
Chapter 4

Lyapunov Inequalities

——————————————————————————————
You know that I write slowly. This is chiefly because I am never satisfied

until I have said as much as possible in a few words, and writing briefly takes
far more time than writing at length.

Gauss (1777–1855).
——————————————————————————————

In 1906 Lyapunov [105] proved an inequality giving the distance between
two consecutive zeros of solutions of second order differential equations. It is
proved that, if the differential equation

y
′′
(t) + p(t)y(t) = 0, (4.0.1)

has a nontrivial solution y(t) with y(a) = y(b) = 0 (a < b) and y(t) �= 0 for
t ∈ (a, b), then ∫ b

a

p(t)dt >
4

b− a
, (4.0.2)

where p is a positive real valued function defined on [a, b]. If the difference
equation

Δ2y(n) + p(n)y(n+ 1) = 0, (4.0.3)

has a nontrivial solution y(n) satisfying y(0) = y(N) = 0, where p(n) is a
positive sequence, then the Lyapunov inequality is given by

N−1∑
k=0

p(n) ≥
{

2
m+1 , if N = 2m+ 2,
2m+1

m(m+1) , if N = 2m+ 1.

The chapter is organized as follows. In Sect. 4.1 we present some Lyapunov
type inequalities for second order linear dynamic equations and in Sect. 4.2
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176 CHAPTER 4. LYAPUNOV INEQUALITIES

we present results for half-linear dynamic equations. Section 4.3 considers
dynamic equations with damping terms and in Sect. 4.4 we consider
Hamiltonian systems on time scales.

Throughout this chapter (usually without mentioning) the integrals in the
statements of the theorems are assumed to exist.

4.1 Second Order Linear Equations

In this section, we establish some Lyapunov type inequalities for Sturm–
Liouville linear dynamic equations on time scales and then establish some
sufficient conditions for disconjugacy of solutions. The results in this section
are adapted from [48, 90, 123, 125, 128]. First, we consider the Sturm–
Liouville dynamic equation

yΔΔ(t) + p(t)yσ(t) = 0, (4.1.1)

together with the quadratic functional

F(y) =

b∫

a

{
(yΔ(t))2 − p(yσ)2(t)

}
Δt,

where p(t) is a positive rd-continuous function defined on T.

By a solution of (4.1.1), we mean a continuous function y : [a, σ2(b)]T →
R, which is twice differentiable on [a, b]T with yΔ

2

rd-continuous. It is known
that (4.1.1) admits a unique solution when y(a) and yΔ(a) are prescribed. We
say y has a generalized zero at some c ∈ [a, σ(b)]T provided that y(c)yσ(c) ≤ 0
holds, and (4.1.1) is called disconjugate on [a, b]T if there is no nontrivial
solution of (4.1.1) with at least two generalized zeros in [a, b]T. Finally, (4.1.1)
is said to be disfocal on [a, σ2(b)]T provided there is no nontrivial solution y
of (4.1.1) with a generalized zero in [a, σ2(b)]T followed by a generalized zero
of yΔ in [a, σ(b)]T.

Lemma 4.1.1 If x solves (4.1.1) and if F(y) is defined, then

F(y)−F(x) = F(y − x) + 2(y − x)(b)xΔ(b)− 2(y − x)xΔ(a).

Proof. Under the above assumptions we find

F(y)−F(x)−F(y − x)

=

b∫

a

{
(yΔ)2 − p(yσ)2 − (xΔ)2+ p(xσ)2

− (yΔ − xΔ)2 + p(yσ − xσ)
}
(t)Δt
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=

b∫

a

{
(yΔ)2 − p(yσ)2 − (xΔ)2+ p(xσ)2 − (yΔ)2 + 2yΔxΔ − (xΔ)2

+p(yσ)2 − 2pyσx σ + p(xσ)2
}
(t)Δt

= 2

b∫

a

{
yΔxΔ − pyσxσ + p(xσ)2 − (xΔ)2

}
(t)Δt

= 2

b∫

a

{
yΔxΔ + yσxΔ2 − xσxΔ2 − (xΔ)2

}
(t)Δt

= 2

b∫

a

{
yxΔ − xxΔ

}Δ
Δ(t) = 2

b∫

a

{
(y − x)xΔ

}Δ
Δt

= 2(y(b)− x(b))xΔ(b)− 2(y(a)− x(a))xΔ(a),

where we have used the product rule.

Lemma 4.1.2 If F(y) is defined, then for any r, s ∈ T with a ≤ r < s ≤ b

s∫

r

(
yΔ(t)

)2
Δt ≥ (y(s)− y(r))2

s− r
.

Proof. Let

x(t) =
y(s)− y(r)

s− r
t+

sy(r)− ry(s)

s− r
.

Then x solves the Sturm–Liouville equation (4.1.1) with p = 0 and therefore
we may apply Lemma 4.1.1 to F0 defined by

F0(x) =

s∫

r

(xΔ(t))2Δt,

to find

F0(y) = F0(x) + F0(y − x) + (y − x)(s)xΔ(s)− (y − x)(r)xΔ(r)

= F0(x) + F0(y − x)

≥ F0(x) =

s∫

r

{
y(s)− y(r)

s− r

}2

Δt =
(y(s)− y(r))2

s− r
,

and this completes the proof.

The following lemma will be used later (see [51]).
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Lemma 4.1.3 Equation (4.1.1) is disconjugate on [a, b]T if and only if

F(y) =

b∫

a

{
(yΔ(t))2 − p(yσ)2(t)

}
Δt > 0,

for all nontrivial solutions y with y(a) = y(b) = 0.

The following theorem gives the Lyapunov type inequality for the second
order dynamic equation (4.1.1).

Theorem 4.1.1 If y(t) is a nontrivial solution of (4.1.1) with y(a) = y
(b) = 0 (a < b), then ∫ b

a

p(t)Δt >
b− a

f(d)
, (4.1.2)

where f(d) = max{f(t) : t ∈ [a, b]} and f(t) = (t− a) (b− t).

Proof. From Lemma 4.1.1, since y is a nontrivial solution of (4.1.1) with
y(a) = y(b) = 0, we have that

F(y) =

b∫

0

{
(yΔ(t))2 − p(yσ)2(t)

}
Δt = 0.

Also, since y is nontrivial, we see that

M := max{y2(t) : t ∈ [a, b] ∩ T}, (4.1.3)

is defined and positive. Now let c ∈ [a, b] be such that y2(c) = M . Applying
the above and Lemma 4.1.2, twice (once with r = a and s = c and a second
time with r = c and s = b), we find

M

b∫

0

p(t)Δt ≥
b∫

0

{
p(yσ)2(t)

}
Δt

=

b∫

0

(yΔ(t))2Δt =

b∫

0

(yΔ(t))2Δt+

b∫

0

(yΔ(t))2Δt

≥ (y(c)− y(a))2

c− a
+

(y(b)− y(c))2

b− c

= y2(c)

{
1

c− a
+

1

b− c

}
= M

b− a

f(c)
≥ M

b− a

f(d)
,

where the last inequality holds since f(d) = max{f(t) : t ∈ [a, b]∩T}. Hence,
dividing by M > 0 yields the desired inequality. The proof is complete.
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Example 4.1.1 We use the notation from the proof of Theorem 4.1.1.

(i). If T = R , then

min

{∣∣∣∣a+ b

2
− s

∣∣∣∣ : s ∈ [a, b]

}
= 0, and so that d =

a+ b

2
.

Hence f(d) = ((b− a)2/4) and the Lyapunov inequality from Theorem 4.1.1
reads

b∫

0

p(t)dt ≥ 4

b− a
.

(ii). If T = Z, then we consider two cases. First, if a+ b is even, then

min

{∣∣∣∣a+ b

2
− s

∣∣∣∣ : s ∈ [a, b] ∩ Z

}
= 0, and so that d =

a+ b

2
.

Hence f(d) = ((b− a)2/4) and the Lyapunov inequality reads

b−1∑
t=a

p(t) ≥ 4

b− a
.

If a+ b is odd, then

min

{∣∣∣∣a+ b

2
− s

∣∣∣∣ : s ∈ [a, b] ∩ Z

}
=

1

2
, and so that d =

a+ b− 1

2
.

Then, we have f(d) = ((b− a)2 − 1/4) and the Lyapunov inequality reads

b−1∑
t=a

p(t) ≥ 4

b− a

{
1

1− (1/(b− a)2)

}
.

As an application of Theorem 4.1.1, we now prove a sufficient condition
for the disconjugacy of (4.1.1).

Theorem 4.1.2 If p satisfies

b∫

a

p(t)Δ(t) <
b− a

f(d)
, (4.1.4)

then (4.1.1) is disconjugate on [a, b]T.

Proof. Suppose that (4.1.4) holds. For the sake of contradiction we
assume that (4.1.1) is not disconjugate. But then, by Lemma 4.1.3, there
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exists a nontrivial y with y(a) = y(b) = 0 such that F(y) ≤ 0. Using this y,
we now define M by (4.1.3) and we find

M

b∫

a

p(t)Δt ≥
b∫

a

p(t)(yσ(t))2Δt ≥
b∫

a

(yΔ(t))2Δt ≥ M(b− a)

f(d)
,

where the last inequality follows as in the proof of Theorem 4.1.1. Hence,
after dividing by M > 0, we arrive at

b∫

a

p(t)Δt ≥ b− a

f(d)
,

which contradicts (4.1.4) and hence completes the proof.

Remark 4.1.1 Note that in both condition (4.1.2) and (4.1.4) we could
replace (b−a)/f(d) by 4/(b−a), and Theorems 4.1.1 and 4.1.2 would remain
true. This is because for a ≤ c ≤ b, we have

1

c− a
+

1

b− c
=

(a+ b− 2c)2

(b− a)(c− a)(b− c)
+

4

b− a
≥ 4

b− a
.

In the following, we apply Opial type inequalities on time scales to
prove some Lyapunov type inequalities for the second-order dynamic equation
(4.1.1).

