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Preface

All analysts spend half their time hunting through the literature for in-
equalities which they want to use and cannot prove.
G.H. Hardy.

The study of dynamic inequalities on time scales has received a lot of
attention in the literature and has become a major field in pure and ap-
plied mathematics. This book is devoted to some fundamental dynamic
inequalities on time scales such as Young’s inequality, Jensen’s inequality,
Hélder’s inequality, Minkowski’s inequality, Steffensen’s inequality, Cebysev’s
inequality, Opial’s inequality, Lyapunov’s inequality, Halanay’s inequality,
and Wirtinger’s inequality.

The book on the subject of time scale, i.e., measure chain, by Bohner
and Peterson [51] summarizes and organizes much of time scale calculus.
The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung
[89]), i.e, when T = R, T = N, and T = ¢ = {¢* : t € Ny} where
q > 1. There are applications of dynamic equations and inequalities on time
scales to quantum mechanics, electrical engineering, neural networks, heat
transfer, combinatorics, and population dynamics. A cover story article in
New Scientist [141] discusses several possible applications. In population
dynamics the dynamic equations can be used to model insect populations
that are continuous while in season, die out in say winter, while their eggs
are incubating or dormant, and then hatch in a new season, giving rise to a
nonoverlapping population.

This book presents a variety of integral inequalities. We assume the reader
has a good background in time scale calculus. The book consists of six chap-
ters. In Chap.1l we present preliminaries and basic concepts of time scale
calculus, and in Chap.2 we discuss and prove dynamic inequalities on time
scales such as Young’s inequality, Jensen’s inequality, Holder’s inequality,
Minkowski’s inequality, Steffensen’s inequality, Hermite—-Hadamard inequal-
ity, and Cebysv’s inequality. Opial type inequalities on time scales and their

vii



viii Preface

extensions with weighted functions will be discussed in Chap.3. In Chap.4
we present some inequalities of Lyapunov type for some dynamic equations,
and in Chap. 5 we employ the shift operators §+ to construct delay dynamic
inequalities on time scales and use them to derive Halanay type inequalities
for dynamic equations on time scales. Using Halanay’s inequalities and the
properties of exponential function on time scales, we establish new conditions
that lead to stability for nonlinear dynamic equations. Finally in Chap. 6 we
discuss Wirtinger-type inequalities on time scales and their extensions.
We wish to express our thanks to our families and friends.

Kingsville, TX, USA Ravi Agarwal
Galway, Ireland Donal O’Regan
Mansoura, Egypt Samir H. Saker
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Chapter 1

Preliminaries

The essence of mathematics lies in its freedom.
Georg Cantor (1845-1915).
As for everything else, so for a mathematical theory: beauty can be

perceived but not explained.
Arthur Cayley (1821-1895).

From a modeling point of view it is realistic to model a phenomenon by
a dynamic system which incorporates both continuous and discrete times,
namely, time as an arbitrary closed set of reals. It is natural to ask whether
it is possible to provide a framework which allows us to handle both dynamic
systems simultaneously so that we can get some insight and a better und-
erstanding of the subtle differences of these two systems. The recently
developed theory of “dynamic systems on time scales” or dynamic systems
on measure chains (by a measure chain we mean the union of disjoint closed
intervals of R) offers a desired unified approach.

This chapter contains some preliminaries, definitions, and concepts con-
cerning time scale calculus. The results in this chapter will cover delta, nabla,
and diamond-a derivatives and integrals.

(© Springer International Publishing Switzerland 2014 1
R. Agarwal et al., Dynamic Inequalities On Time Scales,
DOI 10.1007/978-3-319-11002-8_1



2 CHAPTER 1. PRELIMINARIES

1.1 Delta Calculus

For the notions used below we refer the reader to the books [51, 52] which
summarize and organize much of time scale calculus. A time scale is an arb-
itrary nonempty closed subset of the real numbers. Throughout the book, we
denote the time scale by the symbol T. For example, the real numbers R, the
integers Z, and the natural numbers N are time scales. For ¢t € T, we define
the forward jump operator o : T — T by o(t) :=inf{s € T : s > t}. A time-
scale T equipped with the order topology is metrizable and is a K,-space;
i.e., it is a union of at most countably many compact sets. The metric
on T which generates the order topology is given by d(r;s) := |u(r;s)],
where p(.) = p(.;7) for a fixed 7 € T is defined as follows. The mapping
p:T — RT =[0,00) such that u(t) := o(t) — t is called the graininess.

When T = R, we see that o(t) = ¢t and p(¢t) = 0 for all t € T and
when T =N, we have that o(t) = t+ 1 and p(t) = 1 for all t € T. The
backward jump operator p : T — T is defined by p(t) :=sup{s € T : s < t}.
The mapping v : T — Ry such that v(t) = t — p(t) is called the backward
graininess. If o(t) > t, we say that ¢ is right-scattered, while if p(t) < ¢, we
say that ¢ is left-scattered. Also, if ¢ < supT and o(t) = ¢, then ¢ is called
right-dense, and if ¢ > inf T and p(t) = ¢, then ¢ is called left-dense. If T has
a left-scattered maximum m, then T* = T — {m}. Otherwise T¥ = T. In
summary,

Th_ { T\(psupT, supT], if supT < oo,
T, sup T = oo.
Likewise Ty is defined as the set T, =T\ [nfT,o(infT)] if
linf T| < oo, and Tp= T if inf T = —o0.
For a function f : T — R, we define the derivative f2 as follows. Let
t € T. If there exists a number o € R such that for all € > 0 there exists a
neighborhood U of ¢t with

[f(a(t)) = f(s) — alo(t) — s)| <elo(t) — s,
for all s € U, then f is said to be differentiable at ¢, and we call « the delta
derivative of f at t and denote it by f2(t). For example, if T = R, then
Ay oy e JEH A — f(?)
PO =1 = tm T—5

If T =N, then f2(t) = f(t+1)— f(t) for all t € T. For a function f: T — R
the (delta) derivative is defined by
fle@®) = f(t)

if f is continuous at ¢t and ¢ is right-scattered. If ¢ is not right-scattered then
the derivative is defined by

,forall teT.

flo) = £(5) _ . f0) = f(5)

s—t t—s t—00 t—s ’
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provided this limit exists. A useful formula is

fo=f+pf> where f7:=foo.

A function f : [a,b] — R is said to be right-dense continuous (rd-continuous)
if it is right continuous at each right-dense point and there exists a finite left
limit at all left-dense points, and f is said to be differentiable if its derivative
exists. The space of rd-continuous functions is denoted by C,(T, R). A time
scale T is said to be regular if the following two conditions are satisfied
simultaneously:

(a). Forallt €T, o(p(t)) =t.

t.

(b). Forallt € T, p(o(t))

Remark 1.1.1 IfT is a reqular time scale, then both operators are invertible

witho ' =pand p~! =o0.

The following theorem gives the product and quotient rules for the deriva-
tive of the product fg and the quotient f/g (where gg” # 0) of two delta
differentiable functions f and g.

Theorem 1.1.1 Assume f; g: T — R are delta differentiable att € T. Then

(f9)® = 29+ 79" =fg>+ 3¢, (1.1.1)
A

(f> - M (1.1.2)

g 99°

By using the product rule, we see that the derivative of f(t) = (¢t — a)™
for m € N, and a € T can be calculated as

A =((t—a)™ mZ (t—a)m v L, (1.1.3)

As a special case when o = 0, we see that the derivative of f(¢) =" for
m € N can be calculated as

m—1
=> o
v=0
Note that when T = R, we have

a(t) =t, u(t) =0, f2(t)=f ().
When T = Z, we have

o(t) =t+1, p(t) =1, f3(t) = Af(®).
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When T =hZ, h > 0, we have o(t) =t + h, u(t)

(f(t+h)—f())
. :

h,

FR) = Anf(t) =
When T = {t : t = ¢*, k € Ny, ¢ > 1}, we have o(t) = qt, u(t) = (¢ — 1)t,

(flgt) = f(1))
(-1t

FA() = Agf(t) =
When T = N2 = {t? : t € N}, we have o(t) = (v + 1)? and
u(t) =1+ 2V, f2(1) = Aof(t) = (F(VE+1)?) = f(1)/1+ 2Vt

When T =T,, = {t,, : n € N} where (¢,,) are the harmonic numbers that are
defined by to = 0 and t, = Y_,_; +,n € Ny, and we have

1

1 PO = Aif(tn) = (14 1) f ().

o(tn) =tnt1, p(tn) =

When To={y/n : n € N}, we have o(t) = V{2 + 1,

fWtE+1) - f@t)
VE2+1—-t

When T3={¥n : n € N}, we have o(t) = V{3 + 1 and

(VB +1) — f(1)
VEF1-t

For a,b € T, and a delta differentiable function f, the Cauchy integral of f2
is defined by

W(t) = VETT—t, FA0) = Aaf(t) =

p(t) = V3 +1—t, f2(t) = Asf(t) =

b
/ FABAL = f(b) — f(a).

Theorem 1.1.2 Let f,g € Cr4([a,b],R) be rd-continuous functions,
a,b,c € T and o, € R. Then, the following are true:

L[ [af () + Bgt)] At = a [} F(&)AL + B [} g(t)At,
2. [} ()AL=~ [ f(t)AL,

9. [y FOAL = [ FOAL+ [ f(1)A,

4 |[ Fad < [V 1Fw)] At
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An integration by parts formula reads

b b
/ FHg>(0)At = FR)g(t)]’ - / A0 AL,  (114)

and infinite integrals are defined as

[e%S) b
/ At = lim [ fat

a

Note that when T = R, we have

/abf(t)At - /ab F(t)dt.

b b—1
| roai=3 fo.

When T =hZ, h > 0, we have

/a NIONE

When T = {t : t = ¢, k € Ny, ¢ > 1}, we have

When T = Z, we have

b—

Zh: fa+ kh)h.
k=0

h

o0

FOAL =" f(d")u(dh).
k=0

to

Note that the integration formula on a discrete time scale is defined by

b
/ fHat=3" ftu().

te(a,b)

It is well known that rd-continuous functions possess antiderivatives. If f is
rd-continuous and F® = f , then

o(t)
| 16188 = Flo) — F O = u) PO = (o)1)

Now, we will give the definition of the generalized exponential functions and
its derivatives. We say that p : T* — R is regressive provided 1+ p(t)p(t) # 0
for all t € T®. We define the set R of all regressive and rd-continuous
functions. We define the set R of all positively regressive elements of R by
Rt ={peR:1+ul)p(t) >0, for all t € T}. The set of all regressive
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functions on a time scale T forms an Abelian group under the addition &
defined by p® q := p+q+ upq. If p € R, then we can define the exponential
function by

¢
ep(t,s) = exp (/ Euir) (p(T))AT) , forteT, secT", (1.1.5)
where &;,(2) is the cylinder transformation, which is defined by

log(l}j»hz)’ h # 0,

gh(’z):{ z, h=0.

If p € R, then ey(t,s) is real-valued and nonzero on T. If p € R, then
ep(t,to) is always positive. Note that if T = R, then

ealt,to) = exp(/ a(s)ds),

to
if T =N, then
t—1
ea(t to) = [T (1 +a(s)),
S=t0
and if T =¢™°, then
t—1
ea(t,to) = II (14 (¢ — 1)sa(s)).
s=to

If p: T" — R is rd-continuous and regressive, then the exponential func-
tion ep(t, o) is for each fixed ¢ty € T* the unique solution of the initial value
problem z2 = p(t)z, z(ty) = 1, for all t € T. We will use the follow-
ing definition to present the properties of the exponential function e,(t, s).
If p, ¢ € R, then we define Op(t) = —p(t)/(1 + p(t)p(t)) and (p & q)(t) =
p(t) + q(t) + p(t)p(t)q(t) for all t € T*. The following properties are proved
in [51).

Theorem 1.1.3 If p,g € R and ty € T, then
o ep(t,t)=1 and eo(t,s)=1;
o ep(a(t),s) = (L+ p()p(t))ep(t, 5);
ot = coplts) = epls.1);

t, .
® th,z; = €paq(t; );

b ep(t> S)eq(t, S) = ep@q(tv S);
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o ifpeRY, then ey(t,to) >0 for allt € T.

o ;' (t:to) = p(t)ep(t,to).
A
1\ = )
¢ (()) GICON
Lemma 1.1.1 For a nonnegative ¢ with —p € R*, we have the inequalities
t t
1- / p(u)Au < e_,(t,s) < exp {/ QD(U)AU} forallt > s.

If ¢ is rd-continuous and nonnegative, then

1+ /tgo(u)Au <ey,(t,s) <exp {/t cp(u)Au} for all t > s.

Remark 1.1.2 If A€ R" and \(r) <0 for all t € [s,t)r, then

0 < ex(t,s) <exp </:)\(r)A7"> < 1.

Theorem 1.1.4 If p € R and a,b,c € T, then

b b
/ p(t)ep(c,o(t))At = —/ (epA(c, DAt = ep(c,a) —ep(c, b).

Theorem 1.1.5 Ifa,b,c € T and f € Crq(T,R), a,b € T such that f(t) >0
for alla <t < b, then

/bf(t)At >0.

Lemma 1.1.2 Let v € C4(T,R) be strictly increasing and T = v(T) be a
time scale. If f € Crq(T,R), then for a,be T,

b v(b) B
[ @ @as= [ e ).
a v(a)

Throughout the book, we will use the following facts:

TA TA
/—Szoo, if0<v<1, and /—5<oo, ifv>1,
s s
to tO
and without loss of generality, we assume that supT = oo, and define the

time scale interval [a,b]t by [a, bl := [a,b] N T. The following results are
adapted from [52].
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Lemma 1.1.3 Let f : R — R be continuously differentiable and suppose
g: T — R s delta differentiable. Then fog: T — R s delta differentiable
and

’

F2g() = [ (9(O)g> (1), for ¢ e t.o(t)]. (1.1.6)

Lemma 1.1.4 Let f : R — R be continuously differentiable and suppose
g: T — R s delta differentiable. Then fog: T — R is delta differentiable
and the formula

(ron>0 ={ / £ (0(0)+ o) )in b0, (1.1.7)
holds.

Lemma 1.1.5 Assume the continuous mapping f : [r,slr = R, r, s € T,
satisfies f(r) <0 < f(s). Then there is a T € [r,s)r with f(7)f(o(7)) <O0.

Lemma 1.1.6 Let the mapping f: T — R, g : T — R be differentiable and
assume that

2] < g2 ().
Then forr, s €T, r <s,
|f(s) = f()] < g(s) — g(r).

Assume g : T — R be differentiable and g™ (t) > 0, then g(t) is nondecreasing.

Definition 1.1.1 We say a function f : T — R is right-increasing (right-
decreasing) at to € T* provided that

(i) if o(to) > to, then f(a(to)) > f(to), (f(o(to)) < f(to)),

)
(i1) if o(to) = to, then there is a neighborhood U of to such that f(t) >
f(to), (f(t) < f(to)), for allt € U, t > 1.

Definition 1.1.2 We say a function f : T — R assumes its local right-
mazimum (local right-minimum) at to € T provided that:

(i) if o(to) > to, then f(o(to)) < f(to), (f(o(t0)) = f(to)),
(ii) if o(to) = to, then there is a mneighborhood U of ty such that
f(t) < f(t()), (f(t) > f(to)), fO’l“ allt € U, t>1g.

Theorem 1.1.6 If f : T — R is A-differentiable at to € TF and f>(ty) > 0,
(f2(to) <0), then f is right-increasing, (right-decreasing), at to.

Theorem 1.1.7 If f : T — R is A-differentiable at ty € TF and if f2(ty) >
0(f2(to) < 0), then f assumes a local right-minimum (local right-mazimum,),
at to.
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Theorem 1.1.8 Suppose f : T — R is A-differentiable at to € T* and
assumes its local right-minimum (local right-mazimum) at ty. Then f(to) >

0(f2(to) < 0).

Theorem 1.1.9 Let f be a continuous function on [a,bly that is
A-differentiable on [a,b) (the differentiability at a is understood as right-
sided), and satisfies f(a) = f(b). Then there exist ¢, T € [a,b)T such that

FA(T) <0< F2(0).

Corollary 1.1.1 Let f be a continuous function on [a,b|lr that is
A-differentiable on [a,b). If f2(t) = 0 for all t € [a,b)r, then f is a con-
stant function on [a,b]T.

Corollary 1.1.2 Let f be a continuous function on [a,b] that is
A-differentiable on [a,b). Then f is increasing, decreasing, nondecreasing,
and mnonincreasing on [a,bly if fA(t) > 0,f2(@) > 0,f2(t) > 0, and
A1) <0 for all t € [a,b)r, respectively.

Theorem 1.1.10 Let f and g be continuous functions on [a,b] that are
A-differentiable on [a,b)r. Suppose g”(t) > 0 for all t € [a,b). Then
there exist ¢, T € [a,b)r such that

f(b) = f(a) _
g(b) —gla) = g2(¢)

<

1.2 Nabla Calculus

The corresponding theory for nabla derivatives was also studied extensively.
The results in this section are adapted from [27].

Let T be a time scale, the backward jump operator p : T — T is defined by
p(t) :=sup{s € T : s < t}. The mapping v : T — R such that v(t) = t—p(t)
is called the backward graininess. The function f : T — R is called nabla
differentiable at ¢ty € T, if there exists an a € R with the following property:
For any € > 0, there exists a neighborhood U of ¢, such that

£ (p(2)) = f(s) — alp(t) = s]| < €lp(t) — s

for all s € U; we write a = fV(t). For T =R, we have fV(t) = f'(t)
and for T = Z, we have the backward difference operator fV(t) = Vf(t) =
£t — ft—1).

A function f : T — R is left-dense continuous or /d-continuous provided it
is continuous at left-dense points in T and its right-sided limits exist (finite)
at right-dense points in T. If T =R, then f is ld-continuous if and only if
f is continuous. If T = Z, then any function is ld-continuous. The following
theorem gives several properties of the nabla derivative.
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Theorem 1.2.1 Assume f : T — R is a function and let t € T . Then we
have the following:

1. If f is nabla differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is left scattered, then f is nabla differen-

tiable at t with
70 = F(p(t)
v(t)

3. If f is left-dense, then f is nabla differentiable at t iff the limit

limg_y; %ﬁc(s) ezrists as a definite number, and in this case

=

4. If f is nabla differentiable at t, then f(p(t))=ft)—v(t)fV (t).

Theorem 1.2.2 Assume f, g : T — R are nabla differentiable at t € T.
Then:

(i) The product fg : T — R is nabla differentiable at t, and we get the
product rule

(Fo)Y () = f¥(t)g(t) + f2(t)g" (t) = F(£)g™ () + f¥ ()g"(t).

(13) If g(t)g”(t) # 0, then f/g is nabla differentiable at t, and we get the
quotient rule

N0 - F0e7 )
<g) O=""0w®

A function F': T — R is called a nabla antiderivative of f : T — R pro-
vided FV(t) = f(t) holds for all t € T. We then define the nabla integral of

[ by )
/ f(s)Vs=F(t) — f(a), for all teT.

If f and fV are continuous, then

(/atf(t,s)vs)v — F(p(t), 1) + /at (¢, 5)Vs.

One can easily see that every ld-continuous function has a nabla antideriva-
tive. As in the case of the delta derivative we see that if f : T — R is
ld-continuous and t € T, then
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Theorem 1.2.3 If a,b,c € T and o, € R, and f,g : T—R are
ld-continuous, then

L[] laf(t) + Bg)] At = a [ f(O)VE+B [, g(t)

2. [P F(6)VE=— [T F()VE

3. [CrVE= [P F@)VE+ [ (VL

4. < [y 111V,

5. [ F0)gY (V= FOgt)]l — [7 ¥ (g (t)Vt,
6. [ 1P(0)g¥ &)Vt = FH)g@®, — [ fv(t)g(t)Vt

The relations between delta and nabla derivatives can be summarized as
follows. Assume that f : T — R is delta differentiable on T*. Then f is nabla
differentiable at t and

FY() = 2 (p(t)),

for t € T* such that o(p(t)) = t. If, in addition, f2 is continuous on TF,
then f is nabla differentiable at ¢ and fV(t) = f®(p(t)) holds for any t €
Ty. Assume that f : T — R is nabla differentiable on Ty. Then f is delta
differentiable at ¢ and

F2) = 1Y (1),

for t € Ty such that p(c(t)) = t. If, in addition, fV is continuous on T,
then f is delta differentiable at ¢ and f2(t) = fV(o(t)) holds for any ¢ € T*.

We now give the definition of the generalized nabla exponential function.
Assume that p: T — R is ld-continuous and 1 — p(¢)v(¢) # 0 for t € Tj,. We
define the set R, of all regressive and [d-continuous functions. We define
the set R} of all positively regressive elements of R, by R} = {p € R :
1—v(t)p(t) > 0, for all t € T}. The set of all v-regressive functions on
a time scale T forms an Abelian group under the addition @ defined by
p @, q:=p+ q—vpq. The explicit nabla exponential function is given by

¢
ép(t,s) =exp </ fU(T)(p(T))VT> , for teT, seTF, (1.2.1)
where &, (z) is the cylinder transformation, which is defined by

_ _log(l—hz) h;éO
= h ’ ’
a1 ; h0,

For t € T, s € Ty, the exponential function é,(¢,s) is the solution of the
initial value problem

zV(t) = p(t)z(t), te Ty with z(s) =1.

The following theorem gives the properties of the exponential function é,(, s).
The theorem is adapted from Bohner and Peterson [52].
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Theorem 1.2.4 Ifp,q € R, and ty € T, then
o ép(t,t) =1, and &l(t,s)=1;

o &(p(t),s) = (1= w(t)p(t)ép(t; s);

1

¢ ép(t,s) = éevp(t75);

& (t,s 5
hd % eP@llq(tas);

o ¢y(t,5)eq(t,s) = épaug(t, s);

o if 1 —p(t)v(t) #0, then é,(t,to) >0 for allt € T.

(
) =p(t)éy(t, to).
\Y4
_1 _ __p®
* (ép<~,s>) = TG

1.3 Diamond-a Calculus

o &Y (t,to

Now we introduce the diamond-a dynamic derivative and diamond-a dyn-
amic integration. The comprehensive development of the calculus of the
diamond-a derivative and diamond-« integration is given in [140]. Let T be
a time scale and f(t) be differentiable on T in the A and V sense. For t € T,
we define the diamond-a derivative f«(t) by

POt = afA )+ (1 -a)fY(1), 0<a<l.

Thus f is diamond-« differentiable if and only if f is A and V differentiable.
The diamond-a derivative reduces to the standard A-derivative for a = 1,
or the standard V derivative for a = 0. It represents a weighted dynamic
derivative for a € (0,1).

Theorem 1.3.1 Let f, g : T — R be diamond-a differentiable at t € T.
Then

(6). f+g:T — R is diamond-a differentiable at t € T, with
(f +9)%(t) = fO () + g% (t).
(i7). f.g: T — R is diamond-o differentiable at t € T, with
(£.9)% () = fO=(£)g(t) + af7 (£)g™ () + (1 — @) f*(t)g" (¢)-

(791). For g(t)g°(t)g”(t) # 0, f/g : T = R is diamond-a differentiable at
teT, with
f _ [P D97 )9 () — af 7 (D)g" (g™ (1) — (1 — o) f*(£)g" (1)g" (1)

J\0a
(P (09 (9@
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Theorem 1.3.2 Let f, g : T — R be diamond-a differentiable at t € T.
Then the following hold:

(i) ())°2(t) = af22(1) + (1 — ) fV2(1),
(i7). (f)%=V(t) = af2V () + (1 - a) YV (1),
(idi). ([)20(t) = af22 () + (1= a) fAV (1) # (/)02 (1),
(). (VO (1) = af VA () + (1= a)fYV (1) # (/)Y (1),
(0). (£)0=%=(t) = 2 FA2(t) + a(l — )[fAV (1) + FY2(1)]

H(1 = a)? fYV(t) # a?FA2 () + (1 — ) fYV (1),

Theorem 1.3.3 (Mean Value Theorem). Suppose that f is a continuous
function on [a,blr and has a diamond-« derivative at each point of [a,b)T.
Then there exist points m, . such that

o2 ()b = a) < £(b) = f(a) < £ (n)(b - a).
When f(a) = f(b), then we have that
Fou(n) <0< fO (),

Corollary 1.3.1 Let f be a continuous function on [a,blr and has a
diamond-o derivative at each point of [a,b)y. Then [ is increasing if
fO(t) > 0, decreasing if fO«(t) < 0, nonincreasing if fO=(t) < 0 and non-
decreasing fO=(t) > 0 on [a, b]r.

Theorem 1.3.4 Let a, t € T, and h : T—R. Then, the
diamond-a integral from a to t of h is defined by

t t ¢
/ h(s)Oas = a/ h(s)As+ (1 — a)/ h(s)Vs, 0 <a <1,
provided that there exists delta and nabla integrals of h on T.

In general, we do not have

</at h(s)%s) : = h(t), for t € T.

Example 1.3.1 ([31]) Let T =0,1,2, a =0 and h(t) =t for t € T. This

gives us that
t o
(/ h(s)()as>

so that the equality above holds only when $q = A or $, = V.

=1+42a(1 - a),

t=1
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Theorem 1.3.5 Let a,b,c € T, a,8 € R, and f and g be continuous
functions on [a,b] UT. Then the following properties hold:

(). [P laf(t) + Bg(t)] Oat =  [* F()0ut + B [ g(t)0at,
@), 7 FH)Oat = — [ F(E)Out,

3)- [ F(B)0at = [} F(B)0at + [} F(B)0at.
Example 1.3.2 If we let T =R, then we obtain

b b
/ J(t)0at :/ f(t)dt, wherea, beR,

and if we let T =7, and m < n, then we obtain

/" F()0at = z_: [af(i)+ (1 —a)f(i+1)], form, neNy. (1.3.1)

i=m

Example 1.3.3 If we let T = ¢~, for ¢ > 1 and m < n, then we obtain

n—1

[ 1000t == X ¢ [af@)+1-) 1] form, ne N, (132)

and if we let T = {t; : i € No} such that t; < t;11 and m < n, then we obtain
the general case (which includes (1.3.1) and (1.3.2))

/t " ()0at = i(tiﬂ = ti) [eef (ti) + (1 = @) f(tis1)], form, n € No, (1.3.3)
Remark 1.3.1 Note that if f(t) > 0 for allt € [a,b]r, then f: cf(t)Oat > 0.
If f(t) > g(t) for all t € [a,b]r, then [*f(t)0ut > [Xg(t)0at > 0, and
f(&) =0 if and only if f; f()0at =0.

Corollary 1.3.2 Lett € TY and f: T — R. Then

o(t)
/t £(5)0as = p(B)[af () + (1 — )£ (1)),

and

p(t)
/t £(5)0as = v(B)af?(t) + (1 — a) f(1)].

Recall a function p : T — R is called regressive provided
1+ p(t)p(t) # 0 for all t € T*. Note R denotes the set of all regressive
and rd-continuous functions on T. Similarly, a function ¢ : T — R is called
v-regressive provided 1 — v(t)q(t) # 0 for all ¢ € T;. Note R, denotes the



1.4. TAYLOR MONOMIALS AND SERIES 15

set of all v-regressive and ld-continuous functions on T. We consider two
functions: E, , and e, o where p € RNR, and o € [0,1]. Forp e RNR,
and o € [0,1], we define

Ep’a(.,t()) = aep(.7t0) + (1 — O[)ép(.,t()); for t € T,

where e,(.,tp) and &,(.,to) are the delta and nabla exponential functions
defined as in (1.1.5) and (1.2.1), respectively.

Example 1.3.4 ([31]) Consider the time scale T=7Z and the constant
function p(t) = 1/2. Take to = 0. Then, e,(t,0) = (3/2)" is the solu-
tion of the initial value problem y™(t) = (1/2)y(t), y(to) = 1. Moreover
ép(t,0) = 2! is the unique solution of y¥ (t) = (1/2)y(t), y(to) = 1. Now
E,o(t:0) =a(3/2)! 4+ (1 — a)(2)!, fort € Z.

Remark 1.3.2 Combined-exponentials cannot be really called an exponen-
tial function. Indeed, they seem to fail the most important property of an
exponential function, i.e., they are not a solution of an appropriate initial
value problem.

Next we give a direct formulas for the {.-derivative of exponential
functions e,(.,%o) and é,(., o).

Theorem 1.3.6 Let T be a reqular time scale. Assume that t, to € T and
pERNR,. Then

(1—a)p°(t)

eV (t,to) = [ap(t) i v(t)pr(t)

:| ep(t7t0)v
(1 —a)p?(t)
L+ u(t)pe (1)
where e, (., to) s a solution of the initial value problem y%=(t) = q(t)y(t),

y(to) = 1, where q(t) = ap(t) + %'

&0 (t,to) = {ap(t) + ] & (5 to),

1.4 Taylor Monomials and Series

Here we define Taylor monomials and Taylor expansions of functions corre-
sponding to delta and nabla derivatives. To define these functions, we need
some basic definitions about calculus of functions of two variables on time
scales. Let Ty and Ty be two time scales with at least two points and con-
sider the time scale intervals €y = [tg,00) N Ty and Q3 = [sg,00) N Ty for
to € Ty and sg € Ty. Let 01, p;, A1 and o2, py, Ay denote the forward jump
operators, backward jump operators, and the delta differentiation operator,
respectively, on T; and To. We say that a real valued function f on Ty x Ts
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at (t,s) € Q= Q; x Qy has a A; partial derivative f21(t,s) with respect to
t if for each € > 0 there exists a neighborhood U, of ¢ such that

|[f(1(t), 8)=F (0, 8)= 2 (¢, 5)[o1(t)=n]| < elo(t)—nl, for all 1 € U,.

In this case, we say f2!(t,s) is the (partial delta) derivative of f(t,s) at t.
We say that a real valued function f on Ty x Ts at (¢,s) € 21 x Q2 has a Ay
partial derivative f22(t,s) with respect to s if for each € > 0 there exists a
neighborhood U, of s such that

[f(t.02(8) = f (£, €)= 22 (2, 5)[o2(t) ~€]| < elo(t)—¢], for all € € Us.

In this case, we say f22(t,s) is the (partial delta) derivative of f(t,s) at s.
The function f is called rd-continuous in t if for every ay € Ty the function
f(t,a2) is rd-continuous on T;. The function f is called rd-continuous in s
if for every ay € Ty the function f(«q,s) is rd-continuous on Ts.

Theorem 1.4.1 Let tg € T" and assume k : T x T — R is continuous at
(t,t), where t € T" with t > tg. Also assume that k(t,-) is rd-continuous on
[to, o (t)]. Suppose for each € > 0 there exists a neighborhood of t, independent
U of T € [to,o(t)], such that

|k(o(t), 7)—k(s, T)—k>(t,7)(0(t)—s)| < e|o(t) — s|, for all s €U,

where k® denotes the derivative of k with respect to the first variable. Then

o(t) = / k(L 7)AT,  implies g™ () = / A (1) AT + k(o (1), 1),

t() tO

The Taylor monomials Ay : Tx T — R, k € Ny = NU {0}, are defined
recursively as follows. The function hg is defined by

ho(t,s) =1, forall s,t €T,

and given hy for k € Ny, the function hi is defined by
t
hi+1(t,s) = / hi(1,8)AT, forall s, t € T.

If we let h2(t,s) denote for each fixed s € T, the derivative of h(t,s) with
respect to t, then

hd(t,s) = hp_1(t,s), k€N, teT,
for each fixed s € T. The above definition obviously implies

hi(t,s) =t —s, forall s, t€T.
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In the following, we give some formulas of hy(t,s) as determined in [51].
In the case when T = R, then

t_ )k
hi(t,s) = %, for all 5,2 € R. (1.4.1)
In the case when T = N, we see that
_ gk
hi(n,s) := %, k=0,1,2,..., t>s, (1.4.2)

where t(*) = t(t —1)--- (t — k+1) is the so-called falling function (see [100]).
When T={t: ¢t =q¢", n € N, ¢ > 1}, we have that

k—1 t _ qms

hi(t,s) = 1] — , forall s,z €T. (1.4.3)
m=0 j
q
3=0
If T =hN, h > 0, we see that
k—1
[T —ih—s)
hi(t, s) = :OT for all s,t € T, t > s. (1.4.4)
In general for ¢t > s, we have that hg(t,s) > 0, and
{— 5)F
hi(t,s) < %, for all t > s, k € Np.

We also consider the Taylor monomials g : T x T — R, k € Ny = NU {0},
which are defined recursively. The function gq is defined by

go(t,s) =1, for all s,¢ €T,

and given gy for k € Ny, the function gy is defined by

¢
gr+1(t,s) = / gk (o(7),8)AT, for all s,t € T.

If we let g2 (t,s) denote for each fixed s € T, the derivative of g(¢,s) with
respect to t, then

gkA(t, s) =gx—1(c(t),s), keN, teT,
for each fixed s € T. One can see that
hi(t,s) = (—1)kgk(s,t).

We denote by Cis)('ﬂ‘ the space of all functions f € C,q(T) such that 2 €
Crq(T) for ¢ = 0,1,2,...,n for n € N. For the function f : T — R, we
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consider the second derivative f22 provided f2 is delta differentiable on T
with derivative f22 = (f2)2. Similarly, we define the nth order derivative
A = (fA»-1)A. Now, we give the definition of generalized polynomials as
follows:

1 n=20

ha(t,s) = /t b (e AE meN (1.4.5)

and
1, n=20

Gnlhs) = [ onstot@r986 nen

for all s,t € T.

Property. Using induction it is easy to see that h, (¢, s) > 0 holds for all
ne€Nand s, t €T with ¢t > s and (—1)"h,(t,s) > 0 holds for all n € N and
s, t € T with ¢t < s. Moreover, h,(t, s) is increasing with respect to its first
component for all t > s. m

Recall the following result (see [52]).

Lemma 1.4.1 For n € N and t € T, we have g,(t,s) = 0 for all
s € [pn_l(t)vt]T'

Lemma 1.4.2 Forn € N, t € T and s € T*", we have hy,(t,s) = (=1)"
gn(s,t).

From Lemmas 1.4.1 and 1.4.3 we have the following result.

Lemma 1.4.3 Forn € N and t € T, we have hy(t,s) = 0 for all s € [p"~!
(t), t]r.

Theorem 1.4.2 Let n € N and f € C(T,R) be an n times differentiable
function. For s € ']I""nfl, we have

n—1

) " L(t)
F&) =" hyt,s) % (s) + / ' ha—1(t, 0 () f2" ()AL, for allt € T.

=0
Theorem 1.4.3 Assume that f € CT(Z)(T) and s € T. Then

f(t) =nf FA*(9)hi(t, ) + / hn_1(t, (0 (7)) fA (T)AT. (1.4.6)

k=0

As a special case if m < n, then

P =" P69 + [ Bt (o)A (a
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Now, we define the Taylor expansions of the functions corresponding to
the nabla derivative. The generalized polynomial that will be used in des-
cribing these expansions are iy : Tx T — R, k € Ny = NU {0}, which are
defined recursively as follows. The function kg is defined by

ﬁo(t,s) =1, foralls, teT,

and given iLk for k € Ny, the function fzkH is defined by
~ t ~
hit1(t,s) = / hi(r,s)Vr, foralls, teT. (1.4.7)

Note that the functions hy are all well defined. If we let h2 (¢, s) denote for
each fixed s € T, the derivative of h(t, s) with respect to ¢, then

hi(t,s) = hp_1(t,s), keN, teTy,

for each fixed s € T. The above definition obviously implies

hi(t,s) =t—s, foralls, teT.

Finding the hy for k > 1 is not an easy task in general. However for a
particular given time scale it might be easy to find these functions. We will
consider some examples first before we present Taylor’s formula in general.
In the case when T = R, then p(t) =t and

. gAY
hi(t,s) = %, for all s, t € R. (1.4.8)

In the case when T = N, we see that p(t) =t — 1, v(t) = 1, yV(t) = V(t) =
y(t) —y(t — 1), and

. —5)®)
hi(t,s) := %

where t(F) = t(t —1)--- (t — k4 1) is the so-called falling function (see [100]).
Noting that Vt®) = k t*~1) we see that

t _ (k) t _ o\(k) _ o\ (k+1)
7 o— (T S)( J— (T S) — (T S)
hk+1(t, S) = /S' 7]§' V1 = T:Es+1 il = (k 1)| s (1410)

L k=0,1,2,..., t>s, (1.4.9)

for k=0,1,2,..., t>s. In the case when T={t:t =¢", n € N, ¢ > 1},
we have p(t) =t/q, v(t) = (¢ — 1)t/q, and

. k=1 gmt — 5
hu(t,s) = ] 2

m=0
J

, forall s,t € T. (1.4.11)

m .
q]
=0
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In general for ¢ > s, we have that fzk(t, s) >0, and

iLk(t,S) < (t ;!s)k’

We may also relate the functions ﬁk, go for the nabla derivative to the func-
tions hr and g in the delta derivative.

for all t > s, k € Np.

Definition 1.4.1 Fort, s define the functions
ho(t,s) = go(t, s) = ho(t,s) = Golt,s) = 1,

and given hy, gn, hy and Ggn for n € Ny,

hnt1(t,s) = /hn(T,s)AT, gn_H(t,s):/ gn(o(7), 8)AT,

t t
hsa(ts) = / (7, $)V7, Gt = / onlp(r), )V,

we have that

hi = gn(t,8) = (=1)"hn(s,) = (=1)"gn(s,1).

We denote by C’l(; )(T) the space of all functions f € Cjq(T) such that
Vi € Cu(T) for i = 0,1,2,...,n for n € N. For the function f : T — R,

we consider the second derivative ¥V provided fV is nabla differentiable on
T with derivative fV? = (fV)V. Similarly, we define the nth order nabla
derivative f¥V" = (fV" ")V.

Theorem 1.4.4 Let n € N. Suppose that the function f is such that fvn+1

s ld-continuous on T, n+1. Let s € Tun, t € T, and define

t
ho(t,s) =1, hypi1(t,s) = / hi(T,8)VT, forall s, t € T and k € No.
Then, we have
LI k t, n41
£ =Y hult:) 7 () + [ altp€) 7 7
k=0 s

We end this section with the time scale version of L’Hopital’s rule. We
present the rule for delta and nabla derivatives.

Theorem 1.4.5 Assume that f and g are A-differentiable on T and let
to € TU{oo}. If tg € T, assume that ty is right-dense. Furthermore, assume
that lim, _,, - ft) = lim, - g(t) = 0, and suppose that there exists € > 0 with

g(t)g®(t) >0 forallt € Lo(tg) ={t€T:0<ty—t <e}. Then
2 f@®) f@)

o o . . f2()
lim inf <lim inf —= <lim sup —= < lim sup .
t—ty gA(t) t—ty g(t) t—ty g(t) t—ty gA(t)
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Theorem 1.4.6 Assume that f and g are V-differentiable on T and let
to € TU{—o0}. Ifty € T, assume that ty is right-dense. Furthermore,
assume that limlHtar f@t) = limtﬁtsr g(t) = 0, and suppose that there exists

e >0 with g(t)gV(t) >0 for allt € R.(ty) ={t € T:0<t—tg<e}. Then
Y f(t) f(t) Y (@)

lim inf <lim inf —= <lim sup —= < lim sup .
-ty 9 (t) -ty 9(t) tty g(t) toty 9 (t)




Chapter 2

Basic Inequalities

In so far as the theorems of mathematics relate to reality, they are not
certain, and in so far as they are certain they do not relate to reality.
Every thing should be made as simple as possible but not simpler.
Albert Einstein (1879-1955).

This chapter deals with the basic inequalities used in the rest of the
book. The chapter is divided into seven sections and is organized as follows.
In Sect. 2.1 we consider Young type inequalities which will be used in the proof
of the Holder and Minkowski inequalities. Section 2.2 discusses Jensen’s ine-
quality on time scales and Sect.2.3 considers Holder type inequalities. In
Sect. 2.4 we consider the Minkowski inequality and Sect.2.5 is devoted to
Steffensen type inequalities on time scales. Section 2.6 considers Hermite—
Hadamard type inequalities and finally Sect.2.7 discusses Cebysev type in-
equalities on time scales.

2.1 Young Inequalities

In 1912, Young [157] presented the following highly intuitive integral
inequality

a b
1
abg/o f(t)dt+/0 (F~1)(s)ds, (2.1.1)

for any real-valued continuous function f : [0, 00) — [0, co0) satisfying f(0) = 0
with f strictly increasing on [0,00) and a, b € [0,00). The equality holds if

(© Springer International Publishing Switzerland 2014 23
R. Agarwal et al., Dynamic Inequalities On Time Scales,
DOI 10.1007/978-3-319-11002-8_2
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and only if b = f(a). A useful consequence of this inequality, by taking
ft)=trtand ¢ = ﬁ, is the classical Young inequality
aP b 1

abgi—i_i) -+
p

1
ot =l (2.1.2)
)

Hardy, Littlewood, and Pdélya included (2.1.1) in their classical book [72].
The purpose of this section is to establish this inequality and its extensions
on time scales. These will be used in the next sections to prove Holder
and Minkowski inequalities on time scales. The results are adapted from
[25, 29, 151].

Theorem 2.1.1 Let g € Cpq([0, |1, R) be a strictly increasing function with
c>0. If g(0) =0, a €0, dJr and b € [0, g(c)ly(m), then

a b
ab < /0 o (2)Az + /O (67)" () Ay,

Proof. Since g~1(z) is strictly increasing and o(s) > s, we see that

b b b
/O(gfl)”(x)sz/O (gfl)(o(x))sz/o (g7 (x))Ax. (2.1.3)

Letting v(z) = g(x) and f(z) = « in Lemma 1.1.2, we see that
97 (b) A 9(g™" (b)) ) b
/ 9~ (x)zAz = / 9 WAy = / 9 (y)Ay. (2.1.4)
0 9(0) 0

Integration by parts yields

g7 (b) s g~ (b)
/ PA@edr = g @ - / ¢ () Az
0 0

. g (b)
— by l(h) - / ¢ () Az
0

Thus, (2.1.3) and (2.1.4) imply that
0

a b
/O o (@)Az + / (67)7 () Dy = by~ (b) + / @Az (215)

()

Case (a). a > g 1(b).
It follows from the strictly increasing property of g that

\%

/: S @)Ar > / ol OS> [ gl )

~1(b) “1(b) g-1(b)
= bla—g '(b)) =ab—bg ' (b).
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This and (2.1.5) imply
a b
/ ¢ (@)D + / (671)7 (y)Ay > ab.
0 0

Case (b). a < g~ 1(b).
Let h = g~!. Then a < h(b). Applying case (a) yields

a

we< [ (@A + / Y )y = / (o) @an | orma

Combining Case (a) and Case (b), we get the desired inequality. The proof
is complete. m

As an application of Theorem 2.1.1 by taking g(z) = 2P~! on [0, co)r and
g Hy) = y97 1 on [0,00)T, we get the following result.

Corollary 2.1.1 Letp > 1 and ¢ > 1 with 1/p+1/qg=1. Ifa > 0 and
b >0, then

a b
ab < / (o(2))P~ A + / (o)) Ay,

Example 2.1.1 Let T=R, then Corollary 2.1.1 says, note that in
R o(x) = z, that
P be 1 1
<+, 4=, (2.1.6)
p q p q
which is the classical Young inequality.

Example 2.1.2 Let T =7 and g(t) = t, then Theorem 2.1.1 says that

a b—1
1 1
ab< S (t+1) +Z% y+1) = 5ala+1) + 5b(b+1). (2.1.7)
Y

|
—

ﬁ
i
<

Theorem 2.1.2 Let T be any time scale (unbounded above) with 0 € T.
Further suppose that f : [0,00)r — R is a real-valued function satisfying

(1). f(0) =0;
(2). f is continuous on [0,00)T, right-dense continuous at 0;

(3). f is strictly increasing on [0,00)r such that T = f(T) is also a time
scale.

Then for any a € [0,00)1 and b € [0, oo)~, we have

/Oaf(t)At+/O“f(t)Vt+/O X Ay+/ Y y)Vy > 2ab, (2.1.8)

with equality if and only if b = f(a).
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Proof. From the continuity assumption (2), we see that f is both delta
and nabla integrable. For simplicity, define

F(a,b) :_/Oaf(t)At+/0af(t)Vt+/obf Ay+/ £ (y)Vy — 2ab.

Then it is enough to prove that F'(a,b) > 0.
(I). We will first show that

F(a,b) > F(a, f(a)), a€[0,00)r and b€ [0,00)%,

with equality if and only if b = f(a). For any such a and b, we have
b b

Flah) = Flo.f@) = [ (70 —day+ /f T avy

f(a) f(a)
- / la— F () Ay + / la— f ()] Vy.
b b

There are two cases to consider. The first case is b > f(a). Here, whenever
y € [/(a). bl we have f71(b) > = (y) > f~*(f(a))=a. Consequently,

f(a) f(a)
Fl(a,b) - F(a, f(a)) = / la— F(y)]Ay + / la— f(4)]Vy > 0.

Since f~!(y) —a is continuous and strictly increasing for y € [f(a), blz, equal-
ity will hold if and only if b = f(a). The second case is b < f(a). Here
Y

whenever y € [f(a),b] N f(T), we have f~1(b) < f~(y) < f~1(f(a) =
Consequently,

f(a) f(a)
F(a,b) - Fla, f(a) = / la— f (y)] Ay + / la— f W)Vy > 0.

Since a — f~Y(y) is continuous and strictly decreasing for
y € [b, f(a)ls, equality will hold if and only if b = f(a).
(II). We will next show that F'(a, f(a)) = 0.
Now, for brevity, we put d(a) = F(a, f(a)), that is

a a f(a) f(a)
= -t -t —2af(a).
- /O F()ALT /O F()VEr /0 I W) Ayt /0 7 () Vy—2af (a)

First, assume a is right scattered point. Then

07(a) = 6(a) = [o(a) —alf(a) +[o(a) —alf7(a)
+Hf7 (@) = F)lf 7 (f(a) + [£7(a) = f(@)lf71(£7(a))
—2[o(a)f?(a) - af(a)]
= [o(a) = d][f (@) + [ (@)] + [f7(a) = f(a)][o(a) + a]
—2[o(a)f7(a) — af(a)] =
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Therefore if a is right-scattered point, then 6°(a) = 0. Next, assume a
is a right-dense point. Let {an}nen C [a,00)r be a decreasing sequence
converging to a. Then

—d(a)

- / £t At+/ ft Vt+/ an)fl(y)AyﬂL/ff(an)fl(y)Vy

(a)
—2an f(an) +2af(a
flan)

-/ "0 - Fa)at / "0 - TV /f L W sy

f(an)
+ ~Hy) — a|Vy.
/f ., T —avy

Since the functions f and f~! are strictly increasing, we get that

an) =50 > [ 1@ = Sanait [ @) = fan]v
flan) flan)
“1f(a)) — alA “1(f(a)) — alV
*/M (@) }“/f@ (@) - a] Wy
= an - a)[f(a) — Flan)).
Similarly,
5(an) — 8(a) < / " Flan) — Flan) At + / " Flan) — Flan)VE
(an) flan)
+ /f o, ) sy /f L @) vy
= an —a)[f(an) — f(a)].
Therefore
0 = Jim 2f(a,) - f@)] < im 0=

< lim 2[f(an) ~ f(@)] = 0.
It follows that 6°(a) exists, and 6°(a) = 0 for right-dense a as well. As
5(0) = 0, by a uniqueness theorem for initial value problems, we have that
d(a) =0 for all a € [0,00). This implies that F'(a,b) > F(a, f(a)) = 0, with
equality if and only if b = f(a). The proof is complete. m

As an application of Theorem 2.1.2 when f(t) = tP~! and f~!(y) = y91,
we have the following result.



