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EEG Based Brain Computer Interface
for Speech Communication: Principles
and Applications

Kusuma Mohanchandra, Snehanshu Saha and G.M. Lingaraju

Abstract EEG based brain computer interface has emerged as a hot spot in the
study of neuroscience, machine learning and rehabilitation in the recent years.
A BCI provides a platform for direct communication between a human brain and a
computer without the normal neurophysiology pathways. The electrical signals in
the brain, because of their fast response to cognitive processes are most suitable as
non-motor controlled mediation between the human and a computer. It can serve as
a communication and control channel for different applications. Though the primary
goal is to restore communication in severely paralyzed population, the BCI for
speech communication fetches recognition in a variety of non-medical fields, the
silent speech communication, cognitive biometrics and synthetic telepathy to name
a few. A survey of diverse applications and principles of the BCI technology used
for speech communication is discussed in this chapter. An ample evidence of
speech communication used by “locked-in” patients is specified. Through the aid of
assistive computer technology, they were able to pen their memoir. The current
state-of-the-art techniques and control signals used for speech communication is
described in brief. Possible future research directions are discussed. A comparison
of indirect and direct methods of BCI speech production is shown. The direct
method involves capturing the brain signals of the intended speech or speech
imagery, processes the signals to predict the speech and synthesizes the speech

K. Mohanchandra (&)
Department of Computer Science & Engineering, Medical Imaging Research Centre,
Dayananda Sagar College of Engineering, Bangalore 560 078, India
e-mail: kusumalak@gmail.com

S. Saha
Department of Computer Science & Engineering and CBIMMC, PESIT South,
Bangalore 560 100, India
e-mail: snehanshusaha@pes.edu

G.M. Lingaraju
Department of Information Science & Engineering, M. S. Ramaiah Institute of Technology,
Bangalore 560 054, India
e-mail: gmlraju@gmail.com

© Springer International Publishing Switzerland 2015
A.E. Hassanien and A.T. Azar (eds.), Brain-Computer Interfaces,
Intelligent Systems Reference Library 74, DOI 10.1007/978-3-319-10978-7_10

273



production in real-time. There is enough evidence that the direct speech prediction
from the neurological signals is a promising technology with fruitful results and
challenging issues.

Keywords Brain computer interface � Locked-in syndrome � Electroencephalog-
raphy � Silent communication � Imagined speech

10.1 Introduction

Humans use computers through interfaces such as keyboard, mouse, touch screen,
digital camera or a data glove (Fig. 10.1). These interfaces have one thing in
common: they need physical movement of the user. This physical movement may
not be possible in the physically “locked-in” [76] patients. A Brain Computer
Interface (BCI) is a device in which a person uses his brain to control the machine
to be used. The machine can be a computer, wheelchair, robot, an assistive or an
alternative communication device. BCI is a promising technology that provides a
direct communication between the brain and a computer for conveying messages to
the external world from one’s thoughts, without using any of the appendages. It
provides an individual a non-muscular [87] way to communicate and control his
surroundings. Each time we do a task or think of performing one, our brain gen-
erates distinct signals. These signals corresponding to the activity have a pattern.
Exploring and identifying this pattern are challenging and form the crux of any BCI
task. A BCI picks the signals from the brain of an user in the form of Electroen-
cephalography (EEG). Feature extraction and classification leads to these signals
being translated into meaningful commands to drive the device. Due to its tre-
mendous potential the BCI attracts huge investments and research activities from
around the world to facilitate and accelerate development. BCI has a wide range of
applications across a variety of fields, both medical and non-medical. At the outset,
we review the principles and practical applications of BCI related to speech com-
munication, including “locked-in” patients, synthetic telepathy, cognitive biomet-
rics and silent speech communication.

Fig. 10.1 Conventional human computer interfaces
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Thousands of severely disabled people are unable to communicate due to
paralysis, locked-in syndrome (LIS) or other neurological disorders. Reinstating
communication with these patients is a major challenge. The BCI is used by people
deprived of expressing through speech. LIS is a condition in which the patient is
awake and conscious, but “locked-in” an immobile body. The voluntary motor
paralysis prevents the subject from communicating by the way of words or body
movements. The subject wishes to speak or move as he is able to perceive his
environment, but is unable to communicate due to “locked-in” state. The inability to
communicate with others is distressing. The recent advances in computer based
communication technology and BCI have enabled these people to communicate and
control their surroundings and access the internet. This has improved the quality of
life of the patients and helped them live with dignity.