Theorem 4.1.3 Assume that y is a nontrivial solution of the second-order
dynamic equation (4.1.1) with y(a) = yΔσ(b) = 0. Then, we have

KP (σ(b), a) =

(
2

∫ σ(b)

a

|P (t)|2 [σ(t)− a] Δt

)1/2

≥ 1, (4.1.5)

where

P (t) :=

∫ σ(b)

t

p(s)Δs, for t ∈ [a, σ(b)]T. (4.1.6)

Proof. Now

∫ σ(b)

a

yσ(t)yΔ
2

(t)Δt = yσ(b)yΔσ(b)− y(a)yΔ(a)−
∫ σ(b)

a

[
yΔ(t)

]2
Δt

= −
∫ σ(b)

a

[
yΔ(t)

]2
Δt, (4.1.7)
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and using (4.1.6), we get that

∫ σ(b)

a

p(t)
[
yσ(t)

]2
Δt = −

∫ σ(b)

a

PΔ(t)
[
yσ(t)

]2
Δt

= P (a)
[
y(a)

]2
+

∫ σ(b)

a

P (t)
[[
y(t)
]2]Δ

Δt

=

∫ σ(b)

a

P (t)
[[
y(t)
]2]Δ

Δt

=

∫ σ(b)

a

P (t)
([
y(t) + yσ(t)

]
yΔ(t)

)
Δt

≤
∫ σ(b)

a

∣∣P (t)
∣∣([y(t) + yσ(t)

]
yΔ(t)

)
Δt. (4.1.8)

Multiplying (4.1.1) by yσ and integrating from a to σ(b) and using Theorem
3.1.7, (4.1.7) and (4.1.8), we get

∫ σ(b)

a

(
yΔ(t)

)2
Δt ≤

∫ σ(b)

a

∣∣P (t)
∣∣([y(t) + yσ(t)

]
yΔ(t)

)
Δt

≤ KP (σ(b), a)

∫ σ(b)

a

[
yΔ(t)

]2
, (4.1.9)

Clearly, (4.1.5) follows from (4.1.9) by dividing by

∫ σ(b)

a

[
yΔ(t)

]2
Δt,

on both sides. The proof is complete.

Remark 4.1.2 The conclusion of Theorem 4.1.3 also holds for the second
order dynamic inequality

yΔ
2

(t) + p(t)yσ(t) ≥ 0, for t ∈ [a, b]T, (4.1.10)

with y(a) = 0 and y(b)yΔσ(b) ≤ 0.

Similar reasoning by considering Theorem 3.1.8 instead of Theorem 3.1.7
yields the following result.

Theorem 4.1.4 Assume that x is a nontrivial solution of (4.1.1) with

xΔ(a) = xσ2

(b) = 0. Then, we have

LP (σ
2(b), a) =

(
2

∫ σ2(b)

a

(P (t))
2 [

σ2(b)− t
]
Δt

)1/2

≥ 1,

where

P (t) :=

∫ t

a

p(s)Δs, for t ∈ [a, σ(b)]T.
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Remark 4.1.3 The conclusion of Theorem 4.1.4 also holds for (4.1.10) with

x(a)xΔ(a) ≥ 0 and xσ2

(b) = 0.

In the following, we establish a disconjugacy result for solutions of (4.1.1).

Theorem 4.1.5 Assume that y is a nontrivial solution of (4.1.1) with y(a) =

yσ
2

(b) = 0, and let P ∈ C1
rd([a, b]T,R) be a function satisfying PΔ ≡ p on

[a, b]T. Then, we have

min
c∈[a,σ2(b)]T

{
max

{
KP (σ

2(b), c), LP (c, a)
}} ≥ 1. (4.1.11)

Proof. Similar reasoning as in the proof of Theorem 4.1.3 yields the
desired inequality (4.1.11) by applying Corollary 3.1.2 instead of Theorem
3.1.7.

Corollary 4.1.1 Assume that y is a nontrivial solution of (4.1.1) with
y(a) = 0, and let P ∈ C1

rd([a, b]T,R) be a function as in Theorem 4.1.5. If

min
c∈[a,σ2(b)]T

{
max

{
KP (σ

2(b), c), LP (c, a)
}}

< 1,

then yσ
2

(b) �= 0.

Next we consider the second order dynamic equation on [a, b]

[
r(t)yΔ(t)

]Δ
+ q(t)yσ(t) = 0, t ∈ [a, b], (4.1.12)

on an arbitrary time scale T, where r is a positive rd-continuous function
and q is rd-continuous function and

∫ β

α

1/r(t)Δt < ∞, and

∫ β

α

|q(t)|Δt < ∞. (4.1.13)

We obtain lower bounds for the spacing β−α where y is a solution of (4.1.12)
satisfying some conditions at α and β.

By a solution of (4.1.12) on an interval T, we mean a nontrivial real-valued
function y ∈ Crd(T), which has the property that r(t)yΔ(t) ∈ C1

rd(T) and
satisfies Eq. (4.1.12) on T. We say that (4.1.12) is right disfocal (left disfocal)
on [α, β]T if the solutions of (4.1.12) such that yΔ(α) = 0 (yΔ(β) = 0) have
no generalized zeros in [α, β]T.

Theorem 4.1.6 Suppose y is a nontrivial solution of (4.1.12). If y(α) =
yΔ(β) = 0, then

⎡
⎣√2

(∫ β

α

Q2(t)

r(t)

(∫ t

α

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣μ(t)Q(t)

r(t)

∣∣∣∣
⎤
⎦ ≥ 1, (4.1.14)
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where Q(t) =
∫ β

t
q(s)ds. If instead yΔ(α) = y(β) = 0, then

⎡
⎣√2

(∫ β

α

Q2(t)

r(t)

(∫ β

t

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣μ(t)Q(t)

r(t)

∣∣∣∣
⎤
⎦ ≥ 1, (4.1.15)

where Q(t) =
∫ t

α
q(s)ds.

Proof. We prove (4.1.14). Multiplying (4.1.12) by yσ and integrating by
parts, we have

∫ β

α

yσ(t)
(
r(t)yΔ(t)

)Δ
Δt = y(t)r(t)yΔ(t)

∣∣β
α
−
∫ β

α

r(t)(yΔ(t))2Δt

= −
∫ β

α

q(t) (yσ(t))
2
Δt.

Using the assumptions that y(α) = yΔ(β) = 0 and Q(t) =
∫ β

t
q(s)Δs, we get

that∫ β

α

r(t)
(
yΔ(t)

)2
Δt =

∫ β

α

q(t) (yσ(t))
2
Δt = −

∫ β

α

QΔ(t) (yσ(t))
2
Δt.

Integrating by parts the right-hand side and using the fact that y(α) =
0 = Q(β), we see that

∫ β

α

r(t)
(
yΔ(t)

)2
Δt =

∫ β

α

Q(t) (y(t) + yσ(t)) yΔ(t)Δt

≤
∫ β

α

|Q(t)| |y(t) + yσ(t)| ∣∣yΔ(t)∣∣Δt.

Applying the inequality (3.1.23) with s = Q, we have

∫ β

α

r(t)
(
yΔ(t)

)2

Δt ≤
[√

2

(∫ β

α

Q2(t)

r(t)

(∫ t

α

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣μ(t)Q(t)

r(t)

∣∣∣∣
]

×
∫ β

α

r(t)
∣∣∣yΔ(t)

∣∣∣2 Δt.

This implies that
⎡
⎣√2

(∫ β

α

Q2(t)

r(t)

(∫ t

α

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣μ(t)Q(t)

r(t)

∣∣∣∣
⎤
⎦ ≥ 1,

which is the desired inequality (4.1.14). The proof of (4.1.15) is similar to the
proof of (4.1.14) by using integration by parts and Theorem 3.1.12 instead
of Theorem 3.1.11. The proof is complete.

As a special case of Theorem 4.1.6, when r(t) = 1, we have the following
results for Eq. (4.1.1).
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Corollary 4.1.2 Suppose y is a nontrivial solution of (4.1.1). If y(α) =
yΔ(β) = 0, then

⎡
⎣√2

(∫ β

α

Q2(t) (t− α)Δt

) 1
2

+ sup
α≤t≤β

(μ(t) |Q(t)|)
⎤
⎦ ≥ 1,

where Q(t) =
∫ β

t
q(s)ds. If instead yΔ(α) = y(β) = 0, then

⎡
⎣√2

(∫ β

α

Q2(t) (β − t)Δt

) 1
2

+ sup
α≤t≤β

(μ(t) |Q(t)|)
⎤
⎦ ≥ 1,

where Q(t) =
∫ t

α
q(s)ds.

Remark 4.1.4 Note that if T = R then μ(t) = 0 and Eq. (4.1.12) (when
r(t) = 1) becomes

y
′′
(t) + q(t)y(t) = 0. (4.1.16)

In this case the result in Corollary 4.1.2 reduces to a result obtained by Brown
and Hinton [57].

Corollary 4.1.3 ([57]). Suppose y is a solution of Eq. (4.1.16). If y (α) =
y

′
(β) = 0, then

2

∫ β

α

Q2(s)(s− α)ds > 1, (4.1.17)

where Q(t) =
∫ β

t
q(s)ds. If instead y

′
(α) = y (β) = 0, then

2

∫ β

α

Q2(s)(β − s)ds > 1, (4.1.18)

where Q(t) =
∫ t

α
q(s)ds.

Remark 4.1.5 Note that if T = N, then μ(t) = 1 and Eq. (4.1.12) (when
r(t) = 1) becomes

Δ2y(n) + q(n)y(n+ 1) = 0, (4.1.19)

and the result in Corollary 4.1.2 reduces to the following result.

Corollary 4.1.4 Suppose y is a solution of Eq. (4.1.19). If y (α) = Δy
(β) = 0, then

√
2

(
β−1∑
n=α

(Q(n))
2
(n− α)

) 1
2

+ sup
α≤n≤β

|Q(n)| > 1,
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where Q(n) =
∑β−1

s=n q(s). If instead Δy (α) = y (β) = 0, then

√
2

(
β−1∑
n=α

(Q(n))
2
(β − n)

) 1
2

+ sup
α≤n≤β

|Q(n)| > 1,

where Q(n) =
∑n−1

s=α q(s).

Theorem 4.1.7 Suppose that y is a nontrivial solution of (4.1.12). If
y(α) = yΔ(β) = 0, then

√
2

(
sup

α≤t≤β

Q2(t)

r(t)

∫ β

α

1

r(t)

(∫ t

α

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣μ(t) ≥ 1,

(4.1.20)

where Q(t) =
∫ β

t
q(s)ds. If instead yΔ(α) = y(β) = 0, then

√
2

(
sup

α≤t≤β

Q2(t)

r(t)

∫ β

α

1

r(t)

(∫ β

t

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣μ(t) ≥ 1,

(4.1.21)

where Q(t) =
∫ t

α
q(s)ds.

Proof. We prove (4.1.20). Multiplying (4.1.12) by yσ and integrating by
parts and following the proof of Theorem 4.1.6, we have

∫ β

α

r(t)
(
yΔ(t)

)2
Δt =

∫ β

α

q(t) (yσ(t))
2
Δt = −

∫ β

α

QΔ(t) (yσ(t))
2
Δt.

Integrating by parts the right-hand side and using the fact that y(α) =
0 = Q(β), we see that

∫ β

α

r(t)
(
yΔ(t)

)2
Δt ≤

∫ β

α

|Q(t)| |y(t) + yσ(t)| ∣∣yΔ(t)∣∣Δt

≤ sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣
∫ β

α

r(t) |y(t) + yσ(t)| ∣∣yΔ(t)∣∣Δt.

