2Woor e 5|2t ap (S]] 20
D) W |2 1) 2T e |2 0] > L
whereas if Ay(a) =y(8) =0, then
HB— )7 max nilq(s) +2177 sup nilq(s) > 1.
(y+1) asnsp | asn<p \| =2 -

Remark 4.2.2 The above results yield sufficient conditions for the disfocal-
ity of (4.3.1), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(a) = y>(B) = 0, or y*(a) = y(B) = 0.

Next we employ Theorem 3.3.6 to determine a lower bound for the dis-
tance between consecutive zeros of solutions of (4.2.17). Note that the appli-
cations of the above results allow the use of arbitrary anti-derivative @) in the
above arguments. In the following, we assume that Q“(t) = ¢(t) and there
exists h € (o, 8) which is the unique solution of the equation

Ky(,B) = Ki(a, ,h) = Ky(a,h, B) < oc, (4.2.34)

where

y+1
>

27 B 1Q(x)] < h At )“Y >w T
Ki(a,8,h) = ——— B E— - | Az )
ol <v+1>~+lx</a T WL
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and

5]

» (71 >< b ) )
Ki(a,h,p) = T T n Ax .
( ) (v+ 1)+ </a rv(z) /h r (t)

Theorem 4.2.5 Assume that Q*(t) = q(t). Suppose y is a nontrivial solu-
tion of (4.2.17) and y* (t) does not change sign in (o, B). If y(a) = y(B) = 0,
then

Kl(a,ﬁ) Z ]-7 (4235)
where K1 («, B) is defined as in (4.2.34).
Proof. Multiply (4.2.17) by y?(t), and proceed as in Theorem 4.2.4 and
use y(a) = y(B) =0, to get

5 ) E X 5 X
/ r() (P (1) AL = / 4(0) (1) At = / QA (1) (v (1) At

[e3

Integrating by parts the right-hand side, we see that

5 ) 8
/ r() (B2 0) T A = Q) ()| + / (—Q(1)) (1)) At.

(03

Again using the facts that y(a) = 0 = y(5), we obtain

? Ay L ? Y |yA
/ ) |y 0] At < / Q) Iy + 5 O] |v5 (1)) At.

Applying the inequality (3.3.31) with s(¢) = |Q(¢)|, p = v and ¢ = 1, we have
B B
1 _ 1
[ ol e s 2w [ o Ao
« «

From this inequality, after cancelling | f |yA(t){7+1 At, we get the desired
inequality (4.2.35). This completes the proof. m

4.3 Second Order Equations with Damping
Terms

In this section we consider the second-order half-linear dynamic equation
with a damping term

(r(t) (gz;A(t))”)A +p(t) (22(1)" +q(t) (27 (1)) =0, t € [o, By, (4.3.1)

where T is an arbitrary time scale and o(t) is the forward jump operator on
T which is defined by o(t) := inf{s € T : s > t}.

We say that a solution x of (4.3.1) has a generalized zero at ¢ if z(t) = 0,
and has a generalized zero in (¢, o(¢)) in the case z(t)x? (t) < 0 and p(t) > 0.
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Equation (4.3.1) is disconjugate on the interval [to, b], if there is no nontrivial
solution of (4.3.1) with two (or more) generalized zeros in [tg, b]r. We say
that (4.3.1) is right disfocal (left disfocal) on [, S] if the solutions of (4.3.1)
such that z2(a) = 0 (z®(8) = 0) have no generalized zeros in [a, B]r. For
Eq. (4.3.1) the point 8 > « is called a right focal point of « if the solution
of (4.3.1) with initial conditions z(a) # 0, 2 () = 0 satisfies 2:(8) = 0. The
left focal point is defined similarly.

