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Detection of Human Emotions Using
Features Based on the Multiwavelet
Transform of EEG Signals
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Abstract Emotion classification based on electroencephalogram (EEG) signals is a
relatively new area of research in the development of brain computer interface (BCI)
system with challenging issues like induction of the emotional states and the
extraction of the features in order to obtain optimum classification of human emo-
tions. The emotion classification system based on BCI can be useful in many areas
like as entertainment, education, and health care. This chapter presents a new method
for human emotion classification using multiwavelet transform of EEG signals. The
EEG signal contains useful information related to the different emotional states,
which helps us to understand the psychology and neurology of the human brain. The
features namely, ratio of the norms based measure, Shannon entropy measure, and
normalized Renyi entropy measure are computed from the sub-signals generated by
multiwavelet decomposition of EEG signals. These features have been used as an
input to multiclass least squares support vector machine (MC-LS-SVM) together
with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet
kernel functions for classification of human emotions from EEG signals. The clas-
sification performance of the proposed method for classification of emotions using
EEG signals determined by computing the classification accuracy, ten-fold cross-
validation, and confusion matrix. The proposed method has provided classification
accuracy of 84.79 % for classification of human emotions namely happy, neutral,
sadness, and fear from EEG signals with Morlet wavelet kernel function of MC-LS-
SVM. The audio–video stimulus has been used for inducing the emotions in EEG
signals. The experimental results are presented to show the effectiveness of the
proposed method for classification of human emotions from EEG signals.
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8.1 Introduction

Brain computer interface (BCI) facilitates a connection between the human brain
and external device like computer. The BCI system can be used for assisting the
physically disabled and impaired people [1, 2]. The BCI system requires analysis,
monitoring, measurement, and evaluation of electrical activity of the brain which is
extracted by either a set of electrodes over the scalp or electrodes implanted inside
the brain. The BCI system can be used for analysis and classification of EEG
signals corresponding to different emotions.

Emotion is one of the main factors that affect activities of our day to day life. The
applications of emotion classification may include medical areas like as neurology
and psychology. The diagnosis of neurological disorders has been suggested based
on automatic emotion recognition system using various signals like electromyo-
gram (EMG), electrocardiogram (ECG) and facial images [3, 4]. Emotions
expressed via speech and facial expressions are commonly used techniques for
classification of human emotions [5, 6]. However, the speech and facial expressions
may lead to false emotion. Therefore, it motivates the use of physiological signals
like EEG signal for analysis and classification of human emotions. The EEG signals
can play an important role in detecting the emotional states for developing the BCI
based analysis and classification of emotions.

It should be noted that the EEG signal indicates the electrical potential differ-
ences corresponding to different emotions generated by human brain. The research
areas like psychology, neurophysiology and BCI are focusing on the important
indication of emotions using EEG signals. Different emotional states can be affected
by conditions like age, gender, background, and ethnicity. Moreover, various
people have lot of personal emotional experiences to the same stimulus. In [7, 8], it
has been provided the significant differences in emotional states which are gener-
ated for autonomic nervous system. But automated classification was not carried
out. Most of the emotions exist for very small interval of time in the range of few
micro to milli seconds [9]. Generally emotions are developed at the deeper part of
the human brain called limbic system, which initiates emotional interpretation of
the EEG signals from the autonomic nervous system. These incoming signals
propagates to hypothalamus to trigger the corresponding perceptive physiological
effects like increase in heart rate, R-to-R interval and blood volume pulse. These
processed signals travels to the amygdala, which is important part of human brain
for learning connections to stimuli by comparing them to past experiences. Some of
the results on emotion recognition research have shown that, the amygdala and
corticothalamic connections mainly participate in emotion recognition process.
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In addition, prefrontal cortex, cerebral cortex and occipital lobe areas also have
significant role in provoking emotions such as happy, fear, and sad [10]. Regions of
human brain which contribute for emotions are as follows: (a) sadness (left tem-
poral areas), (b) sadness, happiness and disgust (right prefrontal cortex area), (c)
anger (right frontal cortex activation) (d) fear (bilateral temporal activation), (e)
sadness and happiness (contribute most of the brain areas) and (f) all emotions also
share the areas (prefrontal cortex, cingulated gyrus, and temporal cortex).

Although most of the activation for emotions emerge in right hemisphere cor-
responding to different time-segments of EEG signals. The left hemisphere also
plays a significant role in activation of emotions. Apparently, brain might be partly
or entirely engaged to emotional processing during emotions like sadness, anger,
happiness, disgust and fear. Thus, the results support the hypothesis that there are
no exclusive emotion centers in the brain. But the results indicate that the several
brain areas are activated during emotion processing in a well-defined and specific
dynamic process. It has been noticed that left and right hemispheres of the brain
together experience different classes of emotions [11]. The left hemisphere is
responsible for approach. On the other hand, the right hemisphere is responsible for
withdrawal. In [12], it has been explained that the left frontal region is an important
center for self-regulation, motivation and planning. The damage of left frontal
region can cause to apathetic behavior in combination with a loss of interest and
pleasure in objects. The right anterior region contributes to high activation of right
frontal and anterior temporal regions during arousal emotional states like fear and
disgust. In [11], it has been noticed that there is less alpha power in right frontal
regions for disgust than that for happiness while happiness caused less alpha power
in the left frontal region than that of disgust. In addition, the analysis of EEG signals
have been carried out for brain asymmetries during reward and punishment. It has
been found that punishment has association with less alpha power in right mid and
lateral frontal regions of the brain and reward has been associated with less alpha
power in the left mid and lateral frontal regions [13]. In an experiment, it has been
shown that alpha power over the left hemisphere increases in happy conditions in
comparison to negative emotional conditions. During the study, the three emotions
fear, happiness and sadness have been induced by using visual and auditory stimuli
[10]. There are two to twenty basic or prototype emotions as defined by many
researchers. Most of the theories suggests that each emotion reflects an particular
motivational tendency and behavior. Emotions represent particular forms of action
and physiological patterns [14]. The physiological patterns have been applied for
classification of emotions into three types: (1) distress (2) interest and (3) pleasure
[15]. The basic emotions as defined in [16] are as follows: anger, fear, sadness,
disgust, surprise, curiosity, acceptance, and joy.

Most of the methods developed in the literature for neuropsychological studies
have reported the correlations between EEG signals and emotional states. These
methods have been based on time-domain analysis and frequency-domain analysis.
In the time-domain analysis, event-related potentials (ERPs) components have
reflected emotional states [17]. The ERP components of short to middle latencies
have been shown to have correlation with valence [18, 19], whereas with the ERP
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components of middle to long latencies have been shown to have correlation with
arousal [20, 21]. The computation of ERPs requires averaging EEG signals over
multiple trials, rendering ERP features inappropriate for online processing. How-
ever, recent development in single-trial ERP computation methods have resulted in
a increased possibility to use ERP features for online emotional state estimation
[22–24]. In the frequency-domain, the spectral power of different frequency bands
corresponds to different emotional states. The frequency bands have been used for
analysis of emotions (happy, sad, angry, fear) or neutral. It has been noted that
stimulus can modulate the power synchronization with in frequency bands [25, 26].
In [27], it has been proved that the frontal alpha asymmetry reflects the approach/
avoidance aspects of emotion. The gamma band power has been related to some
emotions like happiness and sadness [28, 29]. The theta power of ERS has been
related to transitions in the emotional state [30–32]. In [33], the EEG signals have
been decomposed into frequency bands and then principal component analysis
(PCA) has been employed for reduction of features. These features have been used
as input to the binary classifier for classification of emotions based in the bi-
dimensional valence-arousal approach. In [34], the EEG signals have been used for
recognition of human emotions with the help of humanoid robots. The aim of this
experiment was to provide the ability for robots to detect emotion and react to it in
the same way as occurring in a human to human interaction. The discrete wavelet
transform (DWT) based features namely, energy, recoursing energy efficiency
(REE) and root mean square (RMS) have been used for classification of four
emotions (happy, disgust, surprise and fear) with Fuzzy C-Means (FCM) clustering
[35].

In [36], the participants have been asked to remember past emotional events and
the method has been used SVM classifier to obtained the classification accuracy of
79 % using EEG signals for three classes and 76 % using EEG signals for two
classes. In another study [37], the wavelet coefficient and chaotic parameters like
fractal dimension, correlation dimension and wavelet entropy have been used to
extract features from EEG and psychophysiological signals. The selected features
combined with linear discriminate analysis (LDA) and SVM, obtained classification
accuracy 80.1 and 84.9 % for two classes of emotional stress using LDA and SVM
respectively. In [38], the combination of music and story has been used as stimuli to
introduce a user independent system. The classification accuracy as obtained with
this method was 78.4 and 61.8 % for three and four classes respectively. In [39],
film clips have been used to stimulate participants with five different emotions joy,
anger, sadness, fear, and relax. The statistical features extracted from EEG have
been used as input for SVM classifier as result 41.7 % of the patterns that have been
correctly recognized.