28 CHAPTER 2. BASIC INEQUALITIES

Corollary 2.1.2 Let T be any time scale (unbounded above) with 0 € T. Let
p,q > 1 be real numbers with 1/p+ 1/q = 1. Then for any a € [0,00)r and
b € [0,00)p« where T* = {tP~1 : t € T}, we have

a a b b
/ t”_lAt—i-/ tp‘1Vt+/ yq_lAy—i—/ Yy 1Vy > 2ab,
0 0 0 0

with equality if and only if b = aP~ L.

Example 2.1.3 If T =R, we see that o(t) = t and then Theorem 2.1.2
yields the classical Young inequality (2.1.1).

Example 2.1.4 If T = Z, we see that o(t) =t + 1 and then Theorem 2.1.2
yields Young’s discrete inequality

a b—1

200 <> [fO)+fE+D]I+ D p@2f My + 1],

y€(0,0)Nf(Z)
since here f~1(a(y)) = o(f1(y)) = f~1(y) + 1.

Theorem 2.1.3 Let T be any time scale (unbounded above) with 0 € T.
Further suppose that f : [0,00)r — R is a real-valued function satisfying:

(1). f(0) =0;

(2). f is continuous on [0,00)T, right-dense continuous at 0;

|
—

~
I
o

(3). f is strictly increasing on [0,00)r such that T = f(T) is also a time
scale.

Then for any a € [0,00)r and b € [0,00)5, we have
b

/Oa [f(t) + f7()] At —l—/o [f_l(y) + f_l(a(y))] Ay > 2ab, (2.1.9)

with equality if and only if b = f(a).

Proof. For a continuous function g and a € [0, 00)t, define the function

Gla) = / "t / "V - / "lgt) + g7 ()] A,
Then G(0) =0, and

G*(a) = g(a) + ¢%(a) — [9(a) + g% (a)] = 0.

Therefore G = 0, and Theorem 2.1.3 follows from Theorem 2.1.2. The proof
is complete. m

Next we establish Young integral inequalities with upper and lower bounds
for the remainder.
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Theorem 2.1.4 Let T be any time scale (unbounded above) with oy € T and
sup T = oco. Further suppose that f : [a,00)T = R is a real-valued function
satisfying

(i) fla1) = By;
(#4). f is continuous on [a1,00)r, Tight-dense continuous at aq;

(ii). f is strictly increasing on oy, 00)r such that T = f(T) is also a time
scale.

Then for any a € [o1,00)r and b € [B1,00)5, we have

a b
< [ foaet vy, (2.1.10)

with equality if and only if b € {fP(a), f(a)} for fired a or with equality if
and only if a € {f=*(b), a(f~1(b))} for fized b. The inequality (2.1.10) is
reversed if f is strictly decreasing.

Proof. By the continuity assumption (ii), we see that the function f is
delta integrable and the function f~! is nabla integrable. For simplicity, we
define

1

a b
F(a,b) = / fAt+ [ Y y)Vy+ a1 By — ab. (2.1.11)
o By
To prove (2.1.10), we need to show that F'(a,b) > 0.
(I). We will first show that
F(a,b) > F(a, f(a)), for a € [a1,00)T and b € [3;,00)5,
with equality if and only if b € {f?(a), f(a)}. For any such a and b, we have

b ~

Fl(a,b) - Fla, f(a)) = /f @ vy (2.1.12)

Clearly if b = f(a), then the integral equals to zero and if b=f*(a), then

f(a) 5
F(a, f(a) - Fla, f(a) = /fp()[a—f‘l(y)Wy

[f(a) = f(a)lla — f = (f(a))] = 0.

Otherwise, since f~!(y) is continuous and strictly increasing for y € '1~I‘, the
integrals in (2.1.12) are strictly positive for b < f?(a) and b > f(a).

(IT). We will next show that F(a, f(a)) = F(a, f*(a)) = 0.
Now, for brevity, we put ¢(a) = F(a, f(a)), that is

a f(a) 5
o(a) = / AL+ / £ () ¥y — af(a) + by,

1 1
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First, assume that a is right scattered point. Then

7 (a) — o(a)
o(a) f7(a) 5
_ (AL + / F W)Yy - 0(0)f° (@) + af (@)
o f(a)
lo(a) — alf (@) + 17 (@) — F@)f (7 (@) — o(a) £ (a) + af(a)
= 0.

Therefore if a is right-scattered point, then p”(a) = 0. Next, assume a
is a right-dense point. Let {an}nen C [a,00)T be a decreasing sequence
converging to a. Then

plan) — ¢(a)

an f(an) -

- / F(H)AL + / S W)y — anflan) + af(a)
a f(a)

(an — ) )a) + [F(@) — flan)la — anf(an) + af(a)

(an —a)[f(a) — flan)],

since the functions f and f~! are strictly increasing. Similarly,

plan) = ¢(a) < (an — a)[f(an) — f(a)].

Therefore

0= lim [f(a,) — f(a)] < lim M < lim [f(an) — f(a)] = 0.

n—oo n—00 (an —a n—oo

It follows that ©?(a) exists, and ¢®(a) = 0 for right-dense a as well. In
other words, in either case ¢ (a) = 0 for a € [a1,00)r. As ¢(a;) = 0, by
a uniqueness theorem for initial value problems, we have that ¢(a) = 0 for
all a € [ay,00)r. As F(a, f(a)) = F(a, fP(a)) = 0, we have that F(a,b) >
F(a, f(a)) = 0, with equality if and only if b = f(a) or b = f*(a). The case
with a € {f~1(b),a(f~1(b))} for fixed b is similar and thus omitted. If f is
strictly decreasing, it is straightforward to see that the inequality (2.1.10) is
reversed. The proof is complete. m

Now to establish upper bounds for Young’s integral inequality we need
the following result.

Lemma 2.1.1 Let f satisfy the hypotheses of Theorem 2.1.4, and let F(a, b)
be given as in (2.1.11). Then for any a, « € T and b, € T, we have

F(a,b) + F(a, B) > —(a — a) (8 — b), (2.1.13)

with equality if and only if a € {f~1(b),a(f~1(b))} and B € {f*(a), f(a)}.
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Proof. Fix a € T and b € T. By Young’s integral inequality (2.1.10), we
see that

a B
| rwats [Ty 2 0 (2.1.14)

and

« B B
/ f)At + Y y)Vy + a1, > ab, (2.1.15)
aq 51

with equality if and only if 8 € {f*(a), f(a)} and « € {f~1(b), a(f~1(b))},
respectively. By rearranging it follows that

/f At—|—/f y)Vy + a1, — ab

+/ f0at+ [ )Tyt arh - ab
B1

a B 5
/ N A

o b
+[swate [ 1wy as - - a8
a1 B1
> af+ab—ab—af =—(a—a)(f—0).
Note that equality holds here if and only if it holds in (2.1.14) and (2.1.15),

and this happens if and only if 3 € {f*(a), f(a)} and « € {f~1(b),a(f~1(b))}.
The proof is complete. =

Theorem 2.1.5 Let T be any time scale and f : (a1, azlr — [By, Byl7 be

a continuous strictly increasing function such that T = f(T) is also a time
scale. Then for every a, A € [aq, aslt and b, B € [31, B5]7, we have

(f71(B) = A)(f*(A) - B)ab

IN

/f At+/f y)Vy —ab+ AB
~1(p) — (a) — b), (2.1.16)

with equality if and only if B € {fP(A),f(A)} and b € {fr(a),
f(a)}. The inequalities are reversed if f is strictly decreasing.

IN

Proof. Considering F as in (2.1.11) and (2.1.13) with o = f~1(b) and
B = f(a), we have the equality

F(a,b)+ F(f7(b), f*(a)) = =(f 7' (b) — a)(f*(a) — b).
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As 71 € Ja,ag)r and fP € [B1, 8], via Young’s inequality
(2.1.10), we see that F(f~1(b), f*(a)) > 0. Consequently, we have that

0< Fa,b) < =(f7(b) = a)(f"(a) = b), (2.1.17)

and inequality holds if and only if b € {f”(a), f(a)}. Thus for any A €
[a1, o] and B € [31, B]5, we have from (2.1.17) that

0<—(fY(B)—A)(f*(A) — B) — F(A,B), (2.1.18)

with equality if and only if B € {f?(A4), f(A)}. Combining (2.1.17) and
(2.1.18), we get

0 < F(a,0) = (f71(B) = A)(f*(A) - B) - F(A, B)
< —(f7H0) = a)(f7(a) = b) = (fTH(B) = A)(f*(A) - B) - F(A, B),

which can be rewritten to obtain (2.1.16). If f strictly decreasing the proof
is similar and omitted. The proof is complete. m

In the following, we establish a theorem which can be considered as a
modification of Theorem 2.1.5 above. This theorem allows us to get a Young
type integral inequality without having to find f—!.

Theorem 2.1.6 Let the hypotheses of Theorem 2.1.5 hold. Then for any

a,a, A, A € [, o, we have
INC Af-/ 1)

+(a—a)f(a) + (A= A)f(A)
< —(a—a)(f”( )—f(a)), (2.1.19)

where equalities hold if and only if A € {p(A), A} and o € {p(a),a}.

(A = A)(f(A) = F(A))

IA

Proof. By Theorem 2.1.5 with A = A, B = f(A), a = a and b = f(a),

we have

(@) ~ @
[ s wVy=as@ - asw - [ soat (2.1.20)
f( A

A)

for any o, A € [y, ar. Since a, A € [a1,as]r are arbitrary, we substi-
tute (2.1.20) into (2.1.16) to obtain (2.1.19). The proof is complete. m

In the following, we apply the results when T = 7Z and derive some dis-
crete inequalities. Recall that [cq, aslz = {1, a1 +1,..., a2 — 1,as}. The
first two theorems are direct translations to T = Z of Theorem 2.1.5 and
Theorem 2.1.6, respectively.
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Theorem 2.1.7 Let f : [aq, 0]z — [,81,62]% be strictly increasing, where
Z = f(Z). Then for every a, A € [a1, 2]z, and b, B € (81, B2]5, we have

[f7H(B) = A)] (f(A=1) - B)
a—1 a—1

< > fm+ D fHm)v(m) —ab+ AB
n=A

me(B,b)NZ
< —(f7H) —a)(f(a—1) —b),

where equalities hold if and only if B € {f(A—1), f(A)} and b e {f(a—1),
fa)}.

Theorem 2.1.8 Let f : Z — R be strictly increasing. Then for every a, A,
a, A, we have

[A—A](f(A-1) = f(A))
< az_:l fn) - Of fm) +(a—a)f(a) +(A—A)
< Zla—afa1)- )
where equalities holds if and only if A € {(A—1), (A)} and o € {(a—1), a}.
Example 2.1.5 Consider the factorial function
fe@®) =t® =t(t —1)...(t —k+1), for t, ke Z.

1t is clear that fy is increasing on the interval [k—1,00)z. By Theorem 2.1.8,
we have

1

(@ = a)fi(@) < == [fr+1(a) = frrr(a)] < (a = a) frla - 1),

+1
for a, « € {k — 1,k,k + 1,...}, where equalities hold if and only if
ac{a—1,a}.

Example 2.1.6 Let f(t) = sin[rt/2k] for k € N. Then f is increasing on
[k, k], so that for any a > « € [—k, k]z, we have by Theorem 2.1.8 that

sin &7 < 1 cos 2a—-1)m cos (2a—1)7 ese T
in — — | - — 5C—
2k~ 2(a-—a) 4k 4k 4k

< sin

with equalities if and only if & € {a — 1,a}.
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2.2 Jensen Inequalities

The original Jensen inequality proved by Jensen states that if g € C([a, b,
(¢,d)) and F € C([a, b], R) is convex, then

b s)as b
F <fabg£ id ) . bia/a F(g(s))ds. (2.2.1)

In this section we give extensions of this inequality on time scales. The

inequalities will be proved for delta derivative, nabla derivative as well as for

diamond-« derivative. The results are adapted from [11, 23, 30, 39, 115, 150].
We begin with a lemma adapted from [67].

Lemma 2.2.1 Let f € C((c, d),R) be convex. Then for eacht € (c,d), there
exits B, € R such that

flx) = f(t) = B (x—1t), forallze (cd). (2.2.2)

If f is strictly convex, then the inequality sign > in (2.2.2) should be replaced
by >.

Theorem 2.2.1 Let a,b € T and ¢, d € R. Let g € Cr4([a,b], (c,d)) and
F e C((¢,d), R) is convex. Then

b S S b
F (fal;"(_)f ) <, ! / Fg(s))As. (2.2.3)

—a

If F is strictly convez, then the inequality < can be replaced by <.

Proof. Since F' is convex, it follows from Lemma 2.2.1 that for each
t € (c,d), there exists 8, € R such that (2.2.2) holds. Let

1 b
= As.
t b_a/ag(s) s

Now
b N
/F(g(s))As_(b—a)F<faé]()aA>
- /F(g<s>>A5—(b—a)F(t)

b
> ﬁt/ l9(s) — ] As = B

b
/ g(s)As —t(b— a)] =0.

The proof is complete. =
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Example 2.2.1 As a special case let T=R and FF = —log. Note F is
convex and continuous on (0,00). Apply Theorem 2.2.1 with a = 0 and

b = 1 to obtain logf0 tydt > fo log(g(t))dt, and hence fo t)ydt >
exp (fo log(g ))dt), whenever g € C([0,1),(0,00)) is continuous.

Example 2.2.2 Let T =N and N € N. Apply Jensen’s inequality (Theorem
2.2.1) witha=1andb=N+1 and g:[1,N + 1]y — (0,00) to find

N N+1
log Hzg(n)] > log H/l g(t)At

n=1
1 N+1
¥ sttt

1 N
= 3 2_log(g(n)) =log (

L N 1/N
LD OE (Hgm)) .

This is the well-known arithmetic-mean geometric-mean inequality.

v

1/N
g(ﬂ)) ,

=

and hence

Example 2.2.3 Let T = 2% and N € N. Apply Jensen’s inequality
(Theorem 2.2.1) with a =1 and b= 2" and g : [1,2V]n, — (0,00) to find

log[ Zz” 2”]

1 2N
> log 7/ g(t)At
[QN -1/ ( )
1 2%
> v [ losta)at= o ZZ”log o)
;N2 N 1/(2N-1)
= ov 7 2 los((9(2")* =log <H((9(2"))2 > :
n= n=1
and hence
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Theorem 2.2.2 Leta,b € T andc, d € R. Suppose that g € Crq([a,b], (¢,d))
and h € Crq([a, b, R) with
b
/ |h(s)| As > 0.

If F € C((¢,d), R) is convex, then

[, (s |h(s)| F(g(s))As
<f|h As> / flh \As 224

If F is strictly convex, then the inequality < can be replaced by <.

Proof. Since F is convex it follows from Lemma 2.2.1 that for each
€ (e, d), there exists 8, € R such that (2.2.2) holds. Let

_ L 1) g(s)As
J2 In(s) A

’ B ) g (J )l a()As
| merFatnas </ e 'A> ( TP h(s)] s )
b b
/ |h<s>|F<g<s>>As< / |h<s>|As>F<t>
b
/ Ih(s)| [F(g(5)) — F (1) As > B, / Ih(s)] [g(s) — 1] As
b
_ V Ih(s)| g(s)As — 1 / Ih(s)] As

f |h(s)| g(s)As
V [h(s)| g(s) 7 lhis IA /|h )| As

The proof is complete. m

Thus

Remark 2.2.1 If the condition of convezity of the function F' is changed to
concavity, then the inequality sign of the inequality (2.2.4) is reversed.

As a special case of Theorem 2.2.2, when g(t) > 0 on [a,b] and F(t) = ¢
n [0,00), we see that F is convex on [0,00) for « < 0 or @ > 1 and F is
concave on [0, 00) for a € (0,1).

Corollary 2.2.1 Let g € Crq(la,b], (c,d)) such that g(t) > 0 on [a,b] and

h € Cyrq([a,b], R) with
b
/ Ih(s)| As > 0,
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where a,b € T and (¢,d) CR. Then

fb\h(s f () fora<0ora>1
[21n(s |As ¢ \h |As ’ ’
and
Jz 10(s) MO .
( Pt ) S a0

We now present nabla Jensen inequalities.

Theorem 2.2.3 Let a,b € T and ¢, d € R, and h € Ciq([a,b]T,R) and
g € Ci(a,b],(c,d)) with f; |h(T)|VT > 0, and ¢ € C((c,d),R) is convez,

then
J2 ()] 9(7) ) Jo Ih(m)| élg(r) VT
ol = < 2.2.5
( fj|h<7>|v7 N |h |vT 229

If ¢ is strictly convex, then the inequality < can be replaced by <.

Proof. Since ¢ is convex, it follows from Lemma 2.2.1 that for each
€ (e, d), there exists 5, € R such that (2.2.2) holds. Let

M
fa |h(s)| Vs

b 2 1n(s)] g<s>Vs>
h(s)| #(g(s))Vs— )| Vs e -
/\<>| ( g ) ( ()| Vs
- /\h )] 69 (/ s |v5> (1)
- / Ih(s)| [B(g(s)) — 6 (D) As > B, / Ih(s)] [g(s) — 1] Vs
b b
8, [ / Ih(s)] 9(s)V's —t / Ih(s)] Vs

b S
ﬁtl/ Ih(S)Ig(S)VS—f e |As /|h Vs]:.

The proof is complete. =
As a consequence of Theorem 2.2.3, we have the following result.

t=

Thus
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Theorem 2.2.4 Let a,b € T and ¢, d € R. If h € Ciq([a,b]1,R) and g €
Cia([a,b], (¢, d)) are nonnegative, with fab h(t)Vt > 0, and ¢ : (¢,d) — R is
continuous and convex, then

¢<fbh > 12 h(6)e(g(t)) Vi
[ n(t) - fh '

If ¢ is strictly convex, then the inequality < can be replaced by <.

Now, we give some generalized versions of Jensen’s inequality on time
scales via the diamond-« integral.

Theorem 2.2.5 Let T be a time scale, a,b € T and ¢, d € R. Suppose that
g € C(la, b1, (¢,d)) and F € C((c,d), R) is convex. Then

b s s b
F (fa g(_)fa ) = bia/u F(g(5))0as. (2.2.6)

If F is strictly convex, then the inequality < can be replaced by <.

Proof. Since F' is convex, we have
)0aA b 1- b
<f gb—a S) :F<bfa/ g(s)As—k(b_:)/ g(s)Vs>
1P 1P
< aF (b— / g(s)As) +(1-a)F <b—a/ g(s)Vs) .

Now, using delta and nabla Jensen inequalities, we get that

als a b N b
(j gb—t ) S b (/a F<9(3)>A5> +% (/a F(Q(S)Ws)
b b
= bia {(/ F(Q(S))A3> + </ F(g(s))Vs)
b
- bia (/ F(g(s))(}aAs> .

The proof is complete. m
In the following, we give a generalization of (2.2.6) on time scales.

Theorem 2.2.6 Let T be a time scale, a,b € T and ¢,d € R. Suppose that
g € C([a,b],(c,d)) and h € C([a,blr, R) with [’ |h(s)|Oas > 0. If F €
C((c,d), R) is convex, then

(f (s) ) < Ja Ih) Flg(5)0as (227
I InGs |<>a I; |h |<>a

If F is strictly convex, then the inequality < can be replaced by <.
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Proof. Since F is convex, it follows from Lemma 2.2.1 that for each t € (¢, d),
there exists 3, € R such that (2.2.2) holds. Setting

b

?1h(s)] 9(5)0a
J2 1h(s) \<>a

t=

)

we get that
b 2 11(s)] 9(8)0as >
h(s)| F(g )| Cus =
/' ) </ g ) (fa|h<>|<>a
b
/|h<s>|F oas—(/ s |As> (1)

[ 1 ate) ~ F 0105 > 8, [ 160 ) ~ 190

- ﬁtV Ih(s)] g(s oas—t/ (s |<>a]
BV Ih(s)| g(s) oas—fafz . /a'h |<>a]_

(l

The proof is complete. =

Remark 2.2.2 If the convexity condition of the function F is changed to
concavity, then the inequality sign of the inequality (2.2.7) is reversed.

As a special case of Theorem 2.2.6, when F'(t) = t” on [0, 00), we see that
F is convex on [0,00) for v < 0 or v > 1 and F' is concave on [0,00) for

€ (0,1). This gives us the following result.

Corollary 2.2.2 Let g € C([a,b], (c,d)) such that g(t) > 0 on [a,blr and

h € C(la, b1, R) with
b
/ [h(s)] Oas > 0,

where a,b € T and (¢,d) C R. Then

Lo ()l g ) S (005
<f|h Nous ) = [l |<>a S fory <0 o> 1
and
2 1h(s)| g(s)A ) RLOIFAC
—“ > , for~v€(0,1).
( T h(s)] Oas T2 (s |<>a !
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Example 2.2.4 Let g(t) > 0 on [a,b]r and F(t) = In(t) on (0,00). Now,
since F is concave on (0,00), it follows from Theorem 2.2.6 that

. (ff h<s>|g<s>As> o S Ih(s)[ I (g(s)) Oas
JRs) Oas ) [V I(8)] Oas
Example 2.2.5 Let T=7Z and n € N. Fixa =1 and b = N+ 1 and

consider g : [1, N + 1]y — (0,00) and let F(t) = —Int. Now F is convex and
continuous on (0,00). Apply the Jensen inequality (2.2.7) to obtain

N
n=1 n=2
N+1 1
= 1 —g(t)Qat
o [ Fono
1 N+1 a N N+1
= v/ In(g(t))0at = N;IHQ(") TN nz::Q In g(n)
N by N+1 N
- In (Hgm)) +In (H g(n)) ,
n=1 n=2
and hence
1 N N+1 N N /N+1 =
N lazg(nH (1-a) g(n)l > <H g(n)) (H g(ﬂ)) :
n=1 n=2 n=1 n=2
When o = 1, we obtain the well-known arithmetic-mean geometric-mean
inequality

1 N N %
¥ 2 9(n) > (H g(ﬂ)) :
n=1 n=1

and when o = 0, we obtain

| N1 N+1 ¥
W OE (H g(n)) .
n=2 n=2

Example 2.2.6 Let T =2V and F(t) = —Int. Apply the Jensen inequality
(Theorem 2.2.6) with a = 1 and b = 2V and g : [1,2V] — (0,00), we
find that
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2N

!
In | oy /1 9(B)0ut

1
a N-1
= In 2N_122"10g " log (2"))]
L n=0
I
> Ing(t)0a
BT
N—-1

N
= v o7 2 2 loa((e(2) + ;N%al 3" 2 log((g(2")

n=0

o N—-1 - 1—a N )
= o Z log((9(2")”" + gx—7 Z::llog((g(2 )
N

n a” 1 n —a)2"
- _11nH R S | (CCR s

n=1

- ln<H<<g<2">>2"> 7 +1n<H<<g<2">><1-a>2"> o

n=1

From this we conclude that

N—-1
In [2N_122”10g 2™) log(g(2™)) ]
_1 _1
N 2N 7 N 2N 1
> In <H((9(2"))2 ) (H (2m)) =) ) ,
n=1 n=1
and hence
a N—-1
n=0
N 21\71,1 N oN 1
n=1 n=1
Since
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we get that
1 N—-1
S 2 2" log(9(2") + ag(1) + (1 - a)2Vg(2")
n=1
z <H<<g<2”>>2> (H«g(z”))“—aﬂ) .

As an application of Theorem 2.2.6, we have the following result.

Theorem 2.2.7 Let T be a time scale, a, b € T with a < b and f, g,
h € C([a,b]r, (0,00)).

(i) If p> 1, then

bh(S)f(S)Oas + bh(S)g(S)Oas p
(L)« [romon-)|

b
= / h(s) [£7(5) + ()] /7 Oas. (2.2.8)

P 1/p

(#9) If0 <p <1, then

bh(S)f(S)OaS + bh(S)g(S)Oas p
(L)« [romon-)|

’ P P 1/p
> [ h)1£7(6) + 7)Y Ous (2.29)

P 1/p

Proof. We prove only (i), since the proof of (i¢) is similar. Inequal-
ity (2.2.8) is trivially true when f is zero. Otherwise, applying Theorem 2.2.6
with F(z) = (1 + 2P)"/?, which is clearly convex on (0,c0), we obtain

b 1/p b . /p
<1 + W) _ LR+ P 00
Ja h($)0as [P h(5)0as

In other words

b b 1/p b
( / h(s)0as + / h(S)f(8)0a8> < / B(s)(1+ £7(5) Y7005,

Changing h and f with hf/ f; h(s)f(s)0as and g/ f in the last inequality we
obtain (2.2.8). The proof is complete. m

Using the fact that the time scale integral is an isotonic linear functional,
we prove some Jensen type inequalities on time scales.
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Definition 2.2.1 Let E be a nonempty set and L be a linear class of real-
valued functions f : E — R, having the following properties:

(L1). If f, g€ L and a, b € R, then (af +bg) € L.

(La). If f(t) =1 for allt € E, then f € L.

An isotonic linear functional is a functional A : L — R having the fol-
lowing properties:

(A1). If f, 9 € L and a, b € R, then A(af + bg) = aA(f) + bA(g).

(A2). If f € L and f(t) > 0 for allt € E, then A(f) > 0.
Furthermore, if the functional A has a property

(A3). A1) = 1, where 1(t) = 1 for all t € E, then we will say that A is
normalized.

Our next theorem proves that the Cauchy integral on time scales is an
isotonic functional. The proof is straightforward from its definition and prop-
erties presented in [51, Defintion 1.58 and Theorem 1.77].

Theorem 2.2.8 Let T be a time scale, a, b € T with a < b and let
E=1[a,0)NT, L =C,q(la,b),R). (2.2.10)

Then (L1) and (L2) are satisfied. Moreover, let

b
A(f):/ ft)At, (2.2.11)
where the integral is the Cauchy delta time-scale integral. Then (A1) and

(A2) are satisfied.

Example 2.2.7 IfT = R in Theorem 2.2.8, then L = C([a,b],R) and A(f) =
f; f@ydt. If T =27 in Theorem 2.2.8, then L consists of real-valued func-

b—1
tions on [a,b — 1) NZ and A(f) = > f(n). If T = ¢"°, where ¢ > 1, in

Theorem 2.2.8, then L consists of real-valued functions on [a,b/q] N ¢ and
log, (b)—1

Af)=@-1) > q"f(d").

n=log,(a)

Theorem 2.2.8 also has corresponding versions for the nabla and the
a-diamond integral.

Theorem 2.2.9 Let T be a time scale, a, b € T with a < b and let

E=(a,b]NT, L=Cq((a,b],R).
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Then (Ly) and (L) are satisfied. Moreover, let

b
Mﬁ=/f@W,

where the integral is the Cauchy nabla time-scale integral. Then (Ay) and
(A2) are satisfied.

Theorem 2.2.10 Let T a time scale, a, b € T with a < b and let
E=[a,0]NT, L=0C(a,b],R).

Then (Ly) and (L) are satisfied. Moreover, let

Mﬂ=/f@%u

where the integral is the Cauchy a-diamond time-scale integral. Then (A;)
and (As) are satisfied.

The Riemann multiple integral is also an isotonic linear functional.

Theorem 2.2.11 Let Tq,..., T, a time scales. For a;, b; € T; with a; < b;,
1<i<n,let

E C ([al,bl) NTy x...x [ambn) NnT,,
be Jordan A-measurable and let L be the set of all bounded

A-integrable functions from E to R. Then (L1) and (Lz2) are satisfied. More-
over, let

Mﬁ=éﬂm%

where the integral is the multiple Riemann delta-time scale integral. Then
(A1) and (As) are satisfied.

Theorem 2.2.12 LetTy,..., T, be time scales. For a;, b; € T; with a; < b;,
1<i<n, let
E C ([al,bl) NTy x...X [ambn) NT,,

be Lebesgue A-measurable and let L be the set of all bounded
A-integrable functions from E to R. Then (L1) and (Ls) are satisfied. More-
over, let

Mﬁ=éj@m,

where the integral is the multiple Lebesgue delta-time scale integral. Then
(A1) and (As) are satisfied.
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Theorem 2.2.13 Let the assumptions of Theorem 2.2.12 be satisfied. Let
A(f) be replaced by

_ Je @I F(B)AL
S ATUII

where h : E — R is A-integrable such that [, |h(t)| At > 0. Then A is an
isotonic linear functional satisfying A(1) = 1.

We next note the following theorem that has been proved by Jessen [87]
(see also [117)).

Theorem 2.2.14 Let L satisfy properties (L1) and (Ly). Assume & €
C(ILR) is convexr where I C R is an interval. If A satisfies (A1) and (Az)
such that A(1) =1, then for all f € L such that ®(f) € L, one has A(f) €I
and

D(A(f)) < A(2()).

Now, the application of Theorems 2.2.13 and 2.2.14 gives the following
result.

Theorem 2.2.15 Assume that ® € C(ILR) is conver where TC R is an
interval. Let E C R™ be as in Theorem 2.2.12 and suppose that f is
A-integrable on E such that f(E) = 1. Moreover, let h : E — R be
A-integrable such that [, |h(t)] At > 0. Then

o (fE |h(t)|f(t)At) _ Jelh®]e(f ()AL
Jeh@®At )= [ lh(t)] At
The concept of superquadratic functions in one variable, as a general-

ization of the class of convex functions was introduced by S. Abramovich,
G. Jameson, and G. Sinnamon in [1, 2].

Definition 2.2.2 A function ¢ : [0,00) — R is called superquadratic if there
exists a function C : [0,00) — R such that

oy) —p(x) = o(ly —z|) =2 C(z)(y —x), forallz,y > 0.
We say that p is subquadratic if —¢ is superquadratic.

For example, the function ¢(x) = zP is superquadratic for p > 2 and
subquadratic for p € (0,2].

Lemma 2.2.2 Let ¢ be a superquadratic function with C' as in Definition
2.2.2. Then
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(i) ¢(0) <0,

(ii) if ©(0) = ¢ (0), then C(x) = ¢ (x) whenever ¢ is differentiable at
x>0,

’

(iii) if ¢ > 0, then ¢ is convex and p(0) = ¢ (0) = 0.

In the following, we prove a Jensen type inequality on time scales for
superquadratic functions.

Theorem 2.2.16 Let a, b € T. Suppose f € Crq([a,b]r,[0,00)) and ¢ :
[0,00) — R is continuous and superquadratic. Then
> As.

[ r)at 1
<,0< b—a > = b—a/a
(2.2.12)

Proof. Since ¢ : [0,00) — R is a superquadratic function, then there
exists a function C : [0,00) — R such that

PF(s)) <‘f(s) _ LS5

¢(y) = ¢(z0) + @(ly — xol) + C(x0)(y — x0), for all g,y >0. (2.2.13)
Let

b

Applying (2.2.13) with y = f(s), we see that

b b
cUE) 2 (W) o (‘ R

+C (o) (f(s) — @0) -

()

b
f(s)As— (b — a)xol =0.

)] A,

which is the desired inequality (2.2.12). The proof is complete. m

Integrating from a to b, we see that

b b
/ l<p(f(5)) ~ <|f(5) - LSO As

a

b
> Clao) / (f(s) — w0) As = C(a0)

a

This implies that

b b b
0 (f“ ﬂtw) < lw(f(s)) o <|f(s) Lo JO%

b—a —a
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2.3 Holder Inequalities

In 1889 Hoélder [84] proved that

n n 1/p n 1/q
Zxkyk < (Z 1@) <Z Z/Z) 5 (2.3.1)
k=1 k=1 k=1

where x,, and y,, are positive sequences and p and ¢ are two positive numbers
such that 1/p 4+ 1/¢ = 1. The inequality reverses if either p or ¢ is negative.
The integral form of this inequality is

b b % b %
/ F(D)g(b) dt < [ / If(t)l”dt] [ / |g<t>|th] , (23.2)

where a, b € R and f, g € C([a,b], R). In this section, we discuss various
versions of the Holder inequality on time scales which not only give a uni-
fication of (2.3.1) and (2.3.2) but can be applied on different types of time
scales. The results in this section are adapted from [11, 24, 30, 39, 145, 155].
We begin with the proof of the classical Holder inequality on time scales.

Theorem 2.3.1 Let a, b€ T. For f, g € Crq(I, R), we have

b
/ l9(t)[ At

1
q

, (2.3.3)

1
P

b b
[ irwaorac< | [sorar

wherep>1and%+%:1.

Proof. For nonnegative real numbers « and 3, the classical Young
inequality

al/rgtfe < 2y é, (2.3.4)
p

Q

holds. Now suppose without loss of generality that

b b
(/ If(t)lpAt> (/ |g(t)th> £0.

Apply (2.3.4) with

If @ dg— _ la®r
BT R G O
(Elreras) ™ g as
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and integrate the obtained inequality between a and b (this is possible since
all functions are rd-continuous), we find that

— 0] " iim(pyi
/ (fblf(S)l”As) (f g qus)l/th:/a o P ()M () At

Plat)  BON A, [ [F@r" lg(®)I*
/a (p i q> & 7/(1 [ (f; |f(5)|PAs) ’ q [ |9(s)|* As

b p q
" At At 1 1
_ fa|f()‘ +‘f|g | :74»7:1,

(1P as)  alllg@las P d

IA

which is the desired inequality (2.3.3). The proof is complete. m
As a special case when p = ¢ = 2, we have the following Schwarz’s
inequality.

Theorem 2.3.2 Let a, b€ T. For f, g € Cra(I, R), we have

b b % b %
[ swgwiac< | [irorad | [ |g<t>|2At] S (235)
Setting
e MOMOL RO
p 1/p’ q 1/q’
(2 () 1) P As) (17 () g1 As)

in the proof of Theorem 2.3.1 and applying the Young inequality, we have
the following inequality.

Theorem 2.3.3 Let h, f, g € Cy([a,b]1,[0,00)). If 1/p+1/q = 1, with
p > 1, then

b b 1/p b 1/a
/ h(t) F(B)g ()AL < ( / h(t)fp(t)At> ( / h(t)gq(t)At> . (2.3.6)

Now we give the nabla Holder type inequality on time scales.

Theorem 2.3.4 Let a, b€ T. For f, g, h € Ci4([a,b]r, R), we have
1

/|h )1t |Pw] V ] lg() qw] ,

(2.3.7)

b
/ (O] £ (H)g(1)] V¢ <

wherep>1and%+%:1.
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Proof. Setting

1/p 1/q
AmBOPTIOL O
(2 I 1£ ()" vs) (f 1)) lg(s)[" V)

and applying the Young inequality AB < A + B2 where A, B are nonneg-
ative, p > 1 and * > + E =1, we see that

b P q
/(’i+fi)w
a p q

/b ROUSOP @ | g,
p ([ ) 176)PVs)  afy b g As

IN

/ bA(t)B(t)Vt

_ 2 IO @) vt f|h (t)]1g(t)?] vt
o (P Ts)) T 0l o) oo 95
1 1

= —4+2=1
P q

which is the desired inequality (2.3.7). The proof is complete. m
As a special case of Theorem 2.3.4 when p = ¢ = 2, we have the following
result.

Theorem 2.3.5 Let a, b € T. For f, g, h € C4([a, b, R), we have

b b % b %
/ () £ (B)a(t)] Vit < V (O] ()2 Ve V ()] 9(6) 2 V't

(2.3.8)
Theorem 2.3.6 Let a, b€ T. For f, g, h € Cq([a, b, R), we have

b :
[ mol1srve

where p < 0 or g <0 and}%—&—%:l

b q
[ ol |g<t>qw] ,

(2.3.9)

[ o150l ve =

Proof. Without loss of generality, we assume that p < 0. Set P = —p/q
and @ =1/g. Then 1/P+1/Q =1 with P > 1 and @ > 1. From (2.3.7) we
have

/ablh(t>|F |Vt<V n(0)| |F (1) ] l/ 16 Qw]

Q=



50 CHAPTER 2. BASIC INEQUALITIES

Letting F(t) = f79(t) and G(t) = f(t)g?(t) in the last inequality, we get
the desired inequality (2.3.9). The proof is complete. ®

As an application of Holder inequality (2.3.3), we have the following
theorem.

Theorem 2.3.7 Let a, b € T with a < b and f and g be two positive func-
tions defined on the interval [a, bl such that 0 < m < f/g < M < oco. Then
forp>1and q>1 with1l/p+1/qg=1, we have

M1/p?
ml/q2

b b
/fl/”(t)g”q(t)AtS /fl/q(t)gl/p(t)At, (2.3.10)

a

and then

b 1/p? b 1/q b 1/p
s 22 () )

Proof. From inequality (2.3.3), we obtain

b b 1/17 b 1/‘1
/ FUP(0)g (1) At < ( / f(t)At> ( / g(t)At> ,

that is

b b b
/fl/p(t>g”q(t)At<</ fl/”(t)fl/q(t)At>1/p</ gl/q(t)gl/p(t)At>1/q.

Since f1/P(t) < M'/Pgl/P(t) and g'/9(t) < m~1/9f1/9(t), then from the above
inequality it follows that

b b 1/p
[ Progtamae < anmte (/ fl/qwl%)“)

1/q
x ( / ’ fl/q(t)gl/p(t)At> ,

that is

b b
/fl/p(t)gl/q(t)AtgMl/pzm’l/(f/ Yt g P (1) At (2.3.11)

a

Hence, the inequality (2.3.10) is proved. The proof is complete. m
The following theorems give the reverse Holder type inequality on time
scales.
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Theorem 2.3.8 Let a, b € T with a < b and f and g be two positive
functions defined on the interval [a, bl such that 0 < m < fP/g? < M < oo.
Then for p>1 and ¢ > 1 with 1/p+1/q =1, we have

([f”(t)At) (/abgq(t)At> " < <]\W4L)I}q/abf(t)g(t)At. (2.3.12)

Proof. Since fP/g? < M, then we have g —1/a p/a_ Therefore

1/p

gz M7 [t = M’Tlf”«ﬂ =M [,

b 3 b ;
</ f”(t)At) < M (/ f(t)g(t)At) . (2.3.13)

Also since m < f? /g9, then we have f > m!/Pg9/?. Then

and so

b b b
| sgoaezmie [Fgsamar—mie [ goa,

a

and so
1

b /4 b a
(/ f(t)g(t)At) > mba (/ gq(t)At> . (2.3.14)

Combining (2.3.13) and (2.3.14), we have the desired inequality (2.3.12). The
proof is complete. m

In Theorem 2.3.8, if we replace fP and g9 by f and g, we obtain the
reverse Holder type inequality

(/ab f(t)At> " (/abg(t)At> " < <An/;[> g /ab FYP()gM () At.

(2.3.15)

Theorem 2.3.9 Leta, b€ T with a < b and f and g be two positive func-
tions defined on the interval [a, bl such that 0 < m < fP < M < co. Then
forp>1and q¢>1 with1l/p+1/qg=1, we have

b p ’ p+1 /p
(/ fl/p(t)At> > (b-a)"+ ( ( / () At) . (23.16)

Proof. Putting g =1 in Theorem 2.3.8, we obtain

b 1/17 1
( f”(t)At> b—a)r< (T ”/f
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Therefore, we get

(/b fp(t)At> " < (%)* (b—a)~VV4 /bf(t)At. (2.3.17)

Substituting ¢ in (2.3.15) leads to

b 1/p -1 b
</a f(t)At) < (%) e (b—a)*l/q/a FYP (A,

and so

/abf(t)At < (%)i (b—a)"P/4 (/bfl/P(t)At>p. (2.3.18)

a

Combining (2.3.17) with (2.3.18), we obtain

(/bfl/P(t)At>p > (%)i (b—a)®*+D/e (/b fp(t)At> 1/p7

which is the desired inequality (2.3.16). The proof is complete. m
Next we prove a Holder type inequality in two dimensionals on time scales.

Theorem 2.3.10 Let a, b € T with a < b and f and g be two
rd-continuous functions defined on the interval [a, bl X [a,b]r. Then

b b
/ / |f(z,y)g(z, y)| AzAy (2.3.19)

< ( [ bf(w,y)|prAy> " ( A |g<x,y>|qAxAy> "

where p > 1 and g =p/((p —1).

Proof. Suppose without loss of generality that

(/ab/abf(x,yﬂprAy) /ab/ab lg(z,y)|* AzAy # 0.

Apply the Young inequality al/Ppl/a < % + %(2.3.4) with

|f(z, )"
0¢(33a2/) f;f;|f(71,72)|pA71A72’
/B(x,y) — |g(x7y)|q

fab f; |9(71772)‘q AﬁATz7
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and integrate the obtained inequality between a and b to get
b b
[ [ et ns ) aeny

/j/j(Oé(ﬂ;,y) +ﬂ(9;,y)>MAy

Jo o f@ )l Axdy [ [} oty Axdy

Pf; f; |f(T1,72)]" AT1 ATy (Jf; f; lg(T1,72)|T AT AT,
1 1

Sho=1
p q

IN

The proof is complete. =

Now, we give the diamond a-Hdélder inequalities on time scales by apply-
ing the diamond a-Jensen inequalities on time scales. As an application of the
diamond «-Jensen inequality proved in Theorem 2.2.6 by taking F'(t) = t*
for p > 1 and g and |h| be replaced by ug~P/9 and hg9, we have the following
Holder inequality.

Theorem 2.3.11 Let h, u, g € C([a,b]r,R) with f h(t)gl(t)Oat > 0.
If1/p+1/q=1, withp > 1, then

/|h ) u(t) |<>at<</ Ih(0) (e |P<>a> (/ K lg(t) qoa>

(2.3.20)

/a

In the particular case h = 1, Theorem 2.3.11 gives the diamond-« version
of the classical Holder inequality:

1/q

/Iu |<>at<</ u(t) |p<>a>1/p (/ab|g(t)q<>at> . (2.3.21)

where p > 1 and ¢ = p/(p — 1). In the special case p = ¢ = 2, the inequal-
ity (2.3.21) reduces to the following diamond-« Cauchy-Schwarz integral in-
equality on time scales

b b
/Iu t)] Oat < </ Iu(t)|2<>at> (/ Ig(t)|2<>at>. (2.3.22)
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Theorem 2.3.12 Let h, u, g € C([a,b]T,R) with f R(t)gi(t)Oat > 0.
If1/p+1/q=1, withp <0 or ¢ <0, then

/\h ) u(®)g(®)] Oat > (/ Ih(t)] Ju(t m)
b
( / |h<t>||g<t>|‘Z<>at>

Theorem 2.3.13 Let a, b € T with a < b and f and g be two positive
functions defined on the interval [a, bl such that 0 < m < fP/g? < M < oo.
Then for p > 1 with 1/p+1/q =1, we have

(/abf”(t)oat)l/p</abgq(t)<>at> s( > /f Oat. (2.3.23)

Proof. As in the proof of Theorem 2.3.8, we get that

. S .
( / f”(t)%t) < M# ( / f(t)g(t)%t)
b /4 ) b
( / f(t)g(t)%t> > ()7 ( / gq<t><>at>

Combining these two inequalities, we have the desired inequality (2.3.23).
The proof is complete. m
Now, we give the diamond a-Hélder type inequality in two dimensions on
time scales. In this case, we assume that the double integral is defined as an
iterated integral. Let T be a time scale with a,b € T, a < b, and f be a real-
valued function on T x T. Because we need notation for partial derivatives
with respect to time scale variables x and y we denote the timg scale partial
derivative of f(x,y) with respect to x by f®a(z,y) and let f%«(z,y) denote
the time scale partial derivative with respect to y. Fix an arbitrary y € T.
Then the diamond-« derivative of the function
T—R, z— f(z,y)
is denoted by f a. Let now z € T. The diamond-« derivative of the function
T-R,  y— f(z,y)

is denoted by foil. If the function f has a O}, antiderivative 4, i.e., A%a = 7,
and A has a 02 antiderivative B, i.c., B% = A, then

b b b
/ / f($7 y)oaany = / (A(b7 y) - A(a7 y))oay
= B(b,b) — B(b,a) — B(a,b) + B(a,a).

/P

/q

and

Q=

1

Note that (Boi><>a = (A)O‘l* = f.
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Now we are ready to state and prove the diamond a-Hé6lder inequality in
two dimensions on time scales.

Theorem 2.3.14 Let T be a time scale, a,b € T, with a < b, f, g, h

[a,b]T X [a,b]r — R, be On integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

b b
/ / (1) £ (2 99 1)]| GazOay (2.3.24)

(/ab /ab \h(z, ) f(x,y)]" an@a@/) 1/p
(/ab /ab |h(x,y)g(x,y)|q<>ax<>ay> 1/q.

Proof. Inequality (2.3.24) is trivially true in the case when f, or g, or h
is identically zero. Suppose that

b b b b
( / / |h<x,y>f<x,y>1“’<>ax<>ay) ( / / |h<x,y>g<x,y>|”q<>ax<>ay)#o,

and let
A, )| | f ()]
1/p
(J2 12 InG. )l 1@ 9)P OaOay)
Blay) = —— |h(z, )7 |g(z, y)| _
(J2 17 I} 196 9)] Oaz0ay)

2

&

s
I

)

Applying the Young inequality AB < AT;) + BTQ, we have that

b b h , ) )
[ [ 4B po.souy < L Al >|p<> 20y
o P (J2 2 )l 1)l OusOuy)
1 fffflh 2,9)|% 0az0ay
K (Ji 2 1h(. ) g, )| OaaOay)
SR
p q

and the desired inequality follows. The proof is complete. m
As a special case of Theorem 2.3.14, when p = ¢ = 2, we get the two
dimensional diamond-a Cauchy Schwartz’s inequality.
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Corollary 2.3.1 Let T be a time scale, a,b € T, with a < b, f, g, h :
[a,b]T X [a,blr — R, be O integrable functions, and 1/p + 1/q = 1 with
p > 1. Then,

b b
/ / (2, ) f (@, 9)g(2,3)| OazOay

(/ b / ' hCe,u) )P <>ax<>ay)1/2 (f b / ' (e, g ) <>ax<>ay)m.

Now, we apply the theory of isotonic linear functional which was presented
in Sect.2.2 to derive a Holder type inequality on time scales. The results
are adapted from [30]. We need the following theorem to prove the main
results [117].

Theorem 2.3.15 Let E, L, and A be such that (L1), (L2), (A1) and (As)
in Definition 2.2.1 are satisfied. For p # 1, define ¢ = p/(p — 1). Assume
lw||fI7 lwllg|?, lwfgl € L. If p>1, then

Alwfgl) < AYP(lw] |F1P)AY (|l 1g]).

This inequality is reversed if 0 < p < 1 and A(lw||g|?) > 0 and also it is
reversed if p < 0 and A(|w||f[") > 0.

Now, the application of Theorems 2.2.12 and 2.3.15 gives us the following
Holder’s inequality.

Theorem 2.3.16 For p > 1, define ¢ = p/(p —1). Let E C R™ be as in
Theorem 2.2.12. Assume that |w||f|", |w||g|?, |wfg| are A-integrable on E.
If p > 1, then

[ wtoswaton s s ([ i |”At) ([ wnstorar) "

This inequality is reversed if 0 < p < 1 and [ |w(t)||g(t)| At > 0 and also
it is reversed if p < 0 and [, |w(t)||f(t)|" At > 0.