We will assume that v > 1 is a quotient of odd positive integers, 7,
p and ¢ are real rd-continuous functions defined on T with r(¢) > 0 and
w(t) [p(t)] < r(t)/c where ¢ is a positive constant such that ¢ > 1. We
also assume that supT = oo, and define the time scale interval [a,b]T by
[a,b]t := [a,b] N'T. To simplify the presentation of the results, we define

= sup u” QM) where = ’ s)As
Mp) = s () L where @) = [ a(s)as
Ala) :asglzgﬁu”(t)%, where Q(t):/a q(s)As,

tA A
R,(t) : :/ T > , and Rs(t) ::/ ls .
a t

7’;(8) ry (s)
Note that when T = R, we have A(a) =0 = A(8) and when T = Z, we have
[ 0 Sl a0s)
AB)= sup ————, and A(o) = sup ———~—. (4.3.2)

a<t<g  T(t) ast<p  T(1)
Now, we are ready to state and prove the main results.

Theorem 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and x®
does not change sign on (o, B)r. If x(a) = xA(B) =0, then

Iv—2 237-2 B ‘()(t)| - ) 711
27N () —— S S t))" At
(5) (r)/_|_1)w+1 % (/a r7 (1) ( a ))

D NF (PO s T
+(M> X </a W(Ra(t)) At) 21--, (4.3.3)

where Q(t) ft s)As. If instead z°(a) = z(B) = 0, then

s 92372 B |Q(t)|f7 N >'y T
277 A )+ —— ————— (Rg(t))" At
( ) x (/a (t) ( 5( ))

(+1)7 o

7\ P lp)" " , w1 1
+(1+7> X (/a v ) At) >1--, (4.3.4)

where Q(t) f q(s
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Proof. We prove (4.3.3). Without loss of generality we may assume that
z(t) > 0 in [a, f]r. Multiplying (4.3.1) by 7 and integrating by parts, we
have

B B
/ (vt (xA(t))”)Axﬂ(t)Am / p(t)2 (2) (22(1)) At
B 1
= () (xA(t))”z(t)\Z_/ r(t) (22(6)" A
B

B
Jr/ P(t)xd(t) (xA(t))7 At = —/ q(t) (xo'(t))"/+1 AL

Using the assumption z(a) = 22 () = 0 we have

8 ) 8 i 8 X
- / r(t) (&2 (0) " At+/ p(t)z° (#) (22(1)" At = — / o) (27 (1)) AL

This implies (note that Q(t) ft ) that

/5r(t) (fA(t))’H_lAt—/ﬂp(t) ( N / QA 7+1At.
Integrating by parts the right-hand side, we see that
? A7+ s Ay
[y s = [ pweo @0) a
B
) + / Q) (1)) At.

Again using the assumptions xz(«) = 0 and Q() = 0, we obtain

5 ) 5 X 5

/ r(t) (22 (1)) dt = / p(t)z? (t) (z2(t)) At+/ Q) (277 (1) " At.
* ’ ) (4.3.6)

Applying the chain rule formula

- )\/1 [ha? (t) + (1 — h)z(t)]}  dha®(t), for A>0, (4.3.7)
0

and the inequality

a* + 0N < (a+b)N <22 + 1), if a, >0, A > 1, (4.3.8)
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we see that

‘ (xvﬂ(t))ﬁ‘

IN

1
(v + 1)/0 |ha? (t) + (1 — h)z(t)|" dh |22 (¢)|

IN

211 (y + 1) [ (1) /0 \ha? (1) dh

12771y + 1) 22 (1) /0 (1= h)a(t)[ dh
= 2771 22 (O)] 27 (@) + 207 22 (0] =)
< 2727 () +2(t)]” |22 (1)) - (4.3.9)
This and (4.3.6) imply that

8 ) E 8
/7’(lf)|$A(t)}W+ At < /Ip(t)llx"(t)HxA(t)l At

8
+277! / QU (1) + 27 ()" [+ ()] At
(4.3.10)

Applying the inequality (3.3.3) on the integral ff Q)] |x(t) + 27 (t)]”
|22 (t)| At, with s(t) = |Q(t)|, p =", ¢ =1, we have

B A p A ~y+1
/ Q)| (t) + =7 (1) |= (t)|At§K1(0¢75,%1)/ r(t) [«2(6)] AL,
: : (4.3.11)

where

a+1

8 = Rl
Ky, o, 1) = 2020422721 ( / Q@I (g, () Am) .
7 o (@)