Applying the inequality (3.1.37) with (3.1.38) and cancelling the term
∫ β

α
r(t)(

yΔ(t)
)2

Δt, we get the desired inequality (4.1.20). The proof of (4.1.21) is
similar to the proof of (4.1.20) by using integration by parts and Corollary
3.1.4 instead of Corollary 3.1.3. The proof is complete.

As a special case of Theorem 4.1.7, when r(t) = 1, we have the following
result.
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Corollary 4.1.5 Suppose that y is a nontrivial solution of (4.1.1). If y(α) =
yΔ(β) = 0, then

sup
α≤t≤β

|Q(t)| (β − α) + sup
α≤t≤β

|Q(t)|μ(t) ≥ 1,

where Q(t) =
∫ β

t
q(s)ds. If instead yΔ(α) = y(β) = 0, then

sup
α≤t≤β

|Q(t)| (β − α) + sup
α≤t≤β

|Q(t)|μ(t) ≥ 1,

where Q(t) =
∫ t

α
q(s)ds.

As special case of Corollary 4.1.5, when T = R, (note that in this case
μ(t) = 0), we have the following result due to Harris and Kong [73] for the
second order differential equation (4.1.16).

Corollary 4.1.6 Suppose that y is a nontrivial solution of (4.1.16). If
y(α) = y

′
(β) = 0, then

(β − α) max
α≤t≤β

∣∣∣∣∣
(∫ β

t

q(s)ds

)∣∣∣∣∣ ≥ 1. (4.1.22)

If instead y
′
(α) = y(β) = 0, then

(β − α) max
α≤t≤β

∣∣∣∣
∫ t

α

q(s)ds

∣∣∣∣ ≥ 1. (4.1.23)

As a special case of Corollary 4.1.5, when T = N (note that in this case
μ(t) = 1), we have the following result for the second order difference equation
(4.1.19).

Corollary 4.1.7 Suppose y is a solution of Eq. (4.1.19). If Δy (α) = y
(β) = 0, then

sup
α≤n≤β

|Q(n)| (β + 1− α) > 1,

where Q(n) =
∑β−1

s=n q(s). If instead y (α) = Δy (β) = 0, then

sup
α≤n≤β

|Q(n)| (β + 1− α) > 1 > 1,

where Q(n) =
∑n−1

s=α q(s).

Remark 4.1.6 The above results yield sufficient conditions for the disfocal-
ity of (4.1.12), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(α) = yΔ(β) = 0 or yΔ(α) = y(β) = 0.
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Now, we assume that there exists a unique h ∈ [α, β]T such that

∫ h

α

Δt

r(t)
=

∫ β

h

Δt

r(t)
. (4.1.24)

Note that when r(t) = 1, we see that (h − α) = (β − h), so that the unique
solution of (4.1.24) is given by h = (α+ β)/2.

Theorem 4.1.8 Assume that (4.1.24) holds and QΔ(t) = q(t). Suppose
that y is a nontrivial solution of (4.1.12). If y(α) = y(β) = 0, then
⎡
⎣√2

(∫ β

α

Q2(t)

r(t)

(∫ h

α

Δu

r(u)

)
Δt

) 1
2

+ sup
α≤t≤β

μ(t)

∣∣∣∣Q(t)

r(t)

∣∣∣∣
⎤
⎦ ≥ 1. (4.1.25)

Proof. As in the proof of Theorem 4.1.6 by multiplying (4.1.12) by
yσ(t), integrating by parts and using y(α) = y(β) = 0, we have that

∫ β

α

r(t)
∣∣yΔ(t)∣∣2 dt ≤

∫ β

α

|Q(t)| |y(t) + yσ(t)|γ ∣∣yΔ(t)∣∣ dt. (4.1.26)

Then ∫ β

α

r(t)
∣∣yΔ(t)∣∣2 dt ≤ K(α, β)

∫ β

α

r(t)
∣∣yΔ(t)∣∣2 dt,

where K(α, β) is defined as in (4.2.10). From the last inequality, after can-

celling the term
∫ β

α
r(t)

∣∣yΔ(t)∣∣2 Δt, we get the desired inequality (4.1.25).
This completes the proof.

When r(t) = 1, (note that in this case h = (α + β)/2)), we have the
following result for Eq. (4.1.1).

Theorem 4.1.9 Assume that QΔ(t) = q(t). Suppose that y is a nontrivial
solution of (4.1.1). If y(α) = y(β) = 0, then

⎡
⎣√β − α

(∫ β

α

Q2(t)Δt

) 1
2

+ sup
α≤t≤β

(μ(t) |Q(t)|)
⎤
⎦ ≥ 1.

Remark 4.1.7 The results in Theorems 4.1.8 and 4.1.9 yield sufficient con-
ditions for the disconjugacy of (4.3.1), i.e., sufficient conditions so that there
does not exist a nontrivial solution y satisfying y(α) = y(β) = 0.

As a special case of Theorem 4.1.9, when T = R and T = N, we have the
following results for the second order differential equation (4.1.16) and the
second order difference equation (4.1.19).

Corollary 4.1.8 Assume that Q
′
(t) = q(t). Suppose that y is a nontrivial

solution of (4.1.16). If y(α) = y(β) = 0, then

∫ β

α

(∫ t

α

q(u)du

)2

dt ≥ 1

β − α
. (4.1.27)
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Corollary 4.1.9. Assume that ΔQ(n) = q(n). Suppose that y is a nontrivial
solution of (4.1.19). If y(α) = y(β) = 0, then

⎡
⎣√β − α

(
n−1∑
n=α

Q2(n)

) 1
2

+ sup
α≤n≤β

|Q(n)|
⎤
⎦ ≥ 1.

4.2 Second Order Half-Linear Equation

In this section, we consider some second order half-linear dynamic equations
on time scales and establish Lyapunov inequalities. First we consider the
second-order half-linear dynamic equation of the form

(
r(t)ϕ(xΔ)

)Δ
+ p(t)ϕ(xσ(t)) = 0, (4.2.1)

on an arbitrary time scale T, where ϕ(u) = |u|γ−1
u, γ > 0 is a positive

constant, r and p are real rd-continuous positive functions defined on T with
r(t) �= 0. The results for (4.2.1) are adapted from [130].

Theorem 4.2.1 Let x(t) be a positive solution of (4.2.1) on T satisfying
x(a) = x(b) = 0, x(t) �= 0 for t ∈ (a, b) and x(t) has a maximum at a point
c ∈ (a, b). Then

(∫ b

a

r
−1
γ (t)Δt

)γ ∫ b

a

p(t)Δt ≥ 2γ+1. (4.2.2)

Proof. Let

M = |x(c)| =
∣∣∣∣
∫ c

a

xΔ(t)Δt

∣∣∣∣ =
∣∣∣∣∣
∫ b

c

xΔ(t)Δt

∣∣∣∣∣ . (4.2.3)

From (4.2.3), we observe that

2M =

∣∣∣∣
∫ c

a

xΔ(t)Δt

∣∣∣∣+
∣∣∣∣∣
∫ b

c

xΔ(t)Δt

∣∣∣∣∣ ≤
∫ c

a

∣∣xΔ(t)
∣∣Δt+

∫ b

c

∣∣xΔ(t)
∣∣Δt.

This implies that

2M ≤
∫ b

a

∣∣xΔ(t)
∣∣Δt =

∫ b

a

r
−1
γ+1 (t)(r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt. (4.2.4)

From this we get

(2M)
γ+1 ≤

(∫ b

a

r
−1
γ+1 (t)(r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt

)γ+1

. (4.2.5)
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Applying the Hölder inequality with f(t) = r
−1
γ+1 (t), g(t) = r

1
γ+1 (t)

∣∣xΔ(t)
∣∣,

p = γ + 1 and q = γ+1
γ , we obtain

∫ b

a

r
−1
γ+1 (t)(r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt

≤
(∫ b

a

(
r

−1
γ+1 (t)

) γ+1
γ

Δt

) γ
γ+1
(∫ b

a

(
r

1
γ+1 (t)

∣∣xΔ(t)
∣∣))γ+1

Δt

) 1
γ+1

=

(∫ b

a

r
−1
γ (t)Δt

) γ
γ+1
(∫ b

a

(
r

1
γ+1 (t)

∣∣xΔ(t)
∣∣))γ+1

Δt

) 1
γ+1

=

(∫ b

a

r
−1
γ (t)Δt

) γ
γ+1
(∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt

) 1
γ+1

.

Thus

(∫ b

a

r
−1
γ+1 (t)(r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt

)γ+1

≤
(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt

)
.

(4.2.6)

Substituting (4.2.6) in (4.2.5), we have

(2M)
γ+1 ≤

(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt

)
. (4.2.7)

Using integration by parts we see that (note x(a) = x(b) = 0)

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt =

∫ b

a

xΔ(t)
(
r(t)(

∣∣xΔ(t)
∣∣)γ−1xΔ(t)

)
Δt

= −
∫ b

a

[
r(t)(

∣∣xΔ(t)
∣∣)γ−1xΔ(t)

]Δ
xσ(t)Δt. (4.2.8)

Now (4.2.1) implies that

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt =

∫ b

a

p(t) (xσ(t))
γ+1

Δt.

This and (4.2.7) imply that

(2M)
γ+1 ≤

(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

p(t) (xσ(t))
γ+1

Δt

)

≤ Mγ+1

(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

p(t)Δt

)
.
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Now, dividing by Mγ+1, we have

(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

p(t)Δt

)
≥ 2γ+1,

which is the desired inequality (4.2.2). The proof is complete.

Remark 4.2.1 Note the inequality with γ = 1 and r(t) = 1, reduces to the
inequality

∫ b

a

p(t)Δt >
4

b− a
. (4.2.9)

Now, we consider the half-linear delay dynamic equation

(r(t)(ϕ(xΔ(t)))Δ + p(t)(ϕ(x(τ(t))) = 0, (4.2.10)

on an arbitrary time scale T, where γ > 0 is a positive constant, r and p are
real rd-continuous positive functions defined on T with r(t) �= 0, τ : T → T,
τ(t) ≤ t for all t ∈ T, limt→∞ τ(t) = ∞, and

∫ ∞

t0

(
1

r(t)

) 1
γ

Δt = ∞. (4.2.11)

Note that when the condition (4.2.11) holds, then the positive solution x(t)
of (4.2.10) satisfies xΔ(t) > 0. Under this condition, we see, since τ(t) ≤ t,
that x(τ(t))/xσ(t) ≤ 1. Using this claim we have the following result
for (4.2.10).

Corollary 4.2.1 Assume that (4.2.11) holds and let x(t) be a positive sol-
ution of (4.2.10) on T satisfying x(a) = x(b) = 0, x(t) �= 0 for t ∈ (a, b) and
x(t) has a maximum at a point c ∈ (a, b). Then

(∫ b

a

r
−1
γ (t)Δt

)γ ∫ b

a

p(t)Δt ≥ 2γ+1.