2.4 Minkowski Inequalities
The well-known Minkowski integral inequality is given in [3, 72, 110]. Let

f and g be real-valued functions defined on [a,b] such that the functions
|f(x)|” and |g(z)|” for p > 1 are integrable on [a,b]. Then

( / N g<m>|pdx> " ( / b If(:v)lpdw> v ( / b g<x>pdx>

1/p
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Equality holds if and only if f(x) = 0 almost everywhere or g(z) = Af(x)
almost everywhere with a constant A > 0. The discrete version of Minkowski
inequality is given by

n 1/p n 1/p n 1/p
(Zlf(i) +9(i)p> < (ZIf(z)l”) + (Z Ig(i)|p> ;
i=1 i=1 i=1
where f(n) and g(n) are two positive-tuples and p > 1. Equality holds if and
only f and g are proportional.
In this section we establish the Minkowski integral inequality and its

extensions on time scales. The results in this section are adapted from
[23, 30, 39, 45, 115, 150, 155].

Theorem 2.4.1 Let f, g, h € Crq([a,b]1,R) and p > 1. Then

b 1/p b 1/p
(/ Ih(w)lf(ﬂf)Jrg(x)lpAﬂC) < (/ Ih(x)llf(w‘)lpﬁx>

b 1/p
+ (/ |h(z)] |g(x)|” A:c) . (2.4.1)

Proof. Note

b b
/ @) |f(@) + g@)f A = / @)1 (@) + 9@ (@) + g(a)] Ax

IN

b
/ [h(@)| |f (@) + g(@)I""" |f ()] Az

b
+ [ @) 17w+ gla) ! gto)] A

Applying the Holder inequality (2.3.6), we get that

b
[ m@lis) + gl as

1/q

< ( / o) (1@ + @)’ Ax> ( / o) f(w)l”AfB>
1/q

+ (/b b)) (1) +g(x)|p_1)qAx> (/b |h(x)] |g<a:)”Ax>

b 1/q
- ( [ @l +g<x>1’m>

b 1/17 b 1/P
x [( / Ih(:c)llf(x)”Ax> +< / |h<z>||g<x>mx>

1/p

1/p
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Therefore

b 1/p
( [ @17 + gt Ax>

b 1-1/q
- ( / ()] |f () +g<x>|”m~>

b 1/p b 1/p
(/ |h<m>|f<x>|w> +</ |h<x>|g<x>|”m> ,

which is the desired inequality (2.4.1). The proof is complete. m
As a special case when h(z) = 1, we obtain the time scale classical
Minkowski inequality

b 1/p b 1/p b 1/p
(/ If(fv)+g(fv)”Ax> < / f(x)l”dw> +</ |g<x>|pdx) .

As in the proof of Theorem 2.4.1 (using (2.3.7)) we obtain the following nabla
Minkowski inequality.

Theorem 2.4.2 Let f, g, h € Cj4([a,b]T,R) and p > 1. Then
b 1/17
( / (@)1 f(z) + g(z) P v$>

b 1/p b 1/p
< (/ |h<x>|f<x>|pw> +</ |h<x>|g<x>|pw> .

Applying the diamond-a Hélder inequality (2.3.20) we have the following
diamond-a Minkowski’s inequality.

Theorem 2.4.3 Let f, g, h € C([a,b]T, R) and p > 1. Then
b 1/p
( [ @15 + gt <>ax>

b 1/p b 1/p
< (/ Ih(w)IIf(:v)lpOa:v> +</ |h<x>|g<x>|”<>ax> |

Theorem 2.4.4 Let f, g: [a,blr — R, are positive rd-continuous functions
and satisfying 0 < m < f/g < M < oo on [a,blr and for p > 1 define
g=p/(p—1). Then

b p b p b »
( / f”(x)Ax> +< / gP(x)Ax> 9( / (f(x)+g(x))”Aw> ,

(2.4.2)

where ¢ = (%)ﬁ
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Proof. To prove the inequality (2.4.2), we apply Theorem 2.3.8. The
inner term in the right-hand side can be rewritten as

b
/ (f(2) + 9(x))? Ax
b
- / (f(2) + g(@))" ™" fz) Az

b
+ / (F(2) + ()" g(x) Az

(Z) " ( / b fp(x)Afv> % ( / (7(@) + 9l Ax> q
() § ( A g%x)Ax); ( [ @+ gy Am) q
V(L gty ar)
()" () )

X (/abfp(a:)Aac>; + (/abgp(x)Ax>;

Therefore, we obtain

(/ab fp(x)Aac) : + (/ab gp(m)Am> '

1—1
q

IN

(7 ( [ )+ sty Am>
= (7 ( [ )+ oty Ax> "

which is the desired inequality (2.4.2). The proof is complete. m

Now, we apply the theory of isotonic linear functional that was presented
in Sect. 2.2 to derive a Minkowski inequality on time scales. To do this we
need the following theorem as given in [117].

Theorem 2.4.5 Let E, L, and A be such that (L), (Lz2), (A1) and (As),
as in Definition 2.2.1, are satisfied. For p € R, assume |w||f", |w]||g|”,
lw||f +9g” € L. If p> 1, then

AVP(|w| | f + gI") < AVP(w] I£17) + AP (o] lgI").

This inequality is reversed if 0 < p < 1 or p < 0 provided that A(|w||g|”) > 0
and A(|w| |f") > 0 hold.

Now, the application of Theorems 2.2.12 and 2.4.5 gives us the following
Minkowski inequality.
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Theorem 2.4.6 Let E C R" be as in Theorem 2.2.12. For p € R, assume
lw| £, [wllg|”, |w||f + g|* are A-integrable on E. If p > 1, then

([ wtonlatorr ar) " as)

This inequality is reversed if 0 < p < 1 orp < 0 provided that [}, |w(t)||g(t)|*
At >0 and [, |w()||f()]" At > 0.

In the following we obtain generalizations of Minkowski inequalities on
time scales. The inequalities will be proved for several variables and based
on the definitions of the multiple Riemann and Lebesgue A-integration on
time scales given in [53].

Let n € N be fixed. For i € {1,2,...,n}, let T; denote a time scale and

An:Tl XTQX...XTnZ{t:(tl,tQ,...,tn)ZtiETi, 1§z§n},

as the n-dimensional time scale. Let p, be the o-additive Lebesuge
A-measure on A" and F be the family of A-measurable subsets of A™.
Let E C F and (E,F, pa) be a time scale measure space. Then for a
A-measurable function f : E — R, the corresponding A-integral of f over E
will be denoted by

/f(tlat23-~~atn)A1tlA2t2---Antnv Or/f(t)Af,
E

E

or [ fns. or [ re)dns(o).

Here, we state the Fubini theorem for integrals. It is used in the proofs of
our main results.

Theorem 2.4.7 Let (X, M, pa) and (Y, L, va) be two finite-dimensional
time scale measure space. If f : X XY — R is a A-integrable function.
Setting

o(y) = /X @y (), fory €Y,
and
(x) = /Y f(@,y)dva(y), for z € X,

then @ is A-integrable on'Y and 1 is A-integrable on X and

[ dust@) [ o) = [ doat) [ faadns). a4
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We mention here that all theorems in Lebesgue integration theory,
including the Lebesgue dominated convergence theorem, hold also for
Lebesgue A-integral on A™. This means that all the classical inequalities
including Jensen’s inequalities, Holder inequalities, Minkowski inequalities,
and their converses for multiple integration on time scales hold for both
Riemann and Lebesuge integrals on time scales.

Theorem 2.4.8 Let (E,F, pa) be a time scale measure space. For p € R,

assume w, f, g are nonnegative functions such that wfP, wg?, w (f + g)* are
A-integrable on E. If p > 1, then

(é “utenr d’“t) . (/E w(t)fp(t)d/mt) N

(f w(t)g%)dw)w.

Note that Theorem 2.4.8 also holds if we have a finite number of functions.
The next theorem gives an inequality of Minkowski type for infinitely many
functions. We assume that all integrals are finite.

Theorem 2.4.9 Let (X, L, up) and (Y, \,va) be two finite-dimensional time

scale measure space and let u, v f be A-integrable functions on X, Y and
X XY, respectively. If p > 1, then

1/p
[/ </ f(z,y)v dl/Ay> u(x)dqu}
1/p
/ (/ fP(x,y)u d,uAm> v(y)dvay, (2.4.5)
holds provided all integrals in (2.4.5) exists. If 0 < p < 1 and
P
/ </ fUdVA> udp >0 and / fvdva >0, (2.4.6)
x \Jy Y

holds, then (2.4.5) is reversed. If p <0 and (2.4.6) and

/ fP(x,y)u(z)dupz > 0, (2.4.7)
hold, then (2.4.5) is reversed as well.

Proof. Let p > 1. Put
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Now, by using Fubini’s Theorem 2.4.7 and Holder inequality in Theorem 2.3.16
on time scales, we have

/X HP (2)udpy  — / P () H (2)u(z)dpgz

[ ([ seanian) -
/(/ f(%?/)HP‘l(q;)u(x)duM) v(y)dvay
/ (/ [Pz, y)u d,qu>1/p

p—1

(/ HP(x duM) " u(y)dvay
/ </ [P y)u dmz>1/pv(y)dmy

p—1

(/ Hp d:qu) ’ 9
and hence
1/p
(/ HP(x dmx) _/ (/ TPz, y)u duM) v(y)dvay,

which is the desired inequality (2.4.5). For p < 0 and 0 < p < 1, the
corresponding result can be obtained similarly. The proof is complete. m

IA

2.5 Steffensen Inequalities

In 1918 Steffensen [142] proved the following inequality. Let a and b be real
numbers such that a < b, f, and g are integrable functions from [a, b] into R
such that f is decreasing and for every ¢ € [a,b], 0 < g(t) < 1. Then

/ dt</ £t dt</ Hf(t)clt, (2.5.1)

where A = f:g(t)dt. The discrete analogue of Steffensen’s inequality is
given by

n n k1
g r; < E Y < E Zq,
i=n—ko+1 i=1 i=1

where (zz) _, is a nonincreasing finite sequence of nonnegative real numbers
and (y;);_, is a finite sequence of real numbers such that for every i, 0 <
yi <land ko <Y I y; < ki for ki, ko € {1,2,...,n}.
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In this section, we prove some Steffensen inequalities on time scales The
results in this section are adapted from [26, 114].

Theorem 2.5.1 Let a, b € T} with a < b and f, g : [a,b]r — R be
A-integrable functions such that f of one sign and decreasing and 0 < g(t) < 1
for every t € [a,blr. Suppose that also I, v € [a, by such that

b
b—1 < /g(t)AtS'y—a, if f >0 forallt € [a,blr,

IN

b
y—a /g(t)Atgb—l, if f <0 for allt € [a,b]r,

then

b b o
/l (DAL < / f(HgB)At < / F(B)AL. (25.2)

Proof. We consider the case when f > 0 and prove the left inequality.
Now

b b
/a (gt AL — / F(H)AL

l b b
/a F(HghAL + / F(Hg(t)AL - / F(HAL

l b
/ F(Hg(t)AL / SO — gt At
a l
b

v

l
/ FDg()AL — F(1) / 11— g(t) At

l

l b
/ FHgOAL— FDb 1)+ F() /l g(t)At

Y

l b b
/ F(HgAL - £() / oA+ 1) /l a(t)At

a

/ (DAL — £ / o)At — / o)A

l l l
/ F(HgHAL - F(1) / a(t) At = / () — FO) / g(H)AL >0,

since f is decreasing and g is nonnegative. The proof of the right inequality
is similar. The proof is complete. m

Note that in Theorem 2.5.1 above we could easily replace the delta integral
with the nabla integral under the same hypotheses.
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Theorem 2.5.2 Let a, b € T} with a < b and f, g : [a,b]r — R be
V-integrable functions such that f is of one sign and decreasing and
0<g(t) <1 on[a,blr. Suppose that alsol, v € [a,b]T such that

b
b—1 < /g(t)VtS’y—a, if f >0 forallt € [a,b]r,

IN

b
y—a /g(t)Vtgbfl, if f <0 forallt € [a,b]r.

Then
b b 0%
/l FOVE < / F()g(t)Vt < / £V, (2.5.3)

The following theorems more closely resemble the theorem in the contin-
uous case (the proofs are identical to that above and omitted).

Theorem 2.5.3 Let a, b € TN with a < b and f, g : [a,blr — R be A-
integrable functions such that f is of one sign and decreasing and 0 < g <'1

for every t € [a,blr. Assume that A = f: g(t)At such that b— X, a+ X e T.
Then
b

b a+A
" swar< [roswars [ soan

Theorem 2.5.4 Let a, b € TY with a < b and f, g : [a,b]r — R be V-
integrable functions such that f is of one sign and decreasing and 0 < g <1

for every t € [a,blr. Assume that A = f; g(t)Vt such thatb— X, a+ A € T.
Then

b a+A

b
foves [ fogoves [ s

b—X

In the following, we prove the diamond-« Steffensen inequality using the
diamond-a derivative on time scales. We begin with the following lemma
that will be needed later.

Lemma 2.5.1 Let a, b € T¥ witha < b and f, g, b : [a,bly — R be Oq-
integrable functions. Suppose that also l, v € [a,b]r such that

/: h(t)Oat = /abg(t)oat = /lbh(t)oat. (2.5.4)

Then
b b
/ f(Hgt)0at = / F(8) = F)]a()0at (2.5.5)
+ [T UOMO - 150 - FIHO - 501} 0at,
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/ F(Dg(t)0at = / F(5) = FDg(H)0ut (2.5.6)
+ / {FOR®) — [F(E) — FDIAE) — g(1)]} Oat.

Proof. We prove (2.5.5). By direct computation, we have

/v{fthtf (t) - F) }oat—/f

/ 0 ot) — [F(t) — TR — g(0)]} Oat

+ / FDg(B)0at — / F(B)g(t)0ut
ol b
/ FOIR() — (1) Oat — / F(Hg(H)0at
ol ¥ b
e / B(t)0ut — 1() / 9(t)0ut — / F(H)g(H)0ut

Applying the assumption [ h(t)0at = f g(t)Oat, we see that

/{f — SO —g t}oat—/ftgu)w
7 / 9()0at — 1 / ()0at - / £0

£() ( [ s0ut - [ 500 ) [ 50

- / £)0at = / F(9()0at = / [7(2) — FOa(t)0u

which is the desired inequality (2.5.5). The proof of (2.5.6) is similar and
thus is omitted. The proof is complete. m

Theorem 2.5.5 Let a, b € T with a < b and f, g, h : [a,blr — R be Oq-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that

[T ()0t < [7g()0at < [T h()0at, if f >0, t € [a,b]r,
J h()0at < [, 9()0at < [ h <>at if <0, t€ [a,blr.

Then

(2.5.7)

/ f(t) <>at</ f(t) Oat</;f(t)h(t)<>at. (2.5.8)
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Proof. We prove the left inequality in (2.5.8), in the case f > 0. The
proofs of the other cases are similar. Since f is decreasing and g is nonnega-
tive, we see that

b b
/ F()g(t)0ut — /l SO0t
l b b
/ F(Hg(t)0at + / FOg(E)0at — / FOREOat
al
/f(t) Oat_/ f )]Qa

> /f Oat—f()/l[h() 9(6)] Oat
- / Fg(e)0at - 1) [ " h()0ut + £ /lbg<t><>at
> / F(Hg(H)0at — £(1) /abg(t)%Hf(l) /lbg<t><>at

/ F(g(t)0at — (1) [ / " g(1)0ut - / bg(t><>at]
/ F()g(t)0ut — £(1) /alg<t><>at

- / F(8) = D] g(B)0at > 0.

]
As a special case of Theorem 2.5.5 when a@ = 1 and o = 0, we have the
following results.

Corollary 2.5.1 Let a, b € TF with a < b and f, g, h : [a,blr — R be
A-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,bly. Assumel, v € [a,b]r such that

{ [T )AL < [P gt)At < [T )AL, if f >0, t € [a,b]r,
a / (2.5.9)
[T h(t)At < [T gt)At < [T h(t)At, if f<0,t€ [a,b]r.
Then
/ FORDAL < / F()g(b)AL < /Vf(t)h(t)At. (2.5.10)

Corollary 2.5.2 Let a, b € T* with a < b and f, g, h : [a,b]r — R be V-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that
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{ T RVE< [P g)VE< [Th(E)VE, if f >0, t € [a,b]r,
¢ a / (2.5.11)
[Th)Vt < [P gt)Vt < [T h(t)Vt, if f<0,t€ [a,b]y.
Then
b b o
/ FORE)VE g/ Ft)g(t)Vt g/ F)R(t)VL. (2.5.12)
l a a

Theorem 2.5.6 Let a, b € TF with a < b and f, g, h : [a,bly — R be Oq-
integrable functions such that f is of one sign and decreasing and 0 < g(t) <
h(t) for every t € [a,b]r. Assumel, v € [a,b]T such that

¥ b b
/ B(t)0ut = / 9(t)0at = /l h(t)Out. (2.5.13)
Then
b b
/l FOROut < /l FORE) — [t — FOIRE) — gO])Oat
b
< /f(t)g(t)@at (2.5.14)
< / (PR — £ — FONRE) — gO)Oat
< [ Fh)0ar.

a

Proof. In view of the assumption that the function f is decreasing and
that 0 < g(t) < h(t) on [a,b]r, we see that

l b
/[f(t)*f(l)}g(t)%fz(), /l[f(l)*f(t)][h(t)*g(t)]%tzo- (2.5.15)

Using the integral identity (2.5.6) together with the integrals in (2.5.15), we
have

IN

b b
/l FO(B)0at /l (FOR(E) — [£(8) = FONAE) - g(O)Oat  (25.16)

b
< / F(Hg(H)0at.

In the same way as above, we obtain that

b v
/ f)g(#)0at < / (@) = [f (&) = FR(E) = g()]) Oat
(2.5.17)

< | T R0t
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The proof of (2.5.14) is completed by combining (2.5.16) and (2.5.17). The
proof is complete. m

As a special case of Theorem 2.5.6, when o = 1 and « = 0, we have the
following results.

Corollary 2.5.3 Let a, b € TF with a < b and f, g, h : [a,b]r — R be
A-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,bly. Assumel, v € [a,b]r such that

vy b b
/a h(t)At:/a g(t)At:/l h(t)At. (2.5.18)
Then
b
/l ()AL

b b
< [ G@n) - - 10l - gwhae< [ g
< | T (FOR() — [7() — FOIRE) — gt < / " HOh()At

Corollary 2.5.4 Let a, b € T, with a < b and f, g, h : [a,b]r — R be
V-integrable functions such that f is of one sign and decreasing and
0 < g(t) < h(t) for everyt € [a,blr. Assumel, v € [a,b]r such that

¥ b b
/a h(t)VE = / 96Vt = /l h(t)Vt. (2.5.19)
Then
b
/Z FORVE

b b
< /l (f@ORE) = [f@) = FDIAE) — g@)])VE < / ft)gt)Vi
< /W(f(t)h(t) = [f@) = fF(IA(E) = g@®)])VE < /v fOR@)VE

Theorem 2.5.7 Let a, b € TF with a < b and f, g, h and ¢ : [a,blyr — R
be O -integrable functions such that f is of one sign and decreasing and
0 < (t) <g(t) <h(t)— @(t) for every t € [a,blr. Assumel, v € [a,b]t such

that
¥ b b
/ h(t)Oat = / 9(B)0ut = /l B8Ot (2.5.20)

/lbf(’” W*/' Jo(t)] Oat
/abf(t)g(t)oat</a F(H)h /| Jo(t)| Oat.  (2.5.21)

Then
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Proof. From the assumption that the function f is decreasing and that

0 < o(t) < g(t) < h(t) — @(t) on [a,b]r,

it follows that

b

[ 10 = sl - swiout + [ 1500 = sla®0ut

- /7|f<t>ff<v ) [h() <>at+/ () = FO)] 900t
> / ) = £ (D)0t + / () = (O] () 0at
- / 7(8) = 1) 9(D)0at. (2:5.22)

Similarly, we find that

! b
/ () — FDlg()0ut + / £ = FOR(E) — g(t)]Oat

l
b
[ 150 - 1@ e()0at. (2.5.23)

By combining the integrals in (2.5.5) and (2.5.6) and the inequalities (2.5.22)
and (2.5.23), we have the inequality (2.5.21). The proof is complete. m
2.6 Hermite—Hadamard Inequalities

The Hermite-Hadamard inequality was published in [70]. For the convex
function f : [a,b] — R, the integral of f can be estimated by the inequality

r(22) < @+ 10)

2
We note that the left-hand side of the Hermite-Hadamard inequality is a
special case of the Jensen inequality.

The results in this section are adapted from [26, 63, 64]. First, we begin
with an inequality containing the delta derivative on time scales.

Theorem 2.6.1 Let f : [a,b]r — R be delta differentiable function such that
m < fA(t) < M for every t € [a,blr for some numbers m < M. If there
exist I, v € [a, bl such that
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then

mha(a,b) + (M —m)ha(a,)

IN

/fAt

Mhsa(a,b) + (m — M)ha(a,l), (2.6.1)

IN

where h(t, s) is defined as in (1.4.5).

Proof. Let
k() = W F(t) := ha(a, o (t)),
and

G(t) == kA (1) = Wﬁ”ﬂ € [0,1].

Clearly F' is decreasing and nonpositive, and

/ “aar= IO =1 Jf;)__mm(b — ey —ap-0,

Note

b b
/l F()At = /l B (as 0 () At = — ha(a, )" = —ha(a,b) + ha(a ),

and

/A/ F(t)At = — ha(a,t)|} = —ha(a,).

Moreover, using the formula for integration by parts for delta integrals, we
see that

b b b
/F(t)G(t)At = /F(t)kA(t)At:hl(a,t)k(t)\g—/ R (a, t)k(t) At

—— [—(b— fe)+ [ bf(t)AHmhz(a,b)] -

Using Steffensen’s inequality for delta integrals, we obtain that

M—-m
S *hQ(avfy%

—ha(a,b) + ha(a,l) < : [—(b—a)f(b)+/bf(t)At+mhz(a,b)]

which yields the desired inequality (2.6.1). The proof is complete. m
Suppose that f is (n 4+ 1) times nabla differentiable on T, r+1. Using
Taylor’s Theorem 1.4.4, we define the remainder function by
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and for n > —1,
R p(t,s) th ts)fY (s / n(s,p(E) ST (O VE.

The proof of the next result is by induction (and we omit the proof).

Lemma 2.6.1 Suppose f is (n+1) times nabla differentiable on T n+1. Then

b t b
/ hoea (b p(s)) £ () Vs = / R s (a,5)Vs + / R 1 (b, ) Vs
a a t

Corollary 2.6.1 Suppose f is (n + 1) times nabla differentiable on T, n+1.
Then

b - b
[ hitapons T 6Vs = [ sV
ab . - ab §
/hn+1(b,p(8))fv (s)Vs = /Rn,f(a,s)Vs.

Our next result follows by induction (we leave the details to the reader).

Lemma 2.6.2 Suppose f is (n+1) times delta differentiable on """, Then

b t b
/ hot1(t,0(s) f2" (s)As = / Ry s(a,s)As + / Ry, (b, s)As,
a a t

where

n

Rog(tis) = f(s) = > hy(s,)f> (b).
§=0
Theorem 2.6.2 Let f be an (n+ 1) times nabla differentiable function such

that fV"H(S) is increasing and V" is monotonic (either increasing or de-
creasing) on [a,bly. Assume l, v € [a, bl such that

b—1 m <~ —a,if f¥V" is decreasing,
y—a m <b-1,if fV" is increasing.
Then
170 - ) < e Bt @OV om0

h7z+1(b pla))
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Proof. Assume that fV" is decreasing (the case where fV" is increasing
is similar and is omitted). Let F = —fV""" . Now, since fV" is decreasing,
we have F' > 0 and decreasing on [a, b]r. Define

g(t) = Pin (b p(1)) €[0,1], fort € [a,b]r and n > —1.

ht1 (b, p(a))

We will apply Steffensen’s inequality (see Theorem 2.5.2). Using the fact
that

;Lkarl(tv s) = _hk(tv p(s)), (2-6-3)

we see that

b )
| hua, = Sm200:8)
| s hnmb o / b pE)VE= b (@)

That is

then

b b vy
/ F(t)Vt < / g F(t)Vt < / F(t)Vt.
l a a
By Corollary 2.6.1 this simplifies to

~

;
t=l

N R O N
/ (t)‘t:a = hn+1(b7p(a)) /a Rn,f(amS)VS <f (t)

which gives the desired inequality (2.6.2). The proof is complete. ®

It is evident that an analogous result can be found for the delta integral
case using the delta results in Corollary 2.5.1 by putting h(t) = 1. As usual
a twice nabla differentiable function f : [a, bl — R is convex on [a, b]r if and

only if f¥* >0 on [a, b].

Corollary 2.6.2 Let f : [a,b]r — R be convex and monotonic. Assume I,
v € [a,b]r such that

I > b— hQ(b @) , > > Q(b’a) + a, if f is decreasing,
— p(a) - pla)
I < b- h2(b’ @) , v < < 2(b’a) +a, if f is increasing.
pla) —pla)
Then
pla) —a 1 b b—a
FO)+ S @) < s [ FOVES 10+ 57— @) = 1)
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Another slightly different form of the Hermite-Hadamard inequality is
the following inequality which is given by applying the Steffensen inequality
proved in Theorem 2.5.2.

Theorem 2.6.3 Let f : [a,b]r — R be convex and monotonic. Assume I,
v € [a,b]r such that

I > a+ ha(b, a)) N>b— M, if f is decreasing,
b—a b—a
ha(b ha(b

I < a+ M, y<b— M, if f is increasing.
b—a b—

Then
1 b
<5 [ POV IO+ @ - 10, (264

Proof. Assume that f is decreasing and convex. Then fv2 > 0 and
fY <0. Then F = —fV is decreasing and satisfies F > 0. For G(t) = &=t

b—a’

we see for every t € [a,b] that 0 < G(¢t) < 1 and F and G satisfy the
hypotheses in Theorem 2.5.2. Now, the inequality

b
b—lg/ G(t)Vt < v —a,
can be rewritten in the form
1 b
b—I1< — b—t) Vi<~ —a.
<y [ -ovea—a

We consider the left hand inequality which takes the form

1

—a

1 b
>b— _ —ph—
I2b—~ /a (b-t)Vt=b—

—a

b
/ (b—a+t—a)Vt,

which simplifies to

lZ a+ M
b—a
Similarly
72 h— hQ(baa).
b—a

Furthermore, note that [’ F(t)Vt = f(r) — f(s), and integrating by parts
yields that

b by b
/ F(t)G(t)Vt:/ %fv(t)Vt:f(a)— bia/ fP(t)Vt.
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It follows that Steffensen’s inequality takes the form

1

b
) =10 < f@) - [ P09 @) - 1),

which can be arranged to match the desired inequality (2.6.4). The case
where f is increasing is similar and is omitted. The proof is complete. m

Theorem 2.6.4 Let f : [a,blr — R be an n + 1 times nabla differentiable

function such that m < fV"" (t) < M for everyt € [a,b]r for some numbers
m < M. If there exist l, v € [a,b]T such that

[FY"(0) = f¥" (@) — m(b — a)]

b—1<
- M—-—m

< Y= a,
then
~ ~ b ~
Mhpia(b,a) + (M —m)hy,42(b,1) < / R, (a,t)Vt
< Mhuio(b,a) + (m — M)hyya(b, 7). (2.6.5)
where hy(t,s) is defined as in (1.4.7).

Proof. Let

F8) = mhnia (0] F(8) = hosa (b, p(2),

and

1

Git)y=kV" (t) = Y

[fv"“(t) - m} e [0, 1].
Observe that F' is nonnegative and decreasing, and

/ab G(t)Vt = % 1_ - [fV”(b) — ¥ (a) = m(b - a)} )

Now by (2.6.3), we get that

b b .
/ F(t)Vt :/ hnt1(b, p(8))VE = hypia(b, 1),
l l
and

/ ! F(t)Vt = hpio(b,a) — hnia(,7).
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Moreover, using Corollary 2.6.1, we have

/ RN r— / (b0 (£7(0) - m) v

1 b m
= n at t
M—m/a Bl )VE+ o=

_ /bR (@, )Vt — —"f5(b,a)
T M-m/), ™ M —m 204

R b
P2 (D, t)’

Using Steffensen’s inequality (2.5.3), we have

1
M—-—m

iln+2 (b7 l)

IN

b
/ R p(a, )V — min (b, a)]

hpy2(b,a) — hpyo(b, ),

which yields the desired inequality (2.6.5). The proof is complete. ®
The following inequality is an inequality of Hermite-Hadamard type for
nabla derivative and is derived from Theorem 2.6.4 with n = 0.

IN

Theorem 2.6.5 Let f : [a,blr — R be nabla differentiable function such that
m < fV < M for every t € [a,b]y for some numbers m < M. If there exist
l,v € [a,b]T such that

[f(b) = fla) = m(b—a)]

b—1<
- M—m

S’Y—av

then

b
mha(b.a) + O = m)has.) < [ FOTE- (b= a0
< Mhy(b,a) + (m — M)ha(b,7),
where hy(t,s) is defined as in (1.4.7).

Next we present some inequalities of Hermite-Hadamard type for
diamond-«a derivative on time scales. We start with a few technical lemmas.
The first lemma gives the relation between the integrals of delta, nabla, and
classical integrals on R and we present it without proof.

Lemma 2.6.3 Let f: T — R be a continuous function and a, b € T.

(i) If f is nondecreasing on T, then

b b b
(b—a)f(a) < / FBAL < / Fitydt < / £V < (b—a)f(b),

where f : R—= R is a continuous nondecreasing function such that

f(@) = f(t) forallt €T.
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(i1) If f is nonincreasing on T, then

b b b
(b—a)f(a) > / FBAL> / Fitydt > / F(£)VE > (b—a)f(b),

where f : R— R is a continuous monincreasing function such that

f@t)=f@t) forallt € T.

In both cases, there exists an

IO IO
P rwmae— [ v

/a bf(t)owt = / b f(t)dt.

Remark 2.6.1 (i). If f is nondecreasing on T, then for a < ar, we have

/a )0t > / 'y,

while if o > ar, we have

/ab F()Oat < /ab f(t)dt.

1). If f is nonincreasing on T, then for a < ar, we have
g

/a b Ft)0at < / b f(t)dt,

while if a > ar, we have

/ab F()Oat > /ab f(t)dt.

(iii) If T = [a,b] or f is a constant, then ar can be any real number from
[0,1]. Otherwise ar € (0,1).

ar

€ [0,1],

such that

Next we present a lemma which gives a relation between the existence of
the delta integral of a linear function and its corresponding nabla integral.

Lemma 2.6.4 Let f : T — R be linear function and let f : [a,b] — R be
the corresponding linear function. If f; fO)At = f: f(t)dt — C, with C € R,
then [ f(t)Vt = [7 F(t)dt + C.
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Let

1 b
xa:b_a/a t<>at7

and call it the a-center of the time scale interval [a,b]r. Now, we are in a
position to state and prove diamond-a Hermite-Hadamard type inequalities
on time scales.

Theorem 2.6.6 Let T be a time scale and a, b € T. Let f : [a,b]r — R be a
continuous convex function. Then

b b B

flaa) < 5 i a/a F)0at < = _xa“f(a) + xb”‘_ aaf(b). (2.6.6)
Proof. For every convex function, we have

ft) < fla)+ f(b[)) — i(a) (t—a). (2.6.7)

By taking the diamond-a integral we get

b b b ~ fla
[ rwoat < [ r@oat+ [ HOZID6ao.
(

b
= (- a)f(a) + LU T ( / toat—aa)—a)),

that is
b Ty — @

b J—

which is the right-hand side of (2.6.6). For the left-hand side, we use Theorem
2.2.5, by taking g(s) = s and F' = f to get that

; (ff <>> e 19005

fla) +

b—a - b—a

Hence, we have

b
fea) < 57 [ (5100

which is the right-hand side of (2.6.6). The proof is complete. ®

Remark 2.6.2 The right-hand side of the Hermite-Hadamard inequality
(2.6.6) remains true for all 0 < o < A, including the nabla integral, if
f(b) < f(a) and for all A < a < 1, including the delta derivative, if
f(b) > f(a), where xy is the A-center of the time scale interval [a, b]T.
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Let us suppose that f(b) > f(a). Then by taking the diamond-« integral
of the inequality (2.6.7), we get that

b _ fla b
/ FH0at < <b—a>f<a>+w</ t<>at—a<b—a>>

< (b—a)f(a) + (f(b) = f(a)) (xx —a)
< (b—xa)f(a) + f(b) (xx —a).

A

According to Lemma 2.6.3, the last inequality is true for fab tOat < f: tOt,
that is for @« > A. The same arguments work for A > a.

Remark 2.6.3 The left-hand side of the Hermite—Hadamard inequality
(2.6.6) remains true for all 0 < a < A, including the nabla integral, if
f is nonincreasing for all A < o < 1, including the delta derivative, if f
is nondecreasing

Let us suppose that f is nonincreasing. Then using Theorem 2.2.5, by
taking g(s) = s and F = f, we have

; (f;’ <>> < Ju F(5)0as
< do B0l

b—a —a

For ac > X, we have f; tOat < f: tOt and so

; (f;’ 0> _ (ff <>> . fff(8)<>a87

b—a b—a b—a
that is

b
fon) < 7 [ F5)0as.

The same arguments are used to prove the case when f is nondecreasing.

Theorem 2.6.7 Let T be a time scale, a, A € [0,1] and a, b € T. Let
f i [a, bt = R be a continuous convex function. Then

(2). if f is nondecreasing on [a, bl, then for all a € [0, \] one has

b
fl@a) < ﬁ/ f()0at, (2.6.8)

and for all a € [A, 1], one has

1

’ b
= | 100at <

— Tx I\ —a
b—a b—a

fla) +

£(b). (2.6.9)
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(i2). if f is mnonincreasing on [a,blr, then for all o € [0,\] one has the
inequality (2.6.9), and for all « € [\, 1], one has the inequality (2.6.8).

Now we prove an inequality of Hermite-Hadamard type with a weight
function.

Theorem 2.6.8 Let T be a time scale and a, b € T. Let f : [a,blr — R be a
continuous convex function and let w : [a,blr — R be a continuous function

such that w(t) >t for allt € T and f (t)0at > 0. Then

fowa) < T / £(t)

-Twoz xwa —a
B ﬁf (@) + ==~ 1), (2:6.10)

where Ty o = f; tw(t)Out/ fabw(t)o t

Proof. For the convex function f(t), we have

1) < (o) + TO=ID g

Multiplying this inequality by w(¢) which is nonnegative, we get after inte-
gration that

b b
[ wswoat < s [ wiour

LSO l / " (t)0at — 0 / bw<t><>at] :

1 b b_xw,a s
f:w(t)<>at/a f#)0at < ﬁf(a) + ﬁf(b%

that is

which is the right-hand side of (2.6.10). For the left-hand side, we use Theo-
rem 2.2.6, by taking g(s) = s and h(t) = w(t) and F = f to get that

f(f w(s)sQas ) f f(s
f w(s)Oas f ( )S<>a

Hence, we have

b
f(@w,a) < fbw(lt)Ot/ w(t) f(t)0at,

which is the left-hand side of (2.6.10). The proof is complete. ®

Remark 2.6.4 If we consider concave functions instead of the convex func-
tions, the inequalities (2.6.6), (2.6.8)—(2.6.10) are reversed.
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2.7 Cebysev Inequalities

The Cebysev inequality (see [110]) is given by

b b b b
/ p(z)de / p(2) f(2)g(x)de > / p(2)f(z)dz / p(@)g(@)dz,  (27.1)

where f, g : [a,b] — R are integrable functions both increasing or both
decreasing and p : [a,b] — R is an integrable function. If one of the func-
tions f or g is nonincreasing and the other nondecreasing then the inequality
in (2.7.1) is reversed. The special case of (2.7.1), when p =1 is given by

/abf(x)g(x)dx > b_la/abf(x)dx /abg(x)dx. (2.7.2)

For each of the above inequalities there exists a corresponding discrete ana-
logue. The discrete version of (2.7.1) is given by

> b)Y pDaldb(i) = Y p@)al) Y opldg@),  (273)

i=1

where a = (a(1), a(2),...,a(n)), b = (b(1), b(2),...,b(n)) are two nonde-
creasing (or nonincreasing) sequences and p = (p(1), p(2),...,p(n)) is a non-
negative sequence with equality if and only if at least one of the sequences a
or b is constant. The discrete version of (2.7.2) is given by

S p(ialib(i) = = 3" ali) Y o) (27.4)
i=1

i=1 i=1

and is also called the discrete Cebysev’s inequality.

In this section we obtain Cebysev’s type inequalities on time scales which
as special cases contain the above continuous and discrete inequalities. The
results are adapted from [26, 156].

Theorem 2.7.1 Suppose that p € Crq([a,b]T,[0,00)). Let fi, fa, ki1, ko €
Cra(la, b]T,R) satisfy the following two conditions:

(C1). fa(x)ka(z) > 0 on [a,b]T,

(C9). ﬁgg and ]Z;Eg are similarly ordered (or oppositely ordered), that is,

for all z, y € [a,b]T

<f1(x) fl(y)> (:283 _ ’;iz;) >0 (or <0).

fa(x)  fa(y)
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Then
Lot A AW || k) k()
*/a/ap(m)p(y) (@) fz(y)‘ ka(a)  ka(y) 'Am
_ ’f;pmfl(x)kl(xmm Jyp@h@ka@Az | oo
[, @) fo(x)ki(z) Az [ p(z) fo(x)ko(z)Az |~ 7
(2.7.5)

Proof. Let z, y € [a,b]r. Then it follows from (C}), (C3) and the identity

fi@) A@) || @) k)
PEPW) | ) foly) H ka(z) Faly)

= ) Rl a(at) (140 - L) () ),

that (2.7.5) holds. The proof is complete. m
Putting fi(z) = f(z), k1(2) = g(x) and fo(z) = k2(z) =1 in Theorem
2.7.1, we have the following delta CebySev’s type inequality on time scales.

Corollary 2.7.1 Suppose that p, f, g € Crq([a,b]T,R) with p(x) > 0 on
[a,b]T. Let f(z) and g(x) be similarly ordered (or oppositely ordered). Then

b b b b
/ p(z) Az / p(@)f(@)g(@) Az > (<) / pl(a)f (2)Ax / p(x)g(z) Az
(2.7.6)

Remark 2.7.1 Let p, v € Crq([a, T, [0,00)). If f(x) and g(x) are similarly
ordered (or oppositely ordered), then it follows from (2.7.6) that

b b
/ p(z) Az / p(@) f(1())g () A
b b
> (<) / p()f (1(2)) Az / p(2)9(1(x)) Az

Remark 2.7.2 Let p, fi € Cra([a,b]r,R) for i =1,2,...,n with p(x) > 0
on [a,blr. Suppose that fi(x), fo(x),..., fu(x) are similarly ordered. Then
we have from (2.7.6) that
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b n=l 4
( / p(x)Ax> / (@) (11 (@) fo(a) ... ful2)) A
b n—2 b b
- ( / p(xmx) ( / p(x)Ax> ( / (@) (F1(2) fola) .. <x>>A:c>
b n—2 b b
> ( / p(x)Ax> ( / p(xm(x)m) ( / p()(fa(2) fo))Ax)
b n—3 b b
> ( / p(w)Ax> ( / p<x>f1<x>Ax> ( / p(w)fz(w)A:v>

> > (/abp(m)fl(m)Ax> (/abp(x)fg(x)Ax> </abp(x)fn(x)Ax> .

This gives us that

b n b b
( / p<sc>Az> / (@) (1(@) fa(@) ... fo(x)) Az > ( / p(x)ﬁ(w)Aw)
( > ( :r) . (2.7.7)

In particular, if f1 = fo = ... = fn, then

-1

—1 n

( / bpumx)n /abp(m)(fn(m))"Ax2< /abp(x)f(m)Ax> |

Putting f(z) = %, g(z) = il—(i; and p(x) = fa(x)g2(z) in (2.7.6), we
have the following delta Cebysev’s type inequality on time scales.

Corollary 2.7.2 Suppose that fi, fa, g1, g2 € Cra([a,b]T,R) with fo(x)ge
(z) > 0 on [a,b]r. If fl(x) nd glgg are both increasing or both decreasing,
then

/f1 x)g1(z Aa:/fg x)g2(z Ax>/f1 x)go(x A.Z‘/fg x)g1(z)Awx.

(2.7.8)

If one of fl(i) or Ei; s nonincreasing and the other nondecreasing then the

inequality in (2 7. 8) is reversed.

We notice that if fi(z) = f(z)f2(x), g1(x) = g(x)g2(x) and p(z) =
f2(x)ga2(z), then the inequality (2.7.8) reduces to the inequality (2.7.6).
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Theorem 2.7.2 Let f € Cr4([a,b]r,[0,00)) be decreasing (or increasing)
with f; zp(z)f(x)Az > 0 and f:p(x)f(x)Ax > 0. Then

Lo, Lot ae
[P apa)f@)ae T [Up(a

(2.7.9)

Proof. Clearly, for any z, y € [a, b]T,

b b
/ / F@) F@)p@p)(y — o) (@) — Fu)AzAy > (<),

which implies inequality (2.7.9). The proof is complete. m

Remark 2.7.3 Let f € Cra([a,b]r,[0,00)) and n be a positive integer. If
p and g are replaced by p/f and f™ respectively, then the CebySev inequal-
ity (2.7.6) is reduced to the inequality

/ / ffc Ax >/ )Ax/ab () (f(2))" ™" A,
which implies that
/ ' @) (f(@)" A ( / b 7;("”%)
/ab()Ax/2 nlA/f:z;
(/abp(x)m:> /abp(x) (f(x)" 2 Az,

provided f and f™ are similarly ordered. Proceeding we get

[ v s s ( [ Ax)" . ( /abp(mx> o

Theorem 2.7.3 Ifp, f € Crq([a,b]T,[0,0)) with f(z) > 0 on [a,bly and n

a positive integer, then

bp(x) ! b n b n
< ’ MAz) </a p(x)f (:B)A:E> > (/a p(x)Ax) . (2.7.10)

Y

v
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Proof. It follows from f(xz) > 0 on [a,b]r that f™(z) and 1/f(z) are
oppositely ordered on [a, b]r. Hence by (2.7.6) we have

/ @) (F(&))" As ( / b ij@m) ’
[ v </b ?g“) [ v e s

>
> ( / bp(x)Ax>2 ( / b pE”;;A) / @) (Fa))" A
> ..></abp(a:)A:E n,

which is the desired inequality (2.7.10). The proof is complete. m

Theorem 2.7.4 Let g1, g2,-..,9n € Cra([a,b]T,R) andp, h1,ha, ..., hp_1 €
Crq([a, b]T, [0,00)) with g,(x) >0 on [a,b]r. If

91(2)92(2) ... gn-a1(x) . hn-1(2)
hi(x)ha(x) ... hp_1(x) gn(x)

are similarly ordered (or oppositely ordered), then

b " p(x)g1(2)ga() .. gn_1(2)
/a p(x)gn(a:)Ax/a hi(x)ha(z) ... hyp_1(x) Ar

(2)
b " p(x)g1(2)g2() . . . gn(2)
> (S)/a p(I)hn_l(I)ACC/a hl(l‘)hz(l‘)...hnfﬂx) Az.
(2.7.11)

Proof. Taking

_ 91@)e(@) - gn () _ _ _
h@) = D) hom (@) F@ = ham1(@), £2(@) =1, and k(@) = gn(@),

in Theorem 2.7.1, we get the desired inequality (2.7.11). The proof is
complete. m

Theorem 2.7.5 Let b, fla f27 ) fn € C’l‘d([a) b]T7 [05 OO)) and g1, 92,---,
gn € Cra([a,b]r, [0, oo)) If the functions f1, f;z ye o, 12— are similarly ordered

and for each pair

? gn
, gk—1 s oppositely ordered for k =2,3,...,n, then

b
/p(w)ﬁ(w) b gf”§(>)Aw
> [P p(x) fi(2)Az [ p(@) fo fbp

) JAT (5 719)
12 p(@)g () Az [ p(a )92 LY p(a Ax
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Proof. Let fi, fo,..., fn be replaced by fi, %, .. f’ll in (2.7.7), and

’ gn

we obtain

b n=loy
Fale) o) . o)
</ Ww) [ vtors 1“)91( )02 .- g ()

> </ z)fi(z AJ;) H/ @ Az. (2.7.13)
s Ja

Also, since g;{:’ grk—1 is oppositely ordered for k = 2,3,...,n, it follows

from (2.7.6), that

. b b b x
[ pwaa ( / p(x)fk<m>m>< ( / W)gkl(@“)/ P g

Thus

/bp(x) LIORVES Ji @) () p(e) () )

gr—1() N f p(2)gp—1(z)Ax.

This and (2.7.13) imply (2.7.12). The proof is complete. m

Theorem 2.7.6 Let p, f1, f2,..., fn € Cra([a,b]T,[0,00)) and ki, ko,...,
kn_1 € C’Td([a,b]T,R). If

fi(@) fa(z) ..
kl (ﬂf)k

Sfima(z) and ki—1(x)
2(1‘) e k‘i_l(l“) fl(l‘) ’

are similarly ordered (or oppositely ordered) for i = 2,3,..,n, then

( [ vrn (@Ax) ( / bp(x)fz(ﬂc)Ax> ( [ v m)
> (<) ( / bp(x)ka(xmz) ( / bp(:c)@(x)m) ( [ oottt m)

b T
x/ p(z) (()IZJ(C)) f"((l)m. (2.7.14)
Proof. If fi(x), ki(z), fo(x) and keo(z) are replaced by fi(x), 1, k1(z),

]{2(“:) in Theorem 2.7.1, then we obtain
1(z)

b b b
/ p(2)f1(2)Ax / p(a) fa(x)Az > (<) / p(2)k1 (@) Aa / ()M{i” z.

a a a a
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Thus the theorem holds for n = 2. Suppose that the theorem holds for n —1,
that is

( [ vrn (@m) ( / bp(x)fz(x)Ax> ( [ v Ax)
> () (/abp(:c)kl(x)Ax> </abp(x)k2(x)Ax> </abp(iﬂ)kn_2(x)Am>

x /bp(x) h(z)fa(2) ::f"*l(x) Az, (2.7.15)

if
and k‘ifl(.’l?)
kl(I)kQ(I)kl_l(I) fl(l‘) ’

are similarly ordered (or oppositely ordered) for i = 2,3,..,n—1. Multiplying
both sides of (2.7.15) by f;p(x)fn(x)Ax, we get that

b b b b
/p(m)fl(:r)Am/ p(m)fg(a:)Am/ p(as)fn_l(m)Ax/ p(x) fn(z)Ax
b b b
> (<) ( / p(x)kmxma:) ( / p<x>k2<x>m>...< / p(x)kn_2<x>m)

L L@@ faale) [
X /a p(x) F1(2)ka () o () A:E/a p(z) fn(z)Ax. (2.7.16)

It follows from Theorem 2.7.5 that

b b
/a p(x) Ezg 2% £Z ;8 Az /a p() fr(z) Az
fi(z

LGN
> (<) / e s R

This and (2.7.16) imply

b b b b
/ p(m)fl(x)Ax/ p(:r)fg(m)Am/ p(m)fn_1(:r)Aa:/ p(x) fn(z)Ax
b b b
> (X) (/ p(a:)kl(x)Ax> (/ p(ﬂc)k‘g(x)Ax) </ p(x)knl(x)Aa:>

b
fi(@)fa(x). .. fu(z)
X/a p(x)kl(x)kg(x)...kn,l(x) Az.