Using that fact that 27 = 2(t) + u(t)z>(t), we see that

8 § 5 ,
[ ool | o) | ae = [ b)) + e o)A 0] A

IN

/[3 vy
JRCIECIESCI
B
+ [ o o) o0 At

Applying the inequality (3.2.33) on the integral ff Ip(t)| |z(t)] |xA(t)|7At
with s(t) = |p(t)], p =1 and ¢ = v, we see that

B B
[ pollstol o> @ At < Grtapir) [ o o0 A (@312
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where

T4 B v+1 EEas
R ey x( %(Ra<t>>W) .

Using the assumption that 0 < p(¢)u(t) < r(t)/c, we see that

B B 1
/ p®) 2O |22 @) At < Gi(a,B.1,7) / r() |22 0" At

% /B r(t) |22 AL (43.13)

Substituting (4.3.11) and (4.3.13) into (4.3.10), we have

s 1 p ~y+1
(171)/ r(t) |#2 @) At < Kl(a,ﬁ,m)/ r(t) |22 ()| At

c a

B 1
+Gi(a.p,1) [ o)t A
“ (4.3.14)

Then, we have from (4.3.14) that

1—% < Kl(a,ﬁ,7,1)+G1(a,ﬁ’1a’Y>
- 8 = T
22 4 2 ( O At)
(7+1)m « rY t)

()™ ([ o)™

which is the desired inequality (4.3.3). The proof of (4.3.4) is similar to (4.3.3)
using Theorems 3.2.9 and 3.3.2. The proof is complete. m
In Theorem 4.3.1 if 7(t) = 1, then we have the following result.

Corollary 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)1. If z(a) = 22(B) = 0, then

. 5 . =N
2127 (g) 4 — ( / |Q<t>”v<tamt>

X
(v+ 1)

1

Ll B SF1
ol v+ / v+1 ~ 1
+( X t t—a) At >1- -,
(=) (ap<>| (t - ) >1- -
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where Q ft s)As. If instead (o) = x(B) = 0, then
. A =%
PN (a) 4 — 2 x ( / QI (31 At)
(7 + 1) o

T+ 1
—t)TA >1— -
+<1+7> </ p(t) ) t) - ¢’

where Q(t) f q(s

As a special case of Theorem 4.3.1, when v = 1, we have the following
result.

Corollary 4.3.2 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)r. If v(a) = 22(B) = 0, then

7Rl N0 oo
A(6)+\/§</a ) ra(t)At> +ﬁ</a D Ra(t)At> >1- -,

where Ry (t) = foi TA(;) and Q(t) ft s)As. If instead x° (o) = z(B) = 0,
then

7l P Py
A(a)+\/§</a D) Tﬁ(t)At) +ﬂ</a 0 Rg(lf)Alf) >1--,

where Rg(t) fﬁ 2s. and Q(t) f q(s

r(s)

As a special case of Corollary 4.3.2, when p(t) = 0, we have the following
result.

Corollary 4.3.3 Suppose that x is a nontrivial solution of

(r(H)z2®)> +q(t)27(t) =0, t € [o Blr, (4.3.15)
and ® does not change sign in (a, B)r. If 2(a) = 22(B) = 0, then

ﬂ(/f 28 (3 a) a2,

where Q) ft s)As. If instead z° (o) = x(B) = 0, then

Sl [ F ac) O\
ﬂ(/a e </t 7"(t)>At> +A(@) > 1,

where Q(t) f q(s
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Remark 4.3.1 Theorem 4.3.1 yield sufficient conditions for the disfocality
of (4.8.1), i.e., sufficient conditions so that there does not exist a nontrivial
solution x satisfying x(a) = z2(8) = 0 or 2%(a) = x(3) = 0.