In [40], a BCI system for the recognition of human emotions have been used
with 64 channels EEG recording system. A Laplace filter has been applied for pre-
processing of EEG signals. The wavelets transform algorithm has been used for
features extraction from EEG signals and two different classifier namely the k
nearest neighbors and linear discriminant have been used for classification of dis-
crete emotions such as happiness, surprise, fear, disgust and neutral. The efficiency
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of the asymmetry index (ASI) based emotional filters has been justified through an
extensive classification process involving higher-order crossings and cross-corre-
lation as feature-vector extraction techniques and a support vector machine clas-
sifier for six different classification scenarios in the valence/arousal space. This
study has resulted in mean classification rates from 64.17 up to 82.91 % in a user-
independent base, revealing the potential of establishing such a filtering for reliable
EEG-based emotion recognition systems [41]. Electric potential associated with
brain activities that has been measured thought EEG signals have a potential source
for emotion detection. The power of EEG signal in the specific bandwidth or brain
wave has been used for analysis for positive or negative expression particularly the
change of power in alpha and beta wave [42]. In [43], different stimuli like sounds,
images, and combination of both have been used to distinguish between three
emotion classes (neutral, happy, unhappy). In [44], calm and excited emotions have
been evoked using images, the best classification accuracy that has been archived
72 %. In [45], authors has compared three feature extraction methods based on
fractal dimension of EEG signals including Higuchi, Minkowski Bouligand, and
Fractional Brownian motion using kNN and SVM classifiers on four classes of
emotions. The principal component analysis (PCA) has been used to correlate EEG
features with complex music appreciation which has been used as input to the SVM
classifier to classify EEG dynamics in four subjectively-reported emotional states
[46]. In [47], a system has been proposed for estimating the feelings of joy, anger,
sorrow and relaxation by using neural network, which has obtained classification
accuracy of 54.5 % for joy, 67.7 % for anger, 59 % for sorrow and 62.9 % for
relaxation. In [34], a system has been implemented based on EEG signals to enable
a robot to recognize human emotions. Emotions have been evoked by images and
classified in three different emotions, namely: pleasant, unpleasant and neutral.

The emotions have been elicited by stimulating participants with a Pong game
and anagram puzzles. The four machine learning methods K-nearest neighbor,
regression tree (RT), Bayesian network and SVM have been for emotion classifi-
cation, the best average accuracy has been obtained with SVM 85.51 % [48]. In
[49], the dynamic difficulty adjustment (DDA) mechanism has been developed for
adjustment of game difficulty in real time based on anxiety measures. This dem-
onstrates the interest of using affective computing for the purpose of game adap-
tation. In [50], the authors have proposed technique to continuously assess the
emotional state of a player using fuzzy logic. The obtained results have shown that
the emotional states have evolved according to the events of the game, but no exact
measure of performance have been reported. This tool could be used to include the
player’s experience in the design of innovative video games. In [51], three emo-
tional states namely boredom, anxiety, engagement have been detected from
peripheral signals by using SVM classifier. The emotions have been elicited by
using a Tetris game.

The features extracted form the mutual information and magnitude squared
coherence estimation of EEG signals have been used as features for k-nearest
neighbors (kNN) and SVM classifiers for classification of emotions. The perfor-
mance of the EEG-based emotion recognition system has been then evaluated using
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five-fold cross-validation [52]. In [53], features that have been extracted by inde-
pendent component analysis (ICA) and the K-means algorithm have been used to
distinguish emotions in EEG. [54] have investigated the use of the naive Bayes
classifier, SVM, and ANN to detect different emotions in EEG. The EEG signals
have been recorded from 10 participants by using the international affective picture
system (IAPS) database. The frequency band power has been measured along with
the cross-correlation between EEG band powers, the peak frequencies in the alpha
band, and the Hjorth parameters [55].

The different emotional states using EEG signals have been measured by the
Kolmogorov entropy and the principal Lyapunov exponent [56]. Non-linear
dynamic complexity has been used to measure the complexity of the EEG signals
during meditation [30]. The fractal dimension, the energy of the different fre-
quency-bands, and the Lyapunov exponent have been used as features for the
classification of human emotions [57]. The correlation dimension measures the
complexity of EEG signals, which also has been used for analysis of human
emotions [58]. The statistical and energy features obtained by using discrete
wavelet transform (DWT) of EEG signal have been used for human emotion
classification [59]. Wireless concept based detection of state of valence using EEG
signals has been proposed in [60]. The higher order spectra (HOS) together with
genetic algorithm have been used for classification of two emotional stress states
with an average accuracy of 82 % [61].

The event related potential and event related oscillation based features have been
proposed as input feature set for emotion classification [62]. The obtained classi-
fication accuracies are 79.5 and 81.3 % for Mahalanobis distance based classifier
(MD) and support vector machine (SVM) respectively. The time-frequency domain
based features have been suggested as input feature set to SVM classier for clas-
sification of three emotional states [63]. The obtained average classification accu-
racy in this work is 63 % [63]. The methodology based on surface Laplacian (SL)
filtering, wavelet transforms (WT) and linear classifier has been developed for
classification of emotions using EEG signals [64]. The classification accuracies
reported in this study are 83.04 and 79.17 % for kNN and linear discriminant
analysis (LDA) respectively. The short-time Fourier transform (STFT) based fea-
tures have been suggested as an input for SVM classifier for classification of
emotions [65, 66]. The obtained classification accuracy in this work is 82.29 % for
classification of four emotions using SVM classifier. The features obtained using
higher order crossing have been used for classification of emotions using EEG
signals [67]. The classification accuracy achieved with this methodology for six
emotions is 83.33 %. Time and frequency domain based features have been sug-
gested for classification of emotions from EEG signals [68]. The proposed meth-
odology in this work has provided classification accuracy of 66.5 % considering
four emotions [68]. The spectrogram, Zhao-Atlas-Marks and Hilbert-Huang spec-
trum based features have been used for classification of arousal and neutral with
classification accuracy of 86.52 % [69].

The classification of emotions is probabilistic. The previous research on human
emotion has dealt with classification using probability theory to estimate the human
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emotional state by checking the presence or absence of a certain emotion [70, 71].
The techniques based on probability theory are still insufficient to handle all the
facets of uncertainty in human emotion classification [72]. The fuzzy set theory can
provide a systematic approach to process uncertain information, just as humans are
able to interpret imprecise and inadequate information. In order to incorporate
human expertise, the fuzzy C-means clustering (FCM) has been used to cluster each
component to get different emotional descriptors [73]. These descriptors have been
combined together to form the fuzzy-GIST in order to generate the emotional
feature space for human emotion recognition [74]. The fuzzy sets have attracted
interest in information technology, production techniques, decision making, pattern
recognition, diagnostics, data analysis, etc. [75–77]. The neuro-fuzzy systems are
fuzzy systems, which use ANN theory in order to determine their properties like
fuzzy sets and fuzzy rules by processing data samples. Neuro-fuzzy systems
employs fuzzy logic and artificial neural networks (ANNs) by utilizing the math-
ematical properties of ANNs in tuning rule-based fuzzy systems that represent the
way humans process information. The adaptive neuro-fuzzy inference system
(ANFIS) has shown to be significant in modeling of nonlinear functions. The
ANFIS learns features in the data set and adjusts the system parameters based up on
a given error criterion [78, 79]. The application of ANFIS in biomedical engi-
neering have been reported to be significant for classification [80, 81]; Übeyli and
Güler [82, 83] and data analysis [84]. The most prominent classification methods
are support vector machine (SVM) [85], fuzzy k-means [86], and fuzzy c-means
[87]. These classifier have been resulted in moderate classification accuracy for up
to three [88], four [89], and five [39] distinct emotions. Other researchers have
made efforts to study the operator engagement, fatigue, and workload by using EEG
signals with respect to complexity of a task [90–94].

The emotion classification methods have been developed based on different
feature extraction techniques from EEG signals. Many EEG signal analysis meth-
ods have employed preprocesses for reducing the artifacts. The recorded EEG
signals in response to stimuli pass through the preprocessing step in which noise
reduction algorithms and spatio-temporal filtering methods are applied to improve
the signal-to-noise ratio (SNR). Then, the feature extraction step determines specific
band powers, ERPs, and phase coupling indices that have correlation with the
aimed emotional states. Commonly, this feature selection process is being opti-
mized in order to achieve maximum emotion classification accuracy. The classifi-
cation steps compute the most probable emotional states from the selected EEG
features. The number of classes depend on the definition of the emotional state
space like the continuous state of arousal and valence, or the discrete states.