Several BCI techniques evolved over the past decade restoring communication
to persons with severe paralysis. These assistive devices range from a simple binary
(yes/no) communication device, the speller device, a virtual keyboard to imagined
speech communication to name a few. Birbaumer et al. [5] and Perelmouter et al.
[64] have developed a speller device for a “locked-in” person to compose letters.
Binary tree structured decision of the BCI is used, dividing the alphabet into
successive halves until the desired letter is selected. A similar kind of speller is
portrayed by Wolpaw et al. [86] where the alphabets iteratively divide into fourths
instead of halves. Donchin et al. [20] has developed a method based on the P300
component of event-related potentials. The rows and columns of a two dimensional
alphabet grid are illuminated in a sequence, and allow the user to select the desired
letter. A 2-D cursor navigation to select letters from a WiViK virtual keyboard for
“locked-in” subjects is suggested by Kennedy et al. [38].

At its most basic level, communication for “locked-in” patients involves a
simple yes-no scheme [24] based on eye movements. One eye blink means “yes”
and two blinks mean “no”; others may look up for “yes” and look down for “no”.
For more detailed communication, alphabet boards may be used. The letters on the
alphabet board may be arranged in the order frequently used, or in the form of
blocks or a grid. An assistant goes through the letters one by one until the patient
blinks to choose a letter. A laser pointer controlled by head movement can be used
for faster communication. Special infrared sensors that react to eye movement can
also be employed. The patient can move the cursor or select a letter by staring at it
and then snap on it by blinking. This technology serves as a rehabilitation measure
for patients suffering from classical and incomplete LIS as it is proven to control the
residual movements. But the indirect communication systems have few major
disadvantages. Though these systems are precise, the letter choice rate is as slow as
one word/min, thereby limiting the user’s fluency. Moreover, these indirect
methods fail to improve the patient’s behavioral abnormalities and do not address
improving their psychological condition [74]. These methods fail to improve the
constraints related to speech communication capabilities as well.

In an effort to handle the aforementioned problems and make BCI speech pro-
duction more natural and fluent, direct methods are being developed. Figure 10.2
summarizes the direct and indirect methods of speech. The direct method involves
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capturing the brain signals of the intended speech, treat the signals to predict the
speech and synthesize the speech production in real-time. The direct method of
speech communication in BCI has extensive claims both in medical and universal
applications. In this perspective, Suppes et al. [78, 79] used EEG and MEG signals
to characterize speech imagery of words and sentences. DaSalla et al. [17] has
developed a BCI for vowel speech imagery using EEG. Brumberg et al. [11, 12, 15]
and Guenther et al. [27, 28] have developed speech BCI using EEG and ECoG. The
decoded signals from the imagined speech are used to drive a speech synthesizer.
Leuthardt et al. [48–50] have shown that ECoG is associated with different overt
and imagined phoneme articulations. This enables invasive monitoring of human
patients to control one-dimensional computer cursors rapidly and accurately.
Extensive study is being borne out in this topic by numerous research groups.

10.2 Evidences of Speech Communication in Locked-in
Patients

In this chapter, we introduce a few examples of LIS affected patients and their
achievements inspite of severe impairment. Stephen Hawking, one of the most
brilliant theoretical physicists in history and the author of “A Brief history of
Time”, has a motor neuron disorder since his adult lifetime. Hawking communi-
cates by selecting words from a series of menus along the screen, by urging a switch
in his hand or operated by head or eye motion. The chosen words are stored and
staged to a speech synthesizer, thus enabling him to communicate up to 15 words a
minute [77]. He has written books and lots of scientific documents and delivered
many scientific and popular talks by using this device. A victim of LIS, Jean-
Dominique Bauby, penned a book, titled—“The Diving Bell and the Butterfly” (An
award-winning movie of the same name). Through the script he showed the world
that a deficiency does not hold back from achieving [3]. Bauby communicated by
blinking his left eyelid to choose letters from an alphabet board. He founded an