Proof. We proceed as in the proof of Theorem 4.2.1, to get

(2M)
γ+1 ≤

(∫ b

a

r
−1
γ (t)Δt

)γ (∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt

)
.

Using integration by parts we see that (note x(a) = x(b) = 0)

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt = −
∫ b

a

[
r(t)(

∣∣xΔ(t)
∣∣)γ−1xΔ(t)

]Δ
xσ(t)Δt.



4.2. SECOND ORDER HALF-LINEAR EQUATION 191

Now (4.2.10) implies that

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt =

∫ b

a

p(t)

(
x(τ(t))

xσ(t)

)γ

(xσ(t))
γ+1

Δt.

Using the above claim, since x(τ(t))/xσ(t) ≤ 1, we have

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt ≤
∫ b

a

p(t) (xσ(t))
γ+1

Δt.

The remainder of the proof is similar to the proof in Theorem 4.2.1 and hence
is omitted.

In the following, we establish some sufficient conditions for the disconju-
gacy of (4.2.1).

Theorem 4.2.2 Let r and p satisfy

∫ b

a

p(t)Δt <

⎧⎪⎪⎨
⎪⎪⎩

rγ+1(a)

rγ(b)

(b− c)γ + (c− a)γ

(c− a)γ(b− c)γ
, if r(t) is increasing,

rγ+1(b)

rγ(a)

(b− c)γ + (c− a)γ

(c− a)γ(b− c)γ
, if r(t) is decreasing.

(4.2.12)

Then (4.2.1) is disconjugate in T.

Proof. Suppose that (4.2.12) holds and assume for the sake of contradic-
tion that (4.2.1) is not disconjugate. Then there exists a nontrivial solution
x with x(a) = x(b) = 0. Using this x, and integrate by parts to see that
(note x(a) = x(b) = 0)

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt =

∫ b

a

xΔ(t)
(
r(t)(

∣∣xΔ(t)
∣∣)γ−1xΔ(t)

)
Δt

= −
∫ b

a

[
r(t)(

∣∣xΔ(t)
∣∣)γ−1xΔ(t)

]Δ
x(t)Δt.

Now (4.2.1) implies that

∫ b

a

r(t)(
∣∣xΔ(t)

∣∣)γ+1Δt =

∫ b

a

p(t) (x(t))
γ+1

Δt

Then, we have

Mγ+1

∫ b

a

p(t)Δt ≥
∫ b

a

p(t) |x(t)|γ+1
Δt ≥

∫ b

a

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

=

∫ c

a

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt+

∫ b

c

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt, (4.2.13)
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where M is defined as in Theorem 4.2.1. Now, since

∫ c

a

r(t)
∣∣xΔ(t)

∣∣Δt =

∫ c

a

r
γ

γ+1 (t)
(
r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt,

we have after applying the Hölder inequality with f(t) = r
γ

γ+1 (t), g(t) =

r
1

γ+1 (t)
∣∣xΔ(t)

∣∣, p = γ + 1 and q = γ+1
γ , that

∫ c

a

r
γ

γ+1 (t)
(
r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)Δt

≤
(∫ c

a

(
r

γ
γ+1 (t)

) γ+1
γ

Δt

) γ
γ+1
(∫ c

a

(
r

1
γ+1 (t)

∣∣xΔ(t)
∣∣)γ+1

Δt

) 1
γ+1

=

(∫ c

a

r(t)Δt

) γ
γ+1
(∫ c

a

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

) 1
γ+1

.

Then

(∫ c

a

r(t)Δt

)γ (∫ c

a

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

)

≥
(∫ c

a

r
γ

γ+1 (t)
(
r

1
γ+1 (t)xΔ(t)

)
Δt

)γ+1

=

(∫ c

a

r(t)
∣∣xΔ(t)

∣∣Δt

)γ+1

.

This implies that

(∫ c

a

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

)
≥
(∫ c

a
r(t)

∣∣xΔ(t)
∣∣Δt
)γ+1

(∫ c

a
r(t)Δt

)γ . (4.2.14)

Also we see that

(∫ b

c

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

)
≥
(∫ b

c
r(t)

∣∣xΔ(t)
∣∣Δt
)γ+1

(∫ b

c
r(t)Δt

)γ . (4.2.15)

Substituting (4.2.14) and (4.2.15) into (4.2.13), we have

Mγ+1

∫ b

a

p(t)Δt

≥
(∫ c

a
r(t)

∣∣xΔ(t)
∣∣Δt
)γ+1

(∫ c

a
r(t)Δt

)γ +

(∫ b

c
r(t)

∣∣xΔ(t)
∣∣Δt
)γ+1

(∫ b

c
r(t)Δt

)γ
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≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
r(a)

∫ c
a

∣∣∣xΔ(t)
∣∣∣Δt
)γ+1

(∫ c
a
r(t)Δt

)γ +

(
r(a)

∫ b
c

∣∣∣xΔ(t)
∣∣∣Δt
)γ+1

(∫ b
c
r(t)Δt

)γ , if r(t) is increasing,

(
r(b)

∫ c
a

∣∣∣xΔ(t)
∣∣∣Δt
)γ+1

(∫ c
a
r(t)Δt

)γ +

(
r(b)

∫ b
c

∣∣∣xΔ(t)
∣∣∣Δt
)γ+1

(∫ b
c
r(t)Δt

)γ , if r(t) is decreasing,

≥

⎧⎪⎪⎨
⎪⎪⎩

rγ+1(a)Mγ+1

rγ(b)(c− a)γ
+

rγ+1(a)Mγ+1

rγ(b)(b− c)γ
, if r(t) is increasing,

rγ+1(b)Mγ+1

rγ(a)(c− a)γ
+

rγ+1(b)Mγ+1

rγ(a)(b− c)γ
, if r(t) is decreasing.

Dividing by Mγ+1, we have

∫ b

a

p(t)Δt ≥

⎧⎪⎪⎨
⎪⎪⎩

rγ+1(a)

rγ(b)

(b− c)γ + (c− a)γ

(c− a)γ(b− c)γ
, if r(t) is increasing,

rγ+1(b)

rγ(a)

(b− c)γ + (c− a)γ

(c− a)γ(b− c)γ
, if r(t) is decreasing,

which is a contradiction with (4.2.12) and hence completes the proof.
As a consequence from Theorem 4.2.2, by using the fact that

(
xγ
1 + xγ

2

2

) 1
γ

≥ 2x1x2

x1 + x2
, for x1 = c− a and x2 = b− c,

we have the following result.

Theorem 4.2.3 . If r and p satisfy

∫ b

a

p(t)Δt <

⎧⎪⎪⎨
⎪⎪⎩

rγ+1(a)

rγ(b)

2γ+1

(b− a)γ
, if r(t) is increasing,

rγ+1(b)

rγ(a)

2γ+1

(b− a)γ
, if r(t) is decreasing.

(4.2.16)

Then (4.2.1) is disconjugate in T.

We end this section by applying Opial type inequalities to establish some
Lyapunov type inequalities for the second order half-linear dynamic equation

(r(t)(yΔ(t))γ)Δ + q(t) (yσ(t))
γ
= 0, on [a, b]T, (4.2.17)

where T is an arbitrary time scale. The results are adapted from [133]. For
Eq. (4.2.17), we assume that 0 < γ ≤ 1 is a quotient of odd positive integers,
r and q are real rd-continuous functions defined on T with r(t) > 0. We
obtain lower bounds for the spacing β − α where y is a solution of (4.2.17)
satisfying some conditions at α and β.
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To simplify the presentation of the results, we define

M(β) : = sup
α≤t≤β

μγ(t)
|Q(t)|
r(t)

, where Q(t) =

∫ β

t

q(s)Δs,

M(α) : = sup
α≤t≤β

μγ(t)
|Q(t)|
r(t)

, where Q(t) =

∫ t

α

q(s)Δs.

Note that when T = R, we have M(α) = 0 = M(β), and when T = Z, we
have

M(β) = sup
α≤t≤β

∣∣∣∑β−1
s=t q(s)

∣∣∣
r(t)

, and M(α) = sup
α≤t≤β

∣∣∣∑t−1
s=α q(s)

∣∣∣
r(t)

. (4.2.18)

Theorem 4.2.4 Suppose that y is a nontrivial solution of (4.2.17) and yΔ

does not change sign in (α, β)T. If y(α) = yΔ(β) = 0, then

2

(γ + 1)
γ

γ+1

×
(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(∫ x

α

Δt

r
1
γ (t)

)γ

Δx

) γ
γ+1

+ 21−γM(β) ≥ 1,

(4.2.19)

where Q(t) =
∫ β

t
q(s)Δs. If yΔ(α) = y(β) = 0, then

2

(γ + 1)
γ

γ+1

(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(∫ β

x

Δt

r
1
γ (t)

)γ

Δx

) γ
γ+1

+ 21−γM(α) ≥ 1,

(4.2.20)

where Q(t) =
∫ t

α
q(s)Δs.

Proof. We prove (4.2.19). Without loss of generality we may assume
that y(t) > 0 in [α, β]T. Multiplying (4.2.17) by yσ and integrating by parts,
we have

∫ β

α

(
r(t)

(
yΔ(t)

)γ)Δ
yσ(t)Δt = r(t)

(
yΔ(t)

)γ
y(t)
∣∣∣β
α

−
∫ β

α

r(t)
(
yΔ(t)

)γ+1
Δt

= −
∫ β

α

q(t) (yσ(t))
γ+1

Δt.

Using the assumptions that y(α) = yΔ(β) = 0 and Q(t) =
∫ β

t
q(s)Δs, we

have

∫ β

α

r(t)
(
yΔ(t)

)γ+1
Δt =

∫ β

α

q(t) (yσ(t))
γ+1

Δt = −
∫ β

α

QΔ(t) (yσ(t))
γ+1

Δt.

(4.2.21)
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Integrating by parts the right-hand side we see that

∫ β

α

r(t)
(
yΔ(t)

)γ+1
Δt = − Q(t)(y(t))γ+1

∣∣β
α
+

∫ β

α

Q(t)
(
yγ+1(t)

)Δ
Δt.

Again using the facts that y(α) = 0 = Q(β), we obtain

∫ β

α

r(t)
(
yΔ(t)

)γ+1
dt =

∫ β

α

Q(t)
(
yγ+1(t)

)Δ
dt. (4.2.22)

Applying the chain rule formula and the inequality (3.3.2), we see that

∣∣∣(yγ+1(t)
)Δ∣∣∣ ≤ (γ + 1)

1∫

0

|hyσ(t) + (1− h)y(t)|γ dh ∣∣yΔ(t)∣∣

≤ (γ + 1)
∣∣yΔ(t)∣∣

1∫

0

|hyσ(t)|γ dh

+(γ + 1)
∣∣yΔ(t)∣∣

1∫

0

|(1− h)y(t)|γ dh

=
∣∣yΔ(t)∣∣ |yσ(t)|γ +

∣∣yΔ(t)∣∣ |y(t)|γ
≤ 21−γ |yσ(t) + y(t)|γ ∣∣yΔ(t)∣∣ . (4.2.23)

This and (4.2.22) imply that

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

Δt ≤ 21−γ

∫ β

α

|Q(t)| |y(t) + yσ(t)|γ ∣∣yΔ(t)∣∣Δt.