In this chapter, we present an emotion classification system based on multi-
wavelet transform (MWT) of EEG signals. The EEG signals have been acquired
using audio–video stimulus. The MWT decomposes the EEG signals into a set of
sub-signals. The features: ratio of the norms based measure, Shannon entropy
measure, and normalized Renyi entropy measure have been computed from the sub-
signals of the EEG signals. The extracted features have been used as an input to the
multiclass least squares support vector machine (MC-LS-SVM) for emotion
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classification from EEG signals. This chapter is organized as follows: Sect. 8.2
presents the experimental setup, pre-processing, the MWT, features extraction and
MC-LS-SVM classifier. The experimental results and discussion for the emotion
classification using EEG signals based on the proposed methodology have been
provided in Sect. 8.3. Finally, Sect. 8.4 concludes the chapter.

8.2 Methodology

8.2.1 Experimental Setup

The EEG signals have been acquired from 8 healthy subjects (4 males and 4
females) during audio–video stimulus. The subjects were having age between
20–35 years. The subjects were undergraduate students or employees from Indian
Institute of Technology Indore, India. A 16-channel EEG module (BIOPAC sys-
tem, Inc.) with 10–20 electrode system was used for recording of EEG signals. The
sampling frequency of EEG signals was 1,000 Hz. The bipolar montage has been
used during recording of the EEG signals. The prefrontal cortex plays significant
role in impulse control and in many other emotions [95, 96]. Therefore, the elec-
trode positions Fp1/Fp2 and F3/F4 have been used to record the EEG signals. The
right (A2) and left (A1) earlobes have been used for ground and reference elec-
trodes respectively.

Generally, the number of basic emotions can be up to 15 [97]. The eight basic
emotions such as anger, fear, sadness, disgust, surprise, curiosity, acceptance, and
joy have been described in [16]. The emotions can be represented based on their
valence (positive and negative) and arousal (calm and excited) with two dimen-
sional scale [98]. The different ways of inducing emotions are: visual includes
images and pictures [41], recalling of past emotional events [44], audio may be
songs and sounds [99], audio–video includes film clips and video clips [100, 101].
In this work, we have studied four basic emotional states based on 2-D valence-
arousal emotion model [102], which includes happy, neutral, sadness, and fear. In
this study, the EEG signals have been obtained from eight subjects with 5 trials
each using 3 audio–video stimulus. Figure 8.1 shows EEG data recording and main

Fig. 8.1 EEG data recording and main parts of the proposed methodology for emotion
classification
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parts of the proposed methodology for emotion classification. The EEG signals for
four emotional states: happy, neutral, sad and fear have been shown in Fig. 8.2. The
subsections of the proposed method for emotion classification from EEG signals are
shown in Fig. 8.3. The subsections include pre-processing, multiwavelet transform,
feature extraction, and MC-LS-SVM classifier. The details of each subsection are
explained as follows:

8.2.2 Pre-processing

The recorded EEG signals are contaminated with noise like power line, external
interferences and other artifacts. The 8th order, band pass, Butterworth filter with a

Fig. 8.2 The EEG signals of different emotional states: a happy, b neutral, c sad, and d fear

Fig. 8.3 The block diagram
of proposed methodology for
emotion classification from
EEG signals
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bandwidth of 0.5–100 Hz has been used for removing noise. The 50 Hz notch filter
has been applied to remove the noise due to power-line interference. The MWT
requires pre-processing which includes generation of vectored input stream and pre-
filtering. There are many ways to obtain the vectored input stream [103]. In this
work, the vectored input stream has been obtained using repeated row pre-pro-
cessing scheme. The matrix-valued multiwavelet filter bank also requires multiple
streams of input as decided by multiplicity.

8.2.3 Multiwavelet Transform

The scalar wavelets which are obtained by mother wavelets by varying one scaling
function have been widely used in non-stationary signal processing. The scalar
wavelet have led to the notion of multiwavelets, which is a more recent general-
ization having more numbers of distinct scaling functions. It offers many theoretical
and experimental advantages. For example, multiwavelets have been constructed to
simultaneously possess symmetry, orthogonality, and compact support [104–108].
The multiwavelets have some unique characteristics that cannot be obtained with
scalar wavelets. Multiwavelets can simultaneously provide perfect reconstruction
while preserving length (orthogonality), good performance at the boundaries (via
linear-phase symmetry), and a high order of approximation (vanishing moments).
These features of multiwavelets cause to better performance of multiwavelets over
scalar wavelets in image processing applications. Particular applications, where
multiwavelets have been found to offer superior performance over single wavelets,
include signal/image classification [107, 108], compression [104], and denoising
[106]. The wavelet transform based features have been used for epileptic EEG
signal classification and recognition [109, 110]. The multiwavelets attracted
because of their significant characteristics, which consist of more than one scaling
and wavelet functions. Multiwavelets simultaneously possess orthogonality, short
support, symmetry, and a high order of approximation through vanishing moments,
that all of them are important for signal processing application [103]. The perfor-
mance of multiwavelet have shown superior as compare to scalars wavelets in
image classification, denoising [106] and image compression [104]. In [111], it has
been shown that the multiwavelet transform has an efficient signal processing
technique for the feature extraction from EEG signals in comparison with scalar
wavelet. It motivates us to use multiwavelet transform of EEG signals for classi-
fication of human emotions.

The standard multi-resolution analysis (MRA) for scalar wavelet uses one
scaling function /ðtÞ and one wavelet wðtÞ. The integer translates and the dilates of
the scaling function are represented as /ðt � kÞ and /ð2 jt � kÞ respectively. The
multiwavelet is the extension of scalar wavelet where multiple scaling functions and
associated multiple wavelets are used. In case of multiwavelet, a basis for the
subspace Vo is generated by translation of r scaling functions denoted by
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/1ðt � kÞ;/2ðt � kÞ; . . .;/rðt � kÞ. The multiwavelet can be considered as vector-
valued wavelets which satisfy the condition of two-scale relationship with
involvement of matrices rather than scalars. The vector-valued scaling function
Φ(t) = [ϕ1(t), ϕ2(t), … ϕr(t)]

T, where T represents the transpose and the associated r-
wavelets WðtÞ ¼ ½w1ðtÞ;w2ðtÞ; . . .;wrðtÞ�T satisfies the following matrix dilation
and matrix wavelet equations [103]:

UðtÞ ¼
X
k

G½k�Uð2t � kÞ ð8:1Þ

WðtÞ ¼
X
k

H½k�Uð2t � kÞ ð8:2Þ

where, the coefficients G½k� and H½k� are matrices. The matrices G½k� and H½k� are
low-pass filter and high-pass filters for multiwavelet filter bank respectively. The
multiplicity r is generally 2 for most of the multiwavelets [103]. The multiwavelet
can simultaneously exhibit symmetry, orthogonality, and short support, which is
not possible using scalar wavelet [103, 112]. In this study, we consider multiple
scaling functions and multiwavelets which are developed by Geronimo, Hardin and
Massopust (GHM) [113–115]. They are shown in Fig. 8.4. The GHM dilation and
translation equations for this system have following four coefficients:
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Fig. 8.4 The GHM pair of scaling functions and wavelet functions
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The GHM multiwavelet has several remarkable properties. The GHM scaling
functions have short support of [0, 1] and [0, 2]. The scaling functions are sym-
metric and the system exhibit second order of approximation. Moreover, multi-
wavelet form symmetric/antisymmetric pair. Translates of scaling functions and
wavelets satisfy orthogonality, which is not possible in case of scalar wavelet.
Figures 8.5, 8.6, 8.7 and 8.8 show the third level sub-band signals as obtained by
multiwavelet decomposition of EEG signal shown in Fig. 8.2a–d respectively.