Fig. 10.2 Communication
strategies in LIS patients
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Association of Locked-In Syndrome (ALIS) with the intent to aid patients suffering
from LIS and their families. The French-based ALIS registered 367 LIS affected
patients [43] between 1997 and 2004. This database serves as the foundation for the
research performed on the patient population. Julia Tavalaro, a wheelchair-bound
quadriplegic, was in a vegetative state, and could just move her head and eyes, but
her senses were intact [44]. Tavalaro trained her residual movements to use a
computer and eventually penned her own memoirs “Look Up for Yes”. Philippe
Vigand, another victim of LIS, cultivated an infrared camera which in turn enabled
him to “speak” and “write” by blinking his eyes [25]. This magic camera helped
Philippe write his memoir, entitled “Only the Eyes Say Yes”. He has written about
the evolution of his sickness and demonstrated his willingness to face new chal-
lenges. Another poignant testimony of LIS comes from Judy Mozersky who lost the
entire bodily motion except her eyes. Through the aid of assistive computer tech-
nology, she has been able to continue her studies at Cornell. Her memoir, “Locked-
In: A Young Woman’s Battle with Stroke” [55] has been published by the National
Stroke Association.

These people with courage and hope have rebuilt their lives despite their sup-
posedly insurmountable conditions. This implies the need to key out and appreciate
the views and feelings surging behind the quiet and stillness of those who are
“locked-in”. It is documented that the inability to communicate is alarming and
more devastating than the inability to move. As an outcome, rehabilitation strate-
gies for patients with LIS have focused on finding ways to aid communication using
various means available for a finicky patient. Clinicians believe that in the majority
of cases, improved communication improves patient’s quality of life and allows
them to be more involved with family and society. Austrian researchers have cat-
egorized LIS into 3 subtypes shown in Fig. 10.3 [4]. (a) Classical LIS, in which
conscious patients are completely immobile except for eye movement and blinking.
(b) Incomplete LIS, in which minimal residual movement is preserved in parts of

Fig. 10.3 Classification of locked-in syndrome (LIS)
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the body besides the eyes. (c) Total LIS, in which patients are conscious but unable
to move any muscle. Rehabilitation can be made available for the classical LIS
patients, a few of incomplete LIS patients, but not viable for total LIS patients.

10.3 Supplementary Target BCI Applications for Speech
Communication

BCI for speech communication is prominently perceived as an alternative aug-
mentative communication (AAC) device for severely disabled people. As illustrated
in Fig. 10.4, it delivers its application in a variety of non-medical fields. Research
on synthetic telepathy is being carried out by the U S Army, with the intention to
allow its soldiers to communicate [19] just by thinking. In 2008, the U S Army
awarded a $4 million contract to a team of scientists from three American uni-
versities. They are University of California (led by Mike D’Zmura) at Irvine,
Carnegie Mellon University, and University of Maryland. The aim is to build up a
thought-helmet, a device that can read and broadcast the unspoken speech of sol-
diers. The goal was to enable silent communication among the soldiers. The
thought-helmet extracts the brain signals of the soldier who hopes to communicate
silently, interprets the signals to speech, and conveys those to a radio speaker or an
earpiece worn by other soldiers. The developers [9, 11, 22] are working towards
decoding the brain signals associated with speech. To begin with, a message is
interpreted by a synthetic voice to be delivered in the soldier’s own voice speci-
fying his position and distance from the recipient. The team, directed by Schalk, is
pursuing the invasive Electrocorticography (ECOG) approach. The second group,
headed by Mike D’Zmura, is using EEG, a noninvasive brain-scanning technique
better suited for an actual thought-helmet.

Silent speech communication is one of the most interesting future technologies
which enable speech communication without using the sounds created during the
vocalization process. The silent speech interface [18] allows people to communicate

Fig. 10.4 Applications of BCI in speech communication
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with each other by using a whispering sound or even soundless speech. Further-
more, the voice-disabled individual can use his tongue and mouth movements. The
process then allows the silent speech interface technology [14] to produce the voice
on his behalf thereby facilitating communication with others. This technology is
used by NASA astronauts who need to communicate, without the voices not being
known due to surrounding noise. In preliminary experiments, NASA scientists
found that small, button-sized sensors, fixed under the jawbone and on either side of
the throat [56] could collect the signals. The signals are then sent to the processor
and a computer program to translate them into words. These subvocal speech
systems can be made use of in space suits, in noisy environment and airport towers
to capture air-traffic controller [56] commands. The subvocal speech systems might
be used by a person who has lost his voice permanently. A person using the
subvocal speech system [21] thinks of phrases and talks to himself in silence. But
the tongue and vocal cords do receive speech signals from the brain. These bio-
logical signals are tapped and fed to the speech system for further analysis. Chuck
Jorgensen and his team [36, 37] are developing silent speech recognition at NASA’s
Ames Research Center. They developed special software trained to recognize six
words and 10 digits repeated sub-vocally. The word recognition rate was 92 %. The
speech system is trained to learn the words— “stop”, “go”, “left”, “right”, “alpha”
and “omega”, and the digits 0–9. With these sub-vocalized words, the software
performed simple searches on the internet and controlled a web browser program.