Then, by induction we have the desired inequality (2.7.14). The proof is
complete. m
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Remark 2.7.4 Let k, € Crq(a,b]T,R). If fi(x), fa(z),..., fn(z) and

ki(x), ko ()., ..., kn_1(z) are replaced by f1(x)fo(2)... fn(x), k1(z)ka(z). ..

kn(z), fi(@)ke(z)...kn(z), ki(z)fo(z)ks(z).. . kn(x),..., ki(z)ke(x)...
—2(@) fr—1(2)kn(x) in Theorem 2.7.6, respectively, then

b b
/ p(@)f1( fa(@)> ( / p(l’)kl(w)kz(x)~--kn(w)AfL’>
b
( . kn (a:)Aa:) (/ p(z)k1(x) fa(x)ks(z) ... kn(w)Aa:>

. / Pk (2)ka(2) .- 1 (2) o () A (2.7.17)

if ]]: (z) >0 fori=1,2,...,n and k1 (z)ka(x) ... kn—1(x) > 0 on [a,b]r.

Remark 2.7.5 Letting fi1(z) = fo(x) = ... = fo(x) = f(z) and ki1 (z) =
ko(z) = ... = ko(z) = kv1(2) in (2.7.17) with k(z) > 0 on [a,b]r, we
obtain a Holder type inequality on time scales

n

b b b n—l
</ p(ff)f(x)k(x)ﬁff> S/ p(x) (f(2)" Az (/ P(w)k"nl(x)ﬁx> ~

Remark 2.7.6 Let p, f, g € Crq([a,b]T,[0,00)). Putting f1(x) = (f(z))"

g(x), folx) = fi3(x) = ... = faolx) = g(x), and ki(z) = ka(x) = ... =
kn—1(z) = f(x)g(x) in (2.7.14), we see that

b n b b
( / p(m)f(x)g(x)Ax> < / p(z) (f(2))" g(x)Ax ( / p(x)g(xmx>

Remark 2.7.7 Taking ki(x) = ko(z) = ... = kp_1(z) = (fi(x)fa(z) ...
fn(ﬂj))% in (2.7.14), we obtain

b b b
(/ p(if)fl(ﬁ)A$> </ p(:r)fg(m)Ax> (/ p(x)fn(x)Ax>
b ) n
> < / p(ﬂﬂ)(fl(ﬁc)f2(x)--.fn(x))nA:c> ,

i .
if fi > 0 on [a,b]T and %(fl(z)fg(z)fn(x))" (i = 1,2,...,n) are
stmilarly ordered.

n—1
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Remark 2.7.8 Taking ki(x) = ka2(z) = ... = kn—1(z) = 1 in (2.7.14), we
get the Cebysev type inequality

b b b
< / p<x>f1<x>m> ( / p<x>f2<x>m>...( / p(w)fn(x)A:v>
b n=1 4
< ( / p(m)Am> / P(@) f1(2) fol) ... ful(2) A

if fi >0 on[a,br and fi(x) (i=1,2,...,n) are similarly ordered.

We end this section by considering the Cebysev inequality in the case of
nabla integrals; see [26].

Theorem 2.7.7 Let f and g be both increasing or both decreasing in [a,b]t.

Then
/f Vt>—/ it w/b )V, (2.7.18)

If one of the functions is increasing and the other is decreasing, then the
inequality is reversed.

Now, we give some applications of Theorem 2.7.7.
Theorem 2.7.8 Assume that f¥"" is monotonic on [a,b]r and let
8 ~ n+1
B g(t8) = £(5) =3l )7 (s V) = [ sl @V
k=0 ¢

(1). If fvn+1 is increasing, then

/ab R p(a, )V {fvn(b) e <a)] sl

b—a
> 17 @ = 7 O)] s (b,0), (2.7.19)

(#). If V" s decreasing, then

/ab R (0, )V — an e (a)] Pzl )

b—a

< 7@ T O] huia,0).

Proof. The proof of (ii) is analogous to that of (i) so we will just consider
(7). Let F(t) = fvn+1(t) and G(t) = hy (b, p(t)). Then F is increasing and G
is decreasing by assumption. From inequality (2.7.18), we see that

/ " F)GE < ﬁ / "R / G (2.7.20)
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By Corollary 2.6.1, we see that

b

b
/F Vt_/ hn+1(b,p(t))fvn+l(t)vt=/ Ry s(a, t)Vt.

a

We also have
b . n b bA .
/ POVt = 17" ()= (a), and / GVt = / B (b, p(1))VE = Frnya(b, ).

Thus the inequality (2.7.20) implies that

/a sl 9 < e (70 = 1 @) bt

: ntl .
Since fV" is increasing on [a, b]T,

17 @has,0) < o= (£ ) = 7 (@) husa(bia)
< 7T (0)hnsa(b,a),
and, we have
[ Fustaner= i (570 - 17 @) ol

/ Ry (a, )Vt = V" (0) iy ya(b, a).

Now Corollary 2.6.1 and fvn+1 is increasing imply that

vn+1

41 b N b 5 bA
7 ) / s (b, () VE > / R,V > 17" (a) / g1 (b, p(8)) V2,

which simplifies to

b
FV (D) b2 (b, a) / Ry s(a, )Vt > V" (a) / P2 (b, @) VE.

a

We now have inequality (2.7.19). The proof is complete. m

Theorem 2.7.9 Assume that f¥"" is monotonic on [a,b]r.

(@) If A s increasing, then

b A™(p) — FA™ (g
0< (-0 [ Ry sean- (O 0) 0.0)

< [P -2 @] garav,a). (2.7.21)
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(id). If A" s decreasing, then

b A" _ A",
02(—1)”“/ Rn,f(b,t)w{f (bg_i (@) Gnia(b,a)

> [fm“(b) - fﬁ"ﬂ(a)} gns2(b, a).

Proof. The proof of (i7) is analogous to that of (i) so we only consider
(i). Let F(t) = f2"(t) and G(t) = (=1)"*'h,41(a,o(t)). Then F and G
are increasing. Inequality (2.7.6) with p =1, f = F and g = G, gives

/bF(t)G(t)At > bia /bF(t)At/bG(t)At. (2.7.22)

By Lemma 2.6.2 with t = a,

b

/ FEWAL = (-1 / Bosa(a,o(6) F2" ()AL

b
= (—1)"“/ Ry, ¢ (b, t)At

We also have f; F(t)At = fA2"(b) — A" (b) and

b b
[ a0t = 0 [ ao®)a = g0

Thus by (2.7.22), we have

0< (-1 n+1/ R0 1)~ - [£2"(0) = 17 ()] gsalbra).

: ntl L :
Since fA"" is increasing on [a, b]T,

727 ®) = 127 0)| gusabia) < f

An+1 An+1

(@)gn+2(b,a) < (b)gn+2(b, a),

—a

and we have

(—1)nH / R s (0, )M — " (@)gusa(br )

/ PV Ll U i U)

nt2(b, a).
b—a gn+2(b,a)

Now, from Definition 1.4.1, since

gn(t7 s) = (_1)nhn(8ﬂ t),
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we have by Lemma 2.6.2 with ¢ = a that
b b n+1
(0" [ Rug0.080= [ gria(o(0. 02 ()
Since fAn+1 is increasing, we get that

b b
P20 [ gn®.0at = (17 [R5
b

Y

2 (a) / dnia (0(8), @) At

which simplifies to

b
A O)gnia (b.a) = (=1 / Ro g (b,)A > f2"7 (a)gnta (b, ).
We now have (2.7.21). The proof is complete. m
Remark 2.7.9 In Theorem 2.7.8 (i), if n =0, we obtain

ha(b, a)
b—a

b
/ F(OVE< (b a)f(a) + (F(b) — f(a)). (2.7.23)

Theorem 2.7.10 Assume that f is nabla convex on [a,blr, that is, fvz >0
on [a,b]r. Then

ha(b, a)

b
[ roe-ave<o-arm - 22000 - fa@). (@272

Proof. If F = f¥V and G = t —a = hy(t,a), then both F and G are

increasing functions. By Cebysev’s inequality we see that

b b b
/a fp(t)(t—a)VtZﬁ/a fv(t)Vt/a hi(t,a)Vt.

Using nabla integration by parts on the left-hand side we get the desired
inequality (2.7.24). The proof is complete. ®

The following result is a Hermite-Hadamard type inequality for time
scales and is obtained by a combination of (2.7.23) and (2.7.24).

Corollary 2.7.3 Let f be nabla convexr on [a,bly. Then

A ORSI0 f(a) + f(b)
b—a/a 2 vis 2




Chapter 3

Opial Inequalities

All human knowledge begins with intuitions proceeds thence to concepts
and ends with ideas.

Kant (1724-1804).

In 1960 Opial proved that if x is absolutely continuous on [a,b] with
z(a) = x(b) = 0, then

/\x dt<(b4a)/ab

We refer the reader to [9] for results on Opial type inequalities. We also note
if  is absolutely continuous on (0, b) with z(0) = 0, then

b/b
x(t dt<
[t ),

The discrete version of (3.0.1) was proved by Lasota [101] and is given by

h—1 h—1

1[{h+1
S leida] < 5 [;L] 3 awif?, (3.0.3)
i=1 i=1

where {z;}o<i<n is a sequence of real numbers with zg = z;, = 0 and [z] is
the greatest integer function. For a real sequence {z; }o<i<p With o = 0, we
have

.2
‘ dt. (3.0.1)

z (t)

z (t) ‘2 dt. (3.0.2)

h—1 h 1 h—1
B 2
Z iy < —— Z |Az;|?. (3.0.4)
i=1 =0
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The chapter is organized as follows. In Sect. 3.1 we establish some first order
Opial type inequalities and in Sect. 3.2 we establish some generalizations.
Section 3.3 discusses inequalities with two different weight functions and
in Sect. 3.4 we present some Opial type inequalities involving higher order
derivatives. In Sect.3.5 we obtain a sequence of Opial type inequalities for
first and higher order diamond alpha derivatives on time scales.

Throughout this chapter (usually without mentioning) the integrals in the
statements of the theorems are assumed to exist.

3.1 Opial Type Inequalities I
In this section, we will present some inequalities of Opial’s type on time

scales with first order derivatives. The results in this section are adapted
from [49, 90, 123, 138, 139, 158].

Theorem 3.1.1 Let T be a time scale with 0, h € T. For a delta differen-
tiable x : [0, hly — R with x(0) = 0, then

h h 9
/ |m(t)+x”(t)\|xA(t)|At§h/ |22 (t)|” At, (3.1.1)
0 0

with equality when x(t) = ct.

Proof. Consider y(t) = fot |22 (s)| As. Then y2(t) = |22 (t)] and |z| < .
By the Cauchy—Schwarz inequality, we have that

h h
/ ja(t) + 27 ()] | (1) At < / (e(t)] + 27 (1)) = (1) At
0 0

A

IN

h h
/ (y(t) + 47 (1) y™ () At = / (12(6)> At = ()
0 0

no 2 h s
</0 E (t)|At> gh/o |22 (t)|” At,

which is the desired inequality (3.1.1). Now, let z(t) = ct for some ¢ € R.
Then 22(t) = ¢ and it is easy to check that equality holds in (3.1.1). The
proof is complete. m

Example 3.1.1 Consider the initial value problem

1
Y2 (1) :17t+¥y2(t), 0<t<1, y(0)=0. (3.1.2)
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Let y(t) be a solution of (3.1.2) and let R(t) =1 —t¢+ fg ’yA(s)’2As. Let
t €10,1)r. Then using (3.1.1), we have

A0l = |1-k 00| < -+ 3R
= 1—t+% /0 (yQ(S))AAs
< 1—t+%/0 (yQ(s))A‘As

_ L¢+%AMM@+W@MNMAS

IN

1—t+ /Ot (yA(zf))2 As = R(t).

Hence RA(t) = —1+ |y (1)) = =1+ |y2(#)|* < R2(t) — 1 and R(0) = 1. Let
w be the unique solution of

w?(t) = (14 R(t)w(t), w(0)=1.

Now, because w(t) >0 and (R — 1) = R® < R%(t) — 1, we have

ww ww

(R—l)A w(R—-1)* — (R—Dw®  wR®—(1+R>)w

wR? — (1 + R*)w

ww°

<0.

Thus

Rt)—1 RO -1 [*(R-1\"
moRE o ) ar<o

and hence R(t) < 1. Therefore y*(t) < |y®(t)] < R(t) < 1 and hence
y(t) <t.

The following theorem gives the nabla Opial inequality on time scales.

Theorem 3.1.2 Let T be a time scale with 0, h € T. For a nabla differen-
tiable x : [0, h]p — R with x¥ (t) ld-continuous and x(0) = 0, then

/0 [2(t) + 2P (t)] |2V (t)| At < h/o \xv(t)]2Vt, (3.1.3)

with equality when x(t) = ct.
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Proof. Consider y(t) = fot |2V (s)| Vs. Then yV (t) = |xv(t)‘ and |z| < y.
By the Cauchy—Schwarz inequality, we have that

h h
/0 [2(t) + 2 ()| [ (8)| 9t < / (le(t)] + 2 (1)) 27 (£) V1t

IN

h h v
/0 (w(t) + (1) ¥ () V't = / (2(1)" Vit = y2(h) — y(0)

h 2 h )
(/O |xV(t)|Vt> gh/o |2V (t)]” Vt,

which is the desired inequality (3.1.3). Now, let z(t) = ¢t for some ¢ € R.
Then zV(t) = ¢ and it is easy to check that equality holds in (3.1.3). The
proof is complete. m

We next present a generalization of Theorem 3.1.1 when 2(0) need not be
equal to 0.

Theorem 3.1.3 Let T be a time scale with 0, h € T. For a delta differen-
tiable x : [0, h]Tr — R, then

h h h
/ |x(t)+x”(t)||xA(t)’At§a/ ]xA(t)fAHzﬁ/ |22 (t)| At, (3.1.4)
0 0 0

where

a €T with dist(g, a) = dist(g,'ﬂ‘), (3.1.5)

and f = max{z(0), xz(h)}.
Proof. We consider

t h
y(t) :/0 }mA(t)’At, and z(t) :/t }mA(t)’At.

Then y2(t) = |#2(t)] and 22 (t) = — |22 (1),
[z < 2(t) = z(0)] + |2(0)] = /0 xA(t)At’ +z(0)]
< [ s a4 [o(0)] = u(t) + [2(0)],
0



3.1. OPIAL TYPE INEQUALITIES I 97

and similarly |z(¢)] < z(¢) + |z(h)]. Let w € [0,h]y. Then applying the
Cauchy—Schwarz inequality, we get that

/Ou l2(t) + 27 ()] |22 (t)] At

< ") + 7 (1) + 2[2(0)] yA ()AL

0

/O " () + 47 () At +2[2(0) / YA = () +2[2(0)] y(u)
u ’ l‘A 2 X b xA . i
< /0 25 (0))% At + 2| (o)|/0 125 (1)) At (3.1.6)

Similarly, we obtain that

/|x L% ()] |22 ()] At < 22(w) + 2 |2(h)] 2(w)
h
< (h—u)/ |xA(t)|2At+2\J;(h)|/ A0 AL (3.17)

By putting v(u) = max{u, h — u} and adding (3.1.6) and (3.1.7), we have

/|x +27(t)| |22 ()| At < v(u /|x |At+2ﬁ/ |22 (t)| At.

This is true for any w € [0,h]r, so it is also true if v(u) is replaced by
min,eo,n), v(u). However, this last quantity is easily seen to be equal to a.
The proof is complete. =

The proof of the following theorem follows from the proof of Theorem 3.1.3
when = 0.

Theorem 3.1.4 Let T be a time scale with 0, h € T. For a delta differen-
tiable x : [0, h]r — R, with x(0) = z(h) = 0, then

h h 9
/ |z(t) + 27 (¢)] |22 ()| At < a/ |z2(t)|” A, (3.1.8)
0 0

where « is given as in (3.1.5).

In the following, we give some generalizations of the above inequalities
which lead to Opial type inequalities with weight functions.

Theorem 3.1.5 Let T be a time scale with 0, h € T and w(t) be a positive

and rd-continuous function on [0,h]y such that foh wl=I(t)At < 00, ¢ > 1.
For a delta differentiable z : [0, hly — R with x(0) = 0, then

hx x° 2 hwlfq ' hw 22
/0\<t>+ ol <t>|Ats</O <t)At> (/ () |22 0)| At)

(319)

SN

where p > 1 and 1/p+1/q = 1 and with equality when x(t) = cfo
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Proof. Consider y(t) = fg |22 (t)| At. Then y2(t) = |#2(t)] and |z| < y.
By the Cauchy—Schwarz inequality, we have that

/0 Jalt) + 27 (1) |22 (1)] At < / (e(t)] + 22 (1)) = (1) At

IN

/<<>+y<>> <>At—/ (12(1)™ At = 42(h)

(/ 2 |At> ( W (O Ht)jA(t)At)Q
([ troy) ([ eteors)

The proof is complete. =

IN

Theorem 3.1.6 Let T be a time scale with 0, h € T and w(t) be a positive

and rd-continuous function on [0, h]r such that foh w!TI(t)At < oo, ¢ > 1.
For a delta differentiable x : [0, hly — R, then

e [ O

where p>1 and 1/p+1/qg=1, B =max{x(0), z(h)}, and
« h

Y= max{/ wl_q(t)At,/ w1 AL,
0 a

T).

and

h h
o € T with dist(g,a) = dist(g,

Proof. The proof is a combination of Theorems 3.1.3 and 3.1.5 and hence
is omitted. m

Corollary 3.1.1 Let T be a time scale with 0, h € T and w(t) be a positive

and rd-continuous function on [0, h]y such that foh w!TI(t)At < o0, ¢ > 1.
For a delta differentiable x : [0, h]r — R with x(0) = x(h) = 0, then

h h 2/p
/|x(t)+a:"(t)\|xA(t)|At§U2/q (/ w|xA(t)‘pAt> . (3.1.10)
0 0

where p>1 and 1/p+1/q=1 and

v= max{/oa w' () At, /ah w' () At}
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and
) _h
a € T with dzst(g, ) = dzst(g, T). (3.1.11)

Theorem 3.1.7 Let a,b € T and q, f € CL ([a,b]r,R) with f(a) =0. Then
b

b
/q(n)|[f(n)+f”(n)]fA(n)|An§Kq(b,a)/ (fAm)*An,  (3.1.12)

a

where
1/2

K, (b,a) := (2/ () [o(t) — a] At) , for t € [a,b]y. (3.1.13)

Proof. We have

0= [ £man< (- aygl) " (3.1.14)
where
(t) ::/ |fA(77)|2A77, for ¢ € [a,b|t. (3.1.15)
Hence, we get
[gA ]1/2 |fA ()|, for all t € [a,b]r. (3.1.16)

Then using
all? 4 g2 < 2(a+6)1/2 for all o, €R*

and Holder’s inequality we have

b
/ a)| [F@) + 17 )] 2 ()| A

/\q |+ 1£7m)) | £ ()] An
< [l )72 (g + (a7 (6> ) "/*
<2/ la(n — @)% ([g(n) + g” ()] > () /* An

/ la(n) 1/2<([9(77)]2)A>1/2A77

1/2
< Ky(b.0) ( / b [(g(n)ﬂA An>

= K,y(b,a)g(b). (3.1.17)

Thus, substituting (3.1.15) into (3.1.17), we see that (3.1.12) is true. The
proof is complete. m
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The following result is complementary to Theorem 3.1.7.

Theorem 3.1.8 Let a,b € T and q, f € Cly([a,b]r,R) with f(b) =0. Then

b b
/ q(n)!(f(n)+f”(n))fA(n)!AnSLq(b»a)/ (fAm)*an,  (3.1.18)

where

1/2

b
Ly(b,a) == (2/ @) [b—1] At> , for te€la,blr. (3.1.19)
Proof. Setting

b
h(t) ::/t ffA(n)|2An, for t € [a,br,

we have
1/2

b
£(t) = / [ )] An < (b k(1))

for all ¢t € [a, b]y. Following the steps in the proof of Theorem 3.1.7 we obtain
the required result. m

The next result combines Theorem 3.1.7 and Theorem 3.1.8 on the seg-
ments [a, ¢]t and [c, b]t, respectively.

Theorem 3.1.9 Leta,b € T andq, f € Cly([a,blr,R) with f(a) = f(b) = 0.
Then

2

/ a0 [ + 57 0] 1 )] A < max {Ky(0,), Lo ) / "(r2) s

holds for any c € [a, blr, where K, L, are as defined in (3.1.13) and (3.1.19),
respectively.

Corollary 3.1.2 Let a,b € T and q, f € Cly([a,b]r,R) with f(a) = f(b) =
0. Then we have

b
/ )| [f() + F7 ()] 2 ()| An

b
< minT{max{Kq(b, c),Lq(C,a)}}/ (fA(U))2A77v

c€la,b]
where K, L are as defined in (3.1.13) and (3.1.19), respectively.

In the following, we establish some Opial dynamic inequalities with two
different weight functions.
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Theorem 3.1.10 If r and g are positive rd-continuous functions on [0, h]r,
foh (At/r(t)) < oo, g nonincreasing and x : [0, hlyr — R is delta differentiable
with x(0) = 0, then

" At

h A )
55 | roae et o ar

(3.1.20)

h
/ ¢ (1) |(x(t) + 27 (1)) 2 (1) At < /
0 0

Proof. We consider
t
) = [ Va5 e)| s

Then y2(t) = \/q7(t) |2*(t)| and since for 0 < s < ¢ we have that o(s) < t.
This implies that ¢°(s) > ¢(t), and then we get

toa Cla(s) | a _ v
|;v(t)|§/0 E: (s)|As§/0 \/g]x (8)|A8—\/@.

Apply the Cauchy—Schwarz inequality and we have

h
/0 ¢ (1) |(x(t) + 27 (8)) 2 (1) At

SN ORI 0 ) yA ()
/0 e (x/@Jr VEn ) Vem
h
/O (y(t) + 47 (1) > (DAL

IA

= 2 = tL r(s)qg% (s :cAs S
- y<h>f/0 TS VP [e )| &

< (/ =) (/Otms)q(f(s)\x%s)\%s)-

The proof is complete. =

Remark 3.1.1 Note that in the case when T =R, the inequality (3.1.20)
reduces to the Yang [152] inequality

/ RULCIOLES / h e [ e,

where r(t) is a positive and continuous function with fg ds/r(s) < oo and q(t)
is a positive, bounded, and nonincreasing function on [0, h]gr. When q(t) =1,
we get the Beesack [41] inequality

/Oh 2 (t)] ‘x’(t)‘dtg ;/Oh r(lt)dt/ohr(t)

z (ﬁ)‘2

dt,  (3.1.21)

’ ‘ 2

z (t)

dt. (3.1.22)
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Theorem 3.1.11 Let T be a time scale with a, T € T. Assume that
s € Crq([a, T]T,R) and r be a positive rd-continuous function on (a, ) such
that [ r=(t)At < co. Ify : [a, 7]y — R is delta differentiable with y(a) =0
(and yA does not change sign in (a,7)r) then we have

[ s+ @) |4 @)] 80 < o) [ 1) s> @) s,

a

(3.1.23)
where
sio =i ([ 55 ([ ) )+ ().
o (3.1.24)

Proof. Since y(t) does not change sign in (a,7)r, we have

ly(x)| = /ﬂf |yA(t)‘ At, for x € [a, T]T.

This implies that

/ F\ﬁ 2 ()] At.
It follows from the Cauchy—Schwarz inequality with
1 1
) = ——. 90 = r®)} |20

(r(8))

/:|yA(t)|At§ </am7a(1t)At)é</:r(t ) [y (8] At)l

Then, for a < z < 7, we get (note y(a) =0)

ly(z)| < (/; 70(115)At)é </: ) [y2 ()] At)é. (3.1.25)

Since y° =y + py”™, we have

y(z) +y° (z) = 2y(z) + py* (x). (3.1.26)

that

Setting

(z) = / r(t) [y2 ()| At (3.1.27)
we see that z(a) =0, and

22 () = r(2) ‘yA(:lc)|2 > 0. (3.1.28)
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From this, we get that

A 3
‘yA(:E)‘ = ) and ‘yA(:E)‘ = (zr(g)) . (3.1.29)
From (3.1.25)—(3.1.29), we have that
(@) [y@) + 3" @] |v* @)

< 205l ly@) [y @) + s 4] < 2150 (&)) ([ T(lt)mf

<@t (@) + (o) s(a) (A(;))) |

This implies that
| st >+y1” o)l [y @ |Ax<2/a7|s<x>|<@ :
oL ’ 5Am+/: <u(m)8<x)>zA(x)Ax

(L
< 2 [ lst '(r(z)) </<le>

% (2(2))? (2(2))? Az + max (ﬂ“”)/; A@)Ar. (3.1.30)

a<z<Tt T(JI)

Apply the Cauchy—Schwarz inequality and we have

| o) @)+ @) A @) 2

< ([ () ([ o))’ ([ o)
|

s@Y [T a
—|—a21;27 <u(m) @) >/a 22 (z)Ax. (3.1.31)
From (3.1.28), and the chain rule (1.1.7), we obtain
2:(2)22(z) < (2(x))". (3.1.32)

Substituting (3.1.32) into (3.1.31) and using the fact that z(a) = 0, we see
that

IN
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Using (3.1.27), we have from the last inequality that

T

[ s@)lul@) + @) |4 @) 80 < Ko [ r@) s> @) s,

which is the desired inequality (3.1.23) where K7 (a, 7) is defined as in (3.1.24).
The proof is complete. =

Here, we only state the following theorem, since its proof is similar to
the proof of Theorem 3.1.11, with [a,7] replaced by [r,b] and |y(z)| =

b
[, |[y2 ()] At.
Theorem 3.1.12 Let T be a time scale with 7, b € T. Assume that
s € Crq([r,b]1,R) and r be a positive rd-continuous function on (7,b)r such
that ff r 1 (t)At < co. Ify: [1,blt — R is delta differentiable with y(b) = 0
(and y® does not change sign in (T,b)1), then we have

b b
[ @)+ @0 @)] 80 < Katrb) [ o) @) A (3139

T

where

e = a ([ 52 ([ 3) )+, (2
' ' o (3.1.34)

In the following, we assume that there exists 7 € (a, b) which is the unique
solution of the equation

K(a,b) = Ki(a,7) = Ka(7,b) < 00, (3.1.35)

where K (a,7) and K5(7,b) are defined as in Theorems 3.1.11 and 3.1.12 and
we establish an inequality when y(a) = 0 = y(b).

Theorem 3.1.13 Let T be a time scale with a, b € T. Assume that
s € Cra([a,b]T,R) and r be a positive rd-continuous function on [a,bly such

that f: r Y (t)At < co. If y : [a,blr — R is delta differentiable with y(a) =
0 =y(b) (and y> does not change sign in (a,b)r), then we have

[ 5@ lota) + @) @) Ax < K@) [ @) |y @) A, (3:1.30)

where K (a,b) is given as in (3.1.35).

Proof. Since
b T
/ $(2) (@) + 17 @) [y2 (@) A = / 5(2) [y(z) + 7 (@) |y ()] Ax

+ [ s(@)ly(e) + 57 (@) v (0)] As

The rest of the proof is a combination of Theorems 3.1.11 and 3.1.12. =
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Corollary 3.1.3 Let T be a time scale with a, 7 € T, and let r be a positive
rd-continuous function on [a, 7]y such that [T r=(t)At < co. If y : [a, 7] —
R is delta differentiable with y(a) = 0 (and y> does not change sign in
(a,7)T), then we have

/ " (@) ly(@) + 57 (@) [y (@)| Ax < K (a,7) / " (@) [yA ()]} A,

(3.1.37)
where

Ka,7) = ﬂ(/;r(x) (/Iitw Am)é boswp (u(z).  (3.1.38)

a<lz<t

Corollary 3.1.4 Let T be a time scale with 7, b € T, and let r be a

positive rd-continuous function on (7,b)r such that fTb rY (t)At < oco. If
y : [1,b]r — R is delta differentiable with y(b) = 0 (and y* does not change
sign in (1,b)1), then we have

b b
. 2
| @ vta) + @) |y @) Ax < K5(r0) [ r(o) s @) A

’ (3.1.39)
where

K3 (X,b) = V2 (/T r(x) (/I TA(;)) Ax) —l—TiliI;b(u(x)). (3.1.40)

In the following, we assume that there exists 7 € (a,b), which is the
unique solution of the equation

K*(a,b) = Ki(a,7) = K5(7,b) < o0,
where K7 (a,7) and K3 (7,b) are defined in Corollaries 3.1.3 and 3.1.4. Using
this and Theorem 3.1.13 we obtain the following result.
Corollary 3.1.5 Let T be a time scale with a, b € T and let r be a positive
rd-continuous function on (a,b)t such that f; r 1 (t)At < co. Ify : [a, by —

R is delta differentiable with y(a) = 0 = y(b) (and y> does not change sign
in (a,b)r), then we have

b b
/ r(z) ly(z) +y7 (z)| |yA(:v)| Az < K*(a,b)/ r(z) |yA(x)‘2 Azx. (3.1.41)

On a time scale T, we note from the chain rule (1.1.7) that

((t - a)2>A = 2 [ [h(o(t) — a) + (1 — h)(t — a)] dh

v

2 [ [h(t —a) + (1 — h)(t — a)] dh = 2(t — a).

o O~
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This implies that

/aT(x—a)Ax</aT; ((x—a)z)Asz (7_2“)2. (3.1.42)

From this and (3.1.39) (by putting r(t) = 1), we get that

Ki(a,7) = V2 (/T (z - a) Amf <V2 ((T ;“)Q)é + max (u(x)
= max (u(z)) + (7 —a). (3.1.43)

Corollary 3.1.6 Let T be a time scale with a, 7 € T. If y : [a,7]T — R s
delta differentiable with y(a) = 0 (and y> does not change sign in (a,7)r),
then we have

[ v+ @il s < (6-a+ s ww) [Mpte) s
o (3.1.44)

In Corollary 3.1.5, we note that if r(¢) = 1, then the unique solution of
Eq. (3.1.35) is given by h = (a + b)/2. This gives us the following result.

Corollary 3.1.7 Let T be a time scale with a, b € T. If y : [a,b]r — R is
delta differentiable with y(a) = 0 = y(b) (and y® does not change sign in
(a,b)r), then we have

b —a b 2
[ @ @l @l o< (P50 4 s uo) [l @) s
o (3.1.45)

Remark 3.1.2 In Corollary 3.1.7if T = R then pu(x) =0, o(x) =z, y(x) =
y?(z) and the inequality (3.1.45) reduces to the original Opial inequality
(3.0.1).

3.2 Opial Type Inequalities II

In this section we give some other Opial type inequalities on time scales. The
results are adapted from [124, 125, 138, 139].

Theorem 3.2.1 Let a,7 € T and r € Cya([a, 7|T,RT) be such that r(t) is
nonincreasing on [a, 7|y and p > 0 and ¢ > 1. Suppose that = : [a,7]r — R
is delta differentiable with x(a) = 0. Then

(r—a)

/ar(t)\x(t)|p|xA(t)|th§qp+q /(lr(t)|xA(t)‘p+th. (3.2.1)
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Proof. Suppose that the function ¢(t) is defined by

)= [ 774 (5) a2 5| s,

so that
gla) =0, and g2(t) = rita(t) |22 (8)|" > 0. (3.2.2)

In the case when ¢ > 1, by using Hoélder’s inequality with indices ¢ and
q/(q — 1), we have

| (t)]
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D\‘*
<
b
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>
)
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~
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<
b
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—

®
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8

>
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»

S~—

_
N~
>
®

< ) (E-a)'T gi(e),

which yields that

rrE () | < (t—a)” T gt (). (3.2.3)
In the case, when ¢ = 1, we find that

lz(t)] < /‘a: |AS—/ PT( )rﬁ(s”xA(s)’As
< o) [ o) [e2 )] as = T @900

which shows that the inequality (3.2.3) holds also when ¢ = 1. Now, from
(3.2.2) and (3.2.3), we see that

/T (s)]z(s) ’m )|qu = /Trﬂ(s) |m(s)|pr#(s) |xA(s)’qu

IA
@\\‘
—
w
I
S
N—
=
]
=
s
Qs
»
S—
Q
>
—
w
N
>
»

< -0 [ ghgeas

et < S (6 )

This and the fact that g(a) = 0 imply that

/aT (s) |x(s) ‘x )’qu < Z%q(T—a)P(qt;l) /aT (g%(s))AAS

9
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By Hélder’s inequality with indices (p + ¢)/p and ¢/(p + q), we see that

T q T ﬁ
/rm(s)‘xA(sﬂquﬁ(/ 1As>

9(7)

Il
—
\]
|
S
b
i

3
2
N
m\ﬂ
~~
3
S

+f
=]
—
VA
SN—
8
>
—~
[
N
=
~—

From (3.2.4) and (3.2.5), we have

/‘r®ﬂx@ﬂphﬁ®ﬂqug q <T_“wp/‘r®)WACﬂf+qA&
a p + q a
which is the desired inequality (3.2.1). The proof is complete. m

Remark 3.2.1 When T =R, we see that the inequality (3.2.1) reduces to
the Yang [153] inequality

b
/ r(#) |2()]”

where r(t) is a positive nonincreasing function and x is a continuous function
on [a,b] with z(a) =0, p >0, ¢ > 1. When r(t) = 1, we get the Yang [152]
inequality

/ la)P

where x is a continuous function on [a,b] with z(a) =0, p >0, and ¢ > 1.

p+q

x/(t)’th < q(ba)p/abr(t)’z'(t) dt,  (3.2.6)

S ptyq

x/(t)‘th <9 (p—ap /ab g;/(t)(w dt, (3.2.7)

T p+tgq

Remark 3.2.2 When q =1, we get the Hua [86] inequality
b b
’ b— a)p
tp‘t’ﬁ<( /
[ et | @fae < C22 [

where p is a positive integer and x is a continuous function with x(a) = 0.

p+1
dt, (3.2.8)

’

(t)

Remark 3.2.3 Beesack and Das [{2] showed that the inequalities (3.2.7)
and (3.2.6) are sharp when g =1 but are not sharp for ¢ > 1.

Theorem 3.2.2 Let a,b € T and r € Cyq([7,b]1,RT) be such that r(t) is
nonincreasing on [t,blr and p > 0 and ¢ > 1. Suppose that x : [7,b]r — R is
delta differentiable with x(b) = 0. Then

b

’ P A4 q p Ay |PHa
liNﬂM@ﬂ|$(ﬂ\AtS;IE@—T)/)NﬂP7@H At. (3.2.9)

T
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Proof. Let

b
g(t) = /t rota(s) ‘mA(s)|qu.
Then
g(b) =0, and g2(t) = —r7ta(t) [+2(1)|" > 0. (3.2.10)

In the case when ¢ > 1, by using Hoélder’s inequality with indices ¢ and
q/(q — 1), we have

()| < /|a: \As—/ r7 (s)r 74 () |25 ()] As
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S
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v
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»

g—1

rEi () (b- 1) g

Q=
—~

~
~—

IN

which yields that

plg—1) p

rea (t) [a(t)P < (b—t) 7 ga(t). (3.2.11)
In the case, when ¢ = 1, we find that

[ 1@ as = [ e |2 6)] a5
r7 (1) / r7 1 (s) 25 (5)| As = 7 (Dg(2),

which shows that the inequality (3.2.11) holds also when ¢ = 1. Thus
from (3.2.10) and (3.2.11), we see that

()]

IN

IA

b b
/ r(s) |2(s) |22 ()| As = /rﬁ(s)\x(s)\f’rﬁ(s)|xA(s)qus

VAN
—
>
—
S
|
V2l
)
NS
3
|
@
Bl
—
V2l
=
—_
NS
>
—
V2l
—
V)

< (-0 /qu(gﬁs))AAs-

This and the fact that g(b) = 0 imply that

o et o) s < -0 (55 ).

p+q

From Hoélder’s inequality we get

’ q q P ’ p+q
/T r(s)|z(s) |x )‘ Asgm(b—ﬂ /Tr(s)|wA(s)’ As,

which is the desired inequality (3.2.9). The proof is complete. m
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The combination of Theorems 3.2.1 and 3.2.2 by choosing 7 = (a + b)/2
gives us the following result.

Theorem 3.2.3 Let a,b € T and r € Cyq([a,b|t,RT) be such that r(t) is
nonincreasing on [a, bl and nonincreasing on [a,blr and p > 0 and q >
Suppose that x : [a,bly — R is delta differentiable with x(a) = z(b) =
Then

/abr(t)|a:(t)|p|:cA(t)|th§ a (b2a>p/abr(t)|xA(t)|p+th.

p+q

S =

Theorem 3.2.4 Let T be a time scale with a, 7 € T and p € C,q([a,T),R)
with [ (p(t))' " At < 00, a > 1. Let the function q(t) be positive, bounded,
and nonincreasing on [a,7)r. If  : [a,7]N'T — R is delta differentiable with
z(a) =0, then fory >0,

/aTq(t) |$(t)|7\xA(t)\At < 7_1H </HT pall(t)At> :

v

/T p(t)g ™ (t) [22(t)| At) gz.lz)

1+~

where é—!—%:l.

Proof. Let

N
2
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Nt
Il
7 N\
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S
it
=
8
>
—
&
>
@
~__
2
vV
)
H‘Q
2
S
N—
7 N\
)
2
8
>
—

"
~
>
@
~__

2

and

Therefore, we have

1 ol

/ ") =) | 1) At = / "y (00T (1) [2(0) |22 (1) At

< / "y (0T (1) [2(0) |22 (1) At
< / A )AL= Ly ()

a T+l
1 T A vl
= po | </ g™ (s) |22 (s)] As) .
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In the case when a > 1, by using the Holder inequality with indices a and v,
we have that

This implies that

1

Jawiser polac < 5 ([ rwas)

y+1

([ emeleeras)

which is the desired inequality (3.2.12). The proof is complete. m
A slight modification of the argument above yields the following result.

Theorem 3.2.5 Let T be a time scale with a, 7 € T and p € Crq([7,b),R)

with ff (p(t))l_a At < 00, a > 1. Let the function q(t) be positive, bounded,
and nondecreasing on [1,bly. If x : [7,b] N T — R is delta differentiable with
z(b) = 0, then for v >0,

14y

b 1 b -
[ awloretmian < g </ pw(wAt)

b . y v
X (/ p(t)g™ (t) |22 () At) (3.2.13)

where é + % =1.

Theorem 3.2.6 Let T be a time scale with a, b € T and 7 € [a,b]y. Let
p € Cra([a,7),R) with [’ (p(t)' ™ At < o0, and fTb (p(t)' " At < o0, a >
1++. Let the function q(t) be positive, bounded, and nonincreasing on [a, 7|1
and nondecreasing in [T,blr. Suppose that

14+ 1ty

() ([ )

If x : [a,b]lr — R is delta differentiable with x(a) = x(b) =0, then for v >0,

14+~

v

b b
/a0 |x<t>|7|xﬁ<t>\ms,yﬁj1< / p<t>q4<t>|xﬁ<t>|”m> 7

wherei—i—%:l.
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Proof. Since
T b

/ a0 )1 o2 )] At - | awor s2w] s [aw e ]e2m) a

T

we have by Theorems 3.2.4, 3.2.5 and the inequality
a’+b" <(a+0b)7, fora, b>0andy>1,
that

b
/ a(t) [2(0)" |22 (1) At

1+ 14y
1 T 1 o T ﬁ xA , iy
s 7+1(/a ﬂkqﬂﬁg X(A p(t)g T+ (1) | @|A0
1 b a ﬁai b L A , vjl
+m (/7: p (s)As) </7— q T+ (s)p(s) |J3 (s)‘ As)
T v lt’y b L ’Yi»l
B ﬁ [(/a P () |1A(t)|uAt> + (/T a7 (s)p(s) |22 (s)|” AS) ]
b =
< 2 ([rorsoleors)

which is the desired inequality (3.2.14). The proof is complete. m

Remark 3.2.4 As a special case of Theorem 3.2.6 when T =R, we have the
Maroni [107] inequality
2
dt> 7

b , X b ,
[ ol ofa< X [0
=1 and z is an absolutely continuous function on [a, b

1
with z(a) = z(b) =0 and

where v > 1, L 41
(G ) UG )

where T is the unique solution of the equation

In the following, we establish an inequality of Opial type which depends
on the smallest eigenvalue of a boundary value problems on time scales. We
will assume that the boundary value problem

() WA (O))> = B2 (5 (0)
u(0) =0, r(b) (uA(b))p = Bs(b)uP(b), } (3.2.15)
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has a solution u(t) such that u®(t) > 0 on the interval [0, b]t, where r, s are
nonnegative rd-continuous functions on (0,b)r. Let

- (58)

Theorem 3.2.7 Let T be a time scale with 0, b € T and let r, s be nonneg-
ative rd-continuous functions on (0,b)r such that (3.2.15) has a solution for
some 8> 0. If x : [0,b) N T — R is delta differentiable with x(0) = 0, then
forp >0,

1 b A p+1 p
Grg ), OO A ol

b . .
X/O [T(t)w%(t)—rg(t)w”(t)w (t)} |27 (8)|P* At (3.2.16)

b
sz s 0] at <

=

Proof. Let
t
ft) =|22(t)| and F(t) = / f(t)At.
0
Using the inequality
APTL 4 pBPHL _ (p 4+ 1)ABP >0, for all A# B >0and p >0, (3.2.17)

and substituting f for A and wr F° for B, we obtain

1
P pw (FOPY — (p+1) fw (F7)P > 0, where \ = p+1)
p
Multiplying this inequality by 7(¢) and integrating from 0 to b and using the
fact that F'2(t) = f(t) > 0, we have

b b
/ r(6) PP (DA 4 p / FEu (1) (B (1)) At

0 0

v

b
(p+ 1)/0 r(t)w(t)f(t) (F°(t))" At

b
(p+ 1)/0 r(t)w(t) (FO (1)) FA(t)At. (3.2.18)
By the chain rule (1.1.7) and the fact that F(¢) > 0, we obtain
(F”l(t))A =(p+1) /1 [(1—h) F(t) + hE°(t)]P dhEF2(t). (3.2.19)
0
Also note

o(t)
/t F(5)As = F(o(t)) — F(t) = p(t)FA(t) = u(t)f(t) > 0.
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From the definition of F(t), we see that
Fo(t) > F(¢t). (3.2.20)
Substituting this into (3.2.19), we see that
(p+ 1) [FOP FA@) < (F(0)> < 0+ D) [FP@F FA1). (3:2.21)

Substituting (3.2.21) into (3.2.18), we have

b b
/ r(t) fPH(t) At +p/ r(Eyw(t) (FO ()P At
0 0
b
> / r(t)w(t) (Fp+1(t))A At. (3.2.22)
0
Integrating by parts and using the assumption F(0) = 0, we see that
b
/ r(tyw(t) (FPH ()" At
0
+1 b b A (o p+1
= rwt)F*(t)] —/O (r(t)w(t))™ (F7(1)" At
b
= 7(b)wd)Fr(b) — /0 (r(t)w(t))A (F"(t))pJrl At.  (3.2.23)
From (3.2.22) and (3.2.23), we see that
b b
[ rorroatp [ oo o) a
0 0
b
> r(B)w(b) P () /O (r(Ow(®)® (F7 ()" AL (3.2.24)

From the definition of the function w(t), we see that

r(t) (u?(t))?
r(t)w(t) = (t)l(w (t)(t)) (3.2.25)
From this, we obtain that
r(Hw(t)d = — u N r ()" —(w ()"
() = oy (O @2 0)") "+ (r (+4)") [up(mp(g(t))}
(3.2.26)
In view of (3.2.15) and (3.2.26), we get that
r (u®)") (uP A
() = BB () — & (up (Z) ip (Ej (tg’;)) . (3.2.27)
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Using the fact that u®(t) >0 and the chain rule (1.1.7), we see that

W@ = p / i + (1= ByuP~ u® (£)dh
01
> p/ [hu + (1 — h)u”~" u®(t)dh

= pu()P u(t). (3.2.28)

It follows from (3.2.27) and (3.2.28) that

(rw(t)® < Bs2(t) -

w Eyur(o ()
R 1 (3 Cad WM )
= 0 T o)
gy P ()Y w0
O IC0)
= Bs2(t) — pro (e (Hw? (t). (3.2.29)

Z Fp+1 / 68 P+1
+p / P (B (w (£) (F7 (1)) At.
This implies that
/b r(t) Pt At
0 , 1
+p/0 {T(t)wA(t) — 17 (t)w (Byw? ()| (F7 ()P At

> rwd)FPTb) — [ Bs2) (F7 )P At (3.2.30)
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Using integration by parts again and using (3.2.21), we see that

b
_ SA o p+1
8 / (t) (Fo (£)"" At

~5 s (@Y + [ s (7 0) A

0

2 At

b
—Bs(b) ()" + / s(t) (FP1(1))

b
> —Bs(b) (FB)" + B(p+ 1) / S(O) [P FA(1)At (3.2.31)

Substituting (3.2.31) into (3.2.30), we have
b

b 1
[ rorioats [ [fowo - @e @t o] 500 o
0 0

b
> [r(b)w(b— Bs(b)] F”+1(b)+(p+1)5/0 s(t) [F ()" F2(t)At.

From this, we obtain

b b N
/ r(t) fPTH(E) At + p/ [r(t)w/\(t) —r7(t)w? (t)wr (t)] (F° (t))p+1 At
0 0

b
> (p+1)ﬁ/0 s(t)FP(t)F>(t)At.

This implies that
b b )
[ rorr@ates [ [t e @t ()] (7o) ar

b
> (418 [ sOPOF0A
0
which is the desired inequality (3.2.16) after replacing f by z(t) and F by
z(t). The proof is complete. m

Remark 3.2.5 Note that when T =R, we have r(t) = r(t) and w(t) =
w?(t). Then (3.2.16) reduces to the inequality

a » , 1 a
| sor@rls o)< s [ o

due to Boyd and Wong [54], where p > 0 and x is an absolutely continuous
function defined on [a, b] with x(0) = 0, and r and s are nonnegative functions
in C1[0,a), Ao is the smallest eigenvalue of the boundary value problem

(r(t) (' (1))

with u(0) =0 and r(a) (d(a))p = \s (a)uP(a) for which u' >0 in [0,a].

’ p+1
x (t)‘ dt,  (3.2.32)

P,

) = s ()u(1),
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The following are results motivated by Beesack and Das [42] which are
easy to apply in practice.

Theorem 3.2.8 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p+q > 1, and let r, s be nonnegative rd-continuous

functions on (a,T)r such that f;rpﬂlfl t)At < 0. Ify : [a,7]N'T — R is
delta differentiable with y(a) = 0 (and y® does not change sign in (a,7)r),
then

T

/T s@) [y(@)I” |[y*(2)]" Az < Ka(a.7,p, q)/ r(@) |y ()" A,

(3.2.33)
where
Kiarno = (555)"
a?T7 b =
1 b, q P+q
T PTH x 1 pt+g—1 #
x / s > (@) (/ rp+a—1(t)At> Az | (3.2.34)
a T5($) a
Proof. Let

B T A B T 1 . ;ig A
= [ 0] at= [ ) A o) o

Now, since r is nonnegative on (a,7)t, it follows from the Holder inequality
with

_ _ (1)) _PTC =
f(t)—(r(t))riq,g(t)—((t)) ly2@)|, v ST dv=pta

that

ptqg—1

Then, for a < x < 7, we get that

p+q*1) P

ly(2)|” < (/: WAt)p( o (/j r(t) [y ()] At)m.