Fig. 8.5 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to happy emotion as shown in Fig. 8.2a

Fig. 8.6 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to neutral emotion as shown in Fig. 8.2b
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8.2.4 Features Extraction

Many entropy based methods have been proposed for EEG signal analysis. Dif-
ferent approaches for computing entropy in physiological systems have been
developed in the literature. In [116], the researchers have suggested that a measure
of the entropy which is the rate of information of a chaotic system would be a useful
parameter for characterizing such a system. In [117], the authors have developed a
method to calculate the Kolmogorov-Smirnov (K-S) entropy of a time series. The
modified version of Eckmann and Ruelle (E-R) entropy in [118], has been proposed
by modifying the distance metric proposed in [119]. The authors have suggested a
modification of E-R entropy by introducing statistical entropy named approximate

Fig. 8.7 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to sad emotion as shown in Fig. 8.2c

Fig. 8.8 The third level sub-band signals obtained by multiwavelet decomposition of EEG signal
corresponding to fear emotion as shown in Fig. 8.2d
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entropy (ApEn) [120]. However, it has been demonstrated that the method to
compute ApEn introduces a bias, as the ApEn algorithm counts each sequence as
matching itself [121]. In order to reduce this bias, the proposed modified version of
the ApEn algorithm known as sample entropy (SampEn). The sample entropy
measures the irregularity of the time series. In [122], the authors have compared
approximation entropy and sample entropy method for neurophysiological signals.
They have addressed issues related to the choice of the input parameters and have
shown that the sample entropy approach has produced more consistent results. They
have also shown that the sample entropy is less sensitive to the length of the data.
Recently, the sample entropy has been used as a feature for the classification of
different classes of EEG signals [123].

The features namely, the ratio of norms based measure, Shannon entropy
measure and normalized Renyi entropy measure have been measured from sub-
signals obtained from the multiwavelet decomposition of EEG signals. These
features are briefly described as follows:

Ratio of Norms Based Measure Ratio of norms based measure is defined as the
ratio of the fourth power norm and the square of second power norm [124]. It is
expressed as:

ERN ¼
PN

n¼1 jx½n�j4PN
n¼1 jx½n�j2

h i2 ð8:5Þ

where, x½n� is signal under study.
Shannon Entropy Measure The Shannon entropy is a measure of uncertainty of

the signal [125]. It can be defined as:

ESE ¼ �
XL
k¼1

pk log½pk� ð8:6Þ

Normalized Renyi Entropy Measure The Renyi entropy measure can be nor-
malized either with respect to signal energy or distribution volume [126]. In this
study, the normalized Renyi entropy ENE which is normalized with respect to signal
energy has been used. The ENE can be expressed as follows:

ENE ¼ 1
1� a

log

PL
k¼1 p

a
kPL

k¼1 jpkj

" #
ð8:7Þ

where, α is the order of Renyi entropy, which has been taken as 3 being the smallest
integer value.

228 V. Bajaj and R.B. Pachori



8.2.5 Multiclass Least-Squares Support Vector Machine

Multiclass support vector machine (SVM) classifiers have become popular in recent
years in the fields of classification, regression analysis, and novelty detection [127].
Multiclass least squares support vector machine (MC-LS-SVM) algorithms have
shown very promising results as EEG signal classifiers [128].

The effectiveness of the proposed features in emotion classification from EEG
signals is evaluated using a MC-LS-SVM. The least squares support vector
machines are a group of supervised learning methods that can be applied for
classification of data [129–132]. For multiclass classification problem, we have
considered the training data fxi; yki gi¼P;k¼m

i¼1;k¼1 , where yki denotes the output of the kth
output unit for pattern i. The P denotes the number of training dataset. The deri-
vation of the MC-LS-SVM is based upon the following formulation [127, 133]:

Minimize JðmÞLS ðwk; bk; ei;kÞ ¼ 1
2

Xm
k¼1

wT
k wk þ c

2

XP
i¼1

Xm
k¼1

e2i;k ð8:8Þ

with the following equality constraints:

y1i ½wT
1g1ðxiÞ þ b1� ¼ 1� ei;1; i ¼ 1; 2; . . .;P

y2i ½wT
2g2ðxiÞ þ b2� ¼ 1� ei;2; i ¼ 1; 2; . . .;P

�
�
�
ymi ½wT

mgmðxiÞ þ bm� ¼ 1� ei;m; i ¼ 1; 2; . . .;P

8>>>>>><
>>>>>>:

ð8:9Þ

where, wk and c are the weight vector of kth classification error and the regulari-
zation factor respectively. The ei;m and bk denotes the classification error and the bias
respectively. The gkð:Þ is a nonlinear function that maps the input space into a higher
dimensional space. The Lagrangian multipliers ai;k can be defined for [128] as:

LðmÞ wk; bk; ei;k; ai;k
� � ¼ JðmÞLS �

X
i;k

ai;k yðkÞi wT
k gkðxiÞ þ bk

� �� 1þ ei;k
n o

ð8:10Þ

which provides the following conditions for optimality:

oL
owk

¼ 0;! wk ¼
PP
i¼1

ai;ky
ðkÞ
i gkðxiÞ

oL
obk

¼ 0;! PP
i¼1

ai;ky
ðkÞ
i ¼ 0

oL
oei;k

¼ 0;! ai;k ¼ cei;k
oL
oai;k

¼ 0;! yðkÞi ½wT
k gkðxiÞ þ bk� ¼ 1� ei;k

8>>>>>>>><
>>>>>>>>:

ð8:11Þ
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where, i = 1, 2, …, P and k = 1, 2, …, m. Elimination of wi and ek;i provides the
linear system as:

0 YT
M

YM XM

� �
bM
aM

� �
¼ 0

�1

� �

with the following matrices:

YM ¼ blockdiag

yð1Þ1

�
�
�
yð1ÞP

2
6666664

3
7777775
; . . .;

yðmÞ1

�
�
�
yðmÞP

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

XM ¼ blockdiagfX1; . . .;Xmg Xk
i ¼ yki y

kgTk ðxÞgkðxiÞ þ c�1I

1 ¼ ½1; . . .; 1� bM ¼ ½b1; . . .; bm�
ai;k ¼ ½a1;1; . . .; aP;1; . . .; a1;m; . . .; aP;m�

where, Kkðx; xiÞ ¼ gTk ðxÞgkðxiÞ is kernel function, which satisfy Mercer condition
[127]. The decision function of multiclass least square support vector machines
(MC-LS-SVM) is defined as [134]:

f ðxÞ ¼ sign
XP
i¼1

aiky
ðkÞ
i Kkðx; xiÞ þ bk

" #
ð8:12Þ

The radial basis function (RBF) kernel for MC-LS-SVM can be defined as [45]:

Kkðx; xiÞ ¼ exp
�jjx� xijj2

2r2k

" #
ð8:13Þ

where, rk controls the width of RBF function.
The multidimensional wavelet kernel function for MC-LS-SVM can be given as

[134, 135]:

Kkðx; xiÞ ¼
Yd
l¼1

w
xl � xli
ak

	 

ð8:14Þ

The kernel function of Mexican hat wavelet for MC-LS-WSVM can be defined
as [128]:
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Kkðx; xiÞ ¼
Yd
l¼1

1� ðxl � xliÞ2
a2k

" #
exp �kxl � xlik2

2a2k

" #
ð15Þ

Similarly, the kernel function of Morlet mother wavelet for MC-LS-WSVM can
be defined as [128]:

Kkðx; xiÞ ¼
Yd
l¼1

cos x0
ðxl � xliÞ

ak

� �
exp �kxl � xlik2

2a2k

" #
ð8:16Þ

where, xli is the lth component of ith training data.

8.3 Results and Discussion

In the proposed method, the emotions measured by EEG signals more advantageous
because it is difficult to influence electrical brain activity intentionally. The EEG
signals are acquire using audio–video stimulus because it is more effective for
evoking the emotion. The EEG signals are firstly pre-processed with repeated-row
method to form an input signal vector, then the input signal vector is decomposed
into sub-signals through GHM multiwavelet with 3-level decomposition. Multi-
wavelets offer simultaneously orthogonality, symmetry, and compact support and
therefore outperform the scalar wavelets. The features namely, ratio of the norms
based measure, Shannon entropy measure, and normalized Renyi entropy measure
have been extracted from sub-signals as obtained by GHM multiwavelet decom-
position of EEG signals. To the knowledge of the authors, there is no other work in
the literature related to emotion classification using features based on multiwavelet
transform of EEG signals. Emotion classification is multiclass classification prob-
lem. Recently it has been shown that wavelet based kernel is better as compared to
RBF kernel of MC-LS-SVM classifier for multiclass classification problem.
Therefore, it motivates to use these kernels with MC-LS-SVM classifier for emo-
tion classification. These features have been used as an input to MC-LS-SVM
classifier with the RBF kernel, Mexican hat and Morlet wavelet kernel for classi-
fication of emotions from EEG signals.

The classification performance of the MC-LS-SVM classifier for emotion clas-
sification can be determined by computing the classification accuracy, ten-fold
cross-validation, and confusion matrix. The classification accuracy (Acc) can be
defined as the ratio of the number of events correctly detected to the total number of
events.