Applying the inequality (3.3.22) with s(t) = |Q(t)|, p = γ and q = 1, we have

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

Δt ≤ 21−γK1(α, β, γ, 1)

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

Δt, (4.2.24)

where

K1(α, β, γ, 1) = M(β) + 2γ
(

1

γ + 1

) 1
γ+1

×
(∫ β

α

|Q(x)| γ+1
γ r−

1
γ (x)

(∫ x

α

r
−1
γ (t)Δt

)γ

Δx

) γ
γ+1

.

Then, we have from (4.2.24) after cancelling the term
∫ β

α
r(t)

∣∣yΔ(t)∣∣γ+1
Δt,

that

21−γM(β) +
2

(γ + 1)
1

γ+1

×
(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(∫ x

α

Δt

r
1
γ (t)

)γ

Δx

) γ
γ+1

≥ 1,



196 CHAPTER 4. LYAPUNOV INEQUALITIES

which is the desired inequality (4.2.19). The proof of (4.2.20) is similar
to (4.2.19) by using integration by parts and (3.3.29) of Theorem 3.3.5 and
(3.3.30) instead of (3.3.23). The proof is complete.

As a special case of Theorem 4.2.4, when r(t) = 1, we have the following
result.

Corollary 4.2.2 Suppose that y is a nontrivial solution of

((
yΔ(t)

)γ)Δ
+ q(t) (yσ(t))

γ
= 0, t ∈ [α, β]T, (4.2.25)

and yΔ does not change sign in (α, β)T. If y(α) = yΔ(β) = 0, then

2

(γ + 1)
1

γ+1

×
[∫ β

α

|Q(t)| 1+γ
γ (t− α)

γ
Δt

] γ
γ+1

+21−γ sup
α≤t≤β

(μγ(t) |Q(t)|) ≥ 1,

(4.2.26)

where Q(t) =
∫ β

t
q(s)Δs. If yΔ(α) = y(β) = 0, then

2

(γ + 1)
1

γ+1

[∫ β

α

|Q(t)| 1+γ
γ (β − t)

γ
Δt

] γ
γ+1

+ 21−γ sup
α≤t≤β

(μγ(t) |Q(t)|) ≥ 1,

(4.2.27)

where Q(t) =
∫ t

α
q(s)Δs.

Corollary 4.2.3 Suppose that y is a nontrivial solution of (4.2.25) and yΔ

does not change sign in (α, β)T, and γ ≤ 1 is a quotient of odd positive
integers. If y(α) = yΔ(β) = 0, then

2(β − α)γ

(γ + 1)
max
α≤t≤β

∣∣∣∣∣
∫ β

t

q(s)Δs

∣∣∣∣∣+ 21−γ sup
α≤t≤β

(
μγ(t)

∣∣∣∣∣
∫ β

t

q(s)Δs

∣∣∣∣∣
)

≥ 1,

(4.2.28)

whereas if yΔ(α) = y(β) = 0, then

2(β − α)γ

(γ + 1)
max

α≤t≤β

∣∣∣∣
∫ t

α

q(s)Δs

∣∣∣∣+ 21−γ sup
α≤t≤β

(
μγ(t)

∣∣∣∣
∫ t

α

q(s)Δs

∣∣∣∣
)

≥ 1.

(4.2.29)

As a special when T = R, we have M(α) = M(β) = 0 and we consider
the second order half-linear differential equation

(
(y

′
(t))γ

)′

+ q(t)(y(t))γ = 0, α ≤ t ≤ β, (4.2.30)

where γ ≤ 1 is a quotient of odd positive integers.
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Corollary 4.2.4 Assume that γ ≤ 1 is a quotient of odd positive integers.
Suppose that y is a nontrivial solution of (4.2.30) and y

′
does not change

sign in (α, β). If y (α) = y
′
(β) = 0, then

2

(γ + 1)
(β − α)

γ
sup

α≤t≤β

∣∣∣∣∣
∫ β

t

q(s)ds

∣∣∣∣∣ ≥ 1. (4.2.31)

If instead y
′
(α) = y (β) = 0, then

2

(γ + 1)
(β − α)

γ
sup

α≤t≤β

∣∣∣∣
∫ t

α

q(s)ds

∣∣∣∣ ≥ 1. (4.2.32)

As a special when T = Z, we see that M(α) and M(β) are defined as
in (4.2.18) and we consider the second order half-linear difference equation

Δ ((Δy(n))γ) + q(n)(y(n+ 1))γ = 0, α ≤ n ≤ β, (4.2.33)

where γ ≤ 1 is a quotient of odd positive integers.

Corollary 4.2.5 Suppose that y is a nontrivial solution of (4.3.17) and
Δy(n) does not change sign in (α, β)T, and γ ≤ 1 is a quotient of odd positive
integers. If y(α) = Δy(β) = 0, then

2(β − α)γ

(γ + 1)
max

α≤n≤β

∣∣∣∣∣
β−1∑
s=n

q(s)

∣∣∣∣∣+ 21−γ sup
α≤n≤β

(∣∣∣∣∣
β−1∑
s=n

q(s)

∣∣∣∣∣
)

≥ 1,

whereas if Δy(α) = y(β) = 0, then

2(β − α)γ

(γ + 1)
max

α≤n≤β

∣∣∣∣∣
n−1∑
s=α

q(s)

∣∣∣∣∣+ 21−γ sup
α≤n≤β

(∣∣∣∣∣
n−1∑
s=α

q(s)

∣∣∣∣∣
)

≥ 1.

Remark 4.2.2 The above results yield sufficient conditions for the disfocal-
ity of (4.3.1), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(α) = yΔ(β) = 0, or yΔ(α) = y(β) = 0.

Next we employ Theorem 3.3.6 to determine a lower bound for the dis-
tance between consecutive zeros of solutions of (4.2.17). Note that the appli-
cations of the above results allow the use of arbitrary anti-derivative Q in the
above arguments. In the following, we assume that QΔ(t) = q(t) and there
exists h ∈ (α, β) which is the unique solution of the equation

K1(α, β) = K1(α, β, h) = K1(α, h, β) < ∞, (4.2.34)

where

K1(α, β, h) =
2γ

(γ + 1)
1

γ+1

×
(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(∫ h

α

Δt

r
1
γ (t)

)γ

Δx

) γ
γ+1

,
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and

K1(α, h, β) =
2γ

(γ + 1)
1

γ+1

(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(∫ β

h

Δt

r
1
γ (t)

)γ

Δx

) γ
γ+1

.

Theorem 4.2.5 Assume that QΔ(t) = q(t). Suppose y is a nontrivial solu-
tion of (4.2.17) and yΔ(t) does not change sign in (α, β). If y(α) = y(β) = 0,
then

K1(α, β) ≥ 1, (4.2.35)

where K1(α, β) is defined as in (4.2.34).

Proof. Multiply (4.2.17) by yσ(t), and proceed as in Theorem 4.2.4 and
use y(α) = y(β) = 0, to get

∫ β

α

r(t)
(
yΔ(t)

)γ+1
Δt =

∫ β

α

q(t) (y(t))
γ+1

Δt =

∫ β

α

QΔ(t) (yσ(t))
γ+1

Δt.

Integrating by parts the right-hand side, we see that
∫ β

α

r(t)
(
yΔ(t)

)γ+1
Δt = Q(t)(y(t))γ+1

∣∣β
α
+

∫ β

α

(−Q(t))
(
yγ+1(t)

)Δ
Δt.

Again using the facts that y(α) = 0 = y(β), we obtain

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

Δt ≤
∫ β

α

|Q(t)| |y(t) + yσ(t)|γ ∣∣yΔ(t)∣∣Δt.

Applying the inequality (3.3.31) with s(t) = |Q(t)|, p = γ and q = 1, we have

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

dt ≤ 21−γK1(α, β)

∫ β

α

r(t)
∣∣yΔ(t)∣∣γ+1

Δt.

From this inequality, after cancelling
∫ β

α

∣∣yΔ(t)∣∣γ+1
Δt, we get the desired

inequality (4.2.35). This completes the proof.

4.3 Second Order Equations with Damping
Terms

In this section we consider the second-order half-linear dynamic equation
with a damping term
(
r(t)

(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
+ q(t) (xσ(t))

γ
= 0, t ∈ [α, β]T, (4.3.1)

where T is an arbitrary time scale and σ(t) is the forward jump operator on
T which is defined by σ(t) := inf{s ∈ T : s > t}.

We say that a solution x of (4.3.1) has a generalized zero at t if x(t) = 0,
and has a generalized zero in (t, σ(t)) in the case x(t)xσ(t) < 0 and μ(t) > 0.
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Equation (4.3.1) is disconjugate on the interval [t0, b]T, if there is no nontrivial
solution of (4.3.1) with two (or more) generalized zeros in [t0, b]T. We say
that (4.3.1) is right disfocal (left disfocal) on [α, β]T if the solutions of (4.3.1)
such that xΔ(α) = 0 (xΔ(β) = 0) have no generalized zeros in [α, β]T. For
Eq. (4.3.1) the point β > α is called a right focal point of α if the solution
of (4.3.1) with initial conditions x(α) �= 0, xΔ(α) = 0 satisfies x(β) = 0. The
left focal point is defined similarly.

We will assume that γ ≥ 1 is a quotient of odd positive integers, r,
p and q are real rd-continuous functions defined on T with r(t) > 0 and
μ(t) |p(t)| ≤ r(t)/c where c is a positive constant such that c ≥ 1. We
also assume that supT = ∞, and define the time scale interval [a, b]T by
[a, b]T := [a, b] ∩ T. To simplify the presentation of the results, we define

Λ(β) : = sup
α≤t≤β

μγ(t)
|Q(t)|
r(t)

, where Q(t) =

∫ β

t

q(s)Δs,

Λ(α) : = sup
α≤t≤β

μγ(t)
|Q(t)|
r(t)

, where Q(t) =

∫ t

α

q(s)Δs,

Rα(t) : =

∫ t

α

Δs

r
1
γ (s)

, and Rβ(t) :=

∫ β

t

Δs

r
1
γ (s)

.