The sub-vocalized or imagined speech can be used as a new feature for bio-
metrics [72] as opposed to the traditional methods. This new class of biometrics
based on cognitive aspects of human behavior, called cognitive biometric, is a novel
approach to user authentication. The brain state of individuals used for the
authentication mechanism increases the robustness and enable cross validation
when used in combination with traditional biometric methods. The biometric
approaches based on the biological features of humans [42, 52, 62, 63, 69–71] have
distinct advantages over traditional methods. The cognitive biometric cannot be
hacked, stolen or transferred from one person to another as they are unique for each
person.

Speech communication has an extensive scope in various domains of applica-
tions. But the challenges in processing the EEG signals are significant. The EEG
signals are extremely complex and prone to internal and external interference.
Advancement in sensor technology, data acquisition techniques and robust signal
processing algorithms may lead to efficient usage of speech communication in
diverse applications and may overcome the challenges posed.

10.4 BCI Design Principles

BCI research is a comparatively young and multidisciplinary [53] field integrating
researchers from engineering, neuroscience, psychology, physiology and other
healthcare fields. BCIs use brain signals to control and communicate with the
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computer or any external device. Hence the need to assess the brain signals and
render the information into compliant electrical signals is important. There are
several cases of existing BCI, classified based on the sensory systems and control
signal systems.

10.4.1 Types of BCI

The neuroimaging techniques used in BCI can be broadly classified into invasive
and non-invasive methods. Invasive BCIs involve implanting electrodes inside the
brain and the non-invasive ones include haptic controllers and EEG scanners. The
basic purpose of these devices is to comprehend the electrical signals in the brain
and translate them as signals sensed by external devices. Invasive modalities need
to implant microelectrode arrays inside the skull within the brain, which involves
expert surgeons with high precision skills. The problem with this device is that a
scar tissue forms over the device as a reaction to the extraneous matter. This reduces
its efficacy and increases the health risk to the patient. Though, they possess the best
signal to noise ratio the need to undergo complex surgical procedure causing a
permanent hole in the skull is not worth taking the risk. Multiple degrees of freedom
can be achieved only through invasive approaches. Partially invasive BCIs are
implanted inside the skull, but over the brain. They spread out electrode arrays on
the surface of the brain. Although the signal strength is less feeble, it eliminates the
problem of scar tissue formation, e.g. ECoG or intracranial EEG (iEEG). Nonin-
vasive BCI is the most used neuroimaging methods, dealing with general brain-
waves that are dampened by passing through the skull, nonetheless receptive
enough to extract the signals with specific information. The EEG is the most widely
used non-invasive technique and most studied in recent times. Other non-invasive
methods considered for capturing brain signals include magneto encephalography
(MEG), functional magnetic resonance imaging (fMRI) and near infrared spectrum
imaging (NIRS). The invasive and non-invasive methods are summarized in
Table 10.1.

According to the nature of the input signals used, BCI systems can be classified
as exogenous or endogenous. Exogenous BCI uses external stimulus such as sound
or picture to elicit the brain activity, while the endogenous BCI is based on self-
regulation [59] of brain rhythms and potentials without external stimuli. Table 10.2
summarizes the differences between exogenous and endogenous BCIs.

BCI systems are classified based on the input data processing techniques as
synchronous or asynchronous. Synchronous BCIs [68] analyze brain signals during
a pre-defined time window. The user is expected to send commands during this
specific period and any signal outside this window is ignored. The asynchronous
BCI analyzes the brain signals continuously irrespective of user command and
therefore is more natural than synchronous BCI. Asynchronous BCIs are compu-
tationally heavier and complex. Table 10.3 summarizes the differences between the
two.