Acc ¼ number of correctly detected events
total number of events

� 100 ð8:17Þ
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In ten-fold cross-validation, a dataset Y is randomly divided into 10 disjoint
subsets Y1; Y2; . . .; Y10 of nearly uniform size of each class. Then, the method is
repeated 10 times and at every time, the test set is formed from one of the 10 subsets
and remaining 9 subsets are used to form a training set. Then the average error
across all 10 trials is computed in order to obtain the final classification accuracy. A
confusion matrix contains information about the actual and predicted classifications
performed by a classification method. Confusion matrix provides the common
misclassifications in the classification of emotions from EEG signals.

Table 8.1 shows the classification accuracy (%) for RBF kernel, Mexican hat and
Morlet wavelet kernel functions of the MC-LS-SVM classifier for emotion classi-
fication with GHM multiwavelet. The classification accuracy for happy 89.17 %,
neutral 81.67 %, sad 85.00 %, and fear 83.33 % are obtained by proposed method.
It has been observed that classification accuracy of happy class is greater compared
to other class and neutral emotion have lesser classification accuracy may be due to
influenced by the other class of emotion. The classification accuracy for classifi-
cation of emotions from EEG signals obtained by proposed method is 84.79 % with
Morlet wavelet kernel function of MC-LS-SVM classifier. Table 8.2 shows the
confusion matrix for classification of emotions from EEG signals with Morlet
wavelet kernel function. It has been observed that highest misclassification between
sad and neutral emotion. Other observation happy and fear or happy and sad have
same misclassification. Table 8.3 presents a comparison with the proposed method
and other existing methods in the literature for emotion classification. It is clear
from Table 8.3 that the proposed method has provided better classification

Table 8.1 The classification accuracy (%) with different kernels of the MC-LS-SVM classifier for
emotion classification from EEG signals using GHM multiwavelet

Multiwavelet Kernel Function
(Parameters)

Happy
(%)

Neutral
(%)

Sad
(%)

Fear
(%)

Total
Accuracy

RBF(rk ¼ 20Þ 87.50 78.33 82.50 75.00 80.83

GHM Mexican hat
ðak ¼ 20Þ

85.33 83.33 74.16 73.33 79.04

Morlet
ðx0 ¼ 0:5; ak ¼ 20Þ

89.17 81.67 85.00 83.33 84.79

Table 8.2 The confusion matrix of Morlet wavelet kernel function of the MC-LS-SVM classifier
for classification of emotion from EEG signals

Happy Neutral Sad Fear

Happy 89.17 5.83 1.67 1.67

Neutral 4.17 81.67 7.50 6.67

Sad 3.33 7.50 85.00 8.33

Fear 3.33 5.00 5.83 83.33

Accuracy (%) 89.17 81.67 85.00 83.33
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performance as compared to existing methods. It may be the effect of combination
of proposed features extracted from MWT and MC-LS-SVM.

8.4 Conclusion

This chapter explores the capability of proposed features derived from MWT for
classification of emotions from EEG signals. The EEG signals are firstly decom-
posed into several sub-signals through 3-level MWT with repeated-row prepro-
cessing. The multiwavelet transform, the repeated-row preprocessing of the scalar
input produces the oversampling of the EEG signal, which makes the extracted
features more discriminative. In addition, the multiwavelet decomposition contains
two or more scaling and wavelet functions, the low-pass and high-pass filters are
matrices instead of scalars. The features namely, ratio of the norms based measure,
Shannon entropy measure, and normalized Renyi entropy measure are extracted
from the sub-signals obtained by multiwavelet decomposition of EEG signals.
These features are then used as input for MC-LS-SVM classifier for automatic
classification of emotions. The experimental results have indicated that Morlet
wavelet kernel function of MC-LS-SVM classifier has provided classification
accuracy of 84.79 % for classification of emotions from EEG signals.

The EEG signal processing based methodology for emotion classification may
be improved further. The developed method in this chapter only captures the static
properties in the EEG signal in response to emotional stimuli. The methodologies
can be developed to include the temporal dynamics of emotional information
processing in the human cognitive system. It is expected that this way of processing
may estimate the emotional state more accurately. It would of interest to develop
new nonstationary signal decomposition based methodology and machine learning
algorithms for improving the classification accuracy in human emotion classifica-
tion from EEG signals. In this study, the selection of parameters of kernel functions
used in LS-SVM and kernel function has been done on the basis of the trial and
error. In future, the research can be done for automatic selection of kernel functions
and kernel parameters for automatic classification of human emotions from EEG
signals.

Table 8.3 A comparison of classification accuracy of the different emotion classification methods

Authors Stimulus Classes Feature extraction
methods

Classifier Accuracy
(%)

Lin et al.
[65]

Music 4 STFT kNN,
LDA

82.29

Wang
et al. [68]

Video 4 Minimum redundancy
maximum relevance

SVM 66.5

Proposed
method

Audio–video 4 Multiwavelet transform MC-LS-
SVM

84.79

8 Detection of Human Emotions … 233



Acknowledgements Financial support obtained from the Department of Science and Technology
(DST) India, Fast track project titled “Analysis and Classification of EEG Signals based on
Nonlinear and Non-stationary Signal Models”, project number SR/FTP/ETA-90/2010 is greatly
acknowledged.

References

1. Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-based brain-computer interfaces.
Adv. Intell. Comput. Technol. Decis. Support Syst. Stud. Comput. Intell. 486(2014), 97–106
(2014). doi:10.1007/978-3-319-00467-9-9

2. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S.: Inferring of human emotional states
using multichannel EEG. Eur. J. Sci. Res. 48(2), 281–299 (2010)

3. Smith, M.J.L., Montagne, B., Perrett, D.I., Gill, M., Gallaghser, L.: Detecting subtle facial
emotion recognition deficits in high functioning autism using dynamic stimuli of varying
intensities. Neuropsychologia 48(9), 2777–2781 (2010)

4. Vera-Munoz, C., Pastor-Sanz, L., Fico, G., Arredondo, M.T., Benuzzi, F., Blanco, A.: A
wearable EMG monitoring system for emotions assessment. Probing Experience Philips Res.
8, 139–148 (2008)

5. Essa, I.A., Pentland, A.P.: Coding analysis interpretation and recognition of facial
expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (1997)

6. Nwe, T.L., Foo, S.W., Silva, L.D.: Speech emotion recognition using hidden Markov
models. Speech Commun. 41(4), 603–623 (2003)

7. Ekman, P., Levenson, R.W., Freison, W.V.: Autonomic nervous system activity
distinguishes among emotions. Science 221(4616), 1208–1210 (1983)

8. Winton, W.M., Putnam, L., Krauss, R.: Facial and autonomic manifestations of the
dimensional structure of emotion. J. Exp. Soc. Psychol. 20(3), 195–216 (1984)

9. Sander, D., Grandjean, D., Scherer, K.R.: A systems approach to appraisal mechanisms in
emotion. Neural Netw. 18(4), 317–352 (2005)

10. Baumgartner, T., Esslen, M., Jancke, L.: From emotion perception to emotion experience:
emotions evoked by pictures and classical music. Int. J. Psychophysiol. 60(1), 34–43 (2006)

11. Davidson, R.J.: Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20(1),
125–151 (1992)

12. Petrides, M., Milner, B.: Deficits on subject-ordered tasks after frontal- and temporal-lobe
lesions in man. Neuropsychologia 20(3), 249–262 (1982)

13. Sobotka, S.S., Davidson, R.J., Senulis, J.A.: Anterior brain electrical asymmetries in
response to reward and punishment. Electroencephalogr. Clin. Neurophysiol. 83(4), 236–247
(1997)

14. Garcia O., Favela J., Machorro R.: Emotional awareness in collaborative systems. In: IEEE
Proceedings on String Processing and Information Retrieval Symposium, pp. 296–303.
Cancun, 22–24 Sep 1999. doi: 10.1109/SPIRE.1999.796607

15. Picard, R.W.: Toward machines with emotional intelligence. In: Matthews, G., Zeidner, M.,
Roberts, R.D. (eds.) The Science of Emotional Intelligence: Knowns and Unknowns. Oxford
University Press, Oxford (2007)

16. Plutchik, R., Kellerman, H.: Emotion theory research and experience. New York Academic
Press, New York (1980)

17. Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J.: Affective picture processing: an
integrative review of ERP findings. Biol. Psychol. 77(3), 247–265 (2008)

18. Codispoti, M., Ferrari, V., Bradley, M.M.: Repetition and event-related potentials:
distinguishing early and late processes in affective picture perception. J. Cogn. Neurosci.
19(4), 577–586 (2007)

234 V. Bajaj and R.B. Pachori

http://dx.doi.org/10.1007/978-3-319-00467-9-9
http://dx.doi.org/10.1109/SPIRE.1999.796607