(3.2.35)
Setting

2(z) = /Zr(t) 2 ()" At (3.2.36)
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we see that z(a) = 0, and

A @) = r(z) [y @) > 0. (3.2.37)
This gives us
ly ()] = (ZA(”“")YL . (3.2.38)
r(z)

From (3.2.35) and (3.2.38), since s is a nonnegative on (a, 7)r, we have

pAmq s(x i#
s(x) [y(@)[” |y (@)]" < ()<N@>

p(ZE4)
x 1 p+a b 4
) </ ) At) ()7 (@) ™"
a Trta-1
This implies that

[ s@erterars (oo () s

" w# p+aq )P ZAw ﬁ )
(/a 1(t>At> (2(2)) 777 (2% (2)) 7" Aw.(3.2.39)

Next note

/a s(@ ()" Az
» z (p+q-1) o
(/ o (4 L))

P
P p+aq
X < za(z)2®(x )A:E) . (3.2.40)
From (3.2.37), the chain rule (1.1.7) and the fact that z(¢) > 0, we obtain
2 A q ( pta )A
zi(z)z"(x) < —— |2 ¢ (z . 3.2.41
(2)z7(2) < = (z) ( )
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Substituting (3.2.41) into (3.2.40) and using the fact that z(a) = 0, we have

/ @) @) [y )] A

p+q

IN
Q\\‘
/\
\_/
/—\
s
<
k]

+
<
/i

>

~
~_

)
+
=}

=

QL

)

X
7 N\
\@
~
‘c‘
+
_
I
—

p+q

Using (3.2.36), we have from the last inequality that

/Ts(x) @) [y2@)|" A < Ki(a.7,p,0) /Tr(fc) 2 (@) Aa,

which is the desired inequality (3.2.33). The proof is complete. m
Similar reasoning yields the following result.

Theorem 3.2.9 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p+q > 1, and let r, s be nonnegative rd-continuous

functions on (T,b)r such that f et a1 (t )At <oco. Ify:[r,bNT — R is
delta differentiable with y(b) = 0, (and y* does not change sign in (7,b)t),
then we have

b q b p+q
/ o(@) [y(@)” [y ()| Az < Ka(r,b.p.q) / r(z) [y (@) Ac,
. ’ (3.2.42)
where

Ko(1,b,p,q) = (L)m
X( /%(z))f
T r@)?

In the following, we assume that

_P_
+aq

b (p+g—1) P
( / PP (t)At) Ac|  (3.2.43)

K(paq) = Kl(a7Tap5Q) = KQ(Tab7p7q) < 00,

where Kj(a,7,p,q) and Ko(7,b,p,q) are defined as in Theorems 3.2.8 and
3.2.9 and 7 is the unique solution of the equation K (a,7,p,q) = Ka(7,b,p, q).
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Note that since
b T
[ s@@r @ s = [ s @l [y @) A

b
+ [ @ ly(a)l s )| A,
so combining Theorems 3.2.8 and 3.2.9 will give us the following result.

Theorem 3.2.10 Let T be a time scale with a, b € T and p, q be positive
real numbers such that pqg > 0 and p +q > 1, and let r, s be nonnegative
rd-continuous functions on (a,b)t such that fab v ()ALt < 0. Ify : [a,b]N
T — R is delta differentiable with y(a) = 0 = y(b), (and y> does not change

sign in (a,b)), then we have

b q b p+q
/ s(2) ly(@)I” [y* (2)|" Az < K(p,q) / r(@) [y @) Ar. (3.2.44)

a

Corollary 3.2.1 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p+ q > 1, and let v be a nonnegative rd-continuous
function on (a,7)r such that [} rﬁlﬂ(:ﬂ)Aw <oo. Ify:fa,7]NT — R is
delta differentiable with y(a) = 0, (and y*> does not change sign in (a,7)r),
then we have

T

/Tr(x) ly(@)" [y (@)|" Az < K7 (a,7,p, Q>/ r(@) |y (@) A,

a a

(3.2.45)
where
q e T z (p+q-1) e
Kf(a77ap7 q) = ([)‘i’(]) /a ’I"(.’II) (/1 rrta-1 (t)At) Az .
(3.2.46)

On a time scale T, we note as a consequence of the chain rule (1.1.7) that

(- a)”“)A = (p+q) [ [W(o(t) —a)+ (1= h)(t—a)’ """ dn

v

(p+q) [ [ht—a)+ (1 —=h)(t— a)]PJrq*l dh

o O~

pt+g—1

~

= (p+q(t—a)

This implies that
T T +
[w—arise s [ (@-ap) ae = T2
a a

(r+q) (r+4q)
(3.2.47)
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From this and (3.2.46) with r(t) = 1, we get that

v+ _ g \PHa\ 7ra T
Kf(a77—apa Q) S <q> ((Ta)> == g (T — a)p. (3248)
P+gq (p+aq) p+q

Thus setting » = 1 in (3.2.45) and using (3.2.48), we have the following
inequality.

Corollary 3.2.2 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p+q > 1. If y : [a, 7] N'T — R s delta differentiable
with y(a) = 0, (and y® does not change sign in (a, 7)) then we have

p+q
/\y )P |y2 (« !Az<q /|y WAz, (3.2.49)

Choose ¢ = (a + b)/2 and applying (3.2.46) to [a,c] and [c,b] and then
add we obtain the following inequality.

Corollary 3.2.3 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p+q > 1. If y : [a,b] N T — R s delta differentiable
with y(a) = 0 = y(b), then we have

% b— P b
/Iy )P Jy2 (2)]" Az < §+q< 2a)/a|yA(:1:)|p+qAx. (3.2.50)

3.3 Opial Type Inequalities III

The main results in this section will be proved by employing the inequality
(see [110, page 500])

la+0]" <277 (|a|" + |b]"), forr>1, (3.3.1)
and the inequality (see [9, page 51])
27 a"+b") < (a+b)" < (a"+b"),0<r <1, (3.3.2)

where a, b are positive real numbers. The results are adapted from [91].

Theorem 3.3.1 Let T be a time scale with a, 7 € T and p, q be positive real
numbers such that p > 1, and let v, s be nonnegative rd-continuous functions
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on (a,T)r such that f;rrﬂrql—l(t)At < oo. Ify :a,7]NT — RT is delta
differentiable with y(a) = 0, (and y® does not change sign in (a,T)r), then
we have

/T s(@) ly(x) +y7 (@) [y (@)|" Az < Ki(a,7,p,q) /T r(@) [y (@) Az,

(3.3.3)
where
Ki(a,7,p,q) = 2%} <]ﬁrq>p"+q
’ </ (<(<))>> ([ rmmar) ™ AI) ”i“
= osotr <ﬂp(x) f‘%) ' (3.3.4)

Proof. Since y(t) does not change sign in (a,7)r, we have

ly(x)| = /ﬂf |yA(t)‘ At, for z € [a, T]T.

This implies that

— m# )P |2
Iy(x)l—/a = (r(®) 7 |y*(t)| At.

Now, since r is nonnegative on (a,7)r, then it follows from the Holder
inequality with

Ft) = ———, g(t) = ()77 |2 (#)], v = 29 and v =p+q,

(1)) 7 ptq-1

that

-1
ptq 1

/:\yA(t)yAtg </j(r(t);p+é_lm> " (/:r(t)’yA(tﬂerth)M.

Then, for a < z < 7, we get (note that y(a) = 0) that

p+q*1) »

ly(x)]” < (/j WAt)p( . (/j r(t) [y @) At)m.

(3.3.5)
Since y” = y + puy>, we have

y(@) + 7 () = 2y(z) + py™ (x).
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Applying the inequality (3.3.1), we get (note p > 1) that
ly+ 7" <27 @P [yl P [yB ) = 2yl 2P el BT (3.3.6)
Setting
2(x) = / ’ r(t) |y ()" At (3.3.7)
a
we see that z(a) = 0, and
22 (z) = r(x) |yA(x)‘p+q > 0. (3.3.8)

From this, we get that

22 (x q ZAz)\ 7
|yA(x)|p+q: r(x))’ and ‘yA(x)‘ = ( r(;))) . (3.3.9)

From (3.3.6) and (3.3.9), since s is nonnegative on (a, 7)r, we have

s(@) ly(@) + 7 (@) |y ()|
22015 () |y ()P |y (2)|* + 27~ P () () |y [T

IN

-1
pta )

22715 () <r(1x)) o x </: MAt)p( pﬂ

p -1 ZA T
(@) () st ()

IN

This implies that

[ s@) @)+ @ [y @) e

-1
ptq )

. PR P55t
e [ () ([ )

’ (;ﬁ”) 22 (x)Ax

q p+q—1)

92p—1 /aT s() (@)m X (/j MAt)p( o

+2P~7! max <,ﬁs<x)> /a ’ 22 (x) Az (3.3.10)

IN

< (el (@) w2t [

a

IA
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Applying the Holder inequality with indices (p 4+ ¢)/p and (p + ¢)/q on the
first integral on the right-hand side, we have

/ " o(@) @) + 7 @ [y @) Aa

- L \E " 1 (p+g—1) P
2 ,
< 2%t /sppq(x)( ) /17At Az
a T(x) a Tpta-l (t)

X (/aTquj(ac)zA(:r)AacyDiq 4+ 2P~ sup MPS’(””)/(ZTZA(x)Ag;(g.3.11)

a<e<r  7(7)

From (3.3.8), and the chain rule (1.1.7), we obtain
25 (2)22 (@) < —L— (ZT(I))A (3.3.12)
T ptyg

Substituting (3.3.12) into (3.3.11) and using the fact that z(a) = 0, we have
that

[ @)+ @ A @) 2a

a z 1 (p+q-1) FE
a TP+<1*1(t)
L [T pia \A vt
(o) ([ o))

AN
[\
N
T
-
m\ﬂ
w
'S
X
s}
—
8
S~—
Y
=
Sis
~—
s

a " 1 (p+g—1) e
/ At Az
a rm(t)

x22p=1 <q> " 2(7) + 207 sup (ms(x)> (7).

p+q a<z<t

Il
@\\‘
w

s
.
1}
—
=
Y
=
Siks
~
=

Using (3.3.7), we have from the last inequality that

T

T o +
/ s(@) ly(@) + 7 ()" [y (@)|" Az < Ki(a, 7, p, CJ)/ r(@) [y (@) Az,
which is the desired inequality (3.3.3). The proof is complete. m

Similar reasoning as in Theorem 3.3.1, with [a, 7], replaced by [7,b], and

ly(x)| = f; |y~ (t)| At, yields the following result.



3.3. OPIAL TYPE INEQUALITIES 111 125

Theorem 3.3.2 Let T be a time scale with 7, b € T and p, q be positive real
numbers such that p > 1, and let r, s be nonnegative rd-continuous functions

on (7,b)r such that fferrql*l(t)At < oo. Ify:[r,b)NT — RY is delta
differentiable with y(b) = 0, (and y® does not change sign in (7,b)r), then
we have

b , )
/ s(@) |y(@) +y7 @) |y (@)[* Az SKz(T,hp,q)/ r(z) [y® (@) [T A,

(3.3.13)
where
Ky(t,b,p,q) = 92p—1 (Z&)M
b(s(x))p?< brﬁil tAt>(p+q—1) N 2
/T (r(x))? / ®)
p—1 p S(ZL’)
i Ti?;b <u (x)r(x ) (3.3.14)

In the following, we assume that

K(p7Q) = Kl(a77-apaq) = KQ(Tyb»ILQ) < 00,

where Ki(a,7,p,q) and Ka(7,b,p,q) are defined as in Theorems 3.3.1 and
3.3.2 and 7 is the unique solution of the equation K (a,7,p, q) = Kao(7,b,p, q).
Note that,

b
[ s@ )+ @ s @) as

‘ q

q

T q b
= [ @@+ @l [t @ aet [ s+ @ i @] A
so combining Theorems 3.3.1 and 3.3.2 gives us the following result.

Theorem 3.3.3 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 1, and let r, s be nonnegative rd-continuous
functions on (a,b)r such that f;rrﬂ:ql—l (H)At < oco. Ify: [a,b)NT — RT is
delta differentiable with y(a) = 0 = y(b), (and y® does not change sign in
(a,b)T), then we have

b b "
[ s@ @)+ @F 2@ 8o < Kpa) [ 1) [s> @) s,
“ ‘ (3.3.15)

For r = s in Theorem 3.3.1, we obtain the following result.
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Corollary 3.3.1 Let T be a time scale with a, 7 € T and p, q be positive real
numbers such that p > 1, and let r be a nonnegative rd-continuous function

on (a,T)r such that f;rpgqlfl(t)At < oo. Ify:[a,7]NT — RT is delta
differentiable with y(a) = 0, (and y® does not change sign in (a, 7)) then
we have

/ (@) y(a) + 97 @I [5A @) Ar < K@) / "r@) [yt @) A,

(3.3.16)
where
%
_ q pPTaq
Ki(a,7,p,q) = 2% 1<
e p0) 1
T x . (p+q—1) ﬁ
X / r(x) </ rp+q—1(t)At> Az
+2°7 1 sup (pP(x)). (3.3.17)
a<lx<T

From Theorems 3.3.2 and 3.3.3 one can derive similar results by setting
r =s. From (3.2.47) and (3.3.17) (by putting r(t) = 1), we get

Ki(ar.pq) = 2271 (q) ( / <w—a><”+ql>m)
p+aq a

22p_1< q >p+q<(7_a)p+q)p+q
p+q (p+q)

p—1 D
+207 max (uf(z))

IN

= 277" max (pP(2))+2% 7' —(r —a)’. 3.3.18
agx;g(u()) Py ) ( )
Setting » = 1 in (3.3.16) and using (3.3.18), we have the following result.

Corollary 3.3.2 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p > 1. If y : [a,7] N'T — R* is delta differentiable
with y(a) = 0, (and y> does not change sign in (a,7)t), then we have

/T y(z) +y° (@) [y*(2)|" Az < L(a,7,p, q) /T ly2 ()" Az, (3.3.19)

where

q
92— \p o op—1 P
L<aa77p7 Q) =12 (T a/) +2 sup W (.’I}) .
p+q alz<r

Choose 7 = (a + b)/2 and apply (3.3.17) to [a, 7] and [r,b] and then add
to obtain the following inequality.
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Corollary 3.3.3 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 1. Ify : [a,b))NT — R* is delta differentiable with
y(a) = 0 =y(b), then we have

b b
/ (@) + 47 (@) [y @)|" Az < F(a,b,p,q) / 2 @) Az, (3.3.20)

where

7 (b—a\”
F(a,b,p,q) := 92p-1 477" ( > +2P71 su P(x)).
(a,b,p,q) ol S agmr;b(u (x))

Setting p = ¢ = 1 in (3.3.20) we have the following Opial type inequality
on a time scale.

Corollary 3.3.4 Let T be a time scale with a, b € T. If y : [a,7]NT — R*
is delta differentiable with y(a) = 0 = y(b), then we have

[ b @l @] ac< (5 sw uw) [ Ao Ax
o (3.3.21)

In the following, we establish some dynamic inequalities of Opial type on
time scales of the form

T

/TS(”) ly(@) +y7 @) [y (@)]" Az < K(a,7,p, q)/ r(@) [y ()" A,

where p, ¢ be positive real numbers such that p <1, p+¢g > 1.
The proof of our next result is similar to that in Theorem 3.3.1 except
here we use the inequality (3.3.2).

Theorem 3.3.4 Let T be a time scale with a, 7 € T and p, q be positive real
numbers such thatp < 1, p+q > 1 and let r, s be nonnegative rd-continuous
functions on (a,7)r such that [ TP%tilfl(t)At <oo. Ify:la,7]NT — R is
delta differentiable with y(a) = 0, (and y® does not change sign in (a,T)t),
then we have

/T s(2) ly(@) + 7 (@)" [y* (@)|" Az < Ki(a,7,p,q) /T r(z) [y® (@) A,

(3.3.22)
where

/a T sr(g) ( /a ’ r:@(t)At) e Ax) %.3.23)
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Proof. Since y(t) does not change sign in (a,7)r, we have

ly(x)| = /f ’yA(t)‘ At, for x € [a, T]T.

This implies that

— a:#,? 7 A
)l = [ T O R o]a

Now, since r is nonnegative on (a,7)r, then it follows from the Holder
inequality with

1 1 _ ptyg

—_— = ,and v =p—+q,
(r(t))7+e p+qg—1

that

] —1
p+tq 1

/:\yA(t)!AfS </:WN> : (/axr(t)!yA(f)lmAt)m.

Then, for a <z < 7, we get (note y(a) = 0) that

NG N
ol < ([ ([ s a)™.
o ()7 :
(3.3.24)
Since y° =y + uy”™, we have
y(x) +y° (2) = 2y(x) + py™ (x).
Applying the inequality (3.3.2), we get (note p < 1) that
|y + 71" = [2y(2) + py® (@)|" < 27 |yl” + P [y2" (3.3.25)
Setting
2(z) = / r(t) |y ()" At (3.3.26)
we see that z(a) = 0, and
2A@) = r(z) [y @) > 0. (3.3.27)

From this, we get that

22 (z q 22 (z)\ P+
|yA(x)’p+q: ( ), and |yA(:c)| ( ( )> . (3.3.28)
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Thus, since s is nonnegative on (a,7)r, we have from (3.3.25) and (3.3.28)
that

s(@) [y(z) +y7 (@) |y> (« !
2Ps(x) |y(x)] !y ac| + uP(

IN

) |yA‘;D+q

-1
ptq )

s ()" ([ 1()A)‘
() (2) ™+ wrasta) (28,

The rest of the proof is similar to the proof of Theorem 3.3.1. The proof is
complete. m

IN

Theorem 3.3.5 Let T be a time scale with 7, b € T and p, q be positive real
numbers such thatp <1, p+qg>1 and let v, s be nonnegative rd-continuous
functions on (7,b)r such that f INETE T(t )At <oo. Ify:[r,b]NT — R is
delta differentiable with y(b) = 0, (and y* does not change sign in (1,b)t),
then we have

b q b p+q
/s(x) ly(z) + 7 ()" [y> (2)] AwSKz(T,b,p,q)/ r(x) [y® (@) A,

(3.3.29)
where
T, (“p(””)%) : (3.3.30)

In the following, we assume
K(p7 Q) = Kl(a77-apa q) = KQ(T7 b7p7 q) < 00,

where K1 (a, 7, p,q) and Ko(T, b, p, q) are defined as in Theorems 3.3.4 and 3.3.5
and 7 is the unique solution of the equation K (a,7,p,q) = Ka(7,b,p,q).

Theorem 3.3.6 Let T be a time scale with a, b € T and p, q be positive real
numbers such that p <1, p+q > 1 and let r, s be nonnegative rd— continuous
functions on (a,b)t such that fab(r(t))w%zlflAt <oo. Ify:|a,b]NT — Rt
is delta differentiable with y(a) = 0 = y(b), (and y® does not change sign in
(a,b)r), then we have

/ s(2) ly(@) + 7 ()" [y* (@)|" Az < K (p, q)/ r(@) [y (@) A
a ’ (3.3.31)
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Proof. Since

q q

b T
[ @@+ pr@ s = [ s@le)+ @) [ @] se
a a b .
+ [ 5@ o) +7 @ o2 @) A

the rest of the proof is a combination of Theorems 3.3.4 and 3.3.5. =
For r = s in Theorem 3.3.4, we obtain the following result.

Corollary 3.3.5 Let T be a time scale with a, 7 € T and p, q be positive real
numbers such that p <1, p+q > 1 and let r be a nonnegative rd-continuous
function on (a, )T such that f(:(r(t))ﬁAt <oo. Ify:la,7]NT — R* is
delta differentiable with y(a) = 0, (and y* does not change sign in (a,7)r),
then we have

/T r(@) ly(x) + 7 (@) |y (@)|" Az < K7 (a,7,p,0) /T r(@) [y™ (@) Ax,
a ’ (3.3.32)

where

. q pt+aq
Kilarpa) = s (o) +2 (1)

x </; r(z) (/: roTa-T (t)At) e Aa;) T . (3.3.33)

Using the inequality (3.2.47) and (3.3.33) (by putting r(t) = 1), we get

that
o e
2P <j_> X (/ (x — a)(p+q_1) Ax)
prgq a

2p< q )piq ((7'_6‘)p+q>pi’ + max (4P(z))

Ki(a,7,p,q)

IN

p+q (p+4q) aga<7
= max (uP(z))+ 2P arti (1 —a)? (3.3.34)
max s . 3.

Setting » = 1 in (3.3.32) and using (3.3.34), we have the following result.

Corollary 3.3.6 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p <1 and p+q > 1. If y : [a,7]NT — R is delta
differentiable with y(a) = 0, (and y> does not change sign in (a,T)r), then
we have

/T ly(z) +y7 ()" ’yA(x)]q Az < L(a,7,p,q) /T |yA(sc)|p+q Az, (3.3.35)
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where

7
L(a,7,p,q) := | 2P—— (7 —a)’ + su P(z)].
(a,7,p,9) ( erq( ) Sup p ( ))

Choose 7 = (a + b)/2 and apply (3.3.33) to [a, 7] and [7,b] and then add
to obtain the following inequality.

Corollary 3.3.7 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p <1 and p+q > 1. Ify : [a, b)) N T — R* is delta
differentiable with y(a) =0 = y(b), then we have

b b
[ @)+ @p s @) o < Fabpa) [ 1o @] As (3330

where

9
qp+q

F(aa b7p7 q) : (b - a)p + sup (‘up(x)) .

R a<z<b

Next various types of Opial’s inequality involving several functions are
presented on arbitrary time scales. The well-known Muirhead’s inequality
will be employed to obtain the results.

Theorem 3.3.7 ([111]) Let S™ be the symmetry group of the set [1,n]y, and
A= (oq,00,...,a4), B:=(81,84,-..,0,) be two vectors with nonnegative
entries and Z?Zl aj > Z§=1 Bj for all k € [1,n — 1]y and Z?zl o =
Z?Zl Bj, then it is said that A majorizes B (we prefer the notation A B),
and the following inequality is true:

n n ﬁ
Qg J
DN | =B | E2tt
reESn j=1 rESn j=1

where w; denotes the j-th component of the permutation 7, and x; € Rg
holds for all j € [1,n]y.

One can easily see that for (2,0) > (1,1) Theorem 3.3.7 gives us the
following well-known inequality

:L'% + z% > 2x1x9 with x1,29 > 0.

This inequality gives us the well-known inequality between arithmetic and
geometric means by letting y; := 22?2 and y, := 223, i.e.,

Y1+ Y2
Viye < IT

Throughout, for convenience, the empty sum and the empty product are
assumed to be 0 and 1, respectively, i.e., for a, 8 € Z with 8 < «, Ef:a fi=0

and H?:a fi=1
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Theorem 3.3.8 Let n € N and f; : T — R be differentiable functions for
j € [1,n]y, then we have

Lf[lfju)r:ZHHfz ] lez H JorteT.

j=1 =541

Now, we are ready to establish some generalized Opial inequalities.

Theorem 3.3.9 Letn € N, a,b € T and f; € CL(T,R) forall j € [1,n+1]y
with fj(a) =0 for all j € [1,n+ 1]y. Then

bn+1
A

n—|—1 ;

n+1

) I £©

i=j+1

(3.3.37)

el

ST A,
Jj=1

with equality when f;(t) = c(t—a) for all j € [1,n+1]n, where c is a constant.

Proof. The proof of this theorem follows similar steps to that in the
following one, so we skip it here. m

Theorem 3.3.10 Let m,n € N, a,b € T and f; € CL,(T,R) with fj(a) =0

forallj € [1,n+ 1]y. Then
n+1 I fnt1 m=Jj|py1 fj-1 n+1
(H i (5)) <H ﬁ(é)) > (H f?(é)) 1) ( 11 ﬁ(é)) A¢
o| \i=1 i=1 j=1 \i=1 i=j+1

b m
>
(b_a)(n+l)(m+1)—l b n+1
<
- n+1 /a

with equality when f;j(t) = c(t —a) for all j € [1,n + 1]y, where ¢ is a
constant.

At.

(n4+1)(m+1)
| 5\]

(3.3.38)

Proof. Set Fj( f [f2(E)|AE for t € [a,b]r and all j € [1,n + 1]x.
Then, on [a,b]T, we have FA |fA| and F; > |f;| for all j € [1,n + 1]n.

Now, set F(t) := H;Lill Fj(t) for t € [a, b]r. It follows that
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m | [nt1 7 /nt1 M3 ny1 n+1
[S|[Ire| (o) ||| Tre] 0 1T nioas
¢ i=1 =1 i=j+1
b m [n+l I nt1 M= pg1j-1 n+1
= / P I RGIN I RGN | | (Ff(f)FjA(é) I1 Fi(@) A
¢ =0 Li=1 i=1 j=14i=1 i=j+1

/az 1 (€)™ FA () Ag = / <’“”+1>}AA§

n+1 n+1

m m (n+1)(m+1)
= FEE)™ =[] [Fm)]™ < 1 (3.3.39)
=1 n 4+ 1

is true, where we have applied the arithmetic mean and geometric mean
inequalities in the last step. Also for j € [1,n + 1]n, we have

|:Fj(b)i| (n+1)(m+1) (/ |fA ‘A§> (n+1)(m+1)

b
n m _ n+1 +1
< (b— a)+D0m+D) 1/ FA )" A,

(3.3.40)

by applying Holder’s inequality. Also by letting f;(t) = c¢(t — a) for t € [a, b]r
and all j € [1,n + 1]y for some constant ¢, one can easily see that (3.3.38)
holds with equality. The proof is complete. m

Theorem 3.3.11 Let n € N, a,b € T and f; € Cl4(T,R) with f;(a) =0 for

all j € [1,n + 1]y, and that p € Ca(T,R™) with f; [p({)]_l/nAf < oo and
q € Cra(T,RT) be a nonincreasing function. Then

b n+1 n+1
[rey [Hf” 1 (©) ( I1 ﬂ-(f)) A
a j=1 i=j+1

1 b B VLN nt1
<o (/a (p(g))iM) (/a p(€)q (f)Z(fjA(ﬁ)) Ag).

Jj=1

(3.3.41)

Proof. Set

B0 = [ @7 |10 A¢,
and then

_1
FR(t) = (@)™ |f7 (1)
for t € [a,b]r and all j € [1,n + 1]y. Then we have

Fy(t) > g7 (1) / FAOIAE > g (1)

/ ff(f)Ag( > g (1) [1;(0)].
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for t € [a,b]r and all j € [1,n + 1]y (note here that for any ¢t € [a,b]T,
€ € [a,t)r implies o(&) <t and thus ¢7(§) < ¢(t)). Now, set
n+1
F(t) = szl F;(t), for tela,blr.

Similar reasoning as in the proof of Theorem 3.3.10 yields

b n+1 n+1
IR 33 [Hf" Af)[H £:(6)

i=j+1
pn+l n+1
/'Ej{ IIF” GIRIRRG
a i=j4+1

- [ Prene=ruy ﬁF ilfhwﬁ“
a j=1

Y ’ +1
> {/ PO (©)F2 )" Ag}.

The proof is complete. =

Theorem 3.3.12 Letn € N, a,b € T and f; € CL(T,R) with f;(a) =0 for

all j € [1,n+ 1y, and that p € Cya(T,R) with f; [p(§)]_1/(m+n)A§ < 00
and q € Crq(T,R) be a nonincreasing function. Then

b m | [n+l Jnt1 m—j
/q%@z [Hff(&) [Hms)]
a 1= =1

8 [t i e

i=j7+1

b
= 11(/ : ] Ag)
I\ Ja [pe)]
(m+1)(n+1)

n+1 . A 1 mFnt1
xz (/ O (©)| 12| A€>

(m+4n) (m+1) (n+1)
m+n—+1

The results can be extended by applying the Muirhead inequality. For
example the result of Theorem 3.3.10 can be arranged as follows.
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Corollary 3.3.8 In addition to the assumptions of Theorem 3.3.10,

suppose that there exists (ay, g, ..., u11) such that Z;Lill a; =n+1 and

25:1 a; >k for all k € [1,n]n, then the right-hand side of (3.3.38) can be
replaced by the following one

1 n+l ( : b | [n+l a;(m+1)
(b—a)™mHt [ (3] A§}7
(nJrl)!ﬂe%;“{jl:[l /a JI;II

where S"T1 is the set of all permutations of the set [1,n+ 1]y, and 7; stands
for the j-th component of the permutation .

Proof. From the second term in (3.3.39) and Muirhead’s inequality, we

have
n+1 n+1
m—+1 1 m—+1
[1[me)] - =Y I [F0)]
! (n+1)! !
Jj=1 mesntl j=1
n+1
1 o (m+1)
< > 1|70 :
< ' y
(n+1)! e
where (a1, a9, ..., an41)>(1,1,...,1). The rest of the proof is similar to that

of Theorem 3.3.10. m

3.4 Higher Order Opial Type Inequalities

In this section, we present some Opial type inequalities involving higher order
derivatives. The results in this section are adapted from [49, 91, 127, 136,
139, 149]. To prove the results we need the following theorem [111, p. 338].

Theorem 3.4.1 Let k > 2 be an integer and x; > 0 be reals for alli € [1, k]x.
Then

k a 1, f0<a<l1 k
(Zz) < > g (3.4.1)
=1 =1

kKl ifa>1

We recall the definition of the generalized Taylor Monomials which is
given as follows:

1 k=0,

)
t

/ heo1(€, )AL, kEN,

S

hi(t,s) :=

for all s, t € T. For convenience, for 4" we mean the (nth) delta derivative

n— A
of y which is equivalent to (yA 1) for n € N.
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Theorem 3.4.2 Let T be a time scale with a, b€ T andy € C’T(Z)([a7 b|NT).
Ify»' (a) =0, fori=0,1,...,n — 1, then

/ab ly(t)] ‘yA"(t)’At < % (/ab </at|hn_1(t,o-(5))|2A3) At)

At. (3.4.2)

1
2

Proof. From the Taylor formula (1.4.6), since yAi(a) =0, for i =
0,1,...,n— 1, we have

n

y(t) ::/ B1(t,0(s))y>" (5)As. (3.4.3)

This implies that

v 0wl < o> ] [ o (o) [ ()] A

Applying the Schwartz inequality, we have

A )l < [y @) (/: Ihnl(t,cf(és))lzﬁ'o)é (/:

Then
[l @woise < [ ([ st As)é v )

“(/

1

[ )

yAn(s)‘Z As) " At (3.4.4)

Let

Then z(a) = 0 and |yAn (t)|2

/b
Applying the Schwartz inequality we obtain

b N b t ) 3
[ ool < < [ ([ acsteotonias) At)

1
2

X (/b z(t)zA(t)At> : (3.4.6)

= z2(t). From this and (3.4.4), we have

0] Wl < /b (/t (Lo (s)I* As> ") A
- (3.4.5)
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By the chain rule (1.1.7), we see (note that z(t) > 0 and z*(¢) > 0), that

1
(22(1) / [ha” + (1 — )] dh > 2:5(8)2(8).
0
Then, since z(a) = 0, we have that

b b
/a ()22 () At < %/ (22())> At = %f(b), (3.4.7)

Substituting (3.4.7) into (3.4.6), we have

NG ICIES (/b ([ 1hwstotonr o) At) o
_ ;(/b </at|hn_1(t,a(s))|2As) At)é/ab

which is the desired inequality (3.4.2). The proof is complete. m

v (0] At

Remark 3.4.1 Let 0 < k < n, be fized, and let x € C’(" k)([a, bjN'T) be
such that 2 (a) =0, 0 <i <n—k— 1. Then from (3.4.2) it follows that

/Ix A" )\At < ;(/b (/:hn_k_l(t,a(snles)At)

22" (1) ‘2 At.

1
2

Thus for © = y>*, where y € C’ n k)[a,b], yAi =0, k<i<n-—1, we have
the following result.

Corqllary 3.4.1 Let T be a time scale with a, b € T and y € Cﬁz)([a, bNT).
Ify» (a) =0,k <i<n-—1, then

/ab o ’yAn (t)‘ A= % </ab (/at |hin—k—1(t,0(s))|? A5> At>;

Theorem 3.4.2 can be extended to a general inequality with two different
constants by applying the Holder inequality with indices p and ¢ satisfying
1/p+1/q=1.
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Theorem 3.4.3 Let T be a time scale with a, b € T, p and q are real num-
bers such that 1/p+1/q =1 and y € Cﬁz)([a,b] NT). If y»'(a) = 0, for
i=0,1,...,n—1, then

[ werofar < @(/ (/ t|hn1(t7o(8))|pA8>At>;
. iy (]

Theorem 3.4.4 Let T be a time scale with a, b € T and l, m be positive real

numbers such that [ +m > 1, and y € C’(")([a bjNT). If y» (a) = 0, for
1=0,1,. — 1, then

b L m m \TE [ b i
/ \y<t>|l)yA o ar < ()" ([ at v a
a m a
b
A

H(t,s) ;:/ (o1 (t,0(s))) 7T As.

y2" (t) ‘q At.

t

l+m
‘ ¢, (3.4.8)

where

Proof. From the Taylor formula (1.4.6) and since y2'(a) = 0, for i =
0,1,...,n— 1, we have

ly(t)| < /: hn—1(t,0(s)) ’yAn(s)‘ As.

Applying the Holder inequality with v =1+ m and v = %7 we have

vl < ([ t(hn_lu,a(s))w"fa’fus)m (/1

This implies that

_1

n l+m t+m
A (s)‘ As) .

l+m—1
l I+m )

< ol () (a1 o)) as)

l
t n I+m m
(/ y (s)‘ As) .

n m b t Itm l(ll+m
y® (t)‘ ol At < /(/ (hn_l(t,a(s)))mAs)

X ‘yM(t)‘m (/at Yy

ol [y @

‘ m

Then

I

n I+m
A
(

[E=
s As) At. (3.4.9)
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I+m

Let z(t) := fat ly2"(s)| " As. This implies that z(a) = 0, and

]yﬁ" (t)‘m = (A1) > 0.
From this and (3.4.9), we have
[worf o s < [ ([toeopad
x (22()) 7 (2() 7 At (3.4.10)

Applying the Holder inequality with v = (I + m)/l and v = (I + m)/m,
we have

A
b Loan, | b oot L MRS\ TEm
[t o s < ([ tnrwaen T a) At

% (/b ZA(t) (z(t))(l/m) At) e . (3411)

From (1.1.7), we have (note that z(t) and 22 (¢) > 0) that

(zHTm(t))A > lyn/ol[hz"+(1—h)z]l::nle(t)

l+m

= (=(0) ™ 22(0).

Then, since z(a) = 0, we have

b b A
I/m A < m Lim _ o m  m
/az (1) (t)At_—Hm/a (z (t)) At 2 B). (3.4.12)
Substituting (3.4.12) into (3.4.11) yields

b m
[ ol s 0] a
a
m \wm [ b/t Lim WD) Ttm
() ([ tecrteotom ™ as) ar) e
m a a

m O\ Tm b t Ctem (tm—1) oL
(T) / (/ (hn—1(t,o(s)))Fm—1 AS) At
m a @
b
>< /
a

which is the desired inequality (3.4.8). The proof is complete. m
Using the ideas in Remark 3.4.1 we obtain the following result.

IN

’H»m

At,
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Corollary 3.4.2 Let T be a time scale with a, b € T and I, m be positive

real numbers such that I +m > 1 and y € Cﬁ?([a b]NT). If y» (a) = 0,
k<i<n-—1, then

L

Firotiurs = (o)™ ([ruos)”

where
t I+m
H{t, s) ;:/ (B2 (t, 0(5))) 7T As.

Note that Theorem 3.4.4 cannot be applied when [ +m = 1. In the
following theorem we prove an inequality which can be applied in this case.

Theorem 3.4.5 Let T be a time scale with a, b € T and I, m be positive

real numbers such that | +m =1 andyecig ([a,b] N'T). If y*'(a) = 0, for
1=0,1,...,n—1, then

l
[ ot @] st < ( A hnl(f»a)At> [

Proof. Using the fact that |, (¢, s)| is increasing with respect to its first
component for t > o(s) > a, we have from the Taylor formula (1.4.6) and

yN(a) =0, fori=0,1,...,n—1, that

() ‘ At.

(3.4.13)

t

yA" (s)‘ As.

()] < hn,l(t,a)/

a

This implies that

O[> O < Gt |y e \’"(/ yw@\m)l.

Now applying the Holder inequality with indices 1/1 and 1/m, we obtain

/ab ly(1)] ’yM (t)‘m At < (/ab B (t, Q)At>
([bel(]

l

il/m m
yA" (s)‘ AS) At)
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Let z(t) = f; |y2" ()| As. Then z(a) = 0 and 22(t) = |y*" (t)], so

[l ([
and hence
At < (/ab hon—1(t, a)At)l (/ab 22 (1) (z(t))l/m At>m.

yA" (s)‘ As> o At = / b A0 ()™ A,

b m
[ wtor s

(3.4.14)
As in the proof of Theorem 3.4.4, we have that
b
/ A ()™ AL < / /M)A () At < m/ At
= mz%(b) =m (/ yA"(t)’ At)
Substituting into (3.4.14), we have
b L om b ! b
| | o ar < mm ( / hn_1<t7a>m> ( R0 At) ,

which is the desired inequality (3.4.13). The proof is complete. m
Using the ideas in Remark 3.4.1 we obtain the following result.

Corollary 3.4.3 Let T be a time scale with a b €T andl, m be positive
real numbers such that I +m =1, and y € C ([a b NT). If y* (a) = 0,

k<i<n-—1, then
"’(t)‘At).

l
/ab |ym(t)|l ’yA"(t)’mAt <mm (/ab hn_k_l(t,a)|At> (/ab YA

Theorem 3.4.6 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 0 and ¢ > 1. Suppose that h is a positive rd-

continuous function and is nonincreasing on [a, Tt and y € C’ﬁg)([a, b N'T).
Ify»' (a) =0, fori=0,1,...,n— 1, then

/ h(t) ly(t)” |y

Proof. Let

Z?f):/at/atn1.../:1

IXPINL q(b—a)P™ /b An . |PHE
< -7t . 4.
(t)‘ ars e [ ’y (t)‘ At (3.4.15)

yA"(s)‘ AsAty ... Aty (3.4.16)
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i t 141 i+1
ZA"(t):/ AT ()As < (t—a)2A (1), i=0,1,...,n—2. (3.4.18)

Applying Theorem 3.2.1 in conjunction with (3.4.16)—(3.4.18), we have

q

/ “ho) o [~ o At
| nowor

a

< ["rwlor

IN

AN At

N

q

0 At</aT h(t) [(t—a)zA(t)]p’zA"(t)} At

N

< / B [t — o) 1eA" (t)r A (t)’q At
< (r— a)p<”*1>p i S —a) / " h) ‘ZA”' 0" At

n p+q
A (1))

Lo N
= p+q LV ’

which is the desired inequality (3.4.15). The proof is complete. m

Theorem 3.4.7 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 0 and q > 1. Suppose that h is a positive rd-

continuous function and is nonincreasing on [a, 7|t and x, y € C’ﬁg)([a, b|NT).
If 22 (a) =y (a) =0, fori=0,1,...,n — 1, then

[ 1o e

W / Y0 Uxm(t)‘“q +‘yw(t)"’+"} At. (3.4.19)

A 0+ lor

22" (t) ‘q] At

Proof. Let

toftn—a b AR p+q AP p+q e
Z(t):// / ’x (5)’ +‘y (s)‘ AsAty ... Aty 1,
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Then

N
>
—~
~
~
N
>
3
|
=
—
~
~
\

1
n n ptaq n p+q| pta
0,470 = [[o" @ 7

Y

max{‘xA" (s) yAn(s)‘} >0,

2(t) = fe(®)] and z(t) > [y(t)] .

)

Applying Theorem 3.4.6, we have

[ v [lzor [ @]+ wor |+ o] ac
< [noior [ of + [ o] a
< 2 / ") )P zA"(t)‘th
< a2 a0
_ 2q(;lz)1m /a‘f W) “xA" ) p+q N yAn ) p+q} At

which is the desired inequality (3.4.19). The proof is complete. m

Theorem 3.4.8 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 0 and q > 1. Suppose that h is a positive

rd-continuous function and is nonincreasing on _[a,T]T and_m, Yy € C’fg)
([a,b] N'T). If 22 (a) = y*'(a) = 0 and 22 (b) = y> () = 0, for
1=0,1,....,n—1, then

/ "ho) [l [52" 0]+ ) [+2 0)]] At

IN

%(b_Ta)”” /abh(t) “x“(t)\pﬂJr 2" (t)(p”] At (3.4.20)

In the following, we prove some inequalities with two different weight
functions.

Theorem 3.4.9 Let T be a time scale with a, 7 € T, let p € Crq([a, 7|1, R)
with

[Toear <o, @>1)

Suppose that q is a positive bounded rd-continuous function and is nonin-
creasing on [a, T]y. Let y € C’ig)([a, Tlr). Ify» (a) =0, fori=0,1,...,n—1,
then for r > 0, we have

/ OOk

v v

At)

0] ar< e ([ a0 0
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where
1+7r
B (T_a)r(nfl) /T a o l 1 B
A (r, ) := 1\ p T ¥(t)At - + = 1. (34.22)
Proof. Let
tn 1 tl
Then
tn_1 t1 r
A = \y <s>( >0, and 2(t) > [y(t)], (3.4.25)
and

i b i i
zN(t)z/ AT GAS < (E—a) A (1), =01, n—2  (3.4.26)

a

Applying Theorem 3.2.4 in conjunction with (3.4.23)—(3.4.26), we have
[ aowor |y o] ar

| aomor ] o] a

< [awwer |27 ofars [Cao (e 02 0) [ 0] a

IA

< [ ") [t — a2 )]

< (r— a)r("_l) /T q(t) [zAn*l (t)]T ‘zA" (t)‘ At

([ pmear) © (et o ar)

which is the desired inequality (3.4.21). The proof is complete. m

Theorem 3.4.10 Let T be a time scale with a, b € T and l, m, r be positive
real numbers such that l +m > 1 and r > 1. Furthermore, let p and q be
positive rd-continuous functions defined on [a,b]N'T and y € C’T(Z)([a, b|NT).
Iny(a) =0, fori=0,1,...,n—1, then

T

/ab (t) ly(t | ‘yAn (t) ‘ At < Ay (l,m,7m,p,q) (/abp(s)’yAn(s)
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where
m/r b o =
Mitmpan) = () (/ q£m<t>pr—’fﬁ<t><P<t>>l<r—m>At) ,
(3.4.28)

and

—1

P() 1:/ P (s) (hnoi(t,0(5)) 77 As.

Proof. From the Taylor formula (1.4.6), we see that

ly(t)] < / 2 (5) (s (8, 0(5)) E () \y“<s>\ As.

Applying the Holder inequality on the right-hand side with indices r and
r/(r — 1), we have

" (5) [y2" (s)| As

ly(®)]

IN

/ P () hnr (t,0(3))p

r—1
T

IN

</:p;11<5> (hn1(t; o(5))) 7" m)

<(/ e | ) ’”As)m.

This implies that

a0l [p> 0" < a0 [ " ([ oo 6] As)l/r

Integrating from a to b, we have

[ oot o[ a

< /abq(t)pZ(Zl)(t) ’ym(t)‘m </atp(5) ’ym(s) TAS>W At.

Let

Then z(a) = 0, 22(t) = p(t) ‘yA"(t)r and ’yA"(t)‘m = (zA(t))%pjn (t).
This implies that

/ ool o a

b
< / P (O (1) (22 @)F ()AL (3.4.29)
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Applying the Holder inequality with indices r/m and r/(r —m), we obtain

b —1 —m m
[ P @ 0 (20 o) a

b
< ( / (zA(t)Mz(t))”mAt)

b - L
x ( / qrwt)PlH)(t)prm(t)At)
Substituting into (3.4.29), we have

b
a2 o

r—m
T

m

At

r—m

. </b qﬁ (t)Pl(%)(t)p% (t)At) ' (/b (ZA (t)) (z(t))l/m At) h '

Also we have

</abZA(t) (=(8))"™ At>m/r < <Z—Tm /ab (Zl-;:n(t))AAt>m/’r‘
- (zf m>m/r (=(0)) 7 = (Hmm)/ ( /:“” b

This implies that

l+m

' As) ,

which is the desired inequality (3.4.27) where Aj(l,m,p,q,r) is defined as
in (3.4.28). The proof is complete. m
Using the ideas in Remark 3.4.1 we obtain the following result.

Theorem 3.4.11 Let T be a time scale with a, b € T and [, m be positive
real numbers such that | +m > 1 and r > 1. Furthermore, let p and q be
positive rd-continuous functions defined on [a,b]NT and y € Cﬁg)([a, b|N'T).
IfyAi(a) =0,k<i<n-—1, then

/ab () ‘yAk(t)‘l v )" At < As(tm.rp0) </abp(s) " (s)

where

Ao(l,m,p,q,r) == (m) " (/: g7 (p7= (1) (P()) ) At) ,

l+m
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and

P(t) == / PTI()RTL (0 (s))As.

Theorem 3.4.12 Let T be a time scale with a, b € T and «, 8 be pos-
itive real numbers such that o + [ > 1, and let p, q be nonnegative rd-
continuous functions on (a,b)y and y € C’ ([a b NT). Ify2' (a) = 0, for
i=0,1,...,n—1, then

b a | A" s ’ AT ath
[ a@wor s> o ar< rabas o o] At
(3.4.30)
where
B\
A 7b’ b =
3(a,b,a, B) <a+6>
b ats thiﬁﬁ o o
= (¢
/ ¢ () /"11(’0(5)& At |(3.4.31)
a pa(t) \Ja pFrT(s)

Proof. From the Taylor formula (1.4.6), we see that

ly(t)] < /at —1(t,0(s)) ’y s’As

_ L((“fﬁ”um»wﬁpmwwA&

) a+pB

Now, since p is nonnegative on (a, b)t, it follows from the Holder inequality
with

B 1 (2, .
flo) = Bmt@o g — (e |27 (s)]
(b(s)) 7
7= a%%gim“”:“+ﬁ’
that
atp—1
a+p3
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Setting z(t) := fat p(s) |yA"(s)|a+ﬁ As, we see that z(a) = 0, and

a+p

ZA(t) = p(t) ‘yﬁ" ® " >o. (3.4.33)
This gives us
(yA" (t)‘ﬁ = (ﬁi?)w . (3.4.34)

Since ¢ is nonnegative on (a, b), we have from (3.4.32) and (3.4.34) that

. ( /at (hniﬁ)zj)m AS) (2551 o
This implies that
/:q(t) ly(t)|” y“(t)(ﬁmg/jq(ﬂ (p(lt))a’i@
y ( /at (h“p%(f)gi)m AS) a(et5t) e

so applying the Holder inequality with indices (o + 3)/a and (a + 8)/8, we
have
b
[ awlor
b aj;ﬁ t aj:gél (a+ﬁ_1) a+p
. / s (1) ( / (hn-1(t,9(5))) AS) Al
a pe(t) \Ja pEFEI(s)
b . atB
% ( / zﬂ(t)zA(t)At> . (3.4.36)

From (3.4.33), the chain rule (1.1.7) and the fact that z2(s) > 0, we obtain

n B
A1) A

3 B2
zf(t)zA(t)gm(z (t)) . (3.4.37)
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Substituting (3.4.37) into (3.4.36) and using the fact that z(a) = 0, we have

/ "y o)
/b ¢ (1) ( / (hn i (t, () 770 As) T
a pa(t) o paTE(s)

() (o)

a+p3

(a+B-1) 1B
b goEt t a1
_ / () ( / (n1(t,o(5))) AS) A

P (s)

U

IA

ol

Using z(b) := fbp(s) ‘yA" (s)|a+ﬁ As, we have from the last inequality that

a

b
/ a(t) [y(t)[*

which is the desired inequality (3.4.30). The proof is complete. m
Using the ideas in Remark 3.4.1 we obtain the following result.

b [e%
v 0] 8t < Astabian) [0 0"

a

At,

Theorem 3.4.13 Let T be a time scale with a, b € T and «, B be positive
real numbers such that o+ > 1, and let p, q be nonnegative rd-continuous

functions on (a,b)r and y € Cﬁg)([a,b] NT). Ify»(a) =0,k <i<n-—1,
then

b
[ awls> o
where

B atB
A4(a’7b7a76) = (a+ﬂ)

b [e%
o) |y 0]

A" (t)‘ﬁ At < Ag(ab, a,ﬁ)/

a

R ats (a+B8-1) )

ath t peFET (g,

x / ¢ () / n-1 1( 7)) 5 At :
a  pa(t) a  patiTi(s)

Next instead of (3.4.3) we use the relation between g,, and h,, and define

b n
y(t) = (1) /t 1 (0(5), )y () As. (3.4.38)
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Proceeding as above and using (3.4.38) one can obtain some results when
y2' (b) = 0, for i = 0,1,...,n — 1. For example one can get the following
results.