280 K. Mohanchandra et al.



Table 10.1 Summary of neuroimaging techniques

Neuroimaging
method

Modality Activity
measured

Advantages Limitations

Invasive ECoG Electrical Good spatial reso-
lution, higher sig-
nal-to-noise ratio
than EEG

Highly invasive,
surgical incision
into the skull
needed to implant
the electrodes

Noninvasive EEG Electrical Noninvasive, ease
of use, low cost and
high temporal
resolution

Low spatial resolu-
tion on the scalp,
poor signal-to-noise
ratio

MEG Magnetic
fields associ-
ated with
electrical
activity

Higher spatiotem-
poral resolution
than EEG

Too bulky and
expensive modality,
not practical for
real-time analysis

fMRI Hemodynamic High spatial resolu-
tion, low invasive-
ness, absence of
radiation exposure,
and relatively wide
availability

Indirect markers of
brain electrical
activity, low tem-
poral resolution of
1 or 2 s, physio-
logical delay from 3
to 6 s, highly sus-
ceptible to head
motion artifacts

NIRS Hemodynamic Low cost, high
portability, an
acceptable temporal
resolution in the
order of 100 ms,
might be a good
alternative to EEG
as conductive gel
and electrodes are
not used

The spatial resolu-
tion is low in the
order of 1 cm;
communication
speeds in NIRS-
based BCIs are
limited due to
inherent delays of
the hemodynamic
response

Table 10.2 Main differences between exogenous and endogenous BCI

Approach Brain signals Advantages Disadvantages

Exogenous
BCI

Steady state
visually evoked
potential
(SSVEP) and
P300

Training can be set up
with ease and speed. Least
EEG channel required

Maintaining attention to
external stimuli, may cause
fatigue, irritability and
tiredness to the user

Endogenous
BCI

Slow cortical
potentials
(SCP) and sen-
sorimotor
rhythms

Free of any stimulation,
can be operated at one
owns will, useful for
physically challenged
people

Elaborate training, not
every user is able to obtain
control, Multichannel EEG
recordings required for
good performance, Lower
data rate
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10.4.2 EEG Based BCI

A common method for designing a BCI [61] is to use EEG signals extracted during
mental tasks. The EEG is the most widely used neuroimaging methods, due to its
high temporal resolution, comparative low cost, portability, and few risks to the
users. The EEG records the brain’s electrical activity along the scalp produced by
the firing of neurons within the brain. However, the signals are of low resolution
[59] as the signals travel through the scalp, skull, and many other layers. So the
original signal strength in the electrodes becomes weaker, to the order of microvolts
and turns out to be very sensitive to noise. Noise is a key factor [2] in EEG signals.
It reduces the signal to noise ratio and decreases the ability to extract meaningful
information from the recorded signals. The noise may be either due to other current
fields in the brain or external noise sources. EEG signal is measured as the potential
difference over time, between the active electrode and the reference electrode. The
international 10–20 system accessed from Brain Master Technologies Inc. [10] is
shown in Fig. 10.5. The multichannel EEG sets contain up to 128 or 256 active

Table 10.3 Major differences between synchronous and asynchronous BCIs

Approach Advantages Disadvantages

Synchronous
BCI

Design and performance evaluation are simpler,
the user can blink and do other movements
when brain signals are not analyzed and thus
avoid generating artifacts

Not a natural interaction

Asynchronous
BCI

Not required to wait for external cues, offers a
more natural interaction

Design and performance
evaluation are complex

Fig. 10.5 A standard 10–20
international electrode
placement system
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electrodes. These electrodes are made of silver chloride (AgCl). A gel is used which
creates a conductive path between the skin and the electrode for the flow of current.
Electrodes that do not use gels, called ‘dry’ electrodes are made of materials such as
titanium and stainless-steel.

EEG signals consist of a set of frequency bands. These frequency bands are
identified as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ). Relevant
characteristics of these bands are mentioned in Table 10.4.

The EEG can be modified [29] by motor imagery, successfully used by patients
with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to
aid them communicate with their environment. The need for brain signals with a
higher resolution has restricted the recovery of motor disabilities, despite the
exceptional convenience of EEG based BCI applications.

10.4.3 Control Signals Used in BCI for Speech
Communication

The physiological phenomena of the brain signals can be tapped, decoded and
modulated, to control a BCI system. These signals are regarded as control signals in
BCIs. The control signals employed in current BCI systems are classified as visual
evoked potentials (VEP), slow cortical potentials (SCP), P300 evoked potentials,
and sensorimotor rhythms (SMR). Wang et al. [83] has listed the signal controls
with their main features (refer Table 10.5).