Note that when T = R, we have Λ(α) = 0 = Λ(β) and when T = Z, we have

Λ(β) = sup
α≤t≤β

∣∣∣∑β−1
s=t q(s)

∣∣∣
r(t)

, and Λ(α) = sup
α≤t≤β

∣∣∣∑t−1
s=α q(s)

∣∣∣
r(t)

. (4.3.2)

Now, we are ready to state and prove the main results.

Theorem 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and xΔ

does not change sign on (α, β)T. If x(α) = xΔ(β) = 0, then

22γ−2Λ(β)+
23γ−2

(γ+1)
1

γ+1

×
(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

(Rα(t))
γ
Δt

) γ
γ+1

+

(
γ

1+γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

rγ(t)
(Rα(t))

γ
Δt

) 1
γ+1

≥ 1−1

c
, (4.3.3)

where Q(t) =
∫ β

t
q(s)Δs. If instead xΔ(α) = x(β) = 0, then

22γ−2Λ(α)+
23γ−2

(γ+1)
1

γ+1

×
(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

(Rβ(t))
γ
Δt

) γ
γ+1

+

(
γ

1+γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

rγ(t)
(Rβ(t))

γ
Δt

) 1
γ+1

≥ 1−1

c
, (4.3.4)

where Q(t) =
∫ t

α
q(s)Δs.
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Proof. We prove (4.3.3). Without loss of generality we may assume that
x(t) ≥ 0 in [α, β]T. Multiplying (4.3.1) by xσ and integrating by parts, we
have

∫ β

α

(
r(t)

(
xΔ(t)

)γ)Δ
xσ(t)Δt+

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt

= r(t)
(
xΔ(t)

)γ
x(t)
∣∣∣β
α
−
∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt

+

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt = −

∫ β

α

q(t) (xσ(t))
γ+1

Δt.

Using the assumption x(α) = xΔ(β) = 0 we have

−
∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt+

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt = −

∫ β

α

q(t) (xσ(t))
γ+1

Δt.

This implies (note that Q(t) =
∫ β

t
q(s)Δs) that

∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt =

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt−

∫ β

α

QΔ(t) (xσ(t))
γ+1

Δt.

(4.3.5)
Integrating by parts the right-hand side, we see that

∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt =

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt

− Q(t)(x(t))γ+1
∣∣β
α
+

∫ β

α

Q(t)
(
xγ+1(t)

)Δ
Δt.

Again using the assumptions x(α) = 0 and Q(β) = 0, we obtain

∫ β

α

r(t)
(
xΔ(t)

)γ+1
dt =

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt+

∫ β

α

Q(t)
(
xγ+1(t)

)Δ
Δt.

(4.3.6)

Applying the chain rule formula

(
xλ(t)

)Δ
= λ

∫ 1

0

[hxσ(t) + (1− h)x(t)]
λ−1

dhxΔ(t), for λ > 0, (4.3.7)

and the inequality

aλ + bλ ≤ (a+ b)λ ≤ 2λ−1(aλ + bλ), if a, b ≥ 0, λ ≥ 1, (4.3.8)
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we see that

∣∣∣(xγ+1(t)
)Δ∣∣∣ ≤ (γ + 1)

∫ 1

0

|hxσ(t) + (1− h)x(t)|γ dh ∣∣xΔ(t)
∣∣

≤ 2γ−1(γ + 1)
∣∣xΔ(t)

∣∣
∫ 1

0

|hxσ(t)|γ dh

+2γ−1(γ + 1)
∣∣xΔ(t)

∣∣
∫ 1

0

|(1− h)x(t)|γ dh

= 2γ−1
∣∣xΔ(t)

∣∣ |xσ(t)|γ + 2γ−1
∣∣xΔ(t)

∣∣ |x(t)|γ
≤ 2γ−1 |xσ(t) + x(t)|γ ∣∣xΔ(t)

∣∣ . (4.3.9)

This and (4.3.6) imply that

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt ≤

∫ β

α

|p(t)| |xσ(t)| ∣∣xΔ(t)
∣∣γ Δt

+2γ−1

∫ β

α

|Q(t)| |x(t) + xσ(t)|γ ∣∣xΔ(t)
∣∣Δt

(4.3.10)

Applying the inequality (3.3.3) on the integral
∫ β

α
|Q(t)| |x(t) + xσ(t)|γ∣∣xΔ(t)

∣∣Δt, with s(t) = |Q(t)| , p = γ, q = 1, we have

∫ β

α

|Q(t)| |x(t) + xσ(t)|γ ∣∣xΔ(t)
∣∣Δt ≤ K1(α, β, γ, 1)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt,

(4.3.11)

where

K1(α, β, γ, 1) = 22γ−2Λ(β)+23γ−2 1

(γ + 1)
1

γ+1

(∫ β

α

|Q(x)| γ+1
γ

r
1
γ (x)

(Rα(x))
γ Δx

) γ
γ+1

.

Using that fact that xσ = x(t) + μ(t)xΔ(t), we see that

∫ β

α

|p(t)| |xσ(t)|
∣∣∣(xΔ(t)

)γ∣∣∣Δt =

∫ β

α

|p(t)| ∣∣x(t) + μ(t)xΔ(t)
∣∣ ∣∣xΔ(t)

∣∣γ Δt

≤
∫ β

α

|p(t)| |x(t)| ∣∣xΔ(t)
∣∣γ Δt

+

∫ β

α

μ(t) |p(t)| ∣∣xΔ(t)
∣∣γ+1

Δt.

Applying the inequality (3.2.33) on the integral
∫ β

α
|p(t)| |x(t)| ∣∣xΔ(t)

∣∣γ Δt
with s(t) = |p(t)|, p = 1 and q = γ, we see that

∫ β

α

|p(t)| |x(t)| ∣∣xΔ(t)
∣∣γ Δt ≤ G1(α, β, 1, γ)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt, (4.3.12)
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where

G1(α, β, 1, γ) =

(
γ

1 + γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

(r(t))γ
(Rα(t))

γ
Δt

) 1
γ+1

.

Using the assumption that 0 ≤ p(t)μ(t) ≤ r(t)/c, we see that

∫ β

α

p(t) |xσ(t)| ∣∣xΔ(t)
∣∣γ Δt ≤ G1(α, β, 1, γ)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

+
1

c

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt. (4.3.13)

Substituting (4.3.11) and (4.3.13) into (4.3.10), we have

(1− 1

c
)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt ≤ K1(α, β, γ, 1)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt

+G1(α, β, 1, γ)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt.

(4.3.14)

Then, we have from (4.3.14) that

1− 1

c
≤ K1(α, β, γ, 1) +G1(α, β, 1, γ)

= 22γ−2Λ(β) +
23γ−2

(γ + 1)
1

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

(Rα(t))
γ
Δt

) γ
γ+1

+

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
(Rα(t))

γ
Δt

) 1
γ+1

,

which is the desired inequality (4.3.3). The proof of (4.3.4) is similar to (4.3.3)
using Theorems 3.2.9 and 3.3.2. The proof is complete.

In Theorem 4.3.1 if r(t) = 1, then we have the following result.

Corollary 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and xΔ

does not change sign in (α, β)T. If x(α) = xΔ(β) = 0, then

22γ−2Λ(β) +
23γ−2

(γ + 1)
1

γ+1

×
(∫ β

α

|Q(t)| γ+1
γ (t− α)

γ
Δt

) γ
γ+1

+

(
γ

1 + γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

(t− α)
γ
Δt

) 1
γ+1

≥ 1− 1

c
,
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where Q(t) =
∫ β

t
q(s)Δs. If instead xΔ(α) = x(β) = 0, then

22γ−2Λ(α) +
23γ−2

(γ + 1)
1

γ+1

×
(∫ β

α

|Q(t)| γ+1
γ (β − t)

γ
Δt

) γ
γ+1

+

(
γ

1 + γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

(β − t)
γ
Δt

) 1
γ+1

≥ 1− 1

c
,

where Q(t) =
∫ t

α
q(s)Δs.

As a special case of Theorem 4.3.1, when γ = 1, we have the following
result.

Corollary 4.3.2 Suppose that x is a nontrivial solution of (4.3.1) and xΔ

does not change sign in (α, β)T. If x(α) = xΔ(β) = 0, then

Λ(β) +
√
2

(∫ β

α

|Q(t)|2
r(t)

rα(t)Δt

) 1
2

+
1√
2

(∫ β

α

p2(t)

r(t)
Rα(t)Δt

) 1
2

≥ 1− 1

c
,

where Rα(t) =
∫ t

α
Δs
r(s) and Q(t) =

∫ β

t
q(s)Δs. If instead xΔ(α) = x(β) = 0,

then

Λ(α) +
√
2

(∫ β

α

|Q(t)|2
r(t)

rβ(t)Δt

) 1
2

+
1√
2

(∫ β

α

p2(t)

r(t)
Rβ(t)Δt

) 1
2

≥ 1− 1

c
,

where Rβ(t) =
∫ β

t
Δs
r(s) and Q(t) =

∫ t

α
q(s)Δs.

As a special case of Corollary 4.3.2, when p(t) = 0, we have the following
result.

Corollary 4.3.3 Suppose that x is a nontrivial solution of

(
r(t)xΔ(t)

)Δ
+ q(t)xσ(t) = 0, t ∈ [α, β]T, (4.3.15)

and xΔ does not change sign in (α, β)T. If x(α) = xΔ(β) = 0, then

√
2

(∫ β

α

|Q(t)|2
r(t)

(∫ t

α

Δt

r(t)

)
Δt

) 1
2

+ Λ(β) ≥ 1,

where Q(t) =
∫ β

t
q(s)Δs. If instead xΔ(α) = x(β) = 0, then

√
2

(∫ β

α

|Q(t)|2
r(t)

(∫ β

t

Δt

r(t)

)
Δt

) 1
2

+ Λ(α) ≥ 1,

where Q(t) =
∫ t

α
q(s)Δs.
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Remark 4.3.1 Theorem 4.3.1 yield sufficient conditions for the disfocality
of (4.3.1), i.e., sufficient conditions so that there does not exist a nontrivial
solution x satisfying x(α) = xΔ(β) = 0 or xΔ(α) = x(β) = 0.

On a time scale T, we note from the chain rule (4.3.7) that

(
(t− a)

λ+δ
)Δ

= (λ+ δ)

∫ 1

0

[h(σ(t)− a) + (1− h)(t− a)]
λ+δ−1

dh

≥ (λ+ δ)

∫ 1

0

[h(t− a) + (1− h)(t− a)]
λ+δ−1

dh

= (λ+ δ)(t− a)λ+δ−1.

This implies that

∫ τ

a

(t− a)(λ+δ−1)Δt ≤
∫ τ

a

1

(λ+ δ)

(
(t− a)

λ+δ
)Δ

Δt =
(τ − a)λ+δ

(λ+ δ)
.

(4.3.16)

Now using the maximum of |Q| and |p| on [α, β]T and substituting (4.3.16)
into the results of Corollary 4.3.1, we have the following result.