Theorem 3.4.14  Let T be a time scale with a, b € T and y € C’ﬁs)([a,b]
NT). Ify» (b) =0, fori=0,1,...,n— 1, then

[l 0] ae< /3 </b </ | 9’31(”(3)’%8) At) | [

Theorem 3.4.15 Let T be a time scale with a, b € T and I, m be positive
real numbers such that l+m > 1. Let y € Cﬁz)([a, b NT). If y™ (b) = 0, for
1=0,1,...,n—1, then

m b b I+m (l+m—1)
At < / (/ gf’i“l(a(s),t)As) At
a t
b
<J

Theorem 3.4.16 . Let T be a time scale with 0, h € T and I, n be positive

integers. If y € Cfg)([O,h] N'T) with y*> (0) = 0, fori = 0,1,2,...,n — 1,
then we have

h l
/0 {Zyku)(y%t))”}y“(w
k=0

Proof. We consider

z<t)=/ot/om_1.../om{/oﬁ

Hence, we have

I TA

[l o] as 0= >0

and for 0 <t < h,

2
‘ At.

y&" (1)

(3.4.39)

l

I+

b
[ wtor s

A"t At.

l+m
v ()

At < h™ "l
< AT AL (3.4.40)
0

yAn (S)‘ AS} AT]_ATQ ce ATnfl.

22(t)

yAn<S)‘AS}ATlATQ...ATn_Q,...7

22(1)

)

t t i1
A(t)] A A2 ()| Ata Aty < ...
y(t) < /Oly (t1)] t1§/0/0 [y22 (t2)| At Aty < ... < 2()
= /tzA(s)As</t2A(t)As</th(t)As<th(t)
0 o 0 - 0 -
< REAAM) <L <hTRATT () = R (),
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where we put f(t) = 22" (t). Therefore,

[
[

h
/ {(hn 1f k’hn lfa( |lik’yA(t)|}At
— h(n 1)l/ { l ka }At:h(n—l)l /h<fl+1(t))AAt
0

— R DL () — pln) [/ ’y ]

Applying the Holder inequality with indices (I + 1)/l and | + 1, we see that

At

l
{Z y () ’“} v (1)

k=0
l

ol 01 ’“\y“u)(}m

IN

IA

At

IN

hyo i
h(n—l)lhl / ‘yA (t)‘ At
0

hyo L i
— ot / WA 0] A

which is the desired inequality (3.4.40). The proof is complete. m

h l
{Z O <t>>l-’“} yA" (1)
k=0

Similarly using Taylor formula (1.4.6) one can prove the following result.

Theorem 3.4.17 Let T be a time scale with 0, h € T and I, n be positive
integers. If y € C’l(;)([() A N'T) with y» (0) = 0, for i = 0,1 ,n—1,
then we have

h l
/0 {Zyk(txy%t»”}yw'(t)
k=0

Theorem 3.4.18 . Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p > 1, 1/p+1/q = 1, and let r, s be nonnegatwe
rd-continuous functions on (a,7)r. If y € Cfg)([a 7] N'T) with y* (a) = 0,
fori=0,1,2,...,n—1, then

At < B ol
< V| Ve (3.4.41)
0

T pt+q

[ s+ @r s> @ st < Karpa) [ o] 0]
‘ ‘ (3.4.42)
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where K(a77-ap7 Q) = Kl(a‘aT7p7 Q) + K2<a'77—7p7 q))

q
o q p+q
Kl a,T7,p,q = 22p ! < )
( ) praraps

D
ptq

(p+q—1) p+q
") (1 haalto(s)) AS) A
</ (r(0))? </ P (s) t) |

and
Kol = 27 ()7
pta (+a-1) \ Pra
s P s ( / hn2(t,0(5)) As) R
a (r(t)? S )
Proof. From Taylor’s formula, since yN (a) =0,fori=0,1,2,...,n—1,
we have
t
y(t) :/ B_1(t,0(s)y>" (s)As, for t € [a, 7). (3.4.43)

This implies that

b by 1 (t,0(s)) 1| Am
@) < | ———=—(r(s))7* [y~ (s)| As
e |
Applying the Holder inequality with
hn_ B _1 n
fo) = MBI i~ e [ 0.
(r(s)) 7+
p+q B
gl prqg—1 and v =p+gq,

we have

[ tattotn]p @) as < ( /”““”A)
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Since y” = y + puy™, we have
y(t) +y7 (1) = 2y(t) + py® (1)
Applying the inequality (3.3.2), we get (here p > 1) that
ly+ 7" <2270 [yl + P [yB]7) = 22 [yl + 2 [y B

From (3.4.44), we get that

t p(EY)
am gy v hnl(t’ol(s))As>
ol < </ (r(s) 77

([ e

ly(t)[”

x|y~ )

Also, by using (3.4.43), we get that

Aol 2 o] </ t h@ff<>>A>(+)
o (r(s))7Fe=T

IN

o] ([ et ) "

Substituting (3.4.47) and (3.4.46) into (3.4.45), we have

q

s(8) ly(8) +y7 (O |y>" (1)
p+qfl)

< 22p—18(t) (/:WAS>M p+a ‘yA”(t)‘q

o )
(U

153

(3.4.45)

p+q P’ﬁ
As) (3.4.46)

. (3.4.47)

(3.4.48)

(3.4.49)

(3.4.50)
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From this, we get that

p+q 2A t)

At = and [y (1)

o (ZTA(S)>+ . (3.4.51)

v

From (3.4.46) and (3.4.51), since s is nonnegative on (a,7), we have that

220=15(t) [y (1) ’

v~ (1)
p+q*1)

< 2% ls(t) (7«(1t)>+ X (/at mAS>P( v

X (2() 757 (2 (1) 7

This implies that

20 [Csoor [ o a

1 —1
ptq )

< 22P—1/;s(t) (7‘(115))* x ([WASY( v

X (2(6)77 (22() 777 At

Applying the Holder inequality with indices (p + q)/p and (p + ¢)/q on the
right-hand side of the last inequality, we have

20 [Csoor [ o] a

’ (/‘IT ZZ(t)ZA(t)At) " ' (3.4.52)

From (3.4.50), and the chain rule formula (1.1.7), we obtain

A1) < 1 (Z%(t))A . (3.4.53)
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Substituting (3.4.53) into (3.4.52) and using the fact that z(a) = 0, we have
that

2 [0 o

v~ ()] A

) (W) ([ (ZWs))AAs)PL |
/GTS”?’(t) <T(1t)) (/at Wm) (rta-1) e

x22p~1 (q> ),

p+q

A
)
Do
S
L
= —
m\ﬂ
w
]
<F
=
S~—
A/~

Using (3.4.49), we have from the last inequality that

T n |4 T n |Pta
2 [Cso o [p 0 e < Kt [ o]y 0] A
‘ ‘ (3.4.54)
Proceeding as above, we can also show that
T t p( p-;grgl)
21771/ 1P (£)s(2) (/ hn—Q(t701(5))As>
a a (r(s))rre1
N ¢ n |PFa e
X ’yA (t)‘ </ r(s) ’yA (s)’ As) At
T n, |Pta
< Ks(a,7,p, q)/ r(t) ‘yA (t)’ At. (3.4.55)

Integrating (3.4.48) from a to 7 and using (3.4.54) and (3.4.55), we get that

[ @+ or o

q

At

p+q
At

< (Kilara + Kalara) [ 00

a

)

which is the desired inequality (3.4.42). The proof is complete. m
Similar reasoning as in the proof of Theorem 3.4.18, with [a, 7] replaced
by [b, 7]r and y(¢) in (3.4.43) is replaced by

b n
y(t) = (—1)”/t 1 (0(5), Dy () As, for t e [b7]n

yields the following result.
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Theorem 3.4.19 Let T be a time scale with 7, b € T and p, q be positive
real numbers such that p > 1, 1/p+1/q = 1, and let r,s be nonnegatwe
rd-continuous functions on (t,b)y. Ify € Cﬁz)([T b N'T) with y™ (b) = 0,
for0<i<n-—1, then

b arp | ann? * b A" p+q
s+ OF [p> 0 A< K bpg) [0 0 A
(3.4.56)
where K*(7,b,p,q) = K{(7,b,p,q) + K5 (7,b,p,9),
e
K* 7b7 9 = 22p_1 q )
1(7,0,p,9) (p+ .

ptq

b(s(t))p< bg"1(0(8)7t)A8>(p+q_l)At 2
’ /T (r(6))? /t P (5) .

and

q

%

K3(r,b,p,q) = 227! <7q )pq
p+a

§ ( / B0 (5() "7 ( = As) ey At) m.
TGy T (s)

In the following, we assume that there exists 7 € (a, b) such that

Kl(paq) = K]_(CL T, P, q) = KT(Tabap7q) < 00,
Ks(p,q) = Kz(a,7,p,q) = K3(7,b,p,q) < o0,

where K1 (a,T,p,q), K2(7,b,p,q), Ki(a,7,p,q), and K;(7,b,p, q) are defined
before. Note that

/ a0+ O[5 0]
b

= [sowoor [ of s sl or |y

so combining Theorems 3.4.18 and 3.4.19 yields the following result.

A" ()| A,

Theorem 3.4.20 Let T be a time scale with a, b € T and p, q be positive
real numbers such that p > 1, 1/p+ 1/q = 1, and let r, s be nonnegatwe

rd-continuous functions on (a,b)r. If y € C’fg)([a b N'T) with y™ (a) = y»
(b) =0, fori=0,1,2,...,n—1, then

b
/ SO ly(t) + 7 (O

where K(a,b) = K1(p,q) + Ka2(p, q).

b

s 0 ar< K@) [ o

At,
(3.4.57)

’p+q
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For 7 = s in Theorem 3.4.18, we obtain the following result.

Corollary 3.4.4 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p > 1, 1/p+ 1/q = 1, and let r be a nonnegative
rd-continuous function on (a,7)r. If y € CT(,Z)([CL,T] NT) with y» (a) = 0, for
1=0,1,2,...,n—1, then

! e |, A" | x ! An [P
[ oo+ or 2 o] at< ke oo | o]
(3.4.58)
where
K*,,, :22;;71((1)m
(a,7,p,9) praaps

X (/{: r(t) </: MAS) (p+a—1) At) 2
4or—t <;%q) -5

- ¢ (p+q—1) wra
x ( / WP ()r(t) ( / Wm) At) .

From Theorems 3.4.19 and 3.4.20 one can derive similar results by setting
r = s. Setting r = 1 in (3.4.58), we have the following result.

Corollary 3.4.5 Let T be a time scale with a, 7 € T and p, q be positive
real numbers such that p > 1, 1/p+1/q=1. Ify € Cﬁz)([am] NT) is delta
differentiable with y> (a) = 0, fori=0,1,2,...,n — 1, then

AP p+q
(t)| At (3.4.59)

[ o+ y

An Y T
v~ (0] At < L(a,b,p.q)

a

where

q p

_— q +a T t (p+9—1) p+aq
L(”ﬁ 7,05 ‘I) = 2°P T / / hnfl(tva’(s))AS At
pTq a a
%
pTq b
4op—1 (ﬁ) (G(t)) 7P+,

where G(t) = faT pPra(t) (fat hp—a(t, 0(8))As) (pra=b) At

Next we present Opial inequalities involving several functions and their
higher-order derivatives. The generalized Taylor’s formula and generalized
polynomials will be used.
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Theorem 3.4.21 Let {,n € N, a,b € T and y; € C'y(T,R) with yjN(a) =0
forallj € [1,n+ 1]y and alli € [0,€)n,. Then, the following inequality holds

pn+l|[J—1 n+1
/ > _Hy;’(s)]yf“(s)l 11 yxaHAg

i=j+1

< (nil / ( [ [hH(a(f),a(<>>]2A<)nA5>

S( [

Proof. We have

1
2

t
t) = / hg,l(t,a(g))yjﬂ (§)AE, for all t € [a,b]r and all j € [0,n + 1]x.

(3.4.60)
Now, set

t
y;(t) = / [yf (g)]gAg, for all ¢ € [a,b]r and all j € [0, + 1)y. (3.4.61)

Then
n+1 J=1 o(t) . 1
Hyl 0 I1 wo|=||T] [ tmsto.o@t ©a¢] (50)
i=j+1 i=17a
n+1
xH/h“ta 1w (©)a¢
1=j5+1

n+1 %
Hyz ) [ vt > (3.4.62)

i=j+1

for all j € [1,n + 1]y, where

a(t) 2 2
H(t) = (/ [hg_l(a(t),o(f))} Af) , for all t € [a,b].  (3.4.63)
Integrating (3.4.62) from a to b and applying Holder’s inequality, we get

j—1 n+1

/b
@ 1i=1

[Tv©v2 © I vi©

i=j+1

g(/ab[H(f )(/wﬂly © [ wie Ag)l

1=75+1

Ag
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Then, summing the resulting inequality over j € [1,n + 1]y, we get

Ag

pn+l|[j—1 , n+1
D> [ yf(ﬁ)] v (s)[ I1 w(©
a j=1|Li=1 i=j+1

< (/ab {H(g)] 2A§> ' (3.4.64)
n+1

b[iz1 n+1 1
xZ(/ [Hlys(f)]yf(s)[ 11 yios)]Af)

i—=j41
< (/b [H<f>]2A5>2

n+l p [J—1 n+1
X <<n+1)z/ lﬂy?(ﬁ)]yf(f)[ IT »©

Jj=1 i=1 i=j+1

M)

_ ((nJrl)/ab [H(f)]2A§>2
b [ntl A 3
x ( / 1_1%(5)] Ag) (3.4.65)
- ((n [ [H@TA&) 5 (f[y <b>> E
. U
< (nil [l <§)}2A5>2i o] T e

/N
3
—
>
.
~
[N
|
3
+ | =
—
3
Ngfs
AN
Q>/
3
£

forall \; € Rar and j € [1,n+1]y are employed. The proof is hence completed.
|

In the rest of this section, we make use of the following notations and
definitions. Let n € N satisfy n > 2, T; be a time scale for all ¢ € [1,n]y, and
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a;,b; € T; satisfy —oo < a; < b; < oo for all i € [1,n]y. Set Q,, := [a1,b1]r, X
-+ X [ap, by, , and for y € Cra(Qn, R) (y belongs to Cyq([ai, bi]r,, R) for each
€ [1,n]n) denote

bl bn
Jy©As= [ [y&y,....6)AL - AE,,,
Qn ay [£22% (3467)

aradu(0) = (G0 B0

NN
() ) , (3.4.68)

and

lgrady,y(8)]| := (Z

i=1

where t = (t1,t2,...,t,) € Q, and r € N.

Theorem 3.4.22 Let p and q be real constants such that p > 1 and ¢ > 1,
and yl(Qn,R) (y belongs to CL([a;,bi]r,,R) for each i € [1,n]n) vanishes
on the boundary 0, of Qy,. Then

/ ()P Jeradly(€) " A
Qy,

% lZ(bl - ,,(,,ﬂ)} /ngad p+q A¢. (3.4.69)

1=

Proof. Clearly, because of the boundary condition on y, for all ¢ =
(t1,...,tn) € Q, and all i € [1,n]y, we have

t;
0
/rfiy(t§§i)Afi =y(t;t;) —y(t;a;) = y(t) (3.4.70)
and similarly
b;
0
/ Agly(t;ii)Afi = —y(1), (3.4.71)

where y(t;s;) = y(t1,...,ti—1,8i,tix1,...,tn) for all ¢ € [1,n]y. Therefore,
from (3.4.70) and (3.4.71), we have

tq

1 — o

ﬁ; Aﬁiy(t; §i)AE, (3.4.72)
and

L B

0 Z [ a¢, y(t (3.4.73)
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for all t € Q,,. Taking (3.4.72) and (3.4.73) into account, we see that

1
ly®)1 =5 (y@I+ @)
ti b;
1 n B n 9
=— —y(t; )AL, €A,
o (;/Agiy(t’§’> &i| + ;!Agiy(t,éz) é})
1 0
= 0 68)| A 3.4.74
_%iﬂ Aéiy( $60) | A (3.4.74)

holds for all t € ,. Applying Hoélder’s inequality with the indices
(p+4q)/(p+q—1) and p + q to the right-hand side of (3.4.74), we get

1
b; p+a

1 — +q—1 pta
Ol <5m D0 |- a5 | [|pue| g (3.4.75)
i=1 o

0
Ag;

for all ¢ € §2,,. Raising both sides of (3.4.75) to the p-th power, and apply-
ing (3.4.1), we have

wor < w7 (5)

p
bi pta
p(p+a pt+q
X Z (b; — a;) (;+q 1) (/ Aigy(t;fi) A£Z> (3476)

@4

for all ¢t € Q,,. Multiplying both sides of (3.4.76) by |V}y|?, we have

1 " p(ptg—1)
) PIVay(t)]* < T [(bi—az) pra | Viy(t)]?  (3.4.77)
=1

b; _p_
. P p+q ptq
X </ Afiy(t;gi) Afi)

aj

)

| S

for all t € €),,. Here we note that

b;

/

a;

pt+q

y(t:&)| AL, (3.4.78)

2
Ag;
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does not depend on the i-th component ¢;. Integrating both sides of (3.4.77)
on (1, with respect to ¢, we obtain

/Iy(é)\p||gradiy(£)HqA£
Q,

1 & prta—1) K 9 P
S%;[(bi_az p+q /ngad )||q</‘ACy(§ i)

wta
lb —a;) p(P;fq 2 (/ ||grad p+qA§>

p+ m
qACl-M) ] (3.4.79)

q rq
AC, ) Ag)

1
2Pn

(/

X

Ik

i .
pt+q P+
X (/‘ fZ_y(ﬁ) Af) ] (3.4.80)
Q,
1 & 7
= oo, - l(bi —a;) <Q/ ||grad,,y( )H”*%g) (3.4.81)
( AEY A5> ] : (3.4.82)

o p+q
ag'®| A
"9 PN 334 =
:/<<; e V) ) > A€ (3.4.83)
< / ||gradly(6)[|" A (3.4.84)
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Applying Holder’s inequality and (3.4.1) to the right-hand side of (3.4.81),
and taking (3.4.84) into account, we have

JIGHIETEIRN

Qp

1 p(p+gq ﬁ
< 3op 2- l(bz - ai)% (/ ||g1"adrlly(§)Hp+qA§>
- Qn
+q FE
Ag) ] (3.4.85)

q

n p+q
_ 2;'1(2 b 7011 p(pp;rqq) /ngad |P+QA£>

(%,

Ag Ag) (3.4.86)

q

1 ~ p(:n+q) ptaq

< m(;(bi —a;) v¥a ) (/ ||erad, y( ‘pMAf)

x ( / ngad;y@m%g)p q (3.4.87)
0

n

= 2;( S (b —a; ”%‘Tf) / ||aradly()]|P AL (3.4.88)

i=1

The proof is complete. m
The following result considers several functions.

Theorem 3.4.23 Let m be an integer satisfying m > 2, p; and q; be real
constants such that p; > 1 and q; > 1 for all i € [1,m]y, and y;}4(Q,,R)
vanish on the boundary 0Qy, of Qp for alli € [1,k]y. Then

/ [T w©r

"7.1

grad,,yi (€)]*

TAL (3.4.89)

i

1< i kpi itap) \ Pit e
S | (L) s /Q lgradyi ()" A¢
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Proof. Applying the well-known inequality concerning the arithmetic
mean and geometric mean , we get

k

/ LT v (" [Jeradsi ()] | A
0., i=1
k k kg, ’%
= [ (Il llwmaiu@l) ac @am
0, i=1
k
= %Z/h& wi©)] " Ac. (3.4.91)

Applying Theorem 3.4.22 on the right-hand side of (3.4.91), we see that
(3.4.89) is true. m

Theorem 3.4.24 Let p and q be real constants such that p > 1 and ¢ > 1,
r be a fized integer satisfying r > 1, and yly(Q,,R) and each of its partial
delta-derivatives up to the order r — 1 wvanish on the boundary 0y, of Q.
Then

[ w@r lsradzy(e)” a¢

n
q
p(p+q=1) 1 ptq

1 " _p_ bs ptq pra
S om Zl(bi — ;) (/a 1 (i, 0(&;)) 7o~ Afi)

%

x / leradry ()77 A (3.4.92)

n

Proof. Now

t;
T

[ hoattsco€)) rutts€)ng = u(o) (3.4.93)

a;

and

b;
r

/ _— a(@))Aa—gya;fi)A@ — (1), (3.4.94)

t;
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for all t = (t1,...,tn) € Q, and all ¢ € [1,n|y. From (3.4.93) and (3.4.94),

we get

) = 1 n . o A

()] = o 2, r—1( zﬂ(@))@y( 16)AE;
;/m 1(ti, (€ Aézgy(t;fi)A&i) (3.4.95)

(£ e |l

0

+Z/\hr 1(ti, (€ !’Agry(t &) A&) (3.4.96)
_%Z/Ihr 1(ti;0(8 !‘Agry(t £;)|AE; (3.4.97)

holds for all ¢ € Q,. Following similar reasoning as in Theorem 3.4.22
yields (3.4.92). m
Finally we combine Theorems 3.4.23 and 3.4.24.

Theorem 3.4.25 Let m be a fixed integer satisfying m > 2, p; and q; be real
constants such that p; > 1 and ¢; > 1 for all i € [1,m]n, r be a fized integer
satisfying r > 1, and y;74(Qn, R) and each of their partial derivatives up to
the order r — 1 vanish on the boundary 0Qy, of 0, for alli € [1,k]y. Then

[ T et a¢

"11

5
pi+4a;

n

k
1 1 ( )
EZQTP > (bj —a; Pﬁ%HM;fql (aj,bj)
i=1 j=1

< [ ezl ag). (3.4.99

n

b k(pj+a;)
where H(aj’ b]) = (fa; |hr71(ti7 U(fz))' Fpjta =t A£z> .

3.5 Diamond-a Opial Inequalities

In this section, we present a sequence of Opial type inequalities for first
and higher order diamond alpha derivatives on time scales. The results are
adapted from [32, 47, 50]. Throughout this section, we say that a function
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y : [0,7]r — Ris in the class C§_ if y is Qq-differentiable such that ay® is
rd-continuous and (1 — a)yV is ld-continuous and a(1 —a)y®« is continuous.
Note that Céa is, for @ € (0,1), equal to the class of functions that are
A-differentiable and V-differentiable such that y*® is rd-continuous and yV
is ld-continuous, and 3%« is continuous. Moreover, Céo is equal to the class
of functions that are V-differentiable such that yV is ld-continuous and C<1>1
is equal to the class of functions that are A-differentiable such that yV is
ld-continuous.

Theorem 3.5.1 Let o € [0,1] and h € T with h > 0. For any y € C},_ with
y(0) =0 and a(1 — a)yVy> > 0, we have

h h h
o / (v + 570 | ()AL (1-0)® / Iy + )% | (V< / (5°%)% Out.

Proof. By Theorem 3.1.1 we have

h h
o / (v + 7)™ (DAL < aPh / WA (1A,
0 0

and by Theorem 3.1.2

h h
—a)d AVAY _a) v |2 '
(1 )/0|<y+y>y (Vi< (1 >h/0 V[ (1)t

Also from the definition of y®«, we see that
2 2 2
(yo"‘) =ao? (yA) +20(1 — a)y?yY 4+ (1 —a)? (yv) .
Now, since y>yV > 0, and we get that

a® (5*)* < (¥°)7, and (1 -a)? (37)° < (y°)". (3.5.1)

This implies that

o [ wrwwe|waer o [ fw T ow
0 0
< h [a/oh (yo"‘(t))QAt—&-(l—a)/o (yoa(t))QVt _ /Oh (y%(t))Qoat,

which completes the proof. m
Notice that if we take & = 1 and o = 0, then Theorem 3.5.1 reduces to
Theorem 3.1.1 and Theorem 3.1.2, respectively.

h
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Theorem 3.5.2 Let o € [0,1] and h € T with h > 0. For any y € C}  with
y(0) =0 and ay® >0 and (1 — a)y¥ >0, we have

h h
o / (v +5°)0> | (DAL + (1 - a)? / Iy + )7 | (Ve

h 2
< B / (19%)7 Out + 29(1 — 3a + 302)(y(h) — y(0)),
where

= min {uh—u} andy=max{ly(0)], |y(h)}.
u€[0,h]r

Proof. Using the fact that ay® > 0, it follows from Theorem 3.1.3 that
h h h
- 2
o [+t wae < o [ A ac 2 [ Amar
0 0 0
h
2
= % [ s (0t + 290° (k) ~ 5(0))
0
Similarly, with help of (1 —a)y" > 0, one can get that

h h
—a)3 AYAY _a)? V|2
1 >/O|<y+y>y (vt < Ba )/0|y 2 (vt

+29(1 — )’ (y(h) — y(0)).

Combining these inequalities and also using (3.5.1), we obtain that

h h
o / (v +5°)0> | (DAL + (1 - a)? / v+ )7 | (Ve

oo [P ose - [ 0w

+27 [0’ + (1 = a)*] (y(h) — y(0))

h h
5{a/0 (yoa)zAHu—a)/o (yoa)QVt}
+27 [a® + (1 — a)®] (y(h) — y(0))

h
= 5/0 (2/0”)2 Qat + 27 [1 —3a+ 3a2] (y(h) —y(0)),

IN

IN

which completes the proof. m

Corollary 3.5.1 Let o € [0,1] and h € T with h > 0. For anyy € C}_ with
y(0) = y(h) =0 and ay® >0 and (1 — a)y" >0, we have

h h h )
a3/0 |(y+y")yA|(t)At+(1*a)3/0 !(y+y’”)yv|(t)Vt§B/0 (¥°°)" Oat,

where B is defined as in Theorem 3.5.2.
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Theorem 3.5.3 Let o € [0,1] and h € T with h > 0. Assume that g :
[0, hlr — R is a nonincreasing continuous function. For any y € C%a with
y(0) = 0 and a(1 — a)y®yY > 0, we have

h h
a3/0 (97 | (v +y7)y?]] (¢ At+(1—a)/0 9" [(y+y")yV]|] () VE
h 2
< h /0 o(t) (5°%)? Out.

Proof. By Theorem 3.1.10, we get that

h h
of”/ (97 | (v +y7)y?|] ()AL < a3h/ g(t) (> (t))2AL.
0 0

In a similar manner, we can obtain that

h h
(1-a)? / [9” |( + 575 |] ()¢ < (1 — a)h / o) (5% (1) Vt.
0 0

Combining these inequalities and using (3.5.1), we get that
h

h
a3/0 97 |(y+y7)y |] At+(1—a)/0 [9" [(y+y")yV]|] () VE

h h
h{a3/0 g(t)(yA(t))QAH(l*a):s/O g(t)(yv(t))QVt}

IN

IN

h h
h{a / g(D) (02 AL + (1 - a) / g(t)(y%)?w}

h
- / o) (502 0u,

which completes the proof. m

In the following, we deal with two weight functions and generalize some
delta Opial inequalities obtained in Sect. 3.1 to the diamond-alpha case. For
our purposes, we offer the following slight but essential improvement of The-
orem 3.1.11.

Theorem 3.5.4 Assume that a € T, b € (a,00), 1, s € Cra([a, b]1, (0,00))
and f € CL,([a,b]r,R).
If f(a) =0, then

/:<>|( |At<K/ ()12 WA,

K:\//bs2(t)(R2)A (AL with R(t):/tﬁj).

where
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Proof. Define g(t) := f (s)|f2(s)|?As. Then g(a) = 0, g™ (t) =

r(t)| fA(#)? so that IfA \/ 8 = /RA()g2 (1), and
- (a>|=|/ fA(s)As|s/ |£2(s)] As

[ i)

f ﬁj)\/r(s) FA(s)[2 As = VED(0),

where we have used the time scales Cauchy—Schwarz inequality. Thus

IF @)

(2@ = [(f&) + Flo@®) F20)]
< (FOI+ FE@)) |2
< (VR®9®) + VRE)g6(0)) /B2 (19> (1)
< VR@®) + R(o®)V/9() + g(o(®)y/ RA(H)g™ (¢)

VED2 0/ () @),

where we have used the classical Cauchy—-Schwarz inequality, and hence

sV (B2 1)y (9> (1)t

|

b b
¢ / $2(t) (R?)™ <t>At\/ / (62 (1) At
— K@) = Kglb) / (120,

where we have used the time scales Cauchy—Schwarz inequality one last time.
]

b

b
/ s (2" ()at <

IN

Similarly, we may prove the following nabla result.

Theorem 3.5.5 Assume that a € T, b € (a,00)r, 7, s € Cia([a, b]1, (0,00))
and f € C},([a,b]1,R).
If f(a) =0, then

b b
/ s ()T @IVt < L / (B 6PV,

L:\//bs2(t)(52)v(t)w with  S(t / Vs

Now we are ready to prove the corresponding diamond-alpha inequality.

where
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Theorem 3.5.6 Assume that o € [0,1], a € T, b € (a,00)p r, s €
C([a, b]T, (0,00)) and f € Céa([a,b]T,R). Ifa(l—a) f2fY >0 and fla) =
0, then

b b
o s (1) @iae+ (1-a)” [ sto) ()7 @19t

a

b
< A / r(0)] £ ()2 (1),

\// ) (T2)%% ()0at  with T(t):/at f(‘;‘;

Proof. From Theorems 3.5.4 and 3.5.5, we have

where

b

o [son (2 >A<>|At+<1—a>5/a SO1 () OV
< aK/ (O At + (1 — )’ /:r(t)\f%)ﬁw
- a K/ Hlaf OPAL+ (1 - a)? LLbr<t>|<1—a>fV<t)\2Vt
< a K/ GIIARO] At+(1—a)3LAbr(t)|fO“(t)l2Vt

= (’K) (a/ r(t)|f<>”(t)|2At> +((1—a)?L) ((1—a) /abr(t)\fo"(t)th)

AN\/ (o [ riotsee <t>|2At)2 (a-a [ br<t>f0a<t>|2w)2
AN\/(/Q <>|f<>~<>|2<>a) fA/ (1 () 20at,

where we have used the classical Cauchy—Schwarz inequality and

IN

IN

A = \/a4K2+(1—a)4L2

b
%4/ At+(1—o<)/ 2(1) (52)" (1) Vi
\/ /52 ) (T2)%= ( AtJr(lfa)/ s2(t) (T2) ()Wt

\/ / $2(t) (T2)°° ()0at = A,

IN
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where we have used the inequalities
o (RS < (12)% and  (1-a)® (52)% < (12)%. (35.2)

Now we show (3.5.2) in order to complete the proof. Note first that by [52
Theorem 5.37], we have

1 1 1
-, RV=— and S*=—,
T TP ind

A—gV =

and all of these derivatives are positive. Using these relations and the time
scales product rules, we have

v R+ RF A S+5° A R+ R°
()7 = BER (g ST ya _ RERT
P o P

()7 =2 per 2 S pgv o 5L
r r ro rP r

and again all of these derivatives are positive. Since T'= aR + (1 — «)S, the
calculation

(TQ)Oa - a (TQ) 1 o a) (TQ)V
= a(0? ()" +20(1-0) (R +(1-a)* (5)°)
+<1 )( ( )v+2a(1—a)(RS)v+(1_a)2 (SQ)V)

= o (RQ)A+(1—a)3 (52) +2a* (1 —a) (RS )A
+2a (1 - ) (RS)Y + (1 —a)? (52 +a’(1 —a) (B?)"

confirms the validity of the inequalities (3.5.2). m
Following the same steps as in the proofs of all previous results in this
section, we can establish the following result.

Theorem 3.5.7 Assume that o € [0,1], a € T, b € (a,00)p r, s €
C([a, b]r, (0,00)) and f € Céa([a,b]T,R). Ifa(l—a) f2fY >0 and f(b) =
0, then

b b
o [0 wlse+a-a) [s01 (1) 0Ive
b
< [ IO P,

’ b
\// $2(t) (T2) 0 (1) Ot with T(t):/ ?(z;

The last result combines Theorems 3.5.6 and 3.5.7.

where
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Theorem 3.5.8 Assume that o € [0,1], a € T, b € (a,00); r, 5 €
C([a, b]T, (0,00)) and f € Céa([a,b]T,R). Ifa(l—a) f2fY >0 and fla) =
f(b) =0, then

b b

o® [ s (1) wiae+ (1-a)” [sto) ()7 @19t
Z a
S R CTCIRONG

where

B = minv(u)

(u) := max \// (T2 () Oat, \// TQ%()Oat ;

and T, for c € T is defined by T.(t) = ft Qas

c r(s)”

with

In the following, we obtain a sequence of Opial inequalities for first order
diamond alpha derivatives on time scales and establish some higher order
inequalities. Throughout, we say that a function f : [0, h]r — R is in the class
C3, if f is n O4-differentiable such that o f A" is rd-continuous, (1 —a)fV" is
ld-continuous, and a(1 — a)f%« is continuous. To prove the results we need
the following Lemmas.

Lemma 3.5.1 Let i € N and j € No. Assume f is (i + j) times
Ou-differentiable. If (1 — o) fOa AV >0, then

JOLDT 5 g poiTIAT
and if afO AV’ >0, then
FO 2 (1= a) O
Proof. We have
7o = (1) = (0) ) (0

so by using the assumption we have that
J+1

o —a (1) (1) za ()Y

and
vitt vitt

o —a (1) r - () 2 e (1)

which completes the proof. m
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Lemma 3521 Let n € N. Assume f is n times Q-differentiable. If
(1—a)f% "7 AV >0 forall j €{0,1,...,n— 1}, then

fou > am A,
and if af% AV >0 for all j € {0,1,...,n— 1}, then
for = (1 —a) v

Proof. We use Lemma 3.5.1 for i = n — j, where j € {0,1,...,n—1}, to
obtain

2

n n A0 no1y Al n—2\ A o\ A" n
poE =g za ()T 2 (7)) iz an (100) T = et

and similarly

r = (1) 2 e () a2 ()
o

> > (1-a)y (foi) —(1—a)fv",
which completes the proof. m

Theorem 3.5.9 Let T be a time scale, m, n € N, a € [0,1] and h € T with
h > 0. Assume that f isn times Oo-differentiable with (1—a) foa ' AV >0
and af% TNV >0, afA" >0 and (1 —a)fY" >0 for all j € {0,1,. ..,
n—1}. If

af¥(0)=(1-a)f7(0) =0, forj e {0,1,....n ~ 1},

h
an(m+1)+1 /
0

h
—I—(l _ a)n(m+1)+1/
0

then

(t)At

(Z f’“(f")m’“> M~
k=0
(Z f’“(f”)”“’“) AN
k=0

h m-+1
< pmn / (£9%)™" (0at.

0

Proof. It follows from Theorem 3.4.16 that

h
an(m+1)+1 /
0

(t)Vt

<Z f’“(f")’”"“) "
k=0

h " +1
(t)At < an(m+1)+1hmn/ <fA (t))m At.
0

(3.5.3)
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Similarly, we get

(1 - aytmenen 1 (ifﬂf”)’“’“) Y vt
0 —
, k=0
< (1= q)nim+b+t / (fV" @) tive. (3.5.4)
0

Also

oD (fM)m+1 < (foz)m+1 ,and (1— )" (7" ()™ < (foz s

(3.5.5)

Hence, combining (3.5.3)—(3.5.5), we obtain that
h m

(Z f’“(f")m"“> 2
+(1 _ Oé)n m+1)+1/ <Z fk: fp > an
pmn /h (fon)mel( 0o t+ 1 /h <>n <>

e! ; o Q) ; o
h m—+1
= R On ot
L) wou

which completes the proof. m

an(m—i—l)—i—l

(t)At

IN



Chapter 4

Lyapunov Inequalities

You know that I write slowly. This is chiefly because I am never satisfied
until I have said as much as possible in a few words, and writing briefly takes
far more time than writing at length.

Gauss (1777-1855).

In 1906 Lyapunov [105] proved an inequality giving the distance between
two consecutive zeros of solutions of second order differential equations. It is
proved that, if the differential equation

y' () + p(t)y(t) =0, (4.0.1)

has a nontrivial solution y(¢) with y(a) = y(b) = 0 (a < b) and y(t) # 0 for
t € (a,b), then

’ 4
/a p(t)dt > — (4.0.2)
where p is a positive real valued function defined on [a,b]. If the difference
equation
A?y(n) +p(n)y(n +1) =0 (4.0.3)

)
has a nontrivial solution y(n) satisfying y(0) = y(N) = 0, where p(n) is a
positive sequence, then the Lyapunov inequality is given by

N-l N =25, if N=2m+2,
kg}p(")* 2mil o if N =2m 4 1,

The chapter is organized as follows. In Sect.4.1 we present some Lyapunov
type inequalities for second order linear dynamic equations and in Sect. 4.2

(© Springer International Publishing Switzerland 2014 175
R. Agarwal et al., Dynamic Inequalities On Time Scales,
DOI 10.1007/978-3-319-11002-8_4
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we present results for half-linear dynamic equations. Section 4.3 considers
dynamic equations with damping terms and in Sect.4.4 we consider
Hamiltonian systems on time scales.

Throughout this chapter (usually without mentioning) the integrals in the
statements of the theorems are assumed to exist.

4.1 Second Order Linear Equations

In this section, we establish some Lyapunov type inequalities for Sturm-—
Liouville linear dynamic equations on time scales and then establish some
sufficient conditions for disconjugacy of solutions. The results in this section
are adapted from [48, 90, 123, 125, 128]. First, we consider the Sturm—
Liouville dynamic equation

Y22 () +p(t)y° (t) =0, (4.1.1)

together with the quadratic functional

b
Fly) = / (20 - py?)2(0)} A,

where p(t) is a positive rd-continuous function defined on T.

By a solution of (4.1.1), we mean a continuous function y : [a, 02 (b)]r —
R, which is twice differentiable on [a, b]T with yAQ rd-continuous. It is known
that (4.1.1) admits a unique solution when y(a) and y* (a) are prescribed. We
say y has a generalized zero at some ¢ € [a, 0 (b)]r provided that y(c)y?(c) <0
holds, and (4.1.1) is called disconjugate on [a,b]r if there is no nontrivial
solution of (4.1.1) with at least two generalized zeros in [a, b]r. Finally, (4.1.1)
is said to be disfocal on [a,o?(b)]t provided there is no nontrivial solution y
of (4.1.1) with a generalized zero in [a, o?(b)]7 followed by a generalized zero
of y® in [a, o (b)]r.

Lemma 4.1.1 If © solves (4.1.1) and if F(y) is defined, then
Fly) = Flz) = Fly — 2) +2(y — 2)(0)z(b) — 2(y — 2)2*(a).
Proof. Under the above assumptions we find

Fly) - Fle) - Fly— )
b
- / (W) — p)? — ()4 p(a”)?

— (y® — 2% +p(y” —a%)} (H)At
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= /{yx aca:A} At —2/{ )mA}AAt
= 2(y(b) — 2(b)2>(b) — 2(y(a) — 2(a))z>(a),

where we have used the product rule.

Lemma 4.1.2 If F(y) is defined, then for anyr,s € T witha <r <s<b

Proof. Let

+
S—T sS—7T

sy V) =), | su(r) —ryls)

Then z solves the Sturm-Liouville equation (4.1.1) with p = 0 and therefore
we may apply Lemma 4.1.1 to Fy defined by

Folz) = / (2 (1),

T

to find

Foly) = Fola)+ Foly— )+ (y— z)(s)a>(s) — (y — z)(r)a>(r)
Fo(x) + Foly — =)

Fte) = [ {10 5y )0,

sS—Tr S—7T

v

T

and this completes the proof. m
The following lemma will be used later (see [51]).
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Lemma 4.1.3 Equation (4.1.1) is disconjugate on [a, by if and only if

b
Fly) = / {(™(1)> = p(y")2(t)} At >0,

for all nontrivial solutions y with y(a) = y(b) = 0.

The following theorem gives the Lyapunov type inequality for the second
order dynamic equation (4.1.1).

Theorem 4.1.1 If y(t) is a nontrivial solution of (4.1.1) with y(a) = y
(b) =0 (a < b), then

b b—a
/ p(t)At > m, (4.1.2)

where f(d) = max{f(t) : t € [a,b]} and f(t) = (t —a) (b—1t).

Proof. From Lemma 4.1.1, since y is a nontrivial solution of (4.1.1) with
y(a) = y(b) = 0, we have that

b
Fu) = [ {00~ o770} At =0
0

Also, since y is nontrivial, we see that
M = max{y?(t) : t € [a,b] N T}, (4.1.3)
is defined and positive. Now let ¢ € [a,b] be such that y?(c) = M. Applying

the above and Lemma 4.1.2, twice (once with » = a and s = ¢ and a second
time with » = ¢ and s = b), we find

b b
M /p<t>At > / {p(y")2(t)} At
’ Ob b b
- / (4™ (1)*At = / (> (0)2At + / (43 (1)) At

1 1 b—a b—a
2 =M >M
y(c){c—a+b—c} fle) =7 f(d)’
where the last inequality holds since f(d) = max{f(t): ¢t € [a,b]NT}. Hence,
dividing by M > 0 yields the desired inequality. The proof is complete. m
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Example 4.1.1 We use the notation from the proof of Theorem 4.1.1.
(¢). If T=R, then

b b
min{ % —s‘ RS [a,b]} =0, and so that d= %.
Hence f(d) = ((b—a)?/4) and the Lyapunov inequality from Theorem 4.1.1
reads
/ 4
t)dt > .
/ pt)dt = —

0

(#i). If T =Z, then we consider two cases. First, if a + b is even, then

min{ ath —s|:s€ [a,b]ﬂZ} =0, and so that d = a—|—b.
Hence f(d) = ((b—a)?/4) and the Lyapunov inequality reads
b—1
4
>
> op(t) > .
t=a
If a4+ b is odd, then
min{‘a;b 5’ NS [a,b]ﬂZ} = %, and so that d = %H.

Then, we have f(d) = ((b— a)? — 1/4) and the Lyapunov inequality reads

b—1 4 1
> 00> A = -

t=a

As an application of Theorem 4.1.1, we now prove a sufficient condition
for the disconjugacy of (4.1.1).

Theorem 4.1.2 If p satisfies

b

/ P(HA(H) <

a

Ok (4.1.4)

then (4.1.1) is disconjugate on [a,b]r.

Proof. Suppose that (4.1.4) holds. For the sake of contradiction we
assume that (4.1.1) is not disconjugate. But then, by Lemma 4.1.3, there
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exists a nontrivial y with y(a) = y(b) = 0 such that F(y) < 0. Using this y,
we now define M by (4.1.3) and we find

b

b b
M / p(H)AE > / p(t)(” (1))*At > / (> ()20t >

a

M —a)
fady

where the last inequality follows as in the proof of Theorem 4.1.1. Hence,
after dividing by M > 0, we arrive at

which contradicts (4.1.4) and hence completes the proof. m

Remark 4.1.1 Note that in both condition (4.1.2) and (4.1.4) we could
replace (b—a)/f(d) by 4/(b—a), and Theorems 4.1.1 and 4.1.2 would remain
true. This is because for a < ¢ < b, we have

L1 akb-2 44
c—a b—c (b—a)(c—a)lb—c) b—a " b—a’

In the following, we apply Opial type inequalities on time scales to
prove some Lyapunov type inequalities for the second-order dynamic equation
(4.1.1).

Theorem 4.1.3 Assume that y is a nontrivial solution of the second-order
dynamic equation (4.1.1) with y(a) = y>°(b) = 0. Then, we have

() 1/2
Kp(o(b),a) = <2 / PO [0(t) — d] At) >, (4.1.5)
where
o(b)
P(t) :z/t p(s)As, for t¢€ [a,o(d)|r. (4.1.6)
Proof. Now

o (b) ,
/ v (0™ ()AL = 5 (D)5 () — y(a)y™ (a) - / VA ()]
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and using (4.1.6), we get that

o(b)
- / P()([y(t) +y7 ()]y> (1)) At

o(b)
< [ POl + v 0] @) A (4.18)

Multiplying (4.1.1) by y? and integrating from a to o(b) and using Theorem
3.1.7, (4.1.7) and (4.1.8), we get

o (b) 9 a(b)
/ (W2 (1) At < / 1P(0)] ([u(t) + 7 ()] 5™ (£)) At
o(b) 5

< Kp(o(b),a) / > (0] (4.1.9)

a

Clearly, (4.1.5) follows from (4.1.9) by dividing by

o(b) A 9
[ reras
on both sides. The proof is complete. m

Remark 4.1.2 The conclusion of Theorem 4.1.3 also holds for the second
order dynamic inequality

y& t) +pt)y°(t) >0, for t € [a,b]r, (4.1.10)
with y(a) = 0 and y(b)y>? (b) < 0.

Similar reasoning by considering Theorem 3.1.8 instead of Theorem 3.1.7
yields the following result.

Theorem 4.1.4 Assume that x is a nontrivial solution of (4.1.1) with
22(a) = 27 (b) = 0. Then, we have

-2 (5) ) 1/2
Lp(02(b), a) = (2 / (P(1))? [0(b) — 1] At) >,
where

P(¥) ::/ p(s)As, for t € [a,o(b)]r.
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Remark 4.1.3 The conclusion of Theorem 4.1.4 also holds for (4.1.10) with
z(a)r?(a) > 0 and o (b)=0.

In the following, we establish a disconjugacy result for solutions of (4.1.1).

Theorem 4.1.5 Assume that y is a nontrivial solution of (4.1.1) with y(a) =
yo (b) = 0, and let P € CL ([a,b]T,R) be a function satisfying PX = p on
[a,b]T. Then, we have

{ max {Kp(c?(b),c), Lp(c,a)}} > 1. (4.1.11)

c€la, 02(b

Proof. Similar reasoning as in the proof of Theorem 4.1.3 yields the
desired inequality (4.1.11) by applying Corollary 3.1.2 instead of Theorem
3.1.7. m

Corollary 4.1.1 Assume that y is a nontrivial solution of (4.1.1) with
y(a) =0, and let P € CLy([a,b]r,R) be a function as in Theorem 4.1.5. If

e 02(b)]T{max{Kp b),c),Lp(c,a)}} <1,

then y°” (b) # 0.