EEG records the electrical activity arising from the neurons residing in the
cerebral cortex using the scalp electrodes. The brain electrical activity may be
spontaneous or evoked due to specific external or internal stimulus/events.
Responses to stimulus are termed as event-related potentials (ERP). Event-related
potentials are time locked to physical stimuli and help capture neural activity related

Table 10.4 Frequency bands in the brain signal

EEG
bands

Frequency
(Hz)

Distribution State of mind

Delta 0.5–4 Central cerebrum and parie-
tal lobes

Deep sleep, non-REM sleep

Theta 4–8 Frontal, parietal and tempo-
ral lobes

Drowsiness, first stage of sleep

Alpha 8–13 Most prominent at occipital
and parietal lobe

Relaxed wakefulness with eyes
closed

Mu 8–12 Central electrodes, over
motor and somatosensory
cortex

Shows rest state motor neurons

Beta 13–30 Frontal and central regions Highly alert and focused

Gamma >30 Very localized Higher mental activity, including
perception and consciousness [30]
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to sensory and cognitive processes. Event-related potentials can be elicited by a
wide variety of sensory, cognitive or motor events. The EEG activity reflects the
summed activity [65] of postsynaptic potentials. An electrical potential is produced
when neurons, to the order of thousands or millions, fire in tandem. The ERPs are
categorized as exogenous and endogenous. ERPs occurring within the first 100 ms
after the onset of stimulus [31, 80] are termed sensory or exogenous as they depend
on the physical parameters of the stimulus. Exogenous ERPs are obligatory
responses to the presentation of physical stimulus like visual, audio or intensity. In
contrast, ERPs generated with the latency in the range of 100 ms up to several
seconds are termed cognitive or endogenous. The endogenous ERPs reveal the
manner in which the subject evaluates the stimulus. They depend on behavioral and
psychological processes of the event. The ERPs are characterized by their latency
and amplitude, relative to stimulus onset. ERPs with a latency ranging from 500 ms
to around 10 s are categorized as slow cortical potentials (SCP). The EEG signals
are extremely complex and prone to noise. To separate the EEG signals from the
background noise, the signals are time locked and averaged across many trials, thus
improving the signal-to-noise ratio.

10.4.3.1 Visually Evoked Potentials

The VEP is an evoked potential and elicited when users view a flickering stimulus
of different frequencies in the range of 3.5–75 Hz. The brain generates electrical
activity of the identical frequency or multiples of the frequency of the visual
stimulus. Spectral analysis of EEG in visual areas i.e. occipital lobe shows the
frequency components that can later be mapped to the device commands. These
modulations are easy to detect since the amplitude of VEPs increases a great deal
[82] as the stimulus is moved closer to the central visual field. This control signal
needs very little training. However, the drawback of this control signal is that the
user has to keep his eyes fixed at one point bereft of any random movement.

Table 10.5 Summary of control signals [83]

Signal Physiological phenomena Number of
choices

Training Information
transfer rate
(bits/min)

VEP Brain signal modulations in the
visual cortex

High No 60–100

SCP Slow voltages shift in the brain
signals

Low (2 or
4, very
difficult)

Yes 5–12

P300 Positive peaks due to infre-
quent stimulus

High No 20–25

Sensorimotor
rhythms

Modulations in the sensorimo-
tor rhythms synchronized to
motor activities

Low (2–5) Yes 3–35
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Lee et al. [45–47] exposed the subjects (participants of the experiment) with a
5 × 5 matrix that contained flashing stimuli of digits, characters, and symbols
displayed on the LCD screen. The cells of the matrix flicker in a random sequence.
Participants have to gaze at the cell containing the digit or character they want to
select. The potential at the occipital cortex are measured, and the matrix cell which
elicited large signal amplitude is considered as the target cell the participant wanted
to select. Successful communication with a high information transfer rate is
achieved as a consequence. The evoked potential serves as an efficient and reliable
tool for disabled people to communicate with external environments. BCI based on
VEP entails that the user should be able to control the gaze direction precisely.

10.4.3.2 Slow Cortical Potentials

Slow cortical potentials [34] are potential shifts of the cerebral cortex, in the fre-
quency range below 1–2 Hz and may persist over several seconds. One of the first
communication devices in BCI, the Thought Translation Device (TTD) developed
by Birbaumer and his colleagues [5–7, 32, 33] uses SCPs to control the movement
of an object on a computer screen. The TTD supports completely paralyzed patients
with basic communication ability. The patients are trained to self-regulate SCPs
voluntarily to navigate a binary-tree spelling device. In each selection, the choice is
between selecting or not selecting a set of one or more letters [87] until a single
letter is chosen. A backup or erase option exists as well. Self-regulation of SCPs is
critical as the rate of information provided by SCP based BCI are sensibly low. For
instance Lutzenberger et al. [51] and Rockstroh et al. [73], trained patients to self-
regulate their SCP by providing feedback and positive reinforcement of correct
responses. Continuous practice and extensive training are required to use SCP
based BCI.

