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Abstract. Effective and robust method of determination of Jiles-Atherton 
model’s parameters is one of the most significant problem connected with mag-
netic hysteresis loop modelling. Parameters of this model are determined during 
the optimisation process targeting experimental results of hysteresis loop meas-
urements. However, due to appearance of local minima, the cognitive methods 
have to be applied. One of the most common method are evolutionary strate-
gies. On the other hand, typical evolutionary strategies, such as μ+λ are expen-
sive from the point of view of calculation time. To overcome this problem,  
differential evolution was applied. As a result, the calculation time for determi-
nation of Jiles-Atherton model’s parameters was significantly reduced. 
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1 Introduction 

In spite of the fact, that Jiles-Atherton model of magnetization process [1, 2] was 
presented the first time in 1984, it is still very popular and utilized for crystalline and 
amorphous alloys [3–9]. Recent developments of Jiles-Atherton model are mainly 
focused on physical aspects [10–13] and engineering [14] applications. 

However, all these works require robust, reliable and cost-effective methods of de-
termination of Jiles-Atherton model’s parameters. Since the beginning, for this task 
optimisation methods were used [15]. However, efficiency of gradient optimisation 
methods is significantly limited due to the fact, that typical target function exhibit 
local minima [16]. For this reason, cognitive method of global optimisation were 
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used, such as genetic algorithms [17] or evolutionary strategies [18]. Among used 
solutions, the (μ+λ) strategy, together with simulating annealing and local gradient 
optimisation [19] is popular. However, such solution is extremely expensive from the 
point of view of calculation time. 

This paper presents new approach to determination of Jiles-Atherton model pa-
rameters oriented on differential evolution algorithm. As a result the computation 
time was significantly limited without reduction of efficiency and robustness of de-
termination of Jiles-Atherton model’s parameters given for specific experimental 
results. 

2 Principles of Jiles-Atherton Model of Magnetic Hysteresis 

Modelling the magnetic hysteresis with Jiles-Atherton model covers two steps [2]: 
determination of anhysteretic magnetization Mah and modelling the hysteresis by dif-
ferential equation considering the sign of changes of magnetizing field H. This ap-
proach is recently criticized [10], however good agreement with experimental data 
can be achieved. 

In Jiles-Atherton model anhysteretic magnetization for isotropic magnetic materi-
als Mah_iso is given by the Langevin equation [2]: 
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where a is determined by the domain walls density in the magnetic material [2], 
whereas effective magnetizing field He is given as [1]: 

MHHe ⋅+= α                                                      (2) 

where α determines interdomain coupling. 

According to corrected Ramesh extension of Jiles-Atherton model for anisotropic, 
ferromagnetic materials, anhysteretic magnetization in anisotropic magnetic materials 
Mah_aniso [20, 21] is given as: 
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Presented equations are valid for uniaxial anisotropy, where Kan is the average en-
ergy density and ψ is the angle between direction of magnetizing field and the easy 
axis of magnetization due to the anisotropy. Other types of anisotropy were also con-
sidered [22], however, any form of anisotropic anhysteretic magnetization equation 
can be solved using antiderivatives. As a result, it have to be solved using numerical 
integration. 

In Jiles-Atherton model, the hysteresis loop is determined by the irreversible mag-
netization Mirr [1]: 
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where the parameter k quantifies average energy required to break pining site. In this 

equation parameter δ = +1 for 0≥
dt

dH
 and δ = –1 for 0<

dt

dH
. Additional parameter 

δM = 0 when 0<
dt

dH
 and Man – M > 0 as well as when 0≥

dt

dH
 and Mah – M < 0. In 

other cases δM = 1. Parameter δM guarantees that incremental susceptibility is always 
positive, what is physically judged [4, 17]. 

In the original Jiles-Atherton model, parameter k is constant [1, 2]. However, even 
Jiles and Atherton indicated, that this assumption is not judged from the physical 
point of view. Changes of parameter k are caused by changes of the average energy 
required to break pining site [23]. For this reason, J-A-S model’s parameter k can be 
connected with the magnetic state of the material (described by magnetization M) by 
the following equation [24]: 
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where Ms is saturation magnetization, whereas k0, k1 and k2 describe the function de-
termining k. In given equation, parameter k0 determines the minimal value of k, pa-
rameter k1 determines the maximal value of k, and k2 is shape parameter. For positive 
values of k2 the k(|M|/Ms) function is concave, and for negative value of k2 this func-
tion is convex [25]. 

In the Jiles-Atherton model, the reversible magnetization Mrev is given by the equa-
tion [2]: 

)( irranrev MMcM −⋅=                                              (8) 
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where c is parameter describing magnetization reversibility. Finally, total magnetiza-
tion M may be calculated from following ordinary differential equation (ODE) [4, 
17]: 
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considering the initial state of demagnetizated material, where H = 0 and M = 0. 