On a time scale T, we note from the chain rule (4.3.7) that

((t - a)>\+5)A = (A+90) /01 [h(o(t) — a) + (1 — h)(t — )]~  dh

v

(A+9) /01 [h(t—a) + (1 = h)(t — )" dh

(A + 8)(t — a)+o 1,

This implies that

T o T 1 s A B (’r _ a))‘+5
/a (t — a)()‘+5 )At S /a m ((t — CL))\+ ) At = W
(4.3.16)

Now using the maximum of |Q| and |p| on [a, B and substituting (4.3.16)
into the results of Corollary 4.3.1, we have the following result.

Corollary 4.3.4 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)r. If z(a)) = 22(B) = 0, then
937-2 6 —a) B ’Y#
2 o | [ ()| + 2268 - ) ma [5(0)
t

max
(y+1)  a<t<p y+1 a<t<p
b 1
+2272 sup u(t) / q(s)As| >1—-.
a<t<p ¢ ¢
If instead x° (o) = z(B) = 0, then
2172(8 — a) : T
e | [ s + 50— 0) max lotr)
2y—2 ' 1
+2%77% sup p(t) q(s)As| >1— -,
a<lt<p a c

As a special when T =7Z, we see that A(a) and A(S) are defined as
in (4.3.2) and we consider the second order half-linear difference equation

A(Az(n))” + p(n)(Az(n))” + ¢n)(z(n+1))" =0, a<n<p, (4.3.17)

where v > 1 is a quotient of odd positive integers and p(n) < 1/c.



4.3. SECOND ORDER EQUATIONS WITH DAMPING TERMS 205

Corollary 4.3.5 Suppose that x is a nontrivial solution of (4.3.17) and
Ax(n) does not change sign in (o, B)r. If x(a) = Az(B) =0, then

1 27-2(8 — @) - —
1-- < — 72 max s)| +22772 oy s
Cc (’Y+1) a<n<p ;q( ) aSnI;B ;q( )
e
7+1(B @) ax lp(n)] .
If instead Az(a) = x(8) = 0, then
1 237_2(ﬁ _ a),y n—1 n—1
1-- < — 72 max s)| +22772 gy s
c (y+1)  a<n<p ;q( ) agngﬁ S;XQ( )
L

o (B—a) Dax lp(n)].

If we apply the inequality

la+ b <221 (|a\)‘ + \b|)‘) , where a, b are real numbers and A > 1,

with a = 2(¢) and b = pu(t)ha®(t), then we have from (4.3.7) that

A

(@2 @)% < Grnlete) / [o(t) + p(t)h® (1) dh

IN

27_1(7+1)|xA(t)|/0 |lz(t)|” dh

42 (y 4+ 1) \xﬂ(t)y/() lu()hz? ()] dh
= Dy ) A0 )] 2 () [oA ) (4.3.18)

Substituting (4.3.18) into (4.3.6), we have that

£ . £ )
/7"(1ﬁ)|fﬂA(t)|7+ dt < /Ip(t)\lff"(t)HxA(t)! At
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we have from (4.3.19) that

/jrwﬁ g /\p )@ o2 At

2y 4 1) / QU |25 (1) [2(0) At

0™

B
+/ W (p0)] + 271 1Q)] |22 ) At

(4.3.20)

We now apply Opial inequalities to obtain results when the condition ()
Ip(t)| < r(t)/c is replaced by the new condition wu(t)(|p(t)] + 2771 |Q(t)]) <

r(t)/c.

Now, applying the inequality (3.2.33) on the term

B
/ Q) |22 (0)] [2(0)" At, with s(t) = |Q(t)], p = and g = 1,

we have

? A ? A v+1
/ Q) =) | (t)IAtSKi‘(a,ﬂ,ml)/ r() |22 (0] At

[e3%

where
.

: (AN eml  aa)
Ki(a, B,7,1) = (’M) (/a o (t))% (t)At) .

Using the inequality

B B 1
/ |p(t)|\x(t)||xA(t)|”Atg01(a,5,1,7)/ r(t)|zA(t)y”+ At,

where
R
Grlanpi1) = (1) (/ GOR R”“) |

and proceeding as in the proof of Theorem 4.3.1, we obtain the following
result.