10.4.3.3 The P300 Event-Related Potential

A P300 wave is an endogenous event related potential component [35] created due
to infrequent auditory, visual, or somatosensory stimuli. The signal is characterized
by an increase in time series amplitude approximately 300 ms after the stimulus
onset. Increase in signal amplitude is more prominent at the parietal and occipital
electrodes, although observed at several other locations on the scalp. P300 was
suggested by Farwell and Donchin [20, 23, 75] for operating a letter speller BCI but
of late investigated by another research group [26, 40, 60]. It is seen in response to
the oddball paradigm, that the target stimulus with rare and irregular occurrences is
presented within a series of the standard stimulus. For example, if a subject is
viewing a random series of names, in every 3 s occasionally if one of these is the
subject’s name, a P300 wave is generated. The P300 wave is produced in response
to this rarely presented, recognized, meaningful stimulus. The P300 is larger for less
probable events [20].
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The speller device consists of a matrix of letters, numbers and symbols. The
rows and columns of the matrix are highlighted in sequence. To select a letter, the
user has to focus attention on the cell containing the target letter. When a row or
column has the chosen letter, a P300 component of the ERP is elicited. The BCI
detects the character by determining the row and column, which produced a P300
response and the corresponding character, is printed on the screen. The use of P300
based BCIs does not need user initial training. Nevertheless, the performance may
be reduced because the user gets used to the infrequent stimulus [16] and so the
P300 amplitude is decreased. A common form of P300 based spelling BCI uses a
6 × 6 matrix that has 26 letters of the alphabet and numbers 0–9. In every trial, each
row and column are illuminated once for a period of 100–175 ms, totaling 12
events, two containing the target item and ten containing non-target items char-
acterizing an oddball paradigm. The presentation sequence is repeated several times
per selection and the signals are averaged to improve the P300 signal to noise ratio
for reliable detection.

10.4.3.4 Sensorimotor Rhythms

Sensorimotor rhythms comprise µ (8–12 Hz) and β (18–25 Hz) rhythms, localized
in the primary sensory or motor cortical areas. A decrease in µ and β rhythms is
associated with movement or preparation of movement labeled as event-related
desynchronization (ERD). An increase of µ and β rhythms is associated with
relaxation labeled event-related synchronization (ERS) [39]. These rhythms also
occur with motor imagery, i.e. imagining the movement and also with cognitive
tasks.

This technique developed by Wolpaw et al. [85], is used to control one and two
dimensional cursor movements on a computer screen [41, 81, 88]. People have
learned to control µ and β amplitudes in the absence of movement or sensation,
including those with LIS. Increased µ rhythm amplitude [54] moves the cursor
towards the top target and decreased µ rhythm amplitude does so towards the
bottom target. Pfurtscheller and colleagues at the Graz University [57, 58, 66, 67]
have developed a BCI for two-state classification using the mental imagery strategy.
Different motor imagery such as, imagination of left-hand, right-hand, or foot
movement is used to elicit the brain activity in the sensorimotor areas in response to
a visual cue.

10.4.3.5 Intracranial Method—ECoG

As mentioned in earlier sections, speech communication for severely paralyzed
people can be achieved using EEG or ECoG. The ECoG method requires
implantation of microelectrodes into the outer layers of the human cortex. Kennedy
et al. [38] has described an invasive method to drive a BCI, where an “Amyotrophic
lateral sclerosis” (ALS) affected patient learned to control the cursor to produce
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synthetic speech and type. Brumberg and colleagues have developed a BCI to
control an artificial speech synthesizer by an individual with “locked-in” syndrome
during imagined speech [12, 27, 28]. The neural signal recorded from an implanted
electrode in the speech motor cortex of a human volunteer is used to drive an
artificial speech synthesizer. Leuthardt et al. [48–50] demonstrated that ECoG
activity recorded from the surface of the brain enables users to control a one-
dimensional computer cursor rapidly and accurately. The ECoG signals associated
with different types of motor and speech imagery are identified and used to control
two dimensional joystick movements.