19. Olofsson, J.K., Polich, J.: Affective visual event-related potentials: arousal, repetition, and
time-on-task. Biol. Psychol. 75(1), 101–108 (2007)

20. Bernat, E., Bunce, S., Shevrin, H.: Event-related brain potentials differentiate positive and
negative mood adjectives during both supraliminal and subliminal visual processing. Int.
J. Psychophysiol. 42(1), 11–34 (2001)

21. Cuthbert, B.N., Schu, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J.: Brain potentials in
affective picture processing: covariation with automic arousal and affective report. Biol.
Psychol. 52(2), 95–111 (2000)

22. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.R.: Single-trial analysis and
classification of ERP components-a tutorial. NeuroImage 56(2), 814–825 (2011)

23. Jarchi, D., Sanei, S., Principe, J.C., Makkiabadi, B.: A new spatiotemporal filtering method
for single-trial estimation ofcorrelated ERP subcomponents. IEEE Trans. Biomed. Eng.
58(1), 132–143 (2011)

24. Vanderperren, K., Mijovic, B., Novitskiy, N., Vanrumste, B., Stiers, P., Van den Bergh, B.
R., Lagae, L., Sunaert, S., Wagemans, J., Van Huffel, S., De Vos, M.: Single trial ERP
reading based on parallel factor analysis. Psychophysiology 50(1), 97–110 (2013)

25. Balconi, M., Lucchiari, C.: EEG correlates (event-related desynchronization) of emotional
face elaboration: a temporal analysis. Neurosci. Lett. 392(1–2), 118–123 (2006)

26. Balconi, M., Mazza, G.: Brain oscillations and BIS/BAS (behavioral inhibition/activation
system) effects on processing masked emotional cues ERS/ERD and coherence measures of
alpha band. Int. J. Psychophysiol. 74(2), 158–165 (2009)

27. Gotlib, I.H., Ranganath, C., Rosenfeld, J.P.: Frontal EEG alpha asymmetry, depression, and
cognitive functioning. Cogn. Emot. 12(3), 449–478 (1998)

28. Keil, A., Muller, M.M., Gruber, T., Wienbruch, C., Stolarova, M., Elbert, T.: Effects of
emotional arousal in the cerebral hemispheres: a study of oscillatory brain activity and event
related potentials. Clin. Neurophysiol. 112(11), 2057–2068 (2001)

29. Muller, M.M., Keil, A., Gruber, T., Elbert, T.: Processing of affective pictures modulates
right-hemispheric gamma band EEG activity. Clin. Neurophysiol. 110(11), 1913–1920
(1999)

30. Aftanas, L.I., Golocheikine, S.A.: Non-linear dynamic complexity of the human EEG during
meditation. Nerurosci. Lett. 330(2), 143–146 (2002)

31. Aftanas, L.I., Reva, N.V., Varlamov, A.A., Pavlov, S.V., Makhnev, V.P.: Analysis of evoked
EEG synchronization and desynchronization in conditions of emotional activation in
humans: temporal and topographic characteristics. Neurosci. Behav. Physiol. 34(8), 859–867
(2004)

32. Aftanas, L.I., Varlamov, A.A., Pavlov, S.V., Makhnev, V.P., Reva, N.V.: Affective picture
processing: event-related synchronization within individually defined human theta band is
modulated by valence dimension. Neurosci. Lett. 303(2), 115–118 (2001)

33. Bos D.O.: EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli,
1–17 (2006)

34. Schaaff, K., Schultz, T.: Towards an EEG-based emotion recognizer for humanoid robots. In:
The 18th IEEE International Symposium on Robot and Human Interactive Communication,
pp. 792–796. Toyama, 27 Sept.-2 Oct. 2009. doi: 10.1109/ROMAN.2009.5326306

35. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Hazry, D., Zunaidi, I.: Time-
frequency analysis of EEG signals for human emotion detection. In: 4th Kuala Lumpur
International Conference on Biomedical Engineering, pp. 262–265. Kuala Lumpur,
Malaysia, 25–28 June 2008. doi: 10.1007/978-3-540-69139-6-68

36. Chanel G., Ansari-Asl K., Pun T.: Valence-arousal evaluation using physiological signals in
an emotion recall paradigm. In: IEEE International Conference on Systems, Man and
Cybernetics Montreal Que, pp. 2662–2667, 7–10 Oct. 2007. doi: 10.1109/ICSMC.2007.
4413638

37. Hosseini, S.A., Khalilzadeh, M.A., Changiz, S.: Emotional stress recognition system for
affective computing based on bio-signals. J. Biol. Syst. 18(1), 101–114 (2010)

8 Detection of Human Emotions … 235

http://dx.doi.org/10.1109/ROMAN.2009.5326306
http://dx.doi.org/10.1007/978-3-540-69139-6-68
http://dx.doi.org/10.1109/ICSMC.2007.4413638
http://dx.doi.org/10.1109/ICSMC.2007.4413638


38. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring
of physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)

39. Takahashi, K.: Remarks on emotion recognition from bio-potential signals. In: 2nd
International Conference on Automous Robots and Agents, pp. 186–191. Palmerston North,
New Zealand, 13–15 Dec. 2004

40. Murugaan, M., Nagarajan, R., Yaacob, S.: Appraising human emotions using time frequency
analysis based EEG alpha band features. In: Invative Techlogies in Intelligent Systems and
Industrial Applications, pp. 70–75. Monash, 25–26 July 2009. doi: 10.1109/CITISIA.2009.
5224237

41. Petrantonakis, P.C., Hadjileontiadis, L.J.: Adaptive emotional information retrieval from
EEG signals in the time-frequency domain. IEEE Trans. Signal Process. 60(5), 2604–2616
(2012)

42. Knyazev, G.G.: Motivation, emotion, and their inhibitory control mirrored in brain
oscillations. Neurosci. Biobehav. Rev. 31(3), 377–395 (2007)

43. Choppin A.: EEG-based human interface for disabled individuals: emotion expression with
neural networks. Master thesis, Information processing, Tokyo Institute of Technology,
Yokohama, Japan (2000)

44. Chanel G., Kronegg J., Grandjean D., Pun T.: Emotion assessment arousal evaluation using
EEG’s and peripheral physiological signals. In: Gunsel, B., Tekalp, AM., Jain, AK., Sankur,
B. (eds.) Multimedia Content Representation Classification and Security Springer Lectures
Notes in Computer Sciences 4105, pp. 530–537 (2006). doi: 10.1007/11848035-70

45. Khosrowabadi, R., Rahman, A.W.A.: Classification of EEG correlates on emotion using
features from Gaussian mixtures of EEG spectrogram. In: International Conference on
Information and Communication Technology for the Muslim World, pp. E102–E107.
Jakarta, 13–14 Dec. 2010. doi: 10.1109/ICT4M.2010.5971942

46. Lin, Y.P., Jung, T.P., Chen, J.H.: EEG dynamics during music appreciation. In: 31st Annual
International Conference of the IEEE EMBS, pp. 5316-5319. Minneapolis, MN, USA, 3–6
Sept. 2009. doi: 10.1109/IEMBS.2009.5333524

47. Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph.
In: IEEE International Conference on Systems, Man and Cybernetics, pp. 4204–4209, 5–8
Oct. 2003. doi: 10.1109/ICSMC.2003.1245645

48. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques
for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

49. Liu, C., Agrawal, P., Sarkar, N., Chen, S.: Dynamic difficulty adjustment in computer games
through real-time anxiety-based affective feedback. Int. J. Hum. Compu. Interac. 25(6),
506–529 (2009)

50. Mandryk, R.L., Atkins, M.S.: A fuzzy physiological approach for continuously modeling
emotion during interaction with play technologies. Int. J. Hum Comput Stud. 65(4), 329–347
(2007)

51. Chanel G., Rebetez C., Bétrancourt M., Pun T.: Boredom, engagement and anxiety as
indicators for adaptation to difficulty in games. In: Proceedings of the 12th International
Conference on Entertainment Media Ubiquitous Era (MindTrek ‘08), pp. 13–17 (2008). doi:
10.1145/1457199.1457203

52. Khosrowabadi, R., Heijnen, M., Wahab, A., Quek, H.C.: The dynamic emotion recognition
system based on functional connectivity of brain regions. In: IEEE Intelligent Vehicles
Symposium, pp. 377–381. San Diego, 21–24 June 2010. doi: 10.1109/IVS.2010.5548102

53. Petersen, M., Stahlhut, C., Stopczynski, A., Larsen, J., Hansen, L.: Smartphones get
emotional: mind reading images and reconstructing the neural sources. Affective Computing
and Intelligent Interaction, volume 6975 of Lecture Notes in Computer Science,
pp. 578–587. Springer, Berlin (2011). doi: 10.1007/978-3-642-24571-8-72