Next we consider the second order dynamic equation on [a, b]

[rty )] +at)y () =0,  teab], (4.1.12)

on an arbitrary time scale T, where r is a positive rd-continuous function
and ¢ is rd-continuous function and

B B
/ 1/r(t)At < oo, and / lg(t)| At < 0. (4.1.13)

We obtain lower bounds for the spacing 8 — « where y is a solution of (4.1.12)
satisfying some conditions at o and .

By a solution of (4.1.12) on an interval T, we mean a nontrivial real-valued
function y € C,q(T), which has the property that r(t)y®(t) € C},(T) and
satisfies Eq. (4.1.12) on T. We say that (4.1.12) is right disfocal (left disfocal)
on [a, B]r if the solutions of (4.1.12) such that y*(a) = 0 (y*(8) = 0) have
no generalized zeros in [, S]r.

Theorem 4.1.6 Suppose y is a nontrivial solution of (4.1.12). If y(a) =
y2(B) =0, then

1

( o | <u>>“>2+a2§25
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where ) ft s)ds. If instead y (a) y(B) = 0, then
B8 Q2(t) ﬂﬂ 3 " Q(t)
{\/5 ( o 7(t) </t r(“)> At) * aftgﬁ Ht) r(t) ‘] > 1, (41.15)

where Q(t) f q(s

Proof. We prove (4.1.14). Multiplying (4.1.12) by y° and integrating by
parts, we have

A

8 5 [P
/y”(t) (rOy=(1)~ At = y(t)r(t)yA(t)|a—/ r(t)(y>(1)*At

Using the assumptions that y(a) = y®(8) = 0 and Q(t) j; $)As, we get
that

B B B
/ r() (¥ () At = / a(t) (4 (£))? At = — / QA (1) (47 (1)) At.

Integrating by parts the right-hand side and using the fact that y(a) =
0= Q(p), we see that

8 ) 8
/ rt) (P (10) At = / Q) (1) + 7 (1) 4> (DAL

IN

B
| 1wl + 0] A )] A

Applying the inequality (3.1.23) with s = @, we have

/j r(t) (Z/A(t))2 { (/ Q' (/ u)) At)é + s
></a ‘y ’2At.

This implies that
t
n() & >]] >,

{ ( o (u))“>2+ai‘125 0

which is the desired inequality (4.1.14). The proof of (4.1.15) is similar to the
proof of (4.1.14) by using integration by parts and Theorem 3.1.12 instead
of Theorem 3.1.11. The proof is complete. m

As a special case of Theorem 4.1.6, when r(¢) = 1, we have the following
results for Eq. (4.1.1).
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Corollary 4.1.2 Suppose y is a nontrivial solution of (4.1.1). If y(a) =
yA(8) = 0, then

5 3
{ﬁ </ Q*(t) (t —a) At) s (u(t)lQ(t)l)] >1

where Q(t) ft s)ds. If instead y>(a) = y(B) = 0, then

[ (/ Q*(t) (B—1) At) + Sg;gﬁ(ﬂ(ﬂl@(t)l)] >1

where Q(t) f q(s

Remark 4.1.4 Note that if T = R then p(t) = 0 and Eq. (4.1.12) (when
r(t) = 1) becomes

y' () +q(t)y(t) = 0. (4.1.16)

In this case the result in Corollary 4.1.2 reduces to a result obtained by Brown
and Hinton [57].

Corollary 4.1.3 ([57]). Suppose y is a solution of Eq. (4.1.16). If y (o) =
y (B) =0, then

2//3 Q*(s)(s — a)ds > 1, (4.1.17)

where Q(t) ft s)ds. If instead y () =y (B) =0, then

/ Q*(s)(B — s)ds > 1, (4.1.18)

where Q(t) f q(s

Remark 4.1.5 Note that if T = N, then u(t) = 1 and Eq. (4.1.12) (when
r(t) =1) becomes

A?y(n) + q(n)y(n +1) =0, (4.1.19)

and the result in Corollary 4.1.2 reduces to the following result.

Corollary 4.1.4 Suppose y is a solution of Eq. (4.1.19). If y(a) = Ay
(8) =0, then
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where Q(n) = Ef:_i q(s). If instead Ay (o)) =y (8) =0, then

g1 3
ﬁ(Z@(n))Q(ﬁ—n)) + sup |Q(n)| > 1,

st a<n<p

where Q(n) = Z:;; q(s).

Theorem 4.1.7 Suppose that y is a nontrivial solution of (4.1.12). If
y(a) = y2(B) =0, then

(Lo, S [ ([ B ar) e |2

where Q(t) = ff q(s)ds. If instead y* (o) = y(B) = 0, then

Q2(t) BL 5& 3
(e G0 ([ R o)

where Q(t) = f; q(s)ds.

Q(t)
r(t)

‘u(t) > 1,

(4.1.21)

Proof. We prove (4.1.20). Multiplying (4.1.12) by y° and integrating by
parts and following the proof of Theorem 4.1.6, we have

B B B
[ o erm) st= [ anwrorac=- [ QAo o) ar

e

Integrating by parts the right-hand side and using the fact that y(a) =
0= Q(B), we see that

8 ) 8
/T(t)(yA(t)) At < /IQ(t)IIy(tHy”(t)l|yA(t)|At

Q(t)
r(t)

IN

sup
a<t<p

B
|l + v ol 0] a

Applying the inequality (3.1.37) with (3.1.38) and cancelling the term ff r(t)
(yA(t))2 At, we get the desired inequality (4.1.20). The proof of (4.1.21) is
similar to the proof of (4.1.20) by using integration by parts and Corollary
3.1.4 instead of Corollary 3.1.3. The proof is complete. m

As a special case of Theorem 4.1.7, when r(t) = 1, we have the following
result.
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Corollary 4.1.5 Suppose thaty is a nontrivial solution of (4.1.1). Ify(a) =
yA(8) = 0, then

sup [Q()[ (B — )+ sup [Q(t)|p(t) > 1,
a<t<p a<lt<p

where Q(t) = ff q(s)ds. If instead y*(a) = y(B) = 0, then

sup |Q(1)| (B —a)+ sup Q)| u(t) =1,

a<t<p a<t<p

where Q(t) = f; q(s)ds.

As special case of Corollary 4.1.5, when T = R, (note that in this case
u(t) = 0), we have the following result due to Harris and Kong [73] for the
second order differential equation (4.1.16).

Corollary 4.1.6 Suppose that y is a nontrivial solution of (4.1.16). If
y(a) =y (B) =0, then

B
(B—a) Jnax, (/t q(s)ds) > 1. (4.1.22)
If instead y' (o) =y(B) =0, then
t
(8 —a) Jnax, /a q(s)ds| > 1. (4.1.23)

As a special case of Corollary 4.1.5, when T = N (note that in this case
u(t) = 1), we have the following result for the second order difference equation
(4.1.19).

Corollary 4.1.7 Suppose y is a solution of Eq. (4.1.19). If Ay(a) =y
(B8) =0, then

sup [Q(n)[(B+1—a)>1,

a<n<p

where Q(n) = Y"1 4(s). If instead y (o) = Ay (8) = 0, then

sS=n

sup [Qn)|(B+1—a)>1>1,
a<n<p

where Q(n) = E::_; q(s).

Remark 4.1.6 The above results yield sufficient conditions for the disfocal-
ity of (4.1.12), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(a) = y>(B8) = 0 or y®(a) = y(B) = 0.
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Now, we assume that there exists a unique h € [, 8]t such that

hAt BAt
/a @:/h = (4.1.24)

Note that when r(t) = 1, we see that (h — a) = (8 — h), so that the unique
solution of (4.1.24) is given by h = (a + §)/2.

Theorem 4.1.8 Assume that (4.1.24) holds and Q®(t) = q(t). Suppose
that y is a nontrivial solution of (4.1.12). If y(a) = y(B) = 0, then
Q)

Q) [ M Au '
ﬁ</ R0 </ r<u>>“> R Py

Proof. As in the proof of Theorem 4.1.6 by multiplying (4.1.12) by
y? (1), integrating by parts and using y(a) = y(8) = 0, we have that

‘ >1.  (4.1.25)

5 ) 5
/ r(t) [y ()] dt < / Q)| |y(t) + v ()] [y> ()] dt. (4.1.26)
Then
B 2 B 2
/ r(#) [y () dt < K(a, 8) / r() [y ) dt,

where K (o, 3) is defined as in (4.2.10). From the last inequality, after can-
celling the term ff r(t) |yA(t)|2 At, we get the desired inequality (4.1.25).
This completes the proof. m

When r(t) = 1, (note that in this case h = (a + 8)/2)), we have the
following result for Eq. (4.1.1).

Theorem 4.1.9 Assume that Q2 (t) = q(t). Suppose that y is a nontrivial
solution of (4.1.1). If y(a) = y(B) = 0, then

=

[e%

Remark 4.1.7 The results in Theorems 4.1.8 and 4.1.9 yield sufficient con-
ditions for the disconjugacy of (4.3.1), i.e., sufficient conditions so that there
does not ezist a nontrivial solution y satisfying y(a) = y(8) = 0.

As a special case of Theorem 4.1.9, when T =R and T = N, we have the
following results for the second order differential equation (4.1.16) and the
second order difference equation (4.1.19).

Corollary 4.1.8 Assume that Q' (t) = q(t). Suppose that y is a nontrivial
solution of (4.1.16). If y(a) = y(B) =0, then
2

/j (/:q(“)d“> dt 2 3 —. (4.127)
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Corollary 4.1.9. Assume that AQ(n) = q(n). Suppose that y is a nontrivial
solution of (4.1.19). If y(a)) = y(8) = 0, then

a<n<p

VB-a (icﬂn)) + sup Q)| > L.

4.2 Second Order Half-Linear Equation

In this section, we consider some second order half-linear dynamic equations
on time scales and establish Lyapunov inequalities. First we consider the
second-order half-linear dynamic equation of the form

A
(rt)e(a®))” + p(t)p(a” (1)) =0, (4.2.1)
on an arbitrary time scale T, where o(u) = |u|" " u, v > 0 is a positive
constant, r and p are real rd-continuous positive functions defined on T with

r(t) # 0. The results for (4.2.1) are adapted from [130].

Theorem 4.2.1 Let z(t) be a positive solution of (4.2.1) on T satisfying
z(a) = x(b) =0, z(t) # 0 fort € (a,b) and x(t) has a mazimum at a point

¢ € (a,b). Then
b T
(/ r#(t)m> /p(t)mzwl. (4.2.2)

/cb 2 (1) At .

Proof. Let

(4.2.3)

From (4.2.3), we observe that

b
oM = / 2 (t) At

g/C’zA(t)|At+/b|xA(t)|At.

/ac xA(t)At' +

This implies that

1

b b
2M§/ ]:cA(t)]At:/ AL (8) (r7 (2) |22 ()]) At (4.2.4)

From this we get

b I
(M) < ( / ml(t)(mlﬂ(t)}xA(t)])At> - (425
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Applying the Holder inequality with f(t) = rw%rll(t), g(t) = rai(t) |z2 (1),
p=v+1landgqg= 'YTH, we obtain

(/abr{fl )7 (1) |xA(t)|)At>v+l < (/abr%l(t)At)W (/abr(t)(|a:A(t)|)7+1At> .

(4.2.6)

Substituting (4.2.6) in (4.2.5), we have
(M)t < (/abml(t)m>7 (/zbr(t)(|xA(t)|)V+1At> : (4.2.7)
Using integration by parts we see that (note z(a) = z(b) = 0)
/ab'r(t)(|xA(t)})7+1At = /ab (1) (rt)(|z2 @)]) 22 (2)) At
_ _/ab [r(1)(J2(0)]) 122 (1) 27 ()AL (4.2.8)
Now (4.2.1) implies that

b b
/ T(t)(|xA(t)|)’Y+1At:/ p(t) (ma(t))'y+1 AL

a

This and (4.2.7) imply that

b v b
(2M)" ! < (/ rwl(t)At> (/ p(t) (27 ()" At)
< M (/bﬁ(tmt> (/bp(t)At> :
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Now, dividing by M+, we have

</abr_wl(t)At> (/abp(t)At> > 27+

which is the desired inequality (4.2.2). The proof is complete. m

Y

Remark 4.2.1 Note the inequality with v = 1 and r(t) = 1, reduces to the
inequality

/bp(t)At > bfa. (4.2.9)

Now, we consider the half-linear delay dynamic equation

(r(®) (@ ()2 + pt) (p(a(r(t)) =0, (4.2.10)

on an arbitrary time scale T, where v > 0 is a positive constant, r and p are
real rd-continuous positive functions defined on T with r(t) #0, 7: T — T,
T(t) <tforallt € T, lim;_,o 7(t) = 00, and

[ () e aam

Note that when the condition (4.2.11) holds, then the positive solution ()
of (4.2.10) satisfies 22 (¢) > 0. Under this condition, we see, since 7(t) < t,
that z(7(t))/2°(t) < 1. Using this claim we have the following result
for (4.2.10).

Corollary 4.2.1 Assume that (4.2.11) holds and let x(t) be a positive sol-
ution of (4.2.10) on T satisfying x(a) = x(b) = 0, 2(t) # 0 for t € (a,b) and
z(t) has a mazimum at a point ¢ € (a,b). Then

(/abr?l(t)m)

Proof. We proceed as in the proof of Theorem 4.2.1, to get

(2M)" ! < (/Zﬁ(t)At) (/br(t)(]xA(t)DV“At) .

Using integration by parts we see that (note z(a) = z(b) = 0)

Y

b
/ p(t)At > 27+,

b b
[ rogarolriac=- [ oo o

a a
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Now (4.2.10) implies that

[t whrae= oo () ey an

7 (t)

Using the above claim, since x(7(¢))/z7(t) < 1, we have

b b
/T(t)(‘xA(t)‘)’H-lAtg/ p(t) (xa(t))vﬂ AL

The remainder of the proof is similar to the proof in Theorem 4.2.1 and hence
is omitted. m

In the following, we establish some sufficient conditions for the disconju-
gacy of (4.2.1).

Theorem 4.2.2 Let r and p satisfy
b r i (a) (b—¢) + (c—a)
r(b)  (c—a)i(b—c)
[ roae<d B0 @ oy
m(a) (c—a)i(b—c) ’

if r(t) is increasing,

if r(t) is decreasing.
(4.2.12)
Then (4.2.1) is disconjugate in T.

Proof. Suppose that (4.2.12) holds and assume for the sake of contradic-
tion that (4.2.1) is not disconjugate. Then there exists a nontrivial solution
x with z(a) = z(b) = 0. Using this z, and integrate by parts to see that
(note z(a) = z(b) = 0)

[ o ahai= [0 Gol o)t o) a
__ / " (2 0125 0] a(e) A
Now (4.2.1) implies that
/abr(t)(|$A(t)\)7+1At = /abp(t) (x(t)"*" At
Then, we have

M / ()AL > / ") [0 At > / 0 e O A

:/Cr(t)|xA(t)}”“At+/br(t)|xﬁ(t)|”“ At, (4.2.13)
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where M is defined as in Theorem 4.2.1. Now, since
/ r(t) |28 (1) At = / v (1) (v (1) o2 (0)]) A,

we have after applying the Holder inequality with f(¢) = rﬁ(t)7 g(t) =
rﬁ(t) |e2(t)], p=~+1and ¢ = 'YTH, that

/:mll(t) (rﬁ(t ]xA(t)D At

This implies that

c 41 (S r(t) [22(1)] ar) ™
(/a r(t) |2 ()| At) > (a0 . (4.2.14)

Also we see that

(/br(t) EROlas At) > (fcbr(t) =2 At)w. (4.2.15)
c N ( % r(t)At)7

Substituting (4.2.14) and (4.2.15) into (4.2.13), we have

b
Mt / p(t)At

(v 220 ™ (L@ 22 ) At)”“
> ] B :
([Tr(t)At) (fcbr(t)AO
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(’"(a) Ja =2 ® At)wl N <T W) J; IA(t)’At)Hl if 7(¢) is increasi
(facr(t)At)’Y (beT(t)At)w ) g,
> el A y+1 bl A y+1
(o) i l2wla) T (o prwag T
< 7 + , if r(t) is decreasing,
TRES) (1)
T’Hl(a)erl r'ﬁl(a)M’Hl if r(¢) is increasin
) Fwe—ap T Eme—gr e 0 .
B Tﬁ_l(b)Mﬁ_l Tw_l(b)Mw_l if r(t) is decreasin
F@)c—ay " (@)l &

Dividing by M7, we have
b r i (a) (b —¢) + (c—a)
b) (c—ay(b—cp
G A e
m(a) (c—a)i(b—c)7 ’

which is a contradiction with (4.2.12) and hence completes the proof. m
As a consequence from Theorem 4.2.2, by using the fact that

1
YN Y
T + x5\ 2z
! Z > 12,f0rx1:c—aandm2:b—c,
2 1‘1+I2

if r(¢) is increasing,

if (t) is decreasing,

we have the following result.

Theorem 4.2.3 . If r and p satisfy

i a) 27+

b , if r(t) is increasing,
Y(b b—a)
[ pwar<d 0 (1.2.16)

WW’ if r(t) is decreasing.
Then (4.2.1) is disconjugate in T.

We end this section by applying Opial type inequalities to establish some
Lyapunov type inequalities for the second order half-linear dynamic equation

rO@AE)M2 +q() ()7 (1) =0, on [a, b, (4.2.17)

where T is an arbitrary time scale. The results are adapted from [133]. For
Eq. (4.2.17), we assume that 0 < v < 1 is a quotient of odd positive integers,
r and ¢ are real rd-continuous functions defined on T with r(t) > 0. We
obtain lower bounds for the spacing § — a where y is a solution of (4.2.17)
satisfying some conditions at o and .
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To simplify the presentation of the results, we define

: = sup u” Q)] where = ’ s)As
M(E) = swp (0 G where Q) = [ a(s)as
M(a) zaséttlgﬁuv(t)@((tty, where Q(t)z/aq(s)As.

Note that when T =R, we have M(a) = 0 = M(8), and when T = Z, we
have

2 a(s)| Sk als)|
M(B) = sup , and M(a) = sup

= 1 = (4218
a<t<p  r(t) a<t<g  T(t) ( )

Theorem 4.2.4 Suppose that y is a nontrivial solution of (4.2.17) and y*
does not change sign in (o, B)r. If y(a) = y>(B) = 0, then

2 5|@<x>|”~“< © At >7A>’“+21_M
- -1 -1 x v 6)217
T </ (@) / 2 (8) (
(4.2.19)

where Q(t) ft s)As. If y»(a) = y(B8) =0, then

~

2 Q) ( At >7A >7+1 F 2l
- ¥ 1 1 z ! (Oé) Z 1’
(v +1)71 (/a r7 () /r 7 (t)

(4.2.20)

where Q(t) f q(s

Proof. We prove (4.2.19). Without loss of generality we may assume
that y(t) > 0 in [«, B]y. Multiplying (4.2.17) by y° and integrating by parts,
we have

Using the assumptions that y(a) = y>(8) = 0 and Q(t) j; s)As, we
have

’ A7 g y+1 g A y+1
[ o ero) st [ eyt ar=— [ QA0 ) an

« «
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Integrating by parts the right-hand side we see that

B
/ r(t) (v (1) At = 6+ / Q) (1) At.
Again using the facts that y(«a) = 0 = Q(8), we obtain
B
/ r(t) (y2 ()" dt = / Q) (1)) dt. (4.2.22)

Applying the chain rule formula and the inequality (3.3.2), we see that

1

< (r+1) / Il (£) + (1= RYy(0)[" dh |y (1)

0

(@)

’

IN

(v+ 1) [y2 @) / |hy (£)|” dh

v+ 1) |2 )] / (1= hyy(®)]" dh
0
2Ol O + [y 0] )"
211 7 (1) + y(0)" [y (1) (4.2.23)

IN

This and (4.2.22) imply that
? Ay |7+ 1—ny ? oY |, A
r(t) [y2 (@) At <2 Q)| |y(t) +y7 ()] [y=(#)] At.
Applying the inequality (3.3.22) with s(¢) = |Q(t)|, p = 7 and ¢ = 1, we have

B B
[ oo a2 m s [ o0 A @220

where

Ki(a,,7,1) = M(B)+2 <1>“

(/ Q@) r ()(/: J()At)”my“_

Then, we have from (4.2.24) after cancelling the term ff r(t) |yA(t)}7+1 At,
that

. 2 6|@<m>w~“( > At ) )
2TM(B) + ——— . . Ax >1,
) (7+1)+X</a v (2) /(mm

-Q\H
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which is the desired inequality (4.2.19). The proof of (4.2.20) is similar
to (4.2.19) by using integration by parts and (3.3.29) of Theorem 3.3.5 and
(3.3.30) instead of (3.3.23). The proof is complete. m

As a special case of Theorem 4.2.4, when r(t) = 1, we have the following
result.

Corollary 4.2.2 Suppose that y is a nontrivial solution of

A 7\ A o v
(W*®)) +a0 @) =0, tela bl (4:2.25)

and y® does not change sign in (o, B)r. If y(a) = y>(B) = 0, then

(y+ 17T U QT (- Ar| 2 s Q) 21
(,y_|_1 "r+1 a<t<p

(4.2.26)
where Q(t) ft s)As. If y»(a) = y(B) = 0, then

2 p 14y s

P [/ QI (B-8)7At|  +2'77 sup (W(H)]QH)]) =1
(y+ 1) e a<t<p

(4.2.27)

where Q(t) f q(s

Corollary 4.2.3 Suppose that y is a nontrivial solution of (4.2.25) and y*
does not change sign in (a, B)r, and v < 1 is a quotient of odd positive

integers. If y(a) = y>(B) = 0, then
B
/ q(s)As ) >1,
t
(4.2.

/tﬁ q(s)As
) =1

whereas if y> (o) = y(B) = 0, then
(4.2.29)

2(8 — )Y
(Y+1) asiep

+ 27 sup (,u'y(t)
a<t<p

28)

28-a)7

(y+1) a<t<p

[ aas [ aoas

As a special when T =R, we have M (a) = M(8) = 0 and we consider
the second order half-linear differential equation

L2177 sup (wt)
a<lt<p

/

(W'®)) +a®@®) =0, a<t<p, (4.2:30)

where v < 1 is a quotient of odd positive integers.
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Corollary 4.2.4 Assume that v < 1 is a quotient of odd positive integers.
Suppose that y is a nontrivial solution of (4.2.30) and y does not change

sign in (a, B). If y (o) = y (B) =0, then

2 5 7 ’ ds| > 1 4.2.31
e TR A ACCE EL
If instead y/ (a) =y (B) =0, then
) t
Grn B sup /a q(s)ds| > 1. (4.2.32)

As a special when T =Z, we see that M(«) and M(3) are defined as
in (4.2.18) and we consider the second order half-linear difference equation

A((Ay(n)") +q(n)(y(n+1))" =0, a <n < B, (4.2.33)
where v < 1 is a quotient of odd positive integers.

Corollary 4.2.5 Suppose that y is a nontrivial solution of (4.3.17) and
Ay(n) does not change sign in (o, B)t, and v < 1 is a quotient of odd positive
integers. If y(a) = Ay(8) =0, then

2Woor e 5|2t ap (S]] 20
D) W |2 1) 2T e |2 0] > L
whereas if Ay(a) =y(8) =0, then
HB— )7 max nilq(s) +2177 sup nilq(s) > 1.
(y+1) asnsp | asn<p \| =2 -

Remark 4.2.2 The above results yield sufficient conditions for the disfocal-
ity of (4.3.1), i.e., sufficient conditions so that there does not exist a non-
trivial solution y satisfying either y(a) = y>(B) = 0, or y*(a) = y(B) = 0.

Next we employ Theorem 3.3.6 to determine a lower bound for the dis-
tance between consecutive zeros of solutions of (4.2.17). Note that the appli-
cations of the above results allow the use of arbitrary anti-derivative @) in the
above arguments. In the following, we assume that Q“(t) = ¢(t) and there
exists h € (o, 8) which is the unique solution of the equation

Ky(,B) = Ki(a, ,h) = Ky(a,h, B) < oc, (4.2.34)

where

y+1
>

27 B 1Q(x)] < h At )“Y >w T
Ki(a,8,h) = ——— B E— - | Az )
ol <v+1>~+lx</a T WL
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and

5]

» (71 >< b ) )
Ki(a,h,p) = T T n Ax .
( ) (v+ 1)+ </a rv(z) /h r (t)

Theorem 4.2.5 Assume that Q*(t) = q(t). Suppose y is a nontrivial solu-
tion of (4.2.17) and y* (t) does not change sign in (o, B). If y(a) = y(B) = 0,
then

Kl(a,ﬁ) Z ]-7 (4235)
where K1 («, B) is defined as in (4.2.34).
Proof. Multiply (4.2.17) by y?(t), and proceed as in Theorem 4.2.4 and
use y(a) = y(B) =0, to get

5 ) E X 5 X
/ r() (P (1) AL = / 4(0) (1) At = / QA (1) (v (1) At

[e3

Integrating by parts the right-hand side, we see that

5 ) 8
/ r() (B2 0) T A = Q) ()| + / (—Q(1)) (1)) At.

(03

Again using the facts that y(a) = 0 = y(5), we obtain

? Ay L ? Y |yA
/ ) |y 0] At < / Q) Iy + 5 O] |v5 (1)) At.

Applying the inequality (3.3.31) with s(t) = |Q(¢)|, p = v and ¢ = 1, we have
B B
1 _ 1
[ ol e s 2w [ o Ao
« «

From this inequality, after cancelling | f |yA(t){7+1 At, we get the desired
inequality (4.2.35). This completes the proof. m

4.3 Second Order Equations with Damping
Terms

In this section we consider the second-order half-linear dynamic equation
with a damping term

(r(t) (gz;A(t))”)A +p(t) (22(1)" +q(t) (27 (1)) =0, t € [o, By, (4.3.1)

where T is an arbitrary time scale and o(t) is the forward jump operator on
T which is defined by o(t) := inf{s € T : s > t}.

We say that a solution x of (4.3.1) has a generalized zero at ¢ if z(t) = 0,
and has a generalized zero in (¢, o(¢)) in the case z(t)x? (t) < 0 and p(t) > 0.
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Equation (4.3.1) is disconjugate on the interval [to, b], if there is no nontrivial
solution of (4.3.1) with two (or more) generalized zeros in [tg, b]r. We say
that (4.3.1) is right disfocal (left disfocal) on [, S] if the solutions of (4.3.1)
such that z2(a) = 0 (z®(8) = 0) have no generalized zeros in [a, B]r. For
Eq. (4.3.1) the point 8 > « is called a right focal point of « if the solution
of (4.3.1) with initial conditions z(a) # 0, 2 () = 0 satisfies 2:(8) = 0. The
left focal point is defined similarly.

We will assume that v > 1 is a quotient of odd positive integers, 7,
p and ¢ are real rd-continuous functions defined on T with r(¢) > 0 and
w(t) [p(t)] < r(t)/c where ¢ is a positive constant such that ¢ > 1. We
also assume that supT = oo, and define the time scale interval [a,b]T by
[a,b]t := [a,b] N'T. To simplify the presentation of the results, we define

= sup u” QM) where = ’ s)As
Mp) = s () L where @) = [ a(s)as
Ala) :asglzgﬁu”(t)%, where Q(t):/a q(s)As,

tA A
R,(t) : :/ T > , and Rs(t) ::/ ls .
a t

7’;(8) ry (s)
Note that when T = R, we have A(a) =0 = A(8) and when T = Z, we have
[ 0 Sl a0s)
AB)= sup ————, and A(o) = sup ———~—. (4.3.2)

a<t<g  T(t) ast<p  T(1)
Now, we are ready to state and prove the main results.

Theorem 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and x®
does not change sign on (o, B)r. If x(a) = xA(B) =0, then

Iv—2 237-2 B ‘()(t)| - ) 711
27N () —— S S t))" At
(5) (r)/_|_1)w+1 % (/a r7 (1) ( a ))

D NF (PO s T
+(M> X </a W(Ra(t)) At) 21--, (4.3.3)

where Q(t) ft s)As. If instead z°(a) = z(B) = 0, then

s 92372 B |Q(t)|f7 N >'y T
277 A )+ —— ————— (Rg(t))" At
( ) x (/a (t) ( 5( ))

(+1)7 o

7\ P lp)" " , w1 1
+(1+7> X (/a v ) At) >1--, (4.3.4)

where Q(t) f q(s
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Proof. We prove (4.3.3). Without loss of generality we may assume that
z(t) > 0 in [a, f]r. Multiplying (4.3.1) by 7 and integrating by parts, we
have

B B
/ (vt (xA(t))”)Axﬂ(t)Am / p(t)2 (2) (22(1)) At
B 1
= () (xA(t))”z(t)\Z_/ r(t) (22(6)" A
B

B
Jr/ P(t)xd(t) (xA(t))7 At = —/ q(t) (xo'(t))"/+1 AL

Using the assumption z(a) = 22 () = 0 we have

8 ) 8 i 8 X
- / r(t) (&2 (0) " At+/ p(t)z° (#) (22(1)" At = — / o) (27 (1)) AL

This implies (note that Q(t) ft ) that

/5r(t) (fA(t))’H_lAt—/ﬂp(t) ( N / QA 7+1At.
Integrating by parts the right-hand side, we see that
? A7+ s Ay
[y s = [ pweo @0) a
B
) + / Q) (1)) At.

Again using the assumptions xz(«) = 0 and Q() = 0, we obtain

5 ) 5 X 5

/ r(t) (22 (1)) dt = / p(t)z? (t) (z2(t)) At+/ Q) (277 (1) " At.
* ’ ) (4.3.6)

Applying the chain rule formula

- )\/1 [ha? (t) + (1 — h)z(t)]}  dha®(t), for A>0, (4.3.7)
0

and the inequality

a* + 0N < (a+b)N <22 + 1), if a, >0, A > 1, (4.3.8)
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we see that

‘ (xvﬂ(t))ﬁ‘

IN

1
(v + 1)/0 |ha? (t) + (1 — h)z(t)|" dh |22 (¢)|

IN

211 (y + 1) [ (1) /0 \ha? (1) dh

12771y + 1) 22 (1) /0 (1= h)a(t)[ dh
= 2771 22 (O)] 27 (@) + 207 22 (0] =)
< 2727 () +2(t)]” |22 (1)) - (4.3.9)
This and (4.3.6) imply that

8 ) E 8
/7’(lf)|$A(t)}W+ At < /Ip(t)llx"(t)HxA(t)l At

8
+277! / QU (1) + 27 ()" [+ ()] At
(4.3.10)

Applying the inequality (3.3.3) on the integral ff Q)] |x(t) + 27 (t)]”
|22 (t)| At, with s(t) = |Q(t)|, p =", ¢ =1, we have

B A p A ~y+1
/ Q)| (t) + =7 (1) |= (t)|At§K1(0¢75,%1)/ r(t) [«2(6)] AL,
: : (4.3.11)

where

a+1

8 = Rl
Ky, o, 1) = 2020422721 ( / Q@I (g, () Am) .
7 o (@)

Using that fact that 27 = 2(t) + u(t)z>(t), we see that

8 § 5 ,
[ ool | o) | ae = [ b)) + e o)A 0] A

IN

/[3 vy
JRCIECIESCI
B
+ [ o o) o0 At

Applying the inequality (3.2.33) on the integral ff Ip(t)| |z(t)] |xA(t)|7At
with s(t) = |p(t)], p =1 and ¢ = v, we see that

B B
[ pollstol o> @ At < Grtapir) [ o o0 A (@312
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where

T4 B v+1 EEas
R ey x( %(Ra<t>>W) .

Using the assumption that 0 < p(¢)u(t) < r(t)/c, we see that

B B 1
/ p®) 2O |22 @) At < Gi(a,B.1,7) / r() |22 0" At

% /B r(t) |22 AL (43.13)

Substituting (4.3.11) and (4.3.13) into (4.3.10), we have

s 1 p ~y+1
(171)/ r(t) |#2 @) At < Kl(a,ﬁ,m)/ r(t) |22 ()| At

c a

B 1
+Gi(a.p,1) [ o)t A
“ (4.3.14)

Then, we have from (4.3.14) that

1—% < Kl(a,ﬁ,7,1)+G1(a,ﬁ’1a’Y>
- 8 = T
22 4 2 ( O At)
(7+1)m « rY t)

()™ ([ o)™

which is the desired inequality (4.3.3). The proof of (4.3.4) is similar to (4.3.3)
using Theorems 3.2.9 and 3.3.2. The proof is complete. m
In Theorem 4.3.1 if 7(t) = 1, then we have the following result.

Corollary 4.3.1 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)1. If z(a) = 22(B) = 0, then

. 5 . =N
2127 (g) 4 — ( / |Q<t>”v<tamt>

X
(v+ 1)

1

Ll B SF1
ol v+ / v+1 ~ 1
+( X t t—a) At >1- -,
(=) (ap<>| (t - ) >1- -
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where Q ft s)As. If instead (o) = x(B) = 0, then
. A =%
PN (a) 4 — 2 x ( / QI (31 At)
(7 + 1) o

T+ 1
—t)TA >1— -
+<1+7> </ p(t) ) t) - ¢’

where Q(t) f q(s

As a special case of Theorem 4.3.1, when v = 1, we have the following
result.

Corollary 4.3.2 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)r. If v(a) = 22(B) = 0, then

7Rl N0 oo
A(6)+\/§</a ) ra(t)At> +ﬁ</a D Ra(t)At> >1- -,

where Ry (t) = foi TA(;) and Q(t) ft s)As. If instead x° (o) = z(B) = 0,
then

7l P Py
A(a)+\/§</a D) Tﬁ(t)At) +ﬂ</a 0 Rg(lf)Alf) >1--,

where Rg(t) fﬁ 2s. and Q(t) f q(s

r(s)

As a special case of Corollary 4.3.2, when p(t) = 0, we have the following
result.

Corollary 4.3.3 Suppose that x is a nontrivial solution of

(r(H)z2®)> +q(t)27(t) =0, t € [o Blr, (4.3.15)
and ® does not change sign in (a, B)r. If 2(a) = 22(B) = 0, then

ﬂ(/f 28 (3 a) a2,

where Q) ft s)As. If instead z° (o) = x(B) = 0, then

Sl [ F ac) O\
ﬂ(/a e </t 7"(t)>At> +A(@) > 1,

where Q(t) f q(s
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Remark 4.3.1 Theorem 4.3.1 yield sufficient conditions for the disfocality
of (4.8.1), i.e., sufficient conditions so that there does not exist a nontrivial
solution x satisfying x(a) = z2(8) = 0 or 2%(a) = x(3) = 0.

On a time scale T, we note from the chain rule (4.3.7) that

((t - a)>\+5)A = (A+90) /01 [h(o(t) — a) + (1 — h)(t — )]~  dh

v

(A+9) /01 [h(t—a) + (1 = h)(t — )" dh

(A + 8)(t — a)+o 1,

This implies that

T o T 1 s A B (’r _ a))‘+5
/a (t — a)()‘+5 )At S /a m ((t — CL))\+ ) At = W
(4.3.16)

Now using the maximum of |Q| and |p| on [a, B and substituting (4.3.16)
into the results of Corollary 4.3.1, we have the following result.

Corollary 4.3.4 Suppose that x is a nontrivial solution of (4.3.1) and x>
does not change sign in (o, B)r. If z(a)) = 22(B) = 0, then
937-2 6 —a) B ’Y#
2 o | [ ()| + 2268 - ) ma [5(0)
t

max
(y+1)  a<t<p y+1 a<t<p
b 1
+2272 sup u(t) / q(s)As| >1—-.
a<t<p ¢ ¢
If instead x° (o) = z(B) = 0, then
2172(8 — a) : T
e | [ s + 50— 0) max lotr)
2y—2 ' 1
+2%77% sup p(t) q(s)As| >1— -,
a<lt<p a c

As a special when T =7Z, we see that A(a) and A(S) are defined as
in (4.3.2) and we consider the second order half-linear difference equation

A(Az(n))” + p(n)(Az(n))” + ¢n)(z(n+1))" =0, a<n<p, (4.3.17)

where v > 1 is a quotient of odd positive integers and p(n) < 1/c.
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Corollary 4.3.5 Suppose that x is a nontrivial solution of (4.3.17) and
Ax(n) does not change sign in (o, B)r. If x(a) = Az(B) =0, then

1 27-2(8 — @) - —
1-- < — 72 max s)| +22772 oy s
Cc (’Y+1) a<n<p ;q( ) aSnI;B ;q( )
e
7+1(B @) ax lp(n)] .
If instead Az(a) = x(8) = 0, then
1 237_2(ﬁ _ a),y n—1 n—1
1-- < — 72 max s)| +22772 gy s
c (y+1)  a<n<p ;q( ) agngﬁ S;XQ( )
L

o (B—a) Dax lp(n)].

If we apply the inequality

la+ b <221 (|a\)‘ + \b|)‘) , where a, b are real numbers and A > 1,

with a = 2(¢) and b = pu(t)ha®(t), then we have from (4.3.7) that

A

(@2 @)% < Grnlete) / [o(t) + p(t)h® (1) dh

IN

27_1(7+1)|xA(t)|/0 |lz(t)|” dh

42 (y 4+ 1) \xﬂ(t)y/() lu()hz? ()] dh
= Dy ) A0 )] 2 () [oA ) (4.3.18)

Substituting (4.3.18) into (4.3.6), we have that

£ . £ )
/7"(1ﬁ)|fﬂA(t)|7+ dt < /Ip(t)\lff"(t)HxA(t)! At
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we have from (4.3.19) that

/jrwﬁ g /\p )@ o2 At

2y 4 1) / QU |25 (1) [2(0) At

0™

B
+/ W (p0)] + 271 1Q)] |22 ) At

(4.3.20)

We now apply Opial inequalities to obtain results when the condition ()
Ip(t)| < r(t)/c is replaced by the new condition wu(t)(|p(t)] + 2771 |Q(t)]) <

r(t)/c.

Now, applying the inequality (3.2.33) on the term

B
/ Q) |22 (0)] [2(0)" At, with s(t) = |Q(t)], p = and g = 1,

we have

? A ? A v+1
/ Q) =) | (t)IAtSKi‘(a,ﬂ,ml)/ r() |22 (0] At

[e3%

where
.

: (AN eml  aa)
Ki(a, B,7,1) = (’M) (/a o (t))% (t)At) .

Using the inequality

B B 1
/ |p(t)|\x(t)||xA(t)|”Atg01(a,5,1,7)/ r(t)|zA(t)y”+ At,

where
R
Grlanpi1) = (1) (/ GOR R”“) |

and proceeding as in the proof of Theorem 4.3.1, we obtain the following
result.

Theorem 4.3.2  Assume that p(t)(|p(t)| + 2771 Q(¢t)]) < r(t)/c where ¢ is
a positive constant such that ¢ > 1. Suppose that x is a nontrivial solution
of (4.3.1) and ™ does not change sign in (a,,B)T. If z(a) = 22(B) = 0, then

= P11
21 (5 4 1) </ p e a<t>At>

1
% 5 y+1 F+T 1
() / Ip(t)] R (1)At 1L
147~ o T c

4
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where Q(t) = ftﬁ q(s)As. If instead 2 (o) = x(B) = 0, then

2771 (y 4 1)77 (/ﬁ L(?l R%(t)At) '

7 (t)

_1
’Y ey ﬂ ‘p(t)|’y+1 N y+1 1
- POL_ pripa >1- -
(135 </ ORI B

where Q(t) = fat q(s)As.

Remark 4.3.2 Note that when T =R the condition u(t)(|p(t)| + 277!
Q)]) < r(t)/c is removed since u(t) = 0.

Next we apply Theorems 3.2.10 and 3.3.3 to determine a lower bound for
the distance between consecutive generalized zeros of solutions of (4.3.1). In
the following, we assume that Q™ (t) = ¢(t) and assume that there exists a
unique h € (o, B)T, such that

R(h) := Ra(h) = Rs(h). (4.3.21)

Note that the best choice of h when r(t) = 1is h = (8+ «) /2. In the
following, we assume that

K"(a, B8,7,1) = Ky(a, 8,7,1) < oo, (4.3.22)
where
3y—2 B = T
Kh (Oé, ﬁa v 1) = 271 (/ W‘RZ(h)At> + 22"/72/\3
(v+ 17 \Ja 17 (1)
3y—2 3 — g
Kh(au ﬂa v 1) = 271 (/ @(f)le(h)At> + 227_2A7
(v + 17 \Ja 77 (1)
A= swp w9 here @2(1) = q(0),
a<t<p r(t)
and
G, B,1,7) = Gu(a, B,1,7) < oo, (4.3.23)
where

(Tt
Gh(a,ﬂyl,')/) = <1+’)/) (A ’I“’Y((‘,)Ra(h)At) ,

~

ey B8 v+1

2
+‘~
pt
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Now, we assume that K(v,1) is the solution of the equation K(v,1) =
Kh(avﬂvva 1) = Kh(Oé,ﬂ,’)/, ]') and given by

28712 51 >+ 2y-2
K(y,1) = . ~ h)At £ 2N, (4.3.24
(7, 1) D (/a R RY(h) ( )

and similarly G(1,7) is given by

(N et O
G(l,y)_(1+7> (/a e R(h)At) . (4.3.25)

Theorem 4.3.3 Assume that Q®(t) = q(t) and suppose = is a nontrivial
solution of (4.3.1). If z(a) = x(8) = 0, then

K1) +GL7) 212, (4.3.26)

where K (a, 8) and K(a, 5) are defined as in (4.3.24) and (4.3.25).

Proof. We multiply (4.3.1) by 27(t) and proceed as in Theorem 4.3.1 to
obtain

7 y+1 b R 7 A +1
/ r(t) (22 () At = / p(t)a” (1) (22 (1)) At+ / QA (1) (27 (1) At.

@

Integrating by parts the right-hand side, we see that

B B
/ r(®) (z20)" A = / (O (1) (+2 (1) At
B
+ Q)| - / Q) (@ (©)* At (4.3.27)
Using x(«) = 0 = 2(8) we obtain

[l as [Mporoll2o] s oo

[e3%

dt.

()

We proceed as in the proof of Theorem 4.3.1 to get
B A B
| 1@ i®)*|ac< 2 [0 et + 2] |+ 0)] At
Applying the inequality (3.3.15) with s(t) = |Q(t)|, p = v and ¢ = 1, we have

B 1
/ QIO de <2 K, [ rte) B0 A

«
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Also, we obtain

[ bl or a
B
< aq, )/ 0220 At = /T(t)‘xA(t)PHAt.

The rest of the proof is similar to that in the proof of Theorem 4.3.1. =

4.4 Hamiltonian Systems

In this section we consider a linear matrix Hamiltonian dynamic system on
time scales of the form

22 (t) = A(t)x® + B(t)u, u”(t) = —C(t)a® — A*(t)u, (4.4.1)

where A, B, and C' are rd-continuous n X n-matrix-valued functions on T such
that I — u(t)A(t) is invertible and B(t) and C(t) are positive semidefinite for
all t € T. A corresponding quadratic functional is given by

Flau) /{U*Bu— ) Ca} ()AL

A pair (x,u) is called admissible if it satisfies the equation of motion
2 = A(t)z° + B(t)u.
Lemma 4.4.1 If (z,u) solves (4.4.1) and if (y,v) is admissible, then

]—'(y,v)—}'(nu) = -F(y_x7v_u)
+2Re[(y — 2)"(b)u(b) — (y — )" (a)u(a)].

Proof. Under the above assumption
f(y, ) = Flz,u) = Fly —x,v —u)
/{U*Bv - —u"Bu+ (27)"Cz°
[(v—u)"B(v—u) = (y7 —27)"C(y” — 27)]} (t) At

/ {—2u*Bu+ v*Bu + u*Bv

+2(27)"Ca? — (y7)"Cz” — (27)"Cy” } (H)A(?)
b
_ /{—Qu*Bu 4+ 2Reu Bu] +2(27)"Ca® — 2Re [(y7)*Ca]} ()A()

a
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= ( {u*(Bv = Bu) + [(27)" = (y°)"] Cm*}(t)A(t))

YA — Ay® — 22 + Ax°)

Il
/\
,_A_‘

IS

*

+2¢ Im[u* Az? + (y7)* A"y (t)A(t))

b
= 2Re /{u*(yA — )+ (y7 — a:")*uA} (t)At)

b
= 2Re /{u"‘(yA —a®) + (W) (y7 —2°)} (t)At)
b

~ 9Re /{[u*(y—x)]A}(t)At)

= 2Re{u"(0)[y(b) — z(b)] — v (a)[y(a) — z(a)]}.
= 2Re{ly —2]"(O)u(b) — [y — z]"(a)u(a)]},
and we are finished. m

For the remainder of this section we denote by W (., r) the unique solution
of the initial value problem

W =AW,  W(r) =1, (4.4.2)

where 7 € [a,b] is given. We also write
F(s,r) = / W (£, 1) B(&)W (£, 1) At (4.4.3)

Observe that W (t,r) = I provided A(t) =0
Lemma 4.4.2 Let W and F be defined as in (4.4.2) and (4.4.3). If (y,v) is
admissible and if r,s € T with a < r < s < b such that F(s,r) is invertible,
then

[ B O 17 (5.7)05) = ) 6 IV 5 7)s) — ().

s
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Proof. Let
z(t) = W*(t,r) {y(r) + F(t,r)F = (s,r) [W*(s,m)y(s) — y(r)]}

and

ut) = W(t,r)F~ (s,r)[W" (s, r)y(s) — y(r)].

W)W o(t),r) = [W(o(t),r) = ut)W2E )W (a(t), )
= T+ p)A W (W (a(t),r),

and therefore [I — u(t)A*(t)]W (t,r)W~1(a(t),r) = I, so that
[1 = n(®A®)]2> (1) = A(t)x(t) + B(t)u(t),
and hence

eB2(t) = A@)z(t) + pt)At)z>(t) + B(t)u(t)
= A(t)z°(t) + B(t)u(t).

Thus (z,u) solves the Hamiltonian system (4.4.1) with C' = 0 and, we may
apply Lemma 4.4.1 to Fy defined by

S

Fole,u) = / (u* Bu) (1) A,

T

to obtain

fo(y,’U) ./—"O(I,U)+./—"0(y*l’,’()7u)

+2Re {u"(s)y(s) — x(s) — u*(r)[y(r) — z(r)]}

= Fo(z,u) + Foly — z,v —u) > Foz,u) = /(u*Bu)(t)At

= (W (s,m)y(s) = y(r)]"F~H(r, )W (s, 7)y(s) — y(r)]-

which shows our claim. m

Remark 4.4.1 The assumption in Lemma 4.4.2 that F(s,r) is invertible if
r < s can be dropped if B is positive definite rather than positive semidefinite.

We now may use Lemma 4.4.2 to derive a Lyapunov inequality for Hamil-
tonian systems.

Theorem 4.4.1 Assume (4.4.1) has a solution (x,u) such that x is non-
trivial and satisfies x(a) = x(b) = 0. With W and F introduced in (4.4.2)
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and (4.4.3), suppose that F(b,c) and F(c,a) are invertible, where |z(c)| =
maxye(qp)nr ||Z(E)||. Let A be the biggest eigenvalue of

_ /W*(t,c)B(t)W(t,c)At,

Then the Lyapunov inequality

~—

and let v(t) be the biggest eigenvalue of C(t
b

/v(t)At >

a

>/\~l>

holds.