Though, speech prosthesis for paralyzed individuals can be achieved using
cortical surface electrodes (e.g. ECoG) or intra-cortical microelectrodes, the EEG is
the most preferred technology [84] because of its excellent temporal resolution,
non-invasive characteristics, portability and reasonably low price. However, due to
volume conduction through the scalp, skull, and other layers of the brain, the spatial
resolution of EEG signals diminish and needs to be improved.

Though EEG is endowed with high temporal resolution, its poor spatial reso-
lution makes it almost essential to be trained extensively by the users. However,
ECoG has significant clinical risks limiting its usage.

10.5 Challenges and Future Research Directions for Speech
Communication BCI

Several crucial issues need to be handled to facilitate expanded use of BCI tech-
nology in speech communication… Most of the existing techniques use fMRI for
processing of languages and speech areas of the brain as it has a good spatial
resolution. But fMRI has limited temporal resolution. The high temporal resolution
of EEG and ECoG has the potential to demonstrate the functional relation between
the language and speech areas of the brain. Neuroscience research [8] has shown
that imagined speech activate the frontal cortex as well as Broca’s and Wernicke’s
areas. The change in neural activity in the language areas of the brain needs to be
understood clearly. The EEG signals are usually recorded in high-dimensional
space and the size of data makes it computationally intensive on the classifier. To
address this issue, competitive dimension reduction techniques [1] and spatial filters
are to be identified. An important attribute of spatial filtering [2] is to reduce the
number of channels on the scalp and at the same time retain all the information
needed for the classification. The electrodes that do not contribute to the activity
may be discarded thereby reducing the number of electrodes considerably.

Another key issue is whether it is practically useful to the actual target popu-
lation. The patient population in need of BCI has severe neurological diseases [13]
causing extensive changes in EEG patterns and the power spectrum. Due to their
continuous degenerative state, a decrease in spectral power is possible, which
induces classification errors.
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To achieve success rates and stability in BCI, the evoked potentials from event
related potentials are considered (e.g. P300, VEP). However, it may not be possible
to provide external stimulus in every possible situation. For the patient population,
the sensory perception is often impaired or degrades continuously, evading any
external stimulus. Therefore, the need to self-regulate the brain signals is critical.
For other applications such as silent speech communication and cognitive bio-
metrics, the usage is outside the lab environment, rendering the supply of external
stimulus infeasible. Therefore, the necessity to self-regulate the endogenous signals
(e.g. SCP) is required. However, this implies extensive training for the user, in order
to produce the same signals every time.

A combination of advances in sensor technology, data acquisition systems,
standard methods and metrics for evaluation and reliable algorithms can propel the
use of BCI for speech communication to diverse directions.

10.6 Conclusion

The research and development in BCI for speech communication have attracted
great attention and investigation from many research groups across varied realms of
interest. Though the primary goal of BCI technology is to restore communication in
severely paralyzed population, the speech communication has expanded its appli-
cation in silent speech communication, synthetic telepathy and cognitive
biometrics.

The most common BCI applications use EEG for recording the neural activity.
The EEG based speller devices are either controlled by evoked potential (VEP,
P300, SMR) or by self-regulation of SCP and motor imagery for selection of letters
from a visual display or a binary speller device. The EEG study confirms that it is
feasible to use non-invasive neurophysiology method to control the spelling device.
Though these indirect methods empower speech communication, they are not at
rates, fast enough for conversational or near conversational speech. The slow
speech production may cause the disabled users to withdraw from social interac-
tions in frustration. To overcome the drawbacks of EEG based speller devices, the
intracranial electrodes (ECoG) are used for signal acquisition. The ECoG boasts of
an improved signal to noise ratio (SNR). The risk of neurosurgery, the cost
involved and ethical issues make invasive methods impractical except for users who
are severely disabled.

In recent times, researchers are investigating the feasibility of performing direct
speech production from different neurological signals for more natural and fluent
speech production. The direct method involves capturing the brain signals of the
intended speech or speech imagery, process the signals to predict the speech and
synthesize the speech output in real-time. The direct method of speech communi-
cation in BCI has an extensive scope of medical and general applications. Extensive
work is being carried out in this field by several research groups. To promote the
feasibility of BCI for speech imagery, we must take into account the psychological
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factors and the advances in EEG pattern recognition techniques. With the
advancement in technology, faster and more accurate communication may be
achieved with EEG based BCI systems for direct speech production.
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