Corollary 4.3.4 Suppose that x is a nontrivial solution of (4.3.1) and xΔ

does not change sign in (α, β)T. If x(α) = xΔ(β) = 0, then

23γ−2(β − α)γ

(γ + 1)
max

α≤t≤β

∣∣∣∣∣
∫ β

t

q(s)Δs

∣∣∣∣∣+
γ

γ
γ+1

γ + 1
(β − α) max

α≤t≤β
|p(t)|

+22γ−2 sup
α≤t≤β

μγ(t)

∣∣∣∣∣
∫ β

t

q(s)Δs

∣∣∣∣∣ ≥ 1− 1

c
.

If instead xΔ(α) = x(β) = 0, then

23γ−2(β − α)γ

(γ + 1)
max

α≤t≤β

∣∣∣∣
∫ t

α

q(s)Δs

∣∣∣∣+ γ
γ

γ+1

γ + 1
(β − α) max

α≤t≤β
|p(t)|

+22γ−2 sup
α≤t≤β

μγ(t)

∣∣∣∣
∫ t

α

q(s)Δs

∣∣∣∣ ≥ 1− 1

c
,

As a special when T = Z, we see that Λ(α) and Λ(β) are defined as
in (4.3.2) and we consider the second order half-linear difference equation

Δ(Δx(n))γ + p(n)(Δx(n))γ + q(n)(x(n+ 1))γ = 0, α ≤ n ≤ β, (4.3.17)

where γ ≥ 1 is a quotient of odd positive integers and p(n) ≤ 1/c.
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Corollary 4.3.5 Suppose that x is a nontrivial solution of (4.3.17) and
Δx(n) does not change sign in (α, β)T. If x(α) = Δx(β) = 0, then

1− 1

c
≤ 23γ−2(β − α)γ

(γ + 1)
max

α≤n≤β

∣∣∣∣∣
β−1∑
s=n

q(s)

∣∣∣∣∣+ 22γ−2 sup
α≤n≤β

∣∣∣∣∣
β−1∑
s=n

q(s)

∣∣∣∣∣
+
γ

γ
γ+1

γ + 1
(β − α) max

α≤n≤β
|p(n)| .

If instead Δx(α) = x(β) = 0, then

1− 1

c
≤ 23γ−2(β − α)γ

(γ + 1)
max

α≤n≤β

∣∣∣∣∣
n−1∑
s=α

q(s)

∣∣∣∣∣+ 22γ−2 sup
α≤n≤β

∣∣∣∣∣
n−1∑
s=α

q(s)

∣∣∣∣∣
+
γ

γ
γ+1

γ + 1
(β − α) max

α≤n≤β
|p(n)| .

If we apply the inequality

|a+ b|λ ≤ 2λ−1
(
|a|λ + |b|λ

)
, where a, b are real numbers and λ ≥ 1,

with a = x(t) and b = μ(t)hxΔ(t), then we have from (4.3.7) that

∣∣∣(xγ+1(t)
)Δ∣∣∣ ≤ (γ + 1)

∣∣xΔ(t)
∣∣
∫ 1

0

∣∣x(t) + μ(t)hxΔ(t)
∣∣γ dh

≤ 2γ−1(γ + 1)
∣∣xΔ(t)

∣∣
∫ 1

0

|x(t)|γ dh

+2γ−1(γ + 1)
∣∣xΔ(t)

∣∣
∫ 1

0

∣∣μ(t)hxΔ(t)
∣∣γ dh

= 2γ−1(γ+1)
∣∣xΔ(t)

∣∣ |x(t)|γ +2γ−1μ(t)
∣∣xΔ(t)

∣∣γ+1
. (4.3.18)

Substituting (4.3.18) into (4.3.6), we have that

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
dt ≤

∫ β

α

|p(t)| |xσ(t)| ∣∣xΔ(t)
∣∣γ Δt

+2γ−1(γ + 1)

∫ β

α

|Q(t|) ∣∣xΔ(t)
∣∣ |x(t)|γ Δt

+2γ−1

∫ β

α

μ(t) |Q(t)| ∣∣xΔ(t)
∣∣γ+1

Δt. (4.3.19)

Using the inequality

∫ β

α

|p(t)| |xσ(t)| ∣∣xΔ(t)
∣∣γ Δt ≤

∫ β

α

|p(t)| |x(t)| ∣∣xΔ(t)
∣∣γ Δt

+

∫ β

α

μ(t) |p(t)| ∣∣xΔ(t)
∣∣γ+1

Δt,
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we have from (4.3.19) that
∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
dt ≤

∫ β

α

|p(t)| |x(t)| ∣∣xΔ(t)
∣∣γ Δt

+2γ−1(γ + 1)

∫ β

α

|Q(t|) ∣∣xΔ(t)
∣∣ |x(t)|γ Δt

+

∫ β

α

μ(t)(|p(t)|+ 2γ−1 |Q(t)| ∣∣xΔ(t)
∣∣γ+1

Δt

(4.3.20)

We now apply Opial inequalities to obtain results when the condition μ(t)
|p(t)| ≤ r(t)/c is replaced by the new condition μ(t)(|p(t)| + 2γ−1 |Q(t)|) ≤
r(t)/c.

Now, applying the inequality (3.2.33) on the term
∫ β

α

|Q(t)| ∣∣xΔ(t)
∣∣ |x(t)|γ Δt, with s(t) = |Q(t)| , p = γ and q = 1,

we have∫ β

α

|Q(t|) |x(t)|γ ∣∣xΔ(t)
∣∣Δt ≤ K∗

1 (α, β, γ, 1)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt,

where

K∗
1 (α, β, γ, 1) =

(
1

γ + 1

) 1
γ+1

(∫ β

α

|Q(t)| γ+1
γ

(r(t))
1
γ

Rγ
α(t)Δt

) γ
γ+1

.

Using the inequality∫ β

α

|p(t)| |x(t)| ∣∣xΔ(t)
∣∣γ Δt ≤ G1(α, β, 1, γ)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt,

where

G1(α, β, 1, γ) =

(
γ

1 + γ

) γ
γ+1

×
(∫ β

α

|p(t)|γ+1

(r(t))γ
Rγ

α(t)Δt

) 1
γ+1

.

and proceeding as in the proof of Theorem 4.3.1, we obtain the following
result.

Theorem 4.3.2 Assume that μ(t)(|p(t)| + 2γ−1 |Q(t)|) ≤ r(t)/c where c is
a positive constant such that c ≥ 1. Suppose that x is a nontrivial solution
of (4.3.1) and xΔ does not change sign in (α, β)T. If x(α) = xΔ(β) = 0, then

2γ−1 (γ + 1)
γ

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

Rγ
α(t)Δt

) γ
γ+1

+

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
Rγ

α(t)Δt

) 1
γ+1

≥ 1− 1

c
,
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where Q(t) =
∫ β

t
q(s)Δs. If instead xΔ(α) = x(β) = 0, then

2γ−1 (γ + 1)
γ

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

Rγ
β(t)Δt

) γ
γ+1

+

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
Rγ

β(t)Δt

) 1
γ+1

≥ 1− 1

c
,

where Q(t) =
∫ t

α
q(s)Δs.

Remark 4.3.2 Note that when T = R the condition μ(t)(|p(t)| + 2γ−1

|Q(t)|) ≤ r(t)/c is removed since μ(t) = 0.

Next we apply Theorems 3.2.10 and 3.3.3 to determine a lower bound for
the distance between consecutive generalized zeros of solutions of (4.3.1). In
the following, we assume that QΔ(t) = q(t) and assume that there exists a
unique h ∈ (α, β)T, such that

R(h) := Rα(h) = Rβ(h). (4.3.21)

Note that the best choice of h when r(t) = 1 is h = (β + α) /2. In the
following, we assume that

Kh(α, β, γ, 1) = Kh(α, β, γ, 1) < ∞, (4.3.22)

where

Kh(α, β, γ, 1) =
23γ−2

(γ + 1)
1

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

Rγ
α(h)Δt

) γ
γ+1

+ 22γ−2Λ,

Kh(α, β, γ, 1) =
23γ−2

(γ + 1)
1

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

Rγ
β(h)Δt

) γ
γ+1

+ 22γ−2Λ,

Λ := sup
α≤t≤β

μγ(t)
|Q(t)|
r(t)

, where QΔ(t) = q(t),

and

Gh(α, β, 1, γ) = Gh(α, β, 1, γ) < ∞, (4.3.23)

where

Gh(α, β, 1, γ) =

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
Rγ

α(h)Δt

) 1
γ+1

,

Gh(α, β, 1, γ) =

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
Rγ

β(h)Δt

) 1
γ+1

.
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Now, we assume that K(γ, 1) is the solution of the equation K(γ, 1) =
Kh(α, β, γ, 1) = Kh(α, β, γ, 1) and given by

K(γ, 1) =
23γ−2

(γ + 1)
1

γ+1

(∫ β

α

|Q(t)| γ+1
γ

r
1
γ (t)

Rγ(h)Δt

) γ
γ+1

+ 22γ−2Λ, (4.3.24)

and similarly G(1, γ) is given by

G(1, γ) =

(
γ

1 + γ

) γ
γ+1

(∫ β

α

|p(t)|γ+1

rγ(t)
Rγ(h)Δt

) 1
γ+1

. (4.3.25)

Theorem 4.3.3 Assume that QΔ(t) = q(t) and suppose x is a nontrivial
solution of (4.3.1). If x(α) = x(β) = 0, then

K(γ, 1) +G(1, γ) ≥ 1− 1

c
, (4.3.26)

where K(α, β) and K(α, β) are defined as in (4.3.24) and (4.3.25).

Proof. We multiply (4.3.1) by xσ(t) and proceed as in Theorem 4.3.1 to
obtain

∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt =

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt+

∫ β

α

QΔ(t) (xσ(t))
γ+1

Δt.

Integrating by parts the right-hand side, we see that

∫ β

α

r(t)
(
xΔ(t)

)γ+1
Δt =

∫ β

α

p(t)xσ(t)
(
xΔ(t)

)γ
Δt

+ Q(t)(x(t))γ+1
∣∣β
α
−

∫ β

α

Q(t)
(
xγ+1(t)

)Δ
Δt. (4.3.27)

Using x(α) = 0 = x(β) we obtain

∫ β

α

r(t)
∣∣∣xΔ(t)

∣∣∣γ+1
dt ≤

∫ β

α

|p(t)|
∣∣xσ(t)∣∣

∣∣∣xΔ(t)
∣∣∣γ Δt+

∫ β

α

|Q(t)|
∣∣∣∣
(
xγ+1(t)

)Δ∣∣∣∣ dt.