54. Horlings, R., Datcu, D., Rothkrantz, L.J.M.: Emotion recognition using brain activity. In:
Proceedings of the 9th International Conference on Computer Systems and Technologies and
Workshop for PhD Students in Computing, pp. 1–6 (2008). doi: 10.1145/1500879.1500888

236 V. Bajaj and R.B. Pachori

http://dx.doi.org/10.1109/CITISIA.2009.5224237
http://dx.doi.org/10.1109/CITISIA.2009.5224237
http://dx.doi.org/10.1007/11848035-70
http://dx.doi.org/10.1109/ICT4M.2010.5971942
http://dx.doi.org/10.1109/IEMBS.2009.5333524
http://dx.doi.org/10.1109/ICSMC.2003.1245645
http://dx.doi.org/10.1145/1457199.1457203
http://dx.doi.org/10.1109/IVS.2010.5548102
http://dx.doi.org/10.1007/978-3-642-24571-8-72
http://dx.doi.org/10.1145/1500879.1500888


55. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin.
Neurophysiol. 29(3), 306–310 (1970)

56. Aftanas, L.I., Lotova, N.V., Koshkarov, V.I., Pokrovskaja, V.L., Popov, S.A., Makhnev, V.
P.: Non-linear analysis of emotion EEG: calculation of Kolmogorov entropy and the
principal Lyapunov exponent. Neurosci. Lett. 226(1), 13–16 (1997)

57. Boostani, R., Moradi, M.H.: A new approach in the BCI research based on fractal dimension
as feature and Adaboost as classifier. J. Neural Eng. 1(4), 212–217 (2004)

58. Hoseingholizade, S., Golpaygani, M.R.H., Monfared, A.S.: Studying emotion through
nonlinear processing of EEG. In: Procedia-Social and Behavioral Sciences, The 4th
International Conference of Cognitive Science, vol 32, pp. 163–169 (2012)

59. Murugappan, M., Ramachandran, N., Sazali, Y.: Classification of human emotion from EEG
using discrete wavelet transform. J. Biomed. Sci. Eng. 3(4), 390–396 (2010)

60. Brown L., Grundlehner B., Penders J.: Towards wireless emotional valence detection from
EEG. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society pp. 2188–2191. Boston, MA, 30 Aug.-3 Sept. 2011. doi: 10.1109/IEMBS.
2011.6090412

61. Hosseini, S.A., Khalilzadeh, M.A., Naghibi-Sistani, M.B., Niazmand, V.: Higher order
spectra analysis of EEG signals in emotional stress states. In: 2010 Proceedings of the 2nd
International Conference on Information Technology and Computer Science, pp. 60–63.
Kiev (2010b), 24–25 July 2010. doi: 10.1109/ITCS.2010.21

62. Frantzidis, C.A., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D.:
Toward emotion aware computing an integrated approach using multichannel
neurophysiological recordings and affective visual stimuli. IEEE Trans. Inf. Technol.
Biomed. 14(3), 589–597 (2010)

63. Chanel, G., Kierkels, J.J.M., Soleymani, M., Pun, T.: Short-term emotion assessment in a
recall paradigm. Int. J. Hum Comput Stud. 67(8), 607–627 (2009)

64. Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet
transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1),
45–51 (2010)

65. Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based
emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

66. Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: Multilayer perceptron for EEG
signal classification during listening to emotional music. In: IEEE Region 10 Conference on
TENCON 2007, pp. 1–3. Taipei, 30 Oct.-2 Nov. 2007. doi: 10.1109/TENCON.2007.
4428831

67. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order
crossings. IEEE Trans. Inf Technol. Biomed. 14(2), 186–197 (2010)

68. Wang, X.W., Nie, D., Lu, B.L.: EEG-based emotion recognition using frequency domain
features and support vector machines. In: Neural Information Processing of Lecture Notes in
Computer Science, vol. 7062, pp. 734–743. China, 13–17 Nov. 2011

69. Hadjidimitriou, S.K., Hadjileontiadis, L.J.: Toward an EEG-based recognition of music
liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 59(12), 3498–3510 (2012)

70. Ball G., Breese J.: Modeling the emotional state of computer users. In: Workshop on
Attitude, Personality and Emotions in User-Adapted Interaction, Banff, Canada (1999)

71. Hudlicka, E.: Increasing SIA architecture realism by modeling and adapting to affect and
personality. In: Socially Intelligent Agents Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol 3, pp. 53–60 (2002). doi: 10.1007/0-306-47373-96

72. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a
clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)

73. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational
Aroach to Learning and Machine Intelligence. Prentice Hall Inc, Saddle River (1997)

74. Zhang, Q., Lee, M.: Fuzzy-gist for emotion recognition in natural scene images. In: IEEE 8th
International Conference on Development and Learning, pp. 1–7. Shanghai, 5–7 June 2009.
doi: 10.1109/DEVLRN.2009.5175518

8 Detection of Human Emotions … 237

http://dx.doi.org/10.1109/IEMBS.2011.6090412
http://dx.doi.org/10.1109/IEMBS.2011.6090412
http://dx.doi.org/10.1109/ITCS.2010.21
http://dx.doi.org/10.1109/TENCON.2007.4428831
http://dx.doi.org/10.1109/TENCON.2007.4428831
http://dx.doi.org/10.1007/0-306-47373-96
http://dx.doi.org/10.1109/DEVLRN.2009.5175518


75. Dubois, D., Prade, H.: An introduction to fuzzy systems. Clin. Chim. Acta 270(1), 3–29
(1998)

76. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16, 121–128 (1999)
77. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data.

Artif. Intell. Med. 16(2), 149–169 (1999)
78. Jang, J.S.R.: Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans.

Neural Networks 3(5), 714–723 (1992)
79. Jang, J.S.R.: ANFIS adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man

Cybern. 23(3), 665–685 (1993)
80. Belal, S.Y., Taktak, A.F.G., Nevill, A.J., Spencer, S.A., Roden, D., Bevan, S.: Automatic

detection of distorted plethysmogram pulses in neonates and paediatric patients using an
adaptive-network-based fuzzy inference system. Artif. Intell. Med. 24(2), 149–165 (2002)

81. Usher, J., Campbell, D., Vohra, J., Cameron, J.: A fuzzy logic-controlled classifier for use in
implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 22(1), 183–186 (1999)

82. Übeyli, E.D., Güler, I.: Automatic detection of erythemato-squamous diseases using adaptive
neuro-fuzzy inference systems. Comput. Biol. Med. 35(5), 421–433 (2005)

83. Übeyli, E.D., Güler, I.: Adaptive neuro-fuzzy inference systems for analysis of internal
carotid arterial Doppler signals. Comput. Biol. Med. 35(8), 608–702 (2005)

84. Virant-Klun, I., Virant, J.: Fuzzy logic alternative for analysis in the biomedical sciences. Int.
J. Comput. Biomed. Res. 32(4), 305–321 (1999)

85. Cristianini N., Taylor J.S.: An introduction to support vector machines and other kernel-
based learning methods. Cambridge UK Cambridge University Press, Cambridge (2000)

86. Yang, Y.H., Liu, C.C., Chen, H.H.: Music emotion classification: a fuzzy approach. In:
Proceedings of ACM Multimedia, pp. 81–84. Santa Barbara, CA, 23–27 Oct. 2006. doi:
10.1145/1180639.1180665

87. Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: Feature extraction using fuzzy C-means
clustering for data mining systems. Int. J. Comput. Sci. Netw. Secur. 6(3A), 230–236 (2006)

88. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: EEG feature
extraction for classifying emotions using FCM and FKM. Int. J. Comput. Commun. 1(2),
21–25 (2007)

89. Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: Lifting
scheme for human emotion recognition using EEG. In: International Symposium on
Information Technology, pp. 1–7. Kuala Lumpur, Malaysia, 26–28 Aug. 2008. doi: 10.1109/
ITSIM.2008.4631646

90. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Petrovic, M.M., Davis, G., Lumicao, M.N.,
Zivkovic, V.T., Popovic, M.V., Olmstead, R.: Real-time analysis of EEG indexes of
alertness, cognition, and memory acquired with a wireless EEG headset. Int. J. Hum.
Comput. Interact. 17(2), 151–170 (2004)

91. Besserve, M., Philippe, M., Florence, G., Laurent, F., Garnero, L., Martinerie, J.: Prediction
of performance level during a cognitive task from ongoing EEG oscillatory activities. Clin.
Neurophysiol. 119(4), 897–908 (2008)