Theorem 4.3.2  Assume that p(t)(|p(t)| + 2771 Q(¢t)]) < r(t)/c where ¢ is
a positive constant such that ¢ > 1. Suppose that x is a nontrivial solution
of (4.3.1) and ™ does not change sign in (a,,B)T. If z(a) = 22(B) = 0, then

= P11
21 (5 4 1) </ p e a<t>At>

1
% 5 y+1 F+T 1
() / Ip(t)] R (1)At 1L
147~ o T c

4
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where Q(t) = ftﬁ q(s)As. If instead 2 (o) = x(B) = 0, then

2771 (y 4 1)77 (/ﬁ L(?l R%(t)At) '

7 (t)

_1
’Y ey ﬂ ‘p(t)|’y+1 N y+1 1
- POL_ pripa >1- -
(135 </ ORI B

where Q(t) = fat q(s)As.

Remark 4.3.2 Note that when T =R the condition u(t)(|p(t)| + 277!
Q)]) < r(t)/c is removed since u(t) = 0.

Next we apply Theorems 3.2.10 and 3.3.3 to determine a lower bound for
the distance between consecutive generalized zeros of solutions of (4.3.1). In
the following, we assume that Q™ (t) = ¢(t) and assume that there exists a
unique h € (o, B)T, such that

R(h) := Ra(h) = Rs(h). (4.3.21)

Note that the best choice of h when r(t) = 1is h = (8+ «) /2. In the
following, we assume that

K"(a, B8,7,1) = Ky(a, 8,7,1) < oo, (4.3.22)
where
3y—2 B = T
Kh (Oé, ﬁa v 1) = 271 (/ W‘RZ(h)At> + 22"/72/\3
(v+ 17 \Ja 17 (1)
3y—2 3 — g
Kh(au ﬂa v 1) = 271 (/ @(f)le(h)At> + 227_2A7
(v + 17 \Ja 77 (1)
A= swp w9 here @2(1) = q(0),
a<t<p r(t)
and
G, B,1,7) = Gu(a, B,1,7) < oo, (4.3.23)
where

(Tt
Gh(a,ﬂyl,')/) = <1+’)/) (A ’I“’Y((‘,)Ra(h)At) ,

~

ey B8 v+1

2
+‘~
pt
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Now, we assume that K(v,1) is the solution of the equation K(v,1) =
Kh(avﬂvva 1) = Kh(Oé,ﬂ,’)/, ]') and given by

28712 51 >+ 2y-2
K(y,1) = . ~ h)At £ 2N, (4.3.24
(7, 1) D (/a R RY(h) ( )

and similarly G(1,7) is given by

(N et O
G(l,y)_(1+7> (/a e R(h)At) . (4.3.25)

Theorem 4.3.3 Assume that Q®(t) = q(t) and suppose = is a nontrivial
solution of (4.3.1). If z(a) = x(8) = 0, then

K1) +GL7) 212, (4.3.26)

where K (a, 8) and K(a, 5) are defined as in (4.3.24) and (4.3.25).

Proof. We multiply (4.3.1) by 27(t) and proceed as in Theorem 4.3.1 to
obtain

7 y+1 b R 7 A +1
/ r(t) (22 () At = / p(t)a” (1) (22 (1)) At+ / QA (1) (27 (1) At.

@

Integrating by parts the right-hand side, we see that

B B
/ r(®) (z20)" A = / (O (1) (+2 (1) At
B
+ Q)| - / Q) (@ (©)* At (4.3.27)
Using x(«) = 0 = 2(8) we obtain

[l as [Mporoll2o] s oo

[e3%

dt.

()

We proceed as in the proof of Theorem 4.3.1 to get
B A B
| 1@ i®)*|ac< 2 [0 et + 2] |+ 0)] At
Applying the inequality (3.3.15) with s(¢) = |Q(¢)|, p = v and ¢ = 1, we have

B 1
/ QIO de <2 K, [ rte) B0 A

«
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Also, we obtain

[ bl or a
B
< aq, )/ 0220 At = /T(t)‘xA(t)PHAt.