It should be highlighted, that accurate solving of Jiles-Atherton model’s equation is 
not trivial. Anhysteretic magnetization should be calculated using Gauss-Kronrod 
approximation for cyclic functions [26], whereas for solving the differential equation 
(9), the 4th order Runge-Kutta [27] method is recommended. 

3 Determination of Jiles-Atherton Model’s Parameters Using 
Differential Evolution 

To use optimization methods for determination of the Jiles-Atherton model’s parame-
ters, the target function has to be proposed. In presented investigation, the target func-
tion was given by the following equation: 

      
=

−=
n

i
imeasiJA HBHBF

1

2))()((     (10) 

where BJA were the results of the modelling for magnetizing field Hi and Bmeas were 
the results of the experimental measurements respectively. It should be indicated that 
during the optimization process, target function F was calculated simultaneously for 3 
hysteresis loops measured for different magnetizing fields. This enabled optimization 
focused on achieving the model’s parameters suitable for wider range of the magnet-
izing field. 

The differential evolution algorithm [28] is stochastic derivative-free method, de-
signed for difficult non-linear non-convex optimization problems in continuous do-
main. As most of the other members of evolutionary algorithms family, differential 
evolution process group of solutions (called population of individuals). The algorithm 
is iterative – at each iteration t each solution from t – 1 is modified by mutation and 
crossover. The thing that is specific to differential evolution algorithm is a mutation 
operator. In the canonical version of the algorithm, a mutant vi is generated by adding 
difference between two randomly selected solutions to the third randomly selected 
solution, i.e.: 

( )210 rrri xxFxv −⋅+=     (11) 

where 

F ∈ (0, 1) is scale factor and it is a parameter of the algorithm. 
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There are several variants of this canonical schema. We used variant called differ-
ential evolution/local-to-best/1/bin, where the i-th mutant is a result of the sum of i-th 
solution, difference of two randomly selected solutions and difference of the best 
solution in current population and i-th solution, i.e.: 

( ) ( )21 rribestii xxFxxFxv −⋅+−⋅+=                                (12)  

The model and search algorithm were implemented in R language [29]. We used 
differential evolution version implemented by Ardia et al. [30]. We accepted parame-
ters of algorithm proposed by the implementation, i.e. 200 generations, 60 individu-
als, F = 0.8, CF = 0.5 (crossover probability). 

4 Results of Modelling 

During the experiment, the parameters of B(H) magnetic hysteresis loops of Finemet 
Fe73.5Si13.5Nb3Cu1B9 nanocrystalline alloy were determined using differential evolu-
tion algorithm. Since algorithm is stochastic, 25 independent runs were performed. 
Summary of the results is presented in Table 1, whereas Table 2 presents values of 
Jiles-Atherton parameters determined by the best solution found. These parameters 
were used to calculate theoretical magnetic hysteresis loop. The result if its compari-
son to measurements is depicted in Fig. 1. It can be seen, that acceptable agreement 
between experimental data and results of modelling was achieved. 

 

Fig. 1. Magnetic hysteresis loop of Finemet Fe73.5Si13.5Nb3Cu1B9 nanocrystalline alloy: experi-
mental results (lines) and results of modeling (circles) 
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Table 1 presents the values of Jiles-Atherton parameters determined during the ex-
periment, whereas Table 2 presents the parameters describing efficiency differential 
evolution algorithm. 

Table 1. Values of Jiles-Atherton parameters determined by differential evolution algorithm 

Parameter  Value 

A A/m 1.464 

k0 A/m 330.5 

k1 A/m 0.556 

k2  –18.50 

c  0.3906 

Ms A/m 1.045 106 

α  9.837 10–7 

Kan J/m3 2791 

Table 2. Summary of the results of 25 independent runs of differential evolution algorithm. An 
average, best and standard deviation of objective function value (equation 10) is reported 
together with an average time of one algorithm run 

average best 
standard deviation  

of objective function value 
time of calculations (h) 

4.33 3.66 0.41 21 

5 Conclusion 

Presented results confirm, that differential evolution algorithm is interesting alterna-
tive for (μ+λ) evolutionary strategy algorithm used previously [5]. Time of calcula-
tion required for differential evolution algorithm is about 10 times lower than for 
(μ+λ) evolutionary strategy. On the other hand, both algorithms determine global 
minima of target function with accuracy sufficient for most of technical applications. 

The support of the bilateral project APVV-Sk-PL-0043-12 is acknowledged from 
Slovak side. Polish side (Institute of Metrology and Biomedical Engineering) was 
supported by statutory founds within Polish-Slovak bilateral cooperation. 

Calculations for the modelling were made in the Interdisciplinary Centre for Mathe-
matical and Computational Modelling of Warsaw University, within grant G36-10. 
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