Proof. Suppose we are given a solution (z,u) of (4.4.1) such that z(a) =
x(b) = 0. Lemma 4.4.1 then yields (using y = v = 0) that

Fz,u) /{U*Bu 7V CaTY (H)At = 0,

Apply Lemma 4.4.2 twice (once with r = a and s = ¢ and a second time with
r =cand s =b) to obtain

b
/[(z“)*C’z“](t)At

b c b

- / (u* Bu)(t) At — / (u* Bu) (1) At + / (u* Bu)(t) At
z* ()W (e,a)F~(c,a)W* (¢, a)z(c) + z*(c)F (b, c)z(c)

= 2" ()[F7 (bc) = F~N(a,0)]z(c) = 4o () F " a(e);
here we have used the relation W (t,r)W (r,s) = W(t,s) and the inequality
(see [34, Theorem 9 (i)]) and [120])

M7 4+ N'>4M+N)™!

Now, by applying the Rayleigh-Ritz Theorem (see [85, page 176]), we
conclude

v

b

b

OV
v(t)A v
a/(t) e a/(t) I (e)1?

b b
- m/v(ﬂ(w(’(t))*w”(t)mz ”x(i)ug/(xg(t))*C(t)x”(t)At
1 * -1 . T F 1z B é
> Hx(c)“24x (e)F " x(c) > 45172)1 et

which is the desired inequality. The proof is complete. m
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b
Remark 4.4.2 If A=0, then W =1 and F = /B(t)At. If, in addition

b
B =1, then F = b — a. Note the Lyapunov inequality /v(t)At > (4/N)

b
reduces to /p(t)At > (4/b — a) for the scalar case.

a

We conclude with a result concerning the so-called right-focal boundary
condition, i.e., z(a) = u(b) = 0.

Theorem 4.4.2 Assume (4.4.1) has a solution (x,u) with x nontrivial and
z(a) = u(b) = 0. With the notation as in Theorem 4.4.1, the Lyapunov

inequality

)

> =

/bv(t)At >

holds.

Proof. Suppose (z,u) is a solution of (4.4.1) such that x(a) = u(b) =0
with a < b. Choose the point ¢ in (a,b] where ||z(¢)|| is maximal. Applying
Lemma 4.4.1 and we see

b b

b
/ [(27)*Ca®] (t) At = / (u* Bu)(t) At > / (u* Bu)(t) At.

a a a

Using Lemma 4.4.2 with r = a and s = ¢, we get

b
/(u*Bu)(t)At > [W*(c,a)z(c) — z(a)]” F(c,a) [W*(c,a)z(c) — z(a)]

= 2" ()W (e, a)F_l(c a)W*(c, a)x(c)

= —z( c)

W*(t,c)B(t)W (t,c)At x(c)

> (/W*tc Wt,oat| ()
F

lx
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Hence,
b

/ [(27)*C27] (DAL > 2" () F~2(c),

and the same arguments as in the proof of Theorem 4.4.1 completes the proof.
]



Chapter 5

Halanay Inequalities

If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.
Von Neumann (1903-1957).

In 1966 Halanay [71] studied the stability of the delay differential equation
2 (t) = —px(t) +qz(t — 1), T>0,
and proved that if

') < —af(t)+B8 sup f(s) for t>tg
SE[t—T,t]

and a > 8 > 0, then there exist v > 0 and K > 0 such that
f) < Ke 7t=t) for ¢ > ¢,.

In this chapter we discuss Halanay type inequalities on time scales and
we investigate the global stability of delay dynamic equations on time scales.
In particular we employ the shift operators d+ to construct delay dynamic ine-
qualities on time scales and we derive Halanay type inequalities for dynamic
equations on time scales.

The chapter is organized as follows. In Sect.5.1 we give a generalized ver-
sion of shift operators and in Sect. 5.2 we define the delay function by means
of shift operators on time scales. In Sect. 5.3 we prove Halanay type inequal-
ities on time scales and in Sect.5.4 we establish some sufficient conditions
guaranteeing global stability of nonlinear dynamic equations.

(© Springer International Publishing Switzerland 2014 215
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5.1 Shift Operators

In this section we give a generalized version of shift operators (see [5, 6]).

Definition 5.1.1 (Shift Operators) Let T* be a nonempty subset of the
time scale T including a fized number ty € T* such that there exist operators
0y : [to,00)T x T* — T* satisfying the following properties:

P.1 The functions 6+ are strictly increasing with respect to their second
arguments, i.e., if

(To, t), (To,u) € Dy := {(s,t) € [to,00)T X T* : §1(s,t) € T*},
then
To <t < wu implies §+(Tp,t) < 6+(To,u),
P.2 If (T1,u), (Ta,u) € D_ with Th < Ty, then
0_(T1,u) > 6_(Ts,u),
and if (Ty,u), (Ta,u) € Dy with Ty < Ts, then
04 (Th,u) < 54 (To,u),
P.3 Ift € [tg,00)1, then (t,t9) € D1 and §4(t,to) =t. Moreover, ift € T*,
then (to,t) € Dy and d4(to,t) =t holds,
P.j If (s,t) € Dy, then (s,04(s,t)) € D and 6x(s,0+(s,t)) =t,
P.5 If (s,t) € Dy and (u,0+(s,t)) € D, then (s,0+(u,t)) € D4+ and
05 (u,0+(s,t)) =0+(s,05(u,t)).

Then the operators 6_ and d4 associated with to € T* (called the initial
point) are said to be backward and forward shift operators on the set
T*, respectively. The variable s € [to,00)r in 04.(s,t) is called the shift
size. The values 64 (s,t) and 6_(s,t) in T* indicate s units translation
of the term t € T* to the right and left, respectively. The sets Dy are
the domains of the shift operators d4, respectively.

Example 5.1.1 Let T =R and tg = 1. The operators

d_(s,t) = { tgts Zi i 8 , forsell,o0) (5.1.1)
and
04(s,t) = { ts/lfs ZZ; i 8 , forse€ll,o0) (5.1.2)

are backward and forward shift operators (on the set T* = R—{0}) associated
with the initial point tg = 1. In the table below, we present different time
scales with their corresponding shift operators.
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’ T H to ‘ T ‘ 5_(8,t) ‘ 5+(S,t) ‘
R 0 R t—s t+ s
Z 0 7 t—s t+s
Zu{oy [ 1] ¢ L st
N1/2 0 N1/2 \/t2 —_ g2 \/t2 + 52

The proof of the next lemma is a direct consequence of Definition 5.1.1.

Lemma 5.1.1 Let é_ and d4 be the shift operators associated with the initial
point tg. We have

i. 6_(t,t) =to for all t € [tg,0)T,
it. d_(to,t) =t for all t € T*,
iii. If (s,t) € Dy, then 64 (s,t) = u implies §_(s,u) = t. Conversely,
if (s,u) € D_, then 6_(s,u) =t implies 64 (s,t) = u.

(
(
(
iv. d4(t,6_(s,t0)) = d_(s,t) for all (s,t) € D(d4) with t > to,
v. 04 (u,t) = 04 (t,u) for all (u,t) € ([to,o0)T X [to,00)T) N Dy,
(

vi. d4(s,t) € [to,00)1 for all (s,t) € Dy with t > 1o,
vig. 0_(s,t) € [to,00)r for all (s,t) € ([to,00)T X [s,00)T) N D_,
viti. If 54 (s,.) is A-differentiable in its second variable, then §5*(s,.) > 0,

ir. 0+(0_(u,s),0_(s,v)) = d_(u,v) for all (s,v) € ([to,00)r X [s,00)T) N
D_ and (u, s) € ([to,00)T X [u,00)7) ND_,

z. If (s,t) € D_ and §_(s,t) = to, then s =t.

5.2 Delay Functions Generated by Shift
Operators

In this section we define the delay function by means of shift operators on
time scales. Delay functions generated by shift operators were first introduced
in [5] to construct delay equations on time scales.

Definition 5.2.1 (Delay Functions) Let T be a time scale that is unb-
ounded above and T* an unbounded subset of T including a fixed number
to € T* such that there exist shift operators dy : [tg, 00)r X T* — T* associated
with tg. Suppose that h € (tg,00)r is a constant such that (h,t) € Dy for
all t € [to,00)T, the function 6_(h,t) is differentiable with an rd-continuous
derivative 62 (h,t), and 5_(h,t) maps [to,c0)r onto [6_(h,tg),c0)r. Then
the function 0_(h,t) is called the delay function generated by the shift 5_ on
the time scale T.
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It is obvious from P.2 in Definition 5.2.1 and (ii) of Lemma 5.1.1 that
d_(h,t) < d_(to,t) =1t for all ¢ € [y, 00)T. (5.2.1)

Notice that §_(h,.) is strictly increasing and it is invertible. Hence, by P.4
and P.5, we see that

6" (h,t) = 6, (h,t).

Hereafter, we shall suppose that T is a time scale with the delay function
d_(h,.) : [to,00)r = [6_(h,t9),00)T, where ty € T is fixed. Denote by Ty
and Ty the sets

Tl = [to, OO)']I‘ and Tg =i_ (h, Tl) (522)

Evidently, Ty is closed in R. By definition we have Ty = [6_(h,tp),00)T.
Hence, T1 and Ty are both time scales. Let o1 and o2 denote the forward
jumps on the time scales Ty and T+, respectively. By (5.2.1)—(5.2.2)

T, CcTy CT.

Thus,
o(t) = o2(t) for all t € Ty

and
o(t) = o1(t) = oa(t) for all t € Ty.

That is, o1 and oy are the restrictions of forward jump operator ¢ : T — T
to the time scales Ty and Ty, respectively, i.e.,

o1 = o|p, and o3 = o, .

Lemma 5.2.1 The delay function 6_(h,t) preserves the structure of the
points in T1. That is,

o1 (t) =t implies o3(5_(h,t)) = 6_(h,1).
o1(t) >t implies oo(5_(h,t) > 5_(h,t).

Using the preceding lemma and applying the fact that oo(u) = o(u) for
all u € Ty we arrive at the following result.

Corollary 5.2.1 We have
0_(h,o1(t)) = 02(6—(h,t)) for allt € Ty.

Thus,
0_(h,o(t)) =o(6_(h,t)) for all t € T;. (5.2.3)
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By (5.2.3) we have
0_(h,o(s)) = a(d_(h,s)) for all s € [tg, 00)T.
Substituting s = §4(h,t) we obtain
5 (h 064 (h, 1)) = 36— (h, 8.4 (1)) = ().
This and (iv) of Lemma 5.1.1 imply
(64 (h,t)) =04 (h,o(t)) for all t € [6_(h,tg),00)T.

Example 5.2.1 In the following, we give some time scales with their shift
operators:

[ T [ h [ é_(ht) ] 6:(ht) |
R ER, | t—h t+h
Z €Zy t—h t+h

" u{0} || € %+ ; ht
N1/2 €Z4 | V2 —h? | V2 +h?

Example 5.2.2 There is no delay function 6_(h,.) : [0,00)5 — [6_(h,0),
00) on the time scale T= (—oo,0] U [1, 00).

Suppose on the contrary that there exists a such delay function on T.
Then since 0 is right scattered in Ty := [0,00)z the point 6_(h,0) must be
right scattered in Ty = [6_(h,0),00)r, i.e., oa(d_(h,0)) > 6_(h,0). Since
o2(t) = o(t) for allt € [§_(h,0),0)r, we have

a(5_(h,0)) = 02(5_(h,0)) > 5_(h, 0).

That is, 6_(h,0) must be right scattered in T. However, in T we have
d_(h,0) <0, that is, 6_(h,0) is right dense. This leads to a contradiction.

5.3 Halanay Inequality on Time Scales

Let T be a time scale that is unbounded above and t; € T* an element such
that there exist shift operators d1 : [tg,00) x T* — T* associated with ¢.
Suppose that hy, ha,...,h. € (tg,00)T are constants with

to=ho<hi<hy<...<h,

and that there exist delay functions d_(h;,t), i =1,2,...,7, on T. We define
the lower A-derivative ¢~ (t) of a function ¢ : T — R on time scales as
follows:

A (1) — 1 g £08) = (o)

p— (5.3.1)

s—t—
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Notice that
(1) = p2(1)
provided that ¢ is A-differentiable at ¢ € T*. Let f(¢,u,v) be a continu-

ous function for all (u,v) and t € [ty,a)r. Hereafter, we suppose that f is
monotone increasing with respect to v and nondecreasing with respect to u.

Proposition 5.3.1 Let g(uj,us,...,u,) be a continuous function that is
monotone increasing with respect to each of its arguments. If ¢ and b are
continuous functions satisfying

P2 (1) < [ (tp(t), 9 (98- (h1,1)), 98- (h2, 1), ..., 0(8— (hr, 1)) ,

(
V() 2 f (1), g (B3 (R, £)), (0 (h2,t)), .., 0(E—(hr, 1))
for allt € [to, @)t and p(s) < P(s) for all s € [6_(h,,to),to]T, then

(
o(t) < Y(t) for all t € (to, o), (5.3.2)
where « € (tg,00)T.

Proof. Suppose that (5.3.2) does not hold for some ¢ € (g, a)r. Then
the set
M :={t € (to,a)r : p(t) > P(t)}.
is nonempty. Since M is bounded below we can let & := inf M. If £ is left
scattered (i.e., o(p(§)) = &), then it follows from the definition of £ that

w(p(§)) < ¥(p(8)),

P(&) = ¥(€).
Since p(€) is right scattered, the function ¢ is A-differentiable at p(§) (see
[51, Theorem 1.16, (ii)]), and hence, *~(p(&)) = ¢>(p(£)). Similarly we
obtain ¥ (p(€)) = ¥ (p(¢)). Thus,

(&) = p(a(p(€)))

= 9(p(€)) + 1(p(€)> (p(8))

= ¢(p(&) + 1(p(£) ™~ (p(&))

< (p(8)

+ p(p(©) f (p(€); p(p(8)), g (9(0—(h1, p(€))), p(d—(h2, p(£))), - - - s (6 (hr, p(£)))))
< P(p(§))

+ w(p(©)f (p(€),(p(€))s g (Y (6—(h1,p(£))), (6= (h2, p(§))); - - - s (- (hr, p(€)))))
(&) + (p() V2= (p(£))

(&) + n(p(£) ™ (p(€))

)
)
)
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This leads to a contradiction. If £ is left dense, then we have £ > ¢y and

e(&) = ¥(§).
Since
0_(h, &) <€foralli=1,2,...,r
and
o(s) < (s) for all s € [6_(h,,&),E)r,
we obtain

9(p(6-(h1,8)), -, p(0-(hr,€))) < g(P(6-(h1,£)), ..., (0 (hr,£))),

and therefore,

P2 (8) < (& 9(€), 9 (9(6-(h1,€)), (6 (ha, ), -, 9 (6 (hr, €))))
< (& 0(8), 9 ((0-(h1,8)), ¥ (0-(h2,£)), - . ., (0 (hr, £))))
<95 (9).
Also since
e(s) —p(a(§)) _ ¥(s) —¥(a(§))
s —o(§) s—o(§)
for all s € [6_(h, &), &) we get by (5.3.1) that

P (8) = 2 (9).

This also leads to a contradiction and so this completes the proof. m

>

Proposition 5.3.2 If

WA (t) < f (tw(t), g (@0 (h1,1)),w(0-(h2,1)),...,w (b (hy, 1))

fort € [s0,0+(a, s0))T and y(t; so,w) is a solution of the equation

y2 () = f (ty(t),g (- (h1,1)),y(0—(h2, 1)), ... y(0—(hs, 1))

which coincides with w in [6_(h., s0), So]T, then, supposing that this solution
is defined in [so, 0+ (cv, so))T, it follows that w(t) < y(¢; sp,w) for t € [so, 0+
(a, s0))-

Proof. Let ¢, be a sequence of positive numbers tending monotonically
to zero, and y, be a solution of the equation

y2 () = f (tyt),g (WO (h1, 1), y(0—(h2,1)),...,y (0 (hy, 1)) + €,

which in [§_(h., So), So|T coincides with w + &,,. From the preceding propo-
sition, we have

yn+1(t) < yn(t)
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and
Jim yn(t) = y(t; so,w)

for all t € [sg,d4(c, s0))r. From Proposition 5.3.1 we have w(t) < y,(¢) for
t € [s0,04(c, s0))T, and hence, w(t) < y(¢; sp,w). The proof is complete. m
Hereafter, we will denote by ji the function defined by

36[6— (h'r‘th)vt]'ﬂ'

for t € [tg,00)r. It is obvious that the sets R, Z, ¢ = {¢" :n € Z and
q>1}U{0}, hZ ={hn : n € Z and h > 0} are examples of time scales on
which g = p.

Theorem 5.3.1 Let x be a function satisfying the inequality
A (t) < )+ Z:qz _(hi,t), t € [to,00)T, (5.3.4)

where £ € (0,1] is a constant, p and q;, i = 0,1,...,r, are continuous and
bounded functions satisfying 1 — u(t)p(t) > 0, ¢;(t) > 0,4 =10,1,...,r — 1,
gr(t) > 0 for all t € [ty,00)r. Suppose that

- Z%‘(t) >0 forallt € [tg,o0)r. (5.3.5)

Then there exist a positively regressive function X : [tg, 00)r— (—00,0) and
Ko > 1 such that

z(t) < Koex(t, to) fort € [to, 00)T (5.3.6)

Proof. Consider the delay dynamic equation

y3(t) = ) + Z Gty (5_(hi 1), t € [to, o0)r. (5.3.7)

We look for a solution of Eq. (5.3.7) in the form ey(¢,tp), where A : T —
(—00,0) is positively regressive (i.e., 1 + u(t)A(t) > 0) and rd-continuous.
First note that

ex (t,to) = A(t)ea(t, to).
For a given K > 1, the function Key(t,1o) is a solution of (5.3.7) if and only
if A is a root of the characteristic polynomial P(¢, A) defined by

P(t,2) = (A +p(1)) ex(t, 5— (hr,1)ex (0 (hr 1), to)

— K~ 12% 5 (6_(hi,t),6_(hp,t)). (5.3.8)
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For each fixed t € [tg, 00)r define the set
S(t) :=={k € (—00,0) : 1+ fu(t)k > 0}. (5.3.9)

It follows from Lemma 1.1.1 that if k is a scalar in S(t), then 0 < 1+ fi(t)k <
1+ p(u)k for all w € [6_(hy,to),t]; and

0 <ex(r,s) <exp(k(r —s)), (5.3.10)

for all 7 € [6_(hr,t0),t]y with 7 > 5. Now for each fixed t € [tg,00)r the
function P(t, k) is continuous with respect to k in S(t). Since eg(t,tp) = 1
we have

P(t,0) = p(t) — K** i qi(t) > 0. (5.3.11)
=0

Let t € [to,00)r be fixed. If the interval [0_(h,,%o),t]; has not any right
scattered points, then fi(t) = 0 and S(t) = (—0o0,0). By (5.3.10), we get

lim eg(t,s) =0,

k——o0
and hence,

lim P(t,k) = —K'¢,.(t) <0.
k——o0
If the interval [0_(h,, o), t]; has some right scattered points (i.e., if fi(t) > 0),
then we have S(t) = (,ﬁ’o). For all k € (fﬁ,O) we have ex(t,s) > 0.
Since 1 — f(t)p(t) > 0 for all ¢ € [tg, c0)T, we obtain

lim Pt k) = (—ﬁ + p(t)) Hl_n% X [ek(t,a,(hr,t))e;*f(g,(hr,t),to)}

r—1
KUY T aqit)  lim (- (hi,t),6- (e t) — K (1)
i—=0 k==t

< —Kéflqr(t) < 0.

Therefore, for each fixed ¢ € [tg, 00)T, we obtain

lim  P(tk) if A(t) >0
0> —K'1q.(t)>{ 7 mm . (5.3.12)
Jim P(tk) if i(t) =0
——00

It follows from the continuity of P in k and (5.3.11)—(5.3.12) that for each
fixed t € [tg, 00)T, there exists a largest element ko of the set S(¢) such that

P(t, ko) = 0.
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Using all these largest elements we can construct a positively regressive
function A : [0_(hy, o), 00)T— (—00,0) by

A(t) := max{k € S(t) : P(t,k) =0} (5.3.13)

so that for a given K > 1, y(t) = Kex(t,to) is a solution to (5.3.7).

If y(t) be a solution of (5.3.7), x(t) satisfies (5.3.4), and z(t) < y(t) for all
€ [6—(hr, o), to]T, then by Proposition 5.3.2 the inequality z(¢) < y(t) holds

for all ¢ € [tg,00). For a given K > 1, we have

inf  Kex(t, to) = K,
te[ﬁf(}h»,to),to]qr 6>\( 0)

hence, by choosing a Ky > 1 with

Ky > sup z(t),
te[d— (hr,to),tolr

we get
.’L‘(t) < Koe)\(t,t0> for all t € [5, (hr,t0>,t0]T.
It follows from Proposition 5.3.2 that the inequality
x(t) S Koe)\(t, to)

holds for all ¢ € [tg, 00)r. This completes the proof. m

Example 5.3.1 LetT=7Z,tg =0,6_(h;,t) =t—h;, h e N,i=1,2,....r
1, h, €Z", and 0 = hg < hy < ... < h,. Assume that p and ¢; > 0,
1=0,1,2,...,r, are the scalars satisfying q. > 0 and

T
Z%‘ <p<L
i=0

Then Eq. (5.5.7) becomes
Ay(t) = —py(t +Zqz hi), te{0,1,...}. (5.3.14)

The characteristic polynomial and the set S(t) given by (5.5.8) and (5.3.9)
turn into

P(t,A) = (A +p)(1+0)" (14 NI — KLY Tgy(1 4 00 ho)
=0

and

S(t) = (-1,0) for allt €{0,1,...},



5.3. HALANAY INEQUALITY ON TIME SCALES 225
respectively. Let {x(t)}, t € [—hy,00)z be a sequence satisfying the inequality
Ax(t) < —px(t +ZQz hi), t€{0,1,...}.

Then by Theorem 5.3.1, we conclude that there exists a constant Ky > 1

such that
t—1

a(t) < Ko [+ Xo(s)), t €{0,1,...},
s=0

where \g : Z —(—1,0) is a positively regressive function defined by

o(t) = max {y € (=1,0): (v +p) (1 + 1) (1 4 ) 1= (=hr)
— K1Y qi(1 4 vyt = 0} :
=0

Theorem 5.3.2 Let 7 € [tg,00)r be a constant such that there exists a delay
function §_(7,t) on T. Let x be a function satisfying the inequality

xA(t) < —p(t)x(t) +qt) sup  z'(s), t€ [to,00)T,
SE[6_(T,1),t]

where £ € (0,1] is a constant. Suppose that p and q are the continuous and
bounded functions satisfying p(t) > q(t) > 0 and 1 — a(t)p(t) > 0 for all
t € [to,00)T. Then there exists a constant My > 0 such that

{L'(t) < Moej\(t,to),
where \ is a positively regressive function chosen as in (5.3.16).

Proof. We proceed as in the proof of Theorem 5.3.1. Consider the
dynamic equation

y2(t) = —py(t) +q sup  y'(s), t€E [to,o0)r. (5.3.15)
s€[6_(7,8),1]

For a given M > 1, Mex(t,to) is a solution of (5.3.7) if and only if A is a root
of the characteristic polynomial P(¢,\) defined by

P(t,A) := (A +p(t) ex(t, to) — Mq(t)  sup  €5(s,to).
SE[6_(T,t),t]

For each fixed ¢ € [tg, 00) define the set
S(t) :={k € (—00,0) : 1+ fu(t)k > 0}.
It is obvious that for each fixed t € [tg, c0)r and for all k£ € S(t) we have

P(t, k) = (k + p(t)) ex(t, to) — M q(t)ej,(5-(7,1), to).
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As in the proof of Theorem 5.3.1, one may easily show that for each
t € [tg,00)T, there exists a largest element of S(¢) such that P(t,k) = 0.
Using these largest elements we can define a positively regressive function
A [6_(hy, to), 00)r— (—00,0) by

A(#) := max {k € S(t): P(t,k) = o} , (5.3.16)

so that for a given M > 1, y(t) = Me;(t,to) is a solution to (5.3.15). The
rest of the proof is similar to that in Theorem 5.3.1. m

Finally in this section we give a result for functions satisfying the dynamic
inequality

22 (t) < )+ HB _(hi, 1)), (5.3.17)

where a; € (0,00), 4 =0,1,...,r, are the scalars with >°!_a; = 1. Let the
characteristic polynomial Q(t, k) and the set S(t) be defined by

Q(t,k) == (A +p) ex(t, to) HﬂeA ~ (i, 1), to),

and (5.3.9), respectively. Using a procedure similar to that used in the proof
of Theorem 5.3.1 we obtain the next result.

Theorem 5.3.3 Let « be a A-differentiable function satisfying (5.5.17),
where a; € (0,00), i =0,1,...,7, are the scalars with Y _;_,a; = 1, p and 3,
1=0,1,...,r, are continuous functions with the property that 1 — f(t)p(t) >
0, B;(t) >0,i=0,1,...,7, for all t € [tg,00)T. Suppose that

,
~[]8:it) >0
i=0
for allt € [tg,00)r. Then there exists a constant Ly > 0 such that
z(t) < Loey (t,t0) fort € [to,c0)T,
where vy : [tg, 00)T— (—00,0) is a positively regressive function given by

y(t) = max {k € S(t) : Q(¢, k) = 0} . (5.3.18)

5.4 Stability of Nonlinear Dynamic
Equations
In this section by means of Halanay type inequalities we propose some suffi-

cient conditions guaranteeing global stability of nonlinear dynamic equations
of the form

22(t) = —pW)z )+ F(t, z(t), 2(6_(h1,1)), ..., 2(6_(hs, 1)), for t € [to,00)T.
(5.4.1)
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Theorem 5.4.1 Let p and q;, i = 0,1,...,r, be continuous and bounded
functions satisfying 1 — p(t)p(t) > 0, ¢;(t) >0,i=0,1,...,7, ¢.(t) >0 and

for all t € [to,00)r. Let £ € (0,1] be a constant. Assume that there exist
scalars h; € [tg,00)T, i =0,1,...,7, such that hg = tg, 6_(h;,t),i=1,...,1,
are delay functions on T, and

|E(t,x(t), x(6_(h1,t)),...,2(0_(h,,1)) |<qu _(hi,t))|" (5.4.2)

for all (t,x(t),x(6_(h1,t)),...,2(6_(hy,t))) € [to,00)r x R"TL. Then there
exists a constant My > 1 such that every solution x to (5.4.1) satisfies

[z(t)] < Moex(t, to),
where X is a positively regressive function chosen as in (5.3.13).

Proof. Let

§:=0(-p) = f)up'

Multiplying by e¢(t,to) and integrating the resulting equation from ¢y to ¢
we get that

t
z(t) = xoeeg(t,to) +/t F(s,z(s),z(0—(h1,8)),...,z(0—(hr, s)))eeg(t7 o(s))As.
’ (5.4.3)

It is straightforward to show that a solution z(¢) to (5.4.3) satisfies (5.4.1).
This means every solution of (5.4.1) can be rewritten in the form of (5.4.3).
By using (5.4.2) we obtain

[2(t)] < |wol ece(t o) + / qu _(ha, s))|* ece(t,o(s))As.

to j=0

Let the function y be defined as follows:

y(t) = |x(t)] for t € [6_(hy,t0),to]T

and

y(t) = o] ece(t, o) / 3 0u(5) [£(6_ (b, )| o (1, () As for [f0,50)r.

to j=0



228 CHAPTER 5. HALANAY INEQUALITIES

Then we have |z(t)| < y(t) for allt € [§_(h,,tg),00)r. By [61, Theorem 1.117]
we get that

Yy () —p(t) <|I0|665 (t,to) / ZQZ hi, s ))|Z€@€(tva(s))A8>

to =0

+Zqz h“t))|

0+ alt) 20— (her )

=0

+Z% h“t))

for all [tg,00)r. Therefore, it follows from Theorem 5.3.1 that there exists a
constant My > 1 such that
|z(t)] < Moex(t,to) for t € [tg, c0)T,

where X\ : [tg,00)r— (—00,0) is a positively regressive function defined by
(5.3.13). The proof is complete. m



Chapter 6

Wirtinger Inequalities

If a nonnegative quantity was so small that is smaller than any given one,
then it certainly could not be anything but zero. To those who ask what the
infinity small quantity in mathematics is, we answer that it is actually zero.
Hence there are not so many mysteries hidden in this concept as they are
usually believed to be. These supposed mysteries have rendered the calculus
of the infinity small quite suspect to many people.

Euler (1707-1783).

The inequality of W. Wirtinger is given by

/(y’(t))gdtzﬁ/ y2(t)dt (6.0.1)
0 0

for any y € C*[0, 1] such that y(0) = y(1) = 0.
In [81] Hinton and Lewis established a Wirtinger-type inequality (using
the Schwarz inequality)

b o2 b
M=A(t) , ,, .2 l/
—_— t))"dt > -

[, o ez |
for any positive M € Cl([a,b]) with M'(t) # 0, y € C'([a,b]) and y(a) =
y(b) = 0.

In [119], Pena established the discrete analogue of (6.0.2) and proved

the following result. For a positive sequence {M,, }o<n<n+1 satisfying either
AM >0or AM <0on [0,N]NZ,

’

M (t)‘ 2 (1) dt (6.0.2)

N N
MnMn+1 2 1 2
- Ayn)” = —— > |AM, |y, (6.0.3)
n;) INTATR TS nz:% wl vt
(© Springer International Publishing Switzerland 2014 229
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holds for any sequence {y, }o<n<n+1 With yo = yn41 = 0, where

2
M, |AM,| )1/2
= su 1+ sup —— . 6.0.4
i (ognEN Mn+1> (ogngpzv |AM;,41] (6.04)

In this chapter we present Wirtinger-type inequalities on time scales.
In Sects. 6.1-6.3 a variety of Wirtinger-type inequalities will be established.
Section 6.4 will present an application.

6.1 Wirtinger-Type Inequality I

In this section we prove a Wirtinger-type inequality on time scales. The
results are adapted from [82].

Theorem 6.1.1 For a positive function M € Cl(I) satisfying either
M2 >0 or M® <0 on I", we have

" M()M(a(t)) 2 o1 .
/a W(gﬁ(t)) At > wg/a |MA@)| (v (1)?A (6.1.1)

for any y € Cl(Z) with y(a) = y(b) =0, T = [a,b]yr C T, and

(o MO N T rol) v\
1”‘(@11 M(o(t») i (p M (o (1) )*(p M(o(t»ﬂ '
(6.1.2)

Proof. Let M and y be as in the theorem. We will omit the subscript ¢
in the computations. Let

b b
MM°
. A o\2 i A2
A _/a |M2| (y7)" At, B:= ’ |MA‘(y )2At,
(6% . = (suth>1/2 ﬂ = sup 7Mt ’MtA’
teIkMta 7 teTk Mta

Suppose that M > 0 (the other case is treated similarly). Then we have

b b b
A = /MA(y”)QAt:*/ MyA(y+y”)At:*/ My=(2y° — uy®) At

IN

b b
2/ M|yo||yA\At+/uM(yA)2At

b b A
MMe® M MM | M~
= 2 — |v*|/ MA|At 2)2At.
/a\/ sy VoI e AL+ | sy e W)
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As a result we have

b o 1/2 b 1/2
MM 2 M
A = M2 (y7 )AL < 2 N’ —MA‘ 7Y At
/ <G\MA|y ) (/M ")
po [ MELY [P MM A2
+ [ sup = Y ‘ At
(tezk M |MA|

IN

2vVB (tsEuI[;C M7 > (/ ‘M ‘ (y%) At) + BB = 20V AB + BB.

Dividing both sides of the above inequality by v AB we obtain
VA VB
<20+ pf—
VB VA

By relabeling with C' := y/A/B we get a quadratic inequality C? < 2aC + 8,
ie., (C —a)? < a?+ 3. Hence,

—VB+a2<C<a+y/B+a?

and since C' > 0, we have C? < (a+ /B + a?)%. The proof is complete. m

6.2 Wirtinger-Type Inequality 11

In this section we derive some Wirtinger-type inequalities on time scales
where we will use y?*! instead of the term (y)Y*!. The results are adapted
from [13]. Throughout this section and in the next section we assume that
the function M € Cl,(Z) is positive, where Z = [a, b]r, and let

_ M(o(t)\ 7+ OISO
o= tseuzli (W) and f:= tbélzg (W) . (6.2.1)

Theorem 6.2.1 Supposey > 1 is an odd integer. For a positive M € Cl4(Z)
satisfying either M* >0 or M® < 0 on I*, we have

PMY)M(a(t) a1 1 PN Y41
s L A0z s [ )] i)

(6.2.2)

for any y € CL(Z) with y(a) = y(b) = 0, where V(o B,7) is the largest root
of the equation

27— 277y )z — 27715 =0. (6.2.3)
Proof. Let y and M be defined as above and let

/MA £))7* 1At and B = /W(y%))wlm.
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Using the integration by parts formula and the fact that y(a) = y(b) = 0, we
have

/ MA ’y+1At
= {sgn (MA(a) }/ MA@ty (1) At
= {sgn (MA(Q))} { Y / M(o 7+1 )At}

= o (02(@)) [ M) (7 @

/ M(o®) | ()™ )\ At.
(6.2.4)
By the Potzsche chain rule we obtain
) @)=+ )| [0+ 0] an| [y 0|
0 (6.2.5)

1
< (v+ D) [y ()] / ly(t) + p(hy> (O] dh.
0
Applying the inequality (see [110, page 500])
lu+ v <2771 (Ju|” + |v|”), where wu,v€R

with u = y(¢) and v = u(t)hy>(t), we have from (6.2.5) that

(*)® (t)‘ <(v+1) !yA(t)|/O ly(t) + p(®)hy® )| dh

<o lol{ | ol an + / a0 an}

=27y ) [y @] @)+ 277 [y O] [u®y> @)
(6.2.6)

Substituting (6.2.6) into (6.2.4), we have

12 1/ Me(t A At
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R POMIMI()\ T o
= 7o [(Magy) o

o A ﬁ
(D) wor ar
)

P EOMAONT MM | A,
2 L( @)) ara@y O Al

M
= 2“(v+1>/ab ((()())5)|y (t)l”“)w

o A FF1
(M wr)

o [ () Gl o)
6.2.7

Applying the Holder inequality with

1 il
y+1\ 7T M| M2 v v+1
) 7.9:( | ||y|’y+l> >p:7+17q: 5 3

MM
= (Tiar i

A |

we obtain from (6.2.7) that

1

o FFT
MM fy+1> )At}

A<271’Y+1{ |MA‘W|A|

AL
+20” 1/ {(“M |> (%iﬁ, A’m)
oo [ () os)
{
(

~

o EEas
W’m”jmm}

~ \/_\

holds, i.e.,
A <27 (74 1)aB7 AT 4 8B). (6.2.8)
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Dividing both sides of (6.2.8) by BT A we obtain

AT Bt
— <2 ((v+1>a+6 > ,
BA+t A+

and putting C := Aﬁ/Bﬁ > 0, we get

c<o ! ((7+1)a+ C/i) ,

which gives

_1
C'H 27y £ 1)aC? = 27713 <0 with C = AE : (6.2.9)

B+t

By (6.2.9), we have
C < ¥(a,f,7),

where U (a, §,7) is the largest root of Eq. (6.2.3), and thus we have, replacing
C' in terms of A and B as in (6.2.9),

1

AT < U(a, B,7)B7,

i.e.,

which is the desired inequality (6.2.2). The proof is complete. m
Using Theorem 6.2.1 with v = 1, we obtain the following result.

Corollary 6.2.1 For a positive function M € CL(Z) satisfying either
M2 >0 or M» <0 on I", we have

P M(t)M(o(t)) 2 1ot )
| s et sz 5 [t porar (@210

for any y € Cl{(Z) with y(a) = y(b) = 0, where

_ M(a(t)) M(a(t)) () [MA (1))
7 ﬁ“}i M(?) *\/fe“ﬁ M) Rk M@

Proof. When v = 1, we see that the largest root ¥U(«,3,1) of the
quadratic equation z? — 2za — 8 = 0 is given by

U(a,B,1) =a+ a2+ 5=,

and then (6.2.10) follows from Theorem 6.2.1. m
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6.3 Further Wirtinger Inequalities

In this section we apply different algebraic inequalities to establish some
Wirtinger-type inequalities. The results in this section are adapted from [13].
To prove the main results, we will use the inequality (see [110, page 518])

(u+0)"T <t 4 (y+ Dutv + Lyouw?, where u>v>0. (6.3.1)
Note that L, > 1 in (6.3.1) is a constant which does not depend on u or v.

Theorem 6.3.1 Suppose v > 1 is an odd integer. For a positive M € C}d @3]
satisfying either M* >0 or M> < 0 on I", we have

bw AL o b o
| s ) ez g [t wortar

|MA(t
(6.3.2)

for any y € CL(Z) with y(a) = y(b) = 0, where ®(a, 8,7) is the largest root
of the equation

(7+1)x+(7+me2—(y+ Da? =271 (y+1)(1+a)z?—27"13 = 0. (6.3.3)

Proof. We proceed as in the proof of Theorem 6.2.1 to get (6.2.9), i.e.,

Cr <27 (y +1)aC” 427716, with C = —. (6.3.4)

Applying the inequality (6.3.1) withu = C,v =1, and L, = 27"} (y+1) > 1,
we have

OV (C+ 1) (4 1O — 2 (3 + )0,
which together with (6.3.4) implies that

(CH+1)M —(y+ 10" =27y + D1 +a)C? —27713<0.  (6.3.5)
Using the inequality

1
A4+u)™ > (y+Du+ @u{ where u >0 (6.3.6)

for w = C, we have from (6.3.5) that

(y+1)C + @02 —(y+1)C =27y + 1)1 +a)CT —20715 <0.

Therefore
C S <I>(a, 67 7)7
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where ®(«, 3,7) is the largest root of the equation (6.3.3), and thus we have,
replacing C' in terms of A and B as in (6.3.4),

AT < &(a, B,7) BT,

ie.,

1
> —
BT

which is the desired inequality (6.3.2). The proof is complete. m
Using the inequality

1
(1+u)tt > WUQ, where © >0

instead of the inequality (6.3.6) that was used in the proof of Theorem 6.3.1,
we have the following result.

Theorem 6.3.2 Supposey > 1 is an odd integer. For a positive M € C%d @3]
satisfying either M* >0 or M> < 0 on I*, we have

VAP WOM(o(®) | a ot
| s o) A

b
A | o] woyae

1
o Q'Y+1(a7 67 ’Y) a
(6.3.7)

for any y € CL(Z) with y(a) = y(b) = 0, where Q(a, B,7) is the largest root
of the equation

(v+ 1)y

7 = (D7 =27 v+ DA+ a)a? =27 =0, (6.38)

In the following, we apply the inequality
w47 — (v 4+ Duw? >0, where u, v >0 (6.3.9)
and derive the following result.

Theorem 6.3.3 Suppose y > 1 is an odd integer. For a positive M € Cl4(Z)
satisfying either M* >0 or M® < 0 on I", we have

PMIBM(o() Ay I Y LT -
/a psgp @) Atzmwa,/a,v)/a ™ (tﬂ(y(t))(;af;)

for any y € CL(Z) with y(a) = y(b) = 0, where A(a, 3,7) is the largest root
of the equation

(Y+D)(@+1) —y—(y+1)2" =271 (y+1)(1+a)z” =273 =0. (6.3.11)
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Proof. We proceed as in the proof of Theorem 6.3.1 to get (6.3.5), i.e.,
(CH)T —(y+1)C7 =277y +1)C7 <277 (y+1)aC? +2771 3. (6.3.12)

Applying the inequality (6.3.9) with u = C' + 1 and v = 1, we have from
(6.3.12) that

(Y+1D)(CH+1)—y=(y+1)C" =22 (y+1)(1 +a)C7 =277 13 <0.

Therefore C' < A(a, 8,7), where A(a, 8,7) is the largest root of Eq. (6.3.11).
This implies from the definition of C' that

AT < Ao, B,7) B

Thus A < A"*Y(a, 8,7)B, which is the desired inequality (6.3.10). The proof
is complete. m
Note that in the case T = R, we have o(¢) = ¢ and u(t) = 0 so that

a=1 and F=0. (6.3.13)
Then we have from Theorems 6.2.1, 6.3.1-6.3.3 the following results.
Theorem 6.3.4 Let v > 1 be an odd integer. For a positive function

M € CY([a,b]) satisfying either M’ >0 or M’ < 0 on [a,b], we have

b b

[ A wartae st [ 6] vy
for any y € CY([a, b]) with y(a) = y(b) = 0.

Proof. Using (6.3.13), Eq. (6.2.3) becomes

27T =277y 4+ 1)27 = 0.
Hence ¥(1,0,~) from Theorem 6.2.1 is given by
T(1,0,7) =2 (y+1),

and the proof is completed by applying Theorem 6.2.1. m

Theorem 6.3.5 Let v > 1 be an odd integer. For a positive M € C*([a,b])
satisfying either M' >0 or M’ < 0 on [a,b], we have

bM7+1(t) / y+1 1 ’
/ armr ) dtz@w(l,o,v)/a

for any y € CY([a,b]) with y(a) = y(b) = 0, where ®(1,0,v) is the largest
root of the equation

M ()| (y(t))"dt,

(v+ 1)y

5 2?2 — (y+ DY =27 (y +1)z? = 0.

(v+ D+
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Theorem 6.3.6 Let v > 1 be an odd integer. For a positive M € C*([a,b])
satisfying either M' > 0 or M' < 0 on [a,b], we have

bMW—H(t) v+1 1
/ arp VO A2 G ),

b

’

(0] (w1 a,

for any y € CY([a,b]) with y(a) = y(b) = 0, where Q(1,0,v) is the largest
root of the equation

1
(v + )’sz

5 —(y+ a7 =2"(v+1)z” =0.

Theorem 6.3.7 Let v > 1 be an odd integer. For a positive M € C*([a,b])
satisfying either M' >0 or M’ < 0 on [a,b], we have

M7+1(t) y+1 1
/ arr YO 2 ey ),

for any y € CY([a,b]) with y(a) = y(b) = 0, where A(1,0,~) is the largest root
of the equation

b

’

M ()| (y(0)) ",

Y+ +1)—y—(y+ 127 =27(y+1)z” =0.

Note that in the case T = Z, we have o(t) =t + 1 and u(t) = 1 so that

) ¥
a= sup (MnH) and (= sup <|AMn|> . (6.3.14)

o<n<N \ Mpy o<n<N \ Mp

Then we have from Theorems 6.2.1, 6.3.1-6.3.3 the following results.

Theorem 6.3.8 Let v > 1 be an odd integer. For a positive sequence
{My}o<n<n+1 satisfying either AM > 0 or AM < 0 on [0,N]NZ, we
have

M, Mn'H 7+l ; y+1
”230|AM 5 @) 2 s 5 AM()] (y) ™,

for any sequence {ynto<n<nt1 With yo = yn+1 = 0, where U(a, B,7) is the
largest root of the equation

27— 277y 1)ax? — 27718 =0.

Theorem 6.3.9 Let v > 1 be an odd integer. For a positive sequence
{M, }o<n<n+1 Ssatisfying either AM > 0 or AM < 0 on [0,N]NZ, we
have

M, M"Jrl 7+l ; n))
Z TaaL Bu)™ = g 3 1AM M) (y(m)
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for any sequence {yn }o<n<nt+1 With Yo = yn+1 = 0, where ®(a, B,7) is the
largest root of the equation

1)y o

2 —(y+ 127 =277 (v + (1 +a)z? =277 = 0.

(v+ Dz +

Theorem 6.3.10 Let v > 1 be an odd integer. For a positive sequence
{My}o<n<n+1 satisfying either AM >0 or AM < 0 on [0, N]NZ, we have

Z M Mn+1 )’y+1

|AM |’Y Yn Z |AM( )|( ( ))’Y—H?

1
= (0, fo7) =

for any sequence {yn}o<n<ni1 with yo = yn+1 = 0, where Q(«, B,7) is the
largest root of the equation

1
(v + )vxz

5 —(y+ D2 =27y + DA+ )z —2771p =0.

Theorem 6.3.11 Let v > 1 be an odd integer. For a positive sequence
{M, }o<n<n+1 satisfying either AM >0 or AM < 0 on [0, N]NZ, we have

nl v+1 1 N ~y+1
Z AR ()™ > s 3 |AM )] ()

n=0

for any sequence {yn}to<n<nt1 With Yo = yn41 = 0, where Ao, B,7) is the
largest root of the equation

(Y+D@+1)—y—(r+1D2" =27 (y+ 1)1+ )z’ =277 =0.

6.4 An Application of Wirtinger Inequalities
on Time Scales

In this section we show how Opial and Wirtinger inequalities may be used to
find a lower bound for the smallest eigenvalue of a Sturm—-Liouville eigenvalue
problem. The results are adapted from [13, 123].

Consider the Sturm-Liouville eigenvalue problem

—y22 () + )y () = My (8), y(0) =y(B) =0, (6.4.1)

and assume that Ao is the smallest eigenvalue of (6.4.1). To find a lower
bound, we will apply an Opial type inequality and the Wirtinger inequality

7 M(t)Me (t) 2 1 /P IR
/a W(yA(t>) Atzw/a |M2(#)] (v7(1)°At,  (6.4.2)



240 CHAPTER 6. WIRTINGER INEQUALITIES

for a positive function M € C!,(I) with eitherM* () > 0 or M*(t) < 0 on
I, y € C!,(I) with y(a) =0 = y(B), for I = [, B}y C T and

oy MO N (g POIEON (M)
”’QEEZMU(t)) i (p Mo (2) +(,ﬂlfzww))

1/2

We let

; 3
A@Q = (E =) ( / QZ(t)At> + sup p(t)[QU)].

ast<p

Theorem 6.4.1 Assume that Ao is the smallest eigenvalue of (6.4.1) and
assume that q(t) = Q*(t) +~, where v < \o. Then

1-4
P
(1+V2)20%(8)
Proof. Let y(t) be the eigenfunction of (6.4.1) corresponding to A.

Multiplying (6.4.1) by y“ (¢) and proceeding as in the proof of Theorem 4.1.6,
we have

(6.4.3)

B . B . 9 B B Y 9
- / ARy (DAL + / a(t) (47 (£))? At = Ao / (47 (1)) At.

This implies, after integrating by parts and using the fact that y(0) =
y(B) = 0, that

B
(Mo —7) / (47 ()2 At
8 ) E ,
- / (2 () At + / QA (1) (v (1)) At
0 0

E ) E
_ / (> (1) At - / Q) () + 47 ()] 5™ ()AL
0 0

Y%

B A 9 B A
| wr0) s [ @olse + v o]y 0] at
0 0

Proceeding as in the proof of Theorem 4.1.6 by applying an Opial type
inequality on the term

B8
/0 Q) + 7 (0)] |4 (1)] A,

we obtain

A 2

E 5 )
Do — 1 / (47 (1) At > / (1) At — AQ) / A ()2 At
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Now, applying Wirtinger’s inequality (6.4.2) by putting M (t) = t, we have
that

5 5 ) 8 )
Do — | 20%(8) / (A (1) At > / (W2 (1)° At - A@Q) / (3 (1)* A,

where

= (aty) () - (aty)] <102

This implies that
Ao = (1+V2)%02(8) > 1 - AQ).

From this we obtain a lower bound of A\g as given in (6.4.3). The proof is
complete. ®m
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