The rest of the proof is similar to that in the proof of Theorem 4.3.1. =

4.4 Hamiltonian Systems

In this section we consider a linear matrix Hamiltonian dynamic system on
time scales of the form

22 (t) = A(t)x® + B(t)u, u”(t) = —C(t)a® — A*(t)u, (4.4.1)

where A, B, and C' are rd-continuous n X n-matrix-valued functions on T such
that I — u(t)A(t) is invertible and B(t) and C(t) are positive semidefinite for
all t € T. A corresponding quadratic functional is given by

Flau) /{U*Bu— ) Ca} ()AL

A pair (x,u) is called admissible if it satisfies the equation of motion
2 = A(t)z° + B(t)u.
Lemma 4.4.1 If (z,u) solves (4.4.1) and if (y,v) is admissible, then

]—'(y,v)—}'(nu) = -F(y_x7v_u)
+2Re[(y — 2)"(b)u(b) — (y — )" (a)u(a)].

Proof. Under the above assumption
f(y, ) = Flz,u) = Fly —x,v —u)
/{U*Bv - —u"Bu+ (27)"Cz°
[(v—u)"B(v—u) = (y7 —27)"C(y” — 27)]} (t) At

/ {—2u*Bu+ v*Bu + u*Bv

+2(27)"Ca? — (y7)"Cz” — (27)"Cy” } (H)A(?)
b
_ /{—Qu*Bu 4+ 2Reu Bu] +2(27)"Ca® — 2Re [(y7)*Ca]} ()A()

a
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= ( {u*(Bv = Bu) + [(27)" = (y°)"] Cm*}(t)A(t))

YA — Ay® — 22 + Ax°)

Il
/\
,_A_‘

IS

*

+2¢ Im[u* Az? + (y7)* A"y (t)A(t))

b
= 2Re /{u*(yA — )+ (y7 — a:")*uA} (t)At)

b
= 2Re /{u"‘(yA —a®) + (W) (y7 —2°)} (t)At)
b

~ 9Re /{[u*(y—x)]A}(t)At)

= 2Re{u"(0)[y(b) — z(b)] — v (a)[y(a) — z(a)]}.
= 2Re{ly —2]"(O)u(b) — [y — z]"(a)u(a)]},
and we are finished. m

For the remainder of this section we denote by W (., r) the unique solution
of the initial value problem

W =AW,  W(r) =1, (4.4.2)

where 7 € [a,b] is given. We also write
F(s,r) = / W (£, 1) B(&)W (£, 1) At (4.4.3)

Observe that W (t,r) = I provided A(t) =0
Lemma 4.4.2 Let W and F be defined as in (4.4.2) and (4.4.3). If (y,v) is
admissible and if r,s € T with a < r < s < b such that F(s,r) is invertible,
then

[ B O 17 (5.7)05) = ) 6 IV 5 7)s) — ().

s
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Proof. Let
z(t) = W*(t,r) {y(r) + F(t,r)F = (s,r) [W*(s,m)y(s) — y(r)]}

and

ut) = W(t,r)F~ (s,r)[W" (s, r)y(s) — y(r)].

W)W o(t),r) = [W(o(t),r) = ut)W2E )W (a(t), )
= T+ p)A W (W (a(t),r),

and therefore [I — u(t)A*(t)]W (t,r)W~1(a(t),r) = I, so that
[1 = n(®A®)]2> (1) = A(t)x(t) + B(t)u(t),
and hence

eB2(t) = A@)z(t) + pt)At)z>(t) + B(t)u(t)
= A(t)z°(t) + B(t)u(t).

Thus (z,u) solves the Hamiltonian system (4.4.1) with C' = 0 and, we may
apply Lemma 4.4.1 to Fy defined by

S

Fole,u) = / (u* Bu) (1) A,

T

to obtain

fo(y,’U) ./—"O(I,U)+./—"0(y*l’,’()7u)

+2Re {u"(s)y(s) — x(s) — u*(r)[y(r) — z(r)]}

= Fo(z,u) + Foly — z,v —u) > Foz,u) = /(u*Bu)(t)At

= (W (s,m)y(s) = y(r)]"F~H(r, )W (s, 7)y(s) — y(r)]-

which shows our claim. m

Remark 4.4.1 The assumption in Lemma 4.4.2 that F(s,r) is invertible if
r < s can be dropped if B is positive definite rather than positive semidefinite.