We proceed as in the proof of Theorem 4.3.1 to get

∫ β

α

|Q(t)|
∣∣∣(xγ+1(t)

)Δ∣∣∣Δt ≤ 2γ−1

∫ β

α

|Q(t)| |x(t) + xσ(t)|γ ∣∣xΔ(t)
∣∣Δt.

Applying the inequality (3.3.15) with s(t) = |Q(t)|, p = γ and q = 1, we have

∫ β

α

|Q(t)| ∣∣xγ+1(t)
∣∣Δ dt ≤ 2γ−1K(γ, 1)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt.
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Also, we obtain

∫ β

α

|p(t)| |xσ(t)| ∣∣xΔ(t)
∣∣γ Δt

≤ G(1, γ)

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt+

1

c

∫ β

α

r(t)
∣∣xΔ(t)

∣∣γ+1
Δt.

The rest of the proof is similar to that in the proof of Theorem 4.3.1.

4.4 Hamiltonian Systems

In this section we consider a linear matrix Hamiltonian dynamic system on
time scales of the form

xΔ(t) = A(t)xσ +B(t)u, uΔ(t) = −C(t)xσ −A∗(t)u, (4.4.1)

where A, B, and C are rd-continuous n×n-matrix-valued functions on T such
that I−μ(t)A(t) is invertible and B(t) and C(t) are positive semidefinite for
all t ∈ T. A corresponding quadratic functional is given by

F(x, u) =

b∫

a

{u∗Bu− (xσ)∗Cxσ} (t)Δt.

A pair (x, u) is called admissible if it satisfies the equation of motion

xΔ = A(t)xσ +B(t)u.

Lemma 4.4.1 If (x, u) solves (4.4.1) and if (y, v) is admissible, then

F(y, v)−F(x, u) = F(y − x, v − u)

+2Re [(y − x)∗(b)u(b)− (y − x)∗(a)u(a)] .

Proof. Under the above assumption

F(y, v)−F(x, u)−F(y − x, v − u)

=

b∫

a

{v∗Bv − (yσ)∗Cyσ − u∗Bu+ (xσ)∗Cxσ

− [(v − u)∗B(v − u)− (yσ − xσ)∗C(yσ − xσ)]} (t)Δt

=

b∫

a

{−2u∗Bu+ v∗Bu+ u∗Bv

+2(xσ)∗Cxσ − (yσ)∗Cxσ − (xσ)∗Cyσ} (t)Δ(t)

=

b∫

a

{−2u∗Bu+ 2Re [u∗Bv] + 2(xσ)∗Cxσ − 2Re [(yσ)∗Cxσ]} (t)Δ(t)
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= 2Re

⎛
⎝

b∫

a

{u∗(Bv −Bu) + [(xσ)∗ − (yσ)∗]Cx∗} (t)Δ(t)

⎞
⎠

= 2Re

⎛
⎝

b∫

a

{u∗ (yΔ −Ayσ − xΔ +Axσ)

+ [(xσ)∗ − (yσ)∗]− uΔ −A∗u](t)Δ(t)
)

= 2Re

⎛
⎝

b∫

a

{
u∗(yΔ − xΔ) + (yσ − xσ)∗ uΔ

+2i Im[u∗Axσ + (yσ)∗A∗u] (t)Δ(t)

)

= 2Re

⎛
⎝

b∫

a

{
u∗(yΔ − xΔ) + (yσ − xσ)∗uΔ

}
(t)Δt

⎞
⎠

= 2Re

⎛
⎝

b∫

a

{
u∗(yΔ − xΔ) + (uΔ)∗(yσ − xσ)

}
(t)Δt

⎞
⎠

= 2Re

⎛
⎝

b∫

a

{
[u∗(y − x)]Δ

}
(t)Δt

⎞
⎠

= 2Re {u∗(b)[y(b)− x(b)]− u∗(a)[y(a)− x(a)]} .
= 2Re {[y − x]∗(b)u(b)− [y − x]∗(a)u(a)]} ,

and we are finished.
For the remainder of this section we denote by W (., r) the unique solution

of the initial value problem

WΔ = −A∗(t)W, W (r) = I, (4.4.2)

where r ∈ [a, b] is given. We also write

F (s, r) =

s∫

r

W ∗(t, r)B(t)W (t, r)Δt. (4.4.3)

Observe that W (t, r) ≡ I provided A(t) ≡ 0.

Lemma 4.4.2 Let W and F be defined as in (4.4.2) and (4.4.3). If (y, v) is
admissible and if r, s ∈ T with a ≤ r < s ≤ b such that F (s, r) is invertible,
then

s∫

r

(v∗Bv)(t)Δt ≥ [W ∗(s, r)y(s)− y(r)]
∗
F−1(s, r) [W ∗(s, r)y(s)− y(r)] .
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Proof. Let

x(t) = W ∗−1(t, r)
{
y(r) + F (t, r)F−1(s, r) [W ∗(s, r)y(s)− y(r)]

}

and

u(t) = W (t, r)F−1(s, r)[W ∗(s, r)y(s)− y(r)].

Now

W (t, r)W−1(σ(t), r) = [W (σ(t), r)− μ(t)WΔ(t, r)W−1(σ(t), r)

= I + μ(t)A∗(t)W (t, r)W−1(σ(t), r),

and therefore [I − μ(t)A∗(t)]W (t, r)W−1(σ(t), r) = I, so that

[I − μ(t)A(t)]xΔ(t) = A(t)x(t) +B(t)u(t),

and hence

xΔ(t) = A(t)x(t) + μ(t)A(t)x2(t) +B(t)u(t)

= A(t)xσ(t) +B(t)u(t).

Thus (x, u) solves the Hamiltonian system (4.4.1) with C = 0 and, we may
apply Lemma 4.4.1 to F0 defined by

F0(x, u) =

s∫

r

(u∗Bu)(t)Δt,

to obtain

F0(y, v) = F0(x, u) + F0(y − x, v − u)

+2Re {u∗(s)y(s)− x(s)− u∗(r)[y(r)− x(r)]}

= F0(x, u) + F0(y − x, v − u) ≥ F0(x, u) =

s∫

r

(u∗Bu)(t)Δt

= [W ∗(s, r)y(s)− y(r)]∗F−1(r, s)[W ∗(s, r)y(s)− y(r)].

which shows our claim.

Remark 4.4.1 The assumption in Lemma 4.4.2 that F (s, r) is invertible if
r < s can be dropped if B is positive definite rather than positive semidefinite.

We now may use Lemma 4.4.2 to derive a Lyapunov inequality for Hamil-
tonian systems.

Theorem 4.4.1 Assume (4.4.1) has a solution (x, u) such that x is non-
trivial and satisfies x(a) = x(b) = 0. With W and F introduced in (4.4.2)
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and (4.4.3), suppose that F (b, c) and F (c, a) are invertible, where ‖x(c)‖ =
maxt∈[a,b]∩T ‖x(t)‖. Let λ be the biggest eigenvalue of

F =

b∫

a

W ∗(t, c)B(t)W (t, c)Δt,

and let v(t) be the biggest eigenvalue of C(t). Then the Lyapunov inequality
b∫

a

v(t)Δt ≥ 4

λ
,

holds.

Proof. Suppose we are given a solution (x, u) of (4.4.1) such that x(a) =
x(b) = 0. Lemma 4.4.1 then yields (using y = v = 0) that

F(x, u) =

b∫

a

{u∗Bu− (xσ)∗Cxσ} (t)Δt = 0.

Apply Lemma 4.4.2 twice (once with r = a and s = c and a second time with
r = c and s = b) to obtain

b∫

a

[(xσ)∗Cxσ](t)Δt

=

b∫

a

(u∗Bu)(t)Δt =

c∫

a

(u∗Bu)(t)Δt+

b∫

a

(u∗Bu)(t)Δt

≥ x∗(c)W (c, a)F−1(c, a)W ∗(c, a)x(c) + x∗(c)F−1(b, c)x(c)

= x∗(c)[F−1(b, c)− F−1(a, c)]x(c) ≥ 4x∗(c)F−1x(c);

here we have used the relation W (t, r)W (r, s) = W (t, s) and the inequality
(see [34, Theorem 9 (i)]) and [120])

M−1 +N−1 ≥ 4(M +N)−1,

Now, by applying the Rayleigh–Ritz Theorem (see [85, page 176]), we
conclude

b∫

a

v(t)Δt ≥
b∫

a

v(t)
‖xσ(t)‖2
‖x(c)‖2

Δt

=
1

‖x(c)‖2
b∫

a

v(t)(xσ(t))∗xσ(t)Δt ≥ 1

‖x(c)‖2
b∫

a

(xσ(t))∗C(t)xσ(t)Δt

≥ 1

‖x(c)‖2
4x∗(c)F−1x(c) ≥ 4min

x �=0

x∗F−1x

x∗x
=

4

λ
,

which is the desired inequality. The proof is complete.
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Remark 4.4.2 If A ≡ 0, then W ≡ I and F =

b∫

a

B(t)Δt. If, in addition

B ≡ 1, then F = b − a. Note the Lyapunov inequality

b∫

a

v(t)Δt ≥ (4/λ)

reduces to

b∫

a

p(t)Δt ≥ (4/b− a) for the scalar case.

We conclude with a result concerning the so-called right-focal boundary
condition, i.e., x(a) = u(b) = 0.

Theorem 4.4.2 Assume (4.4.1) has a solution (x, u) with x nontrivial and
x(a) = u(b) = 0. With the notation as in Theorem 4.4.1, the Lyapunov
inequality

b∫

a

v(t)Δt ≥ 1

λ
,

holds.

Proof. Suppose (x, u) is a solution of (4.4.1) such that x(a) = u(b) = 0
with a < b. Choose the point c in (a, b] where ‖x(t)‖ is maximal. Applying
Lemma 4.4.1 and we see

b∫

a

[(xσ)∗Cxσ] (t)Δt =

b∫

a

(u∗Bu)(t)Δt ≥
b∫

a

(u∗Bu)(t)Δt.

Using Lemma 4.4.2 with r = a and s = c, we get

b∫

a

(u∗Bu)(t)Δt ≥ [W ∗(c, a)x(c)− x(a)]
∗
F−1(c, a) [W ∗(c, a)x(c)− x(a)]

= x∗(c)W (c, a)F−1(c, a)W ∗(c, a)x(c)
= −x∗(c)F−1(a, c)x(c)

= x∗(c)

⎛
⎝

b∫

a

W ∗(t, c)B(t)W (t, c)Δt

⎞
⎠

−1

x(c)

≥ x∗(c)

⎛
⎝

b∫

a

W ∗(t, c)B(t)W (t, c)Δt

⎞
⎠

−1

x(c)

= x∗(c)F−1x(c).
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Hence,
b∫

a

[(xσ)∗Cxσ] (t)Δt ≥ x∗(c)F−1x(c),

and the same arguments as in the proof of Theorem 4.4.1 completes the proof.
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