92. Freeman, F.G., Mikulka, P.J., Scerbo, M.W., Scott, L.: An evaluation of an adaptive
automation system using a cognitive vigilance task. Biol. Psychol. 67(3), 283–297 (2004)

93. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indexes of
operator engagement in automated task. Biol. Psychol. 40(1–2), 187–195 (1995)

94. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using
psychophysiological measures and artificial neural networks. Hum. Factors 45(4), 635–643
(2003)

95. Davidson, R.J., Jackson, D.C., Kalin, N.H.: Emotion plasticity context and regulation
perspectives from affective neuroscience. Psychol. Bull. 126(6), 890–909 (2000)

96. Niedermeyer, E., Silva, F.L.: Electroencephalography basic principles clinical applications
and related fields. Baltimore MD Williams and Wilkins, New York (1993)

97. Ekman P.: Basic emotions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and
Emotion Sussex. UK John Wiley & Sons Ltd, New York (1999)

238 V. Bajaj and R.B. Pachori

http://dx.doi.org/10.1145/1180639.1180665
http://dx.doi.org/10.1109/ITSIM.2008.4631646
http://dx.doi.org/10.1109/ITSIM.2008.4631646


98. Lang, P.J.: The emotion probe studies of motivation and attention. Am. Psychol. 50(5),
372–385 (1995)

99. Kim, J., Andre, E.: Emotion recognition based on physiological changes in music listening.
IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

100. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt,
A., Patras, I.: DEAP: a database for emotion analysis using physiological signals. IEEE
Trans. Affect. Comput. 3(1), 18–31 (2012)

101. Murugappan, M., Juhari, M.R.B.M., Nagarajan, R., Yaacob, S.: An investigation on visual
and audiovisual stimulus based emotion recognition using EEG. Int. J. Med. Eng. Inform.
1(3), 342–356 (2009)

102. Cowie R., Douglas-Cowie E., Savvidou S., McMahon E., Sawey M., Schroder M.:
‘Feeltrace’ an instrument for recording perceived emotion in real time. In: Proceedings of
ISCA Workshop Speech and Emotion, pp. 19–24. Newcastle, UK (2000)

103. Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.: The application of multiwavelet
filter banks to image processing. IEEE Trans. Image Process. 8(4), 548–563 (1999)

104. Cotronei, M., Lazzaro, D., Montefusco, L.B., Puccio, L.: Image compression through
embedded multiwavelet transform coding. IEEE Trans. Image Process. 9(2), 184–189 (2000)

105. Cotronei, M., Montefusco, L.B., Puccio, L.: Multiwavelet analysis and signal processing.
IEEE Trans. Circ. Syst. II 45(8), 970–987 (1998)

106. Hsung, T.S., Lun, D.P.K., Ho, K.C.: Optimizing the multiwavelet shrinkage denoising. IEEE
Trans. Signal Process. 53(1), 240–251 (2005)

107. Khouzani, K.J., Zadeh, H.S.: Multiwavelet grading of pathological images of prostate. IEEE
Trans. Biomed. Eng. 50(6), 697–704 (2003)

108. Wang, J.W.: Multiwavelet packet transforms with application to texture segmentation.
Electron. Lett. 38, 1021–1023 (2002)

109. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature
extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International
Symposium on Modern Computing, pp. 52–57. Sofia, 3–6 Oct. 2006. doi: 10.1109/JVA.
2006.17

110. Kalayci, T., Ozdamar, O.: Wavelet preprocessing for automated neural network detection of
EEG spikes. IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)

111. Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform
based approximate entropy and artificial neural networks. J. Neurosci. Methods 193(1),
156–163 (2010)

112. Plonka, G., Strela, V.: From wavelets to multiwavelet. In: Dahlen, M., Lyche, T.,
Scchumaker, LL. (eds.) Mathematical Methods for Curves and Surfaces II. Vanderbilt
University Press, Nashville, pp. 375–399 (1998)

113. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions
based on several scaling functions. J. Approximation Theor. 78(3), 373–401 (1994)

114. Qumar, J., Pachori, R.B.: A novel technique for merging of multisensor and defocussed
images using multiwavelets. In: IEEE Region 10 (TENCON 2005), pp. 1733–1738.
Melbourne, 21–24 Nov. 2005. doi: 10.1109/TENCON.2005.300836

115. Xiaodong, W., Yanyang, Z., Zhengjia, H.: Multiwavelet denoising with improved
neighboring coefficients for application on rolling bearing fault diagnosis. Mech. Syst.
Signal Process. 25(1), 285–304 (2011)

116. Shaw, R.: Strange attractors chaotic behavior and information flow. Naturforsch 36A,
80–112 (1981)

117. Grassberger, P., Procaccia, I.: Estimation of the kolmogorov entropy from a chaotic signal.
Phys. Rev. A 28(4), 2591–2593 (1983)

118. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys.
57(3), 617–656 (1985)

119. Takens, F.: Invariants related to dimension and entropy. In: Proceedings of 13th Coloquio
Brasileiro de Matematica, Rio de Janeiro, Brazil (1983)

8 Detection of Human Emotions … 239

http://dx.doi.org/10.1109/JVA.2006.17
http://dx.doi.org/10.1109/JVA.2006.17
http://dx.doi.org/10.1109/TENCON.2005.300836


120. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad.
Sci. 88(6), 2297–2301 (1991)

121. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy
and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

122. Chen X., Solomon I.C., Chon K.H.: Comparison of the use of approximate entropy and
sample entropy applications to neural respiratory signal. In: Proceedings of the IEEE
Engineering in Medicine and Biology 27th Annual Conference, pp. 4212–4215. Shanghai
China (2005), 17–18 Jan. 2006. doi: 10.1109/IEMBS.2005.1615393

123. Song, Y., Lio, P.: A new approach for epileptic seizure detection sample entropy based
extraction and extreme learning machine. J. Biomed. Sci. Eng. 3(6), 556–567 (2010)

124. Jones, D., Parks, T.W.: A high resolution data-adaptive time-frequency representation. IEEE
Trans. Acoust. Speech Sign. Process. 38(12), 2127–2135 (1990)

125. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423
(1948)

126. Renyi, A.: On measures of entropy and information. Proc. Fourth Berkeley Symp. Math. Stat.
Probab. 1, 547–561 (1961)

127. Sengur, A.: Multiclass least-squares support vector machines for analog modulation
classification. Expert Syst. Appl. 36(3), 6681–6685 (2009)

128. Bajaj, V., Pachori, R.B.: Automatic classification of sleep stages based on the time-frequency
image of EEG signals. Comput. Methods Programs Biomed. 112(3), 320–328 (2013)

129. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using
empirical mode decomposition. IEEE Trans. Inf Technol. Biomed. 16(6), 1135–1142 (2012)

130. Bajaj V., Pachori R.B.: EEG signal classification using empirical mode decomposition and
support vector machine. In: International Conference on Soft Computing for Problem
Solving, AISC 131, pp. 623–635. Roorkee, India, (2012b), 20–22 December 2011. doi: 10.
1007/978-81-322-0491-6-57

131. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural
Process. Lett. 9(3), 293–300 (1999)

132. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)
133. Suykens, J.A.K., Vandewalle, J.: Multiclass least squares support vector machines. In:

International Joint Conference on Neural Networks, pp. 900–903. Washington, DC, Jul
1999. doi: 10.1109/IJCNN.1999.831072

134. Xing, Y., Wu, X., Xu, Z.: Multiclass least square wavelet support vector machines. In: IEEE
International Conference on Networking Sensing and Control, pp. 498–502. Sanya, 6–8
April 2008. doi: 10.1109/ICNSC.2008.4525268

135. Zavar, M., Rahati, S., Akbarzabeh, M.R., Ghasemifard, H.: Evolutionary model selection in a
wavelet-based support vector machine for automated seizure detection. Expert Syst. Appl.
38(9), 10751–10758 (2011)

240 V. Bajaj and R.B. Pachori

http://dx.doi.org/10.1109/IEMBS.2005.1615393
http://dx.doi.org/10.1007/978-81-322-0491-6-57
http://dx.doi.org/10.1007/978-81-322-0491-6-57
http://dx.doi.org/10.1109/IJCNN.1999.831072
http://dx.doi.org/10.1109/ICNSC.2008.4525268

	8 Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signals
	Abstract
	8.1 Introduction
	8.2 Methodology
	8.2.1 Experimental Setup
	8.2.2 Pre-processing
	8.2.3 Multiwavelet Transform
	8.2.4 Features Extraction
	8.2.5 Multiclass Least-Squares Support Vector Machine

	8.3 Results and Discussion
	8.4 Conclusion
	Acknowledgements
	References