We now may use Lemma 4.4.2 to derive a Lyapunov inequality for Hamil-
tonian systems.

Theorem 4.4.1 Assume (4.4.1) has a solution (x,u) such that x is non-
trivial and satisfies x(a) = x(b) = 0. With W and F introduced in (4.4.2)
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and (4.4.3), suppose that F(b,c) and F(c,a) are invertible, where |z(c)| =
maxye(qp)nr ||Z(E)||. Let A be the biggest eigenvalue of

_ /W*(t,c)B(t)W(t,c)At,

Then the Lyapunov inequality

~—

and let v(t) be the biggest eigenvalue of C(t
b

/v(t)At >

a

>/\~l>

holds.

Proof. Suppose we are given a solution (z,u) of (4.4.1) such that z(a) =
x(b) = 0. Lemma 4.4.1 then yields (using y = v = 0) that

Fz,u) /{U*Bu 7V CaTY (H)At = 0,

Apply Lemma 4.4.2 twice (once with r = a and s = ¢ and a second time with
r =cand s =b) to obtain

b
/[(z“)*C’z“](t)At

b c b

- / (u* Bu)(t) At — / (u* Bu) (1) At + / (u* Bu)(t) At
z* ()W (e,a)F~(c,a)W* (¢, a)z(c) + z*(c)F (b, c)z(c)

= 2" ()[F7 (bc) = F~N(a,0)]z(c) = 4o () F " a(e);
here we have used the relation W (t,r)W (r,s) = W(t,s) and the inequality
(see [34, Theorem 9 (i)]) and [120])

M7 4+ N'>4(M+N)™!

Now, by applying the Rayleigh-Ritz Theorem (see [85, page 176]), we
conclude

v

b

b

OV
v(t)A v
a/(t) e a/(t) I (e)1?

b b
- m/v(ﬂ(w(’(t))*w”(t)mz ”x(i)ug/(xg(t))*C(t)x”(t)At
1 * -1 . T F 1z B é
> Hx(c)“24x (e)F " x(c) > 45172)1 et

which is the desired inequality. The proof is complete. m
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b
Remark 4.4.2 If A=0, then W =1 and F = /B(t)At. If, in addition

b
B =1, then F = b — a. Note the Lyapunov inequality /v(t)At > (4/N)

b
reduces to /p(t)At > (4/b — a) for the scalar case.

a

We conclude with a result concerning the so-called right-focal boundary
condition, i.e., z(a) = u(b) = 0.

Theorem 4.4.2 Assume (4.4.1) has a solution (x,u) with x nontrivial and
z(a) = u(b) = 0. With the notation as in Theorem 4.4.1, the Lyapunov

inequality

)

> =

/bv(t)At >

holds.

Proof. Suppose (z,u) is a solution of (4.4.1) such that x(a) = u(b) =0
with a < b. Choose the point ¢ in (a,b] where ||z(¢)|| is maximal. Applying
Lemma 4.4.1 and we see

b b

b
/ [(27)*Ca®] (t) At = / (u* Bu)(t) At > / (u* Bu)(t) At.

a a a

Using Lemma 4.4.2 with r = a and s = ¢, we get

b
/(u*Bu)(t)At > [W*(c,a)z(c) — z(a)]” F(c,a) [W*(c,a)z(c) — z(a)]

= 2" ()W (e, a)F_l(c a)W*(c, a)x(c)

= —z( c)

W*(t,c)B(t)W (t,c)At x(c)

> (/W*tc Wt,oat| ()
F

lx
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Hence,
b

/ [(27)*C27] (DAL > 2" () F~2(c),

and the same arguments as in the proof of Theorem 4.4.1 completes the proof.
]
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